WorldWideScience

Sample records for split torque designs

  1. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    OpenAIRE

    Fu, Zhumu; Gao, Aiyun; Wang, Xiaohong; Song, Xiaona

    2014-01-01

    This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV) by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE) with the state of charge (SOC) of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified I...

  2. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    Directory of Open Access Journals (Sweden)

    Zhumu Fu

    2014-01-01

    Full Text Available This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE with the state of charge (SOC of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified ICE speed as inputs, and regarding the output torque demanded on the ICE as an output, a fuzzy logic controller (FLC with relevant fuzzy rules has been developed to determine the optimal torque distribution among the ICE, the ISG, and the electric motor/generator (EMG effectively. The simulation results reveal that, compared with the conventional torque control strategy which uses rule-based controller (RBC in different driving cycles, the proposed FLC improves the fuel economy of the ISG-PHEV, increases the efficiency of the ICE, and maintains batteries SOC within its operation range more availably.

  3. A Method for Solving the Voltage and Torque Equations of the Split ...

    African Journals Online (AJOL)

    Akorede

    acceleration characteristics of the motor voltages, currents and electromagnetic torque have been plotted and discussed. The simulation results presented include the instantaneous torque-speed characteristics of the Split phase Induction machine. A block diagram of the method for the solution of the machine equations ...

  4. Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting

    International Nuclear Information System (INIS)

    Keatley, Paul Steven; Hicken, Robert James; Sani, Sohrab Redjai; Åkerman, Johan; Hrkac, Gino; Mohseni, Seyed Majid; Dürrenfeld, Philipp

    2017-01-01

    Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of

  5. Split Questionnaire Design for Massive Surveys

    NARCIS (Netherlands)

    Adiguzel, F.; Wedel, M.

    2008-01-01

    Companies are conducting more and longer surveys than ever before. Massive questionnaires are pervasive in marketing practice. As an alternative to the heuristic methods that are currently used to split questionnaires, this study develops a methodology to design the split questionnaire in a way that

  6. Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting

    Science.gov (United States)

    Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James

    2017-04-01

    Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of

  7. Permanently split capacitor motor-study of the design parameters

    Science.gov (United States)

    Sarac, Vasilija; Stefanov, Goce

    2017-09-01

    Paper analyzes the influence of various design parameters on torque of permanently split capacitor motor. Motor analytical model is derived and it is used for calculating the performance characteristics of basic motor model. The acquired analytical model is applied in optimization software that uses genetic algorithms (GA) as an optimization method. Optimized motor model with increased torque is derived by varying three motor parameters in GA program: winding turns ratio, average air gap flux density and motor stack length. Increase of torque has been achieved for nominal operation but also at motor starting. Accuracy of the derived models is verified by Simulink. The acquired values of several motor parameters from transient characteristics of Simulink models are compared with the corresponding values obtained from analytical models of both motors, basic and optimized. Numerical analysis, based on finite element method (FEM), is also performed for both motor models. As a result of the FEM analysis, magnetic flux density in motor cross-section is calculated and adequate conclusions are derived in relation to core saturation and air gap flux density in both motor models.

  8. Design of a lightweight, tethered, torque-controlled knee exoskeleton.

    Science.gov (United States)

    Witte, Kirby Ann; Fatschel, Andreas M; Collins, Steven H

    2017-07-01

    Lower-limb exoskeletons show promise for improving gait rehabilitation for those with chronic gait abnormalities due to injury, stroke or other illness. We designed and built a tethered knee exoskeleton with a strong lightweight frame and comfortable, four-point contact with the leg. The device is structurally compliant in select directions, instrumented to measure joint angle and applied torque, and is lightweight (0.76 kg). The exoskeleton is actuated by two off-board motors. Closed loop torque control is achieved using classical proportional feedback control with damping injection in conjunction with iterative learning. We tested torque measurement accuracy and found root mean squared (RMS) error of 0.8 Nm with a max load of 62.2 Nm. Bandwidth was measured to be phase limited at 45 Hz when tested on a rigid test stand and 23 Hz when tested on a person's leg. During bandwidth tests peak extension torques were measured up to 50 Nm. Torque tracking was tested during walking on a treadmill at 1.25 m/s with peak flexion torques of 30 Nm. RMS torque tracking error averaged over a hundred steps was 0.91 Nm. We intend to use this knee exoskeleton to investigate robotic assistance strategies to improve gait rehabilitation and enhance human athletic ability.

  9. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-06

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  10. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  11. A Method for Solving the Voltage and Torque Equations of the Split ...

    African Journals Online (AJOL)

    Single phase induction machines have been the subject of many researches in recent times. The voltage and torque equations which describe the dynamic characteristics of these machines have been quoted in many papers, including the papers that present the simulation results of these model equations. The way and ...

  12. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    Most of today’s complex systems and processes involve several stages through which input or the raw material has to go before the final product is obtained. Also in many cases factors at different stages interact. Therefore, a holistic approach for experimentation that considers all stages...... on the Kronecker product representation of orthogonal designs and can be used for any number of stages, for various numbers of subplots and for different number of subplots for each stage. The procedure is demonstrated on both regular and nonregular designs and provides the maximum number of factors that can...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  13. Design and Modeling of a Novel Torque Vectoring Differential System

    Directory of Open Access Journals (Sweden)

    Chen Yu-Fan

    2017-01-01

    Full Text Available In this paper, a new concept torque vectoring differential (TVD system is presented. It is shown that the structure and the mechanism of the system, the operating methods, and the parameters design by a simulation program, i.e. SimulationX. First of all, the structure of the new TVD system is introduced, as well as the relevant mechanic equations. Second, we attempt to verify the feasibility and accuracy of SimulationX through establishing a simple mechanical model by MATLAB, so that the further modeling and simulation results of the new TVD system will be credible. Then, the simulation results at the setting conditions are presented. Finally, the sensitivity of the design parameters is analyzed, including adjusting the braking torque and the dimensions of the gear sets in the differential. According to these results, the characteristics of the new TVD system can be derived in order to develop the whole system with vehicle dynamic model in the next stage.

  14. The Mechanism of Yaw Torque Compensation in the Human and Motion Design for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Si Zhang

    2013-01-01

    Full Text Available When a humanoid robot walks fast or runs, the yaw torque is so large that the supporting foot slips easily and the robot may become unstable. The compensation for the yaw torque is important for fast humanoid walking and many studies have been focusing on yaw torque compensation. However, the issue of humanoid robot motion design that can make the movements of the robot more human-like, as well as guarantee the stability of the robot, has not been studied in-depth. In this paper, the mechanism of yaw torque compensating for human walking is firstly studied. Then we propose a method to compensate yaw torque for a humanoid robot through the motion of the arms and waist joint based on the human yaw torque compensation mechanism and ZMP stability citation. Finally, the effectiveness of the proposed method is demonstrated by the results from the simulation and walking experiments on the newly developed BHR humanoid robot.

  15. Design and control of the phase current of a brushless dc motor to eliminate cogging torque

    Science.gov (United States)

    Jang, G. H.; Lee, C. J.

    2006-04-01

    This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.

  16. Quantifying anti-gravity torques in the design of a powered exoskeleton.

    Science.gov (United States)

    Ragonesi, Daniel; Agrawal, Sunil; Sample, Whitney; Rahman, Tariq

    2011-01-01

    Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the passive and active residual force capabilities of users. This paper experimentally measures the passive gravitational torques of 3 groups of subjects: able-bodied adults, able bodied children, and children with neurological disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the gravitational force at the wrist. This force is then converted to static gravitational torques at the elbow and shoulder. Data are compared between look-up table data based on anthropometry and empirical data. Results show that the look-up torques deviate from experimentally measured torques as the arm reaches up and down. This experiment informs designers of Upper Limb orthoses on the contribution of passive human joint torques.

  17. Predicting the Onset of Cavitation in Automotive Torque Converters—Part I: Designs with Geometric Similitude

    Directory of Open Access Journals (Sweden)

    D. L. Robinette

    2008-01-01

    Full Text Available Dimensional analysis has been applied to automotive torque converters to understand the response of performance to changes in torque, size, working fluid, or operating temperature. The objective of this investigation was to develop a suitable dimensional analysis for estimating the effect of exact geometric scaling of a particular torque converter design on the onset of cavitation. Torque converter operating thresholds for cavitation were determined experimentally with a dynamometer test cell at the stall operating condition using nearfield acoustical measurements. Dimensionless quantities based upon either speed or torque at the onset of cavitation and flow properties (e.g., pressures and temperature dependent fluid properties were developed and compared. The proposed dimensionless stator torque quantity was found to be the most appropriate scaling law for extrapolating cavitation thresholds to multiple diameters. A power product model was fit on dimensionless stator torque data to create a model capable of predicting cavitation thresholds. Comparison of the model to test data taken over a range of operating points showed an error of 3.7%. This is the first paper of a two-part paper. In Part II, application of dimensional analysis will be expanded from torque converters with exact geometric similitude to those of more general design.

  18. Quantifying anti-gravity torques for the design of a powered exoskeleton.

    Science.gov (United States)

    Ragonesi, Daniel; Agrawal, Sunil K; Sample, Whitney; Rahman, Tariq

    2013-03-01

    Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the joint torques due to gravity and joint stiffness, as well as, active residual force capabilities of users. The objective of this research paper is to describe the characteristics of the upper limb of children with upper limb impairment. This paper describes the experimental measurements of the torque on the upper limb due to gravity and joint stiffness of three groups of subjects: able-bodied adults, able-bodied children, and children with neuromuscular disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the resultant force at the forearm. This force is then converted to torques at the elbow and shoulder. These data are compared to a two-link lumped mass model based on anthropomorphic data. Results show that the torques based on anthropometry deviate from experimentally measured torques as the arm goes through the range. Subjects with disabilities also maximally pushed and pulled against the force sensor to measure maximum strength as a function of arm orientation. For all subjects, the maximum voluntary applied torque at the shoulder and elbow in the sagittal plane was found to be lower than gravity torques throughout the disabled subjects' range of motion. This experiment informs designers of upper limb orthoses on the contribution of passive human joint torques due to gravity and joint stiffness and the strength capability of targeted users.

  19. Electric motor designs for attenuating torque disturbance in sensitive space mechanisms

    Science.gov (United States)

    Marks, David B.; Fink, Richard A.

    2003-09-01

    When a motion control system introduces unwanted torque jitter and motion anomalies into sensitive space flight optical or positioning mechanisms, the pointing accuracy, positioning capability, or scanning resolution of the mission suffers. Special motion control technology must be employed to provide attenuation of the harmful torque disturbances. Brushless DC (BLDC) Motors with low torque disturbance characteristics have been successfully used on such notable missions as the Hubble Space Telescope when conventional approaches to motor design would not work. Motor designs for low disturbance mechanisms can include two and three phase sinusoidal BLDC motors, BLDC motors without iron teeth, and sometimes skewed or non-integral slot designs for motors commutated with Hall effect devices. The principal components of motor torque disturbance, successful BLDC motor designs for attenuating disturbances, and design trade-offs for optimum performance are examined.

  20. Design and Comparison Direct Torque Control Techniques for Induction Motors

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kazmierkowski, Marian P.; Zelechowski, Marcin

    2005-01-01

    In this paper a comparison of two significant control methods of induction motor are presented. The first one is a classical Direct Torque and Flux Control (DTC) and is compared with a scheme, which uses Space Vector Modulator (DTC-SVM). A comparison in respect to dynamic and steady state...

  1. Incomplete split-plot designs based on alpha-designs: a compromise between traditional split-plot designs and randomised complete block design

    DEFF Research Database (Denmark)

    Kristensen, Kristian

    2012-01-01

    The paper shows how the α-design (also known as generalised lattice) may be used for constructing incomplete split-plot designs and describes four different methods (A, B, C and D) of construction. Intra-block efficiency factors and theoretical considerations are used to compare the methods. Based...... of data. The three types were simulated data with known covariance structure, data from uniformity trials and data from actual trials using incomplete split-plot designs for comparing cereal varieties under different growing conditions. It is concluded that the incomplete split-plot designs may be a good...

  2. Constructing General Orthogonal Fractional Factorial Split-Plot Designs

    NARCIS (Netherlands)

    Sartono, B.; Goos, P.; Schoen, E.

    2015-01-01

    While the orthogonal design of split-plot fractional factorial experiments has received much attention already, there are still major voids in the literature. First, designs with one or more factors acting at more than two levels have not yet been considered. Second, published work on nonregular

  3. Optimal design and selection of magneto-rheological brake types based on braking torque and mass

    International Nuclear Information System (INIS)

    Nguyen, Q H; Lang, V T; Choi, S B

    2015-01-01

    In developing magnetorheological brakes (MRBs), it is well known that the braking torque and the mass of the MRBs are important factors that should be considered in the product’s design. This research focuses on the optimal design of different types of MRBs, from which we identify an optimal selection of MRB types, considering braking torque and mass. In the optimization, common types of MRBs such as disc-type, drum-type, hybrid-type, and T-shape types are considered. The optimization problem is to find an optimal MRB structure that can produce the required braking torque while minimizing its mass. After a brief description of the configuration of the MRBs, the MRBs’ braking torque is derived based on the Herschel-Bulkley rheological model of the magnetorheological fluid. Then, the optimal designs of the MRBs are analyzed. The optimization objective is to minimize the mass of the brake while the braking torque is constrained to be greater than a required value. In addition, the power consumption of the MRBs is also considered as a reference parameter in the optimization. A finite element analysis integrated with an optimization tool is used to obtain optimal solutions for the MRBs. Optimal solutions of MRBs with different required braking torque values are obtained based on the proposed optimization procedure. From the results, we discuss the optimal selection of MRB types, considering braking torque and mass. (technical note)

  4. Split-mouth design in Paediatric Dentistry clinical trials.

    Science.gov (United States)

    Pozos-Guillén, A; Chavarría-Bolaños, D; Garrocho-Rangel, A

    2017-03-01

    The aim of this article was to describe the essential concepts of the split-mouth design, its underlying assumptions, advantages, limitations, statistical considerations, and possible applications in Paediatric Dentistry clinical investigation. In Paediatric Dentistry clinical investigation, and as part of randomised controlled trials, the split-mouth design is commonly used. The design is characterised by subdividing the child's dentition into halves (right and left), where two different treatment modalities are assigned to one side randomly, in order to allow further outcome evaluation. Each participant acts as their own control by making within- patient rather than between-patient comparisons, thus diminishing inter-subject variability and increasing study accuracy and power. However, the main problem with this design comprises the potential contamination of the treatment effect from one side to the other, or the "carry-across effect"; likewise, this design is not indicated when the oral disease to be treated is not symmetrically distributed (e.g. severity) in the mouth of children. Thus, in spite of its advantages, the split-mouth design can only be applied in a limited number of strictly selected cases. In order to obtain valid and reliable data from split mouth design studies, it is necessary to evaluate the risk of carry-across effect as well as to carefully analise and select adequate inclusion criteria, sample-size calculation and method of statistical analysis.

  5. Design of driving control strategy of torque distribution for two - wheel independent drive electric vehicle

    Science.gov (United States)

    Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping

    2018-02-01

    In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.

  6. Beyond the Interconnections: Split Manufacturing in RF Designs

    Directory of Open Access Journals (Sweden)

    Yu Bi

    2015-08-01

    Full Text Available With the globalization of the integrated circuit (IC design flow of chip fabrication, intellectual property (IP piracy is becoming the main security threat. While most of the protection methods are dedicated for digital circuits, we are trying to protect radio-frequency (RF designs. For the first time, we applied the split manufacturing method in RF circuit protection. Three different implementation cases are introduced for security and design overhead tradeoffs, i.e., the removal of the top metal layer, the removal of the top two metal layers and the design obfuscation dedicated to RF circuits. We also developed a quantitative security evaluation method to measure the protection level of RF designs under split manufacturing. Finally, a simple Class AB power amplifier and a more sophisticated Class E power amplifier are used for the demonstration through which we prove that: (1 the removal of top metal layer or the top two metal layers can provide high-level protection for RF circuits with a lower request to domestic foundries; (2 the design obfuscation method provides the highest level of circuit protection, though at the cost of design overhead; and (3 split manufacturing may be more suitable for RF designs than for digital circuits, and it can effectively reduce IP piracy in untrusted off-shore foundries.

  7. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Directory of Open Access Journals (Sweden)

    Alessandro Moro

    2017-01-01

    Full Text Available The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  8. Split-Plot Designs with Mirror Image Pairs as Subplots

    DEFF Research Database (Denmark)

    Tyssedal, John; Kulahci, Murat; Bisgaard, Soren

    2011-01-01

    In this article we investigate two-level split-plot designs where the sub-plots consist of only two mirror image trials. Assuming third and higher order interactions negligible, we show that these designs divide the estimated effects into two orthogonal sub-spaces, separating sub-plot main effects...... appealing with effects of major interest free from full aliasing assuming that 3rd and higher order interactions are negligible....

  9. Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research focuses on optimal design of different types of magnetorheological brakes (MRBs), from which an optimal selection of MRB types is identified. In the optimization, common types of MRB such as disc-type, drum-type, hybrid-types, and T-shaped type are considered. The optimization problem is to find the optimal value of significant geometric dimensions of the MRB that can produce a maximum braking torque. The MRB is constrained in a cylindrical volume of a specific radius and length. After a brief description of the configuration of MRB types, the braking torques of the MRBs are derived based on the Herschel–Bulkley model of the MR fluid. The optimal design of MRBs constrained in a specific cylindrical volume is then analysed. The objective of the optimization is to maximize the braking torque while the torque ratio (the ratio of maximum braking torque and the zero-field friction torque) is constrained to be greater than a certain value. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions of the MRBs. Optimal solutions of MRBs constrained in different volumes are obtained based on the proposed optimization procedure. From the results, discussions on the optimal selection of MRB types depending on constrained volumes are given. (paper)

  10. Design and analysis of an MR rotary brake for self-regulating braking torques.

    Science.gov (United States)

    Yun, Dongwon; Koo, Jeong-Hoi

    2017-05-01

    This paper presents a novel Magneto-rheological (MR) brake system that can self-regulate the output braking torques. The proposed MR brake can generate a braking torque at a critical rotation speed without an external power source, sensors, or controllers, making it a simple and cost-effective device. The brake system consists of a rotary disk, permanent magnets, springs, and MR fluid. The permanent magnets are attached to the rotary disk via the springs, and they move outward through grooves with two different gap distances along the radial direction of the stator due to the centrifugal force. Thus, the position of the magnets is dependent on the spin speed, and it can determine the magnetic fields applied to MR fluids. Proper design of the stator geometry gives the system unique torque characteristics. To show the performance of an MR brake system, the electromagnetic characteristics of the system are analyzed, and the torques generated by the brake are calculated using the result of the electromagnetic analysis. Using a baseline model, a parametric study is conducted to investigate how the design parameters (geometric shapes and material selection) affect the performance of the brake system. After the simulation study, a prototype brake system is constructed and its performance is experimentally evaluated. The experimental results show that the prototype produced the maximum torque of 1.2 N m at the rotational speed of 100 rpm. The results demonstrate the feasibility of the proposed MR brake as a speed regulator in rotating systems.

  11. Geometrical design characteristics of orthodontic mini-implants predicting maximum insertion torque.

    Science.gov (United States)

    Katić, Višnja; Kamenar, Ervin; Blažević, David; Spalj, Stjepan

    2014-07-01

    To determine the unique contribution of geometrical design characteristics of orthodontic mini-implants on maximum insertion torque while controlling for the influence of cortical bone thickness. Total number of 100 cylindrical orthodontic mini-implants was used. Geometrical design characteristics of ten specimens of ten types of cylindrical self-drilling orthodontic mini-implants (Ortho Easy®, Aarhus, and Dual Top™) with diameters ranging from 1.4 to 2.0 mm and lengths of 6 and 8 mm were measured. Maximum insertion torque was recorded during manual insertion of mini-implants into bone samples. Cortical bone thickness was measured. Retrieved data were analyzed in a multiple regression model. Significant predictors for higher maximum insertion torque included larger outer diameter of implant, higher lead angle of thread, and thicker cortical bone, and their unique contribution to maximum insertion torque was 12.3%, 10.7%, and 24.7%, respectively. The maximum insertion torque values are best controlled by choosing an implant diameter and lead angle according to the assessed thickness of cortical bone.

  12. The Use of Plackett-Burman Designs to Construct Split Plot Designs.

    NARCIS (Netherlands)

    Kulahci, M.; Bisgaard, S.

    2005-01-01

    Abstract When some factors are hard to change and others are relatively easier, split-plot experiments are often an economic alternative to fully randomized designs. Split-plot experiments, with their structure of subplot arrays imbedded within whole-plot arrays, have a tendency to become large,

  13. Analysis of the Torque Ripples in Designing a Disk Type Brushless Direct Current Motor

    OpenAIRE

    A. V. Stepanov; S. I. Maslennikova

    2015-01-01

    This paper investigates the torque ripples of disk-type low-power brushless direct current motor (BDCM) with permanent magnets. In spite of numerous studies on designing of valve engines this issue is understudied as yet. The torque ripples cause noise and vibration and can significantly limit accuracy when used in instrumentation, computer technology.We consider a motor that includes a power unit consisting of a rotor and a stator. There are ferrite elements of sensor on the rotor, and the n...

  14. Planar holographic spectrum-splitting PV module design

    Science.gov (United States)

    Gordon, Michael; Zhang, Deming; Vorndran, Shelby; Russo, Juan M.; Luscombe, Christine K.; Shaheen, Sean E.; Kostuk, Raymond K.

    2012-10-01

    A design is presented for a planar spectrum-splitting photovoltaic (PV) module using Holographic Optical Elements (HOEs). A repeating array of HOEs diffracts portions of the solar spectrum onto different PV materials arranged in alternating strips. Several combinations of candidate PV materials are explored, and theoretical power conversion efficiency is quantified and compared for each case. The holograms are recorded in dichromated gelatin (DCG) film, an inexpensive material which is easily encapsulated directly into the panel. If desired, the holograms can focus the light to achieve concentration. The side-by-side split spectrum layout has advantages compared to a stacked tandem cell approach: since the cells are electrically isolated, current matching constraints are eliminated. Combinations of dissimilar types of cells are also possible: including crystalline, thin film, and organic PV cells. Configurations which yield significant efficiency gain using relatively inexpensive PV materials are of particular interest. A method used to optimize HOE design to work with a different candidate cells and different package aspect ratios is developed and presented. (Aspect ratio is width of the cell strips vs. the thickness of the panel) The relationship between aspect ratio and HOE performance properties is demonstrated. These properties include diffraction efficiency, spectral selectivity, tracking alignment sensitivity, and uniformity of cell illumination.

  15. Preconceptual design of a salt splitting process using ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate

  16. Analysis of the Torque Ripples in Designing a Disk Type Brushless Direct Current Motor

    Directory of Open Access Journals (Sweden)

    A. V. Stepanov

    2015-01-01

    Full Text Available This paper investigates the torque ripples of disk-type low-power brushless direct current motor (BDCM with permanent magnets. In spite of numerous studies on designing of valve engines this issue is understudied as yet. The torque ripples cause noise and vibration and can significantly limit accuracy when used in instrumentation, computer technology.We consider a motor that includes a power unit consisting of a rotor and a stator. There are ferrite elements of sensor on the rotor, and the nonmagnetic disk, bonded to it, contains permanent magnets. The rotor is mounted on a rotating shaft. The stator consists of a steel casing and bonded to it non-magnetic, non-conductive disk with holes. In the disk holes from both sides are mounted armature coils. The armature winding consists of two sections each of which has 6 coils. Each adjacent coil in section has an opposite direction of winding. The coils are arranged circumferentially and are shifted relative to each other; the displacement angle between the coils of one section is equal to 2π/6 (rad. Sections are also shifted relative to each other; the angular shift is π/6 (rad. Sections are connected to the output terminals of the electronic switch. Sections of motor windings have the reverse full-wave power.The paper has investigated the steady operation at four-stroke switching and under constant load (torque. In this case, the electromagnetic torque and rotor speed are periodical functions of the rotor rotation angle. The dependencies of the averaged torque on the rotation speed have been obtained. The spectral distribution of the torque ripples at various rotor speeds of rotation has been calculated. The dependencies of the torque on the speed were studied both at constant speed and taking into account the uneven speed. Based on the research findings of disk type BDCM was computed a level of ripples amounted to 0.8 - 5%, which is quite acceptable for use in a drive. The results are useful for

  17. Design and experimental study of joint torque balance mechanism of seed implantation articulated robot

    Directory of Open Access Journals (Sweden)

    Zhang Yongde

    2015-06-01

    Full Text Available This article discusses several new mechanisms that may be used in prostate cancer seed implant robotics. We have developed relatively simple but effective mathematical models of multi-needle puncture prostate using nonlinear spring–damper model; based on Automatic Dynamic Analysis of Mechanical Systems or dynamics module, displacement simulation for prostate is performed, and simulation results indicate that the multi-needle puncture mechanism could reduce prostate displacement in the y- or z-direction. Then aiming at the limitation of human body structure space and seed implant needle insertion path, a revolute-revolute-translational-type prostate seed implantation robot with three-dimensional transrectal ultrasound navigation is designed. It is noteworthy that drive torque fluctuation is caused by the center of gravity change of revolute-revolute tandem cantilever structure; an elastic balance mechanism is designed to realize the complete balance of cantilever weight. Based on Automatic Dynamic Analysis of Mechanical Systems or dynamics module, static drive torque simulation of 2-revolute tandem cantilever structure is performed. Finally, we manufacture the robot prototype and make verification experiment to the cantilever balancing device, and the experiment results provide evidence that elastic balance mechanism can realize the complete balance of cantilever weight, improve the fluctuation in the amplitude value of driving torque, and increase its operation stationary of seed implantation robot system.

  18. Maximum insertion torque of a novel implant-abutment-interface design for PEEK dental implants.

    Science.gov (United States)

    Schwitalla, Andreas Dominik; Zimmermann, Tycho; Spintig, Tobias; Abou-Emara, Mohamed; Lackmann, Justus; Müller, Wolf-Dieter; Houshmand, Alireza

    2018-01-01

    Frequent reports attest to the various advantages of tapered implant/abutment interfaces (IAIs) compared to other types of interfaces. For this reason, a conical IAI was designed as part of the development of a PEEK (polyetheretherketone)-based dental implant. This IAI is equipped with an apically displaced anti-rotation lock with minimal space requirements in the form of an internal spline. The objective of this study was the determination of the average insertion torque (IT) at failure of this design, so as to determine its suitability for immediate loading, which requires a minimum IT of 32Ncm. 10 implants each made of unfilled PEEK, carbon fiber reinforced ("CFR") PEEK (> 50vol% continuous axially parallel fibers) as well as of titanium were produced and tested in a torque test bench. The average IT values at failure of the unfilled PEEK implants were measured at 22.6 ± 0.5Ncm and were significantly higher than those of the CFR-Implants (20.2 ± 2.5Ncm). The average IT values at failure of the titanium specimens were significantly higher (92.6 ± 2.3Ncm) than those of the two PEEK variants. PEEK- and CFR-PEEK-implants in the present form cannot adequately withstand the insertion force needed to achieve primary stability for immediate loading. Nevertheless, the achievable torque resilience of the two PEEK-variants may be sufficient for a two-stage implantation procedure. To improve the torque resistance of the PEEK implant material the development of a new manufacturing procedure is necessary which reinforces the PEEK base with continuous multi-directional carbon fibers as opposed to the axially parallel fibers of the tested PEEK compound. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of Manual Screwdriver Design in Combination With and Without Predrilling on Insertion Torque of Orthodontic Mini-Implants.

    Science.gov (United States)

    Katalinic, Andrej; Trinajstic Zrinski, Magda; Roksandic Vrancic, Zlatka; Spalj, Stjepan

    2017-02-01

    The study focused on the influence of screwdriver design in combination with and without predrilling a pilot hole of inner implant diameter on insertion torque of orthodontic mini-implants, controlling for cortical thickness and vertical insertion force as cofactors. One hundred twenty mini-implants (Forestadent) of 1.7 mm in diameter and 6 and 8 mm in length were manually inserted into 120 swine rib bone samples. Maximal insertion torque as a measure of primary stability and vertical force were measured. The study included procedures with and without pilot hole and different screwdriver handles and shaft length and 2 implant lengths. Design of manual screwdriver does not modify insertion torque to a significant extent. In multiple linear regression model, significant predictors of insertion torque are thicker cortical bone (explaining 16.6% of variability), higher vertical force at maximal torque (13.5%), 6-mm implant length (2.5%), and the presence of pilot hole (2.3%). Handle type and shaft length of manual screwdriver do not significantly influence insertion torque, whereas predrilling a pilot hole has low impact on torque values of manually inserted self-drilling orthodontic mini-implants.

  20. Follow-up Designs to Resolve Confounding in Split-Plot Experiments

    DEFF Research Database (Denmark)

    Almimi, Ashraf A.; Kulahci, Murat; Montgomery, Douglas C.

    2008-01-01

    Split-plot designs are effective in industry due to time and/or cost constraints, restriction on randomization of the treatment combinations of the hard-to-change factors, and different sizes of experimental units. Some of the results of fractional factorial split-plot experiments can be ambiguous......-alias certain effects. Six rules are provided to develop foldovers for minimum aberration resolution III and resolution IV fractional factorial split-plot designs....

  1. Design of direct drive robot using indigenously developed d.c. torque motors

    Science.gov (United States)

    Athani, Vithal V.

    The range of high-performance torque motors, which were indigenously developed for use in multistage satellite launch vehicles, is described. The main features that set dc torque motors apart from dc servomotors are: high peak torque, power, and current over short periods of operation, low speed of operation, obviating the need for gearing, high torque/inertia and torque/weight ratios, and high figure of merit = torque/sq rt watt ratio. The dc torque motors are eminently suited to high-performance applications requiring high torque at low speed of operation, such as aircraft and missile control surface actuation, control of multistage satellite launch vehicles, certain computer peripherals like magnetic tape transports and hard disk drives, and robotics, CNC systems, and machine tool control.

  2. Design-Parameters Setup for Power-Split Dual-Regime IVT

    Science.gov (United States)

    Preda, Ion; Ciolan, Gheorghe; Covaciu, Dinu

    2017-10-01

    To analyze the working possibilities of power-split infinitely variable transmissions (IVTs) it is necessary to follow a systematic approach. The method proposed in this paper consists of generating a block diagram of the transmission and then, based on this diagram, to derive the kinematics and dynamics equations of the transmission. For an actual numerical case, the derived equations are used to find characteristic values of the transmission components (gear and chain drives, planetary units) necessary to calculate the speed ratios, the speeds, torques and powers acting on the shafts and coupling (control) elements, and even to estimate the overall efficiency of the transmission.

  3. Design and Characteristic Analysis of a Novel Bearingless SRM considering Decoupling between Torque and Suspension Force

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2014-01-01

    Full Text Available A Bearingless Switched Reluctance Motor (BSRM has a complicated character of nonlinear coupling; therefore, it is a hard work to operate BSRM stably. In this paper, a new type of BSRMs with novel rotor structure is proposed by analyzing relationships between motor structure and theoretical formulae of levitation force and torque. The stator structure of this new motor is same as that of traditional BSRM and each stator pole can coil one winding or two windings, while the pole arc of rotor is wider. In order to analyze the characteristics of the proposed BSRM, finite-element (FE models are used and a 12/4 one-set-winding BSRM and a 12/8 two-sets-windings BSRM are taken as examples. The analysis results indicate that the new scheme is effective for a stable levitation. It can realize decoupling control of torque and radial force, thus simplifying its control strategy and improving the use ratio of winding currents. A control system is designed for the 12/8 BSRM based on deducing its mathematical model. Compared with traditional BSRM, the proposed scheme is easier to be implemented.

  4. Design and development of split-parallel through-the road retrofit hybrid electric vehicle with in-wheel motors

    Science.gov (United States)

    Zulkifli, S. A.; Syaifuddin Mohd, M.; Maharun, M.; Bakar, N. S. A.; Idris, S.; Samsudin, S. H.; Firmansyah; Adz, J. J.; Misbahulmunir, M.; Abidin, E. Z. Z.; Syafiq Mohd, M.; Saad, N.; Aziz, A. R. A.

    2015-12-01

    One configuration of the hybrid electric vehicle (HEV) is the split-axle parallel hybrid, in which an internal combustion engine (ICE) and an electric motor provide propulsion power to different axles. A particular sub-type of the split-parallel hybrid does not have the electric motor installed on board the vehicle; instead, two electric motors are placed in the hubs of the non-driven wheels, called ‘hub motor’ or ‘in-wheel motor’ (IWM). Since propulsion power from the ICE and IWM is coupled through the vehicle itself, its wheels and the road on which it moves, this particular configuration is termed ‘through-the-road’ (TTR) hybrid. TTR configuration enables existing ICE-powered vehicles to be retrofitted into an HEV with minimal physical modification. This work describes design of a retrofit- conversion TTR-IWM hybrid vehicle - its sub-systems and development work. Operating modes and power flow of the TTR hybrid, its torque coupling and resultant traction profiles are initially discussed.

  5. Photocatalytic water splitting: Quantitative approaches toward photocatalysis by design

    KAUST Repository

    Takanabe, Kazuhiro

    2017-10-11

    A widely used term, “photocatalysis”, generally addresses photocatalytic (energetically down-hill) and photosynthetic (energetically up-hill) reactions and refers to the use of photonic energy as a driving force for chemical transformations, i.e., electron reorganization to form/break chemical bonds. Although there are many such important reactions, this contribution focuses on the fundamental aspects of photocatalytic water splitting into hydrogen and oxygen by using light from the solar spectrum, which is one of the most investigated photosynthetic reactions. Photocatalytic water splitting using solar energy is considered to be artificial photosynthesis that produces a solar fuel because the reaction mimics nature’s photosynthesis not only in its redox reaction type but also in its thermodynamics (water splitting: 1.23 eV vs. glucose formation: 1.24 eV). To achieve efficient photocatalytic water splitting, all of the parameters, though involved at different timescales and spatial resolutions, should be optimized because the overall efficiency is obtained as the multiplication of all these fundamental efficiencies. The purpose of this review article is to provide the guidelines of a concept, “photocatalysis by design”, which is the opposite of “black box screening”; this concept refers to making quantitative descriptions of the associated physical and chemical properties to determine which events/parameters have the most impact on improving the overall photocatalytic performance, in contrast to arbitrarily ranking different photocatalyst materials. First, the properties that can be quantitatively measured or calculated are identified. Second, the quantities of these identified properties are determined by performing adequate measurements and/or calculations. Third, the obtained values of these properties are integrated into equations so that the kinetic/energetic bottlenecks of specific properties/processes can be determined, and the properties can

  6. Optimal Design of Stator Interior Permanent Magnet Machine with Minimized Cogging Torque for Wind Power Application

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, Ming

    2008-01-01

    This paper proposes a new approach to minimize the cogging torque of a stator interior permanent magnet (SIPM) machine. The optimization of stator slot gap and permanent magnet is carried out and the cogging torque ripple is analyzed by using finite element analysis. Experiments on a prototype...

  7. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.

    Science.gov (United States)

    Moltedo, Marta; Bacek, Tomislav; Langlois, Kevin; Junius, Karen; Vanderborght, Bram; Lefeber, Dirk

    2017-07-01

    The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity. This paper presents the development of a high-torque ankle actuator to assist the ankle joint in both dorsiflexion and plantarflexion. The compliant actuator is a spindle-driven MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The design of the actuator was made to keep its weight as low as possible, while being able to provide high torques. As a result of this novel design, the actuator weighs 1.18kg. Some static characterization tests were perfomed on the actuator and their results are shown in the paper.

  8. Incomplete split-plots in designs with many entries – a compromise between split-plots and randomized complete block designs

    OpenAIRE

    Kristensen, Kristian

    2012-01-01

    The paper shows how the Alpha-design (also known as generalised lattice) may be used for constructing incomplete split-plot designs and describes 4 different methods (A, B, C and D) of construction. Intra-block efficiency factors and theoretical considerations are used to compare the methods. Based on those considerations method B was considered to be the most appropriate method for trials where tests for interaction between the two factors were important and thus this method was used and mos...

  9. Analysis and Design of a Maglev Permanent Magnet Synchronous Linear Motor to Reduce Additional Torque in dq Current Control

    Directory of Open Access Journals (Sweden)

    Feng Xing

    2018-03-01

    Full Text Available The maglev linear motor has three degrees of motion freedom, which are respectively realized by the thrust force in the x-axis, the levitation force in the z-axis and the torque around the y-axis. Both the thrust force and levitation force can be seen as the sum of the forces on the three windings. The resultant thrust force and resultant levitation force are independently controlled by d-axis current and q-axis current respectively. Thus, the commonly used dq transformation control strategy is suitable for realizing the control of the resultant force, either thrust force and levitation force. However, the forces on the three windings also generate additional torque because they do not pass the mover mass center. To realize the maglev system high-precision control, a maglev linear motor with a new structure is proposed in this paper to decrease this torque. First, the electromagnetic model of the motor can be deduced through the Lorenz force formula. Second, the analytic method and finite element method are used to explore the reason of this additional torque and what factors affect its change trend. Furthermore, a maglev linear motor with a new structure is proposed, with two sets of 90 degrees shifted winding designed on the mover. Under such a structure, the mover position dependent periodic part of the additional torque can be offset. Finally, the theoretical analysis is validated by the simulation result that the additionally generated rotating torque can be offset with little fluctuation in the proposed new-structure maglev linear motor. Moreover, the control system is built in MATLAB/Simulink, which shows that it has small thrust ripple and high-precision performance.

  10. Designing fractional factorial split-plot experiments using integer programming

    DEFF Research Database (Denmark)

    Capehart, Shay R.; Keha, Ahmet; Kulahci, Murat

    2011-01-01

    factorial (FF) design, with the restricted randomisation structure to account for the whole plots and subplots. We discuss the formulation of FFSP designs using integer programming (IP) to achieve various design criteria. We specifically look at the maximum number of clear two-factor interactions...

  11. Theoretical study and design of a splitting-recombining style homogenizer

    International Nuclear Information System (INIS)

    Park, Seong Hee; Ko, Do Kyeong; Kim, Hyun Su; Lim, Gwon; Cha, Byeong Hun; Kim, Cheol Jung

    2001-01-01

    For a flat-top laser beam with low low divergence, new scheme based on splitting, inverting, and recombining has been developed. The previous system developed in MicroLas for multimode Excimer lasers, however, cannot apply to a Gaussian beam. By adding functions of path compensation and adjustable beam overlapping, a new splitting-recombining style homogenizer can convert a Gaussian beam to a flat-top beam. Since this scheme is sensitive to accuracy of separation, ratio of beam splitting, and timing of recombination, input laser beam should be collimated to large size and a beam splitter with dielectric coating should be fabricated with high accuracy. We design and study theoretically the new splitting-recombining style homogenizer for a Gaussian laser beam, including the tolerance caused by misalignment or coating quality, the beam quality depending on the beam overlapping ratio, and the effects of longitudinal pulse profile and time delay between transmitted and re-combined beam.

  12. Map-Based Power-Split Strategy Design with Predictive Performance Optimization for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jixiang Fan

    2015-09-01

    Full Text Available In this paper, a map-based optimal energy management strategy is proposed to improve the consumption economy of a plug-in parallel hybrid electric vehicle. In the design of the maps, which provide both the torque split between engine and motor and the gear shift, not only the current vehicle speed and power demand, but also the optimality based on the predicted trajectory of vehicle dynamics are considered. To seek the optimality, the equivalent consumption, which trades off the fuel and electricity usages, is chosen as the cost function. Moreover, in order to decrease the model errors in the process of optimization conducted in the discrete time domain, the variational integrator is employed to calculate the evolution of the vehicle dynamics. To evaluate the proposed energy management strategy, the simulation results performed on a professional GT-Suit simulator are demonstrated and the comparison to a real-time optimization method is also given to show the advantage of the proposed off-line optimization approach.

  13. Checking the Adequacy of Fit of Models from Split-Plot Designs

    DEFF Research Database (Denmark)

    Almini, A. A.; Kulahci, Murat; Montgomery, D. C.

    2009-01-01

    One of the main features that distinguish split-plot experiments from other experiments is that they involve two types of experimental errors: the whole-plot (WP) error and the subplot (SP) error. Taking this into consideration is very important when computing measures of adequacy of fit for split......-plot models. In this article, we propose the computation of two R-2, R-2-adjusted, prediction error sums of squares (PRESS), and R-2-prediction statistics to measure the adequacy of fit for the WP and the SP submodels in a split-plot design. This is complemented with the graphical analysis of the two types...... of errors to check for any violation of the underlying assumptions and the adequacy of fit of split-plot models. Using examples, we show how computing two measures of model adequacy of fit for each split-plot design model is appropriate and useful as they reveal whether the correct WP and SP effects have...

  14. Design and analysis of sensorless torque optimization for single phase induction motors

    International Nuclear Information System (INIS)

    Vaez-Zadeh, S.; Payman, A.

    2006-01-01

    Single phase induction motors are traditionally used in constant speed applications and suffer from unsymmetrical performance. A reliable speed signal can improve their performance and extend their applications as variable speed drives. In this paper, a speed estimation method for these motors is proposed based on a machine model in the stator flux reference frame. The method is examined in a sensorless torque optimization system over a wide operating range. Extensive simulation results prove the validity of the proposed method. Also, the motor performance under the torque optimization system is analyzed

  15. Finite Element Analysis Design of a Split Rotor Bracket for a Bulb Turbine Generator

    Directory of Open Access Journals (Sweden)

    Yongyao Luo

    2013-01-01

    Full Text Available The rotor bracket is a key component of the generator rotor with cracks in the rotor bracket leading to rubbing between the rotor and stator, which threatens safe operation of the unit. The rotor rim is so complicated that the equivalent radial stiffness of rim was determined by numerical simulation other than engineering experience. A comprehensive numerical method including finite element analyses and the contact method for multibody dynamics has been used to design the split rotor bracket. The com-putational results showed that cracks would occur in the initial design of the bracket when the turbine operated at the runaway speed, and the bracket design should be improved. The improved design of the bracket was strong enough to avoid cracks and rub between the rotor and stator. This design experience will help improve the design of split rotor brackets for bulb turbine generators.

  16. Thermodynamic analysis and system design of a novel split cycle engine concept

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert E.; Heikal, Morgan R.

    2016-01-01

    The split cycle engine is a new reciprocating internal combustion engine with a potential of a radical efficiency improvement. In this engine, the compression and combustion–expansion processes occur in different cylinders. In the compression cylinder, the charge air is compressed through a quasi-isothermal process by direct cooling of the air. The high pressure air is then heated in a recuperator using the waste heat of exhaust gas before induction to the combustion cylinder. The combustion process occurs during the expansion stroke, in a quasi-isobaric process. In this paper, a fundamental theoretical cycle analysis and one-dimensional engine simulation of the split cycle engine was undertaken. The results show that the thermal efficiency (η) is mainly decided by the CR (compression ratio) and ER (expansion ratio), the regeneration effectiveness (σ), and the temperature rising ratio (N). Based on the above analysis, a system optimization of the engine was conducted. The results showed that by increasing CR from 23 to 25, the combustion and recuperation processes could be improved. By increasing the expansion ratio to 26, the heat losses during the gas exchange stroke were further reduced. Furthermore, the coolant temperatures of the compression and expansion chambers can be controlled separately to reduce the wall heat transfer losses. Compared to a conventional engine, a 21% total efficiency improvement was achieved when the split cycle was applied. It was concluded that through the system optimization, a total thermal efficiency of 53% can be achieved on split cycle engine. - Highlights: • Fundamental mechanism of the split cycle engine is investigated. • The key affecting factors of the thermodynamic cycle efficiency are identified. • The practical efficiency of split cycle applying on diesel engine is analysed. • The design optimization on the split cycle engine concept is conducted.

  17. The application of the split-plot design in the analysis of ...

    African Journals Online (AJOL)

    The Split-plot design model was used to analyze rabbit feeds data obtained from the Department of Agricultural Science, Federal College of Education Pankshin in order to determine whether there is significant variation in the categories of feeds given. The result shows that there was no significant effect in the different ...

  18. Controller Design for Direct Torque Controlled Space Vector Modulated (DTC-SVM) Induction Motor Drives

    DEFF Research Database (Denmark)

    Zelechowski, M.; Kazmierkowski, M.P.; Blaabjerg, Frede

    2005-01-01

    In this paper two different methods of PI controllers for direct torque controlled-space vector modulated induction motor drives have been studied. The first one is simple method based only on symmetric optimum criterion. The second approach takes into account the full model of induction motor...

  19. Design of Super Narrowband DWDM Filters Based on the Effect of Spectral Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C Q; Chen, M [College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006 (China); Liu, J; Wan, Z M; Luo, Z M [College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Tian, P, E-mail: namecqh@yahoo.com.cn [College of Optoelectronic Science and Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2011-02-01

    A novel approach is proposed to design super narrowband DWDM Filters consisting of multiple quantum wells (MQWs) by employing photonic crystals. Numerical investigations prove that the closed-cavity MQWs are more suitable for DWDM systems compared with the open-cavity MQWs. It is shown that different confined states could emerge from photonic band gap, which can be used as high-frequency carriers one-to-one. It is also found that these proposed MQWs could split the single spectral lines into multiples based on the effect of spectral splitting, and the number of the splitting is just equal to the number of the wells. In this way, the density of carriers can be increased multiplicatively in the same wave band, and thus the spectral efficiency can be improved multiplicatively. These results provide the prospects of channel density maximization and effective bandwidth optimization for optical communication.

  20. Classes of Split-Plot Response Surface Designs for Equivalent Estimation

    Science.gov (United States)

    Parker, Peter A.; Kowalski, Scott M.; Vining, G. Geoffrey

    2006-01-01

    When planning an experimental investigation, we are frequently faced with factors that are difficult or time consuming to manipulate, thereby making complete randomization impractical. A split-plot structure differentiates between the experimental units associated with these hard-to-change factors and others that are relatively easy-to-change and provides an efficient strategy that integrates the restrictions imposed by the experimental apparatus. Several industrial and scientific examples are presented to illustrate design considerations encountered in the restricted randomization context. In this paper, we propose classes of split-plot response designs that provide an intuitive and natural extension from the completely randomized context. For these designs, the ordinary least squares estimates of the model are equivalent to the generalized least squares estimates. This property provides best linear unbiased estimators and simplifies model estimation. The design conditions that allow for equivalent estimation are presented enabling design construction strategies to transform completely randomized Box-Behnken, equiradial, and small composite designs into a split-plot structure.

  1. A novel gripper design for multi hand tools grasping under tight clearance constraints and external torque effect

    KAUST Repository

    Shaqura, Mohammad

    2017-08-29

    A robotic multi tool gripper design and implementation is presented in this paper. The proposed design targets applications where an actuation task is performed using a wide selection of standard hand tools. The manipulation motion is assumed to be rotational which requires a firm grip to account for external torque on the grasped tool. The setup is assumed to be a conventional workshop panel with hand tools being hanged close to each other, which constraints lateral clearance around the target, and near the wall of the panel, which constraints the depth clearance. Off the shelf grippers are mostly heavy and bulky which make them unsuitable for these requirements. Moreover, they are not optimized in terms of power consumption, simplicity and compactness. These generic grippers are mostly designed for pick and place tasks where no external torques other than those caused by the object weight affects the gripper. The design challenge involves building a gripper that is capable of operating in limited clearance space, firmly grip a variety of standard hand tools with different sizes and shapes. The proposed design is optimized for these objectives and offers a low cost and power consumption solution. The design has been validated in lab and outdoor experiments and has been deployed in real operating platform used in an international robotics competition.

  2. Active Design Method for the Static Characteristics of a Piezoelectric Six-Axis Force/Torque Sensor

    OpenAIRE

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2014-01-01

    To address the bottleneck issues of an elastic-style six-axis force/torque sensor (six-axis force sensor), this work proposes a no-elastic piezoelectric six-axis force sensor. The operating principle of the piezoelectric six-axis force sensor is analyzed, and a structural model is constructed. The static-active design theory of the piezoelectric six-axis force sensor is established, including a static analytical/mathematical model and numerical simulation model (finite element model). A piezo...

  3. Estimation of Missing Observations in Two-Level Split-Plot Designs

    DEFF Research Database (Denmark)

    Almimi, Ashraf A.; Kulahci, Murat; Montgomery, Douglas C.

    2008-01-01

    Inserting estimates for the missing observations from split-plot designs restores their balanced or orthogonal structure and alleviates the difficulties in the statistical analysis. In this article, we extend a method due to Draper and Stoneman to estimate the missing observations from unreplicated...... to the number of the missing observations. These estimates are inserted into the design table and the estimates for the remaining effects (or alias chains of effects as the case with FFSP designs) are plotted on two half-normal plots: one for the whole-plot effects and the other for the subplot effects...

  4. Whole-body isometric force/torque measurements for functional assessment in neuro-rehabilitation: platform design, development and verification

    Directory of Open Access Journals (Sweden)

    Cavallo Giuseppe

    2009-10-01

    Full Text Available Abstract Background One of the main scientific and technological challenges of rehabilitation bioengineering is the development of innovative methodologies, based on the use of appropriate technological devices, for an objective assessment of patients undergoing a rehabilitation treatment. Such tools should be as fast and cheap to use as clinical scales, which are currently the daily instruments most widely used in the routine clinical practice. Methods A human-centered approach was used in the design and development of a mechanical structure equipped with eight force/torque sensors that record quantitative data during the initiation of a predefined set of Activities of Daily Living (ADL tasks, in isometric conditions. Results Preliminary results validated the appropriateness, acceptability and functionality of the proposed platform, that has become now a tool used for clinical research in three clinical centres. Conclusion This paper presented the design and development of an innovative platform for whole-body force and torque measurements on human subjects. The platform has been designed to perform accurate quantitative measurements in isometric conditions with the specific aim to address the needs for functional assessment tests of patients undergoing a rehabilitation treatment as a consequence of a stroke. The versatility of the system also enlightens several other interesting possible areas of application for therapy in neurorehabilitation, for research in basic neuroscience, and more.

  5. Design of a dual linear polarization antenna using split ring resonators at X-band

    Science.gov (United States)

    Ahmed, Sadiq; Chandra, Madhukar

    2017-11-01

    Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).

  6. Casimir torque

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Guzman, Jose C [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Mochan, W Luis [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2006-05-26

    We develop a formalism for the calculation of the flow of angular momentum carried by the fluctuating electromagnetic field within a cavity bounded by two flat anisotropic materials. By generalizing a procedure employed recently for the calculation of the Casimir force between arbitrary materials, we obtain an expression for the torque between anisotropic plates in terms of their reflection amplitude matrices. We evaluate the torque in 1D for ideal and dispersive model materials.

  7. Design and optimization of cascaded DCG based holographic elements for spectrum-splitting PV systems

    Science.gov (United States)

    Wu, Yuechen; Chrysler, Benjamin; Pelaez, Silvana Ayala; Kostuk, Raymond K.

    2017-09-01

    In this work, the technique of designing and optimizing broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting application. Spectrum splitting photovoltaic system uses a series of single bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. DCG is a near ideal holographic material for solar applications as it can achieve high refractive index modulation, low absorption and scattering properties and long-term stability to solar exposure after sealing. In this research, a methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cut-off wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is also developed to optimize both single and two-layer cascaded holographic spectrum splitters for the best bandgap combinations of two- and three-junction SSPV systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems under the AM1.5 solar spectrum are then calculated using the detailed balance method, and shows an improvement compared with tandem structure.

  8. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    Science.gov (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  9. Butterfly valve torque prediction methodology

    International Nuclear Information System (INIS)

    Eldiwany, B.H.; Sharma, V.; Kalsi, M.S.; Wolfe, K.

    1994-01-01

    As part of the Motor-Operated Valve (MOV) Performance Prediction Program, the Electric Power Research Institute has sponsored the development of methodologies for predicting thrust and torque requirements of gate, globe, and butterfly MOVs. This paper presents the methodology that will be used by utilities to calculate the dynamic torque requirements for butterfly valves. The total dynamic torque at any disc position is the sum of the hydrodynamic torque, bearing torque (which is induced by the hydrodynamic force), as well as other small torque components (such as packing torque). The hydrodynamic torque on the valve disc, caused by the fluid flow through the valve, depends on the disc angle, flow velocity, upstream flow disturbances, disc shape, and the disc aspect ratio. The butterfly valve model provides sets of nondimensional flow and torque coefficients that can be used to predict flow rate and hydrodynamic torque throughout the disc stroke and to calculate the required actuation torque and the maximum transmitted torque throughout the opening and closing stroke. The scope of the model includes symmetric and nonsymmetric discs of different shapes and aspects ratios in compressible and incompressible fluid applications under both choked and nonchoked flow conditions. The model features were validated against test data from a comprehensive flowloop and in situ test program. These tests were designed to systematically address the effect of the following parameters on the required torque: valve size, disc shapes and disc aspect ratios, upstream elbow orientation and its proximity, and flow conditions. The applicability of the nondimensional coefficients to valves of different sizes was validated by performing tests on 42-in. valve and a precisely scaled 6-in. model. The butterfly valve model torque predictions were found to bound test data from the flow-loop and in situ testing, as shown in the examples provided in this paper

  10. A systematic design approach for two planetary gear split hybrid vehicles

    Science.gov (United States)

    Liu, Jinming; Peng, Huei

    2010-11-01

    Multiple power sources in a hybrid vehicle allow for flexible vehicle power-train operations, but also impose kinematic constraints due to component characteristics. This paper presents a design process that enables systematic search and screening through all three major dimensions of hybrid vehicle designs - system configuration, component sizing and control, to achieve optimal performance while satisfying the imposed constraints. An automated dynamic modelling method is first developed which enables the construction of hybrid vehicle model efficiently. A screening process then narrows down to configurations that satisfy drivability and operation constraints. Finally, a design and control optimisation strategy is carried out to obtain the best execution of each configuration. A case study for the design of a power-split hybrid vehicle with optimal fuel economy is used to demonstrate this overall hybrid vehicle design process.

  11. Design and Analysis of a Continuous Split Typed Needle-Free Injection System for Animal Vaccination.

    Science.gov (United States)

    Chen, Kai; Pan, Min; Liu, Tingting

    2017-01-01

    Liquid needle-free injection devices (NFIDs) employ a high-velocity liquid jet to deliver drugs and vaccine through transdermal injection. NFIDs for animal vaccination are more complicated than those used for human beings for their much larger and more flexible power sources, as well as rapid, repetitive and continuous injection features. In the paper, spring-powered NFID is designed for animal vaccine injection. For convenience, the device is a split into a power source and handheld injector. A mathematical model is proposed to calculate the injection pressure, taking into the account pressure loss and the strain energy loss in the bendable tube due to elastic deformation. An experimental apparatus was build to verify the calculation results. Under the same system conditions, the calculation results of the dynamic injection pressure match the experimental results. It is found that the bendable tube of the split typed NFID has significant impact on the profile of the injection pressure. The initial peak pressure is less than the initial peak pressure of NFID without bendable tube, and there is occurrence time lag of the peak pressure. The mathematical model is the first attempt to reveal the relationship between the injection pressure and the system variables of split typed NFID.

  12. The design of a small linear-resonant, split Stirling cryogenic refrigerator compressor

    Science.gov (United States)

    Ackermann, R. A.

    1985-01-01

    The development of a small linear-resonant compressor for use in a 1/4-watt, 78K, split Stirling cryogenic refrigerator is discussed. The compressor contains the following special features: (1) a permanent-magnet linear motor; (2) resonant dynamics; (3) dynamic balancing; and (4) a close-clearance seal between the compressor piston and cylinder. This paper describes the design of the compressor, and presents component test data and system test data for the compressor driving a 1/4-watt expander.

  13. Design of an ultra-high torque double shoulder drill-pipe tool joint for extended reach wells

    Directory of Open Access Journals (Sweden)

    Xiaohua Zhu

    2017-09-01

    Full Text Available Drill-pipe tool joints in extended reach wells often suffer a shear failure. In view of this, an ultra-high torque double-shoulder pipe joint was designed according to the deformation compatibility relation of the drill-pipe tool joint under torque. It is structurally characterized by long primary and secondary shoulders, small thread taper and large fillet radius of bottom tooth. First, a 3D numerical simulation model was established for this type of joint, named the XSJ joint here, based on the principle of virtual work, the Von Mises yield criterion and the nonlinear contact theory. Second, orthogonal optimization was performed on its key structural parameters by means of the orthogonal optimization method. The optimal combination of key structural parameters of the XSJ joint is taper 1:16, thread pitch 6.55 mm, guiding surface angle 29°, bearing surface angle 28°, and tooth height 3.755 mm. Finally, the bearing performance and fatigue performance of this tool joint and the API tool joint were calculated and compared using the Simulia Abaqus fe-safe software. Compared with the API tool joint, the XSJ joint is better, and its tensile strength, torsion strength, bending strength and compression strength increase by 10.65%, 62.5%, 2.75% and 52%, respectively. Its tension compression fatigue life, bending fatigue life, torsion fatigue life and composite fatigue life increase by 1.19 times, 1.74 times, 550 times and 28.79%, respectively. It is concluded that the designed XSJ joint is significantly improved in term of torsion capacity while its tension strength, bending strength and compression strength are not decreased, so it can better meet the drilling conditions of extended reach wells. Keywords: Extended reach well, Tool joint, Shear failure, Torsion capacity, Bending capacity, Orthogonal optimization, Bearing property, Fatigue life

  14. Design of a holographic micro-scale spectrum-splitting photovoltaic system

    Science.gov (United States)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Russo, Juan M.; Kostuk, Raymond K.

    2015-09-01

    Micro-scale PV technology combines the high conversion efficiency of concentrated photovoltaics (CPV) with the low costs and the simple form of flat panel PV. Some of the benefits of micro-scale PV include: reduced semiconductor material usage; improved heat rejection capacity; and more versatile PV cell interconnect configurations. Spectrumsplitting is also a beneficial technique to increase the efficiency and reduce the cost of photovoltaic systems. It spatially separates the incident solar spectrum into spectral components and directs them to PV cells with matching bandgaps. This approach avoids the current and lattice matching problems that exist in tandem multi-junction systems. In this paper, we applied the ideas of spectrum-splitting in a micro-scale PV system, and demonstrated a holographic micro-scale spectrum-splitting photovoltaic system. This system consists of a volume transmission hologram in combination with a micro-lens array. An analysis methodology was developed to design the system and determine the performance of the resulting system. The spatial characteristics of the dispersed spectrum, the overall system conversion efficiency, and the improvement over best bandgap will be discussed.

  15. Active design method for the static characteristics of a piezoelectric six-axis force/torque sensor.

    Science.gov (United States)

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2014-01-02

    To address the bottleneck issues of an elastic-style six-axis force/torque sensor (six-axis force sensor), this work proposes a no-elastic piezoelectric six-axis force sensor. The operating principle of the piezoelectric six-axis force sensor is analyzed, and a structural model is constructed. The static-active design theory of the piezoelectric six-axis force sensor is established, including a static analytical/mathematical model and numerical simulation model (finite element model). A piezoelectric six-axis force sensor experimental prototype is developed according to the analytical mathematical model and numerical simulation model, and selected static characteristic parameters (including sensitivity, isotropic degree and cross-coupling) are tested using this model with three approaches. The measured results are in agreement with the analytical results from the static-active design method. Therefore, this study has successfully established a foundation for further research into the piezoelectric multi-axis force sensor and an overall design approach based on static characteristics.

  16. Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2017-02-01

    Full Text Available Given that power-split transmission (PST is considered to be a major powertrain technology for hybrid heavy-duty vehicles (HDVs, the development and application of PST in the HDVs make mode shift control an essential aspect of powertrain system design. This paper presents a shift schedule design and torque control strategy for a hybrid HDV with PST during mode shift, intended to reduce the output torque variation and improve the shift quality (SQ. Firstly, detailed dynamic models of the hybrid HDV are developed to analyze the mode shift characteristics. Then, a gear shift schedule calculation method including a dynamic shift schedule and an economic shift schedule is provided. Based on the dynamic models and the designed shift schedule, a mode shift performance simulator is built using MATLAB/Simulink, and simulations are carried out. Through analysis of the dynamic equations, it is seen that the inertia torques of the motor–generator lead to the occurrence of transition torque. To avoid the unwanted transition torque, we use a mode shift control strategy that coordinates the motor–generator torque to compensate for the transition torque. The simulation and experimental results demonstrate that the output torque variation during mode shift is effectively reduced by the proposed control strategy, thereby improving the SQ.

  17. Countercurrent reactor design and flowsheet for iodine-sulfur thermochemical water splitting process

    International Nuclear Information System (INIS)

    Leybros, J.; Carles, Ph.; Borgard, J.M.

    2009-01-01

    A conceptual design is presented for the I/S process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process includes a countercurrent reactor being developed by CEA within them framework of an international collaboration (I-NERI project) with DOE at General Atomics (San Diego, CA). A ProsimPlus (TM) model of the flowsheet indicates 600 kJ high-temperature heat and 69 kJ electric power are consumed per mole of H 2 product (with an assumed pressure of 120 bars). The net thermal efficiency would be 38% (HHV basis) if electric power is available at a conversion efficiency of 45%. (authors)

  18. Design and Experiment of a Differential-Based Power Split Device

    Directory of Open Access Journals (Sweden)

    Xiaohua Zeng

    2014-04-01

    Full Text Available Hybrid electric vehicles have excellent energy efficiency and emission performance. Power split device (PSD is a key component that directly affects the control strategy of power systems, the economic consumption of fuel, and the dynamic performance of vehicles. A differential-based PSD was proposed in this paper. A traditional differential was taken as the prototype and a new design method is proposed to retrofit the differential into a PSD. First, a comprehensive approach that includes theoretical analysis and software simulation was used to analyze the possibility as well as the necessity of retrofitting the differential into PSD. Then the differential was retrofitted. Finally, finite element analysis and bench test were conducted. Results showed that applying the retrofitted differential as PSD is practicable.

  19. Measurements of Repeated Tightening and Loosening Torque of Seven Different Implant/Abutment Connection Designs and Their Modifications: An In Vitro Study.

    Science.gov (United States)

    Butkevica, Alena; Nathanson, Dan; Pober, Richard; Strating, Herman

    2018-02-01

    Repeated tightening and loosening of the abutment screw may alter its mechanical and physical properties affecting the optimal torque and ultimate reliability of an implant/abutment connection. The purpose of this study was to evaluate the effect of repeated tightening and loosening of implant/abutment screws on the loosening torque of implant/abutment connections of commercially available implant systems. Seven different implant/abutment connections and their modifications were tested. The screws of each system were tightened according to the manufacturer's specifications. After 20 minutes the screws were loosened. This procedure was repeated ten times, and the differences between the 1st and 10th cycle were expressed as a percentage change RTq(%) and correlated with initial torque, the number of threads, the length of shank, and thread surface area employing Spearman's analysis. All systems showed significant differences in residual torque (RTq) value (p 0.05). All connections but group 3 (p = 1.000) showed a significant change from the initial torque (ITq) to the RTq values. The first successive RTq values increased in two connection groups 1 and 2. The remaining connections showed reduced RTq values ranging from -1.2 % (group 5) to -23.5% (group 6). The RTq values declined gradually with every repeated tightening in groups 1, 2, 3, 8, 9, 11, 12. In group 2, after the tenth tightening the RTq was still above the ITq value. Only length of shank demonstrated a correlation with the RTq(%) change over the successive tightening loosening cycles (p implant/abutment screws caused varying torque level changes among the different systems. These observations can probably be attributed to connection design. Limiting the number of tightening/loosening cycles in clinical and laboratory procedures is advisable for most of the implant systems tested. © 2016 by the American College of Prosthodontists.

  20. Limited Angle Torque Motors Having High Torque Density, Used in Accurate Drive Systems

    Directory of Open Access Journals (Sweden)

    R. Obreja

    2011-01-01

    Full Text Available A torque motor is a special electric motor that is able to develop the highest possible torque in a certain volume. A torque motor usually has a pancake configuration, and is directly jointed to a drive system (without a gear box. A limited angle torque motor is a torque motor that has no rotary electromagnetic field — in certain papers it is referred to as a linear electromagnet. The main intention of the authors for this paper is to present a means for analyzing and designing a limited angle torque motor only through the finite element method. Users nowadays require very high-performance limited angle torque motors with high density torque. It is therefore necessary to develop the highest possible torque in a relatively small volume. A way to design such motors is by using numerical methods based on the finite element method.

  1. Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells.

    Science.gov (United States)

    Huang, Qingli; Wang, Jinze; Quan, Baogang; Zhang, Qiulin; Zhang, Dongxiang; Li, Dongmei; Meng, Qingbo; Pan, Li; Wang, Yanqin; Yang, Guozhen

    2013-04-10

    We have designed a single thin planar diffractive optical element (DOE) based on the principle of diffractive optics to simultaneously split and concentrate the incident light into several energy ranges for lateral multijunction solar cells. A prototype with the maximum thickness of 6.95 μm and 32 quantized levels in depth was fabricated by photolithographic technology. The spectrum-splitting and concentrating performance of the prototype, which were measured quantitatively, show good agreement with the simulation results. As mass production of a DOE can be produced by imprint technology, our design provides a feasible means for low-cost, large-scale, and high-efficiency photovoltaic applications.

  2. Mode transition coordinated control for a compound power-split hybrid car

    Science.gov (United States)

    Wang, Chen; Zhao, Zhiguo; Zhang, Tong; Li, Mengna

    2017-03-01

    With a compound power-split transmission directly connected to the engine in hybrid cars, dramatic fluctuations in engine output torque result in noticeable jerks when the car is in mode transition from electric drive mode to hybrid drive mode. This study designed a mode transition coordinated control strategy, and verified that strategy's effectiveness with both simulations and experiments. Firstly, the mode transition process was analyzed, and ride comfort issues during the mode transition process were demonstrated. Secondly, engine ripple torque was modeled using the measured cylinder pumping pressure when the engine was not in operation. The complete dynamic plant model of the power-split hybrid car was deduced, and its effectiveness was validated by a comparison of experimental and simulation results. Thirdly, a coordinated control strategy was designed to determine the desired engine torque, motor torque, and the moment of fuel injection. Active damping control with two degrees of freedom, based on reference output shaft speed estimation, was designed to mitigate driveline speed oscillations. Carrier torque estimation based on transmission kinematics and dynamics was used to suppress torque disturbance during engine cranking. The simulation and experimental results indicate that the proposed strategy effectively suppressed vehicle jerks and improved ride comfort during mode transition.

  3. Design and static calibration of a six-dimensional force/torque sensor for minimally invasive surgery.

    Science.gov (United States)

    Yu, Hailong; Jiang, Jun; Xie, Le; Liu, Lin; Shi, Yunyong; Cai, Ping

    2014-06-01

    The use of surgery robotics is getting more and more important worldwide. In the present study, we propose a novel small-size six-dimensional force/torque sensor with the structure of double cross beams. This technology can be applied in robotic tele-operation systems used in minimally invasive surgery (MIS) robotic systems. The proposed sensor is made of duralumin which totally meets the stiffness requirement. The output voltage of the sensor will alter with the deformation of the elastic body and strain gauges. The feasibility was discussed by finite element analysis (FEA) and the coupling coefficient matrix was established with dimension reduced according to FEA. In addition, we designed a calibration platform and completed static calibration for the sensor. The methods and principles of measurements and data analysis were provided. The calibration curves and coupling coefficient matrix were acquired by using the least squares method (LSM). Experimental tests and calibration error analysis showed that the proposed sensor has high accuracy, appropriate range, and played a role in promoting the application of force feedback technology in MIS.

  4. Influence of the design in sagittal split ramus osteotomy on the mechanical behavior.

    Science.gov (United States)

    Pozzer, Leandro; Olate, Sergio; Cavalieri-Pereira, Lucas; de Moraes, Márcio; Albergaría-Barbosa, José Ricardo

    2014-01-01

    The aim of this study was to determine the influence of the design of the sagittal split ramus osteotomy (SSRO) on the mechanical resistance to vertical forces. An in vitro study was designed for 30 test specimens. Two osteotomy models were made on two polyurethane hemimandibles, where group I presented a SSRO with an angle at vestibular level between both molars and group II presented a linear SSRO towards the basilar border. In both groups a standard osteosynthesis was performed with a 2.0 system plate and four monocortical screws, establishing sub-groups according to the degree of mandibular advancement: group A without advancement, group B with an advancement of 3 mm, and group C with advancement of 7 mm. Hemimandibles were subjected to a vertical load in the Instron machine until reaching peak load with failure, recording the value of the load and displacement. The data were analyzed with a t-test to establish statistical significance, considering pdesign influences mechanical resistance and that the linear SSRO offers the best mechanical resistance.

  5. A novel design and driving strategy for a hybrid electric machine with torque performance enhancement both taking reluctance and electromagnetic attraction effects into account

    International Nuclear Information System (INIS)

    Huang, W.-N.; Chen, W.-P.; Teng, C.-C.; Chen, M.-P.

    2006-01-01

    A novel design, the hybrid electric machine, that owns improved competence for the output torque regulation as well as enlarged power density comparing to the conventional brushless machines by making use of the simultaneous performance overlapping concept based on magnetism is proposed in this paper. The developed design concept is focused on electric machine structure and its counterpart drive for applying two main magnetic-power transmitting paths by combination of both features of magnetic tendencies of flux generation that may flow in the path with minimum reluctance and direction owning the electromagnetic motive attraction. The verifications demonstrate that the outputted torque owns effective improvement by the presented concept of the electric machine based on the equivalent 3-hp frame than the conventional brushless motors

  6. Game programmer's guide to Torque under the hood of the Torque game engine

    CERN Document Server

    Maurina , Edward F

    2006-01-01

    game programmer working with the Torque game engine must have ""The Game Programmer's Guide To Torque"": it teaches everything needed to design your own game, using experiences of game makers and industry veterans well versed in Torque technology. A Torque Game engine demo is included on an accompanying cd while step-by-step examples tell how to use it. Its focus on all the basics makes for an exceptional coverage for all levels of game programmer. -Bookwatch, August 2006

  7. Strain of bone-implant interface and insertion torque regarding different miniscrew thread designs using an artificial bone model.

    Science.gov (United States)

    Cha, Jung-Yul; Hwang, Chung-Ju; Kwon, Sung Hwang; Jung, Han-Sung; Kim, Kwang-Mahn; Yu, Hyung Seog

    2015-06-01

    To evaluate the initial stability of dual-thread miniscrews by analyzing the strain at the bone-implant interface and insertion torque during implantation in artificial bone models with different cortical bone thicknesses. Insertion torque, and strain, measured with a five-element strain gauge in 1.0, 1.5, and 2.0-mm artificial cortical bone, during insertion of single- (OAS-T1507) and dual-thread (MPlant-U3) type self-drilling miniscrews were assessed. Both dual- and single-thread miniscrews showed greater than 7790 μstrain for all cortical bone thicknesses, and dual-thread miniscrews reached up to 19580 μstrain in 2.00 m m cortical bone. The strain of dual-thread miniscrews increased with increasing cortical bone thicknesses of 1.0-2.0mm. For single-thread miniscrews, the maximum insertion torque was relatively constant, but maximum insertion torque increased significantly in dual-thread groups with increasing cortical bone thicknesses (P bone thicknesses was significantly lower with single- than dual-thread types (P bone remodelling limit at the bone-implant interface in thick cortical bone layers. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Embryo splitting

    OpenAIRE

    Karl Illmensee; Mike Levanduski

    2010-01-01

    Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board appr...

  9. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  10. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  11. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  12. Extraneous torque and compensation control on the electric load simulator

    Science.gov (United States)

    Jiao, Zongxia; Li, Chenggong; Ren, Zhiting

    2003-09-01

    In this paper a novel motor-drive load simulator based on compensation control strategy is proposed and designed. Through analyzing the torque control system consisting of DC torque motor, PWM module and torque sensor, it is shown that performance of the motor-drive load simulator is possible to be as good as that of the electro-hydraulic load simulator in the range of small torque. In the course of loading, the rotation of the actuator would cause a strong disturbance torque through the motor back-EMF, which produces extraneous torque similar as in electro-hydraulic load simulator. This paper analyzes the cause of extraneous torque inside the torque motor in detail and presents an appropriate compensation control with which the extraneous torque can be compensated and the good performance of the torque control system can be obtained. The results of simulation indicate that the compensation is very effective and the track performance is according with the request.

  13. Study on torque algorithm of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Xiaoguang LI

    2016-12-01

    Full Text Available To solve the torque ripple problem of switched reluctance motor under the traditional control method, a direct torque control method for switched reluctance motor is proposed. Direct torque algorithm controls flux magnitude and direction by querying appropriate voltage vector in switch list. Taking torque as direct control variable can reduce the torque ripple of the motor, which broadens the application fields of switched reluctance motor. Starting with the theory of direct torque algorithm, based on MATLAB/Simulink platform, direct torque control and chopped current control system simulation model are designed. Under the condition that switched reluctance motor model and its load are consistent, it is compared with chopped current algorithm. At last, the feasibility of direct torque algorithm is verified through the platform of hardware experiments. It demonstrates that using direct torque algorithm can make the torque ripple be controlled effectively, which provides a wider application field for the switched reluctance motor.

  14. Critical examination of isolation system design paradigms for a coupled powertrain and frame: Partial torque roll axis decoupling methods given practical constraints

    Science.gov (United States)

    Liette, Jared; Dreyer, Jason T.; Singh, Rajendra

    2014-12-01

    The torque roll axis motion decoupling concept is analytically and computationally studied in a realistic coupled powertrain and frame system using discrete, proportionally damped linear models. Recently, Hu and Singh (2012 [1]) (Journal of Sound and Vibration 331 (2012) 1498-1518) proposed new paradigms to fully decouple such a system. However, critical examination shows that the derivation does not always lead to a physically realizable system, as each powertrain mount is not referenced to a single location. This deficiency is overcome by deriving mount compatibility conditions to ensure realistic mount positions which are incorporated into proposed decoupling conditions. It is mathematically shown that full decoupling is not possible for a practical system, and therefore partial decoupling paradigms are pursued. Powertrain mount design using only the decoupled powertrain achieves better decoupling than minimizing conditions for the coupled system using a total least squares method. Further decoupling is obtained through frame isolation design using a decoupled frame model such that the torque roll mode is dominant over the frequency range considered. Other methods for limiting frame coupling are also briefly discussed.

  15. Control Design Of Robot Manipulator Position Based On Pd-Fuzzy Mamdani Controlled With Computed Torque Control (Pd-Fuzzy-Ctc

    Directory of Open Access Journals (Sweden)

    Duli Ridlo Istriantono

    2015-03-01

    Full Text Available Robotics science has evolved significantly, driven by rapid advances in computer and sensor technology; and theoretical advances in control and computer vision. These development make widespread use of robot manipulators in industrial environments. Major problem in controlling a robot manipulator is to control the robot in order to achieve the desired position. Therefore the design issue of the robot control is to choose the right type controller. Computed Torque Controller (CTC is a powerful nonlinear controllers are widely used in the control of robot manipulators. CTC controller is designed based on feedback linearization and the required torque of the robot arm by using a nonlinear feedback control law. Simulation is done by providing joint trajectory from point to point. The simulation results show that the PD-Fuzzy-CTC controller is able to follow the joint trajectory with The RMSE value of the joint angle position of PD-Fuzzy-CTC controller is 10 times smaller than that of the PD-CTC controller with the end-effector position accuracy is 0.1 mm.  

  16. Factor Analysis on Cogging Torques in Segment Core Motors

    Science.gov (United States)

    Enomoto, Yuji; Kitamura, Masashi; Sakai, Toshihiko; Ohara, Kouichiro

    The segment core method is a popular method employed in motor core manufacturing; however, this method does not allow the stator core precision to be enhanced because the stator is assembled from many cores. The axial eccentricity of rotor and stator and the internal roundness of the stator core are regarded as the main factors which affect cogging torque. In the present study, the way in which a motor with a split-type stator generates a cogging torque is investigated to determine whether high- precision assembly of stator cores can reduce cogging torque. Here, DC brushless motors were used to verify the influence of stator-rotor eccentricity and roundness of the stator bore on cogging torque. The evaluation results prove the feasibility of reducing cogging torque by improving the stator core precision. Therefore, improving the eccentricity and roundness will enable stable production of well controlled motors with few torque ripples.

  17. The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications

    Directory of Open Access Journals (Sweden)

    Sikder Sunbeam Islam

    2014-07-01

    Full Text Available This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and Ku-band with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD-based simulation software, Computer Simulation Technology (CST Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation.

  18. Split radiator design for heat rejection optimization for a waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  19. Torque ripple reduction in direct torque controlled five-phase ...

    Indian Academy of Sciences (India)

    The five-phase induction motor inherently has the minimal torque ripple. However, when it is controlled by direct torque control (DTC) technique, the torque ripple increases due to the presence of a hysteresis torque comparator. The classical five-level torque comparator is presented in the previous literatures to control the ...

  20. Analysis of a Split-Plot Experimental Design Applied to a Low-Speed Wind Tunnel Investigation

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A procedure to analyze a split-plot experimental design featuring two input factors, two levels of randomization, and two error structures in a low-speed wind tunnel investigation of a small-scale model of a fighter airplane configuration is described in this report. Standard commercially-available statistical software was used to analyze the test results obtained in a randomization-restricted environment often encountered in wind tunnel testing. The input factors were differential horizontal stabilizer incidence and the angle of attack. The response variables were the aerodynamic coefficients of lift, drag, and pitching moment. Using split-plot terminology, the whole plot, or difficult-to-change, factor was the differential horizontal stabilizer incidence, and the subplot, or easy-to-change, factor was the angle of attack. The whole plot and subplot factors were both tested at three levels. Degrees of freedom for the whole plot error were provided by replication in the form of three blocks, or replicates, which were intended to simulate three consecutive days of wind tunnel facility operation. The analysis was conducted in three stages, which yielded the estimated mean squares, multiple regression function coefficients, and corresponding tests of significance for all individual terms at the whole plot and subplot levels for the three aerodynamic response variables. The estimated regression functions included main effects and two-factor interaction for the lift coefficient, main effects, two-factor interaction, and quadratic effects for the drag coefficient, and only main effects for the pitching moment coefficient.

  1. Torque blending and wheel slip control in EVs with in-wheel motors

    Science.gov (United States)

    de Castro, Ricardo; Araújo, Rui E.; Tanelli, Mara; Savaresi, Sergio M.; Freitas, Diamantino

    2012-01-01

    Among the many opportunities offered by electric vehicles (EVs), the design of power trains based on in-wheel electric motors represents, from the vehicle dynamics point of view, a very attractive prospect, mainly due to the torque-vectoring capabilities. However, this distributed propulsion also poses some practical challenges, owing to the constraints arising from motor installation in a confined space, to the increased unsprung mass weight and to the integration of the electric motor with the friction brakes. This last issue is the main theme of this work, which, in particular, focuses on the design of the anti-lock braking system (ABS). The proposed structure for the ABS is composed of a tyre slip controller, a wheel torque allocator and a braking supervisor. To address the slip regulation problem, an adaptive controller is devised, offering robustness to uncertainties in the tyre-road friction and featuring a gain-scheduling mechanism based on the vehicle velocity. Further, an optimisation framework is employed in the torque allocator to determine the optimal split between electric and friction brake torque based on energy performance metrics, actuator constraints and different actuators bandwidth. Finally, based on the EV working condition, the priorities of this allocation scheme are adapted by the braking supervisor unit. Simulation results obtained with the CarSim vehicle model, demonstrate the effectiveness of the overall approach.

  2. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  3. Design and Analysis of Miniaturized Microstrip Patch Antenna with Metamaterials Based on Modified Split-Ring Resonator for UWB Applications

    Science.gov (United States)

    Khedrouche, D.; Bougoutaia, T.; Hocini, A.

    2016-11-01

    In this paper, a miniaturized microstrip patch antenna using a negative index metamaterial with modified split-ring resonator (SRR) unit cells is proposed for ultra-wideband (UWB) applications. The new design of metamaterial based microstrip patch antenna has been optimized to provide an improved bandwidth and multiple frequency operations. All the antenna performance parameters are presented in response-graphs. Also it is mentioned that the physical dimensions of the metamaterial based patch antenna are very small, which is convenient to modern communication. A 130 % bandwidth, covering the frequency band of 2.9-13.5 GHz, (for return loss less than or equal -10 dB) is achieved, which allow the antenna to operate in the Federal Communication Commission (FCC) band. In addition, the antenna has a good radiation pattern in the ultra-wide band spectrum, and it is nearly omnidirectional.

  4. A Split-Mouth Design Comparison for Lateral and Crestal Sinus Lift Techniques with Dental Implants Placements: Short Communication.

    Science.gov (United States)

    Al-Almaie, Saad; Kavarodi, Abdul Majeed; Alorf, Ali; Alzahrani, Saeed

    2017-01-01

    The objective of this study is to compare and evaluate the effectiveness of implant placement and patient appraisal for two sinus lift techniques using both crestal and lateral techniques for bilateral sinus left in a split-mouth design. All implants were successfully osseointegrated without any clinical complications or peri-implant radiolucency during the follow-up period of maximum 3 years. In terms of outcomes postoperative vertigo showed to be a major concern with the crestal approach, this approach is preferred over the lateral technique because of the reduced time required for the procedure and because it is less invasive. Most patients preferred the crestal approach over the lateral approach due to the delay in implant placement.

  5. Design of a Series Elastic- and Bowdencable-based actuation system for use as torque-=actuator in exoskeleton-type training

    NARCIS (Netherlands)

    Veneman, J.F.; Ekkelenkamp, R.; Kruidhof, R.; van der Helm, F.C.T.; van der Kooij, Herman

    2005-01-01

    Common actuators have important drawbacks for use in an exoskeleton type of rehabilitation (training) robot. Either the actuators are heavy, complex or poor torque sources. A new actuation system is proposed and tested that combines a lightweight joint and a simple structure with adequate torque

  6. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  7. Design and development of a split-evaporator heat-pump system

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, M.H.; Penoncello, S.G.

    1981-12-01

    The designs and experimental results of three types of multiple source heat pumps are presented. The three designs are the parallel evaporator, the series evaporator, and the parallel evaporator with active subcooling, with the parallel evaporator with the active subcooling showing the most promise for solving the problem of defrosting of air evaporators. Three design procedures for multiple source heat pumps were developed. One of these is a hand calculational procedure, the others are computer based. The models are based upon the refrigerant flow rate, rather than the refrigeration effect of the evaporator. The technical results of a detailed analytical and experimental model of the heat transfer rates on a flat plate ice maker are presented. It is shown, both analytically and experimentally, that the temperature of the air surrounding the flat plate ice maker can play a dominant role in the rate of ice formation. A detailed weather analysis for forty cities located throughout the nation was completed. These data were processed to allow easy computation of thermal storage requirements for full, partial, or minimum ACES systems, or upon other design requirements, such as off-peak air conditioning. The results of an innovative ice storage system that is thermally coupled to the earth are described. This system has the potential for meeting both the off-peak air conditioning needs and the thermal storage requirements for the heating cycle. An economic and energy comparison of multiple source heat pumps with ACES, and air-to-air heat pump systems is presented.

  8. Tailoring spin-orbit torque in diluted magnetic semiconductors

    KAUST Repository

    Li, Hang

    2013-05-16

    We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.

  9. High-torque magnetorheological fluid clutch

    Science.gov (United States)

    Kavlicoglu, Barkan M.; Gordaninejad, Faramarz; Evrensel, Cahit A.; Cobanoglu, Nigar; Liu, Yanming; Fuchs, Alan; Korol, George

    2002-06-01

    This study focuses on the design and characterization of a radial double-plate magneto-rheological fluid (MRF) clutch. The clutch's torque output can be controlled by adjusting the applied magnetic field. Electromagnetic finite element analysis (FEA) is performed to design and optimize the clutch. The shear stress distribution in MRF between the plates is theoretically predicted using the magnetic flux density distribution evaluated from the FEA. The output torque of the clutch is derived by using the Bingham plastic constitutive model. The output torque values are recorded for different input velocities and applied magnetic fields, and they are compared with the theoretical results. It was demonstrated that the clutch is capable of producing high controllable torques.

  10. Forearm Torque and Lifting Strength: Normative Data.

    Science.gov (United States)

    Axelsson, Peter; Fredrikson, Per; Nilsson, Anders; Andersson, Jonny K; Kärrholm, Johan

    2018-02-10

    To establish reference values for new methods designed to quantitatively measure forearm torque and lifting strength and to compare these values with grip strength. A total of 499 volunteers, 262 males and 237 females, aged 15 to 85 (mean, 44) years, were tested for lifting strength and forearm torque with the Kern and Baseline dynamometers. These individuals were also tested for grip strength with a Jamar dynamometer. Standardized procedures were used and information about sex, height, weight, hand dominance, and whether their work involved high or low manual strain was collected. Men had approximately 70% higher forearm torque and lifting strength compared with females. Male subjects aged 26 to 35 years and female subjects aged 36 to 45 years showed highest strength values. In patients with dominant right side, 61% to 78% had a higher or equal strength on this side in the different tests performed. In patients with dominant left side, the corresponding proportions varied between 41% and 65%. There was a high correlation between grip strength and forearm torque and lifting strength. Sex, body height, body weight, and age showed a significant correlation to the strength measurements. In a multiple regression model sex, age (entered as linear and squared) could explain 51% to 63% of the total variances of forearm torque strength and 30% to 36% of lifting strength. Reference values for lifting strength and forearm torque to be used in clinical practice were acquired. Grip strength has a high correlation to forearm torque and lifting strength. Sex, age, and height can be used to predict forearm torque and lifting strength. Prediction equations using these variables were generated. Normative data of forearm torque and lifting strength might improve the quality of assessment of wrist and forearm disorders as well as their treatments. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. A Comparison between Two Types of High Torque and High Efficiency 50-kW SRMs Designed for HEVs

    Science.gov (United States)

    Takeno, Motoki; Chiba, Akira; Hoshi, Nobukazu; Takemoto, Masastugu; Ogasawara, Satoshi

    Permanent magnets made of rare earth materials are used in interior permanent magnet synchronous motors (IPMSMs), which are major component of hybrid electric vehicles. The recent remarkable increase in the cost of rare earth materials is a major concern. A switched reluctance motor (SRM) without permanent magnets is one of the possible alternatives. Two types of SRMs have been designed with different materials. The SRMs have been investigated full loading tests. This paper reports a comparison between experimental and analysis results for the SRMs. The efficiency of both SRMs can exceed 90%, and the output power can be in excess of 50kW.

  12. Determination of soil properties from standard penetration test complemented by torque measurement (SPT-T

    Directory of Open Access Journals (Sweden)

    Anna S. P. Peixoto

    2014-09-01

    Full Text Available The major problem on geotechnical work is to ensure that no settlements occur during the life cycle of the construction. This involves proper design of foundations and their bearing capacity. The Brazilian standard for design and execution of foundations, ABNT (2010 NBR 6122 imposes the utilization of field tests when designing building foundations. The Standard Penetration Test, SPT, ABNT (2001 NBR 6484, is still the most common in-situ test for those purposes. Ranzini (1988 suggested supplementing the conventional SPT with the measurement of the torque (SPT-T required to turn the split spoon after driving, in order to provide a ‘static’ component to a ‘dynamic’ test. The adhesion between the soil and the sampler, obtained by the torque measurement, could be used to calculate the lateral skin friction of piles. This paper describes the SPT-T procedure including both a supplementary equipment and practical aspects. Also it presents an accurate torque measurement, a prediction method to calculate the bearing capacity of piles used in building foundations using the SPT-T test and a comparison between the estimated bearing capacities of building foundations with instrumented load tests in order to validate the method.

  13. Power-Split Hybrid Electric Vehicle Energy Management Based on Improved Logic Threshold Approach

    Directory of Open Access Journals (Sweden)

    Zhumu Fu

    2013-01-01

    Full Text Available We design an improved logic threshold approach of energy management for a power-split HEV assisted by an integrated starter generator (ISG. By combining the efficiency map and the optimum torque curve of internal combustion engine (ICE with the state of charge (SOC of batteries, the improved logic threshold controller manages the ICE within its peak efficiency region at first. Then the electrical power demand is established based on the ICE energy output. On that premise, a variable logic threshold value K is defined to achieve the power distribution between the ISG and the electric motor/generator (EMG. Finally, simulation models for the power-split HEV with improved logic threshold controller are established in ADVISOR. Compared to the equally power-split HEV with the logic threshold controller, when using the improved logic threshold controller, the battery power consumption, the ICE efficiency, the fuel consumption, and the motor driving system efficiency are improved.

  14. Cantilever torque magnetometry on coordination compounds

    DEFF Research Database (Denmark)

    Perfetti, Mauro

    2017-01-01

    Cantilever Torque Magnetometry (CTM) is one of the leading techniques to deeply understand magnetic anisotropy of coordination compounds. The knowledge of magnetic anisotropy is a mandatory requirement before proceeding with any future application related to the magnetic properties of coordination...... quantum phenomena such as magnetization steps and molecular hysteresis curves. Moreover, it can also provide the energy levels splitting and avefunctions composition, especially if coupled with microwave radiation....... compounds, such as quantum computation or information storage. This review enlightens that CTM offers a unique combination of accuracy and precision to disentangle noncollinear contributions inside Single Crystals as well as the sensitivity to detect molecular order of thin films. CTM can also detect...

  15. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.

    2013-12-19

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  16. Does alveolar corticotomy accelerate orthodontic tooth movement when retracting upper canines? A split-mouth design randomized controlled trial.

    Science.gov (United States)

    Al-Naoum, Fadi; Hajeer, Mohammad Y; Al-Jundi, Azzam

    2014-10-01

    To evaluate the efficacy of alveolar corticotomy on orthodontic tooth movement when retracting upper canines compared with the conventional technique and to evaluate patients' pain and discomfort levels after corticotomy. A split-mouth design randomized controlled trial at the Department of Orthodontics (University Al-Baath Dental School) was performed. A total of 30 patients whose orthodontic treatment required canine retraction were included. The predictor variable was the use of corticotomy to facilitate tooth movement. The velocity of space closure was evaluated as the primary outcome variable by measuring the distance between the canine and first molar on each side of the mouth immediately after corticotomy and at 1, 2, 4, 8, and 12 weeks after corticotomy. The levels of pain and discomfort were evaluated as the secondary outcome variables using a questionnaire administered 4 times during the first week after corticotomy. Paired t tests or Wilcoxon matched-pairs signed-rank tests were used to detect significant differences. A total of 30 patients (15 males and 15 females) were recruited with a mean age of 20.04 ± 3.63 years (range 15 to 24). The space closure velocity after corticotomy was significantly faster on the experimental side than on the control side (mean = 0.74 mm/week vs 0.20 mm/week between 1 week after and immediately after corticotomy, respectively; P orthodontic tooth movement and was accompanied by moderate degrees of pain and discomfort. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  18. Torque and optical traps

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Optical traps are an important tool for research in the field of single molecule biophysics. Recent advances in optical trapping have extended their functionality from simple linear manipulation and measurement of forces, to now the ability to rotate objects and measure torques. This mini review summarizes ...

  19. Spin-torque transistor

    NARCIS (Netherlands)

    Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.

    2003-01-01

    A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin

  20. Torque compensation technology for the geostationary meteorological satellite

    Science.gov (United States)

    Wang, Zhigang; Wang, Lusha; Chen, Shilu; Li, Qing

    2009-12-01

    To acquire high quality image, the new generation Geostationary Meteorological Satellite in China (GMSC) adopts three-axis stabilized attitude control mode, besides an advanced control system is required to be designed to get higher pointing precision and degree of stability of the satellite. However, the ability of the control system is limited. Torque compensation technology is studied in this paper aiming at rejecting the disturbance factors, which cannot be absorbed by the control system. In the research of torque compensation technology, the main factors that influence the degree of stability of satellite are analyzed; the objects compensated are confirmed through analysis of simulation; the system technical concept of torque compensation is designed; the mathematical models of the compensated objects and compensation devices are founded; the torque compensation arithmetic is designed; the valid arithmetic of torque compensation is proved through simulation. The research provides theoretical principles to develop the new generation GMSC.

  1. AX-5 space suit bearing torque investigation

    Science.gov (United States)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  2. Special-Purpose High-Torque Permanent-Magnet Motors

    Science.gov (United States)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  3. Computational Fluid Dynamics in Torque Converters: Validation and Application

    OpenAIRE

    Schweitzer, Jean; Gandham, Jeya

    2003-01-01

    This article describes some of the computational fluid dynamics (CFD) work being done on three-element torque converters using a commercially available package CFX TASCflow. The article details some of the work done to validate CFD results and gives examples of ways in which CFD is used in the torque-converter design process. Based on the validation study, it is shown that CFD can be used as a design and analysis tool to make decisions about design direction. Use of CFD in torque converters i...

  4. Reliability of using a fixed matrix in coregistration of combined PET–MRI in a split magnet design

    International Nuclear Information System (INIS)

    Sawiak, S.J.; Hawkes, R.C.; Ansorge, R.E.; Carpenter, T.A.

    2013-01-01

    We consider the effects of using a fixed linear transformation to match positron emission tomography (PET) and magnetic resonance imaging (MRI) data acquired simultaneously using a split-magnet system. Estimates of the frequency offset in MRI scans were used to calculate geometric variability in MRI reconstruction as a consequence of mis-setting this parameter in addition to repeated estimation of the transformation matrix by manual measurements. None of the measured variability approached the resolution of the PET images, so we concluded that a fixed matrix can be reliably used in such a system

  5. Mixed-strain housing for female C57BL/6, DBA/2, and BALB/c mice: validating a split-plot design that promotes refinement and reduction.

    Science.gov (United States)

    Walker, Michael; Fureix, Carole; Palme, Rupert; Newman, Jonathan A; Ahloy Dallaire, Jamie; Mason, Georgia

    2016-01-27

    Inefficient experimental designs are common in animal-based biomedical research, wasting resources and potentially leading to unreplicable results. Here we illustrate the intrinsic statistical power of split-plot designs, wherein three or more sub-units (e.g. individual subjects) differing in a variable of interest (e.g. genotype) share an experimental unit (e.g. a cage or litter) to which a treatment is applied (e.g. a drug, diet, or cage manipulation). We also empirically validate one example of such a design, mixing different mouse strains -- C57BL/6, DBA/2, and BALB/c -- within cages varying in degree of enrichment. As well as boosting statistical power, no other manipulations are needed for individual identification if co-housed strains are differentially pigmented, so also sparing mice from stressful marking procedures. The validation involved housing 240 females from weaning to 5 months of age in single- or mixed- strain trios, in cages allocated to enriched or standard treatments. Mice were screened for a range of 26 commonly-measured behavioural, physiological and haematological variables. Living in mixed-strain trios did not compromise mouse welfare (assessed via corticosterone metabolite output, stereotypic behaviour, signs of aggression, and other variables). It also did not alter the direction or magnitude of any strain- or enrichment-typical difference across the 26 measured variables, or increase variance in the data: indeed variance was significantly decreased by mixed- strain housing. Furthermore, using Monte Carlo simulations to quantify the statistical power benefits of this approach over a conventional design demonstrated that for our effect sizes, the split- plot design would require significantly fewer mice (under half in most cases) to achieve a power of 80%. Mixed-strain housing allows several strains to be tested at once, and potentially refines traditional marking practices for research mice. Furthermore, it dramatically illustrates the

  6. Mixed-strain housing for female C57BL/6, DBA/2, and BALB/c mice: validating a split-plot design that promotes refinement and reduction

    Directory of Open Access Journals (Sweden)

    Michael Walker

    2016-01-01

    Full Text Available Abstract Background Inefficient experimental designs are common in animal-based biomedical research, wasting resources and potentially leading to unreplicable results. Here we illustrate the intrinsic statistical power of split-plot designs, wherein three or more sub-units (e.g. individual subjects differing in a variable of interest (e.g. genotype share an experimental unit (e.g. a cage or litter to which a treatment is applied (e.g. a drug, diet, or cage manipulation. We also empirically validate one example of such a design, mixing different mouse strains -- C57BL/6, DBA/2, and BALB/c -- within cages varying in degree of enrichment. As well as boosting statistical power, no other manipulations are needed for individual identification if co-housed strains are differentially pigmented, so also sparing mice from stressful marking procedures. Methods The validation involved housing 240 females from weaning to 5 months of age in single- or mixed- strain trios, in cages allocated to enriched or standard treatments. Mice were screened for a range of 26 commonly-measured behavioural, physiological and haematological variables. Results Living in mixed-strain trios did not compromise mouse welfare (assessed via corticosterone metabolite output, stereotypic behaviour, signs of aggression, and other variables. It also did not alter the direction or magnitude of any strain- or enrichment-typical difference across the 26 measured variables, or increase variance in the data: indeed variance was significantly decreased by mixed- strain housing. Furthermore, using Monte Carlo simulations to quantify the statistical power benefits of this approach over a conventional design demonstrated that for our effect sizes, the split- plot design would require significantly fewer mice (under half in most cases to achieve a power of 80 %. Conclusions Mixed-strain housing allows several strains to be tested at once, and potentially refines traditional marking practices

  7. Manual Torque Data Study

    Energy Technology Data Exchange (ETDEWEB)

    Mundt, Mark Osroe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Matthew Ronald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Varela, Jeanette Judith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderson-Cook, Christine Michaela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gilmore, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Allie [Pantex Plant (PTX), Amarillo, TX (United States)

    2018-01-11

    At the Pantex Plant in Amarillo, TX, Production Technicians (PTs) build and disassemble nuclear weapon systems. The weapons are held in an integrated work stand for stability and to increase the safety environment for the workers and for the materials being processed. There are many occasions in which a knob must be turned to tighten an assembly part. This can help to secure or manipulate pieces of the system. As there are so many knobs to turn, the instructions given to the PTs are to twist the knob to a hand-tight setting, without the aid of a torque wrench. There are inherent risks in this procedure as the knobs can be tightened too loosely such that the apparatus falls apart or too tightly such that the force can crush or pinch components in the system that contain energetic materials. We want to study these operations at Pantex. Our goal is to collect torque data to assess the safety and reliability of humantooling interfaces.

  8. Exoskeleton Power and Torque Requirements Based on Human Biomechanics

    National Research Council Canada - National Science Library

    Crowell, Harrison

    2002-01-01

    .... In providing design guidance, the authors had two goals. The first goal was to provide estimates of the angles, torques, and powers for the ankles, knees, and hips of an exoskeleton based on data collected from humans...

  9. Split warhead simultaneous impact

    Directory of Open Access Journals (Sweden)

    Rahul Singh Dhari

    2017-12-01

    Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.

  10. Excitation and Transmitted Torque

    Directory of Open Access Journals (Sweden)

    H. B. H. Gubran

    2000-01-01

    Full Text Available In the present study, stress analysis of fiber reinforced thin composite shafts subjected to unbalance excitation and steady torque, is carried out. Shafts of uniform as well as variable wall thickness are considered. The shaft is modeled as a simply supported Timoshenko beam in which shear deformation, rotary inertia and gyroscopic effects have been included. Modified equivalent modulus beam theory has been adopted. Rayleigh-Ritz displacements are used for deriving the solution equations. Shafts with a uniform wall thickness, and with variable wall thickness in which the thickness is varied along the axial length of the shaft for three different cases of fiber angles have been studied. Axial variation of stresses is studied in detail. Results obtained indicate that the stresses in the variable wall thickness are smaller than the one with uniform wall thickness, even for the same weight of the shaft.

  11. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    Science.gov (United States)

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  12. High torque DC motor fabrication and test program

    Science.gov (United States)

    Makus, P.

    1976-01-01

    The testing of a standard iron and standard alnico permanent magnet two-phase, brushless dc spin motor for potential application to the space telescope has been concluded. The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a high torque dc motor. The motor was designed and built to fit an existing reaction wheel as a test vehicle and to use existing brass-board commutation and torque command electronics. The results of the tests are included in this report.

  13. A flight simulator control system using electric torque motors

    Science.gov (United States)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  14. Hybrid synchronous motor electromagnetic torque research

    Directory of Open Access Journals (Sweden)

    Suvorkova Elena E.

    2014-01-01

    Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.

  15. Static magnetic forces and torques in ATLAS

    International Nuclear Information System (INIS)

    Morozov, N.A.; Samsonov, E.V.; Vorozhtsov, S.B.

    1998-01-01

    The magnetic forces acting on the various metallic objects around the ATLAS detector, are the subject of the given paper. A system designer could use the information on global forces and torque acting on various components, obtained in this report, to optimize them. The results of force calculations could also serve as additional criteria for the replacement of the magnetic baseline material of various structures by nonmagnetic ones

  16. Manipulating the voltage dependence of tunneling spin torques

    KAUST Repository

    Manchon, Aurelien

    2012-10-01

    Voltage-driven spin transfer torques in magnetic tunnel junctions provide an outstanding tool to design advanced spin-based devices for memory and reprogrammable logic applications. The non-linear voltage dependence of the torque has a direct impact on current-driven magnetization dynamics and on devices performances. After a brief overview of the progress made to date in the theoretical description of the spin torque in tunnel junctions, I present different ways to alter and control the bias dependence of both components of the spin torque. Engineering the junction (barrier and electrodes) structural asymmetries or controlling the spin accumulation profile in the free layer offer promising tools to design effcient spin devices.

  17. Reducing torque ripples in permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Rihab Abdelmoula

    2017-09-01

    Full Text Available Permanent magnet synchronous motors (PMSMs are exceptionally promising thanks to their many advantages compared with other types of electrical machines. Indeed, PMSMs are characterized by their important torque density, light weight, high air gap flux density, high acceleration, high efficiency and strong power-to-weight ratio. A surface-mounted PMSM (SPMSM is used in this work. The SPMSM is built using a 2D finite element method (FEM. Cogging torque, torque ripples and back-EMF are examined during the design process in order to obtain sinusoidal back-EMF and to minimise torque ripples which are one of the major problems with PMSMs. Two procedures are used to reduce the cogging torque of SPMSM: the effect of slot opening and the influence of skewing the stator laminations. Cogging torque factor tc and the torque ripples factor tr have been calculated to compare the two configurations (open slots and closed slots. Then, the configuration with closed slots is utilised with skewing the stator laminations for different angle 0°, 10° and 15°.

  18. Standard practice for torque calibration of testing machines and devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines or devices. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof: 1.1.1 Use of standard weights and lever arms. 1.1.2 Use of elastic torque measuring devices. 1.1.3 Use of elastic force measuring devices and lever arms. 1.1.4 Any of the methods require a specific uncertainty of measurement and a traceability derived from national standards of mass and length. 1.2 The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the torque-indicating system(s) to be calibrated and included in the repor...

  19. The Design and Integration of a Distributed Fan Propulsion System within a Split-Wing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A baseline propulsion system has been designed as a starting point in a previous SBIR effort for this project which consists of two turboshaft engines, a generator...

  20. Magnetorheological torque transmission devices with permanent magnets

    Science.gov (United States)

    Böse, H.; Gerlach, T.; Ehrlich, J.

    2013-02-01

    A novel type of magnetorheological (MR) clutch whose magnetic circuit contains a combination of a permanent magnet and an electromagnet is described. Without the support of the electromagnet, the permanent magnet generates a magnetic field in the MR fluid shear gap which enables the MR clutch to transmit a torque without the supply of any electric energy. Hence, the operational states of this clutch are reversed with respect to the common MR clutches equipped with an electromagnet only. Three different MR clutches with hybrid magnetic circuits containing permanent magnet and electromagnet were designed, manufactured and tested. The three clutches differ in their number of mechanical parts which can rotate with respect to each other as well as in their size and weight and in their maximum transmittable torque. The largest MR clutch is capable to transmit torques up to nearly 800 Nm. The designs of the three novel MR clutches and the results of the mechanical tests upon variation of the coil current are presented in this paper.

  1. Zero torque gear head wrench

    Science.gov (United States)

    Mcdougal, A. R.; Norman, R. M. (Inventor)

    1976-01-01

    A gear head wrench particularly suited for use in applying torque to bolts without transferring torsional stress to bolt-receiving structures is introduced. The wrench is characterized by a coupling including a socket, for connecting a bolt head with a torque multiplying gear train, provided within a housing having an annulus concentrically related to the socket and adapted to be coupled with a spacer interposed between the bolt head and the juxtaposed surface of the bolt-receiving structure for applying a balancing counter-torque to the spacer as torque is applied to the bolt head whereby the bolt-receiving structure is substantially isolated from torsional stress. As a result of the foregoing, the operator of the wrench is substantially isolated from any forces which may be imposed.

  2. Four-bar linkage-based automatic tool changer: Dynamic modeling and torque optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangho; Seo, TaeWon [Yeungnam University, Gyeongsan (Korea, Republic of); Kim, Jong-Won; Kim, Jongwon [Seoul National University, Seoul (Korea, Republic of)

    2017-05-15

    An Automatic tool changer (ATC) is a device used in a tapping machine to reduce process time. This paper presents the optimization of a Peak torque reduction mechanism (PTRM) for an ATC. It is necessary to reduce the fatigue load and energy consumed, which is related to the peak torque. The PTRM uses a torsion spring to reduce the peak torque and was applied to a novel ATC mechanism, which was modeled using inverse dynamics. Optimization of the PTRM is required to minimize the peak torque. The design parameters are the initial angle and stiffness of the torsion spring, and the objective function is the peak torque of the input link. The torque was simulated, and the peak torque was decreased by 10 %. The energy consumed was reduced by the optimization.

  3. Torque-Summing Brushless Motor

    Science.gov (United States)

    Vaidya, J. G.

    1986-01-01

    Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.

  4. 14 CFR 27.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum... compressor jamming). (b) For reciprocating engines, the limit torque may not be less than the mean torque for maximum continuous power multiplied by— (1) 1.33, for engines with five or more cylinders; and (2) Two...

  5. New Cogging Torque Reduction Methods for Permanent Magnet Machine

    Science.gov (United States)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    Permanent magnet type motors (PMs) especially permanent magnet synchronous motor (PMSM) are expanding its limbs in industrial application system and widely used in various applications. The key features of this machine include high power and torque density, extending speed range, high efficiency, better dynamic performance and good flux-weakening capability. Nevertheless, high in cogging torque, which may cause noise and vibration, is one of the threat of the machine performance. Therefore, with the aid of 3-D finite element analysis (FEA) and simulation using JMAG Designer, this paper proposed new method for cogging torque reduction. Based on the simulation, methods of combining the skewing with radial pole pairing method and skewing with axial pole pairing method reduces the cogging torque effect up to 71.86% and 65.69% simultaneously.

  6. Torque linearizing hardware for the electric joint motors of a direct-drive robot

    Science.gov (United States)

    Muir, P. F.; Bryan, J. R.

    Many emerging high-performance robot control algorithms require the command of the joint torques, yet no known commercial robots provide such a capability. We describe the design, development, testing, and application of a VMEbus-based torque linearizing joint interface board (JIB). One JIB resides between the robot control processor and each joint motor amplifier. The JIB provides the control processor with the capability to read the motor position and apply accurate motor torques. The torque command capability derives from the application of a 128k x 8 EPROM lookup table for each motor phase. Because joint motor torque is dependent upon the torque command and the motor position, the hardware is designed to utilize the torque command and the current motor position as the address to retrieve the proper pulse-width for the PWM motor amplifier. The table look-up cycle operates independently of the robot controller at a 40KHz rate to provide constant joint torque as the motor rotates. We identify the proper table entries by an automated in situ data collection procedure. Static torque generation results show that the torque deviations are reduced from as much as 76 percent to below 5 percent for each of the three direct-drive motors (two are variable reluctance motors and one is brushless DC) on an AdeptTwo robot. These torque deviations are reduced below 2.5 percent if only the upper 90 percent of the torque range is considered. The torque deviations of the non-direct-drive joint are reduced by 50 percent. Dynamic robot edge following experiments show that the robot speed of operation can be more than doubled for a given applied force accuracy by utilizing the joint torque linearizing boards.

  7. Treatment outcome and efficacy of an aligner technique – regarding incisor torque, premolar derotation and molar distalization

    Science.gov (United States)

    2014-01-01

    Background The aim of this study was to investigate the efficacy of orthodontic treatment using the Invisalign® system. Particularly, we analyzed the influence of auxiliaries (Attachment/Power Ridge) as well as the staging (movement per aligner) on treatment efficacy. Methods We reviewed the tooth movements of 30 consecutive patients who required orthodontic treatment with Invisalign®. In all patients, one of the following tooth movements was performed: (1) Incisor Torque >10°, (2) Premolar derotation >10° (3) Molar distalization >1.5 mm. The groups (1)-(3) were subdivided: in the first subgroup (a) the movements were supported with the use of an attachment, while in the subgroup (b) no auxiliaries were used (except incisor torque, in which Power Ridges were used). All tooth movements were performed in a split-mouth design. To analyze the clinical efficacy, pre-treatment and final plaster cast models were laser-scanned and the achieved tooth movement was determined by way of a surface/surface matching algorithm. The results were compared with the amount of tooth movement predicted by ClinCheck®. Results The overall mean efficacy was 59% (SD = 0.2). The mean accuracy for upper incisor torque was 42% (SD = 0.2). Premolar derotation showed the lowest accuracy with approximately 40% (SD = 0.3). Distalization of an upper molar was the most effective movement, with efficacy approximately 87% (SD = 0.2). Conclusion Incisor torque, premolar derotation and molar distalization can be performed using Invisalign® aligners. The staging (movement/aligner) and the total amount of planned movement have an significant impact on treatment efficacy. PMID:24923279

  8. Treatment outcome and efficacy of an aligner technique--regarding incisor torque, premolar derotation and molar distalization.

    Science.gov (United States)

    Simon, Mareike; Keilig, Ludger; Schwarze, Jörg; Jung, Britta A; Bourauel, Christoph

    2014-06-11

    The aim of this study was to investigate the efficacy of orthodontic treatment using the Invisalign® system. Particularly, we analyzed the influence of auxiliaries (Attachment/Power Ridge) as well as the staging (movement per aligner) on treatment efficacy. We reviewed the tooth movements of 30 consecutive patients who required orthodontic treatment with Invisalign®. In all patients, one of the following tooth movements was performed: (1) Incisor Torque >10°, (2) Premolar derotation >10° (3) Molar distalization >1.5 mm. The groups (1)-(3) were subdivided: in the first subgroup (a) the movements were supported with the use of an attachment, while in the subgroup (b) no auxiliaries were used (except incisor torque, in which Power Ridges were used). All tooth movements were performed in a split-mouth design. To analyze the clinical efficacy, pre-treatment and final plaster cast models were laser-scanned and the achieved tooth movement was determined by way of a surface/surface matching algorithm. The results were compared with the amount of tooth movement predicted by ClinCheck®. The overall mean efficacy was 59% (SD = 0.2). The mean accuracy for upper incisor torque was 42% (SD = 0.2). Premolar derotation showed the lowest accuracy with approximately 40% (SD = 0.3). Distalization of an upper molar was the most effective movement, with efficacy approximately 87% (SD = 0.2). Incisor torque, premolar derotation and molar distalization can be performed using Invisalign® aligners. The staging (movement/aligner) and the total amount of planned movement have an significant impact on treatment efficacy.

  9. Angular dependence and symmetry of Rashba spin torque in ferromagnetic heterostructures

    KAUST Repository

    Ortiz Pauyac, Christian

    2013-06-26

    In a ferromagnetic heterostructure, the interplay between Rashba spin-orbit coupling and exchange splitting gives rise to a current-driven spin torque. In a realistic device setup, we investigate the Rashba spin torque in the diffusive regime and report two major findings: (i) a nonvanishing torque exists at the edges of the device even when the magnetization and effective Rashba field are aligned; (ii) anisotropic spin relaxation rates driven by the Rashba spin-orbit coupling assign the spin torque a general expression T = T y (θ) m × (y × m) + T y (θ) y × m + T z (θ) m × (z × m) + T z (θ) z × m, where the coefficients T, y, z depend on the magnetization direction. Our results agree with recent experiments. © 2013 AIP Publishing LLC.

  10. Signatures of asymmetric and inelastic tunneling on the spin torque bias dependence

    KAUST Repository

    Manchon, Aurelien

    2010-11-15

    The influence of structural asymmetries (barrier height and exchange splitting), as well as inelastic scattering (magnons and phonons) on the bias dependence of the spin transfer torque in a magnetic tunnel junction is studied theoretically using the free-electron model. We show that they modify the “conventional” bias dependence of the spin transfer torque, together with the bias dependence of the conductance. In particular, both structural asymmetries and bulk (inelastic) scattering add antisymmetric terms to the perpendicular torque (∝V and ∝je|V|) while the interfacial inelastic scattering conserves the junction symmetry and only produces symmetric terms (∝|V|n, n∊N). The analysis of spin torque and conductance measurements displays a signature revealing the origin (asymmetry or inelastic scattering) of the discrepancy.

  11. Design of Semiconducting Tetrahedral Mn_{1−x}Zn_{x}O Alloys and Their Application to Solar Water Splitting

    Directory of Open Access Journals (Sweden)

    Haowei Peng

    2015-05-01

    Full Text Available Transition metal oxides play important roles as contact and electrode materials, but their use as active layers in solar energy conversion requires achieving semiconducting properties akin to those of conventional semiconductors like Si or GaAs. In particular, efficient bipolar carrier transport is a challenge in these materials. Based on the prediction that a tetrahedral polymorph of MnO should have such desirable semiconducting properties, and the possibility to overcome thermodynamic solubility limits by nonequilibrium thin-film growth, we exploit both structure-property and composition-structure relationships to design and realize novel wurtzite-structure Mn_{1−x}Zn_{x}O alloys. At Zn compositions above x≈0.3, thin films of these alloys assume the tetrahedral wurtzite structure instead of the octahedral rocksalt structure of MnO, thereby enabling semiconductor properties that are unique among transition metal oxides, i.e., a band gap within the visible spectrum, a band-transport mechanism for both electron and hole carriers, electron doping, and a band lineup suitable for solar hydrogen generation. A proof of principle is provided by initial photo-electrocatalytic device measurements, corroborating, in particular, the predicted favorable hole-transport properties of these alloys.

  12. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  13. Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine

    OpenAIRE

    Ahmadi, Mohammad; Ahmadi, Mohammad-Ali; Mehrpooya, Mehdi; Rosen, Marc

    2015-01-01

    Different variables affect the performance of the Stirling engine and are considered in optimization and designing activities. Among these factors, torque and power have the greatest effect on the robustness of the Stirling engine, so they need to be determined with low uncertainty and high precision. In this article, the distribution of torque and power are determined using experimental data. Specifically, a novel polynomial approach is proposed to specify torque and power, on the basis of p...

  14. Torque ripple reduction in direct torque controlled five-phase ...

    Indian Academy of Sciences (India)

    Yogesh Tatte

    MS received 4 May 2016; revised 25 April 2017; accepted 3 June 2017; published online 7 February 2018. Abstract. ...... The data and parameters of the machine are depicted in table 3. Figures 6 and 7 summarize the performance of five- phase IM controlled by DTC method with the classical five- level torque comparator ...

  15. Immediate Implants Placed in Fresh Sockets Associated with Periapical Pathology: A Split-Mouth Design and Survival Evaluation after 1-Year Follow-Up.

    Science.gov (United States)

    Hita-Iglesias, Cristina; Sánchez-Sánchez, Francisco J; Montero, Javier; Galindo-Moreno, Pablo; Mesa, Francisco; Martínez-Lara, Ildefonso; Sánchez-Fernández, Elena

    2016-12-01

    To compare the immediate implant success rates between sites with chronic apical lesions and healthy sites in the same patients 1 year postdelayed loading. One hundred sixty-eight immediate implants were placed in sixty patients at upper incisor, canine, and premolar sites. A split-mouth design was used, placing a minimum of two implants, one in a fresh socket associated with chronic periapical disease, the average lesion size was larger than 4 mm and less than 8 mm (test group), and the other(s) in a healthy fresh socket (control group). Implant survival rate at 1 year postloading delayed was compared between the groups. The implant survival rate was 98.2% for the total sample (n = 168); out of the three implants lost, two were from the test group, and one was from the control group (in the same patient as one of the former). Among the surviving implants, five were also considered failures due to excessive bone loss (n = 3) and also because of the recurrence of the periapical lesions (n = 2). Survival rates were significantly lower in the test than control sites at 12 months postloading. Implant survival rates were significantly lower after the immediate implantation in postextraction sockets associated with chronic periapical disease (90.8%) than in healthy postextraction sockets (98.1%). © 2015 Wiley Periodicals, Inc.

  16. Torque Ripple Suppression in an External-Meshed Magnetic Gear Train

    Directory of Open Access Journals (Sweden)

    Yi-Chang Wu

    2013-01-01

    Full Text Available Magnetic gear trains transmit torque through noncontact magnetic couplings rather than conjugate gear teeth; they have the unique advantages of reduced maintenance and improved reliability, inherent overload protection, high efficiency, precise peak torque transmission, and tolerance for misalignment. Smooth and steadily transmitted torque is an important characteristic for a magnetic gear train. It is necessary for the reduction of possible mechanical vibration, position inaccuracy, and acoustic noise. This paper investigates the transmitted torque characteristics, especially torque ripple reduction, of an external-meshed magnetic gear train using finite-element analysis (FEA. The topological structure and working principles of a simple magnetic gear train with parallel axes are introduced. With the aid of a commercial FEA package, the transmitted torque waveform of a magnetic gear train is numerically calculated. The effects of geometrical parameters on the maximum transmitted torque and torque ripple are further discussed in terms of obtaining a magnetic gear train with high transmitted torque or low torque ripple. This examination offers insights beneficial to future magnetic gear mechanism design.

  17. Magnetic Circuit & Torque Analysis Of Brushless DC Motor

    Directory of Open Access Journals (Sweden)

    Arif J. Abbas

    2013-05-01

    Full Text Available       This work is concerned with magnetic and torque analysis of BLDCM and with development of a method of designing BLDCM that have symmetric winding on the rotor .make significant contribution to the rotor inductance position difficult. It is also show that the prediction detent torque can be extremely sensitive to the permanent magnet by altering magnet arc width. Finally, simple lumped models that allow one to predict motor performance and characteristics as a function of main dimension, magnet residual flux density and phase current are developed. These models are used as a basis for an approach to designing BLDCM

  18. Toroidal field coil torque structure

    International Nuclear Information System (INIS)

    Gaines, A.L.

    1983-01-01

    A torque structure is disclosed particularly suitable for utilization in a power reactor of the Tokamak-type, and operable therein for purposes of providing support for the toroidal field (TF) coils that comprise one of the major operating components of such a Tokamak power reactor. The subject torque structure takes the form of a frame structure that is operable to enable torque loads acting on the TF coils to be equilibrated as close to the area of force application as feasible. The aforesaid torque structure includes an intercoil structure composed of spacer wedges that are interposed between each adjacent pair of TF coils. The spacer wedges, in turn, consist of bearing plates positioned between the TF coils so as to be in contacting relation therewith and a number of cross plates that are cooperatively associated with the bearing plates so as to form therewith a rigid assembly. The intercoil structure is affixed to a segmented, membrane shell that surrounds, encloses and supports the TF coil frames. Access is had to the interior of the shell through an opening formed for this purpose in a reinforced portion of the shell. Eddy current losses are minimized by insulating the joints formed at the juncture of adjoining segments of the shell

  19. 14 CFR 29.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... mean torque for maximum continuous power multiplied by 1.25; (2) The torque required by § 29.923; (3... for maximum continuous power multiplied by— (1) 1.33, for engines with five or more cylinders; and (2...

  20. Rotational and peak torque stiffness of rugby shoes.

    Science.gov (United States)

    Ballal, Moez S; Usuelli, Federico Giuseppe; Montrasio, Umberto Alfieri; Molloy, Andy; La Barbera, Luigi; Villa, Tomaso; Banfi, Giuseppe

    2014-09-01

    Sports people always strive to avoid injury. Sports shoe designs in many sports have been shown to affect traction and injury rates. The aim of this study is to demonstrate the differing stiffness and torque in rugby boots that are designed for the same effect. Five different types of rugby shoes commonly worn by scrum forwards were laboratory tested for rotational stiffness and peak torque on a natural playing surface generating force patterns that would be consistent with a rugby scrum. The overall internal rotation peak torque was 57.75±6.26 Nm while that of external rotation was 56.55±4.36 Nm. The Peak internal and external rotational stiffness were 0.696±0.1 and 0.708±0.06 Nm/deg respectively. Our results, when compared to rotational stiffness and peak torques of football shoes published in the literature, show that shoes worn by rugby players exert higher rotational and peak torque stiffness compared to football shoes when tested on the same natural surfaces. There was significant difference between the tested rugby shoes brands. In our opinion, to maximize potential performance and lower the potential of non-contact injury, care should be taken in choosing boots with stiffness appropriate to the players main playing role. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Increase of economy of torque flow pump with high specific speed

    Science.gov (United States)

    Gusak, A. G.; Krishtop, I. V.; German, V. F.; Baga, V. N.

    2017-08-01

    Torque flow pumps are widely spread types of energy machines, which are used in majority of modern branches of industry for pumping of dirty media. The main task of researchers of torque flow pumps is increase of such pumps effectiveness for higher feed. Hydraulic losses for torque flow pumps are caused by working process of such pumps and are inevitable. Decrease of losses can be obtained by means of optimization of hydraulic flow part geometry. Modern approach to design of pump outlet introduces new constructive solutions which can increase economy of torque flow pumps. The aim of this research is increase of economy of torque flow pumps by means of application of spatial outlet and investigation of its geometry on pump characteristics. Analytical and numerical methods of liquid flow research for hydraulic flow part of torque flow pump were used in this paper. Moreover, influence of hydraulic flow part geometry of different designs of “Turo” type torque flow pumps outlets on pump characteristics was investigated. Numerical research enabled to study process of energy transfer of torque flow pump and evaluate influence of geometrical dimensions of spatial spiral outlet on its characteristics. Besides numerical research confirmed introduced regularity of peripheral velocity distribution in outlet. Velocity moment distribution in outlet was obtained during implementation of numerical research. Implemented bench tests of torque flow pump prototypes enabled to obtain real characteristics of pump and confirm effectiveness of spatial geometry of outlet application for such pump.

  2. Computerized Torque Control for Large dc Motors

    Science.gov (United States)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  3. Calibration of the optical torque wrench

    NARCIS (Netherlands)

    Pedaci, F.; Huang, Z.; Van Oene, M.; Dekker, N.H.

    2012-01-01

    The optical torque wrench is a laser trapping technique that expands the capability of standard optical tweezers to torque manipulation and measurement, using the laser linear polarization to orient tailored microscopic birefringent particles. The ability to measure torque of the order of kBT (?4 pN

  4. Measuring the uncertainty of tapping torque

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    An uncertainty budget is carried out for torque measurements performed at the Institut for Procesteknik for the evaluation of cutting fluids. Thirty test blanks were machined with one tool and one fluid, torque diagrams were recorded and the repeatability of single torque measurements was estimat...

  5. Nonlinear Decoupling of Torque and Field Amplitude in an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1997-01-01

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor...... torque. The method is tested both by simulation and by experiments on a motor drive....

  6. Cogging Torque Reduction in a Permanent Magnet Wind Turbine Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Green, J.

    2002-01-01

    In this paper, we investigate three design options to minimize cogging torque: uniformity of air gap, pole width, and skewing. Although the design improvement is intended for small wind turbines, it is also applicable to larger wind turbines.

  7. Comparison of three-level torque hysteresis controllers for direct torque control

    OpenAIRE

    Beerten, Jef; Verveckken, Jan; Driesen, Johan

    2009-01-01

    In this paper, a comparison is made between different implementations of the three-level torque comparator for a Direct Torque Control (DTC) based induction motor drive. The DTC scheme controls stator flux and torque by means of hysteresis comparators, respectively a two-level control structure for the stator flux and a three-level comparator for the electromagnetic torque. The standard three-level hysteresis controller has a DC offset torque error. In this paper, an additive implementation i...

  8. Particulate photocatalysts for overall water splitting

    Science.gov (United States)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  9. Split Cord Malformations

    Directory of Open Access Journals (Sweden)

    Yurdal Gezercan

    2015-06-01

    Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207

  10. Acute effects of whole-body vibration on peak isometric torque, muscle twitch torque and voluntary muscle activation of the knee extensors.

    Science.gov (United States)

    Jordan, M; Norris, S; Smith, D; Herzog, W

    2010-06-01

    The purpose of this investigation was to compare the acute effects of whole-body vibration (WBV) with a static squat on resting muscle twitch torque, peak isometric torque and voluntary muscle activation of the knee extensors during an isometric maximal voluntary contraction (MVC). Twenty-four healthy, strength-trained males were recruited for this randomized, cross-over design investigation. The WBV treatment consisted of three sets of 60 s of vibration (30 Hz, +/-4 mm) while standing in a semi-squat position. Voluntary muscle activation, peak isometric torque during MVC and resting muscle twitch torque (RTT) through percutaneous femoral nerve stimulation were obtained before and following the treatment. Change in peak isometric torque, voluntary muscle activation and the RTT were calculated as the difference between pre- and post-treatment values. There was no observable post-activation potentiation of muscle twitch torque or enhancement in voluntary muscle activation or peak isometric torque. However, decreases in the peak isometric torque (P=0.0094) and voluntary muscle activation (P=0.0252) were significantly smaller post WBV interventions compared with the control treatment. Based on the current data, it is unclear whether or not this was attributable to the effects of WBV but further research into this possibility is warranted.

  11. Torque coordinating robust control of shifting process for dry dual clutch transmission equipped in a hybrid car

    Science.gov (United States)

    Zhao, Z.-G.; Chen, H.-J.; Yang, Y.-Y.; He, L.

    2015-09-01

    For a hybrid car equipped with dual clutch transmission (DCT), the coordination control problems of clutches and power sources are investigated while taking full advantage of the integrated starter generator motor's fast response speed and high accuracy (speed and torque). First, a dynamic model of the shifting process is established, the vehicle acceleration is quantified according to the intentions of the driver, and the torque transmitted by clutches is calculated based on the designed disengaging principle during the torque phase. Next, a robust H∞ controller is designed to ensure speed synchronisation despite the existence of model uncertainties, measurement noise, and engine torque lag. The engine torque lag and measurement noise are used as external disturbances to initially modify the output torque of the power source. Additionally, during the torque switch phase, the torque of the power sources is smoothly transitioned to the driver's demanded torque. Finally, the torque of the power sources is further distributed based on the optimisation of system efficiency, and the throttle opening of the engine is constrained to avoid sharp torque variations. The simulation results verify that the proposed control strategies effectively address the problem of coordinating control of clutches and power sources, establishing a foundation for the application of DCT in hybrid cars.

  12. Direct Torque Control of Induction Motor with Matrix Converter

    Directory of Open Access Journals (Sweden)

    Khalaf Salloum Gaeid

    2016-05-01

    Full Text Available The matrix converter (MC with direct torque control (DTC combination is efficient way to get better performance specifications in the industry. The MC and the DTC advantages are combined together. The reduction of complexity and cost of DC link in the DTC since it has no capacitors in the circuit. However, the controlling torque is a big problem it in DTC because of high ripple torque production which results in vibrations response in the operation of the iductuction motor as it has no PID to control the torque directly. To overcome this, a combination of MC with DTC is applied to reduce the fluctuation in the output torque and minimize the steady state error. This paper presents the simulation analysis of induction machine drives using Maltlab/Simulink toolbox R2012a. Design of DTC induction motor drive, MC with constant switching frequency, speed controller and stability investigation as well as controllability and observabilty with minimum final prediction (FPE steady state error and loss functionality has been carried out precisely.

  13. Cogging Torque Reduction Techniques for Spoke-type IPMSM

    Science.gov (United States)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    A spoke-type interior permanent magnet synchronous motor (IPMSM) is extending its tentacles in industrial arena due to good flux-weakening capability and high power density. In many of the application, high strength of permanent magnet causes the undesirable effects of high cogging torque that can aggravate performance of the motor. High cogging torque is significantly produced by IPMSM due to the similar length and the effectiveness of the magnetic air-gap. The address of this study is to analyze and compare the cogging torque effect and performance of four common techniques for cogging torque reduction such as skewing, notching, pole pairing and rotor pole pairing. With the aid of 3-D finite element analysis (FEA) by JMAG software, a 6S-4P Spoke-type IPMSM with various rotor-PM configurations has been designed. As a result, the cogging torque effect reduced up to 69.5% for skewing technique, followed by 31.96%, 29.6%, and 17.53% by pole pairing, axial pole pairing and notching techniques respectively.

  14. Computations of Torque-Balanced Coaxial Rotor Flows

    Science.gov (United States)

    Yoon, Seokkwan; Chan, William M.; Pulliam, Thomas H.

    2017-01-01

    Interactional aerodynamics has been studied for counter-rotating coaxial rotors in hover. The effects of torque balancing on the performance of coaxial-rotor systems have been investigated. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. Computational results for an experimental model are compared to available data. The results for a coaxial quadcopter vehicle with and without torque balancing are discussed. Understanding interactions in coaxial-rotor flows would help improve the design of next-generation autonomous drones.

  15. The Accuracy of New and Aged Mechanical Torque Devices Employed in Five Dental Implant Systems

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Erdem

    2017-01-01

    Full Text Available Purpose. Friction-style and spring-style torque wrenches are used to tighten implant abutments and prosthetic screws. The mechanical stability of these torque wrenches is crucial for the implant–abutment connection. The purposes of this study were to assess the performance of five brands (Straumann, Zimmer, Implant KA, Bredent, and Biohorizons of wrench and to evaluate possible changes in applied torque values of aged wrenches. Materials and Methods. Five new and aged wrenches that had been used approximately 250 times in a 1-year period were tested. The torque applied by friction- and spring-style wrenches was measured with a specially designed strain gauge indicator. Descriptive statistics, the one-sample t-test, and the independent-samples t-test were used to analyze values obtained from all torque wrenches. Results. The accuracy of new and aged torque devices of all brands except Bredent differed significantly from the target values, but the mean values for aged and new wrenches did not differ significantly from each other (p>0.05. Values for the spring- and friction-type torque wrenches deviated from the target values by 11.6% and 10.2%, respectively. Conclusion. The accuracy of aged torque wrenches is adequate for prosthetic screw tightening, but that of new torque wrenches is unsatisfactory and must be examined carefully before delivery.

  16. Spin Transfer Torque in Graphene

    Science.gov (United States)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  17. Electrically Elicited Quadriceps Muscle Torque: A Comparison of 3 Waveforms.

    Science.gov (United States)

    Adams, Cheryl; Scott, Wayne; Basile, Jonathan; Hughes, Lorraine; Leigh, Joshua; Schiller, Anna; Walton, Jeffrey

    2018-03-01

    Study Design A controlled laboratory study, with a single-blind, block-randomization crossover design. Objectives To compare the electrically elicited knee extensor torque produced by 3 clinically available waveforms: 2500-Hz burst-modulated alternating current (BMAC), 1000-Hz BMAC, and 1000-Hz burst-modulated biphasic square-wave pulsed current (BMBPC). Background Neuromuscular electrical stimulation (NMES) is the therapeutic use of electrical current to strengthen muscle. Muscle torque produced by NMES is limited by discomfort. Methods The knee extensor maximal volitional isometric torque (KEMVIT) of 33 able-bodied participants (18 female) was measured and used to normalize the electrically elicited knee extensor torque to produce a percent of KEMVIT (%KEMVIT). Electrically elicited isometric knee extensor torque was measured in response to each of the waveforms at the participants' maximum tolerance. Results The average maximum tolerated stimulation produced 32.0 ± 16.7 %KEMVIT with 2500-Hz BMAC, 38.2 ± 18.4 %KEMVIT with 1000-Hz BMAC, and 42.2 ± 17.1 %KEMVIT with 1000-Hz BMBPC. Tukey honest significant difference (HSD) post hoc testing revealed a statistically significant difference between 2500-Hz BMAC and 1000-Hz BMAC (P = .046), and between 2500-Hz BMAC and 1000-Hz BMBPC (PHz BMAC and 1000-Hz BMBPC (P = .267). Conclusion For eliciting maximum knee extensor muscle torque, 1000-Hz BMBPC and 1000-Hz BMAC were similarly effective, and 2500-Hz BMAC was less effective. J Orthop Sports Phys Ther 2018;48(3):217-224. Epub 19 Dec 2017. doi:10.2519/jospt.2018.7601.

  18. MODELLING AND CONTROL OF POWER-SPLIT HYBRID ELECTRIC VEHICLE USING FUZZY LOGIC METHOD

    OpenAIRE

    Mohammadpour, Ebrahim; Khajavi, Mehrdad Nouri

    2014-01-01

    Nowadays, automotive manufactures increasingly have lead to development of hybrid vehicles due to energy consumption growing and increased emissions. the power-split hybrids due to the simultaneous using of speed and torque couplings has integrated advantage of series and parallel hybrid systems and minimize their disadvantages , however the power-split hybrids control strategy is far more complex than other types. Generally the control strategy tries to use the optimize operating point of HE...

  19. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers

    Directory of Open Access Journals (Sweden)

    Mahmood DJH

    2016-02-01

    Full Text Available Deyar Jallal Hadi Mahmood, Ewa H Linderoth, Ann Wennerberg, Per Vult Von Steyern Department of Prosthetic Dentistry, Faculty of Odontology, Malmö University, Malmö, Sweden Aim: To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP fixed dental prostheses (FDPs with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. Materials and methods: A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1–7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8–11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. Results: There was a significant difference (P<0.05 between the core designs, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS® (1,806±165 N and e.max® ZirPress (1,854±115 N and the state-of-the-art design with VITA VM® 9 (1,849±150 N demonstrated the highest mean fracture values. Conclusion: The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed

  20. The Design of a New Cobalt Sulfide Nanoparticle Implanted Porous Organic Polymer Nanohybrid as a Smart and Durable Water-Splitting Photoelectrocatalyst.

    Science.gov (United States)

    Shit, Subhash Chandra; Khilari, Santimoy; Mondal, Indranil; Pradhan, Debabrata; Mondal, John

    2017-10-20

    Development of an inexpensive, efficient and robust nanohybrid catalyst as a substitute for platinum in photoelectrocatalytic hydrogen production has been considered intriguing and challenging. In this study, the design and sequential synthesis of a novel cobalt sulfide nanoparticle grafted Porous Organic Polymer nanohybrid (CoS x @POP) is reported and used as an active and durable water-splitting photoelectrocatalyst in the hydrogen evolution reaction (HER). The specific textural and relevant chemical properties of as-synthesised nanohybrid materials (Co 3 O 4 @POP &CoS x @POP) were investigated by means of XRD, XPS, FTIR, 13 C CP MAS NMR, spectroscopy, HR-TEM, HAADF-STEM with the corresponding elemental mapping, FE-SEM and nitrogen physisorption studies. CoS x @POP has been evaluated as a superior photoelectrocatalyst in HER, achieving a current density of 6.43 mA cm -2 at 0 V versus the reversible hydrogen electrode (RHE) in a 0.5 m Na 2 SO 4 electrolyte which outperforms its Co 3 O 4 @POP analogue. It was found that the nanohybrid CoS x @POP catalyst exhibited a substantially enhanced catalytic performance of 1.07 μmol min -1 cm -2 , which is considered to be ca. 10 and 1.94 times higher than that of pristine POP and CoS x , respectively. Remarkable photoelectrocatalytic activity of CoS x @POP compared to Co 3 O 4 @POP toward H 2 evolution could be attributed to intrinsic synergistic effect of CoS x and POP, leading to the formation of a unique CoS x @POP nanoarchitecture with high porosity, which permits easy diffusion of electrolyte and efficient electron transfer from POP to CoS x during hydrogen generation with a tunable bandgap, that straddles between the reduction and oxidation potential of water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Immediate vs. delayed endosseous integration of maxi implants: a torque removal animal study.

    Science.gov (United States)

    Allahbakhshi, Hanif; Vafaee, Fariborz; Lotfazar, Mehrdad; Ahangary, Ahmad Hasan; Khoshhal, Masoumeh; Fotovat, Farnoush

    2017-01-01

    Background. Delayed loading is one of the concerns in implant patients. Immediate loading can solve the problem and make patients more satisfied. The present study aimed to compare the removal torque of maxi implants under different loading (immediate and delayed) patterns. Methods. This split-mouth experimental study included 2 dogs. Impressions were made and then all the premolars were extracted under general anesthesia. After a three-month healing period, 3 implants were inserted in each quadrant (a total of 12 implants). Anterior and posterior implants (the case group) were splinted by an acrylic temporary bridge in order to make the middle implants (the control group) off the occlusion. The dogs were sacrificed after 6 weeks and bone blocks were submitted for removal torque test. Data were analyzed with ANOVA (Pimmediate loading does not reduce the reverse torque values of maxi implants. This supports the advantages of immediate loading for maxi implants.

  2. Immediate vs. delayed endosseous integration of maxi implants: a torque removal animal study

    Science.gov (United States)

    Allahbakhshi, Hanif; Vafaee, Fariborz; Lotfazar, Mehrdad; Ahangary, Ahmad Hasan; Khoshhal, Masoumeh; Fotovat, Farnoush

    2017-01-01

    Background. Delayed loading is one of the concerns in implant patients. Immediate loading can solve the problem and make patients more satisfied. The present study aimed to compare the removal torque of maxi implants under different loading (immediate and delayed) patterns. Methods. This split-mouth experimental study included 2 dogs. Impressions were made and then all the premolars were extracted under general anesthesia. After a three-month healing period, 3 implants were inserted in each quadrant (a total of 12 implants). Anterior and posterior implants (the case group) were splinted by an acrylic temporary bridge in order to make the middle implants (the control group) off the occlusion. The dogs were sacrificed after 6 weeks and bone blocks were submitted for removal torque test. Data were analyzed with ANOVA (Pimmediate loading does not reduce the reverse torque values of maxi implants. This supports the advantages of immediate loading for maxi implants. PMID:28748047

  3. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  4. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia, E-mail: dgr@instec.cu, E-mail: lgarcia@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Ciencias y Tecnologias Aplicadas, La Habana (Cuba)

    2011-07-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  5. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    International Nuclear Information System (INIS)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia

    2011-01-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  6. Immediate vs. delayed endosseous integration of maxi implants: a torque removal animal study

    OpenAIRE

    Hanif Allahbakhshi; Fariborz Vafaee; Mehrdad Lotfazar; Ahmad Hasan Ahangary; Masoumeh Khoshhal; Farnoush Fotovat

    2017-01-01

    Background. Delayed loading is one of the concerns in implant patients. Immediate loading can solve the problem and make patients more satisfied. The present study aimed to compare the removal torque of maxi implants under different loading (immediate and delayed) patterns. Methods. This split-mouth experimental study included 2 dogs. Impressions were made and then all the premolars were extracted under general anesthesia. After a three-month heali...

  7. Torque control of underactuated tendon-driven fingers

    Directory of Open Access Journals (Sweden)

    M. E. Abdallah

    2011-02-01

    Full Text Available Given an underactuated tendon-driven finger, the finger posture is underdetermined and can move freely ("flop" in a region of slack tendons. This work shows that such an underactuated finger can be operated in tendon force control (rather than position control with effective performance. The force control eliminates the indeterminate slack while commanding a parameterized space of desired torques. The torque will either push the finger to the joint limits or wrap around an external object with variable torque – behavior that is sufficient for primarily gripping fingers. In addition, introducing asymmetric joint radii to the design allows the finger to command an expanded range of joint torques and to scan an expanded set of external surfaces. This study is motivated by the design and control of the secondary fingers of the NASA-GM R2 humanoid hand.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  8. Heat-driven spin torques in antiferromagnets

    Science.gov (United States)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  9. Alternating bending-steady torque fatigue reliability

    Science.gov (United States)

    Kececioglu, D.; Chester, L. B.; Dodge, T. M.

    1974-01-01

    Results generated by three unique fatigue reliability research machines which can apply alternating-bending loads combined with steady torque are presented. Six-inch long, AISI steel, grooved specimens with a stress concentration factor of 1.42 and Rockwell C 35/40 hardness were subjected to various combinations of these loads and cycled to failure. The generated cycles-to-failure and staircase-testing data are statistically analyzed to develop distributional S-N and Goodman diagrams. Various failure theories are investigated to determine which one best represents the data. The effect of the groove and of the various combined bending-torsion loads on the finite and endurance life strength of such components, as well as on the Goodman diagram, are determined. Design applications are presented.

  10. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang

    2016-01-11

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  11. Improvements in remote equipment torquing and fastening

    International Nuclear Information System (INIS)

    Garin, J.

    1978-01-01

    Remote torquing and fastening is a requirement of generic interest for application in an environment not readily accessible to man. The developments over the last 30 years in torque-controlled equipment above 200 nm (150 ft/lb) have not been emphasized. The development of specialized subassemblies to torque and fasten equipment in a remotely controlled environment is an integral part of the Advanced Fuel Recycle Program at Oak Ridge National Laboratory. Commercially available subassemblies have been adapted into a system that would provide remote torquing and fastening in the range of 200 to 750 nm (150 to 550 ft/lb). 9 figures

  12. Preliminary results on noncollocated torque control of space robot actuators

    Science.gov (United States)

    Tilley, Scott W.; Francis, Colin M.; Emerick, Ken; Hollars, Michael G.

    1989-01-01

    In the Space Station era, more operations will be performed robotically in space in the areas of servicing, assembly, and experiment tending among others. These robots may have various sets of requirements for accuracy, speed, and force generation, but there will be design constraints such as size, mass, and power dissipation limits. For actuation, a leading motor candidate is a dc brushless type, and there are numerous potential drive trains each with its own advantages and disadvantages. This experiment uses a harmonic drive and addresses some inherent limitations, namely its backdriveability and low frequency structural resonances. These effects are controlled and diminished by instrumenting the actuator system with a torque transducer on the output shaft. This noncollocated loop is closed to ensure that the commanded torque is accurately delivered to the manipulator link. The actuator system is modelled and its essential parameters identified. The nonlinear model for simulations will include inertias, gearing, stiction, flexibility, and the effects of output load variations. A linear model is extracted and used for designing the noncollocated torque and position feedback loops. These loops are simulated with the structural frequency encountered in the testbed system. Simulation results are given for various commands in position. The use of torque feedback is demonstrated to yield superior performance in settling time and positioning accuracy. An experimental setup being finished consists of a bench mounted motor and harmonic drive actuator system. A torque transducer and two position encoders, each with sufficient resolution and bandwidth, will provide sensory information. Parameters of the physical system are being identified and matched to analytical predictions. Initial feedback control laws will be incorporated in the bench test equipment and various experiments run to validate the designs. The status of these experiments is given.

  13. Estimation of torque transmitted by clutch during shifting process for dry dual clutch transmission

    Science.gov (United States)

    Zhao, Zhiguo; He, Lu; Yang, Yunyun; Wu, Chaochun; Li, Xueyan; Karl Hedrick, J.

    2016-06-01

    The key toward realizing no-impact gear shifting for dual clutch transmission (DCT) lies in the coordination control between the engine and dual clutches, as well as the accurate closed-loop control of torque transmitted by each clutch and the output torque of the engine. However, the implementation and control precision of closed-loop control are completely dependent on the effective measurement or estimation of the instant transmission torque of the clutch. This study analyzes the DCT shifting process, and builds a three-dimensional (3D) clutch model and mathematical model of a DCT vehicle powertrain system. The torque transmitted by a twin clutch during the upshifting process is estimated by applying the unscented Kalman filter (UKF) algorithm. Then, the torque estimation algorithm is verified using a DCT prototype vehicle installed with a torque sensor on the drive half-shaft. The experimental results show that the designed UKF torque estimation algorithm can estimate the transmission torques of two clutches in real time; further, it can be directly used for DCT shift control and improving the shifting quality.

  14. Barbell deadlift training increases the rate of torque development and vertical jump performance in novices.

    Science.gov (United States)

    Thompson, Brennan J; Stock, Matt S; Shields, JoCarol E; Luera, Micheal J; Munayer, Ibrahim K; Mota, Jacob A; Carrillo, Elias C; Olinghouse, Kendra D

    2015-01-01

    The primary purpose of this study was to examine the effects of 10 weeks of barbell deadlift training on rapid torque characteristics of the knee extensors and flexors. A secondary aim was to analyze the relationships between training-induced changes in rapid torque and vertical jump performance. Fifty-four subjects (age, mean ± SD = 23 ± 3 years) were randomly assigned to a control (n = 20) or training group (n = 34). Subjects in the training group performed supervised deadlift training twice per week for 10 weeks. All subjects performed isometric strength testing of the knee extensors and flexors and vertical jumps before and after the intervention. Torque-time curves were used to calculate rate of torque development (RTD) values at peak and at 50 and 200 milliseconds from torque onset. Barbell deadlift training induced significant pre- to post-increases of 18.8-49.0% for all rapid torque variables (p barbell deadlift training program was effective at enhancing rapid torque capacities in both the knee extensors and flexors. Changes in rapid torque were associated with improvements in vertical jump height, suggesting a transfer of adaptations from deadlift training to an explosive, performance-based task. Professionals may use these findings when attempting to design effective, time-efficient resistance training programs to improve explosive strength capacities in novices.

  15. Computation of Electromagnetic Torque in a Double Rotor Switched Reluctance Motor Using Flux Tube Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Hamiruce Marhaban

    2012-10-01

    Full Text Available With their highly robust nature and simple design, switched reluctance machines are finding their way into numerous modern day applications. However, they produce oscillatory torque that generates torque ripple and mechanical vibrations. A double rotor structure to maximize the flux linkage and thereby increase the torque generating capability is proposed. As the machine operates close to saturation, the torque computation depends heavily on the energy conversion as the rotor rolls over the stator for a fixed pole pitch. The flux linkage characteristics are highly non-linear, hence estimation of the magnetic and mechanical parameters is extremely cumbersome. Magnetic circuit analysis by interpretation of the number of flux tubes using integration techniques at different positions of the machine to develop the flux linkage characteristics of the double rotor structure is presented. Computation of the inductances during the movement of rotor from unaligned to aligned is crucial in determining the generated torque. Relevant equations of calculations for inductance and flux linkages in the aligned, partially aligned and unaligned positions are computed. The partially aligned computation is based on the average on two intermediate positions, namely the 1/4th aligned and 3/4th aligned conditions. The static torque characteristics based on the energy conversion principles are used to compute the torque value. Results from simulation and experiments used for performance evaluation of the proposed flux tube analysis for computation of the electro-magnetic torque are presented.

  16. Flow Cytometric Bead Sandwich Assay Based on a Split Aptamer.

    Science.gov (United States)

    Shen, Luyao; Bing, Tao; Liu, Xiangjun; Wang, Junyan; Wang, Linlin; Zhang, Nan; Shangguan, Dihua

    2018-01-24

    A few aptamers still bind their targets after being split into two moieties. Split aptamers have shown great potential in the development of aptameric sensors. However, only a few split aptamers have been generated because of lack of knowledge on the binding structure of their parent aptamers. Here, we report the design of a new split aptamer and a flow cytometric bead sandwich assay using a split aptamer instead of double antibodies. Through DMS footprinting and mutation assay, we figured out the target-binding moiety and the structure-stabilizing moiety of the l-selectin aptamer, Sgc-3b. By separating the duplex strand in the structure-stabilizing moiety, we obtained a split aptamer that bound l-selectin. After optimization of one part of the split sequence to eliminate the nonspecific binding of the split sequence pair, we developed a split-aptamer-based cytometric bead assay (SACBA) for the detection of soluble l-selectin. SACBA showed good sensitivity and selectivity to l-selectin and was successfully applied for the detection of spiked l-selectin in the human serum. The strategies for generating split aptamers and designing the split-aptamer-based sandwich assay are simple and efficient and show good practicability in aptamer engineering.

  17. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  18. Enhanced precision of ankle torque measure with an open-unit dynamometer mounted with a 3D force-torque sensor.

    Science.gov (United States)

    Toumi, A; Leteneur, S; Gillet, C; Debril, J-F; Decoufour, N; Barbier, F; Jakobi, J M; Simoneau-Buessinger, Emilie

    2015-11-01

    Many studies have focused on maximum torque exerted by ankle joint muscles during plantar flexion. While strength parameters are typically measured with isokinetic or isolated ankle dynamometers, these devices often present substantial limitations for the measurement of torque because they account for force in only 1 dimension (1D), and the device often constrains the body in a position that augments torque through counter movements. The purposes of this study were to determine the contribution of body position to ankle plantar-flexion torque and to assess the use of 1D and 3D torque sensors. A custom designed 'Booted, Open-Unit, Three dimension, Transportable, Ergometer' (B.O.T.T.E.) was used to quantify plantar flexion in two conditions: (1) when the participant was restrained within the unit (locked-unit) and (2) when the participant's position was independent of the ankle dynamometer (open-unit). Ten young males performed maximal voluntary isometric plantar-flexion contractions using the B.O.T.T.E. in open and locked-unit mechanical configurations. The B.O.T.T.E. was reliable with ICC higher than 0.90, and CV lower than 7 %. The plantar-flexion maximal resultant torque was significantly higher in the locked-unit compared with open-unit configuration (P torque sensor significantly underestimated the proper capacity of plantar-flexion torque production (P torque should be performed with an open-unit dynamometer mounted with a 3D sensor that is exclusive of accessory muscles but inclusive of all ankle joint movements.

  19. Aspects of Split Supersymmetry

    CERN Document Server

    Arkani-Hamed, N; Giudice, Gian Francesco; Romanino, A

    2005-01-01

    We explore some fundamental differences in the phenomenology, cosmology and model building of Split Supersymmetry compared with traditional low-scale supersymmetry. We show how the mass spectrum of Split Supersymmetry naturally emerges from theories where the dominant source of supersymmetry breaking preserves an $R$ symmetry, characterize the class of theories where the unavoidable $R$-breaking by gravity can be neglected, and point out a new possibility, where supersymmetry breaking is directly communicated at tree level to the visible sector via renormalizable interactions. Next, we discuss possible low-energy signals for Split Supersymmetry. The absence of new light scalars removes all the phenomenological difficulties of low-energy supersymmetry, associated with one-loop flavor and CP violating effects. However, the electric dipole moments of leptons and quarks do arise at two loops, and are automatically at the level of present limits with no need for small phases, making them accessible to several ongo...

  20. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers.

    Science.gov (United States)

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1-7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8-11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. There was a significant difference (Pveneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass-ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of the fracture pattern shows differences between the milled veneers and over-pressed or built-up veneers, where the milled ones show numerically more veneer cracks and the other groups only show complete connector fractures.

  1. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers

    Science.gov (United States)

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    Aim To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. Materials and methods A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1–7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8–11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. Results There was a significant difference (Pveneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass–ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of the fracture pattern shows differences between the milled veneers and over-pressed or built-up veneers, where the milled ones show numerically more veneer cracks and the other groups only show complete connector fractures. PMID:26929667

  2. 40 CFR 1065.310 - Torque calibration.

    Science.gov (United States)

    2010-07-01

    ... manufacturer's instructions for linearizing your torque sensor's output. We recommend that you calibrate the... combinations for each applicable torque-measuring range, spacing the weight quantities about equally over the... range, spacing the force quantities about equally over the range. Oscillate or rotate the dynamometer...

  3. Radiation Forces and Torques without Stress (Tensors)

    Science.gov (United States)

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  4. A non-unity torque sharing function for torque ripple minimization of switched reluctance generators

    DEFF Research Database (Denmark)

    Park, Kiwoo; Liu, Xiao; Chen, Zhe

    2013-01-01

    This paper presents a new torque ripple minimization technique for a Switched Reluctance Generator (SRG). Although the SRG has many advantageous characteristics as a generator, it has not been widely employed in the industry. One of the most notorious disadvantages of the SRG is its high torque...... ripple. In this paper, a non-unity Torque Sharing Function (TSF) is proposed to minimize the torque ripple over a wide speed range of operation. Simulation results are presented to verify the effectiveness of the proposed torque ripple minimization technique....

  5. Reducing Torque Ripples of the Axial Flux PM Motors by Magnet Stepping and Shifting

    Directory of Open Access Journals (Sweden)

    E. Cetin

    2018-02-01

    Full Text Available Higher efficiency on electric machines is the research goal of many studies. An example is the axial flux permanent magnet machines. These machines have some advantages like their watt/kg efficiency and torque density. This study aims to develop the performance characteristics of the axial flux permanent magnet machines. A new rotor magnet poles design in axial flux machines is suggested to mitigate the torque ripples. The method of stepping and shifting of the magnets is used. Two different designs are compared to verify the proposed approach. 3D finite element analysis is used for simulations. Torque ripple and back electromotive force waveforms are obtained from computer analysis. As a conclusion, the suggested method is found to be useable and mitigates the torque ripples. In addition to that, back EMF waveforms are turned to sinusoidal by the suggested design.

  6. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    Science.gov (United States)

    Appelbaum, Joseph; Singer, S.

    1989-01-01

    Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.

  7. Next generation spin torque memories

    CERN Document Server

    Kaushik, Brajesh Kumar; Kulkarni, Anant Aravind; Prajapati, Sanjay

    2017-01-01

    This book offers detailed insights into spin transfer torque (STT) based devices, circuits and memories. Starting with the basic concepts and device physics, it then addresses advanced STT applications and discusses the outlook for this cutting-edge technology. It also describes the architectures, performance parameters, fabrication, and the prospects of STT based devices. Further, moving from the device to the system perspective it presents a non-volatile computing architecture composed of STT based magneto-resistive and all-spin logic devices and demonstrates that efficient STT based magneto-resistive and all-spin logic devices can turn the dream of instant on/off non-volatile computing into reality.

  8. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  9. Split Malcev algebras

    Indian Academy of Sciences (India)

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form M = U + ∑ j I j with U a subspace of the abelian Malcev subalgebra and any I j a well described ideal of satisfying [ I j , I k ] = 0 if ≠ .

  10. Splitting of Comets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Splitting of Comets. Utpal Mukhopadhyay. General Article Volume 7 Issue 1 January 2002 pp 11-22. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/01/0011-0022. Keywords. Cometary ...

  11. Analytical Methods of Decoupling the Automotive Engine Torque Roll Axis

    Science.gov (United States)

    JEONG, TAESEOK; SINGH, RAJENDRA

    2000-06-01

    This paper analytically examines the multi-dimensional mounting schemes of an automotive engine-gearbox system when excited by oscillating torques. In particular, the issue of torque roll axis decoupling is analyzed in significant detail since it is poorly understood. New dynamic decoupling axioms are presented an d compared with the conventional elastic axis mounting and focalization methods. A linear time-invariant system assumption is made in addition to a proportionally damped system. Only rigid-body modes of the powertrain are considered and the chassis elements are assumed to be rigid. Several simplified physical systems are considered and new closed-form solutions for symmetric and asymmetric engine-mounting systems are developed. These clearly explain the design concepts for the 4-point mounting scheme. Our analytical solutions match with the existing design formulations that are only applicable to symmetric geometries. Spectra for all six rigid-body motions are predicted using the alternate decoupling methods and the closed-form solutions are verified. Also, our method is validated by comparing modal solutions with prior experimental and analytical studies. Parametric design studies are carried out to illustrate the methodology. Chief contributions of this research include the development of new or refined analytical models and closed-form solutions along with improved design strategies for the torque roll axis decoupling.

  12. PREFACE: The Science of Making Torque from Wind 2012

    Science.gov (United States)

    2014-12-01

    The European Academy of Wind Energy (eawe) was pleased to announce its 4th scientific conference The Science of Making Torque from Wind. Predecessors have successfully been arranged in Delft, The Netherlands (2004), Lyngby, Denmark (2007) and Heraklion, Greece (2010). During the years the Torque Conference has established itself as Europe's leading scientific wind energy conference. The 2012 edition had been organized in the same tradition. More than 300 experts from academia and industry discussed the latest results and developments in fundamental and applied wind energy research, making this Science of Making Torque from Wind conference the largest one to that date. The seven keynote lectures provided the delegates with a unique overview on the state-of-the-art of science and technology. In over twenty sessions the participants discussed the most recent results in wind energy research. From numerical models to sophisticated experiments, from flow optimizations to structural designs, the numerous presentations covered a huge spectrum of ongoing scientific activities. The proceedings of the Torque 2012 combine the 110 papers that have passed the review process. We would like to thank all those who have been involved in organizing the conference and putting together these proceedings, including keynote speakers, session chairs and the enormous amount of reviewers involved. We are especially grateful to Gijs van Kuik for his untiring support. We also deeply appreciate the logistical support and technical services of the University of Oldenburg and the financial support of the State of Lower Saxony. At IOP we would like to thank Anete Ashton for her continuous encouraging support. We are looking forward to all future Torque Conferences, offering an excellent platform for the exchange of the latest and greatest scientific developments in the field of wind energy. Oldenburg, Germany, October 2014 Elke Seidel, Detlev Heinemann, Martin Kühn, Joachim Peinke and Stephan

  13. Torsional injuries of the lower limb: an analysis of the frictional torque between different types of football turf and the shoe outsole.

    Science.gov (United States)

    Smeets, Kristof; Jacobs, Pieter; Hertogs, Robbin; Luyckx, Jean-Philippe; Innocenti, Bernardo; Corten, Kristoff; Ekstrand, Jan; Bellemans, Johan

    2012-12-01

    Football turf is increasingly used in European soccer competition. Little is known on the rotational torque that players experience on these fields. High rotational torques between the shoe outsole and the sports surface has been correlated with torsional injuries of the lower limb and knee. To evaluate the effect of six parameters that could influence the rotational torque between the shoe outsole and the latest generation football turf. Controlled laboratory study. A testing apparatus was constructed to measure the peak torque generated during a controlled rotation of the foot. Six parameters that could potentially influence the frictional forces, were considered: (1) the sports surface, (2) the shoe outsole cleat design, (3) the weather conditions, (4) the weight, (5) the presence of an impact and (6) the direction of rotation. The football turf without infill showed significantly lower frictional torques than natural grass whereas a football turf with sand/rubber infill had significantly higher torques. Blades were associated with significantly higher torques than studs on natural grass and on one football turf with sand/rubber infill. Dry weather was associated with higher torques only for the football turf without infill. The torque increased linearly and significantly with an increasing vertical load. The rotational torque increased significantly following an impact. Torques on external rotational movements were significantly higher with blades. Important differences in rotational torques are found and could be seen as potential risk factors for torsional injuries of the lower limb.

  14. A flexoelectricity effect-based sensor for direct torque measurement

    International Nuclear Information System (INIS)

    Zhang, Shuwen; Xu, Minglong; Liu, Kaiyuan; Shen, Shengping

    2015-01-01

    In this study, a direct torque sensor based on the flexoelectricity generated by un-polarized polyvinylidene fluoride (PVDF) via electromechanical coupling is developed as a novel torque measurement mechanism that does not require external electric power excitation. The sensing method is developed based on the shear strain gradient and the shear flexoelectric response of PVDF. A theoretical analysis is primarily presented for the design of the sensing structure. Then the structure of the PVDF sensing module is discussed and designed. The radius ratio of the sensing module is defined and then discussed according to the load, the strain gradient, the electrode area and the general electric charge output. The finite element method is used to analyze the mechanical properties of the designed PVDF sensing module. Then the theoretical sensitivity of the sensor is predicated as 0.9441 pC Nm −1 . The experiment system setup is developed, and the sensing properties of the measurement mechanism are tested at frequencies of 0.5 Hz, 1 Hz, 1.5 Hz and 2 Hz using identical modules. The measurement range of the designed sensor is 0–1.68 Nm and the average sensitivity is measured as 0.8950 pC Nm −1 . The experimental results agree well with the theoretically predicted results. These results prove that the torque sensing method based on un-polarized PVDF is suitable for measurement of dynamic torque loads with a flexoelectricity-based mechanism. When using this method, external electric power excitation of the sensing module is no longer required. (paper)

  15. A flexoelectricity effect-based sensor for direct torque measurement

    Science.gov (United States)

    Zhang, Shuwen; Xu, Minglong; Liu, Kaiyuan; Shen, Shengping

    2015-12-01

    In this study, a direct torque sensor based on the flexoelectricity generated by un-polarized polyvinylidene fluoride (PVDF) via electromechanical coupling is developed as a novel torque measurement mechanism that does not require external electric power excitation. The sensing method is developed based on the shear strain gradient and the shear flexoelectric response of PVDF. A theoretical analysis is primarily presented for the design of the sensing structure. Then the structure of the PVDF sensing module is discussed and designed. The radius ratio of the sensing module is defined and then discussed according to the load, the strain gradient, the electrode area and the general electric charge output. The finite element method is used to analyze the mechanical properties of the designed PVDF sensing module. Then the theoretical sensitivity of the sensor is predicated as 0.9441 pC Nm-1. The experiment system setup is developed, and the sensing properties of the measurement mechanism are tested at frequencies of 0.5 Hz, 1 Hz, 1.5 Hz and 2 Hz using identical modules. The measurement range of the designed sensor is 0-1.68 Nm and the average sensitivity is measured as 0.8950 pC Nm-1. The experimental results agree well with the theoretically predicted results. These results prove that the torque sensing method based on un-polarized PVDF is suitable for measurement of dynamic torque loads with a flexoelectricity-based mechanism. When using this method, external electric power excitation of the sensing module is no longer required.

  16. Cloud-based shaft torque estimation for electric vehicle equipped with integrated motor-transmission system

    Science.gov (United States)

    Zhu, Xiaoyuan; Zhang, Hui; Yang, Bo; Zhang, Guichen

    2018-01-01

    In order to improve oscillation damping control performance as well as gear shift quality of electric vehicle equipped with integrated motor-transmission system, a cloud-based shaft torque estimation scheme is proposed in this paper by using measurable motor and wheel speed signals transmitted by wireless network. It can help reduce computational burden of onboard controllers and also relief network bandwidth requirement of individual vehicle. Considering possible delays during signal wireless transmission, delay-dependent full-order observer design is proposed to estimate the shaft torque in cloud server. With these random delays modeled by using homogenous Markov chain, robust H∞ performance is adopted to minimize the effect of wireless network-induced delays, signal measurement noise as well as system modeling uncertainties on shaft torque estimation error. Observer parameters are derived by solving linear matrix inequalities, and simulation results using acceleration test and tip-in, tip-out test demonstrate the effectiveness of proposed shaft torque observer design.

  17. A new direct torque control scheme for induction motors using linear state feedback

    Energy Technology Data Exchange (ETDEWEB)

    Kandianis, A.; Manias, S.N. [National Technical Univ. of Athens (Greece). Dept. of Electrical Engineering; Griva, G.; Profumo, F. [Politecnico di Torino (Italy). Dept. of Electrical Engineering

    1995-12-31

    In this paper a new Direct Torque Control (DTC) scheme for induction motor drives is described, based on the linear state feedback method with dynamic output feedback. The DTC has been shown to be a good solution in torque controlled drives applications when the speed control is not required (e.g. traction drives for electric vehicles). In such cases, the torque command comes directly from the user input. By considering the torque and flux as the outputs of the linearized motor model, it is possible to design an optimum controller with constant gain state feedback and dynamic output feedback through an integral term. The design procedure of the proposed control scheme is described and the simulation results are presented to show the overall performance of the system.

  18. A Physics Experiment Concerning the Measurement of the Torque of a Rotating Body Using a Magnetoelectrical Technique

    Science.gov (United States)

    Sakon, Takuo; Nakagawa, Keisuke

    2016-01-01

    A physical experiment concerning the moment of inertia of a rigid disk is described. Basic physical quantities such as the moment of inertia and torque are very important in elementary physics courses. This experiment was designed to improve students' understanding of the relation between the rigid moment of inertia and torque. The moment of…

  19. Torque Characteristic Analysis of a Transverse Flux Motor Using a Combined-Type Stator Core

    Directory of Open Access Journals (Sweden)

    Xiaobao Yang

    2016-11-01

    Full Text Available An external rotor transverse flux motor using a combined-type stator core is proposed for a direct drive application in this paper. The stator core is combined by two kinds of components that can both be manufactured conveniently by generic laminated silicon steel used in traditional motors. The motor benefits from the predominance of low manufacturing cost and low iron loss by using a silicon-steel sheet. Firstly, the basic structure and operation principles of the proposed motor are introduced. Secondly, the expressions of the electromagnetic torque and the cogging torque are deduced by theoretical analysis. Thirdly, the basic characteristics such as permanent magnet flux linkage, no-load back electromotive force, cogging torque and electromagnetic torque are analyzed by a three-dimensional finite element method (3D FEM. Then, the influence of structure parameters on the torque density is investigated, which provides a useful foundation for optimum design of the novel motor. Finally, the torque density of the proposed motor is calculated and discussed, and the result shows that the proposed motor in this paper can provide considerable torque density by using few permanent magnets.

  20. Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid

    Directory of Open Access Journals (Sweden)

    Oh Jong-Seok

    2015-02-01

    Full Text Available This work presents a torque measurement method of 3-degree-of-freedom (3-DOF haptic master featuring controllable electrorheological (ER fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.

  1. Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid

    Science.gov (United States)

    Oh, Jong-Seok; Choi, Seung-Bok; Lee, Yang-Sub

    2015-02-01

    This work presents a torque measurement method of 3-degree-of-freedom (3-DOF) haptic master featuring controllable electrorheological (ER) fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.

  2. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  3. Nonlinear decoupling of torque and field amplitude in an induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, H. [Aalborg University, Aalborg (Denmark); Vadstrup, P.; Boersting, H. [Grundfos A/S, Bjerringbro (Denmark)

    1997-12-31

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor torque. The method is tested both by simulation and by experiments on a motor drive. (orig.) 12 refs.

  4. On split Lie triple systems

    Indian Academy of Sciences (India)

    We also introduced in [1] techniques of connection of roots in the framework of split Lie algebras. In the present paper we extend these techniques to the framework of split Lie triple systems so as to obtain a generalization of the results in [1]. We consider the wide class of split Lie triple systems (which contains the class of.

  5. Influence of magnetic reluctances of magnetic elements on servo valve torque motors

    Science.gov (United States)

    Liu, Changhai; Jiang, Hongzhou

    2016-01-01

    The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluctances of the magnetic elements are rarely available. This paper aims to analyze the influence of the magnetic reluctances of the magnetic elements on torque motor. Considering these magnetic reluctances ignored in previous literatures, a new mathematical model of servo valve torque motor is developed and proposed based on the fundamental laws of electromagnetism. By using this new mathematical model and the previous models, electromagnetic torque constant and magnetic spring stiffness are evaluated for a given set of torque motor parameters. A computer simulation by using AMESim software is also performed for the same set of torque motor parameters to verify the proposed model. The theoretical results of electromagnetic torque constant and magnetic spring stiffness evaluated by the proposed model render closer agreement with the simulation results than those evaluated by the previous models. In addition, an experimental measurement of the magnetic flux densities in the air-gaps is carried out by using SFL218 servo valve torque motor. Compared with the theoretical results of the magnetic flux densities in the air-gaps evaluated by the previous models, the theoretical results evaluated by the proposed model also show better agreement with the experimental data. The proposed model shows the influence of the magnetic reluctances of the magnetic elements on the servo valve torque motor, and offers modified and analytical expressions to electromagnetic torque constant and magnetic spring stiffness. These modified and analytical expressions could provide guidance more accurately for a linear control design approach and sensitivity analysis on electro-hydraulic servo valves than the previous expressions.

  6. Skinfold thickness affects the isometric knee extension torque evoked by Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Flávia V. A. Medeiros

    2015-12-01

    Full Text Available BACKGROUND: Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES. This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. OBJECTIVE: To investigate the effects of skinfold thickness (SFT on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. METHOD: First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm vs. thinner (n=10; 29.4 mm SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS. RESULTS: NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01 while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01. A positive correlation was found between current intensity and SFT (r=0.540, p=0.017. A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012. No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53. CONCLUSION: These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies.

  7. High Torque, Direct Drive Electric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to advance the development of an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such...

  8. Sensorless vector and direct torque control

    CERN Document Server

    Vas, Peter

    1998-01-01

    This is the first comprehensive book on sensorless high performance a.c. drives. It is essential reading for anyone interested in acquiring a solid background on sensorless torque-controlled drives. It presents a detailed and unified treatment of sensorless vector-controlled and direct-torque controlled drive systems. It also discusses the applications of artificial intelligence to drives. Where possible, space vector theory is used and emphasis is laid on detailed mathematical and physical analysis. Sensorless drive schemes for different types of permanent magnet synchronous motors, synchronous reluctance motors, and induction motors are also presented. These include more than twenty vector drives e.g. five types of MRAS-based vector drives, and eleven types of direct-torque-controlled (DTC) drives, e.g. the ABB DTC drive. However, torque-controlled switched reluctance motor drives are also discussed due to their emerging importance. The book also covers various drive applications using artificial intellige...

  9. Improved computed torque control for industrial robots

    Science.gov (United States)

    Uebel, Mark; Minis, Ioannis; Cleary, Kevin

    1992-01-01

    The authors examine the computed torque control problem for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators due to the dynamics introduced by the joint drive systems. The proposed approach overcomes this problem by combining a novel computed torque algorithm with simple torque controllers at each joint of the robot. The control scheme is applied to a seven degree-of-freedom industrial manipulator, and the system performance in standard tasks is evaluated using both dynamic simulation and actual experiments. The results show that the proposed controller leads to improved tracking performance over a conventional PD (proportional plus derivative) controller.

  10. 14 CFR 23.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... takeoff power and propeller speed, multiplied by a factor accounting for propeller control system... compressor jamming). (2) A limit engine torque load imposed by the maximum acceleration of the engine. (c...

  11. 14 CFR 25.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... by a factor accounting for propeller control system malfunction, including quick feathering, acting... malfunction or structural failure (such as compressor jamming). (2) A limit engine torque load imposed by the...

  12. Knudsen torque on heated micro beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qi; Liang, Tengfei; Ye, Wenjing [Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon (Hong Kong)

    2014-12-09

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction of the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.

  13. A comparison of screw insertion torque and pullout strength.

    Science.gov (United States)

    Ricci, William M; Tornetta, Paul; Petteys, Timothy; Gerlach, Darin; Cartner, Jacob; Walker, Zakiyyah; Russell, Thomas A

    2010-06-01

    Pullout strength of screws is a parameter used to evaluate plate screw fixation strength. However, screw fixation strength may be more closely related to its ability to generate sufficient insertion because stable nonlocked plate-screw fracture fixation requires sufficient compression between plate and bone such that no motion occurs between the plate and bone under physiological loads. Compression is generated by tightening of screws. In osteoporotic cancellous bone, sufficient screw insertion torque may not be generated before screw stripping. The effect of screw thread pitch on generation of maximum insertion torque (MIT) and pullout strength (POS) was investigated in an osteoporotic cancellous bone model and the relationship between MIT and POS was analyzed. Stainless steel screws with constant major (5.0 mm) and minor (2.7 mm) diameters but with varying thread pitches (1, 1.2, 1.5, 1.6, and 1.75 mm) were tested for MIT and POS in a validated osteoporotic surrogate for cancellous bone (density of 160 kg/m(3) [10 lbs/ft(3)]). MIT was measured with a torque-measuring hex driver for screws inserted through a one-third tubular plate. POS was measured after insertion of screws to a depth of 20 mm based on the Standard Specification and Test Methods for Metallic Medical Bone Screws (ASTM F 543-07). Five screws were tested for each failure mode and screw design. The relationship between MIT and compressive force between the plate and bone surrogate was evaluated using pressure-sensitive film. There was a significant difference in mean MIT based on screw pitch (P compression between the plate and bone surrogate was found for increasing screw torque (R(2) = 0.97). These results indicate that the ability of different screw designs to generate high screw insertion torque in a model of osteoporotic cancellous bone is unrelated to their pullout strength. Therefore, extrapolation of results for POS to identify optimal screw design for osteoporotic bone may not be valid

  14. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Clément, P.-Y.; Baraduc, C.; Ducruet, C.; Vila, L.; Chshiev, M.; Diény, B.

    2015-09-01

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  15. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Clément, P.-Y.; Baraduc, C.; Chshiev, M.; Diény, B.; Ducruet, C.; Vila, L.

    2015-01-01

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated

  16. A mechanical jig for measuring ankle supination and pronation torque in vitro and in vivo.

    Science.gov (United States)

    Fong, Daniel Tik-Pui; Chung, Mandy Man-Ling; Chan, Yue-Yan; Chan, Kai-Ming

    2012-07-01

    This study presents the design of a mechanical jig for evaluating the ankle joint torque on both cadaver and human ankles. Previous study showed that ankle sprain motion was a combination of plantarflexion and inversion. The device allows measurement of ankle supination and pronation torque with one simple axis in a single step motion. More importantly, the ankle orientation allows rotation starting from an anatomical position. Six cadaveric specimens and six human subjects were tested with simulated and voluntary rotation respectively. The presented mechanical jig makes possible the determination of supination torque for studying ankle sprain injury and the estimation of pronation torque for examining peroneal muscle response. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Clément, P.-Y.; Baraduc, C., E-mail: claire.baraduc@cea.fr; Chshiev, M.; Diény, B. [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, INAC-SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Ducruet, C. [Crocus-Technology, 5, Place Robert Schuman, F-38054 Grenoble (France); Vila, L. [Univ. Grenoble Alpes, INAC-SP2M, F-38000 Grenoble, France and CEA, INAC-SP2M, F-38000 Grenoble (France)

    2015-09-07

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  18. Immediate vs. delayed endosseous integration of maxi implants: a torque removal animal study

    Directory of Open Access Journals (Sweden)

    Hanif Allahbakhshi

    2017-06-01

    Full Text Available Background. Delayed loading is one of the concerns in implant patients. Immediate loading can solve the problem and make patients more satisfied. The present study aimed to compare the removal torque of maxi implants under different loading (immediate and delayed patterns. Methods. This split-mouth experimental study included 2 dogs. Impressions were made and then all the premolars were extracted under general anesthesia. After a three-month healing period, 3 implants were inserted in each quadrant (a total of 12 implants. Anterior and posterior implants (the case group were splinted by an acrylic temporary bridge in order to make the middle implants (the control group off the occlusion. The dogs were sacrificed after 6 weeks and bone blocks were submitted for removal torque test. Data were analyzed with ANOVA (P<0.05. Results. Mean torque values for the cases and control groups were 46.82±25.58 and 59.88±15.19, respectively (P=0.582; not significant. Conclusion. It may be concluded that immediate loading does not reduce the reverse torque values of maxi implants. This supports the advantages of immediate loading for maxi implants.

  19. A High Performance Torque Sensor for Milling Based on a Piezoresistive MEMS Strain Gauge

    Directory of Open Access Journals (Sweden)

    Yafei Qin

    2016-04-01

    Full Text Available In high speed and high precision machining applications, it is important to monitor the machining process in order to ensure high product quality. For this purpose, it is essential to develop a dynamometer with high sensitivity and high natural frequency which is suited to these conditions. This paper describes the design, calibration and performance of a milling torque sensor based on piezoresistive MEMS strain. A detailed design study is carried out to optimize the two mutually-contradictory indicators sensitivity and natural frequency. The developed torque sensor principally consists of a thin-walled cylinder, and a piezoresistive MEMS strain gauge bonded on the surface of the sensing element where the shear strain is maximum. The strain gauge includes eight piezoresistances and four are connected in a full Wheatstone circuit bridge, which is used to measure the applied torque force during machining procedures. Experimental static calibration results show that the sensitivity of torque sensor has been improved to 0.13 mv/Nm. A modal impact test indicates that the natural frequency of torque sensor reaches 1216 Hz, which is suitable for high speed machining processes. The dynamic test results indicate that the developed torque sensor is stable and practical for monitoring the milling process.

  20. Potentiation increases peak twitch torque by enhancing rates of torque development and relaxation.

    Science.gov (United States)

    Froyd, Christian; Beltrami, Fernando Gabe; Jensen, Jørgen; Noakes, Timothy David

    2013-01-01

    The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscles (study 1). Additionally, potentiated quadriceps muscles torque was measured every min after a further 10 maximal voluntary contractions repeated every min (study 2). Electrical stimulation repeated several times without previous maximal voluntary contraction showed similar peak twitch torque. Peak twitch torque 4 s after a 5 s maximal voluntary contraction increased by 45±13% (study 1) and by 56±10% (study 2), the rate of torque development by 53±13% and 82±29%, and the rate of relaxation by 50±17% and 59±22%, respectively, but potentiation was lost already two min after a 5 s maximal voluntary contraction. There was a tendency for peak twitch torque to increase for the first five repeated maximal voluntary contractions, suggesting increased potentiation with additional maximal voluntary contractions. Correlations for peak twitch torque vs the rate of torque development and for the rate of relaxation were r(2)= 0.94 and r(2)=0.97. The correlation between peak twitch torque, the rate of torque development and the rate of relaxation suggests that potentiation is due to instantaneous changes in skeletal muscle contractility and relaxation.

  1. Standard practice for calibration of torque-measuring instruments for verifying the torque indication of torque testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice is to specify procedure for the calibration of elastic torque-measuring instruments. Note 1—Verification by deadweight and a lever arm is an acceptable method of verifying the torque indication of a torque testing machine. Tolerances for weights used are tabulated in Practice WK6364; methods for calibration of the weights are given in NIST Technical Note 577, Methods of Calibrating Weights for Piston Gages. 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.3 This practice is intended for the calibration of static or quasi-static torque measuring instruments. The practice is not applicable for high speed torque calibrations or measurements. 1.4 This standard does not purport to address all of the safety concerns, if any,...

  2. Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions

    Science.gov (United States)

    Tang, Y.-H.; Chu, F.-C.; Kioussis, Nicholas

    2015-06-01

    We predict a giant field-like spin torque, , in spin-filter (SF) barrier tunnel junctions in sharp contrast to existing junctions based on nonmagnetic passive barriers. We demonstrate that has linear bias behavior, is independent of the SF thickness, and has odd parity with respect to the SF’s exchange splitting. Thus, it can be selectively controlled via external bias or external magnetic field which gives rise to sign reversal of via magnetic field switching. The underlying mechanism is the interlayer exchange coupling between the noncollinear magnetizations of the SF and free ferromagnetic electrode via the nonmagnetic insulating (I) spacer giving rise to giant spin-dependent reflection at the SF/I interface. These findings suggest that the proposed field-like-spin-torque MRAM may provide promising dual functionalities for both ‘reading’ and ‘writing’ processes which require lower critical current densities and faster writing and reading speeds.

  3. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  4. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    Science.gov (United States)

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  5. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    Directory of Open Access Journals (Sweden)

    Beomsoo Hwang

    2015-04-01

    Full Text Available In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  6. Decoupled Speed and Torque Control of IPMSM Drives Using a Novel Load Torque Estimator

    Directory of Open Access Journals (Sweden)

    ZAKY, M.

    2017-08-01

    Full Text Available This paper proposes decoupled speed and torque control of interior permanent magnet synchronous motor (IPMSM drives using a novel load torque estimator (LTE. The proposed LTE is applied for computing a load torque and yielding a feed-forward value in the speed controller to separate the torque control from the speed control. Indirect flux weakening using direct current component is obtained for high speed operation of the IPMSM drive, and its value for maximum torque per ampere (MTPA control in constant torque region is also used. LTE uses values of direct and quadrature currents to improve the behavior of the speed controller under the reference tracking and torque disturbances. The complete IPMSM drive by Matlab/Simulink is built. The effectiveness of the proposed control scheme using an experimental setup of the complete drive system implemented on a DSP-DS1102 control board is confirmed. Extensive results over a wide speed range are verified. The efficacy of the proposed method is confirmed in comparison to a conventional PI controller under both the reference speed tracking and load torque disturbance.

  7. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    Science.gov (United States)

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  8. LOW HANDICAP GOLFERS GENERATE MORE TORQUE AT THE SHOE-NATURAL GRASS INTERFACE WHEN USING A DRIVER

    Directory of Open Access Journals (Sweden)

    Paul Worsfold

    2008-09-01

    Full Text Available The aim was to determine the rotational torque occurring at the shoe-natural grass interface during golf swing performance with different clubs, and to determine the influence of handicap and golf shoe design. Twenty-four golfers (8 low 0-7; 8 medium 8-14; and 8 high 15+ performed 5 shots with a driver, 3-iron and 7-iron when 3 shoes were worn: a modern 8 mm metal 7-spike shoe, an alternative 7-spike shoe and a flat soled shoe. Torque was measured at the front and back foot by grass covered force platforms in an outdoor field. Torque at the shoe- natural turf interface was similar at the front foot when using a driver, 3-iron and 7-iron with maximum mean torque (Tzmax 17-19 Nm and torque generation in the entire backswing and downswing approximately 40 Nm. At the back foot, torque was less than at the front foot when using the driver, 3-iron and 7-iron. At the back foot Tzmax was 6-7 Nm, and torque generation was 10-16 Nm, with a trend for greater torque generation when using the driver rather than the irons. The metal spike shoe allowed significantly more back foot torque generation when using a driver than a flat- soled shoe (p 0.05, although back foot mean torques generated tended to be greater for the metal spike shoe. The golf shot outcomes were similar for low, medium and high handicappers in both metal and alternative spike shoes (metal: 87%; 76%; 54%; alternative: 85%; 74%; 54% respectively. The better, low handicap golfers generated significantly more back foot torque (metal spike: 18.2 Nm; alternative: 15.8 Nm; p < 0.05 when using a driver. Further research should consider back foot shoe-grass interface demands during driver usage by low handicap and lighter body-weight golfers

  9. Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship

    Directory of Open Access Journals (Sweden)

    Filiz Ateş

    2018-01-01

    Full Text Available Intramuscular pressure (IMP is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA activity at different ankle positions. We hypothesized that (1 the TA IMP and the surface EMG (sEMG and fine-wire EMG (fwEMG correlate to ankle joint torque, (2 the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3 the electromechanical delay (EMD is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean (SD age = 26.9 (4.2 years old with 25.9 (5.5 kg/m2 body mass index] performed (i three isometric dorsiflexion (DF maximum voluntary contraction (MVC and (ii three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.

  10. Torque shudder protection device and method

    Science.gov (United States)

    King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.

    1997-03-11

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.

  11. Electrostatic sensor modeling for torque measurements

    Science.gov (United States)

    Mika, Michał; Dannert, Mirjam; Mett, Felix; Weber, Harry; Mathis, Wolfgang; Nackenhorst, Udo

    2017-09-01

    Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko (1984). Thus, there have been optical and magnetical, as well as capacitive sensors introduced). This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  12. Electrostatic sensor modeling for torque measurements

    Directory of Open Access Journals (Sweden)

    M. Mika

    2017-09-01

    Full Text Available Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko(1984. Thus, there have been optical and magnetical, as well as capacitive sensors introduced . This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  13. Evaluation of torque loss value of MAD/MAM zirconia abutments with prefabricated titanium abutments

    Directory of Open Access Journals (Sweden)

    Marzieh Alikhasi

    2013-04-01

    Full Text Available Background and Aims: In response to esthetic demand of patients, ceramic abutments have been developed. Despite esthetic of zirconia abutments, machining accuracy of these abutments has always been a question. Any misfit in the abutment-implant interface connection can lead to detorque and screw loosening. The aim of this study was to compare torque loss value of manually aided design/manually aided manufacture (MAD/MAM zirconia abutments with prefabricated titanium abutments. Materials and Methods: Seven titanium abutments (Branemark RP, Easy abutment and seven copy milled abutments which were duplicated from the prefabricated Zirkonzhan (ZirkonZahn, Sand in Taufers, Italy were prepared. After sintering process of zirconia abutment, all abutments were fastened with a torque screw under 35 Ncm. Detorque measurements were performed per group pushing the reverse button of the Torque controller soon after screw tightening with values registered. The mean torque loss were calculated and compared using Student's t test. Results: The mean of torque loss was 12.71 Ncm with standard deviation of 1.70 for prefabricated titanium abutments and 15.50 Ncm with standard deviation of 4.67 for MAD-MAM abutments. The difference between the two groups was not statistically significant (P=0.23. Conclusion: Within the limitation of this study, MAD-MAM ceramic abutments could maintain the applied torque comparing to the prefabricated abutments.

  14. Isometric hip and knee torque measurements as an outcome measure in robot assisted gait training.

    Science.gov (United States)

    Galen, Sujay S; Clarke, Celia J; McLean, Alan N; Allan, David B; Conway, Bernard A

    2014-01-01

    Strength changes in lower limb muscles following robot assisted gait training (RAGT) in subjects with incomplete spinal cord injury (ISCI) has not been quantified using objective outcome measures. To record changes in the force generating capacity of lower limb muscles (recorded as peak voluntary isometric torque at the knee and hip), before, during and after RAGT in both acute and subacute/chronic ISCI subjects using a repeated measures study design. Eighteen subjects with ISCI participated in this study (Age range: 26-63 years mean age = 49.3 ± 11 years). Each subject participated in the study for a total period of eight weeks, including 6 weeks of RAGT using the Lokomat system (Hocoma AG, Switzerland). Peak torques were recorded in hip flexors, extensors, knee flexors and extensors using torque sensors that are incorporated within the Lokomat. All the tested lower limb muscle groups showed statistically significant (p torques in the acute subjects. Comparison between the change in peak torque generated by a muscle and its motor score over time showed a non-linear relationship. The peak torque recorded during isometric contractions provided an objective outcome measure to record changes in muscle strength following RAGT.

  15. A Method for Solving the Voltage and Torque Equations of the Split ...

    African Journals Online (AJOL)

    Akorede

    Analysis Electric Machinery and Drive Systems, second edition, IEEE Press Power Engineering Series, John Wiley &. Sons Inc., USA, pp 361-393. Latt, A. Z. and Win, N. N. (2009). Variable speed drive of single phase induction motor using frequency control method, international conference on education technology and.

  16. Macroscopic description of spin transfer torque

    International Nuclear Information System (INIS)

    Barnas, J.; Fert, A.; Gmitra, M.; Weymann, I.; Dugaev, V.K.

    2006-01-01

    A macroscopic description of the current-induced torque due to spin transfer has been developed for layered systems consisting of ferromagnetic films, separated by nonmagnetic layers. The description is based on the classical spin diffusion equations for the distribution functions used in the theory of current-perpendicular-to-plane giant magnetoresistance (CPP-GMR), and the relevant boundary conditions for the longitudinal and transverse components of the spin current and spin accumulation. The torque is expressed as a function of the usual parameters derived from CPP-GMR experiments and two additional parameters involved in the transverse boundary conditions. The model describes qualitatively the normal and inverse switching phenomena studied in recent experiments. We also discuss a structure for which the spin torque disappears at a noncollinear magnetic configuration

  17. Helicopter Anti-Torque System Using Strakes

    Science.gov (United States)

    Kelley, H. L.; Wilson, J. C.; Phelps, A. E. (Inventor)

    1984-01-01

    A helicopter is disclosed with a system for controlling main-rotor torque which reduces the power and size requirements of conventional anti-torque means. The torque countering forces are generated by disrupting the main rotor downwash flowing around the fuselage. The downwash flow is separated from the fuselage surface by a strake positioned at a specified location on the fuselage. This location is determined by the particular helicopter wash pattern and fuselage configuration, generally being located between 20 deg before top dead center (TDC) and 80 deg from TDC on the fuselage side to which the main rotor blade approaches during rotation. The strake extends along the fuselage from the cabin section to the aft end and can be continuous or separated for aerodynamic surfaces such as a horizontal stabilizer.

  18. RFID Torque Sensing Tag System for Fasteners

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor)

    2016-01-01

    The present invention provides an RFID-based torque sensor that can be used to quickly monitor off the shelf fasteners including fasteners that are used in expensive satellites or other uses where fastener failure can be very costly. In one embodiment, an antenna, RFID ring and spring comprise a sensor tag that can be interrogated with an interrogation signal produced by an interrogator device. When sufficient torque is applied to the fastener, an RFID circuit is connected, and produces a radio frequency (RF) signal that can be read by the interrogator. In one embodiment, the RFID circuit does not transmit when the spring member is not compressed, thereby indicating insufficient tensioning of the fastener. The present invention offers the ability to remotely, quickly, and inexpensively verify that any number of fasteners are torqued properly upon initial installation. Where applicable, the present invention allows low cost monitoring over the life of the fastener.

  19. Self-Induced Torque in Hyperbolic Metamaterials

    Science.gov (United States)

    Ginzburg, Pavel; Krasavin, Alexey V.; Poddubny, Alexander N.; Belov, Pavel A.; Kivshar, Yuri S.; Zayats, Anatoly V.

    2013-07-01

    Optical forces constitute a fundamental phenomenon important in various fields of science, from astronomy to biology. Generally, intense external radiation sources are required to achieve measurable effects suitable for applications. Here we demonstrate that quantum emitters placed in a homogeneous anisotropic medium induce self-torques, aligning themselves in the well-defined direction determined by an anisotropy, in order to maximize their radiation efficiency. We develop a universal quantum-mechanical theory of self-induced torques acting on an emitter placed in a material environment. The theoretical framework is based on the radiation reaction approach utilizing the rigorous Langevin local quantization of electromagnetic excitations. We show more than 2 orders of magnitude enhancement of the self-torque by an anisotropic metamaterial with hyperbolic dispersion, having negative ratio of permittivity tensor components, in comparison with conventional anisotropic crystals with the highest naturally available anisotropy.

  20. Development of a magnetostrictive Torque sensor. Jiwaishiki torque sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tanizaki, K.; Aoki, H.; Maruyama, J.; Shimada, M. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1990-06-25

    In the present report, new torque sensor, utilizing the magnetostrictive effect, was explained in structure of sensor, material problem of the shaft, playing a functionally important role therein, and examples, verifying the characteristics. The magnetic substance is constituted as a set substance of small regions, called magnetic sections, directionally constant in spontaneous magnetization. If stress acts on the magnetic substance, there occur dislocation of magnetic wall, which is border between those sections, and rotation of magnetization, which occurrence causes change in magnetization of all the magnetic substance, ie., magnetostrictive effect. The torque sensor constitutes plural concave/convex forms, directionally oblique to the main torsional stress, on the shaft surface, composed as magnetic substance, and which surface is installed confrontedly with a pair of coils. Result of using a torque sensor for the engine torque measurement could grasp, in each cylinder, both torque generation by combustion and torque decrease by flameout, good in respondency. Example for the transmission to be internally equipped with a sensor could also grasp a large and very quick change in torque with a high respondency. 8 refs., 14 figs.

  1. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    Science.gov (United States)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  2. Torque Ripple Minimization and Performance Investigation of an In-Wheel Permanent Magnet Motor

    Directory of Open Access Journals (Sweden)

    A. Mansouri

    2016-06-01

    Full Text Available Recently, electric vehicle motoring has become a topic of interest, due to the several problems caused by thermal engines such as pollution and high oil prices. Thus, electric motors are increasingly applied in vehicle’ applications and relevant research about these motors and their applications has been performed. Of particular interest are the improvements regarding torque production capability, the minimization of torque ripple and iron losses. The present work deals with the optimum design and the performance investigation of an outer rotor permanent magnet motor for in-wheel electric vehicle application. At first, and in order to find the optimum motor design, a new based particle-swarm multi-objective optimization procedure is applied. Three objective functions are used: efficiency maximization, weight and ripple torque minimization. Secondly, the effects of the permanent magnets segmentation, the stator slots opening, and the separation of adjacent magnets by air are outlined. The aim of the paper is the design of a topology with smooth output torque, low ripple torque, low iron losses and mechanical robustness.

  3. The role of interaction torque and muscle torque in the control of downward squatting

    OpenAIRE

    Fujisawa, Hiroyuki; Suzuki, Hiroto; Murakami, Kenichi; Kawakami, Shingo; Suzuki, Makoto

    2016-01-01

    [Purpose] The purposes of this study were first to analyze the multijoint dynamics of downward squatting, and to examine the contribution of interaction torque and muscle torque to net torque, and second, to examine mechanisms of movement control. [Subjects] The subjects were 31 healthy men with a mean age of 21.0 ? 1.2?years (range, 19?24?years). [Methods] Squatting tasks with the trunk in two positions, an erect and anterior tilt position, were performed by the subjects. Net, interaction, m...

  4. New Simple Torque-Sensorless Torque Control for Quasi-Perfect Compensation of 6th Harmonic Torque Ripple Due to Nonsinusoidal Distribution of Back EMF of PMSM

    Science.gov (United States)

    Shinnaka, Shinji; Kishida, Hideo

    This paper proposes a new torque-sensorless torque control method for permanent-magnet synchronous motors (PMSMs). The proposed method can almost perfectly compensate the 6th harmonic torque ripple that is caused by the nonsinusoidal distributions of the back EMF and rotor magnetic flux of PMSMs. The torque control system is, in principle, constructed on the basis of the vector control, but has two new dedicated speed-varying devices—a harmonic torque observer and current controller. The speed-varying harmonic torque observer can estimate the harmonic component over a wide speed range, even in the case where the produced torque is constant, and generate a suitable compensating signal. The speed-varying current controller shows stable control performance over a wide speed range, it can fully track the compensated current command containing the dc and 6th harmonic components. The effectiveness of the proposed method is examined and verified through extensive numerical experiments.

  5. Torque limit of PM motors for field-weakening region operation

    Science.gov (United States)

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  6. Muscle response to pneumatic hand tool torque reaction forces.

    Science.gov (United States)

    Radwin, R G; VanBergeijk, E; Armstrong, T J

    1989-06-01

    Surface electromyography was used for studying the effects of torque reaction force acting against the hand, on forearm muscle activity and grip force for five subjects operating right angle, air shut-off nutrunners. Four tools having increasing spindle torque were operated using short and long torque reaction times. Nutrunner spindle torque ranged between 30 Nm and 100 Nm. Short torque reaction time was considered 0.5 s while long torque reaction time was 2 s. Peak horizontal force was the greatest component of the reaction force acting against the hand and accounted for more than 97% of the peak resultant hand force. Peak hand force increased from 89 N for the smallest tool to 202 N for the largest tool. Forearm muscle rms EMG, scaled for grip force, indicated average flexor activity during the Torque-reaction phase was more than four times greater than the Pre-start and Post Shut-off phases, and two times greater than the Run-down phase. Flexor EMG activity during the Torque-reaction phase increased for increasing tool peak spindle torque. Average flexor rms EMG activity, scaled for grip force, during the Torque-reaction phase increased from 372 N for the 30 Nm nutrunner to 449 N for the 100 Nm nutrunner. Flexor rms EMG activity averaged during the Torque-reaction phase and scaled for grip force was 390 N for long torque reaction times and increased to 440 N for short torque reaction times. Flexor rms EMG integrated over the torque reaction phase was 839 Ns for long torque reaction times and decreased to 312 Ns for short torque reaction times. The average latency between tool spindle torque onset and peak initial flexor rms EMG for long torque reaction times was 294 ms which decreased to 161 ms for short torque reaction times. The average latency between peak tool spindle torque, just prior to tool shut-off, and peak final rms EMG for long torque reaction times was 97 ms for flexors and 188 ms for extensors, which decreased for short torque reaction times to 47

  7. Planetary Torque in 3D Isentropic Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Jeffrey [Department of Astronomy, University of California at Berkeley, Campbell Hall, Berkeley, CA 94720-3411 (United States); Masset, Frédéric; Velasco, David [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, 62210 Cuernavaca, Mor. (Mexico); Lega, Elena, E-mail: jeffrey.fung@berkeley.edu [Université de la Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange UMR 7293, Nice (France)

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential ( r {sub s}), and that it has a weak dependence on the adiabatic index of the gaseous disk ( γ ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r {sub s} or γ , up to supersonic speeds for the smallest r {sub s} and γ in our study.

  8. Are torque values of preadjusted brackets precise?

    Directory of Open Access Journals (Sweden)

    Alessandra Motta Streva

    Full Text Available OBJECTIVE: The aim of the present study was to verify the torque precision of metallic brackets with MBT prescription using the canine brackets as the representative sample of six commercial brands. MATERIAL AND METHODS: Twenty maxillary and 20 mandibular canine brackets of one of the following commercial brands were selected: 3M Unitek, Abzil, American Orthodontics, TP Orthodontics, Morelli and Ortho Organizers. The torque angle, established by reference points and lines, was measured by an operator using an optical microscope coupled to a computer. The values were compared to those established by the MBT prescription. RESULTS: The results showed that for the maxillary canine brackets, only the Morelli torque (-3.33º presented statistically significant difference from the proposed values (-7º. For the mandibular canines, American Orthodontics (-6.34º and Ortho Organizers (-6.25º presented statistically significant differences from the standards (-6º. Comparing the brands, Morelli presented statistically significant differences in comparison with all the other brands for maxillary canine brackets. For the mandibular canine brackets, there was no statistically significant difference between the brands. CONCLUSIONS: There are significant variations in torque values of some of the brackets assessed, which would clinically compromise the buccolingual positioning of the tooth at the end of orthodontic treatment.

  9. Planetary Torque in 3D Isentropic Disks

    International Nuclear Information System (INIS)

    Fung, Jeffrey; Masset, Frédéric; Velasco, David; Lega, Elena

    2017-01-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential ( r s ), and that it has a weak dependence on the adiabatic index of the gaseous disk ( γ ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ , up to supersonic speeds for the smallest r s and γ in our study.

  10. Split SUSY Radiates Flavor

    CERN Document Server

    Baumgart, Matthew; Zorawski, Thomas

    2014-01-01

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  11. How rivers split

    Science.gov (United States)

    Seybold, H. F.; Yi, R.; Devauchelle, O.; Petroff, A.; Rothman, D.

    2012-12-01

    River networks have fascinated mankind for centuries. They exhibit a striking geometry with similar shapes repeating on all scales. Yet, how these networks form and create these geometries remains elusive. Recently we have shown that channels fed by subsurface flow split at a characteristic angle of 2π/5 unambiguously consistent with our field measurements in a seepage network on the Florida Panhandle (Fig.1). Our theory is based only on the simple hypothesis that the channels grow in the direction at which the ground water enters the spring and classical solutions of subsurface hydrology. Here we apply our analysis to the ramification of large drainage basins and extend our theory to include slope effects. Using high resolution stream networks from the National Hydrography Dataset (NHD), we scrutinize our hypothesis in arbitrary channel networks and investigate the branching angle dependence on Horton-Strahler order and the maturity of the streams.; High-resolution topographic map of valley networks incised by groundwater flow, located on the Florida Panhandle near Bristol, FL.

  12. Split supersymmetry radiates flavor

    Science.gov (United States)

    Baumgart, Matthew; Stolarski, Daniel; Zorawski, Thomas

    2014-09-01

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of mini-split supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and dark matter as a weakly interacting massive particle. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY-breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  13. Stabilization of Rigid Body Dynamics by Internal and External Torques

    National Research Council Canada - National Science Library

    Bloch, A. M; Krishnaprasad, P. S; Marsden, J. E; Sanchez de Alvarez, G

    1990-01-01

    ...] with quadratic feedback torques for internal rotors. We show that with such torques, the equations for the rigid body with momentum wheels are Hamiltonian with respect to a Lie-Poisson bracket structure. Further...

  14. Comparison of Stretch Reflex Torques in Ankle Dorsiflexors and Plantarflexors

    National Research Council Canada - National Science Library

    Tung, J

    2001-01-01

    ...) ankle muscles, Pulse, step, and a combination of random perturbation and step inputs were used to identify the reflex and intrinsic contributions to the measured torque, TA reflex torques were very...

  15. Superconductor-Magnet Bearings With Inherent Stability and Velocity-Independent Drag Torque

    Science.gov (United States)

    Lee, Eun-Jeong; Ma, Ki Bui; Wilson, Thomas L.; Chu, Wei-Kan

    1999-01-01

    A hybrid superconductor magnet bearing system has been developed based on passive magnetic levitation and the flux pinning effect of high-temperature superconductivity. The rationale lies in the unique capability of a high-temperature superconductor (HTS) to enhance system stability passively without power consumption. Characterization experiments have been conducted to understand its dynamic behavior and to estimate the required motor torque for its driving system design. These experiments show that the hybrid HTS-magnet bearing system has a periodic oscillation of drag torque due mainly to the nonuniform magnetic field density of permanent magnets. Furthermore, such a system also suffers from a small superimposed periodic oscillation introduced by the use of multiple HTS disks rather than a uniform annulus of HTS material. The magnitude of drag torque is velocity independent and very small. These results make this bearing system appealing for high-speed application. Finally, design guidelines for superconducting bearing systems are suggested based on these experimental results.

  16. Increasing Elbow Torque Output of Stroke Patients by EMG-Controlled External Torque

    National Research Council Canada - National Science Library

    Lin, C

    2001-01-01

    .... The control signal to the manipulator is the difference between the weighted biceps and triceps EMG, so that the system moves with the forearm and provides assisting torque proportional to the voluntary effort...

  17. A torquing shearing interferometer for cylindrical wire array experiments.

    Science.gov (United States)

    Pikuz, S A; Schrafel, P C; Shelkovenko, T A; Kusse, B R

    2008-10-01

    In standard shearing interferometry, a single probing beam passes through a perturbing medium and is then split into two beams. A linear shift results in an overlap, an interference, and a fringe pattern yielding the perturbing medium density profile. The probing beam usually needs to be larger than the perturbing medium so that part of it passes through a well separated low density region. During early time axial (end-on) views of imploding cylindrical wire arrays low density regions lie in between the high density regions that are near the initial wire positions. In addition, for end-on viewing, the probing beam diameter is limited by electrodes and is comparable to the array diameter. In this case a linear translation will not work but the overlap can be accomplished by an azimuthal rotation of one beam with respect to the other. Such a torquing shearing interferometer has been set up on the COBRA experiment to give time resolved, radial, and azimuthal electron density profiles during early time cylindrical wire array implosions.

  18. Sensorless Speed/Torque Control of DC Machine Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Rakan Kh. Antar

    2017-12-01

    Full Text Available In this paper, Artificial Neural Network (ANN technique is implemented to improve speed and torque control of a separately excited DC machine drive. The speed and torque sensorless scheme based on ANN is estimated adaptively. The proposed controller is designed to estimate rotor speed and mechanical load torque as a Model Reference Adaptive System (MRAS method for DC machine. The DC drive system consists of four quadrant DC/DC chopper with MOSFET transistors, ANN, logic gates and routing circuits. The DC drive circuit is designed, evaluated and modeled by Matlab/Simulink in the forward and reverse operation modes as a motor and generator, respectively. The DC drive system is simulated at different speed values (±1200 rpm and mechanical torque (±7 N.m in steady state and dynamic conditions. The simulation results illustratethe effectiveness of the proposed controller without speed or torque sensors.

  19. Electromagnetic fields and torque for a rotating gyroscope with a superconducting shield

    Science.gov (United States)

    Ebner, C.; Sung, C. C.

    1975-01-01

    In a proposed experiment, a measurement is to be made of the angular precession of a rotating superconducting gyroscope for the purpose of testing different general-relativity theories. For various reasons having to do with the design of the experiment, the superconducting shield surrounding the gyroscope is not spherically symmetric and produces a torque. There are two distinct features of the shield which lead to a torque on the gyroscope. First, its shape is a sphere intersected by a plane. If the angular momentum of the gyroscope is not parallel to the rotational symmetry axis of the shield, there is a torque which is calculated. Second, there are small holes in the spherical portion of the shield. The earth's field can penetrate through these holes and give an additional torque which is also calculated. In the actual experiment, these torques must be accurately known or made very small in order to obtain meaningful results. The present calculation is sufficiently general for application over a wide range of experimental design parameters.

  20. Direct Torque Control of Asynchronous Motor With Fuzzy Logic Swithching

    OpenAIRE

    KORKMAZ, Fatih; KORKMAZ, Yılmaz

    2011-01-01

    control method in asynchronous motors, are known as high speed and torque ripples. In this study, direct torque control with fuzzy logic based switching method have been studied in order to reduce the speed and torque ripples which occurs during the direct torque control of asynchronous motors. Hysteresis controllers and vector selector that used in conventional control were removed, and fuzzy logic based switching method was used instead of them. Conventional and fuzzy control methods were s...

  1. Nuevos diseños de filtros planares en tecnologías de microcinta y finline utilizando resonadores de anillos divididos Novel designs of planar filters in microstrip and finline technologies using split ring resonators

    Directory of Open Access Journals (Sweden)

    A León

    2013-04-01

    Full Text Available En este artículo se presenta una técnica mejorada para diseñar filtros en configuraciones planares. Este nuevo procedimiento se aplica para mejorar el desempeño de estos dispositivos. Este trabajo ilustra que los resonadores de anillos complementarios divididos (CSRRs acoplados eléctricamente a una línea de transmisión y los resonadores de anillos divididos (SRRs acoplados magnéticamente a una estructura finline pueden emplearse con la intención de mejorar el diseño de tales filtros. Con este propósito se analizan variantes clásicas de filtros de ondas milimétricas. Estos componentes incluyen filtros pasabajo de microcinta, filtros finline pasabanda y supresores de banda, así como filtros supresores de banda en finline antipodal. Se discuten las propiedades de estas configuraciones y los resultados experimentales se encuentran en buen acuerdo con las simulaciones. Los resultados muestran la utilidad y validez de las nuevas estructuras ya que es posible lograr bajas pérdidas de inserción y bandas de transición muy agudas con alta capacidad de rechazo.In this paper an improved technique is outlined to design filters in planar configurations. The new procedure is applied to enhance the performance of these devices. This work illustrates that complementary split-ring resonators (CSRRs, electrically coupled to a microstrip transmission line and split-ring resonators (SRRs magnetically coupled to a finline structure can be applied to improve the design of such filters. For this purpose, classical variants of millimeter wave filters have been analyzed. These components include microstrip low-pass filters, finline bandpass/bandstop filters and antipodal finline bandstop filters. The properties of these configurations are discussed; the experimental data are in good agreement with the simulations. The results show the usefulness and validity of the new structures as it is possible to achieve a very low insertion loss and very sharp

  2. Improved direct torque control of induction motor with dither injection

    Indian Academy of Sciences (India)

    dither signal is injected of minute amplitude (5% of rated torque and 5% of reference flux as hysteresis band in torque control and flux control loops respectively) in the error block. The optimal value of dither frequency and magnitude is found out under free running condition. This technique gives minimum torque ripple, low ...

  3. Calculation of Cogging Torque in Hybrid Stepping Motors | Agber ...

    African Journals Online (AJOL)

    When the windings of a hybrid stepping motor are unexcited the permanent magnet's flux produces cogging torque. This torque has both desirable and undesirable features depending on the application that the motor is put into. This paper formulates an analytical method for predicting cogging torque using measured ...

  4. Improved direct torque control of induction motor with dither injection

    Indian Academy of Sciences (India)

    Abstract. In this paper, a three-level inverter-fed induction motor drive operating under Direct Torque Control (DTC) is presented. A triangular wave is used as dither signal of minute amplitude (for torque hysteresis band and flux hysteresis band respectively) in the error block. This method minimizes flux and torque ripple in ...

  5. Global Locator, Local Locator, and Identifier Split (GLI-Split

    Directory of Open Access Journals (Sweden)

    Michael Menth

    2013-03-01

    Full Text Available The locator/identifier split is an approach for a new addressing and routing architecture to make routing in the core of the Internet more scalable. Based on this principle, we developed the GLI-Split framework, which separates the functionality of current IP addresses into a stable identifier and two independent locators, one for routing in the Internet core and one for edge networks. This makes routing in the Internet more stable and provides more flexibility for edge networks. GLI-Split can be incrementally deployed and it is backward-compatible with the IPv6 Internet. We describe its architecture, compare it to other approaches, present its benefits, and finally present a proof-of-concept implementation of GLI-Split.

  6. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  7. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  8. A variable torque motor compatible with magnetic resonance imaging.

    Science.gov (United States)

    Roeck, W W; Ha, S-H; Farmaka, S; Nalcioglu, O

    2009-04-01

    High magnetic fields used in magnetic resonance imaging (MRI) do not allow the employment of conventional motors due to various incompatibility issues. This paper reports on a new motor that can operate in or near high field magnets used for MRI. The motor was designed to be operational with the MRI equipment and could be used in a rotating imaging gantry inside the magnet designed for dual modality imaging. Furthermore, it could also be used for image guided robotic interventional procedures inside a MRI system if so desired. The prototype motor was developed using magnetic resonance (MR) compatible materials, and its functionality with MR imaging was evaluated experimentally by measuring the performance of the motor and its effect on the MR image quality. Since in our application, namely, single photon emission tomography, the motor has to perform precise stepping of the gantry in small angular steps the most important parameter is the start-up torque. The experimental results showed that the motor has a start-up torque up to 1.37 Nm and rotates at 196 rpm when a constant voltage difference of 12 V is applied at a magnetic field strength of 1 T. The MR image quality was quantified by measuring the signal-to-noise of images acquired under different conditions. The results presented here indicate that the motor is MR compatible and could be used for rotating an imaging gantry or a surgical device inside the magnet.

  9. Wideband metasurface filter based on complementary split-ring resonators

    Science.gov (United States)

    Zhang, Tong; Zhang, Jiameng; Xu, Jianchun; Wang, Qingmin; Zhao, Ruochen; Liu, Hao; Dong, Guoyan; Hao, Yanan; Bi, Ke

    2017-08-01

    A wideband metasurface filter based on complementary split-ring resonators (CSRR) has been prepared. The frequency and transmission bandwidth of the metasurface filters with different split widths are discussed. After analyzing the mechanism of the metasurface, the proposed metasurface filters are fabricated. The electromagnetic properties of the metasurface are measured by a designed test system. The measured results are in good agreement with the simulated ones, which shows that the metasurface filter has a wideband property. As the split width of the CSRR increases, the frequency of the passband shifts to higher frequency regions and the transmission bandwidth decreases.

  10. [Influence of slot size on torque control].

    Science.gov (United States)

    Tian, Jun; Liu, Zhong-Hao; Zhang, Ding; Wu, Chuan-Jun

    2009-12-01

    To study the influence of two slot size brackets on torque control when teeth interacted in the same arch. After the upper arch was aligned and leveled in Typodont study, the inclinations of upper teeth 5 +/- 5 were measured when 0.457 2 mm x 0.635 0 mm OPA-K brackets and 0.558 8 mmx0.711 2 mm OPA-K brackets were filled with 0.431 8 mm x 0.635 0 mm stainless steel wire. This experiment was duplicated 10 times. The inclin of each tooth were transformed to the absolute values of the torque play angle psi by computing program, and paired-t test was used. The two kinds of slot size brackets were different with statistical significance on torque control. When the brackets were filled with 0.431 8 mm x 0.635 0 mm stainless steel wire, the absolute values of the angle psi in 0.558 8 mm x 0.711 2 mm and 0.457 2 mm x 0.635 0 mm slot size brackets were 6.140 degrees +/- 3.758 degrees and 2.608 degrees +/- 1.479 degrees respectively, and the average difference of that between the two slot size brackets was 3.532 degrees. The absolute values of the angle psi in the upper left and right canine brackets were 2.560 degrees +/- 2.605 degrees, 4.230 degrees +/- 2.817 degrees, 1.260 degrees +/- 0.747 degrees and 2.070 degrees +/- 0.663 degrees respectively, and average differences between them were smaller than that in the other teeth. There was difference between the two kinds of slot size brackets on torque control, and 0.457 2 mm x 0.635 0 mm slot size bracket controls torque better when filled with the same size wire. In this study, the teeth interaction in the same arch probably caused the result that the difference of two slot size brackets on torque control was less than the study results of the theory calculations and material studys before.

  11. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  12. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  13. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  14. Evaluation of force-torque displays for use with space station telerobotic activities

    Science.gov (United States)

    Hendrich, Robert C.; Bierschwale, John M.; Manahan, Meera K.; Stuart, Mark A.; Legendre, A. Jay

    1992-01-01

    Recent experiments which addressed Space Station remote manipulation tasks found that tactile force feedback (reflecting forces and torques encountered at the end-effector through the manipulator hand controller) does not improve performance significantly. Subjective response from astronaut and non-astronaut test subjects indicated that force information, provided visually, could be useful. No research exists which specifically investigates methods of presenting force-torque information visually. This experiment was designed to evaluate seven different visual force-torque displays which were found in an informal telephone survey. The displays were prototyped in the HyperCard programming environment. In a within-subjects experiment, 14 subjects nullified forces and torques presented statically, using response buttons located at the bottom of the screen. Dependent measures included questionnaire data, errors, and response time. Subjective data generally demonstrate that subjects rated variations of pseudo-perspective displays consistently better than bar graph and digital displays. Subjects commented that the bar graph and digital displays could be used, but were not compatible with using hand controllers. Quantitative data show similar trends to the subjective data, except that the bar graph and digital displays both provided good performance, perhaps do to the mapping of response buttons to display elements. Results indicate that for this set of displays, the pseudo-perspective displays generally represent a more intuitive format for presenting force-torque information.

  15. Direct pelletization in a rotary processor controlled by torque measurements. I. Influence of process variables.

    Science.gov (United States)

    Kristensen, J; Schaefer, T; Kleinebudde, P

    2000-01-01

    The aim of this study was to elucidate the feasibility of using torque measurement to control the end point of a wet pelletization process in a rotary processor at varying levels of friction plate rotation speed, air gap pressure difference, and batch size. A 1:1 mixture of lactose monohydrate (200 mesh) and microcrystalline cellulose (PH-101) was granulated into pellets in an instrumented laboratory scale rotary processor using water as aqueous binder liquid. A full factorial designed study was performed to investigate the influence of the friction plate rotation speed (600 and 1200 rpm), the air gap pressure difference (1 and 3 kPa), the torque increase (0.4 and 0.8 N.m) and the batch size (500 and 1000 g) on the pellet properties. All pellets produced were round and showed a narrow size distribution. The geometric mean diameter varied from 400 to 1900 microns with a good reproducibility. Increasing the batch size and the rotation speed led to smaller pellets, whereas a higher torque produced larger pellets. This study showed that the process can be controlled by means of the torque increase because it was possible to produce pellets of a reproducible size by stopping the liquid addition at a certain torque level.

  16. Sliding Mode Control for Bearingless Induction Motor Based on a Novel Load Torque Observer

    Directory of Open Access Journals (Sweden)

    Zebin Yang

    2016-01-01

    Full Text Available For the problem of low control performance of Bearingless Induction Motor (BIM control system in the presence of large load disturbance, a novel load torque sliding mode observer is proposed on the basis of establishing sliding mode speed control system. The load observer chooses the speed and load torque of the BIM control system as the observed objects, uses the speed error to design the integral sliding mode surface, and adds the low-pass filter to reduce the torque observation error. Meanwhile, the output of the load torque is used as the feedforward compensation for the control system, which can provide the required current for load changes and reduce the adverse influence of disturbance on system performance. Besides, considering that the load changes lead to the varying rotational inertia, the integral identification method is adopted to identify the rotational inertia of BIM, and the rotational inertia can be updated to the load observer in real time. The simulation and experiment results all show that the proposed method can track load torque accurately, improve the ability to resist disturbances, and ameliorate the operation quality of BIM control system. The chattering of sliding mode also is suppressed effectively.

  17. Spectral splitting for thermal management in photovoltaic cells

    Science.gov (United States)

    Apostoleris, Harry; Chiou, Yu-Cheng; Chiesa, Matteo; Almansouri, Ibraheem

    2017-09-01

    Spectral splitting is widely employed as a way to divide light between different solar cells or processes to optimize energy conversion. Well-understood but less explored is the use of spectrum splitting or filtering to combat solar cell heating. This has impacts both on cell performance and on the surrounding environment. In this manuscript we explore the design of spectral filtering systems that can improve the thermal and power-conversion performance of commercial PV modules.

  18. Variable frequency inverter for ac induction motors with torque, speed and braking control

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  19. The precision and torque production of common hip adductor squeeze tests used in elite football

    DEFF Research Database (Denmark)

    Light, N; Thorborg, K

    2016-01-01

    OBJECTIVES: Decreased hip adductor strength is a known risk factor for groin injury in footballers, with clinicians testing adductor strength in various positions and using different protocols. Understanding how reliable and how much torque different adductor squeeze tests produce will facilitate...... choosing the most appropriate method for future testing. In this study, the reliability and torque production of three common adductor squeeze tests were investigated. DESIGN: Test-retest reliability and cross-sectional comparison. METHODS: Twenty elite level footballers (16-33 years) without previous...

  20. Manipulation of spin transfer torque using light

    Science.gov (United States)

    Rontani, Massimo; Vendelbjerg, Karsten; Sham, Lu

    We show that the spin transfer torque induced by a spin-polarized current on a nanomagnet as the current flows through a semiconductor-nanomagnet-semiconductor junction is externally controlled by shining the junction off-resonantly with a strong laser beam. The excitonic coherence driven by the laser dresses the virtual electron-hole pairs coupling conduction and valence bands and inducing an evanescent state in the proximity of the nanomagnet. The Fano-like quantum interference between this localized state and the continuum spectrum is different in the two spin channels and hence it dramatically alters the spin transport, leading to the coherent control of the spin transfer torque. This work is supported by EU-FP7 Marie Curie Initial Training Network INDEX.

  1. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  2. Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics.

    Science.gov (United States)

    Noh, Yohan; Bimbo, Joao; Sareh, Sina; Wurdemann, Helge; Fraś, Jan; Chathuranga, Damith Suresh; Liu, Hongbin; Housden, James; Althoefer, Kaspar; Rhode, Kawal

    2016-11-17

    This paper presents a multi-axis force/torque sensor based on simply-supported beam and optoelectronic technology. The sensor's main advantages are: (1) Low power consumption; (2) low-level noise in comparison with conventional methods of force sensing (e.g., using strain gauges); (3) the ability to be embedded into different mechanical structures; (4) miniaturisation; (5) simple manufacture and customisation to fit a wide-range of robot systems; and (6) low-cost fabrication and assembly of sensor structure. For these reasons, the proposed multi-axis force/torque sensor can be used in a wide range of application areas including medical robotics, manufacturing, and areas involving human-robot interaction. This paper shows the application of our concept of a force/torque sensor to flexible continuum manipulators: A cylindrical MIS (Minimally Invasive Surgery) robot, and includes its design, fabrication, and evaluation tests.

  3. Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics

    Directory of Open Access Journals (Sweden)

    Yohan Noh

    2016-11-01

    Full Text Available This paper presents a multi-axis force/torque sensor based on simply-supported beam and optoelectronic technology. The sensor’s main advantages are: (1 Low power consumption; (2 low-level noise in comparison with conventional methods of force sensing (e.g., using strain gauges; (3 the ability to be embedded into different mechanical structures; (4 miniaturisation; (5 simple manufacture and customisation to fit a wide-range of robot systems; and (6 low-cost fabrication and assembly of sensor structure. For these reasons, the proposed multi-axis force/torque sensor can be used in a wide range of application areas including medical robotics, manufacturing, and areas involving human–robot interaction. This paper shows the application of our concept of a force/torque sensor to flexible continuum manipulators: A cylindrical MIS (Minimally Invasive Surgery robot, and includes its design, fabrication, and evaluation tests.

  4. Improved direct torque control for induction motor drives with rapid prototyping system

    International Nuclear Information System (INIS)

    Kennel, Ralph; El-kholy, Elwy E.; Mahmoud, Sabry; El-refaei, Abdou; Elkady, Farouk

    2006-01-01

    Direct torque control is an AC drives control method especially designed to provide fast and robust responses, but they usually behave like hysteresis controllers. Consequently, there are similar problems like non-constant switching frequencies and high torque ripple, especially when operation conditions result in low switching frequencies. In this paper, the basic concept of DTC will be improved by modifying the classical method. Problems that arise when using standard DTC methods are explained, and improvements are derived to overcome these problems. Two theoretical approaches are verified and compared with standard DTC by measurements and experiments. The proposed methods provide a constant switching frequency and solve the starting problem without dither signal. Further results are a reduction of torque pulsations as well as a new method for stator flux estimation. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented

  5. Improved direct torque control for induction motor drives with rapid prototyping system

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Ralph [Electrical Machines and Drives, Wuppertal University, D-42097 Wuppertal, Wuppertal (Germany); El-kholy, Elwy E. [Electrical Engineering Departement, Faculty of Engineering, Menoufiya University, Shebin El-kom (Egypt)]. E-mail: eelkholy@yahoo.com; Mahmoud, Sabry [Electrical Engineering Departement, Faculty of Engineering, Menoufiya University, Shebin El-kom (Egypt); El-refaei, Abdou [Electrical Technology Departement, Industrial College (IEC), Cairo (Egypt); Elkady, Farouk [Electrical Technology Departement, Industrial College (IEC), Cairo (Egypt)

    2006-08-15

    Direct torque control is an AC drives control method especially designed to provide fast and robust responses, but they usually behave like hysteresis controllers. Consequently, there are similar problems like non-constant switching frequencies and high torque ripple, especially when operation conditions result in low switching frequencies. In this paper, the basic concept of DTC will be improved by modifying the classical method. Problems that arise when using standard DTC methods are explained, and improvements are derived to overcome these problems. Two theoretical approaches are verified and compared with standard DTC by measurements and experiments. The proposed methods provide a constant switching frequency and solve the starting problem without dither signal. Further results are a reduction of torque pulsations as well as a new method for stator flux estimation. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented.

  6. Analysis and experimental evaluation of a Stewart platform-based force/torque sensor

    Science.gov (United States)

    Nguyen, Charles C.; Antrazi, Sami S.

    1992-01-01

    The kinematic analysis and experimentation of a force/torque sensor whose design is based on the mechanism of the Stewart Platform are discussed. Besides being used for measurement of forces/torques, the sensor also serves as a compliant platform which provides passive compliance during a robotic assembly task. It consists of two platforms, the upper compliant platform (UCP) and the lower compliant platform (LCP), coupled together through six spring-loaded pistons whose length variations are measured by six linear voltage differential transformers (LVDT) mounted along the pistons. Solutions to the forward and inverse kinematics of the force sensor are derived. Based on the known spring constant and the piston length changes, forces/torques applied to the LCP gripper are computed using vector algebra. Results of experiments conducted to evaluate the sensing capability of the force sensor are reported and discussed.

  7. An ironless armature brushless torque motor

    Science.gov (United States)

    Studer, P. A.

    1973-01-01

    A high torque motor with improved servo mechanism is reported. Armature windings are cast into an epoxy cylinder and armature conductors are integrally cast with an aluminum mounting ring which provides thermal conductance directly into the structure. This configuration eliminates magnetic hysteresis because there is no relative motion between the rotating magnetic field and any stationary iron. The absence of destabilization forces provides a fast electrical response compared with a typical torquer of conventional construction.

  8. Torque Control During Intrusion on Upper Central Incisor in Labial and Lingual bracket System - A 3D Finite Element Study.

    Science.gov (United States)

    Pol, Tejas R; Vandekar, Meghna; Patil, Anuradha; Desai, Sanjana; Shetty, Vikram; Hazarika, Saptarshi

    2018-01-01

    The aim of present study was to investigate the difference of torque control during intrusive force on upper central incisors with normal, under and high torque in lingual and labial orthodontic systems through 3D finite element analysis. Six 3D models of an upper right central incisor with different torque were designed in Solid Works 2006. Software ANSYS Version 16.0 was used to evaluate intrusive force on upper central incisor model . An intrusive force of 0.15 N was applied to the bracket slot in different torque models and the displacements along a path of nodes in the upper central incisor was assessed. On application of Intrusive force on under torqued upper central incisor in Labial system produce labial crown movement but in Lingual system caused lingual movement in the apical and incisal parts. The same intrusive force in normal-torqued central incisor led to a palatal movement in apical and labial displacement of incisal edge in Lingual system and a palatal displacement in apical area and a labial movement in the incisal edge in Labial systemin. In overtorqued upper central incisor, the labial crown displacement in Labial system is more than Lingual system. In labial and lingual system on application of the same forces in upper central incisor with different inclinations showed different responses. The magnitudes of torque Loss during intrusive loads in incisors with normal, under and over-torque were higher in Labial system than Lingual orthodontic appliances. Key words: FEM, lingual orthodontics, intrusion, torque control, labial bracket systems.

  9. 6 DOF Force and Torque Sensor for Micro-manipulation Applications

    NARCIS (Netherlands)

    Estevez, P.; Bank, J.; Porta, M.; Wei, J.; Sarro, P.M.; Tichem, M.; Staufer, U.

    2011-01-01

    This paper presents the design, fabrication and characterization of a piezoresistive 6 Degrees of Freedom (DOF) force and torque sensor to be used in micro-manipulation. The mechanical structure of the device consists of 7 suspended beams and a calibration structure, which can be replaced by

  10. Taping torque test for cutting fluid evaluation: test method and procedure

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    Tapping torque is a parameter closely connected to the lubricating effect of a cutting fluid. Tapping involves many small cutting edges in continuous contact with the work throughout the cut. The design of the tools and the nature of this operation shield the edges of the tool from the flow of th...

  11. Super-twisting sliding mode control of torque and flux in permanent magnet synchronous machine drives

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2013-01-01

    This paper investigates a permanent magnet synchronous motor drive controlled by a second-order variable structure control technique, known as the super-twisting sliding modes (STSM) control. The STSM controller is designed as a direct torque and flux controller and it works in the stator flux...

  12. Real time implementation of viable torque and flux controllers and torque ripple minimization algorithm for induction motor drive

    International Nuclear Information System (INIS)

    Vasudevan, M.; Arumugam, R.; Paramasivam, S.

    2006-01-01

    Field oriented control (FOC) and direct torque control (DTC) are becoming the industrial standards for induction motors torque and flux control. This paper aims to give a contribution for a detailed comparison between these two control techniques, emphasizing their advantages and disadvantages. The performance of these two control schemes is evaluated in terms of torque and flux ripple and their transient response to step variations of the torque command. Moreover, a new torque and flux ripple minimization technique is also proposed to improve the performance of the DTC drive. Based on the experimental results, the analysis has been presented

  13. Modelling the Load Torques of Electric Drive for Polymerization Process

    Directory of Open Access Journals (Sweden)

    Andrzej Popenda

    2007-01-01

    Full Text Available The problems of mathematical modelling the load torques on shaft of driving motor designed for applications in polymerization reactors are presented in the paper. The real load of polymerization drive is determined as a function of angular velocity. Mentioned function results from friction in roll-formed slide bearing as well as from friction of ethylene molecules with mixer arms in polymerization reactor chamber. Application of mathematical formulas concerning the centrifugal ventilator is proposed to describe the mixer in reactor chamber. The analytical formulas describing the real loads of polymerization drive are applied in mathematical modelling the power unit of polymerization reactor with specially designed induction motor. The numerical analysis of transient states was made on the basis of formulated mathematical model. Examples of transient responses and trajectories resulting from analysis are presented in the paper.

  14. In-orbit performance of the ITOS improved attitude control system with Hall generator brushless motor and earth-splitting technique

    Science.gov (United States)

    Peacock, W. M.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), launched ITOS-D with an improved attitude control system. A Hall generator brushless dc torque motor replaced the brush dc torque motor on Tiros-M and ITOS-A. Two CO2 attitude horizon sensors and one mirror replaced the four wideband horizon sensors and two mirrors on ITOS-1 and NOAA-1. Redundant pitch-control electronic boxes containing additional electronic circuitry for earth-splitting and brushless motor electronics were used. A method of generating a spacecraft earth-facing side reference for comparison to the time occurrence of the earth-splitting pulse was used to automatically correct pitch-attitude error. A single rotating flywheel, supported by a single bearing, provided gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminated the requirement for expendable propellants which would limit satellite life in orbit.

  15. Super-twisting sliding mode direct torque contol of induction machine drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Blaabjerg, Frede

    2014-01-01

    This paper presents a new super-twisting sliding modes direct torque and flux controller (STSM-DTC) for induction motor (IM) drives. The STSM is a second-order (type two) variable-structure control which operates without high-frequency chattering. The proposed STSM scheme is a torque and stator f......-DTC control, design and implementation details, and relevant experimental results for a sensorless IM drive. The scheme is compared to a second-order sliding mode controller and a linear PI controller. A robustness assessment against the PI controller is also included.......This paper presents a new super-twisting sliding modes direct torque and flux controller (STSM-DTC) for induction motor (IM) drives. The STSM is a second-order (type two) variable-structure control which operates without high-frequency chattering. The proposed STSM scheme is a torque and stator...... flux magnitude controller implemented in the stator flux reference frame, and it does not employ current controllers as in conventional vector control. This controller contains a design parameter that allows the designer to balance its operation between a linear PI-like behavior and a constant...

  16. Bevel gear driver and method having torque limit selection

    Science.gov (United States)

    Cook, Joseph S., Jr.

    1994-08-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  17. Splitting strings on integrable backgrounds

    International Nuclear Information System (INIS)

    Vicedo, Benoit

    2011-05-01

    We use integrability to construct the general classical splitting string solution on R x S 3 . Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet σ-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL 2 (C). (orig.)

  18. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  19. Direct Torque Control of Matrix Converter Fed Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    JAGADEESAN Karpagam

    2011-10-01

    Full Text Available This paper presents the Direct TorqueControl (DTC of induction motor drive using matrixconverters. DTC is a high performance motor controlscheme with fast torque and flux responses. However,the main disadvantage of conventional DTC iselectromagnetic torque ripple. In this paper, directtorque control for Induction Motors using MatrixConverters is analysed and points out the problem ofthe electromagnetic torque ripple which is one of themost important drawbacks of the Direct TorqueControl. Besides, the matrix converter is a single-stageac-ac power conversion device without dc-link energystorage elements. Matrix converter (MC may becomea good alternative to voltage-source inverter (VSI.This work combines the advantages of the matrixconverter with those of the DTC technique, generatingthe required voltage vectors under unity input powerfactor operation. Simulation results demonstrates theeffectiveness of the torque control.

  20. Motor Torque Calculations For Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Saurabh Chauhan

    2015-08-01

    Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.

  1. Torque capability improvement of sensorless FOC induction machine in field weakening for propulsion purposes

    Directory of Open Access Journals (Sweden)

    Nisha G.K.

    2017-05-01

    Full Text Available An electric propulsion system is generally based on torque controlled electric drive and DC series motors are traditionally used for propulsion system. Induction machines, which are reliable, low cost and have less maintenance, satisfy the characteristics of the propulsion and reinstating the DC series motor. Field oriented control (FOC of induction machines can decouple its torque control from field control which allows the induction motor to act like a separately excited DC motor. In this paper, the characteristic control of induction motor is achieved through appropriate design modification of induction motor by varying magnetizing current to produce maximum torque in field weakening (FW region. Thus to improve the torque capability of induction machine in FW region by varying machine parameters. The sensorless operation of the induction motor is carried out by adopting model reference adaptive system (MRAS using sliding mode control (SMC and a FW algorithm based on the voltage and current constraints. The simulation of the induction motor drive models based on the design options have been carried out and analyzed the simulation results.

  2. Efficiency improvement and torque ripple minimization of Switched Reluctance Motor using FEM and Seeker Optimization Algorithm

    International Nuclear Information System (INIS)

    Navardi, Mohammad Javad; Babaghorbani, Behnaz; Ketabi, Abbas

    2014-01-01

    Highlights: • This paper proposes a new method to optimize a Switched Reluctance Motor (SRM). • A combination of SOA and GA with Finite Element Method (FEM) analysis is employed to solve the SRM design optimization. • The results show that optimized SRM obtains higher average torque and higher efficiency. - Abstract: In this paper, performance optimization of Switched Reluctance Motor (SRM) was determined using Seeker Optimization Algorithm (SOA). The most efficient aim of the algorithm was found for maximum torque value at a minimum mass of the entire construction, following changing the geometric parameters. The optimization process was carried out using a combination of Seeker Optimization Algorithm and Finite Element Method (FEM). Fitness value was calculated by FEM analysis using COMSOL3.4, and the SOA was realized by MATLAB. The proposed method has been applied for a case study and it has been also compared with Genetic Algorithm (GA). The results show that the optimized motor using SOA had higher torque value and efficiency with lower mass and torque ripple, exhibiting the validity of this methodology for SRM design

  3. Muscle torque preservation and physical activity in individuals with stroke.

    Science.gov (United States)

    Eng, Janice J; Lomaglio, Melanie J; Macintyre, Donna L

    2009-07-01

    A greater percent loss of concentric versus eccentric muscle torque (i.e., relative eccentric muscle torque preservation) has been reported in the paretic limb of individuals with stroke and has been attributed to hypertonia and/or cocontractions. Stroke provides a unique condition for examining mechanisms underlying eccentric muscle preservation because both limbs experience similar amounts of general physical activity, but the paretic side is impaired directly by the brain lesion. The purpose of this study was to determine 1) whether eccentric preservation also exists in the nonparetic limb and 2) the relationship of eccentric or concentric torque preservation with physical activity in stroke. We hypothesized that the nonparetic muscles would demonstrate eccentric muscle preservation, which would suggest that nonneural mechanisms may also contribute to its relative preservation. Eighteen patients who had stroke and 18 healthy control subjects (age- and sex-matched) completed a physical activity questionnaire. Maximum voluntary concentric and eccentric joint torques of the ankle, knee, and hip flexors and extensors were measured using an isokinetic dynamometer at 30 degrees x s(-1) for the paretic and nonparetic muscles. Relative concentric and eccentric peak torque preservations were expressed as a percentage of control subject torque. Relative eccentric torque was higher (more preserved) than relative concentric torque for paretic and nonparetic muscles. Physical activity correlated with paretic (r = 0.640, P = 0.001) and nonparetic concentric torque preservation (r = 0.508, P = 0.009) but not with eccentric torque preservation for either leg. The relative preservation of eccentric torque in the nonparetic muscles suggest a role of nonneural mechanisms and could also explain the preservation observed in other chronic health conditions. Loss of concentric, but not eccentric, muscle torque was related to physical inactivity in stroke.

  4. Performance Analysis and Simulation of a Novel Brushless Double Rotor Machine for Power-Split HEV Applications

    Directory of Open Access Journals (Sweden)

    Jingang Bai

    2012-01-01

    Full Text Available A new type of brushless double rotor machine (BDRM is proposed in this paper. The BDRM is an important component in compound-structure permanent-magnet synchronous machine (CS-PMSM systems, which are promising for power-split hybrid electric vehicle (HEV applications. The BDRM can realize the speed adjustment between claw-pole rotor and permanent-magnet rotor without brushes and slip rings. The structural characteristics of the BDRM are described and its magnetic circuit model is built. Reactance parameters of the BDRM are deduced by an analytical method. It is found that the size characteristics of the BDRM are different from those of conventional machines. The new sizing and torque equations are analyzed and the theoretical results are used in the optimization process. Studies of the analytical magnetic circuit and finite element method (FEM model show that the BDRM tends to have high leakage flux and low power factor, and then the method to obtain high power factor is discussed. Furthermore, a practical methodology of the BDRM design is developed, which includes an analytical tool, 2D field calculation and performance evaluation by 3D field calculation. Finally, different topologies of the BDRM are compared and an optimum prototype is designed.

  5. Lane Departure Avoidance Control for Electric Vehicle Using Torque Allocation

    Directory of Open Access Journals (Sweden)

    Yiwan Wu

    2018-01-01

    Full Text Available This paper focuses on the lane departure avoidance system for a four in-wheel motors’ drive electric vehicle, aiming at preventing lane departure under dangerous driving conditions. The control architecture for the lane departure avoidance system is hierarchical. In the upper controller, the desired yaw rate was calculated with the consideration of vehicle-lane deviation, vehicle dynamic, and the limitation of road adhesion. In the middle controller, a sliding mode controller (SMC was designed to control the additional yaw moment. In the lower layer, the yaw moment was produced by the optimal distribution of driving/braking torque between four wheels. Lane departure avoidance was carried out by tracking desired yaw response. Simulations were performed to study the effectiveness of the control algorithm in Carsim®/Simulink® cosimulation. Simulation results show that the proposed methods can effectively confine the vehicle in lane and prevent lane departure accidents.

  6. A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Hyein Lim

    2013-01-01

    Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.

  7. Efficacy of kinesio taping on isokinetic quadriceps torque in knee osteoarthritis: a double blinded randomized controlled study.

    Science.gov (United States)

    Anandkumar, Sudarshan; Sudarshan, Shobhalakshmi; Nagpal, Pratima

    2014-08-01

    Double blind pre-test post-test control group design. To compare the isokinetic quadriceps torque, standardized stair-climbing task (SSCT) and pain during SSCT between subjects diagnosed with knee osteoarthritis pre and post kinesio tape (KT) application with and without tension. Strength of the quadriceps and torque producing capability is frequently found to be compromised in knee osteoarthritis. The efficacy of KT in improving isokinetic quadriceps torque in knee osteoarthritis is unknown, forming the basis for this study. Forty subjects were randomly allocated to either the experimental (therapeutic KT with tension) or control group (sham KT without tension) with the allocation being concealed. Pre and post test measurements of isokinetic quadriceps torque, SSCT and pain during SSCT were carried out by a blinded assessor. A large effect size with significant improvements in the peak quadriceps torque (concentric and eccentric at angular velocities of 90° per second and 120° per second), SSCT and pain were obtained in the experimental group when compared to the control group. Application of therapeutic KT is effective in improving isokinetic quadriceps torque, SSCT and reducing pain in knee osteoarthritis.

  8. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W ...

  9. VBSCan Split 2017 Workshop Summary

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Christoph Falk; et al.

    2018-01-12

    This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.

  10. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    journal of. November 2006 physics pp. 793–802. Split supersymmetry in brane models. IGNATIOS ANTONIADIS∗. Department of Physics, CERN-Theory Division, 1211 Geneva 23, Switzerland. E-mail: Ignatios. ... that LEP data favor the unification of the three SM gauge couplings are smoking guns for the presence of new ...

  11. Water splitting by cooperative catalysis

    NARCIS (Netherlands)

    Hetterscheid, D.G.H.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.

    2009-01-01

    A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced

  12. On split Lie triple systems

    Indian Academy of Sciences (India)

    Lie triple system; system of roots; root space; split Lie algebra; structure theory. 1. Introduction and previous definitions. Throughout this paper, Lie triple systems T are considered of arbitrary dimension and over an arbitrary field K. It is worth to mention that, unless otherwise stated, there is not any restriction on dim Tα or {k ...

  13. On split Lie triple systems

    Indian Academy of Sciences (India)

    The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems. Author Affiliations. Antonio J Calderón Martín1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 25 January 2008. Proceedings – Mathematical Sciences.

  14. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  15. Spin-orbit torques in magnetic bilayers

    Science.gov (United States)

    Haney, Paul

    2015-03-01

    Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.

  16. Recálculo de motores asincrónicos trifásicos controlando el par de arranque y la temperatura; Re-design of three phase asynchronos motors controllig the starts torque up and the temperature

    Directory of Open Access Journals (Sweden)

    Héctor Brito Socarrás

    2011-02-01

    Full Text Available Los motores asincrónicos son los más empleados en la industria, debido a su robustez, sencillez y fácilmantenimiento.Ocasionalmente sufren averías, producto de lo cual al repararlos, se cambian los parámetrosde diseño. Si se dispone de todos los datos originales es tarea sencilla su reparación, de lo contrario, sinseguir una metodología determinada con basamentos en el diseño de las máquinas eléctricas, se lograsu reparación, pero sin conocer con exactitud los nuevos indicadores energéticos de dicha máquina. Apartir de una metodología que permite realizar el recálculo del motor para diferentes niveles de conocimientosde los datos de estos, así como el recálculo de dicha máquina cuando se desee cambiar velocidad,voltaje  y(o  frecuencia de operación, cálculos engorrosos y  que requieren de conocimientos de diseñode  máquinas  eléctricas,  se  elaboró  un  software  de  computación  en  Matlab,  incorporándole  a  estametodología el control de aumento de temperatura y momento de arranque del motor recalculado.  The asynchronous motors are those more employee in the industry, due to their robustness, simplicityand easy maintenance. Occasionally they suffer mishaps, product of that which you/they are changedwhen repairing them the design parameters. If we have all the original data it is simple task their repair,otherwise, without following a certain methodology with basements in the design of the electric machines,their repair is achieved, but without knowing with accuracy the new energy indicators of this machine.Basing us on a methodology that allows to carry out the re-design of the motor for different levels ofknowledge of the data of these, as well as the re-design of this machine when it is wanted to changespeed, voltage y(o operation frequency, calculations that are annoying and they require of knowledge ofdesign of electric machines, a calculation software was elaborated in Matlab, to this

  17. Split-plot Experiments with Unusual Numbers of Subplot Runs

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2007-01-01

    In many experimental situations, it may not be feasible or even possible to run experiments in a completely randomized fashion as usually recommended. Under these circumstances, split-plot experiments in which certain factors are changed less frequently than the others are often used. Most...... of the literature on split-plot designs is based on 2-level factorials. For those designs, the number of subplots is a power of 2. There may however be some situations where for cost purposes or physical constraints, we may need to have unusual number of subplots such as 3, 5, 6, etc. In this article, we explore...

  18. Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization

    International Nuclear Information System (INIS)

    Park, Jungsoo; Song, Soonho; Lee, Kyo Seung

    2015-01-01

    Highlights: • Model-based control of dual-loop EGR system is performed. • EGR split index is developed to provide non-dimensional index for optimization. • EGR rates are calibrated using EGR split index at specific operating conditions. • Multi-objective Pareto optimization is performed to minimize NO X and BSFC. • Optimum split strategies are suggested with LP-rich dual-loop EGR at high load. - Abstract: A proposed dual-loop exhaust-gas recirculation (EGR) system that combines the features of high-pressure (HP) and low-pressure (LP) systems is considered a key technology for improving the combustion behavior of diesel engines. The fraction of HP and LP flows, known as the EGR split, for a given dual-loop EGR rate play an important role in determining the engine performance and emission characteristics. Therefore, identifying the proper EGR split is important for the engine optimization and calibration processes, which affect the EGR response and deNO X efficiencies. The objective of this research was to develop a dual-loop EGR split strategy using numerical analysis and one-dimensional (1D) cycle simulation. A control system was modeled by coupling the 1D cycle simulation and the control logic. An EGR split index was developed to investigate the HP/LP split effects on the engine performance and emissions. Using the model-based control system, a multi-objective Pareto (MOP) analysis was used to minimize the NO X formation and fuel consumption through optimized engine operating parameters. The MOP analysis was performed using a response surface model extracted from Latin hypercube sampling as a fractional factorial design of experiment. By using an LP rich dual-loop EGR, a high EGR rate was attained at low, medium, and high engine speeds, increasing the applicable load ranges compared to base conditions

  19. Computer Aided Modeling and Analysis of Five-Phase PMBLDC Motor Drive for Low Power High Torque Application

    Directory of Open Access Journals (Sweden)

    M. A. Inayathullaah

    2014-01-01

    Full Text Available In order to achieve high torque at low power with high efficiency, a new five-phase permanent magnet brushless DC (PMBLDC motor design was analyzed and optimized. A similar three-phase motor having the same D/L ratio (inner diameter (D and length of the stator (L is compared for maximum torque and torque ripple of the designed five-phase PMBLDC motor. Maxwell software was used to build finite element simulation model of the motor. The internal complicated magnetic field distribution and dynamic performance simulation were obtained in different positions. No load and load characteristics of the five-phase PMBLDC motor were simulated, and the power consumption of materials was computed. The conformity of the final simulation results indicates that this method can be used to provide a theoretical basis for further optimal design of this new type of motor with its drive so as to improve the starting torque and reduce torque ripple of the motor.

  20. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Houbing, E-mail: hbhuang@ustb.edu.cn; Zhao, Congpeng; Ma, Xingqiao, E-mail: xqma@sas.ustb.edu.cn

    2017-03-15

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  1. Durability investigation on torque control of a magneto-rheological brake: experimental work

    Science.gov (United States)

    Kim, Wan Ho; Park, Jhin Ha; Kim, Gi-Woo; Shin, Cheol Soo; Choi, Seung-Bok

    2017-03-01

    This study experimentally investigates the torque control durability of a disc brake featuring a magneto-rheological (MR) fluid. An appropriate size of MR disc brake is designed based on a mathematical model, and a prototype is manufactured. A small-scale laboratory-scale test bed is then developed using a DC motor, in-line torque sensor, and the MR brake. S45C and S20C steels are inserted into a tapered hole on the surface of the brake disc. After 105 cycles of operation in shear mode, the wear properties of the MR brake are characterized by average surface roughness measurements, scanning electron microscope images, and energy dispersive x-ray spectra. The torque control performances before and after the operation cycles are examined using open-loop control and closed-loop proportional-integral-derivative control. As expected, the control performance degraded after 105 cycles of operation in the open-loop case, but not in the closed-loop case. This aspect is demonstrated by the sinusoidal torque-tacking control performance before and after the operation cycles.

  2. Active Speed Compensation Method of Direct Torque Control System and Stability Analysis

    Directory of Open Access Journals (Sweden)

    Rui Li

    2015-02-01

    Full Text Available By analyzing characteristics of the DTC (direct torque control system in electrical driving system, a shortcoming of the classical DTC method is to point out that it is unable to decouple the mutual interference between torque and speed, so that when a running asynchronous motor subjected to an instantaneous impact load, rotor speed and its deviation appears excessive fluctuations that can not be quickly restored to the initial set value. In this research, under conditions that without sensors for measuring load torque and rotor speed, to an electrical drive systems contains DTC devices, a novel ASCC (active speed compensation control method is proposed based on ADRC (active disturbance rejection control theory, on account of DTC model of asynchronous motor, a multiobjective observer is designed to regulate both the speed and the torque, and a proof of asymptotic stability that related this new control systems with the observer is made by theoretical deduction. Finally stimulating results show that this method can overcome the shortcomings of classical DTC system and greatly enhance the ability of the high-speed driving system to deal with unexpected impact loads.

  3. Tracking control of time-varying knee exoskeleton disturbed by interaction torque.

    Science.gov (United States)

    Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang

    2017-11-01

    Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Rabi splitting in an acoustic cavity embedded plate

    International Nuclear Information System (INIS)

    Ni, Xu; Liu, Xiao-Ping; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We design a structure to realize Rabi splitting and Rabi oscillation in acoustics. We develop rigorous analytical models to analyze the splitting effect from the aspect of phase matching, and from the aspect of mode coupling using a coupled mode model. In this model, we discover that the splitting effect is caused by the coupling of the Fabry–Perot fundamental mode with the resonant mode of an artificial acoustic ‘atom’. We then extract the coupling strength and analyze the impact of structural parameters on it. In addition, we demonstrate Rabi oscillation in the time domain. Such quantum phenomena in the classical regime may have potential applications in the design of novel ultrasonic devices.

  5. Effect of stiffness and movement speed on selected dynamic torque characteristics of hydraulic-actuation joystick controls for heavy vehicles.

    Science.gov (United States)

    Oliver, Michele; Rogers, Robert; Rickards, Jeremy; Tingley, Maureen; Biden, Edmund

    2006-02-22

    The purpose of this work was to quantify the effects of joystick stiffness and movement speed on the dynamic torque characteristics of hydraulic-actuation joystick controls, as found in off-road vehicles, as one of the initial steps towards the development of a joystick design protocol. Using a previously developed mathematical model in which a hydraulic-actuation joystick is assumed to rotate about two axes where the rotation origin is a universal joint, the dynamic torque characteristics incurred by an operator were predicted. Utilizing a laboratory mock-up of an excavator cab environment, three actuation torque characteristics (peak torque, angular impulse and deceleration at the hard endpoint) were quantified for nine unskilled joystick operators during the use of a commonly used North American hydraulic-actuation joystick. The six different experimental conditions included combinations of three joystick stiffnesses and two movement speeds. The highest instantaneous input torque over the course of the joystick movement (not including the hard endpoint) was evaluated using the peak torque value. Angular impulse provided an indication of the sustained exposure to force. The third indicator, deceleration at the hard endpoint, was included to provide a description of impact loading on the hand as the joystick came to a sudden stop. The most important result of this work is that the dynamic torque characteristics incurred during hydraulic-actuation joystick use are substantial. While the peak torque values were not very different between the fast and slow motion conditions, the high decelerations even for slow movements observed at maximum excursion of the joystick indicate that the dynamics do matter. On the basis of deceleration at the hard endpoint and peak torque, the joystick movements that require the highest values for a combination of torque variables are the side-to-side ones. This suggests that less stiff balance and return springs should be considered for

  6. Smooth torque speed characteristic of switched reluctance motors

    DEFF Research Database (Denmark)

    Zeng, Hui; Chen, Zhe; Chen, Hao

    2014-01-01

    The torque ripple of switched reluctance motors (SRMs) is the main disadvantage that limits the industrial application of these motors. Although several methods for smooth-toque operation (STO) have been proposed, STO works well only within a certain torque and speed range because...

  7. Improvement of Torque Production in Single-Phase Induction Motors ...

    African Journals Online (AJOL)

    Existing single phase induction motors exhibit low starting torque. Moreover, during accelerating time and at steady state, they produce a significant level of torque pulsations which gives rise to noise and vibration in the machine. As part of efforts to mitigate these problems, a performance improvement strategy using a PWM ...

  8. Direct torque control with feedback linearization for induction motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2015-01-01

    This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude...

  9. Improvement of Torque Production in Single-Phase Induction Motors

    African Journals Online (AJOL)

    OLUWASOGO

    PID controller. Simulation results show the starting torque of the motor increased by 75% under the developed drive scheme. In addition, torque pulsations reduced from 1.4 Nm peak-peak to 0.14 Nm peak-peak at steady state. It was observed that the accelerating time reduced by 30% compared to the accelerating time ...

  10. Improving the performance of hysteresis direct torque control of ...

    Indian Academy of Sciences (India)

    Many other researchers used filter topologies to improve waveform in PMSM. Sozer et al. (2000) have presented an ... In this study, a new filter topology is proposed to reduce torque ripples and voltage harmonic noises in IPMSM with direct torque .... The IPMSM is star-connected with earth return. The motor parameters are ...

  11. 14 CFR 27.397 - Limit pilot forces and torques.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit pilot forces and torques. 27.397... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows: (1) For foot controls, 130 pounds. (2) For stick controls...

  12. 14 CFR 29.397 - Limit pilot forces and torques.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit pilot forces and torques. 29.397... System Loads § 29.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows: (1) For foot controls, 130 pounds. (2) For stick controls...

  13. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.

    2016-03-11

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  14. Coorbital thermal torques on low-mass protoplanets

    Science.gov (United States)

    Masset, Frédéric S.

    2017-12-01

    Using linear perturbation theory, we investigate the torque exerted on a low-mass planet embedded in a gaseous protoplanetary disc with finite thermal diffusivity. When the planet does not release energy into the ambient disc, the main effect of thermal diffusion is the softening of the enthalpy peak near the planet, which results in the appearance of two cold and dense lobes on either side of the orbit, of size smaller than the thickness of the disc. The lobes exert torques of opposite sign on the planet, each comparable in magnitude to the one-sided Lindblad torque. When the planet is offset from corotation, the lobes are asymmetric and the planet experiences a net torque, the 'cold' thermal torque, which has a magnitude that depends on the relative value of the distance to corotation to the size of the lobes ˜√{χ /Ω _p}, χ being the thermal diffusivity and Ωp the orbital frequency. We believe that this effect corresponds to the phenomenon named 'cold finger' recently reported in numerical simulations, and we argue that it constitutes the dominant mode of migration of sub-Earth-mass objects. When the planet is luminous, the heat released into the ambient disc results in an additional disturbance that takes the form of hot, low-density lobes. They give a torque, named heating torque in previous work, that has an expression similar, but of opposite sign, to the cold thermal torque.

  15. Muscle synergy control model-tuned EMG driven torque estimation system with a musculo-skeletal model.

    Science.gov (United States)

    Min, Kyuengbo; Shin, Duk; Lee, Jongho; Kakei, Shinji

    2013-01-01

    Muscle activity is the final signal for motion control from the brain. Based on this biological characteristic, Electromyogram (EMG) signals have been applied to various systems that interface human with external environments such as external devices. In order to use EMG signals as input control signal for this kind of system, the current EMG driven torque estimation models generally employ the mathematical model that estimates the nonlinear transformation function between the input signal and the output torque. However, these models need to estimate too many parameters and this process cause its estimation versatility in various conditions to be poor. Moreover, as these models are designed to estimate the joint torque, the input EMG signals are tuned out of consideration for the physiological synergetic contributions of multiple muscles for motion control. To overcome these problems of the current models, we proposed a new tuning model based on the synergy control mechanism between multiple muscles in the cortico-spinal tract. With this synergetic tuning model, the estimated contribution of multiple muscles for the motion control is applied to tune the EMG signals. Thus, this cortico-spinal control mechanism-based process improves the precision of torque estimation. This system is basically a forward dynamics model that transforms EMG signals into the joint torque. It should be emphasized that this forward dynamics model uses a musculo-skeletal model as a constraint. The musculo-skeletal model is designed with precise musculo-skeletal data, such as origins and insertions of individual muscles or maximum muscle force. Compared with the mathematical model, the proposed model can be a versatile model for the torque estimation in the various conditions and estimates the torque with improved accuracy. In this paper, we also show some preliminary experimental results for the discussion about the proposed model.

  16. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  17. Stability of split Stirling refrigerators

    International Nuclear Information System (INIS)

    Waele, A T A M de; Liang, W

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold finger are connected by a flexible tube. The displacer in the cold head is suspended by a spring. Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility of spontaneous mechanical oscillations if a large temperature gradient develops in the cold finger, e.g. during or after cool down. These oscillations would be superimposed on the pressure oscillations of the compressor and could ruin the cooler performance.

  18. Manipulating spin transfer torque with light

    Science.gov (United States)

    Vendelbjerg, Karsten Leding; Rontani, Massimo

    2017-08-01

    We study the spin transfer torque (STT) induced onto a nanomagnet as a spin-polarized current flows through a junction made of the magnet sandwiched between two semiconductors. This junction is one-dimensional and highly idealized, the thin magnetic layer being mimicked by a spin-dependent contact force. We show that the STT may be externally controlled by shining the junction at sub-bandgap frequency with an intense laser beam. The excitonic coherence driven by the laser dresses the virtual electron-hole pairs coupling conduction and valence bands and inducing evanescent waves at the junction interface. The Fano-like quantum interference between these localized states and the continuum spectrum, being different in the two spin channels, significantly affects the STT.

  19. Active element influence on the motor’s torque

    Directory of Open Access Journals (Sweden)

    Dolgih Antonina

    2017-01-01

    Full Text Available The paper presents the numerical and experimental studies of the influence of the torque motor active element on the motor’s torque. The tape active element is a novel type of a motor’s stator organization, where the conventional winding is replaced by a tape winding. The force (torque dependence over the rotor pole position using COMSOL is given; the tape winding resistance and the turns number are defined. The relative motor’s characteristics are investigated and the maximum torque over the certain poles pair number is obtained. The application of the proposed active element in brushless DC motor is considered. The results show the possibility of the further synthesis of the torque motor.

  20. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    Science.gov (United States)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  1. Magnon-mediated Dzyaloshinskii-Moriya torque in homogeneous ferromagnets

    KAUST Repository

    Manchon, Aurelien

    2014-12-01

    In thin magnetic layers with structural inversion asymmetry and spin-orbit coupling, the Dzyaloshinskii-Moriya interaction arises at the interface. When a spin-wave current jm flows in a system with a homogeneous magnetization m, this interaction produces an effective fieldlike torque of the form TFLm×(z×jm) as well as a dampinglike torque, TDLm×[(z×jm)×m], the latter only in the presence of spin-wave relaxation (z is normal to the interface). These torques mediated by the magnon flow can reorient the time-averaged magnetization direction and display a number of similarities with the torques arising from the electron flow in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling. This magnon-mediated spin-orbit torque can be efficient in the case of magnons driven by a thermal gradient.

  2. Spin-wave-induced spin torque in Rashba ferromagnets

    Science.gov (United States)

    Umetsu, Nobuyuki; Miura, Daisuke; Sakuma, Akimasa

    2015-05-01

    We study the effects of Rashba spin-orbit coupling on the spin torque induced by spin waves, which are the plane-wave dynamics of magnetization. The spin torque is derived from linear-response theory, and we calculate the dynamic spin torque by considering the impurity-ladder-sum vertex corrections. This dynamic spin torque is divided into three terms: a damping term, a distortion term, and a correction term for the equation of motion. The distorting torque describes a phenomenon unique to the Rashba spin-orbit coupling system, where the distorted motion of magnetization precession is subjected to the anisotropic force from the Rashba coupling. The oscillation mode of the precession exhibits an elliptical trajectory, and the ellipticity depends on the strength of the nesting effects, which could be reduced by decreasing the electron lifetime.

  3. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2015-01-01

    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  4. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...

  5. Comparison of different passive knee extension torque-angle assessments

    International Nuclear Information System (INIS)

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-01-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m −2 ; tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome. (paper)

  6. Tacón de torque. Análisis tensional y deformacional utilizando el Método de Elementos Finitos. // Torque heel: Tensional and deformational analysis using the Finite Elements Method.

    Directory of Open Access Journals (Sweden)

    R. A. González Carbonell

    2007-05-01

    Full Text Available En este trabajo se aborda la problemática del tratamiento en menores que presentan torsión tibial y la necesidad de undispositivo ortopédico para su corrección. En particular, se presentan los elementos necesarios para el diseño de un tacón detorque. Se estudiaron los fenómenos no lineales presentes en el diseño mecánico de piezas que no cumplen con la ley deHooke, específicamente para materiales hiperelásticos. El modelo de las cargas que actúan sobre el tacón de torque fuedefinido teniendo en cuenta la acción dinámica de las cargas producto de la marcha. Para realizar los cálculos de tensionesy visualizar las deformaciones durante su funcionamiento se utilizó el Método de los Elementos Finitos. Finalmente con losresultados obtenidos fue propuesto un diseño del tacón de torque.Palabras claves: Torsión tibial, dispositivo ortopédico, elastómeros, elementos finitos, tensión, diseñomecánico, análisis no lineal.______________________________________________________________________________Abstract:In this work a problem of treatment of the internal tibial torsion and the necessity of an orthopedic device werestudied. The needed knowledge for design the torque heel was mentioned. The study of non lineal phenomena inmechanical design of elastomers was carried out. The load model of the torque heels was defined taken into accountthe action of dynamic loads. The Stress and Strain of the torque heel were obtained using the Finite Elements Method.Finally, the results were analyzed and the definitive design of the torque heel was obtained.Key words: Tibial torsion, orthopedic device, elastomers, finite elements, stress, mechanic design, nonlinear analysis.

  7. In Vitro Measurement Of Insertion Torque, Removal Torque And Resonance Frequency Analysis Of Implants Placed Into Simulated Bony Defects

    Science.gov (United States)

    2014-05-14

    in predicting dental implant osseointegration and long-term success. Measurements of insertion torque, removal torque, and resonance frequency...gain faster osseointegration (Gustavo, Kelly 2009). Osseointegration A dental implant is regarded as osseointegrated when there is no...was completed by Perez in 2007 that evaluated the time evolution of the osseointegration process for a dental implant with regards to time and

  8. Experimental determination of optimal clamping torque for AB-PEM Fuel cell

    Directory of Open Access Journals (Sweden)

    Noor Ul Hassan

    2016-04-01

    Full Text Available Polymer electrolyte Membrane (PEM fuel cell is an electrochemical device producing electricity by the reaction of hydrogen and oxygen without combustion. PEM fuel cell stack is provided with an appropriate clamping torque to prevent leakage of reactant gases and to minimize the contact resistance between gas diffusion media (GDL and bipolar plates. GDL porous structure and gas permeability is directly affected by the compaction pressure which, consequently, drastically change the fuel cell performance. Various efforts were made to determine the optimal compaction pressure and pressure distributions through simulations and experimentation. Lower compaction pressure results in increase of contact resistance and also chances of leakage. On the other hand, higher compaction pressure decreases the contact resistance but also narrows down the diffusion path for mass transfer from gas channels to the catalyst layers, consequently, lowering cell performance. The optimal cell performance is related to the gasket thickness and compression pressure on GDL. Every stack has a unique assembly pressure due to differences in fuel cell components material and stack design. Therefore, there is still need to determine the optimal torque value for getting the optimal cell performance. This study has been carried out in continuation of deve­lopment of Air breathing PEM fuel cell for small Unmanned Aerial Vehicle (UAV application. Compaction pressure at minimum contact resistance was determined and clamping torque value was calcu­la­ted accordingly. Single cell performance tests were performed at five different clamping torque values i.e 0.5, 1.0, 1.5, 2.0 and 2.5 N m, for achieving optimal cell per­formance. Clamping pressure distribution tests were also performed at these torque values to verify uniform pressure distribution at optimal torque value. Experimental and theoretical results were compared for making inferences about optimal cell perfor­man­ce. A

  9. Frictional Torque Reduction in Taylor-Couette Flows with Riblet-Textured Rotors

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth

    2017-11-01

    Inspired by the riblets on the denticles of fast swimming shark species, periodic surface microtextures of different shapes have been studied under laminar and turbulent flow conditions to understand their drag reduction mechanism and to offer guides for designing optimized low-friction bio-inspired surfaces. Various reports over the past four decades have suggested that riblet surfaces can reduce the frictional drag force in high Reynolds number laminar and turbulent flow regimes. Here, we investigate the effect of streamwise riblets on torque reduction in steady flow between concentric cylinders, known as Taylor-Couette Flow. Using 3D printed riblet-textured rotors and a custom-built Taylor-Couette cell which can be mounted on a rheometer we measure the torque on the inner rotor as a function of three different dimensionless parameters; the Reynolds number of the flow, the sharpness of the riblets, and the size of the riblets with respect to the scale of the Taylor-Couette cell. Our experimental results in the laminar viscous flow regime show a reduction in torque up to 10% over a wide range of Reynolds numbers, that is a non-monotonic function of the aspect ratio and independent of Re. However, after transition to the Taylor vortex regime, the modification in torque becomes a function of the Reynolds number, while remaining a non-monotonic function of the aspect ratio. Using finite volume modelling of the geometry we discuss the changes in the Taylor-Couette flow in presence of the riblets compared to the case of smooth rotors and the resulting torque reduction as a function of the parameter space defined above.

  10. Semitransparent anisotropic and spin Hall magnetoresistance sensor enabled by spin-orbit torque biasing

    Science.gov (United States)

    Yang, Yumeng; Xu, Yanjun; Xie, Hang; Xu, Baoxi; Wu, Yihong

    2017-07-01

    We demonstrate an ultrathin and semitransparent anisotropic and spin Hall magnetoresistance sensor based on NiFe/Pt heterostructures. The use of a spin-orbit torque effective field for transverse biasing allows us to reduce the total thickness of the sensors down to 3-4 nm, thereby leading to the semitransparency. Despite the extremely simple design, the spin-orbit torque effective field biased NiFe/Pt sensor exhibits levels of linearity and sensitivity comparable to those of sensors using more complex linearization schemes. In a proof-of-concept design using a full Wheatstone bridge comprising four sensing elements, we obtained a sensitivity up to 202.9 mΩ Oe-1, a linearity error below 5%, and a detection limit down to 20 nT. The transmittance of the sensor is over 50% in the visible range.

  11. Improvement of Torque Response and Examination of Sensorless Drive System Based on Direct Torque Control for IPMSM

    Science.gov (United States)

    Inoue, Yukinori; Morimoto, Shigeo; Sanada, Masayuki

    This paper examines the sensorless control system based on the direct torque control (DTC) for an interior permanent magnet synchronous motor (IPMSM). In the DTC system, the rotor position is not required, and the rotor speed is estimated from the estimated position of stator flux-linkage vector. In addition, the maximum torque per ampere (MTPA) control and the flux weakening (FW) control can be applied to the DTC as well as the current control method in the d-q reference frame. Therefore the DTC can operate over a wide speed range. The characteristic of the maximum power operation is shown by the experimental result. The torque response is investigated by the simulation and experimental results. A relationship between the controller gain and torque response is shown, and an improvement method of the torque response is proposed.

  12. Parametric Design Optimization Of A Novel Permanent Magnet Coupling Using Finite Element Analysis

    DEFF Research Database (Denmark)

    Högberg, Stig; Mijatovic, Nenad; Holbøll, Joachim

    2014-01-01

    A parametric design optimization routine has been applied to a novel magnetic coupling with improved recyclability. Coupling designs are modeled in a 3-D finite element environ- ment, and evaluated by three design objectives: pull-out torque, torque density by magnet mass, and torque density by t...

  13. Interaction torque contributes to planar reaching at slow speed

    Directory of Open Access Journals (Sweden)

    Hoshi Fumihiko

    2008-10-01

    Full Text Available Abstract Background How the central nervous system (CNS organizes the joint dynamics for multi-joint movement is a complex problem, because of the passive interaction among segmental movements. Previous studies have demonstrated that the CNS predictively compensates for interaction torque (INT which is arising from the movement of the adjacent joints. However, most of these studies have mainly examined quick movements, presumably because the current belief is that the effects of INT are not significant at slow speeds. The functional contribution of INT for multijoint movements performed in various speeds is still unclear. The purpose of this study was to examine the contribution of INT to a planer reaching in a wide range of motion speeds for healthy subjects. Methods Subjects performed reaching movements toward five targets under three different speed conditions. Joint position data were recorded using a 3-D motion analysis device (50 Hz. Torque components, muscle torque (MUS, interaction torque (INT, gravity torque (G, and net torque (NET were calculated by solving the dynamic equations for the shoulder and elbow. NET at a joint which produces the joint kinematics will be an algebraic sum of torque components; NET = MUS - G - INT. Dynamic muscle torque (DMUS = MUS-G was also calculated. Contributions of INT impulse and DMUS impulse to NET impulse were examined. Results The relative contribution of INT to NET was not dependent on speed for both joints at every target. INT was additive (same direction to DMUS at the shoulder joint, while in the elbow DMUS counteracted (opposed to INT. The trajectory of reach was linear and two-joint movements were coordinated with a specific combination at each target, regardless of motion speed. However, DMUS at the elbow was opposed to the direction of elbow movement, and its magnitude varied from trial to trial in order to compensate for the variability of INT. Conclusion Interaction torque was important at

  14. Temperature dependence of spin-orbit torques in Cu-Au alloys

    KAUST Repository

    Wen, Yan

    2017-03-07

    We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  15. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.

    1998-01-01

    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  16. New Splitting Criteria for Decision Trees in Stationary Data Streams.

    Science.gov (United States)

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek

    2017-05-10

    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type-$I$ splitting criteria guarantee, with high probability, the highest expected value of split measure. Type-$II$ criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  17. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    Science.gov (United States)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  18. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Directory of Open Access Journals (Sweden)

    Liu Chunbao

    2016-01-01

    Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  19. Evaluation of a series hybird thrust bearing at DN values to three million. 1: Analysis and design

    Science.gov (United States)

    Gu, A.; Eusepi, M.; Winn, L. W.

    1974-01-01

    The analysis and design are presented of a hybrid bearing consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid film bearing fitting an envelope with an outer radius of 86.4 mm (3.4 in.) and an inner radius of 71 mm (2.8 in.). The bearing analysis, combined with available torque data on ball bearings, indicates that an effective speed split between the ball and fluid-film bearings of 50 percent may be expected during operation at 20,000 rpm and under an axial load of 17,800 newtons (4000 lbs.). This speed split can result in a ten-fold increase in the life of the ball bearing when compared to a simple ball bearing system operating under similar conditions.

  20. Electrode position markedly affects knee torque in tetanic, stimulated contractions.

    Science.gov (United States)

    Vieira, Taian M; Potenza, Paolo; Gastaldi, Laura; Botter, Alberto

    2016-02-01

    The purpose of this study was to investigate how much the distance between stimulation electrodes affects the knee extension torque in tetanic, electrically elicited contractions. Current pulses of progressively larger amplitude, from 0 mA to maximally tolerated intensities, were delivered at 20 pps to the vastus medialis, rectus femoris and vastus lateralis muscles of ten, healthy male subjects. Four inter-electrode distances were tested: 32.5% (L1), 45.0% (L2), 57.5% (L3) and 70% (L4) of the distance between the patella apex and the anterior superior iliac spine. The maximal knee extension torque and the current leading to the maximal torque were measured and compared between electrode configurations. The maximal current tolerated by each participant ranged from 60 to 100 mA and did not depend on the inter-electrode distance. The maximal knee extension torque elicited did not differ between L3 and L4 (P = 0.15) but, for both conditions, knee torque was significantly greater than for L1 and L2 (P torque elicited for L3 and L4 was two to three times greater than that obtained for L1 and L2. The current leading to maximal torque was not as sensitive to inter-electrode distance. Except for L1 current intensity did not change with electrode configuration (P > 0.16). Key results presented here revealed that for a given stimulation intensity, knee extension torque increased dramatically with the distance between electrodes. The distance between electrodes seems therefore to critically affect knee torque, with potential implication for optimising exercise protocols based on electrical stimulation.

  1. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    Science.gov (United States)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  2. Parallel BLAST on split databases.

    Science.gov (United States)

    Mathog, David R

    2003-09-22

    BLAST programs often run on large SMP machines where multiple threads can work simultaneously and there is enough memory to cache the databases between program runs. A group of programs is described which allows comparable performance to be achieved with a Beowulf configuration in which no node has enough memory to cache a database but the cluster as an aggregate does. To achieve this result, databases are split into equal sized pieces and stored locally on each node. Each query is run on all nodes in parallel and the resultant BLAST output files from all nodes merged to yield the final output. Source code is available from ftp://saf.bio.caltech.edu/

  3. Accurate torque-speed performance prediction for brushless dc motors

    Science.gov (United States)

    Gipper, Patrick D.

    Desirable characteristics of the brushless dc motor (BLDCM) have resulted in their application for electrohydrostatic (EH) and electromechanical (EM) actuation systems. But to effectively apply the BLDCM requires accurate prediction of performance. The minimum necessary performance characteristics are motor torque versus speed, peak and average supply current and efficiency. BLDCM nonlinear simulation software specifically adapted for torque-speed prediction is presented. The capability of the software to quickly and accurately predict performance has been verified on fractional to integral HP motor sizes, and is presented. Additionally, the capability of torque-speed prediction with commutation angle advance is demonstrated.

  4. Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices

    KAUST Repository

    Akosa, Collins Ashu

    2017-03-01

    We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.

  5. Torque Modeling and Control of a Variable Compression Engine

    OpenAIRE

    Bergström, Andreas

    2003-01-01

    The SAAB variable compression engine is a new engine concept that enables the fuel consumption to be radically cut by varying the compression ratio. A challenge with this new engine concept is that the compression ratio has a direct influence on the output torque, which means that a change in compression ratio also leads to a change in the torque. A torque change may be felt as a jerk in the movement of the car, and this is an undesirable effect since the driver has no control over the compre...

  6. Torque converter transient characteristics prediction using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaguchi, T; Tanaka, K

    2012-01-01

    The objective of this research is to investigate the transient torque converter performance used in an automobile. A new technique in computational fluid dynamics is introduced, which includes the inertia of the turbine in a three dimensional simulation of the torque converter during a launch condition. The simulation results are compared to experimental test data with good agreement across the range of data. In addition, the simulated flow structure inside the torque converter is visualized and compared to results from a steady-state calculation.

  7. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  8. Electrically Elicited Muscle Torque: Comparison Between 2500-Hz Burst-Modulated Alternating Current and Monophasic Pulsed Current.

    Science.gov (United States)

    Scott, Wayne; Adams, Cheryl; Cyr, Shantelle; Hanscom, Brianna; Hill, Kevin; Lawson, Jeffrey; Ziegenbein, Colin

    2015-12-01

    Single-blind, block-randomization crossover design. To compare the knee extensor muscle torque production elicited with 2500-Hz burst-modulated alternating current (BMAC) and with a monophasic pulsed current (MPC) at the maximum tolerated stimulation intensity. Neuromuscular electrical stimulation (NMES) is often used for strengthening the quadriceps following knee surgery. Strength gains are dependent on muscle torque production, which is primarily limited by discomfort. Burst-modulated alternating current stimulation is a clinically popular waveform for NMES. Prior research has established that MPC with a relatively long pulse duration is effective for high muscle torque production. Participants in this study were 20 adults with no history of knee injury. A crossover design was used to randomize the order in which each participant's dominant or nondominant lower extremity received NMES and the waveform (MPC or BMAC) this limb received. Stimulation intensity was incrementally increased until participants reached their maximum tolerance. The torque produced was converted to a percentage of each participant's maximum volitional isometric contraction of the respective limb. A general linear model for a 2-treatment, 2-period crossover design was utilized to analyze the results. The mean ± SD electrically induced percent maximum volitional isometric contraction at maximal participant tolerance was 49.5% ± 19.6% for MPC and 29.8% ± 12.4% for BMAC. This difference was statistically significant (P = .002) after accounting for treatment order and limb, which had no effect on torque production. Neuromuscular stimulation using MPC may be more efficacious than using BMAC to achieve a high torque output in patients with quadriceps weakness.

  9. Soft controller switching technique to minimize the torque and current pulsations of a SCIM during its reswitching

    International Nuclear Information System (INIS)

    Larik, A.S.

    2010-01-01

    The direct-on-line starting of induction motor draws heavy current and to limit this Inrush current to a safe level normally a star-delta switch is used. However, the switching over from star to delta causes over current transients and this leads to torque pulsations. Therefore, in this paper the current and torque pulsations developed during the switching process are focused and a soft-switched controller is devised to minimize the re-closure transient currents and torque pulsations during star-delta switching of induction motor. The designed system can readily handles the sensing of favorable conditions of re closure of a switched-off running induction motor and it minimizes the inrush current and hence the pulsations of torque of all types of induction motors, whether, single-phase or three phase. An investigation is made into the transient currents and pulsation torques generated due to opening the circuit of a running induction motor and the switching pattern of star-delta switching. The re-switching control scheme for the induction motor is practically tested in the laboratory with and without soft controller. (author)

  10. Molecular concepts of water splitting. Nature's approach

    International Nuclear Information System (INIS)

    Cox, Nicholas; Lubitz, Wolfgang

    2013-01-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  11. PREFACE: The Science of Making Torque from Wind 2014 (TORQUE 2014)

    Science.gov (United States)

    Mann, Jakob; Bak, Christian; Bechmann, Andreas; Bingöl, Ferhat; Dellwik, Ebba; Dimitrov, Nikolay; Giebel, Gregor; Hansen, Martin O. L.; Jensen, Dorte Juul; Larsen, Gunner; Aagaard Madsen, Helge; Natarajan, Anand; Rathmann, Ole; Sathe, Ameya; Nørkær Sørensen, Jens; Nørkær Sørensen, Niels

    2014-06-01

    The 186 papers in this volume constitute the proceedings of the fifth Science of Making Torque from Wind conference, which is organized by the European Academy of Wind Energy (EAWE, www.eawe.eu). The conference, also called Torque 2014, is held at the Technical University of Denmark (DTU) 17-20 June 2014. The EAWE conference series started in 2004 in Delft, the Netherlands. In 2007 it was held in Copenhagen, in 2010 in Heraklion, Greece, and then in 2012 in Oldenburg, Germany. The global yearly production of electrical energy by wind turbines has grown approximately by 25% annually over the last couple of decades and covers now 2-3% of the global electrical power consumption. In order to make a significant impact on one of the large challenges of our time, namely global warming, the growth has to continue for a decade or two yet. This in turn requires research and education in wind turbine aerodynamics and wind resources, the two topics which are the main subjects of this conference. Similar to the growth in electrical power production by wind is the growth in scientific papers about wind energy. Over the last decade the number of papers has also grown by about 25% annually, and many research based companies all over the world are founded. Hence, the wind energy research community is rapidly expanding and the Torque conference series offers a good opportunity to meet and exchange ideas. We hope that the Torque 2014 will heighten the quality of the wind energy research, while the participants will enjoy each others company in Copenhagen. Many people have been involved in producing the Torque 2014 proceedings. The work by more than two hundred reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of sixteen ''section editors'' all from DTU Wind Energy: Christian Bak, Andreas Bechmann, Ferhat Bingöl, Ebba Dellwik, Nikolay Dimitrov, Gregor Giebel, Martin

  12. Simulation-Driven Development and Optimization of a High-Performance Six-Dimensional Wrist Force/Torque Sensor

    Directory of Open Access Journals (Sweden)

    Qiaokang LIANG

    2010-05-01

    Full Text Available This paper describes the Simulation-Driven Development and Optimization (SDDO of a six-dimensional force/torque sensor with high performance. By the implementation of the SDDO, the developed sensor possesses high performance such as high sensitivity, linearity, stiffness and repeatability simultaneously, which is hard for tranditional force/torque sensor. Integrated approach provided by software ANSYS was used to streamline and speed up the process chain and thereby to deliver results significantly faster than traditional approaches. The result of calibration experiment possesses some impressive characters, therefore the developed fore/torque sensor can be usefully used in industry and the methods of design can also be used to develop industrial product.

  13. An improved torque density Modulated Pole Machine for low speed high torque applications

    DEFF Research Database (Denmark)

    Washington, J. G.; Atkinson, G. J.; Baker, N. J.

    2012-01-01

    This paper presents a new topology for three-phase Modulated Pole Machines. This new topology the “Combined Phase Modulated Pole Machine” is analysed and compared to the more traditional technology of three separate single phase units stacked axially with a separation between phases. Three......- dimensional Finite Element calculations are used to compare performance of the machines under the same conditions, it is shown that the new Combined Phase topology produces a greater torque whilst reducing the number of components required to assemble the machine and increasing its mechanical integrity....

  14. Motor Integrated Permanent Magnet Gear with a Wide Torque-Speed Range

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Matzen, Torben N.; Jahns, T. M.

    2009-01-01

    This paper present a new motor integrated permanent magnet gear with a wide torque-speed range. In the paper a 35 kW permanent magnet motor with a base speed of 4000 rpm and a top speed of 14000 rpm is integrated into a permanent magnetic gear with a gearing ratio of 8.67. The design process...... of the combined unit is described together with a description of the construction of the part for a test model. The unit is unique in the sense that it has superior traction characteristics and a torque density of 130 Nm/l which is more 1.5 times of other reported motor integrated permanent magnet gears. The unit...

  15. Motor Integrated Permanent Magnet Gear with a Wide Torque-Speed Range

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Matzen, Torben N.; Jahns, T. M.

    2009-01-01

    This paper present a new motor integrated permanent magnet gear with a wide torque-speed range. In the paper a 35 kW permanent magnet motor with a base speed of 4000 rpm and a top speed of 14000 rpm is integrated into a permanent magnetic gear with a gearing ratio of 8.67. The design process...... of the combined unit is described together with a description of the construction of the part for a test model. The unit is unique in the sense that it has superior traction characteristics and a torque density of 130 Nm/l which is more 1.5 times of other reported motor integrated permanent magnet gears. The unit...... may be useful as a direct drive wheel motor for EV's and no liquid cooling system is required....

  16. Improved ITOS attitude control system with Hall generator brushless motor and earth-splitting technique

    Science.gov (United States)

    Peacock, W. M.

    1971-01-01

    The ITOS with an improved attitude control system is described. A Hall generator brushless dc torque motor will replace the brush dc torque motor on ITOS-I and ITOS-A (NOAA-1). The four attitude horizon sensors will be replaced with two CO2 sensors for better horizon definition. An earth horizon splitting technique will be used to keep the earth facing side of the satellite toward earth even if the desired circular orbit is not achieved. The external appearance of the pitch control subsystem differs from TIROS-M (ITOS-1) and ITOS-A (NOAA-1) in that two instead of one pitch control electronics (PCE) boxes are used. Two instead of four horizon sensors will be used and one instead of two mirrors will be used for sensor scanning. The brushless motor will eliminate the requirement for brushes, strain gages and the telemetry for the brush wear. A single rotating flywheel, supported by a single bearing provides the gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminates the requirement for expendable propellants which would limit satellite life in orbit.

  17. Torque Control of Friction Stir Welding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC and Vanderbilt University propose the innovation of torque control of friction stir welding (FSW) as a replacement to force control of...

  18. High Torque, Direct Drive Electric Motor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to advance the development of an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such...

  19. High Torque, Direct Drive Electric Motor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to develop an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such devices. Fundamentally,...

  20. Effects of cavitation on performance of automotive torque converter

    Directory of Open Access Journals (Sweden)

    Jaewon Ju

    2016-06-01

    Full Text Available Cavitation is a phenomenon whereby vapor bubbles of a flowing liquid are formed in a local region where the pressure of the liquid is below its vapor pressure. It is well known that cavitation in torque converters occurs frequently when a car with an automatic transmission makes an abrupt start. Cavitation is closely related to a performance drop and noise generation at a specific operating condition in a car and a torque converter itself. This study addressed the relation between cavitation and performance in an automotive torque converter in a quantitative and qualitative manner using numerical simulations. The cavitation was calculated at various operating conditions using a commercial flow solver with the homogeneous cavitation model, and the torque converter performance was compared with the experimental data. Numerical results well match to the data and indicate that the cavitation causes significant performance drop, as the pump speed increases or both speed ratio and reference pressure decrease.

  1. Spin-Orbit Torques in Co/Pd Multilayer Nanowires

    KAUST Repository

    Jamali, Mahdi

    2013-12-09

    Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (fieldlike) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 and 5 kOe at 108  A/cm2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (∼1  nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.

  2. Intraband and interband spin-orbit torques in noncentrosymmetric ferromagnets

    KAUST Repository

    Li, Hang

    2015-04-01

    Intraband and interband contributions to the current-driven spin-orbit torque in magnetic materials lacking inversion symmetry are theoretically studied using the Kubo formula. In addition to the current-driven fieldlike torque TFL=τFLm×uso (uso being a unit vector determined by the symmetry of the spin-orbit coupling), we explore the intrinsic contribution arising from impurity-independent interband transitions and producing an anti-damping-like torque of the form TDL=τDLm×(uso×m). Analytical expressions are obtained in the model case of a magnetic Rashba two-dimensional electron gas, while numerical calculations have been performed on a dilute magnetic semiconductor (Ga,Mn)As modeled by the Kohn-Luttinger Hamiltonian exchange coupled to the Mn moments. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described.

  3. Vector control structure of an asynchronous motor at maximum torque

    Science.gov (United States)

    Chioncel, C. P.; Tirian, G. O.; Gillich, N.; Raduca, E.

    2016-02-01

    Vector control methods offer the possibility to gain high performance, being widely used. Certain applications require an optimum control in limit operating conditions, as, at maximum torque, that is not always satisfied. The paper presents how the voltage and the frequency for an asynchronous machine (ASM) operating at variable speed are determinate, with an accent on the method that keeps the rotor flux constant. The simulation analyses consider three load types: variable torque and speed, variable torque and constant speed, constant torque and variable speed. The final values of frequency and voltage are obtained through the proposed control schemes with one controller using the simulation language based on the Maple module. The dynamic analysis of the system is done for the case with P and PI controller and allows conclusions on the proposed method, which can have different applications, as the ASM in wind turbines.

  4. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitu...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution.......This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude...

  5. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    Science.gov (United States)

    Fonseca, Carlos Roberto; Coutinho, Renato M; Azevedo, Franciane; Berbert, Juliana M; Corso, Gilberto; Kraenkel, Roberto A

    2013-01-01

    Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  6. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Fonseca

    Full Text Available Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  7. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)

    2015-08-15

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  8. Heat Control via Torque Control in Friction Stir Welding

    Science.gov (United States)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  9. Simulation of Brushless DC Motor using Direct Torque Control

    OpenAIRE

    Mrs.G. Kusuma; S. Rukhsana Begum

    2014-01-01

    This paper deals with modelling of three phases brushless dc motor with MATLAB/SIMULINK software BLDC motor have advantages according to brushless dc motor and induction motor’s. They have improve speed torque charactistics, high efficiency high transient response and small size. It approaches for reducing the torque ripples of BLDC motor using DTC, by using control technique’s ,but present work mainly concentrate on advanced method. The whole drive system is simulated based o...

  10. Does the 'torque test' measure cerebral dominance in adults?

    Science.gov (United States)

    Demarest, J; Demarest, L

    1980-02-01

    The direction of drawing a circle, labeled the 'torque test' (Blau, 1977), was evaluated in 74 normal adults (age 14 to 44 yr.) as a predictor of both handedness and cerebral dominance on the dichotic listening test. The results indicate that torque is related to handedness but not to lateralization of language. We suggest that circle-drawing by adults is dependent more on the muscle mechanics of the hand than on cerebral dominance.

  11. KNEE ISOKINETIC TORQUE IMBALANCE IN FEMALE FUTSAL PLAYERS

    OpenAIRE

    Rodrigues, Ana Carolina de Mello Alves; Vieira, Nathália Arnosti; Marche, Ana Lorena; Santana, Juliana Exel; Vaz, Marco Aurélio; Cunha, Sergio Augusto

    2017-01-01

    ABSTRACT Introduction: The specificity of sports training can lead to muscle specialization with a possible change in the natural hamstring/quadriceps torque ratio (HQ ratio), constituting a risk factor for muscle injury at the joint angles in which muscle imbalance may impair dynamic stability. Objective: The aim was to evaluate the torque distribution of the hamstrings and quadriceps and the HQ ratio throughout the range of motion in order to identify possible muscle imbalances at the kne...

  12. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques

    Science.gov (United States)

    Büttner, Felix; Lemesh, Ivan; Schneider, Michael; Pfau, Bastian; Günther, Christian M.; Hessing, Piet; Geilhufe, Jan; Caretta, Lucas; Engel, Dieter; Krüger, Benjamin; Viefhaus, Jens; Eisebitt, Stefan; Beach, Geoffrey S. D.

    2017-11-01

    Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.

  13. Testing PVLAS axions with resonant photon splitting

    CERN Document Server

    Gabrielli, E; Gabrielli, Emidio; Giovannini, Massimo

    2007-01-01

    The photon splitting gamma -> gamma gamma in a time-independent and inhomogeneous magnetized background is considered when neutral and ultralight spin-0 particles are coupled to two-photons. Depending on the inhomogeneity scale of the external field, resonant photon splitting can occur. If an optical laser crosses a magnetic field of few Tesla with typical inhomogeneity scale of the order of the meter, a potentially observable rate of photon splittings is expected for the PVLAS range of couplings and masses.

  14. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  15. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  16. Reflex and Non-Reflex Torque Responses to Stretch of the Human Knee Extensors

    National Research Council Canada - National Science Library

    Mrachacz-Kersting, N

    2001-01-01

    .... The quadriceps muscles were stretched at various background torques, produced either voluntarily or electrically and thus the purely reflex-mediated torque could be calculated. The contribution of the reflex mediated stiffness initially low, increased with increasing background torques for the range of torques investigated.

  17. Instantaneous flywheel torque of IC engine grey-box identification

    Science.gov (United States)

    Milašinović, A.; Knežević, D.; Milovanović, Z.; Škundrić, J.

    2018-01-01

    In this paper a mathematical model developed for the identification of excitation torque acting on the IC engine flywheel is presented. The excitation torque gained through internal combustion of the fuel in the IC engine is transmitted from the flywheel to the transmission. The torque is not constant but variable and is a function of the crank angle. The verification of the mathematical model was done on a 4-cylinder 4-stroke diesel engine for which the in-cylinder pressure was measured in one cylinder and the instantaneous angular speed of the crankshaft at its free end. The research was conducted on a hydraulic engine brake. Inertial forces of all rotational parts, from flywheel to the turbine wheel of the engine brake, are acting on the flywheel due to the nonuniform motion of the flywheel. It is known from the theory of turbomachinery that the torque on the hydraulic brake is a quadratic function of angular speed. Due to that and the variable angular speed of the turbine wheel of the engine brake, the torque during one engine cycle is also variable. The motivation for this research was the idea (intention) to determine the instantaneous torque acting on the flywheel as a function of the crank angle with a mathematical model without any measuring and based on this to determine the quality of work of specific cylinders of the multi-cylinder engine. The crankshaft was considered elastic and also its torsional vibrations were taken into account.

  18. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung

    2015-04-06

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  19. Input torque sensitivity to uncertain parameters in biped robot

    Science.gov (United States)

    Ding, Chang-Tao; Yang, Shi-Xi; Gan, Chun-Biao

    2013-06-01

    Input torque is themain power to maintain bipedal walking of robot, and can be calculated from trajectory planning and dynamic modeling on biped robot. During bipedal walking, the input torque is usually required to be adjusted due to some uncertain parameters arising from objective or subjective factors in the dynamical model to maintain the pre-planned stable trajectory. Here, a planar 5-link biped robot is used as an illustrating example to investigate the effects of uncertain parameters on the input torques. Kinematic equations of the biped robot are firstly established by the third-order spline curves based on the trajectory planning method, and the dynamic modeling is accomplished by taking both the certain and uncertain parameters into account. Next, several evaluation indices on input torques are introduced to perform sensitivity analysis of the input torque with respect to the uncertain parameters. Finally, based on the Monte Carlo simulation, the values of evaluation indices on input torques are presented, from which all the robot parameters are classified into three categories, i.e., strongly sensitive, sensitive and almost insensitive parameters.

  20. Nonlocal Gilbert damping tensor within the torque-torque correlation model

    Science.gov (United States)

    Thonig, Danny; Kvashnin, Yaroslav; Eriksson, Olle; Pereiro, Manuel

    2018-01-01

    An essential property of magnetic devices is the relaxation rate in magnetic switching, which depends strongly on the damping in the magnetization dynamics. It was recently measured that damping depends on the magnetic texture and, consequently, is a nonlocal quantity. The damping enters the Landau-Lifshitz-Gilbert equation as the phenomenological Gilbert damping parameter α , which does not, in a straightforward formulation, account for nonlocality. Efforts were spent recently to obtain Gilbert damping from first principles for magnons of wave vector q . However, to the best of our knowledge, there is no report about real-space nonlocal Gilbert damping αi j. Here, a torque-torque correlation model based on a tight-binding approach is applied to the bulk elemental itinerant magnets and it predicts significant off-site Gilbert damping contributions, which could be also negative. Supported by atomistic magnetization dynamics simulations, we reveal the importance of the nonlocal Gilbert damping in atomistic magnetization dynamics. This study gives a deeper understanding of the dynamics of the magnetic moments and dissipation processes in real magnetic materials. Ways of manipulating nonlocal damping are explored, either by temperature, materials doping, or strain.

  1. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Accurate measurement of microscopic forces and torques using optical tweezers

    Directory of Open Access Journals (Sweden)

    Andrew Forbes

    2011-09-01

    Full Text Available It is now well known that matter may be trapped by optical fields with high intensity gradients. Once trapped, it is then possible to manipulate microscopic particles using such optical fields, in so-called optical tweezers. Such optical trapping and tweezing systems have found widespread application across diverse fields in science, from applied biology to fundamental physics. In this article we outline the design and construction of an optical trapping and tweezing system, and show how the resulting interaction of the laser light with microscopic particles may be understood in terms of the transfer of linear and angular momentum of light. We demonstrate experimentally the use of our optical tweezing configuration for the measurement of microscopic forces and torques. In particular, we make use of digital holography to create so-called vortex laser beams, capable of transferring orbital angular momentum to particles. The use of such novel laser beams in an optical trapping and tweezing set-up allows for the control of biological species at the single-cell level.

  3. Dark matter from split seesaw

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-01-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  4. Emittance compensation in split photoinjectors

    Directory of Open Access Journals (Sweden)

    Klaus Floettmann

    2017-01-01

    Full Text Available The compensation of correlated emittance contributions is of primary importance to optimize the performance of high brightness photoinjectors. While only extended numerical simulations can capture the complex beam dynamics of space-charge-dominated beams in sufficient detail to optimize a specific injector layout, simplified models are required to gain a deeper understanding of the involved dynamics, to guide the optimization procedure, and to interpret experimental results. In this paper, a slice envelope model for the emittance compensation process in a split photoinjector is presented. The emittance term is included in the analytical solution of the beam envelope in a drift, which is essential to take the emittance contribution due to a beam size mismatch into account. The appearance of two emittance minima in the drift is explained, and the matching into the booster cavity is discussed. A comparison with simulation results points out effects which are not treated in the envelope model, such as overfocusing and field nonlinearities.

  5. Gauge mediated mini-split

    Science.gov (United States)

    Cohen, Timothy; Craig, Nathaniel; Knapen, Simon

    2016-03-01

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ- b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 105 to 108 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  6. Minimal Doubling and Point Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.

    2010-06-14

    Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.

  7. Gauge mediated mini-split

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-03-15

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  8. Recent Progress in Metal‐Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting

    Science.gov (United States)

    Wang, Wei; Xu, Xiaomin; Zhou, Wei

    2017-01-01

    The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal‐organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra‐large surface‐to‐volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF‐based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF‐based catalysts for water splitting are proposed. PMID:28435777

  9. Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting.

    Science.gov (United States)

    Wang, Wei; Xu, Xiaomin; Zhou, Wei; Shao, Zongping

    2017-04-01

    The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal-organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra-large surface-to-volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF-based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF-based catalysts for water splitting are proposed.

  10. Loss of knee extensor torque complexity during fatiguing isometric muscle contractions occurs exclusively above the critical torque.

    Science.gov (United States)

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2016-06-01

    The complexity of knee extensor torque time series decreases during fatiguing isometric muscle contractions. We hypothesized that because of peripheral fatigue, this loss of torque complexity would occur exclusively during contractions above the critical torque (CT). Nine healthy participants performed isometric knee extension exercise (6 s of contraction, 4 s of rest) on six occasions for 30 min or to task failure, whichever occurred sooner. Four trials were performed above CT (trials S1-S4, S1 being the lowest intensity), and two were performed below CT (at 50% and 90% of CT). Global, central, and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. The complexity of torque output was determined using approximate entropy (ApEn) and the detrended fluctuation analysis-α scaling exponent (DFA-α). The MVC torque was reduced in trials below CT [by 19 ± 4% (means ± SE) in 90%CT], but complexity did not decrease [ApEn for 90%CT: from 0.82 ± 0.03 to 0.75 ± 0.06, 95% paired-samples confidence intervals (CIs), 95% CI = -0.23, 0.10; DFA-α from 1.36 ± 0.01 to 1.32 ± 0.03, 95% CI -0.12, 0.04]. Above CT, substantial reductions in MVC torque occurred (of 49 ± 8% in S1), and torque complexity was reduced (ApEn for S1: from 0.67 ± 0.06 to 0.14 ± 0.01, 95% CI = -0.72, -0.33; DFA-α from 1.38 ± 0.03 to 1.58 ± 0.01, 95% CI 0.12, 0.29). Thus, in these experiments, the fatigue-induced loss of torque complexity occurred exclusively during contractions performed above the CT. Copyright © 2016 the American Physiological Society.

  11. Application of Space Vector Modulation in Direct Torque Control of PMSM

    Directory of Open Access Journals (Sweden)

    Michal Malek

    2008-01-01

    Full Text Available The paper deals with an improvement of direct torque control method for permanent magnet synchronous motor drives. Electrical torque distortion of the machine under original direct torque control is relatively high and if proper measures are taken it can be substantially decreased. The proposed solution here is to combine direct torque control with the space vector modulation technique. Such approach can eliminate torque distortion while preserving the simplicity of the original method.

  12. Advanced single tooth torquing plier with high precision: A clinical innovation

    Directory of Open Access Journals (Sweden)

    Jitendra Raghuwanshi

    2017-01-01

    Full Text Available Torque is the force which gives the operator control over the movements of roots of teeth in bilateral direction. There are various pliers available to apply torque in individual tooth, but none of the pliers are capable of measuring accurately the degrees of torque incorporated, so we have attempted to make a modified torquing plier to incorporate and measure the degrees of incorporated torque precisely.

  13. SplitDist—Calculating Split-Distances for Sets of Trees

    DEFF Research Database (Denmark)

    Mailund, T

    2004-01-01

    We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....

  14. Split Active Asteroid P/2016 J1 (PANSTARRS)

    Science.gov (United States)

    Hui, Man-To; Jewitt, David; Du, Xinnan

    2017-10-01

    We present a photometric and astrometric study of the split active asteroid P/2016 J1 (PANSTARRS). Separation occurred either in 2012 May to June, or 2010 April, with a separation speed Vsep = 0.70 ± 0.02 m s-1 for the former scenario and 0.83 ± 0.06 m s-1 for the latter. The two fragments (hereafter J1-A and J1-B) have similar, Sun-like colors that are comparable to the colors of primitive C- and G-type asteroids. With a nominal comet-like albedo, pR = 0.04, the effective, dust-contaminated cross sections are estimated to be 2.4 km2 (J1-A) and 0.5 km2 (J1-B). We estimate that the nucleus radii lie in the range 140 ice became exposed at the surface, perhaps via a minor impact, and that sublimation torques then rapidly drove the body to breakup. Further disintegration events are anticipated owing to the rotational instability. Reference: Hui, M.-T., Jewitt, D. and Du, X., 2017. AJ, 153(4), p.141.

  15. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Luc, E-mail: luc.thomas@headway.com; Jan, Guenole; Zhu, Jian; Liu, Huanlong; Lee, Yuan-Jen; Le, Son; Tong, Ru-Ying; Pi, Keyu; Wang, Yu-Jen; Shen, Dongna; He, Renren; Haq, Jesmin; Teng, Jeffrey; Lam, Vinh; Huang, Kenlin; Zhong, Tom; Torng, Terry; Wang, Po-Kang [TDK-Headway Technologies, Inc., Milpitas, California 95035 (United States)

    2014-05-07

    Magnetic random access memories based on the spin transfer torque phenomenon (STT-MRAMs) have become one of the leading candidates for next generation memory applications. Among the many attractive features of this technology are its potential for high speed and endurance, read signal margin, low power consumption, scalability, and non-volatility. In this paper, we discuss our recent results on perpendicular STT-MRAM stack designs that show STT efficiency higher than 5 k{sub B}T/μA, energy barriers higher than 100 k{sub B}T at room temperature for sub-40 nm diameter devices, and tunnel magnetoresistance higher than 150%. We use both single device data and results from 8 Mb array to demonstrate data retention sufficient for automotive applications. Moreover, we also demonstrate for the first time thermal stability up to 400 °C exceeding the requirement of Si CMOS back-end processing, thus opening the realm of non-volatile embedded memory to STT-MRAM technology.

  16. Practical Experiences With Torque Meta-Scheduling In The Czech National Grid

    Directory of Open Access Journals (Sweden)

    Simon Toth

    2012-01-01

    Full Text Available The Czech National Grid Infrastructure went through a complex transition inthe last year. The production environment has been switched from a commercialbatch system PBSPro, which was replaced by an open source alternative Torquebatch system.This paper concentrates on two aspects of this transition. First, we will presentour practical experience with Torque being used as a production ready batchsystem. Our modified version of Torque, with all the necessary PBSPro ex-clusive features re-implemented and further extended with new features likecloud-like behaviour, was deployed across the entire production environment,covering the entire Czech Republic for almost a full year.In the second part, we will present our work on meta-scheduling. This in-volves our work on distributed architecture and cloud-grid convergence. Thedistributed architecture was designed to overcome the limitations of a centralserver setup, which was originally used and presented stability and performanceissues. While this paper does not discuss the inclusion of cloud interfaces intogrids, it does present the dynamic infrastructure, which is a requirement forsharing the grid infrastructure between a batch system and a cloud gateway.We are also inviting everyone to try out our fork of the Torque batch system,which is now publicly available.

  17. Effect of caffeine ingestion on torque and muscle activity during resistance exercise in men.

    Science.gov (United States)

    Duncan, Michael J; Thake, Charles D; Downs, Philip J

    2014-10-01

    We examined the effect of caffeine ingestion on muscle torque production and muscle activity at different contraction speeds in trained men. 10 men (mean age ± SD=22 ± 1.1 years) volunteered to participate. A double-blind, randomized cross-over design was used. Sixty minutes postingestion of caffeine (6 mg kg(-1) ) or placebo, participants completed 6 repetitions of isokientic knee extension at 3 angular velocities (30°s(-1) , 150°s(-1) , 300°s(-1) ) from which peak torque was determined. Electromyographic activity of the vastus medialis was also collected. Repeated measures analysis of variance indicated that muscle torque production was significantly higher (P=0.02) with caffeine compared with placebo. A significant (P=0.02) substance by velocity interaction for muscle activity indicated significantly higher vastus medialis muscle activity in the presence of caffeine versus placebo, and this difference was amplified as angular velocity increased. Acute caffeine ingestion improves muscle performance and increases muscle activity during short-duration maximal dynamic contractions. Copyright © 2014 Wiley Periodicals, Inc.

  18. Momentum accumulation due to solar radiation torque, and reaction wheel sizing, with configuration optimization

    Science.gov (United States)

    Hablani, Hari B.

    1993-01-01

    This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted.

  19. Effect of rotation bump on removal torque of orthodontic mini-implants.

    Science.gov (United States)

    Gansukh, Odontuya; Jeong, Jong-Wha; Kim, Jong-Wan; Kim, Young-Kyun; Lee, Jong-Ho; Kim, Tae-Woo

    2013-12-01

    This study is designed to evaluate the mechanical stability of orthodontic mini-implants with vertical grooves in rabbits. This study was done from March 2011 to February 2012 in Dental Research Institute of Seoul National University. Thirty-two mini-implants in the control group and 32 in the rotation bump (RB) group were inserted in the tibias of 16 rabbits and were removed after two weeks and four weeks, respectively. The maximum insertion torque (MIT), maximum removal torque (MRT), torque ratio (TR) of MRT to MIT and removal angular momentum (RAM) were all measured at the time of removal. There were no significant differences between the two groups in MIT and MRT at two weeks or four weeks. However, TR and RAM at four weeks in the RB group were significantly higher than in the control group (P<0.05). TR of the RB group was significantly increased at four weeks (P<0.05). In both groups, RAM at four weeks was significantly higher than at two weeks (P<0.05). These results suggest that RB of the mini-implant could provide resistance to the removal rotation, although it did not increase the MRT.

  20. Reaction torque control of redundant space robotic systems for orbital maintenance and simulated microgravity tests

    Science.gov (United States)

    Cocuzza, Silvio; Pretto, Isacco; Debei, Stefano

    2010-08-01

    This paper presents the theoretical formulation and the experimental validation of a novel solution for the inverse kinematics of redundant space robotic systems aimed at locally minimizing the torque transferred to the spacecraft due to the robotic arm movement. The differential kinematics is formulated at the acceleration level and an additional constraint is imposed in order to locally minimize the torque transferred to the spacecraft center of mass. This problem can be expressed as a constrained linear least squares problem and a closed-form solution is obtained. An extension of this method is presented in order to take into account the physical limits of the manipulator, by limiting the joint accelerations under acceptable values. In this case the problem can be expressed as a constrained linear least squares problem with both equality and inequality constraints. The proposed solution has been experimentally tested using a 3D free-flying robot previously tested in an ESA Parabolic Flight Campaign. In this test campaign the 3D robot has been converted in a 2D robot taking advantage of its modular structure, and it has been suspended by means of air-bearings on a granite plane. In this way it is possible to perform simulated microgravity tests without time constraints. The base of the robot is fixed on ground by means of a custom design dynamometer, which measures the torque transferred to ground to be minimized. The experimental results validated the proposed solutions and confirmed their good performance.

  1. Acute effects of different stretching durations on passive torque, mobility, and isometric muscle force.

    Science.gov (United States)

    Matsuo, Shingo; Suzuki, Shigeyuki; Iwata, Masahiro; Banno, Yasuhiro; Asai, Yuji; Tsuchida, Wakako; Inoue, Takayuki

    2013-12-01

    Static stretching is widely applied in various disciplines. However, the acute effects of different durations of stretching are unclear. Therefore, this study was designed to investigate the acute effects of different stretching durations on muscle function and flexibility, and provide an insight into the optimal duration of static stretching. This randomized crossover trial included 24 healthy students (17 men and 7 women) who stretched their right hamstrings for durations of 20, 60, 180, and 300 seconds in a random order. The following outcomes were assessed using an isokinetic dynamometer as markers of lower-limb function and flexibility: static passive torque (SPT), dynamic passive torque (DPT), stiffness, straight leg raise (SLR), and isometric muscle force. Static passive torque was significantly decreased after all stretching durations (p stretching compared with that after 20-second stretching, and stiffness decreased significantly after 180- and 300-second stretching (p stretching (p stretching durations (p stretching than after 20-second stretching and higher after 300-second stretching than after 60-second stretching (p muscle force significantly decreased after all stretching durations (p stretching is associated with a decrease in SPT but an increase in SLR. Over 180 seconds of stretching was required to decrease DPT and stiffness, but isometric muscle force decreased regardless of the stretching duration. In conclusion, these results indicate that longer durations of stretching are needed to provide better flexibility.

  2. Torque and Muscle Activation Impairment Along With Insulin Resistance Are Associated With Falls in Women With Fibromyalgia.

    Science.gov (United States)

    Góes, Suelen M; Stefanello, Joice M F; Homann, Diogo; Lodovico, Angélica; Hubley-Kozey, Cheryl L; Rodacki, André L F

    2016-11-01

    Góes, SM, Stefanello, JMF, Homann, D, Lodovico, A, Hubley-Kozey, CL, and Rodacki, ALF. Torque and muscle activation impairment along with insulin resistance are associated with falls in women with fibromyalgia. J Strength Cond Res 30(11): 3155-3164, 2016-Fibromyalgia (FM) is a chronic pain condition associated with reduced muscle strength, which can lead to functional incapacity and higher risk of falls. The purpose of the study was to compare maximal ankle joint torque, muscle activation, and metabolic changes between women with and without FM. In addition, the relationship between those aspects and retrospectively reported falls in women with FM was determined. Twenty-nine middle-aged women with FM and 30 controls were recruited. Fall history, pain intensity, and pain threshold were assessed. Plasma glucose levels and insulin resistance (IR) were determined. Peak torque and rate of torque development (RTD) were calculated, and muscle activation was assessed from maximum isometric voluntary ankle dorsiflexion and plantar flexion contractions. In addition, voluntary muscle activation failure of the anterior tibialis muscle during maximal dorsiflexion was calculated. When compared to controls, women with FM reported higher number of retrospectively reported falls, exhibited higher IR, showed reduced plantar flexion and dorsiflexion RTD, had lower plantar flexion peak torque, and demonstrated more antagonist coactivation and higher muscle activation failure (p ≤ 0.05). Higher muscle activation failure was explained by glucose level and pain intensity (adj R = 0.28; p ≤ 0.05). Reduced plantar flexion and dorsiflexion peak torque explained 80% of retrospectively reported falls variance; also, high antagonist coactivation (odds ratio [OR] = 1.6; p ≤ 0.05) and high IR (OR = 1.8; p ≤ 0.05) increased the chance of falls in the FM group. A combination of metabolic factors and muscle function increased the odds of retrospectively reporting a fall in FM. Both aspects

  3. SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting

    Science.gov (United States)

    Reiss, M. C.; Rumpker, G.

    2017-12-01

    We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by

  4. Cheating More when the Spoils Are Split

    Science.gov (United States)

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  5. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  6. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.

    2015-01-01

    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  7. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  8. On split Lie triple systems II

    Indian Academy of Sciences (India)

    Lie triple system with a coherent 0-root space is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of T is characterized. In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces. Keywords.

  9. TRAINING-INDUCED CHANGES IN THE TOPOGRAPHY OF MUSCLE TORQUES AND MAXIMAL MUSCLE TORQUES IN BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Krzysztof Buśko

    2012-01-01

    Full Text Available The aim of the study was to detect changes in the maximal muscle torques in male basketball players during a two-year training cycle. We verified the hypothesis that different workloads applied during the preparation and competition periods would result in changes in the maximal muscle torques of the athletes (increase during the former and decrease or no change during the latter period accompanied by no alteration of the percent muscle topography of all the muscle groups tested. The examinations were conducted on nine senior male basketball players from the Polish national team. Estimations of the muscle torques in static conditions were performed at the end of the preparation (measurements I and III and competition (measurements II and IV periods of a two-year training cycle. Eleven muscle groups were studied including flexors and extensors of the trunk and flexors and extensors of the shoulder, the elbow, the hip, the knee, and the ankle. Muscle torques of the shoulder and the elbow insignificantly decreased except for the muscle torque of the flexors of the shoulder. Muscle torques of the flexors and extensors of the trunk as well as of the flexors and extensors of the hip, the knee, and the ankle increased between measurements I and III and between measurements I and IV with the only exception being the muscle torque of the flexors of the knee (which significantly decreased by 7.4% In the case of the flexors and extensors of the trunk and the flexors and extensors of the hip, the changes appeared to be significant. The sum of the muscle torques of the upper limbs markedly decreased between the preparation (measurement I and competition (measurement IV periods. The sum of the muscle torques of the trunk and the lower limbs and the sum of the muscle torques of the eleven muscle groups significantly increased between measurements I and IV. Percent muscle topography significantly decreased for the flexors and extensors of the shoulder and the

  10. Split-Framework in Mandibular Implant-Supported Prosthesis

    Directory of Open Access Journals (Sweden)

    Danny Omar Mendoza Marin

    2015-01-01

    Full Text Available During oral rehabilitation of an edentulous patient with an implant-supported prosthesis, mandibular flexure must be considered an important biomechanical factor when planning the metal framework design, especially if implants are installed posterior to the interforaminal region. When an edentulous mandible is restored with a fixed implant-supported prosthesis connected by a fixed full-arch framework, mandibular flexure may cause needless stress in the overall restorative system and lead to screw loosening, poor fit of prosthesis, loss of the posterior implant, and patient’s discomfort due to deformation properties of the mandible during functional movements. The use of a split-framework could decrease the stress with a precise and passive fit on the implants and restore a more natural functional condition of the mandible, helping in the longevity of the prosthesis. Therefore, the present clinical report describes the oral rehabilitation of an edentulous patient by a mandibular fixed implant-supported prosthesis with a split-framework to compensate for mandibular flexure. Clinical Significance. The present clinical report shows that the use of a split-framework reduced the risk of loss of the posterior implants or screws loosening with acceptable patient comfort over the period of a year. The split-framework might have compensated for the mandibular flexure during functional activities.

  11. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    Science.gov (United States)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  12. A New Approach of Minimizing Commutation Torque Ripple for BLDCM

    Directory of Open Access Journals (Sweden)

    Bo Tan

    2017-10-01

    Full Text Available The properties of brushless DC motor (BLDCM are similar to the fractional, slot-concentrated winding of permanent-magnet synchronous machines, and they fit well for electric vehicle application. However, BLDCM still suffers from the high commutation torque ripple in the case of the traditional square-wave current control (SWC method, where the current vector rotates asynchronously with back-EMF. A current optimizing control (COC method for BLDCM is proposed in the paper to minimize the commutation torque ripple. The trajectories of the three phase currents are planned by the given torque and the optimized result of the copper loss and motor torque equations. The properties of COC are analyzed and compared with that of SWC in the stationary reference frame. The results show that the way of making the current vector rotate synchronously with back-EMF (back-Electromotive Force can minimize the modulus and velocity of the current vector in the commutation region, and reduce the torque ripple. Experimental tests obtained from an 82 W BLDCM are done to confirm the theoretical findings.

  13. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  14. Apply of torque method at rationalization of work

    Directory of Open Access Journals (Sweden)

    Bandurová Miriam

    2001-03-01

    Full Text Available Aim of the study was to analyse consumption of time for profession - cylinder grinder, by torque method.Method of torque following is used for detection of sorts and size of time slope, on detection of portion of individual sorts of time consumption and cause of time slope. By this way it is possible to find out coefficient of employment and recovery of workers in organizational unit. Advantage of torque survey is low costs on informations acquirement, non-fastidiousness per worker and observer, which is easy trained. It is mentally acceptable method for objects of survey.Finding and detection of reserves in activity of cylinders grinder result of torque was surveys. Loss of time presents till 8% of working time. In 5 - shift service and average occupiying of shift by 4,4 grinder ( from statistic information of service , loss at grinder of cylinders are for whole centre 1,48 worker.According presented information it was recommended to cancel one job place - grinder of cylinders - and reduce state about one grinder. Next job place isn't possible cancel, because grindery of cylinders must to adapt to the grind line by number of polished cylinders in shift and semi - finishing of polished cylinders can not be high for often changes in area of grinding and sortiment changes.By this contribution we confirmed convenience of exploitation of torque method as one of the methods using during the job rationalization.

  15. Torque values of antagonistic muscles of the hipjoint. Pilot study.

    Science.gov (United States)

    Derewiecki, Tomasz; Duda, Marta; Majcher, Piotr; Mroczek, Krzysztof

    2012-01-01

    The hip joint is a multiaxial articulation and the most mobile joint of the lower extremity. It can be subject to overloading by the repetition of a motor pattern produced by imbalanced muscle groups. To determine mean torque values of the external forces acting on the hip joint in various age groups; to compare the relations between the torque values of antagonistic hip muscles; to correlate changes in mean torque values of the hip muscles with age. The study involved a group of 120 women aged 19-85 years divided into 6 age groups of 20 subjects each. The presence of knee or hip pathology was an exclusion criterion. The tests were carried out in the Zamość Rehabilitation Department of CMPA in an SPB2-FM unit. The highest mean torque values for all muscle groups were seen in women aged 19-25 years. The values gradually decreased with age. 1. The SPB2-FM unit is an objective tool for evaluating torques of the hip muscles and makes it possible to monitor changes occurring in the process of rehabilitation, as well as to diagnose risks resulting from a decrease in hip muscle strength. 2. The present study of healthy subjects provides baseline data for further comparisons with patients suffering from hip pathology and preliminary input for determining reference values of pelvic girdle muscle strength.

  16. Torques Induced by Scattered Pebble-flow in Protoplanetary Disks

    Science.gov (United States)

    Benítez-Llambay, Pablo; Pessah, Martin E.

    2018-03-01

    Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.

  17. Split-Stirling-cycle displacer linear-electric drive

    Science.gov (United States)

    Ackermann, R. A.; Bhate, S. K.; Byrne, D. V.

    1983-01-01

    The retrofit of a 1/4-W split-Stirling cooler with a linear driven on the displacer was achieved and its performance characterized. The objective of this work was to demonstrate that a small linear motor could be designed to meet the existing envelope specifications of the cooler and that an electric linear drive on the displacer could improve the cooler's reliability and performance. The paper describes the characteristics of this motor and presents cooler test results.

  18. Influence of Stator MMF Harmonics on the Utilization of Reluctance Torque in Six-Phase PMA-SynRM with FSCW

    Directory of Open Access Journals (Sweden)

    Luming Cheng

    2018-01-01

    Full Text Available Although fractional-slot concentrated winding (FSCW offers many significant advantages, such as short end-turn windings, high slot filling factor, and low cogging torque, it is frequently limited by excessive stator magnetomotive force (MMF harmonics which will induce high eddy losses in the permanent magnets (PMs. What is more, in the literature, it can be observed that the reluctance torque of the salient-pole machine with FSCW is usually much lower than that obtained with integral slot winding. To explore the underlying reason why the reluctance torque in a salient machine with FSCW significantly decreases, a new six-phase FSCW with 24 slots and 10 poles, which can significantly reduce the undesirable stator MMF harmonics, is obtained by using the concept of stator shifting. Then, two permanent-magnet-assisted synchronous reluctance machines (PMA-SynRMs with the proposed winding layout and conventional asymmetric 12-slot/10-pole six-phase winding layout are designed and simulated by the finite-element method (FEM. The reluctance torque, total torque, and d/q-axis inductances with different current phase angles are also compared under different loaded conditions. The results show that a reduction in stator MMF harmonics can indeed lead to a significant enhancement in reluctance torque under heavy loaded conditions, while the dominance will diminish under light loaded conditions.

  19. Tacón de torque. Análisis tensional y deformacional utilizando el Método de Elementos Finitos.

    Directory of Open Access Journals (Sweden)

    R. A. González Carbonell

    2007-05-01

    Full Text Available En este trabajo se aborda la problemática del tratamiento en menores que presentan torsión tibial y la necesidad de un dispositivo ortopédico para su corrección. En particular, se presentan los elementos necesarios para el diseño de un tacón de torque. Se estudiaron los fenómenos no lineales presentes en el diseño mecánico de piezas que no cumplen con la ley de Hooke, específicamente para materiales hiperelásticos. El modelo de las cargas que actúan sobre el tacón de torque fue definido teniendo en cuenta la acción dinámica de las cargas producto de la marcha. Para realizar los cálculos de tensiones y visualizar las deformaciones durante su funcionamiento se utilizó el Método de los Elementos Finitos. Finalmente con los resultados obtenidos fue propuesto un diseño del tacón de torque.In this work a problem of treatment of the internal tibia torsion and the necessity of an orthopedic device were studied. The needed knowledge for design the torque heel was mentioned. The study of non lineal phenomena in mechanical design of elastomers was carried out. The load model of the torque heels was defined taken into account the action of dynamic loads. The Stress and Strain of the torque heel were obtained using the Finite Elements Method. Finally, the results were analyzed and the definitive design of the torque heel was obtained.

  20. Spin Torque Oscillator for High Performance Magnetic Memory

    Directory of Open Access Journals (Sweden)

    Rachid Sbiaa

    2015-06-01

    Full Text Available A study on spin transfer torque switching in a magnetic tunnel junction with perpendicular magnetic anisotropy is presented. The switching current can be strongly reduced under a spin torque oscillator (STO, and its use in addition to the conventional transport in magnetic tunnel junctions (MTJ should be considered. The reduction of the switching current from the parallel state to the antiparallel state is greater than in  the opposite direction, thus minimizing the asymmetry of the resistance versus current in the hysteresis loop. This reduction of both switching current and asymmetry under a spin torque oscillator occurs only during the writing process and does not affect the thermal stability of the free layer.

  1. Torque- and Speed Control of a Pitch Regulated Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rasila, Mika

    2003-07-01

    Variable speed operated wind turbines has the potential to reduce fatigue loads, compared to fixed speed wind turbines. With pitch controllable rotor blades limitation of the power at high wind speeds is obtained. The thesis describes different controlling aspects concerning wind turbines and how these together can be used to optimize the system's performance. Torque control is used in order to achieve reduction on the mechanical loads on the drive-train for low wind speeds and limitation of power output for high wind speeds. In the high wind speed interval torque control is effective in order to limit the output power if a sufficiently fast pitch actuator is used. In the middle wind speed interval filter utilization can be used to give a reference signal to the controller in order to reduce speed and torque variations.

  2. Micromechanical torque magnetometer with sub-monolayer sensitivity

    International Nuclear Information System (INIS)

    Min, D.H.; McCallum, A.; Russek, Stephen E.; Moreland, John

    2005-01-01

    We have developed a micromechanical torque sensor with sub-monolayer sensitivity for in situ monitoring of the magnetic moment of thin films during deposition. The film is deposited onto a microcantilever. The torque on the film is determined by measuring the deflection of the cantilever due to a small AC magnetic field perpendicular to the surface of the film. The microcantilevers have a high mechanical quality factor, large surface area, low spring constant, and high resonance frequency to improve film sensitivity to thickness. A phase-locked loop minimizes the resonance frequency shift of the cantilever due to mass loading and temperature drift that would otherwise affect the measurement of magnetic torque. The demonstrated thickness sensitivity for a Ni 0.8 Fe 0.2 film and a Ni 0.8 Fe 0.2 /Cu multilayer film is less than 0.1 nm

  3. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  4. Mechatronic Model Based Computed Torque Control of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2008-03-01

    Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.

  5. Mechatronic Model Based Computed Torque Control of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2008-11-01

    Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.

  6. Mechanics of Re-Torquing in Bolted Flange Connections

    Science.gov (United States)

    Gordon, Ali P.; Drilling Brian; Weichman, Kyle; Kammerer, Catherine; Baldwin, Frank

    2010-01-01

    It has been widely accepted that the phenomenon of time-dependent loosening of flange connections is a strong consequence of the viscous nature of the compression seal material. Characterizing the coupled interaction between gasket creep and elastic bolt stiffness has been useful in predicting conditions that facilitate leakage. Prior advances on this sub-class of bolted joints has lead to the development of (1) constitutive models for elastomerics, (2) initial tightening strategies, (3) etc. The effect of re-torque, which is a major consideration for typical bolted flange seals used on the Space Shuttle fleet, has not been fully characterized, however. The current study presents a systematic approach to characterizing bolted joint behavior as the consequence of sequentially applied torques. Based on exprimenta1 and numerical results, the optimal re-torquing parameters have been identified that allow for the negligible load loss after pre-load application

  7. Low mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    Science.gov (United States)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-04-01

    We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  8. Peak Torque and Rate of Torque Development Influence on Repeated Maximal Exercise Performance: Contractile and Neural Contributions

    Science.gov (United States)

    Morel, Baptiste; Rouffet, David M.; Saboul, Damien; Rota, Samuel; Clémençon, Michel; Hautier, Christophe A.

    2015-01-01

    Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD) and peak torque (Tpeak) on the overall performance (i.e. mean torque, Tmean) decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240°·s-1, beginning every 30 seconds. RTD, Tpeak and Tmean as well as the Rate of EMG Rise (RER), peak EMG (EMGpeak) and mean EMG (EMGmean) of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (ifmean) calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD) and maximal evoked torque (eTpeak) induced by high frequency doublet (100 Hz). Tmean decrease was correlated to RTD and Tpeak decrease (R²=0.62; pmuscle in the first milliseconds of the contraction. PMID:25901576

  9. KNEE ISOKINETIC TORQUE IMBALANCE IN FEMALE FUTSAL PLAYERS

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Mello Alves Rodrigues

    Full Text Available ABSTRACT Introduction: The specificity of sports training can lead to muscle specialization with a possible change in the natural hamstring/quadriceps torque ratio (HQ ratio, constituting a risk factor for muscle injury at the joint angles in which muscle imbalance may impair dynamic stability. Objective: The aim was to evaluate the torque distribution of the hamstrings and quadriceps and the HQ ratio throughout the range of motion in order to identify possible muscle imbalances at the knee of female futsal athletes. Methods: Nineteen amateur female futsal athletes had their dominant limb HQ ratio evaluated in a series of five maximum repetitions of flexion/extension of the knee at 180°/second in the total joint range of motion (30° to 80°. The peak flexor and extensor torque and the HQ ratio (% were compared each 5° of knee motion using one-way repeated measures ANOVA and Tukey’s post hoc test (p<0.05 to determine the joint angles that present muscular imbalance. Results: Quadriceps torque was higher than 50° to 60° of knee flexion, while hamstrings torque was higher than 55° to 65°. The HQ ratio presented lower values than 30° to 45° of knee flexion and four athletes presented values lower than 60%, which may represent a risk of injury. However, the HQ ratio calculated by the peak torque showed only one athlete with less than 60%. Conclusion: The HQ ratio analyzed throughout the knee range of motion allowed identifying muscle imbalance at specific joint angles in female futsal players.

  10. Efeito da posição da articulação do cotovelo no controle de torque de supinação do antebraço em jovens adultos Effects of elbow joint position on forearm supination torque control among young adults

    Directory of Open Access Journals (Sweden)

    C Krás Borges

    2007-12-01

    literature are associated with tasks involving effort and repetitive movements of the arms and hands. Elbow position is known to affect the production of maximum forearm supination torque, and is a critical factor in designing appropriate therapeutic exercises. However, to our knowledge, there are no data on the effects of elbow position on tasks requiring control over submaximal torque levels. OBJECTIVE: This study investigated the effects of elbow position on the production of maximum isometric forearm supination torque, and on constant and continuous torque control at different submaximal torque levels. METHOD: Sixteen young adults (24.7 ± 2.2 years old were asked to perform two tasks: production of maximum lateral pinch torque (thumb and index finger and controlled lateral pinch constant torque. Both tasks were evaluated at four different elbow positions (free position, 0º, 45º and 90º of elbow flexion and three submaximal levels of lateral pinch torque production (20%, 40% and 60%. Maximal torque, variability, irregularity and accuracy of the motor response were used as dependent variables. RESULTS: Greater torque values were found when the elbow joint was not restricted. The torque control tasks were not affected by the elbow position. However, greater variability and irregularity and lower accuracy in torque response were recorded with progressively increased submaximal torque levels. CONCLUSION: The results suggest that elbow position is not a determining factor for rehabilitation exercises that include torque control, in relation to forearm supination.

  11. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement

    Science.gov (United States)

    Li, Yi; Liu, Zhaomiao

    2017-01-01

    Droplet merging and splitting are important droplet manipulations in droplet-based microfluidics. However, the fundamental flow behaviors of droplets were not systematically studied. Hence, we designed two different microstructures to achieve droplet merging and splitting respectively, and quantitatively compared different flow dynamics in different microstructures for droplet merging and splitting via micro-particle image velocimetry (micro-PIV) experiments. Some flow phenomena of droplets different from previous studies were observed during merging and splitting using a high-speed microscope. It was also found the obtained instantaneous velocity vector fields of droplets have significant influence on the droplets merging and splitting. For droplet merging, the probability of droplets coalescence (η) in a microgroove is higher (50% T-junction microchannel (15% < η < 50%), and the highest coalescence efficiency (η = 92%) comes at the two-phase flow ratio e of 0.42 in the microgroove. Moreover, compared with a cylinder obstacle, Y-junction bifurcation can split droplets more effectively and the droplet flow during splitting is steadier. The results can provide better understanding of droplet behaviors and are useful for the design and applications of droplet-based microfluidics. PMID:28890680

  12. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement.

    Science.gov (United States)

    Shen, Feng; Li, Yi; Liu, Zhaomiao; Li, XiuJun

    2017-04-01

    Droplet merging and splitting are important droplet manipulations in droplet-based microfluidics. However, the fundamental flow behaviors of droplets were not systematically studied. Hence, we designed two different microstructures to achieve droplet merging and splitting respectively, and quantitatively compared different flow dynamics in different microstructures for droplet merging and splitting via micro-particle image velocimetry (micro-PIV) experiments. Some flow phenomena of droplets different from previous studies were observed during merging and splitting using a high-speed microscope. It was also found the obtained instantaneous velocity vector fields of droplets have significant influence on the droplets merging and splitting. For droplet merging, the probability of droplets coalescence ( η ) in a microgroove is higher (50% < η < 92%) than that in a T-junction microchannel (15% < η < 50%), and the highest coalescence efficiency ( η = 92%) comes at the two-phase flow ratio e of 0.42 in the microgroove. Moreover, compared with a cylinder obstacle, Y-junction bifurcation can split droplets more effectively and the droplet flow during splitting is steadier. The results can provide better understanding of droplet behaviors and are useful for the design and applications of droplet-based microfluidics.

  13. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard

    2014-01-01

    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... absorption, this is the more difficult side to optimize. Nevertheless, by using TiO2 as a transparent cathode protection layer in conjunction with known H-2 evolution catalysts, protection is clearly feasible for a large bandgap photocathode. This suggests that there may be promising strategies...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....

  14. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-09-07

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  15. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  16. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    Science.gov (United States)

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  17. Skyrmionic spin Seebeck effect via dissipative thermomagnonic torques

    Science.gov (United States)

    Kovalev, Alexey A.

    2014-06-01

    We derive thermomagnonic torque and its "β-type" dissipative correction from the stochastic Landau-Lifshitz-Gilbert equation. The β-type dissipative correction describes viscous coupling between magnetic dynamics and magnonic current and it stems from spin mistracking of the magnetic order. We show that thermomagnonic torque is important for describing temperature gradient induced motion of skyrmions in helical magnets while dissipative correction plays an essential role in generating transverse Magnus force. We propose to detect such skyrmionic motion by employing the transverse spin Seebeck effect geometry.

  18. Determination of Ultimate Torque for Multiply Connected Cross Section Rod

    Directory of Open Access Journals (Sweden)

    V. L. Danilov

    2015-01-01

    Full Text Available The aim of this work is to determine load-carrying capability of the multiply cross-section rod. This calculation is based on the model of the ideal plasticity of the material, so that the desired ultimate torque is a torque at which the entire cross section goes into a plastic state.The article discusses the cylindrical multiply cross-section rod. To satisfy the equilibrium equation and the condition of plasticity simultaneously, two stress function Ф and φ are introduced. By mathematical transformations it has been proved that Ф is constant along the path, and a formula to find its values on the contours has been obtained. The paper also presents the rationale of the line of stress discontinuity and obtained relationships, which allow us to derive the equations break lines for simple interaction of neighboring circuits, such as two lines, straight lines and circles, circles and a different sign of the curvature.After substitution into the boundary condition at the end of the stress function Ф and mathematical transformations a formula is obtained to determine the ultimate torque for the multiply cross-section rod.Using the doubly connected cross-section and three-connected cross-section rods as an example the application of the formula of ultimate torque is studied.For doubly connected cross-section rod, the paper offers a formula of the torque versus the radius of the rod, the aperture radius and the distance between their centers. It also clearly demonstrates the torque dependence both on the ratio of the radii and on the displacement of hole. It is shown that the value of the torque is more influenced by the displacement of hole, rather than by the ratio of the radii.For the three-connected cross-section rod the paper shows the integration feature that consists in selection of a coordinate system. As an example, the ultimate torque is found by two methods: analytical one and 3D modeling. The method of 3D modeling is based on the Nadai

  19. Sinus Floor Augmentation Using Straumann® BoneCeramic™ and Bio-Oss® in a Split Mouth Design and Later Placement of Implants: A 5-Year Report from a Longitudinal Study.

    Science.gov (United States)

    Mordenfeld, Arne; Lindgren, Christer; Hallman, Mats

    2016-10-01

    Straumann® BoneCeramic™ is a synthetic biphasic calcium phosphate (BCP) aimed for sinus floor augmentation. Long-term follow-up of implants placed in BCP after sinus augmentation is still missing. The primary aim of the study was to compare survival rates and marginal bone loss of Straumann SLActive implants placed in either BCP (test) or Bio-Oss® (DBB) (control) after sinus floor augmentation. The secondary aim was to calculate graft sinus height at different time points. Bilateral sinus floor augmentation was performed in a split mouth model. Eleven patients (mean age 67 years) received 100% BCP on one side and 100% DBB on the contralateral side. After 8 months of graft healing, 62 Straumann SLActive implants were placed. After 5 years of functional loading (6 years after augmentation) of implants, marginal bone levels and grafted sinus height were measured, and implant survival and success rates were calculated. After 5 years of loading, all prosthetic constructions were in function although two implants were lost in each grafting material. The overall implant survival rate was 93.5% (91.7% for BCP, 91.3% for DBB, and 100% for residual bone). The success rates were 83.3% and 91.3% for BCP and DBB, respectively. There was no statistically significant difference in mean marginal bone level after 5 years between BCP (1.4 ± 1.2 mm) and DBB (1.0 ± 0.7 mm). Graft height reduction (GHR) after 6 years was limited to 6.6% for BCP and 5.8% for DBB. In this limited RCT study, the choice of biomaterial used for sinus floor augmentation did not seem to have any impact on survival rates and marginal bone level of the placed implants after 5 years of functional loading and GHR was minimal. © 2015 Wiley Periodicals, Inc.

  20. Predictive Direct Torque Control Application-Specific Integrated Circuit of an Induction Motor Drive with a Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Guo-Ming Sung

    2017-06-01

    Full Text Available This paper proposes a modified predictive direct torque control (PDTC application-specific integrated circuit (ASIC of a motor drive with a fuzzy controller for eliminating sampling and calculating delay times in hysteresis controllers. These delay times degrade the control quality and increase both torque and flux ripples in a motor drive. The proposed fuzzy PDTC ASIC calculates the stator’s magnetic flux and torque by detecting the three-phase current, three-phase voltage, and rotor speed, and eliminates the ripples in the torque and flux by using a fuzzy controller and predictive scheme. The Verilog hardware description language was used to implement the hardware architecture, and the ASIC was fabricated by the Taiwan Semiconductor Manufacturing Company through a 0.18-μm 1P6M CMOS process that involved a cell-based design method. The measurements revealed that the proposed fuzzy PDTC ASIC of the three-phase induction motor yielded a test coverage of 96.03%, fault coverage of 95.06%, chip area of 1.81 × 1.81 mm2, and power consumption of 296 mW, at an operating frequency of 50 MHz and a supply voltage of 1.8 V.

  1. Timing of intermittent torque control with wire-driven gait training robot lifting toe trajectory for trip avoidance.

    Science.gov (United States)

    Miyake, Tamon; Kobayashi, Yo; Fujie, Masakatsu G; Sugano, Shigeki

    2017-07-01

    Gait training robots are useful for changing gait patterns and decreasing risk of trip. Previous research has reported that decreasing duration of the assistance or guidance of the robot is beneficial for efficient gait training. Although robotic intermittent control method for assisting joint motion has been established, the effect of the robot intervention timing on change of toe clearance is unclear. In this paper, we tested different timings of applying torque to the knee, employing the intermittent control of a gait training robot to increase toe clearance throughout the swing phase. We focused on knee flexion motion and designed a gait training robot that can apply flexion torque to the knee with a wire-driven system. We used a method of timing detecting for the robot conducting torque control based on information from the hip, knee, and ankle angles to establish a non-time dependent parameter that can be used to adapt to gait change, such as gait speed. We carried out an experiment in which the conditions were four time points: starting the swing phase, lifting the foot, maintaining knee flexion, and finishing knee flexion. The results show that applying flexion torque to the knee at the time point when people start lifting their toe is effective for increasing toe clearance in the whole swing phase.

  2. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  3. Improving torque per kilogram magnet of permanent magnet couplings using finite element analysis

    DEFF Research Database (Denmark)

    Högberg, Stig; Jensen, Bogi Bech; Bendixen, Flemming Buus

    2013-01-01

    This paper presents the methodology and subsequent findings of a performance-improvement routine that employs automated finite element (FE) analysis to increase the torque-per-kilogram-magnet (TPKM) of a permanent magnet coupling (PMC). The routine is applied to a commercially available cylindrical...... PMC with rectangular permanent magnets (PM), and a new design is discovered which increases TPKM by 15.6%. Furthermore, the study is repeated using concave/convex-shaped PMs, which results in an increase of TPKM of 57.6%. The FE models are validated against experimental measurements of the static...

  4. Materials and Physics Challenges for Spin Transfer Torque Magnetic Random Access Memories

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O.

    2014-10-05

    Magnetic random access memories utilizing the spin transfer torque effect for writing information are a strong contender for non-volatile memories scalable to the 20 nm node, and perhaps beyond. I will here examine how these devices behave as the device size is scaled down from 70 nm size to 20 nm. As device sizes go below ~50 nm, the size becomes comparable to intrinsic magnetic length scales and the device behavior does not simply scale with size. This has implications for the device design and puts additional constraints on the materials in the device.

  5. An Online Observer for Minimization of Pulsating Torque in SMPM Motors

    Science.gov (United States)

    Roșca, Lucian

    2016-01-01

    A persistent problem of surface mounted permanent magnet (SMPM) motors is the non-uniformity of the developed torque. Either the motor design or the motor control needs to be improved in order to minimize the periodic disturbances. This paper proposes a new control technique for reducing periodic disturbances in permanent magnet (PM) electro-mechanical actuators, by advancing a new observer/estimator paradigm. A recursive estimation algorithm is implemented for online control. The compensating signal is identified and added as feedback to the control signal of the servo motor. Compensation is evaluated for different values of the input signal, to show robustness of the proposed method. PMID:27089182

  6. A Novel Sensing Circuit with Large Sensing Margin for Embedded Spin-Transfer Torque MRAMs

    DEFF Research Database (Denmark)

    Bagheriye, Leila; Toofan, Siroos; Saeidi, Roghayeh

    Abstract— Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM) has emerged as a promising candidate for next-generation computing systems. However, with increasing process variation and decreasing supply voltage, a big design challenge of embedded STT-MRAMs is to guarantee negligible read......-disturbance and high yield. In this paper, to deal with the read reliability challenge, a high sensing margin sensing circuit with strong positive feedback is proposed. It improves the sensing margin (SM) by 10.42X/3.3X and a with 1.24X/1.59X lower read energy at iso-sensing time (2ns) in comparison...

  7. Technique to reduce the shaft torque stress at an induction machine

    Directory of Open Access Journals (Sweden)

    Adrian Tulbure

    2005-10-01

    Full Text Available For the active attenuation at load stress in the drive shaft, the control system should receive as input signal the instantaneous shaft torque value. In this context an intelligent observer for shaft tongue of mains operatea induction machine, which is able to responding by variation of LIF (Load Input Function[1] must be developed. Extensive computer simulation prove the effectiveness of the proposed solution. In order to obtain a practical validation, the stimulated regulator has been designed and tested in the Institute of Electrical Engineering in Clausthal/Germany [2]. This paper contains following parts: Developing the mathematical model, Practical realisation, Simulations and measurements, Evaluating the control solutions and Conclusions.

  8. Splitting Strip Detector Clusters in Dense Environments

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2018-01-01

    Tracking in high density environments, particularly in high energy jets, plays an important role in many physics analyses at the LHC. In such environments, there is significant degradation of track reconstruction performance. Between runs 1 and 2, ATLAS implemented an algorithm that splits pixel clusters originating from multiple charged particles, using charge information, resulting in the recovery of much of the lost efficiency. However, no attempt was made in prior work to split merged clusters in the Semi Conductor Tracker (SCT), which does not measure charge information. In spite of the lack of charge information in SCT, a cluster-splitting algorithm has been developed in this work. It is based primarily on the difference between the observed cluster width and the expected cluster width, which is derived from track incidence angle. The performance of this algorithm is found to be competitive with the existing pixel cluster splitting based on track information.

  9. Structural basis of photosynthetic water-splitting

    International Nuclear Information System (INIS)

    Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 Å resolution, from which, the detailed structure of the Mn 4 CaO 5 -cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed

  10. Irrational beliefs, attitudes about competition, and splitting.

    Science.gov (United States)

    Watson, P J; Morris, R J; Miller, L

    2001-03-01

    Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization. Copyright 2001 John Wiley & Sons, Inc.

  11. Mort Rainey's Split Personality in Secret Window

    OpenAIRE

    Sandjaya, Cynthya; Limanta, Liem Satya

    2013-01-01

    Psychological issue is the main issue discussed in David Koepp's Secret Window through its main character, Mort Rainey. Rainey's psychological struggle will be the main theme in this research. This thesis examines Rainey's split personality. Furthermore, in this study, we want to analyze the process of how Mort Rainey's personality splits into two different personalities. To meet the answer of this study, we will use the theory of Dissociative Identity Disorder with a support from Sigmund Fre...

  12. A split SUSY model from SUSY GUT

    OpenAIRE

    Wang, FeiDepartment of Physics and Engineering, Zhengzhou University, Zhengzhou, 450000, P.R. China; Wang, Wenyu(Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology, Beijing, 100124, P.R. China); Yang, Jin(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China)

    2015-01-01

    We propose to split the sparticle spectrum from the hierarchy between the GUT scale and the Planck scale. A split supersymmetric model, which gives non-universal gaugino masses, is built with proper high dimensional operators in the framework of SO(10) GUT. Based on a calculation of two-loop beta functions for gauge couplings (taking into account all weak scale threshold corrections), we check the gauge coupling unification and dark matter constraints (relic density and direct detections). We...

  13. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  14. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory

    2018-02-01

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  15. Antenna Splitting Functions for Massive Particles

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2011-06-22

    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  16. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    Science.gov (United States)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  17. Torque characteristics of double-stator permanent magnet synchronous machines

    Directory of Open Access Journals (Sweden)

    Awah Chukwuemeka Chijioke

    2017-12-01

    Full Text Available The torque profile of a double-stator permanent magnet (PM synchronous machine of 90 mm stator diameter having different rotor pole numbers as well as dual excitation is investigated in this paper. The analysis includes a comparative study of the machine’s torque and power-speed curves, static torque and inductance characteristics, losses and unbalanced magnetic force. The most promising flux-weakening potential is revealed in 13- and 7-rotor pole machines. Moreover, the machines having different rotor/stator (Nr/Ns pole combinations of the form Nr = Ns ± 1 have balanced and symmetric static torque waveforms variation with the rotor position in contrast to the machines having Nr = Ns ± 2. Further, the inductance results of the analyzed machines reveal that the machines with odd rotor pole numbers have better fault-tolerant capability than their even rotor pole equivalents. A prototype of the developed double-stator machine having a 13-pole rotor is manufactured and tested for verification.

  18. Macroscopic bulk cohesion and torque for wet granular materials

    NARCIS (Netherlands)

    Roy, Sudeshna; Luding, Stefan; Weinhart, Thomas

    2015-01-01

    Wet granular materials in steady-state in a quasi-static flow have been studied with discrete particle simulations. The total torque is an experimentally accessible macroscopic quantity that can be used to investigate the shear strength, bulk cohesion and other properties of the materials. We report

  19. Improving the performance of hysteresis direct torque control of ...

    Indian Academy of Sciences (India)

    This paper describes an active filter topology to improve the performance of hysteresis direct torque control (HDTC) of interior permanent magnet synchronous motor (IPMSM). The filter topology consists of an active filter and two RLC filters, and is connected to the main power circuit through a 1:1 transformer. The active filter ...

  20. Torque and optical traps | Ibeneche | African Journal of Biotechnology

    African Journals Online (AJOL)

    Optical traps are an important tool for research in the field of single molecule biophysics. Recent advances in optical trapping have extended their functionality from simple linear manipulation and measurement of forces, to now the ability to rotate objects and measure torques. This mini review summarizes these recent ...