WorldWideScience

Sample records for split system air

  1. Refrigerant lines in split-type air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Rettenberger, P

    1979-01-01

    Condensator and evaporating units of split-type air conditioners are evaluated and filled with the refrigerant by the producer. The line systems are hermetically closed and prevent the loss of refrigerant and the penetration of moisture or dirt. The best installation method is the 'bendable lines'. They combine flexibility and easy installation with the advantages of the copper pipe. Several ducting systems and their connecting elements like couplings and valves are described, their installation is explained. These flexible systems are especially suitable for small air-condition plants of the split-type the evaporating unit of which is portable and can put where it is desired.

  2. 15 CFR 30.28 - “Split shipments” by air.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false âSplit shipmentsâ by air. 30.28... Transactions § 30.28 “Split shipments” by air. When a shipment by air covered by a single EEI submission is... showing the portion of the split shipment carried on that flight, a notation will be made showing the air...

  3. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    Science.gov (United States)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  4. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  5. Electric efficiency in lighting system and air conditioners replacement and automation of air conditioners split type in public buildings; Eficiencia eletrica na substituicao do sistema de iluminacao e de condicionadores de ar e automacao do sistema de condicionadores de ar tipo split em predios publicos

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Arnulfo Barroso de; Apolonio, Roberto; Silva, Luciana Oliveira da; Gomes, Fernanda Leles [Universidade Federal de Mato Grosso (UFMT), MT (Brazil); Malheiro, Teresa Irene Ribeiro de Carvalho [Instituto Federal de Educacao, Ciencia e Tecnologia de Mato Grosso (IFMT), MT (Brazil); Barros, Regiane Silva de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2010-07-01

    The reduction in expenditure on electricity is a major benefit not only consumers but also to utilities. In this context, this article examines the process of replacing the system of internal lighting, window type air conditioners and automation of Split type air conditioners from buildings of public institutions of the state of Mato Grosso during 2009 year and verifies the reduction in annual consumption of electric power and demand active power. Thus, measurements and calculations performed are presented for the interior lighting systems and air conditioners of these buildings before and after implementation of the process of replacing the system of internal lighting and window type air conditioners and automation of Split type air conditioners. This work is the result of integration among the Dealer Network Energy Rede Cemat, the Federal University of Mato Grosso (UFMT) and the Administration of all public buildings, where the academy answered these real issues, solving the specific problem presented. (author)

  6. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    Science.gov (United States)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  7. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  8. Modeling of a split type air conditioner with integrated water heater

    International Nuclear Information System (INIS)

    Techarungpaisan, P.; Theerakulpisut, S.; Priprem, S.

    2007-01-01

    This paper presents a steady state simulation model to predict the performance of a small split type air conditioner with integrated water heater. The mathematical model consists of submodels of system components such as evaporator, condenser, compressor, capillary tube, receiver and water heater. These submodels were built based on fundamental principles of heat transfer, thermodynamics, fluid mechanics, empirical relationships and manufacturer's data as necessary. The model was coded into a simulation program and used to predict system parameters of interest such as hot water temperature, condenser exit air temperature, evaporator exit air temperature, mass flow rate of refrigerant, heat rejection in the condenser and cooling capacity of the system. The simulation results were compared with experimental data obtained from an experimental rig built for validating the mathematical model. It was found that the experimental and simulation results are in good agreement

  9. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  10. Thermodynamic analysis and system design of a novel split cycle engine concept

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert E.; Heikal, Morgan R.

    2016-01-01

    The split cycle engine is a new reciprocating internal combustion engine with a potential of a radical efficiency improvement. In this engine, the compression and combustion–expansion processes occur in different cylinders. In the compression cylinder, the charge air is compressed through a quasi-isothermal process by direct cooling of the air. The high pressure air is then heated in a recuperator using the waste heat of exhaust gas before induction to the combustion cylinder. The combustion process occurs during the expansion stroke, in a quasi-isobaric process. In this paper, a fundamental theoretical cycle analysis and one-dimensional engine simulation of the split cycle engine was undertaken. The results show that the thermal efficiency (η) is mainly decided by the CR (compression ratio) and ER (expansion ratio), the regeneration effectiveness (σ), and the temperature rising ratio (N). Based on the above analysis, a system optimization of the engine was conducted. The results showed that by increasing CR from 23 to 25, the combustion and recuperation processes could be improved. By increasing the expansion ratio to 26, the heat losses during the gas exchange stroke were further reduced. Furthermore, the coolant temperatures of the compression and expansion chambers can be controlled separately to reduce the wall heat transfer losses. Compared to a conventional engine, a 21% total efficiency improvement was achieved when the split cycle was applied. It was concluded that through the system optimization, a total thermal efficiency of 53% can be achieved on split cycle engine. - Highlights: • Fundamental mechanism of the split cycle engine is investigated. • The key affecting factors of the thermodynamic cycle efficiency are identified. • The practical efficiency of split cycle applying on diesel engine is analysed. • The design optimization on the split cycle engine concept is conducted.

  11. Experimental study on split air conditioner with new hybrid equipment of energy storage and water heater all year round

    International Nuclear Information System (INIS)

    Wang Shaowei; Liu Zhenyan; Li Yuan; Zhao Keke; Wang Zhigang

    2005-01-01

    This paper presents a split air conditioner with a new hybrid equipment of energy storage and water heater all year round (ACWES). The authors made a special design on the storage tank to adjust the refrigerant capacity in the storage coils under different functions, instead of adding an accumulator to the system. An ACWES prototype, rebuilt from an original split air conditioner, has been finished, and experimental study of the operation processes of the prototype was done from which some important conclusions and suggestions have been made, which were helpful in the primary design and improvement of an ACWES system for potential users

  12. Energy efficiency and energy saving air conditioners window and split type; Eficiencia energetica e economia de energia de condicionadores de ar tipo janela e split

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edson Palhares de; Cardoso, Rafael Balbino; Nogueira, Luiz Augusto Horta [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2010-07-01

    The air-conditioners of window end Split type are responsible for a significant portion of energy consumption in residential sector of Brazil, from 20% of the sector. This study evaluates the impact energy of the Seal Program PROCEL in air-conditioners of window end Split type, showing the efficiency gains for the country in terms of energy saving. For this evaluation it was considered the effects of temperature and loss of performance due to age, PROCEL Stamp Program resulted in a power savings of 664 GWh in air-conditioners of window type residential sector in 2008. (author)

  13. Analysis and experimental results of frequency splitting of underwater wireless power transfer

    Directory of Open Access Journals (Sweden)

    Wangqiang Niu

    2017-06-01

    Full Text Available Underwater wireless power transfer (UWPT is an important technique to power underwater devices while its frequency splitting phenomena are not fully elucidated. In this study, frequency splitting phenomena of a symmetrical planar two-coil wireless power transfer (WPT system resonated at 90 kHz are investigated in seawater and freshwater. A concise frequency splitting analysis of this WPT system in air based on circuit model is given first and then experimental data are reported to show there is little difference between power transfer in air, freshwater and seawater in the range of 40–140 kHz of this WPT system. Consequently, the frequency splitting analysis and observations in air are also applicable in freshwater and seawater. It is found a V-type frequency splitting pattern exists in this WPT system under seawater and freshwater. Frequency shift is observed in this UWPT system in overcoupled region, and no frequency shift is observed in undercoupled region. In undercoupled region, in the low frequency zone of 40–90 kHz the load voltage characteristics in three media are identical; in the high-frequency zone of 90–140 kHz, the load voltage in air is slightly larger than those in freshwater and seawater.

  14. Performance Optimization of Alternative Lower Global Warming Potential Refrigerants in Mini-Split Room Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2017-01-01

    Oak Ridge National laboratory (ORNL) recently conducted extensive laboratory, drop-in investigations for lower Global Warming Potential (GWP) refrigerants to replace R-22 and R-410A. ORNL studied propane, DR-3, ARM-20B, N-20B and R-444B as lower GWP refrigerant replacement for R-22 in a mini-split room air conditioner (RAC) originally designed for R-22; and, R-32, DR-55, ARM-71A, and L41-2, in a mini-split RAC designed for R-410A. We obtained laboratory testing results with very good energy balance and nominal measurement uncertainty. Drop-in studies are not enough to judge the overall performance of the alternative refrigerants since their thermodynamic and transport properties might favor different heat exchanger configurations, e.g. cross-flow, counter flow, etc. This study compares optimized performances of individual refrigerants using a physics-based system model tools. The DOE/ORNL Heat Pump Design Model (HPDM) was used to model the mini-split RACs by inputting detailed heat exchangers geometries, compressor displacement and efficiencies as well as other relevant system components. The RAC models were calibrated against the lab data for each individual refrigerant. The calibrated models were then used to conduct a design optimization for the cooling performance by varying the compressor displacement to match the required capacity, and changing the number of circuits, refrigerant flow direction, tube diameters, air flow rates in the condenser and evaporator at 100% and 50% cooling capacities. This paper compares the optimized performance results for all alternative refrigerants and highlights best candidates for R-22 and R-410A replacement.

  15. Conditional Toxin Splicing Using a Split Intein System.

    Science.gov (United States)

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  16. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1985-01-01

    Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV

  17. Numerical Study of an Ejector as an Expansion Device in Split-type Air Conditioners for Energy Savings

    Directory of Open Access Journals (Sweden)

    Kasni Sumeru

    2013-07-01

    Full Text Available The present study describes a numerical approach for determining both the motive nozzle and constant-area diameters of an ejector as an expansion device, based on the cooling capacity of a split-type air-conditioner using R290 as refrigerant. Previous studies have shown that replacement of HCFC R22 with HC290 (propane in the air conditioner can improve the coefficient of performance (COP. The purpose of replacing the capillary tube with an ejector as an expansion device in a split-type air conditioner using HC290 is to further improve the COP. In developing the model, conservation laws of mass, momentum and energy equations were applied to each part of the ejector. The numerical results show that the motive nozzle diameter remains constant (1.03 mm under varying condenser temperatures, whereas the diameter of the constant-area decreases as the condenser temperature increases. It was also found that improvement of the COP can reach 32.90% at a condenser temperature of 55 °C. From the results mentioned above, it can be concluded that the use of an ejector can further improve the COP of a split-type air conditioner using HC290 as working fluid.

  18. Air condensation thermo-pumps for residential and small commercial buildings; Les thermopompes a condensation par air dans le residentiel et le petit tertiaire

    Energy Technology Data Exchange (ETDEWEB)

    Carteret, P. [Societe Airwell, (France)

    1997-12-31

    The advantages of recent air conditioning systems in terms of temperature control, air quality, air renewal, humidity control, air distribution, acoustic comfort, flexibility, are reviewed and some aspects concerning the evolution of the market in France are discussed (steady growth of the AC residential market). The different types of air conditioning systems are presented (direct expansion with the split-system, and cool water system); the characteristics, advantages and investment/operation costs of split-system and multi-splits thermo-pumps and hot water / cooled water production central units are described

  19. Experimental study on energy performance of a split air-conditioner by using variable thickness evaporative cooling pads coupled to the condenser

    International Nuclear Information System (INIS)

    Martínez, P.; Ruiz, J.; Cutillas, C.G.; Martínez, P.J.; Kaiser, A.S.; Lucas, M.

    2016-01-01

    A well known strategy for improving the performance of air conditioning systems when using air-condensed units is to decrease the ambient inlet airflow temperature by means of an evaporative cooling pad. In this work experiments are conducted in a split air-conditioning system where the condensing unit is modified by coupling different evaporative cooling pads with variable thickness. The impact of the different cooling pads on the overall performance of the air-conditioning system is experimentally determined by measuring the airflow conditions and the energy consumption of the overall air conditioning system, including both the condenser fan and the feedwater recirculation pump of the cooling pads. The aim is to determine the energy efficiency improvement achieved by pre-cooling the ambient airflow compared to a common air-condensed unit and to calculate the optimal pad thickness that maximize the overall COP of the system. Experimental results indicate that the best overall COP is obtained by adding a cooling pad thickness of about 100 mm. At that point the compressor power consumption is reduced by 11.4%, the cooling capacity is increased by 1.8% and finally the overall COP is increased by 10.6%.

  20. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon; Alouini, Mohamed-Slim

    2014-01-01

    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold

  1. Simulated and experimental performance of split packaged air conditioner using refrigerant HC-290 as a substitute for HCFC-22

    International Nuclear Information System (INIS)

    Padalkar, Atul S.; Mali, Kundlik V.; Devotta, Sukumar

    2014-01-01

    This paper discusses the use of propane (HC-290) as a safe and energy efficient alternative to HCFC-22 in a typical split air conditioner with nominal cooling capacities up to 5.1 kW. Initially split air conditioner performance is simulated for cooling capacity, energy efficiency ratio (EER), and refrigerant charge. Tests were conducted for different test cases in a psychrometric test chamber with HCFC-22 and HC-290. The test conditions considered are as per Indian Standards, IS 1391 (1992) Part I. The various parameters considered were based on simulated performance with the objective to achieve maximum EER for the desired cooling capacity. As the flammability is an issue for HC-290, the reduction of HC-290 charge was another objective. Two different types of condensers, first with smaller size tubing and another parallel flow condenser (PFC) or minichannel condenser were used in order to reduce HC-290 charge. For HC-290, the highest EER achieved was 3.7 for cooling capacity 4.90 kW for a refrigerant charge of 360 g. The important safety aspects of using HC-290 in air conditioner are discussed. The refrigerant charge as per EN 378 for different cooling capacities and room sizes is also considered. -- Highlights: • Simulation for performance of split air conditioner has been done using HC-290 as a replacement to HCFC-22. • The safety aspects of HC-290 are discussed when used in split air conditioner. • HC-290 was tested in psychrometric test chamber as per IS 1391 part 1. • With PFC, HC-290 gave highest EER of 3.7 which was 37% higher than that of HCFC-22. • The lowest HC-290 charge used in test was 340 g which is well below LFL

  2. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory

    2018-02-01

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  3. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry

    Science.gov (United States)

    Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram

    1990-01-01

    Formulations of inviscid flux splitting algorithms for chemical nonequilibrium gases are presented. A chemical system for air dissociation and recombination is described. Numerical results for one-dimensional shock tube and nozzle flows of air in chemical nonequilibrium are examined.

  4. Optimum placement of condensing units of split-type air-conditioners by numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Avara, Abdollah; Daneshgar, Ehsan [Mechanical Engineering Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of)

    2008-07-01

    Split-type air-conditioners used in residential or office buildings often have the outdoor condensing units installed at the sidewalls or on the roofs. Installation distance from the supporting wall for the first group and the height of installation for the second group are two factors that affect the condenser efficiency. In this study, a CFD code is used to calculate the effect of distance from the supporting wall on the entrance air temperature and on the on-coil temperature of condenser installed between two walls. In the case of condenser installed on the roof, the effect of installation height of the condenser from the finished roof on on-coil temperature is investigated and the minimum recommended height of installation is determined. (author)

  5. Small photovoltaic setup for the air conditioning system

    Directory of Open Access Journals (Sweden)

    Masiukiewicz Maciej

    2017-01-01

    Full Text Available The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES. The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system. Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  6. Small photovoltaic setup for the air conditioning system

    Science.gov (United States)

    Masiukiewicz, Maciej

    2017-10-01

    The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES). The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV) to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system). Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  7. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary.

    Science.gov (United States)

    Azzam, R M A

    2015-12-01

    Conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an air-dielectric boundary are determined. Such angularly symmetric beam splitting (ASBS) is possible only if the angle of incidence is >60° by exactly one third of the angle of refraction. This simple law, plus Snell's law, leads to several analytical results that clarify all aspects of this phenomenon. In particular, it is shown that the intensities of the two symmetrically deflected beams can be equalized by proper choice of the prism refractive index and the azimuth of incident linearly polarized light. ASBS enables a geometrically attractive layout of optical systems that employ multiple prism beam splitters.

  8. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  9. Impact of Degraded Communication on Interdependent Power Systems: The Application of Grid Splitting

    Directory of Open Access Journals (Sweden)

    Di-An Tian

    2016-08-01

    Full Text Available Communication is increasingly present for managing and controlling critical infrastructures strengthening their cyber interdependencies. In electric power systems, grid splitting is a topical communication-critical application. It amounts to separating a power system into islands in response to an impending instability, e.g., loss of generator synchronism due to a component fault, by appropriately disconnecting transmission lines and grouping synchronous generators. The successful application of grid splitting depends on the communication infrastructure to collect system-wide synchronized measurements and to relay the command to open line switches. Grid splitting may be ineffective if communication is degraded and its outcome may also depend on the system loading conditions. This paper investigates the effects of degraded communication and load variability on grid splitting. To this aim, a communication delay model is coupled with a transient electrical model and applied to the IEEE 39-Bus and the IEEE 118-Bus Test System. Case studies show that the loss of generator synchronism following a fault is mitigated by timely splitting the network into islands. On the other hand, the results show that communication delays and increased network flows can degrade the performance of grid splitting. The developed framework enables the identification of the requirements of the dedicated communication infrastructure for a successful grid-splitting procedure.

  10. Effect of superconducting electrons on the energy splitting of tunneling systems

    International Nuclear Information System (INIS)

    Yu, C.C.; Granato, A.V.

    1985-01-01

    We consider the effect of superconducting electrons on the magnitude of the energy splitting of a tunneling system. A specific example is a hydrogen atom tunneling in niobium. We find that in this case the splitting is roughly 20% smaller in the normal state than in the superconducting state. This difference in the splitting should be observable in neutron scattering and ultrasonic measurements

  11. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  12. Normal-Mode Splitting in a Weakly Coupled Optomechanical System

    Science.gov (United States)

    Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David

    2018-02-01

    Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.

  13. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  14. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon

    2014-05-01

    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold during a guard period if no user sends a feedback. However, when a feedback collision occurs at any point of time, the proposed algorithm no longer updates the threshold but narrows down the user search space by dividing the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a feedback, it is shown that the proposed algorithm significantly alleviates the signaling overhead for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots than the opportunistic splitting algorithm to make a user selection with a given level of scheduling outage probability or provides a higher ergodic capacity given a certain number of mini-slots. © 2013 IEEE.

  15. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system.

    Science.gov (United States)

    Kakimoto, Yuriko; Tashiro, Shinya; Kojima, Rieko; Morozumi, Yuki; Endo, Toshiya; Tamura, Yasushi

    2018-04-18

    Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo and show its advantages and disadvantages. We observed punctate GFP signals from the split-GFP fragments targeted to any pairs of organelles among the ER, mitochondria, peroxisomes, vacuole and lipid droplets in yeast cells, which suggests that these organelles form contact sites with multiple organelles simultaneously although it is difficult to rule out the possibilities that these organelle contacts sites are artificially formed by the irreversible associations of the split-GFP probes. Importantly, split-GFP signals in the overlapped regions of the ER and mitochondria were mainly co-localized with ERMES, an authentic ER-mitochondria tethering structure, suggesting that split-GFP assembly depends on the preexisting inter-organelle contact sites. We also confirmed that the split-GFP system can be applied to detection of the ER-mitochondria contact sites in HeLa cells. We thus propose that the split-GFP system is a potential tool to observe and analyze inter-organelle contact sites in living yeast and mammalian cells.

  16. Simulation of Evacuated Tube Collector and Storage of Hybrid Air-conditioning System

    Directory of Open Access Journals (Sweden)

    Mustafa Ahmed Abdulhussain

    2018-02-01

    Full Text Available The CFD transient simulation of superheating the refrigerant R410 through the heat exchange with the evacuated tube water heating system of the hybrid split air conditioner that is subjected to solar radiation of constant intensity with the contribution of fan accelerated air is performed by the ANSYS-CFX code. The comparison with experimental work showed a minimum percentage error 8% of the predicted refrigerant evaporative heat transfer with storage tank horizontal tubing. In addition, the results denoted high absorption rate for the evacuated tubes, reducing highly reversed heat transmission for the circulated water. 

  17. Performance improvement of air-cooled refrigeration system by using evaporatively cooled air condenser

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, E.; Eghtedari, H. [Mechanical Engineering Department, Shahid Chamran University, Golestan St., Ahvaz (Iran)

    2010-08-15

    Increasing the coefficient of performance of air conditioner with air-cooled condenser is a challenging problem especially in area with very hot weather conditions. Application of evaporatively cooled air condenser instead of air-cooled condenser is proposed in this paper as an efficient way to solve the problem. An evaporative cooler was built and coupled to the existing air-cooled condenser of a split-air-conditioner in order to measure its effect on the cycle performance under various ambient air temperatures up to 49 C. Experimental results show that application of evaporatively cooled air condenser has significant effect on the performance improvement of the cycle and the rate of improvement is increased as ambient air temperature increases. It is also found that by using evaporatively cooled air condenser in hot weather conditions, the power consumption can be reduced up to 20% and the coefficient of performance can be improved around 50%. More improvements can be expected if a more efficient evaporative cooler is used. (author)

  18. Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.

    Science.gov (United States)

    Liu, Chong; Colón, Brendan C; Ziesack, Marika; Silver, Pamela A; Nocera, Daniel G

    2016-06-03

    Artificial photosynthetic systems can store solar energy and chemically reduce CO2 We developed a hybrid water splitting-biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages. When grown in contact with these catalysts, Ralstonia eutropha consumed the produced H2 to synthesize biomass and fuels or chemical products from low CO2 concentration in the presence of O2 This scalable system has a CO2 reduction energy efficiency of ~50% when producing bacterial biomass and liquid fusel alcohols, scrubbing 180 grams of CO2 per kilowatt-hour of electricity. Coupling this hybrid device to existing photovoltaic systems would yield a CO2 reduction energy efficiency of ~10%, exceeding that of natural photosynthetic systems. Copyright © 2016, American Association for the Advancement of Science.

  19. Performance evaluation of pumping systems used in commercial-scale, split-pond aquaculture

    Science.gov (United States)

    Split-pond aquaculture systems have been adopted widely by United States catfish farmers as a way to improve production performance. The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two water conveyance structures. Water is circulated between the two b...

  20. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary: reply.

    Science.gov (United States)

    Azzam, R M A

    2016-05-01

    The simplified explicit expressions derived by Andersen [J. Opt. Soc. Am. A33, 984 (2016)JOAOD60740-323210.1364/JOSAA.32.000984], that relate to angularly symmetric beam splitting by reflection and refraction at an air-dielectric interface recently described by Azzam [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436], are welcome. A few additional remarks are also included in my reply to Andersen's comment.

  1. Design of a holographic micro-scale spectrum-splitting photovoltaic system

    Science.gov (United States)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Russo, Juan M.; Kostuk, Raymond K.

    2015-09-01

    Micro-scale PV technology combines the high conversion efficiency of concentrated photovoltaics (CPV) with the low costs and the simple form of flat panel PV. Some of the benefits of micro-scale PV include: reduced semiconductor material usage; improved heat rejection capacity; and more versatile PV cell interconnect configurations. Spectrumsplitting is also a beneficial technique to increase the efficiency and reduce the cost of photovoltaic systems. It spatially separates the incident solar spectrum into spectral components and directs them to PV cells with matching bandgaps. This approach avoids the current and lattice matching problems that exist in tandem multi-junction systems. In this paper, we applied the ideas of spectrum-splitting in a micro-scale PV system, and demonstrated a holographic micro-scale spectrum-splitting photovoltaic system. This system consists of a volume transmission hologram in combination with a micro-lens array. An analysis methodology was developed to design the system and determine the performance of the resulting system. The spatial characteristics of the dispersed spectrum, the overall system conversion efficiency, and the improvement over best bandgap will be discussed.

  2. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  3. Impact of a warning CPOE system on the inappropriate pill splitting of prescribed medications in outpatients.

    Directory of Open Access Journals (Sweden)

    Chia-Chen Hsu

    Full Text Available Prescribing inappropriate pill splitting is not rare in clinical practice. To reduce inappropriate pill splitting, we developed an automatic warning system linked to a computerized physician order entry (CPOE system for special oral formulation drugs in outpatient settings. We examined the impact of the warning system on inappropriate prescribing of pill splitting and assess prescribers' responses to the warnings.Drugs with extended-release or enteric-coated formulations that were not originally intended to be split were recognized as "special oral formulations". A hard-stop system which could examine non-integer doses of drugs with special oral formulations, provide warnings to interrupt inappropriate prescriptions was integrated in CPOE in a medical center since June 2010. We designed an intervention study to compare the inappropriate splitting before and after the implementation of the warning system (baseline period 2010 January to May vs. intervention period 2010 June to 2011 August. During the intervention period, prescription changes in response to a warning were logged and analyzed.A total of 470,611 prescribed drug items with 34 different drugs with special oral formulations were prescribed in the study period. During the 15-month intervention period, 909 warnings for 26 different drugs were triggered among 354,523 prescribed drug items with special oral formulations. The warning rate of inappropriate splitting in the late intervention period was lower than those in baseline period (0.16% vs. 0.61%, incidence rate ratio 0.27, 95% CI 0.23-0.31, P<0.001. In respond to warnings, physicians had to make adjustments, of which the majority was changing to an unsplit pill (72.9%.The interruptive warning system could avoid the prescriptions with inappropriate pill splitting. Accordingly, physicians changed their behavior of prescribing special oral formulations regarding inappropriate pill splitting. We suggest the establishment of such system

  4. Splitting Schemes & Segregation In Reaction-(Cross-)Diffusion Systems

    OpenAIRE

    Carrillo, José A.; Fagioli, Simone; Santambrogio, Filippo; Schmidtchen, Markus

    2017-01-01

    One of the most fascinating phenomena observed in reaction-diffusion systems is the emergence of segregated solutions, i.e. population densities with disjoint supports. We analyse such a reaction cross-diffusion system. In order to prove existence of weak solutions for a wide class of initial data without restriction about their supports or their positivity, we propose a variational splitting scheme combining ODEs with methods from optimal transport. In addition, this approach allows us to pr...

  5. On Split Lie Algebras with Symmetric Root Systems

    Indian Academy of Sciences (India)

    ... and any I j a well described ideal of , satisfying [ I j , I k ] = 0 if j ≠ k . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected.

  6. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    ideal of L, satisfying [Ij ,Ik] = 0 if j = k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Keywords. Infinite dimensional Lie ...

  7. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.

    1994-01-01

    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  8. Second-order splitting schemes for a class of reactive systems

    International Nuclear Information System (INIS)

    Ren Zhuyin; Pope, Stephen B.

    2008-01-01

    We consider the numerical time integration of a class of reaction-transport systems that are described by a set of ordinary differential equations for primary variables. In the governing equations, the terms involved may require the knowledge of secondary variables, which are functions of the primary variables. Specifically, we consider the case where, given the primary variables, the evaluation of the secondary variables is computationally expensive. To solve this class of reaction-transport equations, we develop and demonstrate several computationally efficient splitting schemes, wherein the portions of the governing equations containing chemical reaction terms are separated from those parts containing the transport terms. A computationally efficient solution to the transport sub-step is achieved through the use of linearization or predictor-corrector methods. The splitting schemes are applied to the reactive flow in a continuously stirred tank reactor (CSTR) with the Davis-Skodjie reaction model, to the CO+H 2 oxidation in a CSTR with detailed chemical kinetics, and to a reaction-diffusion system with an extension of the Oregonator model of the Belousov-Zhabotinsky reaction. As demonstrated in the test problems, the proposed splitting schemes, which yield efficient solutions to the transport sub-step, achieve second-order accuracy in time

  9. Split-illumination electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Inada, Yoshikatsu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Taniyama, Akira [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo 660-0891 (Japan); Shindo, Daisuke [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-23

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  10. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  11. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Munk, Jeffrey D [ORNL; Shrestha, Som S [ORNL; Linkous, Randall Lee [ORNL; Goetzler, William [Navigant Consulting Inc.; Guernsey, Matt [Navigant Consulting Inc.; Kassuga, Theo [Navigant Consulting Inc.

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  12. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Kassuga, Theo [Navigant Consulting Inc., Burlington, MA (United States)

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  13. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes

    Science.gov (United States)

    Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J.; Thayne, Iain G.; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai

    2018-05-01

    Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 μ eV . Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

  14. Analysis of operator splitting errors for near-limit flame simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhen; Zhou, Hua [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Li, Shan [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China); Ren, Zhuyin, E-mail: zhuyinren@tsinghua.edu.cn [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China); Lu, Tianfeng [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269-3139 (United States); Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2017-04-15

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction–diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction of ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory

  15. Splitting and non splitting are pollution models photochemical reactions in the urban areas of greater Tehran area

    International Nuclear Information System (INIS)

    Heidarinasab, A.; Dabir, B.; Sahimi, M.; Badii, Kh.

    2003-01-01

    During the past years, one of the most important problems has been air pollution in urban areas. In this regards, ozone, as one of the major products of photochemical reactions, has great importance. The term 'photochemical' is applied to a number of secondary pollutants that appear as a result of sun-related reactions, ozone being the most important one. So far various models have been suggested to predict these pollutants. In this paper, we developed the model that has been introduced by Dabir, et al. [4]. In this model more than 48 chemical species and 114 chemical reactions are involved. The result of this development, showed good to excellent agreement across the region for compounds such as O 3 , NO, NO 2 , CO, and SO 2 with regard to VOC and NMHC. The results of the simulation were compared with previous work [4] and the effects of increasing the number of components and reactions were evaluated. The results of the operator splitting method were compared with non splitting solving method. The result showed that splitting method with one-tenth time step collapsed with non splitting method (Crank-Nicolson, under-relaxation iteration method without splitting of the equation terms). Then we developed one dimensional model to 3-D and were compared with experimental data

  16. Dynamic rock tests using split Hopkinson (Kolsky bar system – A review

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2015-02-01

    Full Text Available Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar (SHPB and split Hopkinson tension bar (SHTB systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of techniques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques. Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT, laser gap gauge (LGG, digital image correlation (DIC, Moiré method, caustics method, photoelastic coating method, dynamic infrared thermography are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests, dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity, and dynamic techniques for studying the influences of temperature and pore water.

  17. Relationship between electromagnetically-induced transparency and Autler–Townes splitting in a Doppler-broadened system

    International Nuclear Information System (INIS)

    Pei Li-Ya; Qu Yi-Zhi; Niu Jin-Yan; Wang Ru-Quan; Zuo Zhan-Chun; Wu Ling-An; Fu Pan-Ming

    2015-01-01

    We study the relationship between electromagnetically-induced transparency (EIT) and Autler–Townes (AT) splitting in a cascade three-level Doppler-broadened system. By comparing the absorption spectrum with the fluorescence excitation spectrum, it is found that for a Doppler-broadened system, EIT resonance cannot be explained as the result of quantum interference, unlike the case of a homogeneously broadened system. Instead, the macroscopic polarization interference plays an important role in determining the spectra of EIT and AT splitting, which can be explained within the same framework when being detected by the absorption spectra. (paper)

  18. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system

    Science.gov (United States)

    Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan

    2012-01-01

    This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.

  19. Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rugh, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Computational fluid dynamics (CFD) simulations of a Ford Focus Electric demonstrated that a split flow heating, ventilating and air conditioning (HVAC) system with rear recirculation ducts can reduce cabin heating loads by up to 57.4% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Simulations also showed that implementing a continuous recirculation fraction control system into the original equipment manufacturer (OEM) HVAC system can reduce cabin heating loads by up to 50.0% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Identified that continuous fractional recirculation control of the OEM system can provide significant energy savings for EVs at minimal additional cost, while a split flow HVAC system with rear recirculation ducts only provides minimal additional improvement at significant additional cost.

  20. Particulate photocatalysts for overall water splitting

    Science.gov (United States)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  1. The Split Coefficient Matrix method for hyperbolic systems of gasdynamic equations

    Science.gov (United States)

    Chakravarthy, S. R.; Anderson, D. A.; Salas, M. D.

    1980-01-01

    The Split Coefficient Matrix (SCM) finite difference method for solving hyperbolic systems of equations is presented. This new method is based on the mathematical theory of characteristics. The development of the method from characteristic theory is presented. Boundary point calculation procedures consistent with the SCM method used at interior points are explained. The split coefficient matrices that define the method for steady supersonic and unsteady inviscid flows are given for several examples. The SCM method is used to compute several flow fields to demonstrate its accuracy and versatility. The similarities and differences between the SCM method and the lambda-scheme are discussed.

  2. Acoustic beam splitting in a sonic crystal around a directional band gap

    International Nuclear Information System (INIS)

    Cicek Ahmet; Kaya Olgun Adem; Ulug Bulent

    2013-01-01

    Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle

  3. Concept of expert system for modal split in transportation planning

    Directory of Open Access Journals (Sweden)

    Popović Maja M.

    2006-01-01

    Full Text Available The objective of this paper is to develop a concept of expert system based on the survey of experts' opinions and their experience concerning relations in modal split, on the basis of parameters of transport system demand and transport supply, defined through PT travel time and city size, i.e. mean trip length. This expert system could be of use both to experts and less experienced planners who could apply the knowledge contained in this expert system for further improvement, on operational as well as on strategic level.

  4. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan

    2015-01-01

    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  5. Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization

    International Nuclear Information System (INIS)

    Park, Jungsoo; Song, Soonho; Lee, Kyo Seung

    2015-01-01

    Highlights: • Model-based control of dual-loop EGR system is performed. • EGR split index is developed to provide non-dimensional index for optimization. • EGR rates are calibrated using EGR split index at specific operating conditions. • Multi-objective Pareto optimization is performed to minimize NO X and BSFC. • Optimum split strategies are suggested with LP-rich dual-loop EGR at high load. - Abstract: A proposed dual-loop exhaust-gas recirculation (EGR) system that combines the features of high-pressure (HP) and low-pressure (LP) systems is considered a key technology for improving the combustion behavior of diesel engines. The fraction of HP and LP flows, known as the EGR split, for a given dual-loop EGR rate play an important role in determining the engine performance and emission characteristics. Therefore, identifying the proper EGR split is important for the engine optimization and calibration processes, which affect the EGR response and deNO X efficiencies. The objective of this research was to develop a dual-loop EGR split strategy using numerical analysis and one-dimensional (1D) cycle simulation. A control system was modeled by coupling the 1D cycle simulation and the control logic. An EGR split index was developed to investigate the HP/LP split effects on the engine performance and emissions. Using the model-based control system, a multi-objective Pareto (MOP) analysis was used to minimize the NO X formation and fuel consumption through optimized engine operating parameters. The MOP analysis was performed using a response surface model extracted from Latin hypercube sampling as a fractional factorial design of experiment. By using an LP rich dual-loop EGR, a high EGR rate was attained at low, medium, and high engine speeds, increasing the applicable load ranges compared to base conditions

  6. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system

    Directory of Open Access Journals (Sweden)

    Lalonde Sylvie

    2003-03-01

    Full Text Available Abstract Background The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. Results Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. Conclusions The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.

  7. Earthy and musty off-flavor episodes in catfish split-pond aquaculture systems

    Science.gov (United States)

    The interest and use of variations of partitioned aquaculture systems (PAS) by the southeastern U.S. catfish farming industry continues to grow. Split-pond systems, one type of PAS, are designed to improve management of dissolved oxygen levels and fish waste products (e.g., ammonia) compared to conv...

  8. Holographic spectrum-splitting optical systems for solar photovoltaics

    Science.gov (United States)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  9. A Proposal for the Time Domain Modeling of Split Air Conditioners for Consumer Reimbursement Studies

    Science.gov (United States)

    Rezende, Paulo Henrique Oliveira; Almeida Junior, Afonso Bernardino; Gondim, Isaque Nogueira; Oliveira, José Carlos

    2015-04-01

    This paper deals with computer application procedures for the evaluation of the causal consistency between anomalous phenomena manifested in electrical networks, along with the physical damage associated with electrical equipment and possible reimbursement requests. The focus is on the development of an air conditioner appliance model of the type known as split founded upon a representation, in the time domain, in accordance with the Alternative Transients Program (ATP) simulator requirements. This approach permits investigations concerning the performance of the product when submitted to ideal and non-ideal supply conditions. Once the equipment model is implemented in the program, a set of investigative studies are carried out to show the device performance under specific energy quality disturbance conditions. In addition, there are still the results for the validation of the process established through the correlation between computational performance of the air conditioner with corresponding studies carried out experimentally, which are presented herein. Moreover, once the effectiveness of the developed model is verified, it is implemented into the Requests for Reimbursement Software. Investigations related to the correlation between disturbances and the levels of thermal and dielectric tolerance are then performed aiming at illustrating the use of the research results for the reimbursement analyzes purposes.

  10. Air ejector augmented compressed air energy storage system

    Science.gov (United States)

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  11. Incorporating fan control into air-conditioning systems to improve energy efficiency and transient response

    International Nuclear Information System (INIS)

    Yeh, T.-J.; Chen, Yun-Jih; Hwang, Wei-Yang; Lin, Jin-Long

    2009-01-01

    Modern air-conditioners frequently incorporate variable-speed compressors and variable-opening expansion valves with feedback control to improve performance and power efficiency. Because making the fan speeds adjustable adds flexibility to the control design and thus can lead to further improvements in performance and efficiency, this paper proposes two control algorithms, respectively, incorporating the outdoor fan and the indoor fan as the additional control inputs for air-conditioning systems. Both of the control algorithms are designed based on a low-order, linear model obtained from system identification. The first algorithm, which modulates the outdoor fan speed, can reduce the steady state power consumption if the temperature difference between the condenser and the outdoor environment is controlled properly. The second algorithm, which adds one more degree of freedom to control by modulating the indoor fan speed, can improve the transient response because actuator saturations become less likely to occur. The two control algorithms are implemented on a split-type residential air-conditioner and their respective performance is validated experimentally.

  12. Air-to-water heat pumps, business for refrigeration systems experts. Marketing of energy-efficient technology; Luft/Wasser-Waermepumpen. Ein Geschaeft fuer Kaelteanlagenbauer. Vermarktung von energieeffizienter Technik

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-01-15

    Many providers of refrigerating systems are already active in the private customer market offering split systems. There are less of them in the field of air-to-water heat pumps although this is also a growing market, and some producers of the air conditioning sector are already offering complete solutions. The contribution presents some sales arguments, outlines marketing tools for fitters - illustrated by the example of one provider -, and closes with a short market review. (orig.)

  13. Outdoor measurements of a photovoltaic system using diffractive spectrum-splitting and concentration

    Directory of Open Access Journals (Sweden)

    N. Mohammad

    2016-09-01

    Full Text Available In a single-bandgap absorber, photons having energy less than the bandgap are not absorbed, while those having energy larger than the bandgap lose the excess energy via thermalization. We present outdoor measurements of a photovoltaic system that overcomes these losses via spectrum splitting and concentration using a planar diffractive optic. The system was comprised of the diffractive optic coupled with GaInP and CIGS solar cells. The optic provides a geometric concentration of 3X for each solar cell. It is easily fabricated by single-step grayscale lithography and it is ultra-thin with a maximum thickness of only 2.5μm. Electrical measurements under direct sunlight demonstrated an increase of ∼25% in total output power compared to the reference case without spectrum splitting and concentration. Since different bandgaps are in the same plane, the proposed photovoltaic system successfully circumvents the lattice-matching and current-matching issues in conventional tandem multi-junction solar cells. This system is also tolerant to solar spectrum variation and fill-factor degradation of constitutive solar cells.

  14. Comparison of fin-and-tube interlaced and face split evaporators with flow maldistribution and compensation

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Larsen, Lars Finn Sloth

    2013-01-01

    Flow maldistribution in fin-and tube evaporators for residential air-conditioning is investigated by numerical simulation. In particular, the interlaced and the face split evaporator are compared in flow maldistribution conditions. The considered sources of maldistribution are the liquid/vapor di......Flow maldistribution in fin-and tube evaporators for residential air-conditioning is investigated by numerical simulation. In particular, the interlaced and the face split evaporator are compared in flow maldistribution conditions. The considered sources of maldistribution are the liquid...

  15. Assessment of the thermal environment effects on human comfort and health for the development of novel air conditioning system in tropical regions

    Energy Technology Data Exchange (ETDEWEB)

    Sookchaiya, Thammanoon; Monyakul, Veerapol; Thepa, Sirichai [Division of Energy Technology, School of Energy Environment and Materials, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2010-10-15

    This research shows the result of a brainstorming by medical experts in the first ranking university medical school and hospital of Thailand. It was based on Delphi technique. The objective of this research was to study both direct and indirect effects of humidity and temperature on human health in air-conditioned buildings in Thailand. Afterwards, the result was used to design and develop split type air conditioner (conventional air conditioner) which could control relative humidity and temperature with precision air conditioning system to comply with the climate and the suitability of the people living in Thailand building. The result of operation with precision inverter air conditioning system showed that the temperature inside the room changed from the default value around {+-}0.2 C (Case 1) and around {+-}0.35 C (Case 2) and it could control relative humidity as a desired condition between 50-60% (both cases) which was the appropriate range for Thai climate. Moreover, energy consumption of precision inverter air conditioning system was still less than conventional air conditioning system for about 7.5%. This research could provide people living in Thailand air conditioned building with human thermal comfort and health. (author)

  16. Active Splitting in Longitudinal Power Systems based on a WAMPC

    Directory of Open Access Journals (Sweden)

    Felipe Arraño-Vargas

    2017-12-01

    Full Text Available This paper proposes an active splitting scheme especially suitable for longitudinal power systems (LPS. The proposed scheme is based on a modified out-of-step (OOS algorithm combined with an angle difference method using synchrophasor measurements. The remedial actions are based on the detection of possible loss of synchronism due to severe disturbances. The scheme was tested on a detailed dynamic model of the Central Interconnected System of Chile, a good example of extreme LPS. Obtained results show that remedial actions taken by the proposed protection scheme are able to avoid the total collapse of the system during critical contingencies.

  17. Safety-related control air systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This Standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this Standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  18. Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290

    International Nuclear Information System (INIS)

    Zhou, Guobing; Zhang, Yufeng

    2010-01-01

    This paper experimentally investigated the system performance of a split-type air conditioner matching with different coiled adiabatic capillary tubes for HCFC22 and HC290. Experiments were carried out in a room-type calorimeter. The results have shown that (1) similar cooling effects can be achieved by matching various capillary tubes of different inner diameters; (2) parallel capillary tubes presented better system performance and flow stability with weaker inlet pressure fluctuations than the single capillary tube; (3) with the coil diameter of the capillary tube increasing from 40 mm to 120 mm, the mass flow rate tended to increase slightly. But the cooling capacity, input power and energy efficiency ratio (EER) did not show evident tendency of change; (4) the refrigerant charge and mass flow rate for HC290 were only 44% and 47% of that for HCFC22, respectively, due to the much lower density. And HC290 had 4.7-6.7% lower cooling capacity and 12.1-12.3% lower input power with respect to HCFC22. However, the EER of HC290 can be 8.5% higher than that of HCFC22, which exhibits the advantage of using HC290. In addition, the experimental uncertainties were analyzed and some application concerns of HC290 were discussed.

  19. Cool covered sky-splitting spectrum-splitting FK

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politécnica de Madrid (UPM), Madrid (Spain)

    2014-09-26

    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

  20. Comparison of phytoplankton communities in catfish split-pond aquaculture systems with conventional ponds

    Science.gov (United States)

    There has been a growing interest and use of variations of partitioned aquaculture systems (PAS) in recent years by the southeastern United States of America farmed catfish industry. Split-pond systems, one type of PAS, are designed to better manage fish waste byproducts (e.g., ammonia) and dissolv...

  1. Manual for THOR-AirPAS - air pollution assessment system

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Brandt, Jørgen

    The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS.......The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS....

  2. Riemann surfaces of complex classical trajectories and tunnelling splitting in one-dimensional systems

    Science.gov (United States)

    Harada, Hiromitsu; Mouchet, Amaury; Shudo, Akira

    2017-10-01

    The topology of complex classical paths is investigated to discuss quantum tunnelling splittings in one-dimensional systems. Here the Hamiltonian is assumed to be given as polynomial functions, so the fundamental group for the Riemann surface provides complete information on the topology of complex paths, which allows us to enumerate all the possible candidates contributing to the semiclassical sum formula for tunnelling splittings. This naturally leads to action relations among classically disjoined regions, revealing entirely non-local nature in the quantization condition. The importance of the proper treatment of Stokes phenomena is also discussed in Hamiltonians in the normal form.

  3. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    Science.gov (United States)

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G

    2015-02-24

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  4. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system

    Science.gov (United States)

    Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.; Bediako, D. Kwabena; Colón, Brendan; Way, Jeffery C.; Silver, Pamela A.; Nocera, Daniel G.

    2015-01-01

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations. PMID:25675518

  5. Experimental verification of a condenser with liquid–vapor separation in an air conditioning system

    International Nuclear Information System (INIS)

    Chen, Xueqing; Chen, Ying; Deng, Lisheng; Mo, Songping; Zhang, Haiyan

    2013-01-01

    Three liquid–vapor separation condensers (LSC) were tested to evaluate their ability to automatically separate the liquid and vapor during condensation. Each was used in a split-type air conditioner to investigate the performance. The performance of the LSC system having the greatest cooling capacity and energy efficiency ratio (EER) was then compared with that of the system having a baseline fin-and-tube condenser for various ambient temperatures from 29 °C to 43 °C. The results showed that both the cooling capacity and EER of the two systems were almost the same at the three standard conditions in the Chinese standard GB/T 7725-2004, with the LSC having just 67% of the heat transfer area of the baseline condenser. In addition, the LSC system was charged with only 80% of the refrigerant in the baseline system. -- Highlights: ► We tested three liquid–vapor separation condensers in an air conditioning system. ► The best system had the most uniform wall temperature and the smallest pressure drop. ► The LSC system performance with only 67% condenser area was as good as the baseline system. ► LSC system operations are compared for various outdoor temperatures

  6. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  7. SplitDist—Calculating Split-Distances for Sets of Trees

    DEFF Research Database (Denmark)

    Mailund, T

    2004-01-01

    We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....

  8. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air Conditioners... Split System Units Central Air Conditioners (Cooling Only): All capacities 10.9 23.0 Heat Pumps (Cooling... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cooling Performance and Cost for Central Air...

  9. Design and optimization of cascaded DCG based holographic elements for spectrum-splitting PV systems

    Science.gov (United States)

    Wu, Yuechen; Chrysler, Benjamin; Pelaez, Silvana Ayala; Kostuk, Raymond K.

    2017-09-01

    In this work, the technique of designing and optimizing broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting application. Spectrum splitting photovoltaic system uses a series of single bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. DCG is a near ideal holographic material for solar applications as it can achieve high refractive index modulation, low absorption and scattering properties and long-term stability to solar exposure after sealing. In this research, a methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cut-off wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is also developed to optimize both single and two-layer cascaded holographic spectrum splitters for the best bandgap combinations of two- and three-junction SSPV systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems under the AM1.5 solar spectrum are then calculated using the detailed balance method, and shows an improvement compared with tandem structure.

  10. Effects of Angular Variation on Split D Differential Eddy Current Probe Response (Postprint)

    Science.gov (United States)

    2016-02-10

    AFRL-RX-WP-JA-2016-0327 EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT) Ryan D...March 2014 – 22 September 2015 4. TITLE AND SUBTITLE EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT... Current Probe Response Ryan D. Mooers1, a) and John C. Aldrin2 1United States Air Force Research Labs, Materials and Manufacturing Directorate, Structural

  11. Air Quality System (AQS)

    Science.gov (United States)

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  12. Split warhead simultaneous impact

    Directory of Open Access Journals (Sweden)

    Rahul Singh Dhari

    2017-12-01

    Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.

  13. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  14. VISUALISASI DAN NAVIGASI MEDIA PENYIMPANAN DISK DENGAN MENGGUNAKAN METODE SPLIT SCREEN SYSTEM

    Directory of Open Access Journals (Sweden)

    Yulia yulia

    2002-01-01

    Full Text Available Disk is a very useful device to a computer to save data file. For that, is much needed to have a program that has a capability to represent, navigate, and operate that files. There are many computer programs that used to present, navigate, and operate disk files in text form with a lot of facilities, but only a few programs that can represent files in a graphic form and have special feature, like capability to find the biggest files that use disk space. This capability is very useful in disk file management. This software use split screen system method and tree map algorithm. Split screen system is used to navigate, where the monitor screen divided into two parts to visualize files in a disk, the small part (map navigator visualize the whole content of a drive or directory and the big part visualize the detail of a part according to focus box in the map navigator. A mouse can move focus box in the map navigator and the box size is the comparison between map navigator sizes with map view size. Tree map algorithm is used to calculate the size of box picture of the represented file. This algorithm needs a complete tree structure from a drive or directory that will be painted. The software to make this windows based program is Borland Delphi 5.0. Abstract in Bahasa Indonesia : Disk merupakan alat yang sangat bermanfaat bagi sebuah sistem komputer untuk menyimpan data berupa file. Untuk itu sangat dibutuhkan program yang dapat merepresentasikan, menavigasi dan mengoperasikan file-file tersebut. Banyak program komputer yang digunakan untuk merepresentasikan, menavigasi dan mengoperasikan file-file pada media penyimpanan disk dalam bentuk teks dengan berbagai macam fasilitas, tetapi sangat sedikit program yang merepresentasikan file-file dalam bentuk grafik atau secara visual serta mampu memberikan kelebihan-kelebihan tersendiri, seperti kemampuan untuk merepresentasikan file-file yang paling banyak menggunakan ruang media penyimpanan disk. Kemampuan

  15. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  16. Parallel runs of a large air pollution model on a grid of Sun computers

    DEFF Research Database (Denmark)

    Alexandrov, V.N.; Owczarz, W.; Thomsen, Per Grove

    2004-01-01

    Large -scale air pollution models can successfully be used in different environmental studies. These models are described mathematically by systems of partial differential equations. Splitting procedures followed by discretization of the spatial derivatives leads to several large systems...

  17. Quantitative analysis on electric dipole energy in Rashba band splitting.

    Science.gov (United States)

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  18. Tune splitting in the presence of linear coupling

    International Nuclear Information System (INIS)

    Parzen, G.

    1991-01-01

    The presence of random skew quadrupole field errors will couple the x and y motions. The x and y motions are then each given by the sum of 2 normal modes with the tunes v 1 and v 2 , which may differ appreciably from v x and v y , the unperturbed tunes. This is often called tune splitting since |v 1 - v 2 | is usually larger than |v x - v y |. This tune splitting may be large in proton accelerators using superconducting magnets, because of the relatively large random skew quadrupole field errors that are expected in these magnets. This effect is also increased by the required insertions in proton colliders which generate large β-functions in the insertion region. This tune splitting has been studied in the RHIC accelerator. For RHIC, a tune splitting as large as 0.2 was found in one worse case. A correction system has been developed for correcting this large tune splitting which uses two families of skew quadrupole correctors. It has been found that this correction system corrects most of the large tune splitting, but a residual tune splitting remains that is still appreciable. This paper discusses the corrections to this residual time

  19. Band splitting and relative spin alignment in two-layer systems

    CERN Document Server

    Ovchinnikov, A A

    2002-01-01

    It is shown that the single-particle spectra of the low Hubbard zone in the two-layer correlated 2D-systems sharply differ in the case of different relative alignment of the layers spin systems. The behavior of the two-layer splitting in the Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta gives all reasons for the hypothesis on the possible rearrangement of the F sub z -> AF sub z alignment configuration, occurring simultaneously with the superconducting transition. The effects of the spin alignment on the magnetic excitations spectrum, as the way for studying the spin structure of the two-layer systems, are discussed by the example of homogenous solutions for the effective spin models

  20. Instrument air system - Aging impact on system availability

    International Nuclear Information System (INIS)

    Villaran, M.; Subudhi, M.

    1989-01-01

    As part of ongoing efforts to understand and manage the effects of aging in nuclear power plants, an aging assessment was performed for the Instrument Air (IA) system, a system that has been the subject of much scrutiny in recent years. Despite its non-safety classification, instrument air has been a factor in a number of potentially serious events. This report presents the results of the assessment and discusses the impact of instrument air system aging on system availability and plant safety. This work was performed for the US Nuclear Regulatory Commission (NRC) as part of the Nuclear Plant Aging Research (NPAR) program. To perform the complex task of analyzing an entire system, the Aging and Life Extension Assessment Program (ALEAP) System Level Plan was developed by Brookhaven National Laboratory and applied successfully in previous system aging studies. The work presented herein was performed using two parallel work paths, as described in the ALEAP plant. One path used deterministic techniques to assess the impact of aging on compressed air system performance, while the second path used probabilistic methods. Results from both paths then were used to characterize aging in the instrument air system. Some conclusions from this work are: compressors, air system valves, and air dryers were found to make up the majority of failures; the effectiveness and quantity of preventive maintenance devoted to a component significantly affected the amount of failures experienced; review of compressed air system designs and studies using a PRA-based system model revealed that the redundancy of key components (compressors, dryers, IA/SA crossconnect valve) was an important factor in system availability; total loss of air events are uncommon

  1. A new titration system of a novel split-type superconducting magnet NMR spectrometer.

    Science.gov (United States)

    Kitagawa, Isao; Tanaka, Hideki; Okada, Michiya; Kitaguchi, Hitoshi; Kohzuma, Takamitsu

    2008-12-01

    A new titration system for studying protein-ligand interactions has been developed. In this system, the sample solution is circulated in the route formed by an access path in a split superconducting magnet to maintain a constant protein concentration during the titration experiments. A concentration-control procedure for the ligand/protein ratio is devised, and the ligand/protein ratio is well controlled by this apparatus.

  2. Advanced split-illumination electron holography without Fresnel fringes

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Park, Hyun Soon; Matsuda, Tsuyoshi; Harada, Ken; Shindo, Daisuke

    2014-01-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible

  3. Advanced split-illumination electron holography without Fresnel fringes

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Aizawa, Shinji; Park, Hyun Soon [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Harada, Ken [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan)

    2014-02-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible.

  4. Splitting of the rate matrix as a definition of time reversal in master equation systems

    International Nuclear Information System (INIS)

    Liu Fei; Le, Hong

    2012-01-01

    Motivated by recent progress in nonequilibrium fluctuation relations, we present a generalized time reversal for stochastic master equation systems with discrete states, which is defined as a splitting of the rate matrix into irreversible and reversible parts. An immediate advantage of this definition is that a variety of fluctuation relations can be attributed to different matrix splittings. Additionally, we find that the accustomed total entropy production formula and conditions of the detailed balance must be modified appropriately to account for the reversible rate part, which was previously ignored. (paper)

  5. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  6. High efficiency beam splitting for H- accelerators

    International Nuclear Information System (INIS)

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H - accelerators. This technique uses a high intensity flash of light to strip a fraction of the H - beam to H 0 which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10 -3 to 10 -2 splitting of a 50 MeV H - beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction

  7. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.

    1998-01-01

    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  8. Design and development of a split-evaporator heat-pump system

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, M.H.; Penoncello, S.G.

    1981-12-01

    The designs and experimental results of three types of multiple source heat pumps are presented. The three designs are the parallel evaporator, the series evaporator, and the parallel evaporator with active subcooling, with the parallel evaporator with the active subcooling showing the most promise for solving the problem of defrosting of air evaporators. Three design procedures for multiple source heat pumps were developed. One of these is a hand calculational procedure, the others are computer based. The models are based upon the refrigerant flow rate, rather than the refrigeration effect of the evaporator. The technical results of a detailed analytical and experimental model of the heat transfer rates on a flat plate ice maker are presented. It is shown, both analytically and experimentally, that the temperature of the air surrounding the flat plate ice maker can play a dominant role in the rate of ice formation. A detailed weather analysis for forty cities located throughout the nation was completed. These data were processed to allow easy computation of thermal storage requirements for full, partial, or minimum ACES systems, or upon other design requirements, such as off-peak air conditioning. The results of an innovative ice storage system that is thermally coupled to the earth are described. This system has the potential for meeting both the off-peak air conditioning needs and the thermal storage requirements for the heating cycle. An economic and energy comparison of multiple source heat pumps with ACES, and air-to-air heat pump systems is presented.

  9. High-resolution simulations of unstable cylindrical gravity currents undergoing wandering and splitting motions in a rotating system

    Science.gov (United States)

    Dai, Albert; Wu, Ching-Sen

    2018-02-01

    High-resolution simulations of unstable cylindrical gravity currents when wandering and splitting motions occur in a rotating system are reported. In this study, our attention is focused on the situation of unstable rotating cylindrical gravity currents when the ratio of Coriolis to inertia forces is larger, namely, 0.5 ≤ C ≤ 2.0, in comparison to the stable ones when C ≤ 0.3 as investigated previously by the authors. The simulations reproduce the major features of the unstable rotating cylindrical gravity currents observed in the laboratory, i.e., vortex-wandering or vortex-splitting following the contraction-relaxation motion, and good agreement is found when compared with the experimental results on the outrush radius of the advancing front and on the number of bulges. Furthermore, the simulations provide energy budget information which could not be attained in the laboratory. After the heavy fluid is released, the heavy fluid collapses and a contraction-relaxation motion is at work for approximately 2-3 revolutions of the system. During the contraction-relaxation motion of the heavy fluid, the unstable rotating cylindrical gravity currents behave similar to the stable ones. Towards the end of the contraction-relaxation motion, the dissipation rate in the system reaches a local minimum and a quasi-geostrophic equilibrium state is reached. After the quasi-geostrophic equilibrium state, vortex-wandering or vortex-splitting may occur depending on the ratio of Coriolis to inertia forces. The vortex-splitting process begins with non-axisymmetric bulges and, as the bulges grow, the kinetic energy increases at the expense of decreasing potential energy in the system. The completion of vortex-splitting is accompanied by a local maximum of dissipation rate and a local maximum of kinetic energy in the system. A striking feature of the unstable rotating cylindrical gravity currents is the persistent upwelling and downwelling motions, which are observed for both the

  10. Crystal-field splitting in coadsorbate systems: c (2x2) CO/K/Ni (100)

    NARCIS (Netherlands)

    Hasselström, J.; Föhlisch, A.; Denecke, R.; Nilsson, A.; Groot, F.M.F. de

    2000-01-01

    It is demonstrated how the crystal field splitting (CFS) fine structure can be used to characterize a coadsor-bate system. We have applied K 2p x-ray absorption spectroscopy (XAS) to the c(2x2) CO/K/Ni(100) system. The CFS fine structure is shown to be sensitive to the the local atomic

  11. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    Science.gov (United States)

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  12. Systems and methods for displaying data in split dimension levels

    Science.gov (United States)

    Stolte, Chris; Hanrahan, Patrick

    2015-07-28

    Systems and methods for displaying data in split dimension levels are disclosed. In some implementations, a method includes: at a computer, obtaining a dimensional hierarchy associated with a dataset, wherein the dimensional hierarchy includes at least one dimension and a sub-dimension of the at least one dimension; and populating information representing data included in the dataset into a visual table having a first axis and a second axis, wherein the first axis corresponds to the at least one dimension and the second axis corresponds to the sub-dimension of the at least one dimension.

  13. Optimal field splitting for large intensity-modulated fields

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Ranka, Sanjay; Li, Jonathan; Palta, Jatinder

    2004-01-01

    The multileaf travel range limitations on some linear accelerators require the splitting of a large intensity-modulated field into two or more adjacent abutting intensity-modulated subfields. The abutting subfields are then delivered as separate treatment fields. This workaround not only increases the treatment delivery time but it also increases the total monitor units (MU) delivered to the patient for a given prescribed dose. It is imperative that the cumulative intensity map of the subfields is exactly the same as the intensity map of the large field generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. In this work, we describe field splitting algorithms that split a large intensity-modulated field into two or more intensity-modulated subfields with and without feathering, with optimal MU efficiency while satisfying the hardware constraints. Compared to a field splitting technique (without feathering) used in a commercial planning system, our field splitting algorithm (without feathering) shows a decrease in total MU of up to 26% on clinical cases and up to 63% on synthetic cases

  14. Strategy Guideline: Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  15. Stability of split Stirling refrigerators

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Liang, W.

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the

  16. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  17. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    International Nuclear Information System (INIS)

    Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong

    2015-01-01

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics

  18. Simple nonempirical calculations of the zero-field splitting in transition metal systems: I. The Ni(II)-water complexes

    International Nuclear Information System (INIS)

    Ribbing, C.; Odelius, M.; Laaksonen, A.; Kowalewski, J.; Roos, B.

    1990-01-01

    A simple nonempirical scheme is presented for calculating the splittings of ground state multiplets (the zero-field splitting) is transition metal complexes. The method employs single reference, single excitation CI calculations based on open-shell RHF. The spin-orbit coupling is described using an effective one-electron, one-center operators. The method is applied to the triplet state Ni(II) complexes with one to six water molecules. the validity of the second-order perturbation theory approach and of the spin-Hamiltonian formalism is found to be limited to slightly distorted octahedral systems. Generally, small changes in the geometries of the complexes are found to cause substantial variations of the splitting pattern

  19. Air barrier systems: Construction applications

    Energy Technology Data Exchange (ETDEWEB)

    Perrault, J.C

    1989-01-01

    An examination is presented of how ordinary building materials can be used in an innovative manner to design, detail, and construct effective air barrier systems for common types of walls. For residential construction, the air drywall approach uses the interior gypsum board as the main component of the wall air barrier system. Joints between the gypsum board and adjacent materials or assemblies are sealed by gaskets. In commercial construction, two different techniques are employed for using gypsum board as air barrier material: the accessible drywall and non-accessible drywall approaches. The former is similar to the air drywall approach except that high performance sealants are used instead of gaskets. In the latter approach, exterior drywall sheathing is the main component of the air barrier system; joints between boards are taped and joints between boards and other components are sealed using elastomeric membrane strips. For various types of commercial and institutional buildings, metal air barrier systems are widely used and include pre-engineered curtain walls or sheet metal walls. Masonry wall systems are regarded as still the most durable, fireproof, and soundproof wall type available but an effective air barrier system has typically been difficult to implement. Factory-made elastomeric membranes offer the potential to provide airtightness to masonry walls. These membranes are applied on the entire masonry wall surface and are used to make airtight connections with other building components. Two types of product are available: thermofusible and peel-and-stick membranes. 5 figs.

  20. Safety-related control air systems - approved 1977

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  1. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    Science.gov (United States)

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  2. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States); Varshney, Kapil [ARIES Collaborative, New York, NY (United States)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  3. Air conditioning systems to clean radioactive air

    International Nuclear Information System (INIS)

    Ganz, G.

    1987-01-01

    The author reports a study by the Institutes fuer Klimatechnik and Umweltschutz Giessen that shows that air conditioning systems not only make the atmosphere more comfortable, they also extract dust particles. This cleaning action is also valid for radioactively contaminated air. (G.T.H./Auth.)

  4. Strategy Guideline. Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  5. Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators

    International Nuclear Information System (INIS)

    Wu Qian-Nan; Lan Feng; Tang Xiao-Pin; Yang Zi-Qiang

    2015-01-01

    A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators. (paper)

  6. The influence of split doses of γ-radiation on human erythrocytes

    International Nuclear Information System (INIS)

    Koziczak, R.; Gonciarz, M.; Krokosz, A.; Szweda-Lewandowska, Z.

    2003-01-01

    Human erythrocyte suspensions in an isotonic Na-phosphate buffer, pH 7.4, of hematocrit of 2% were exposed under air to gamma radiation at a dose rate of 2.2 kGy. Erythrocytes were irradiated with single doses, and identical doses split into two fractions with an interval time of 3.5 h between following exposures. The obtained results indicated that the irradiation of enucleated human erythrocytes with split doses caused a reduction of hemolysis (2.4 times), a decrease in the level of damage to membrane lipids and the contents of MetHb, compared with identical single doses. However, the splitting of radiation doses did not change the level of damage to the membrane proteins, as was estimated with a maleimide spin label. The obtained results suggest that a decrease in the level of damage to lipids was related to a decrease in hemolysis. (author)

  7. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  8. Air Quality System (AQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements...

  9. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Science.gov (United States)

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Solving vertical transport and chemistry in air pollution models

    International Nuclear Information System (INIS)

    Berkvens, P.J.F.; Botchev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    2000-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species. This complicates the chemistry solution, easily causing large errors for such species. In the framework of an operational global air pollution model, we focus on the problem formed by chemistry and vertical transport, which is based on diffusion, cloud-related vertical winds, and wet deposition. Its specific nature leads to full Jacobian matrices, ruling out standard implicit integration. We compare Strang operator splitting with two alternatives: source splitting and an (unsplit) Rosenbrock method with approximate matrix factorization, all having equal computational cost. The comparison is performed with real data. All methods are applied with half-hour time steps, and give good accuracies. Rosenbrock is the most accurate, and source splitting is more accurate than Strang splitting. Splitting errors concentrate in short-lived species sensitive to solar radiation and species with strong emissions and depositions. 30 refs

  11. Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Directory of Open Access Journals (Sweden)

    T. Siegle

    2017-09-01

    Full Text Available Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers.

  12. System for measuring of air concentration in air-steam mixture during the transients

    International Nuclear Information System (INIS)

    Gorbenko, Gennady A.; Gakal, Pavlo G.; Epifanov, Konstantin S.; Osokin, Gennady V.; Smirnov, Sergey V.

    2006-01-01

    Description of system for air concentration measuring in air-steam mixture during the transients is represented. Air concentration measuring is based on discrete sampling method. The measuring system consists of sampler, transport pipeline, distributor and six measuring vessels. From the sampler air-steam mixture comes to distributor through transport pipeline and fills consecutively the measuring vessels. The true air concentration in place of measurement was defined based on measured air concentration in samples taken from measuring vessels. For this purpose, the mathematical model of transients in measuring system was developed. Air concentration transient in air-steam mixture in place of measurement was described in mathematical model by air concentration time-dependent function. The function parameters were defined based on air concentration measured in samples taken from measuring vessels. Estimated error of air concentration identification was about 10%. Measuring system was used in experiments on EREC BKV-213 test facility intended for testing of VVER-440/V-213 reactor barbotage-vacuum system

  13. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    Science.gov (United States)

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-08

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  14. Comparison between Different Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The aim of an air conditioning system is to remove excess heat in a room and replace room air with fresh air to obtain a high air quality. It is not sufficient to remove heat and contaminated air, it is also necessary to distribute and control the air movement in the room to create thermal comfort...... in the occupied zone. Most air distribution systems are based on mixing ventilation with ceiling or wall-mounted diffusers or on displacement ventilation with wall-mounted low velocity diffusers. New principles for room air distribution were introduced during the last decades, as the textile terminals mounted...... in the ceiling and radial diffusers with swirling flow also mounted in the ceiling. This paper addresses five air distribution systems in all, namely mixing ventilation from a wallmounted terminal, mixing ventilation from a ceiling-mounted diffuser, mixing ventilation from a ceiling-mounted diffuser...

  15. Comparing Electrochemical and Biological Water Splitting

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Dimitrievski, Kristian; Siegbahn, P.

    2007-01-01

    On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system and on the......On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system...... and on the inorganic catalyst surface of an acidic electrolysis cell, the thermochemical features of the catalysts can be directly compared. We suggest a simple test for a thermochemically optimal catalyst. We show that, although both the RuO2 surface and the Mn cluster in photo system II are quite close to optimal...

  16. Advanced house air-barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.K. [Natural Resources Canada, Ottawa, ON (Canada)

    1996-08-01

    Air barrier systems used in modern Canadian airtight homes were discussed. The Advanced Houses Program sets its airtightness requirements at 1.5 air changes per hour at 50 Pascals pressure difference (ACH{sub 5}0). In recent tests of 10 houses, it was suggested that a better airtightness level was attainable with average airtightness of about 1.0 ACH{sub 5}0. Six of the homes tested did not use the traditional polyethylene approach. Two of the houses used the airtight drywall approach, one used a foam system, and three used exterior air barriers. The advantages and disadvantages of each system was described, including cost effectiveness, cost reduction, performance and installation advantages. The confusion between an air barrier and a vapour diffusion retarder was explained. Exterior air barriers showed the greatest potential for meeting airtightness requirements at reasonable cost. 5 refs., 3 tabs.

  17. Market Structure and Stock Splits

    OpenAIRE

    David Michayluk; Paul Kofman

    2001-01-01

    Enhanced liquidity is one possible motivation for stock splits but empirical research frequently documents declines in liquidity following stock splits. Despite almost thirty years of inquiry, little is known about all the changes in a stock's trading activity following a stock split. We examine how liquidity measures change around more than 2,500 stock splits and find a pervasive decline in most measures. Large stock splits exhibit a more severe liquidity decline than small stock splits, esp...

  18. Near-Infrared and Optical Beam Steering and Frequency Splitting in Air-Holes-in-Silicon Inverse Photonic Crystals

    Science.gov (United States)

    2017-01-01

    We present the design of a dielectric inverse photonic crystal structure that couples line-defect waveguide propagating modes into highly directional beams of controllable directionality. The structure utilizes a triangular lattice made of air holes drilled in an infinitely thick Si slab, and it is designed for operation in the near-infrared and optical regime. The structure operation is based on the excitation and manipulation of dark dielectric surface states, in particular on the tailoring of the dark states’ coupling to outgoing radiation. This coupling is achieved with the use of properly designed external corrugations. The structure adapts and matches modes that travel through the photonic crystal and the free space. Moreover it facilitates the steering of the outgoing waves, is found to generate well-defined, spatially and spectrally isolated beams, and may serve as a frequency splitting component designed for operation in the near-infrared regime and in particular the telecom optical wavelength band. The design complies with the state-of-the-art Si nanofabrication technology and can be directly scaled for operation in the optical regime. PMID:29541653

  19. Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems.

    Science.gov (United States)

    Wang, Yiou; Suzuki, Hajime; Xie, Jijia; Tomita, Osamu; Martin, David James; Higashi, Masanobu; Kong, Dan; Abe, Ryu; Tang, Junwang

    2018-05-23

    Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called "Z-scheme" systems, which are inspired by the photosystem II-photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field.

  20. 30 CFR 77.412 - Compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  1. AirNow Information Management System - Global Earth Observation System of Systems Data Processor for Real-Time Air Quality Data Products

    Science.gov (United States)

    Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.

    2012-12-01

    Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor

  2. Performance Analysis of a Modular Small-Diamter Air Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, Andrew [IBACOS, Inc., Pitsburgh, PA (United States); Rudd, Armin [ABT Systems, LLC, Annville, PA (United States)

    2016-03-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air handler unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  3. Analysis of air safety in the European system of air traffic

    Directory of Open Access Journals (Sweden)

    О.Є. Луппо

    2008-04-01

    Full Text Available  Article describes air traffic safety provision requirements in the Air Traffic Management system of Europe. Consideration of air traffic variation which affecting the air traffic management operations have been reviewed.

  4. Machine & electrical double control air dryer for vehicle air braking system

    Science.gov (United States)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  5. Generalized field-splitting algorithms for optimal IMRT delivery efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2007-09-21

    Intensity-modulated radiation therapy (IMRT) uses radiation beams of varying intensities to deliver varying doses of radiation to different areas of the tissue. The use of IMRT has allowed the delivery of higher doses of radiation to the tumor and lower doses to the surrounding healthy tissue. It is not uncommon for head and neck tumors, for example, to have large treatment widths that are not deliverable using a single field. In such cases, the intensity matrix generated by the optimizer needs to be split into two or three matrices, each of which may be delivered using a single field. Existing field-splitting algorithms used the pre-specified arbitrary split line or region where the intensity matrix is split along a column, i.e., all rows of the matrix are split along the same column (with or without the overlapping of split fields, i.e., feathering). If three fields result, then the two splits are along the same two columns for all rows. In this paper we study the problem of splitting a large field into two or three subfields with the field width as the only constraint, allowing for an arbitrary overlap of the split fields, so that the total MU efficiency of delivering the split fields is maximized. Proof of optimality is provided for the proposed algorithm. An average decrease of 18.8% is found in the total MUs when compared to the split generated by a commercial treatment planning system and that of 10% is found in the total MUs when compared to the split generated by our previously published algorithm. For more information on this article, see medicalphysicsweb.org.

  6. Two-component air heating system. Final report. Zweikomponenten-Luftheizungs-System. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W; Thiel, D

    1986-01-01

    The two-component heating system consists of a combination of air-based floor heating and direct air heating, with ventilation and extraction and heat recovery. The direct airflow consists exclusively of heated outside air, the amount corresponding to the building's external air intake requirement. The control system comprises a two-step sequential control of the air throughput of the direct air heating system and of the air distribution for the floor heating airflow. A special heating switch makes it possible to switch off the direct air heating system separately, and to select rapid warm-up. The way in which the new heating system works has been tested in a pilot set-up and proven by comprehensive measurements. In addition, a simulation model was produced which gave substantial confirmation of the measurements. (orig.) With 9 refs., 37 tabs., 63 figs.

  7. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    Science.gov (United States)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  8. Splitting methods for split feasibility problems with application to Dantzig selectors

    International Nuclear Information System (INIS)

    He, Hongjin; Xu, Hong-Kun

    2017-01-01

    The split feasibility problem (SFP), which refers to the task of finding a point that belongs to a given nonempty, closed and convex set, and whose image under a bounded linear operator belongs to another given nonempty, closed and convex set, has promising applicability in modeling a wide range of inverse problems. Motivated by the increasingly data-driven regularization in the areas of signal/image processing and statistical learning, in this paper, we study the regularized split feasibility problem (RSFP), which provides a unified model for treating many real-world problems. By exploiting the split nature of the RSFP, we shall gainfully employ several efficient splitting methods to solve the model under consideration. A remarkable advantage of our methods lies in their easier subproblems in the sense that the resulting subproblems have closed-form representations or can be efficiently solved up to a high precision. As an interesting application, we apply the proposed algorithms for finding Dantzig selectors, in addition to demonstrating the effectiveness of the splitting methods through some computational results on synthetic and real medical data sets. (paper)

  9. Comparison of desiccant air conditioning systems with different indirect evaporative air coolers

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey; Worek, William M.; Drąg, Paweł

    2016-01-01

    Highlights: • A numerical study of desiccant air conditioning systems is presented. • The ε-NTU model is used for the analysis. • Different arrangements of the desiccant systems were compared. • The systems were compared under different operating conditions. - Abstract: This paper presents a numerical analysis of three desiccant air-conditioning systems equipped with different indirect evaporative air coolers: (1) the cross-flow Maisotsenko cycle heat and mass exchanger (HMX), (2) the regenerative counter-flow Maisotsenko cycle heat and mass exchanger and (3) the standard cross-flow evaporative air cooler. To analyze the desiccant wheel and the indirect evaporative air coolers, the modified ε-NTU-model was used. The simulations were performed under assumption that the desiccant wheel is regenerated with air heated to relatively low temperature values (50–60 °C), which can be produced with solar panels in typical moderate climatic conditions. It was established that the main advantage of the presented solutions is that they can provide comfort conditions even with less effective dehumidification. The different systems were compared under variable selected operational factors (i.e. inlet air temperature, humidity and regeneration air temperature). The analysis allowed establishing the advantages and disadvantages of presented solutions and allowed estimating their application potential.

  10. Corporate Taxation and Investment: The Case of the Split Rate Corporate Tax System in Macedonia

    Directory of Open Access Journals (Sweden)

    Ilija Gruevski

    2018-12-01

    Full Text Available The majority of experts agree that taxes are distortionary in nature. This is relatively true for all of the different groups of taxes, but for the corporate taxes is exceptionallyobvious. The existence of the corporate tax system can affect the company’s behavior in number of ways and one of the most criticized is the ability for distortion of the choice of the sources of finance. In the following article, we explore the effects from corporate taxation on investment, through the methodological frame of the effective marginal tax rates. The objective is to analyze the investment decision in the case of isolated implementation of corporate taxes which means that the effects from the so-called “double taxation”, induced by the personal taxes are not taken in consideration. We hope to prove that these conditions generate “uneven” distribution of the burden across the projects covered with different sources of finance. Also, we intend to test and explore the properties of some alternative corporate tax systems which are widely known as neutral, such as: the comprehensive business income tax system (CBIT, the imputation corporate tax system (ICT, the full imputation corporate tax system (FICT, the allowance for corporate equity tax system (ACE and the split rate corporate tax system (SRCT. In addition, we support our findings with a practical example: the case study from the implementation of the split rate corporate tax system in Macedonia.

  11. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...

  12. Staggered-electromagnetophoresis with a Split-flow System for the Separation of Microparticles by a Hollow Fiber-embedded PDMS Microchip.

    Science.gov (United States)

    Iiguni, Yoshinori; Tanaka, Ayaka; Kitagawa, Shinya; Ohtani, Hajime

    2016-01-01

    A novel microchip separation system for microparticles based on electromagnetophoresis (EMP) was developed. In this system, focusing and separation of flowing microparticles in a microchannel could be performed by staggered-EMP by controlling the electric current applied to the channel locally combined with the split-flow system for fractionation of eluates. To apply the electric current through the flushing medium in the microchannel, a hollow fiber-embedded microchip with multiple electrodes was fabricated. The hollow fiber was made by a semi-permeable membrane and could separate small molecules. This microchip allowed us to apply the electric current to a part of the microchannel without any pressure control device because a main channel contacted with the subchannels that had electrodes through the semi-permeable membrane. Moreover, the separation using this microchip was combined with the split-flow system at two outlets to improve separation efficiency. Using this system, with the split-flow ratio of 10:1, 87% of 3 μm polystyrene (PS) latex particles were isolated from a mixture of 3 and 10 μm particles. Even the separation of 6 and 10 μm PS particles was achieved with about 77% recovery and 100% purity. In addition, by controlling the applied current, size fractionation of polypropylene (PP) particles was demonstrated. Moreover, biological particles such as pollens could be separated with high separation efficiency by this technique.

  13. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  14. System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Nguyen, Tuong-Van; Knudsen, Thomas

    2014-01-01

    Waste heat recovery systems can produce power from heat without using fuel or emitting CO2, therefore their implementation is becoming increasingly relevant. The Kalina cycle is proposed as an efficient process for this purpose. The main reason for its high efficiency is the non-isothermal phase...... change characteristics of the ammonia-water working fluid. The present study investigates a unique type of Kalina process called the Split-cycle, applied to the exhaust heat recovery from large marine engines. In the Split-cycle, the working fluid concentration can be changed during the evaporation...

  15. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  16. Improved Fast Centralized Retransmission Scheme for High-Layer Functional Split in 5G Network

    Science.gov (United States)

    Xu, Sen; Hou, Meng; Fu, Yu; Bian, Honglian; Gao, Cheng

    2018-01-01

    In order to satisfy the varied 5G critical requirements and the virtualization of the RAN hardware, a two-level architecture for 5G RAN has been studied in 3GPP 5G SI stage. The performance of the PDCP-RLC split option and intra-RLC split option, two mainly concerned options for high layer functional split, exist an ongoing debate. This paper firstly gives an overview of CU-DU split study work in 3GPP. By the comparison of implementation complexity, the standardization impact and system performance, our evaluation result shows the PDCP-RLC split Option outperforms the intra-RLC split option. Aiming to how to reduce the retransmission delay during the intra-CU inter-DU handover, the mainly drawback of PDCP-RLC split option, this paper proposes an improved fast centralized retransmission solution with a low implementation complexity. Finally, system level simulations show that the PDCP-RLC split option with the proposed scheme can significantly improve the UE’s experience.

  17. Application of a new Terrestrial Telecommunications System in the European Air Traffic

    Directory of Open Access Journals (Sweden)

    Draško Marin

    2012-10-01

    Full Text Available Aeronautical Public Correspondence (APC is a telecommtmicationsse!Vice, which enables passengers onboard aircraftto make telecommunication calls to people on the ground.This article describes the terrestrial communications seiVicewhich is based on cellular network for the European CEPTmember countries (CEPT- European Conference of Postaland Telecommunications Administrations named TerrestrialFlight Telecommunications System (TFTS.This system is a Pan-European System, which means theusage of hannonised frequencies in Europe with hannonisedstandards for the TFTS equipment, which have been issued bythe European Telecommunications Standard Institute (ETSI.Frequencies allocated for TFTS have been designated bythe World Administrative Radio Conference, WARC-92 withfrequency bandwidth of 2x5 MHz:1670- 1675 MHz, for ground to air1800- 1805 MHz, for air to ground.TFTS planning is perfonned by the application of frequencyblocks (42 blocks with 164 channels in total. Bandwidthof each radio channel, which contains 4 speech channels,is equal to 30.3 kHz.Due to the very high flight of the aircraft (about 13,000 m,it needs a long distance between the centres of cells (radio stationon the ground to avoid the eo-channel or adjacent channelinteJference.The article presents the planning process with typical cellradius of240km or 350km. In the viewofthatfact, the need ispointed out for finding a compromise solution with regard toemitting power and the influence of interference.Final(v, it is noted that TFTS ground radio stations inCroatia, which are located in Zagreb and Split, may cover theterritory of some neighbouring countries other than Croatia,which is important from the commercial point of view.

  18. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  19. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    Science.gov (United States)

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Evaluation of Mandibular Anatomy Associated With Bad Splits in Sagittal Split Ramus Osteotomy of Mandible.

    Science.gov (United States)

    Wang, Tongyue; Han, Jeong Joon; Oh, Hee-Kyun; Park, Hong-Ju; Jung, Seunggon; Park, Yeong-Joon; Kook, Min-Suk

    2016-07-01

    This study aimed to identify risk factors associated with bad splits during sagittal split ramus osteotomy by using three-dimensional computed tomography. This study included 8 bad splits and 47 normal patients without bad splits. Mandibular anatomic parameters related to osteotomy line were measured. These included anteroposterior width of the ramus at level of lingula, distance between external oblique ridge and lingula, distance between sigmoid notch and inferior border of mandible, mandibular angle, distance between inferior outer surface of mandibular canal and inferior border of mandible under distal root of second molar (MCEM), buccolingual thickness of the ramus at level of lingula, and buccolingual thickness of the area just distal to first molar (BTM1) and second molar (BTM2). The incidence of bad splits in 625 sagittal split osteotomies was 1.28%. Compared with normal group, bad split group exhibited significantly thinner BTM2 and shorter sigmoid notch and inferior border of mandible (P bad splits. These anatomic data may help surgeons to choose the safest surgical techniques and best osteotomy sites.

  1. Temporal self-splitting of optical pulses

    Science.gov (United States)

    Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Pan, Liuzhan

    2018-05-01

    We present mathematical models for temporally and spectrally partially coherent pulse trains with Laguerre-Gaussian and Hermite-Gaussian Schell-model statistics as extensions of the standard Gaussian Schell model for pulse trains. We derive propagation formulas of both classes of pulsed fields in linearly dispersive media and in temporal optical systems. It is found that, in general, both types of fields exhibit time-domain self-splitting upon propagation. The Laguerre-Gaussian model leads to multiply peaked pulses, while the Hermite-Gaussian model leads to doubly peaked pulses, in the temporal far field (in dispersive media) or at the Fourier plane of a temporal system. In both model fields the character of the self-splitting phenomenon depends both on the degree of temporal and spectral coherence and on the power spectrum of the field.

  2. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-01-01

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  3. The microbiological quality of air improves when using air conditioning systems in cars.

    Science.gov (United States)

    Vonberg, Ralf-Peter; Gastmeier, Petra; Kenneweg, Björn; Holdack-Janssen, Hinrich; Sohr, Dorit; Chaberny, Iris F

    2010-06-01

    Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle--and by this its impact on the risk of an allergic reaction--is yet unknown. Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 microm diameter were counted by a laser particle counter device. Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.

  4. Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems

    Science.gov (United States)

    The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...

  5. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  6. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  7. The Split-Brain Phenomenon Revisited: A Single Conscious Agent with Split Perception.

    Science.gov (United States)

    Pinto, Yair; de Haan, Edward H F; Lamme, Victor A F

    2017-11-01

    The split-brain phenomenon is caused by the surgical severing of the corpus callosum, the main route of communication between the cerebral hemispheres. The classical view of this syndrome asserts that conscious unity is abolished. The left hemisphere consciously experiences and functions independently of the right hemisphere. This view is a cornerstone of current consciousness research. In this review, we first discuss the evidence for the classical view. We then propose an alternative, the 'conscious unity, split perception' model. This model asserts that a split brain produces one conscious agent who experiences two parallel, unintegrated streams of information. In addition to changing our view of the split-brain phenomenon, this new model also poses a serious challenge for current dominant theories of consciousness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.

    Science.gov (United States)

    Walczak, Karl; Chen, Yikai; Karp, Christoph; Beeman, Jeffrey W; Shaner, Matthew; Spurgeon, Joshua; Sharp, Ian D; Amashukeli, Xenia; West, William; Jin, Jian; Lewis, Nathan S; Xiang, Chengxiang

    2015-02-01

    A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of

  9. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2015-01-01

    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  10. Optimal Model-Based Control in HVAC Systems

    DEFF Research Database (Denmark)

    Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik

    2008-01-01

    is developed. Then the optimal control structure is designed and implemented. The HVAC system is splitted into two subsystems. By selecting the right set-points and appropriate cost functions for each subsystem controller the optimal control strategy is respected to gaurantee the minimum thermal and electrical......This paper presents optimal model-based control of a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger (a rotary wheel heat recovery) and a water-to- air heat exchanger. First dynamic model of the HVAC system...... energy consumption. Finally, the controller is applied to control the mentioned HVAC system and the results show that the expected goals are fulfilled....

  11. Triadic split-merge sampler

    Science.gov (United States)

    van Rossum, Anne C.; Lin, Hai Xiang; Dubbeldam, Johan; van der Herik, H. Jaap

    2018-04-01

    In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.

  12. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Energy Technology Data Exchange (ETDEWEB)

    El-Awad, Mohamed M. [Mechanical Engineering Department, the University of Khartoum, P.O. Box 321 Khartoum (Sudan)

    2011-07-01

    The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min) air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  13. The experimental investigation of refrigerant distribution and leaking characteristics of R290 in split type household air conditioner

    International Nuclear Information System (INIS)

    Tang, Weier; He, Guogeng; Cai, Dehua; Zhu, Yihao; Zhang, Aoni; Tian, Qiqi

    2017-01-01

    Highlights: • A new quasi-liquid nitrogen method (QLNM) was proposed and firstly applied in experiments. • The R290 distribution was investigated by QLNM and the results proved the validation. • A solenoid valve was proposed to install near the capillary in STHAC in order to reduce risk factor. • R290 leaking rate was firstly measured by QLNM before and after the installation a solenoid valve. - Abstract: As a high-profile replacement for R22 split type household air conditioner (STHAC), R290 has several advantages in terms of thermodynamic properties, environmental characteristics, and cost. However, the obvious shortcoming of R290 is its flammability, which has a potential fire risk to the building. At present, the most important measure to ensure the safety of a R290 STHAC is to limit the refrigerant charge by domestic and international standards. But in fact, when the leakage of R290 occur from a STHAC, the distribution of R290 in STHAC, and the leaking rate also will seriously affect the safety of an R290 STHAC. In this study, a new quasi-liquid nitrogen method (QLNM) has been proposed in order to investigate the refrigerant distribution in R290 STHACs and the leaking rate under various conditions, and the experiments have been conducted. The experimental results of distribution proved the validation of the QLNM and showed that a large portion of the refrigerant distributed in the condenser when the air conditioner is on running stage and the refrigerant will migrate from the condenser to the evaporator when the air conditioner is on closed stage. Based on this, the installation of a solenoid valve near the capillary has been proposed. The comparison of experimental results of R290 leaking rate before and after the installation of a solenoid valve showed it will obviously reduce the leaking rate and thereby improve the safety of the R290 STHACs.

  14. Research on Multiple-Split Load Sharing Characteristics of 2-Stage External Meshing Star Gear System in Consideration of Displacement Compatibility

    Directory of Open Access Journals (Sweden)

    Shuai Mo

    2017-01-01

    Full Text Available This paper studies the multiple-split load sharing mechanism of gears in two-stage external meshing planetary transmission system of aeroengine. According to the eccentric error, gear tooth thickness error, pitch error, installation error, and bearing manufacturing error, we performed the meshing error analysis of equivalent angles, respectively, and we also considered the floating meshing error caused by the variation of the meshing backlash, which is from the floating of all gears at the same time. Finally, we obtained the comprehensive angle meshing error of the two-stage meshing line, established a refined mathematical computational model of 2-stage external 3-split loading sharing coefficient in consideration of displacement compatibility, got the regular curves of the load sharing coefficient and load sharing characteristic curve of full floating multiple-split and multiple-stage system, and took the variation law of the floating track and the floating quantity of the center wheel. These provide a scientific theory to determine the load sharing coefficient, reasonable load distribution, and control tolerances in aviation design and manufacturing.

  15. DETECTION OF FLUX EMERGENCE, SPLITTING, MERGING, AND CANCELLATION OF NETWORK FIELD. I. SPLITTING AND MERGING

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Y.; Yokoyama, T. [Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hagenaar, H. J. [Lockheed Martin Advanced Technology Center, Org. ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2012-06-20

    Frequencies of magnetic patch processes on the supergranule boundary, namely, flux emergence, splitting, merging, and cancellation, are investigated through automatic detection. We use a set of line-of-sight magnetograms taken by the Solar Optical Telescope (SOT) on board the Hinode satellite. We found 1636 positive patches and 1637 negative patches in the data set, whose time duration is 3.5 hr and field of view is 112'' Multiplication-Sign 112''. The total numbers of magnetic processes are as follows: 493 positive and 482 negative splittings, 536 positive and 535 negative mergings, 86 cancellations, and 3 emergences. The total numbers of emergence and cancellation are significantly smaller than those of splitting and merging. Further, the frequency dependence of the merging and splitting processes on the flux content are investigated. Merging has a weak dependence on the flux content with a power-law index of only 0.28. The timescale for splitting is found to be independent of the parent flux content before splitting, which corresponds to {approx}33 minutes. It is also found that patches split into any flux contents with the same probability. This splitting has a power-law distribution of the flux content with an index of -2 as a time-independent solution. These results support that the frequency distribution of the flux content in the analyzed flux range is rapidly maintained by merging and splitting, namely, surface processes. We suggest a model for frequency distributions of cancellation and emergence based on this idea.

  16. Distributed computing system with dual independent communications paths between computers and employing split tokens

    Science.gov (United States)

    Rasmussen, Robert D. (Inventor); Manning, Robert M. (Inventor); Lewis, Blair F. (Inventor); Bolotin, Gary S. (Inventor); Ward, Richard S. (Inventor)

    1990-01-01

    This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided.

  17. Spatial Splitting and Intensity Suppression of Four-Wave Mixing in V-Type Three-Level Atomic System

    International Nuclear Information System (INIS)

    Chuang-She, Li; Wei-Tao, Yin; Chen-Zhi, Yuan; Mei-Zhen, Shi; Yan, Zhao; Yan-Peng, Zhang

    2010-01-01

    We illustrate our experimental observation of coexisting the controllable spatial splitting and intensity suppression of four-wave mixing (FWM) beam in a V-type three-level atomic system. The peak number and separation distance of the FWM beam are controlled by the intensities and frequencies of the laser beams, as well as atomic density

  18. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... the drain cocks in the service and supply reservoir on the truck or truck-tractor. Note the pressure.... Close the drain cocks, and, with the trailer(s) uncoupled, check air pressure buildup at the... brakes fully applied. (b) Air brake system hoses, tubes and connections. Air system tubes, hoses and...

  19. Modeling aluminum-air battery systems

    Science.gov (United States)

    Savinell, R. F.; Willis, M. S.

    The performance of a complete aluminum-air battery system was studied with a flowsheet model built from unit models of each battery system component. A plug flow model for heat transfer was used to estimate the amount of heat transferred from the electrolyte to the air stream. The effect of shunt currents on battery performance was found to be insignificant. Using the flowsheet simulator to analyze a 100 cell battery system now under development demonstrated that load current, aluminate concentration, and electrolyte temperature are dominant variables controlling system performance. System efficiency was found to decrease as both load current and aluminate concentration increases. The flowsheet model illustrates the interdependence of separate units on overall system performance.

  20. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    Science.gov (United States)

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Airport Information Retrieval System (AIRS) System Design

    Science.gov (United States)

    1974-07-01

    This report presents the system design for a prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The design was directed toward the immediate automation of airport data for use in traffic load predicti...

  2. Splitting: The Development of a Measure.

    Science.gov (United States)

    Gerson, Mary-Joan

    1984-01-01

    Described the development of a scale that measures splitting as a psychological structure. The construct validity of the splitting scale is suggested by the positive relationship between splitting scores and a diagnostic measure of the narcissistic personality disorder, as well as a negative relationship between splitting scores and levels of…

  3. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  4. Fee Splitting among General Practitioners: A Cross-Sectional Study in Iran.

    Science.gov (United States)

    Parsa, Mojtaba; Larijani, Bagher; Aramesh, Kiarash; Nedjat, Saharnaz; Fotouhi, Akbar; Yekaninejad, Mir Saeed; Ebrahimian, Nejatollah; Kandi, Mohamad Jafar

    2016-12-01

    Fee splitting is a process whereby a physician refers a patient to another physician or a healthcare facility and receives a portion of the charge in return. This survey was conducted to study general practitioners' (GPs) attitudes toward fee splitting as well as the prevalence, causes, and consequences of this process. This is a cross-sectional study on 223 general practitioners in 2013. Concerning the causes and consequences of fee splitting, an unpublished qualitative study was conducted by interviewing a number of GPs and specialists and the questionnaire options were the results of the information obtained from this study. Of the total 320 GPs, 247 returned the questionnaires. The response rate was 77.18%. Of the 247 returned questionnaires, 223 fulfilled the inclusion criteria. Among the participants, 69.1% considered fee splitting completely wrong and 23.2% (frequently or rarely) practiced fee splitting. The present study showed that the prevalence of fee splitting among physicians who had positive attitudes toward fee splitting was 4.63 times higher than those who had negative attitudes. In addition, this study showed that, compared to private hospitals, fee splitting is less practiced in public hospitals. The major cause of fee splitting was found to be unrealistic/unfair tariffs and the main consequence of fee splitting was thought to be an increase in the number of unnecessary patient referrals. Fee splitting is an unethical act, contradicts the goals of the medical profession, and undermines patient's best interest. In Iran, there is no code of ethics on fee splitting, but in this study, it was found that the majority of GPs considered it unethical. However, among those who had negative attitudes toward fee splitting, there were physicians who did practice fee splitting. The results of the study showed that physicians who had a positive attitude toward fee splitting practiced it more than others. Therefore, if physicians consider fee splitting unethical

  5. Bad splits in bilateral sagittal split osteotomy: systematic review and meta-analysis of reported risk factors.

    Science.gov (United States)

    Steenen, S A; van Wijk, A J; Becking, A G

    2016-08-01

    An unfavourable and unanticipated pattern of the bilateral sagittal split osteotomy (BSSO) is generally referred to as a 'bad split'. Patient factors predictive of a bad split reported in the literature are controversial. Suggested risk factors are reviewed in this article. A systematic review was undertaken, yielding a total of 30 studies published between 1971 and 2015 reporting the incidence of bad split and patient age, and/or surgical technique employed, and/or the presence of third molars. These included 22 retrospective cohort studies, six prospective cohort studies, one matched-pair analysis, and one case series. Spearman's rank correlation showed a statistically significant but weak correlation between increasing average age and increasing occurrence of bad splits in 18 studies (ρ=0.229; Pbad split among the different splitting techniques. A meta-analysis pooling the effect sizes of seven cohort studies showed no significant difference in the incidence of bad split between cohorts of patients with third molars present and concomitantly removed during surgery, and patients in whom third molars were removed at least 6 months preoperatively (odds ratio 1.16, 95% confidence interval 0.73-1.85, Z=0.64, P=0.52). In summary, there is no robust evidence to date to show that any risk factor influences the incidence of bad split. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of AirGIS: a GIS-based air pollution and human exposure modelling system

    DEFF Research Database (Denmark)

    Ketzel, Matthias; Berkowicz, Ruwim; Hvidberg, Martin

    2011-01-01

    This study describes in brief the latest extensions of the Danish Geographic Information System (GIS)-based air pollution and human exposure modelling system (AirGIS), which has been developed in Denmark since 2001 and gives results of an evaluation with measured air pollution data. The system...... shows, in general, a good performance for both long-term averages (annual and monthly averages), short-term averages (hourly and daily) as well as when reproducing spatial variation in air pollution concentrations. Some shortcomings and future perspectives of the system are discussed too....

  7. Two-Loop Splitting Amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  8. Two-loop splitting amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.J.; Kosower, D.A.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  9. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  10. AIRMaster: Compressed air system audit software

    International Nuclear Information System (INIS)

    Wheeler, G.M.; Bessey, E.G.; McGill, R.D.; Vischer, K.

    1997-01-01

    The project goal was to develop a software tool, AIRMaster, and a methodology for performing compressed air system audits. AIRMaster and supporting manuals are designed for general auditors or plant personnel to evaluate compressed air system operation with simple instrumentation during a short-term audit. AIRMaster provides a systematic approach to compressed air system audits, analyzing collected data, and reporting results. AIRMaster focuses on inexpensive Operation and Maintenance (O and M) measures, such as fixing air leaks and improving controls that can significantly improve performance and reliability of the compressed air system, without significant risk to production. An experienced auditor can perform an audit, analyze collected data, and produce results in 2--3 days. AIRMaster reduces the cost of an audit, thus freeing funds to implement recommendations. The AIRMaster package includes an Audit Manual, Software and User's manual, Analysis Methodology Manual, and a Case Studies summary report. It also includes a Self-Guided Tour booklet to help users quickly screen a plant for efficiency improvement potentials, and an Industrial Compressed Air Systems Energy Efficiency Guidebook. AIRMaster proved to be a fast and effective audit tool. In sever audits AIRMaster identified energy savings of 4,056,000 kWh, or 49.2% of annual compressor energy use, for a cost savings of $152,000. Total implementation costs were $94,700 for a project payback period of 0.6 years. Available airflow increased between 11% and 51% of plant compressor capacity, leading to potential capital benefits from 40% to 230% of first year energy savings

  11. Plant air systems safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-05-01

    The Portsmouth Gaseous Diffusion Plant Air System facilities and operations are reviewed for potential safety problems not covered by standard industrial safety procedures. Information is presented under the following section headings: facility and process description (general); air plant equipment; air distribution system; safety systems; accident analysis; plant air system safety overview; and conclusion

  12. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bergey, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  13. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  14. Permanent split capacitor single phase electric motor system

    Science.gov (United States)

    Kirschbaum, H.S.

    1984-08-14

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  15. The Air Program Information Management System (APIMS)

    Science.gov (United States)

    2011-11-02

    Technology November 2, 2011 The Air Program Information Management System (APIMS) Frank Castaneda, III, P.E. APIMS Program Manager AFCEE/TDNQ APIMS...NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Air Program Information Management System (APIMS... Information   Management   System : Sustainability of  Enterprise air quality management system • Aspects and Impacts to Process • Auditing and Measurement

  16. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  17. Air System Information Management

    Science.gov (United States)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  18. Analysis of main dynamic parameters of split power transmission

    Directory of Open Access Journals (Sweden)

    A. Janulevičius

    2008-06-01

    Full Text Available The review carried out had shown one basic approach of split power transmission to the organization of drive which is applied to stepless transmissions of tractors and parallel hybrid cars. In the split power transmission the power split device uses a planetary gear. Tractor engine power in the split power transmission is transmitted to the drive shaft via a mechanical and hydraulic path. The theoretical analysis of main parameters of the split power transmission of the tractor is presented. The angular velocity of sun and coronary gears of the differential set is estimated by solution of the system of equations in which one equation is made for planetary differential gear, and another – for hydrostatic drive. The analysis of the transmission gear-ratio dependencies on the ratio of hydraulic machines capacities is carried out. Dependence of the variation of angular velocity of the coronary and the sun gears on the ground speed of the tractor is presented. Dependence of sum shaft torque and its constituents, carried by mechanical and hydraulic lines, on sum shaft angular velocity and ground speed of tractor and engine speed is also presented.

  19. Split-Framework in Mandibular Implant-Supported Prosthesis

    Directory of Open Access Journals (Sweden)

    Danny Omar Mendoza Marin

    2015-01-01

    Full Text Available During oral rehabilitation of an edentulous patient with an implant-supported prosthesis, mandibular flexure must be considered an important biomechanical factor when planning the metal framework design, especially if implants are installed posterior to the interforaminal region. When an edentulous mandible is restored with a fixed implant-supported prosthesis connected by a fixed full-arch framework, mandibular flexure may cause needless stress in the overall restorative system and lead to screw loosening, poor fit of prosthesis, loss of the posterior implant, and patient’s discomfort due to deformation properties of the mandible during functional movements. The use of a split-framework could decrease the stress with a precise and passive fit on the implants and restore a more natural functional condition of the mandible, helping in the longevity of the prosthesis. Therefore, the present clinical report describes the oral rehabilitation of an edentulous patient by a mandibular fixed implant-supported prosthesis with a split-framework to compensate for mandibular flexure. Clinical Significance. The present clinical report shows that the use of a split-framework reduced the risk of loss of the posterior implants or screws loosening with acceptable patient comfort over the period of a year. The split-framework might have compensated for the mandibular flexure during functional activities.

  20. Performance Testing of Unitary Split-System Heat Pump with an Energy Recovery Expansion Device

    OpenAIRE

    Czapla, Nicholas; Inamdar, Harshad; Salts, Nicholas; Groll, Eckhard

    2016-01-01

    Due to the rising demand of using energy resources more efficiently, the HVAC&R industry is constantly facing the challenge of meeting strict energy consumption requirements. This paper presents a study that focuses on improving the efficiency of a residential split-system vapor compression heat pump using R410A as the refrigerant. R410A, when used as any sub-critical refrigerant in a vapor compression cycle, has a meaningful difference in potential energy savings when using a practically ach...

  1. Time-dependent Reliability of Dynamic Systems using Subset Simulation with Splitting over a Series of Correlated Time Intervals

    Science.gov (United States)

    2013-08-01

    cost due to potential warranty costs, repairs and loss of market share. Reliability is the probability that the system will perform its intended...MCMC and splitting sampling schemes. Our proposed SS/ STP method is presented in Section 4, including accuracy bounds and computational effort

  2. Split radiator design for heat rejection optimization for a waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  3. Computer Model to Estimate Reliability Engineering for Air Conditioning Systems

    International Nuclear Information System (INIS)

    Afrah Al-Bossly, A.; El-Berry, A.; El-Berry, A.

    2012-01-01

    Reliability engineering is used to predict the performance and optimize design and maintenance of air conditioning systems. Air conditioning systems are expose to a number of failures. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely can be due to a variety of problems with one or more components of an air conditioner or air conditioning system. Forecasting for system failure rates are very important for maintenance. This paper focused on the reliability of the air conditioning systems. Statistical distributions that were commonly applied in reliability settings: the standard (2 parameter) Weibull and Gamma distributions. After distributions parameters had been estimated, reliability estimations and predictions were used for evaluations. To evaluate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several The company's departments. This air conditioning system is divided into two, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40-45 degree F (4-7 degree C). The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, this is due to the Weibull and Gamma distributions indicated that the reliability for the systems equal to 86.012% and 77.7% respectively. A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families was studied. It was found that Weibull method performed for decision making.

  4. Systemic Analysis Approaches for Air Transportation

    Science.gov (United States)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  5. Energy Conservation In Compressed Air Systems

    International Nuclear Information System (INIS)

    Yusuf, I.Y.; Dewu, B.B.M.

    2004-01-01

    Compressed air is an essential utility that accounts for a substantial part of the electricity consumption (bill) in most industrial plants. Although the general saying Air is free of charge is not true for compressed air, the utility's cost is not accorded the rightful importance due to its by most industries. The paper will show that the cost of 1 unit of energy in the form of compressed air is at least 5 times the cost electricity (energy input) required to produce it. The paper will also provide energy conservation tips in compressed air systems

  6. Splitting of an electromagnetically induced transparency window of a cascade system with 133Cs Rydberg atoms in a static magnetic field

    International Nuclear Information System (INIS)

    Bao Shanxia; Yang Wenguang; Zhang Hao; Zhang Linjie; Zhao Jianming; Jia Suotang

    2015-01-01

    We investigate the electromagnetically induced transparency (EIT) of 133 Cs vapor at the room temperature in a magnetic field. In a cascade three-level system involved Rydberg state, two collinearly counter-propagating and orthogonally linear-polarized laser fields act on cascaded two transitions, 6S 1/2 → 6P 3/2 and 6P 3/2 ↔ 47D 5/2 , respectively. The EIT window become broadening and split into several sub-EIT windows when the magnetic field is applied. The dependences of splitting shape and intervals of sub-EIT windows on magnetic field are measured experimentally and compared with the theoretical calculation considering the different magnetic effects on ground state, low excited state and Rydberg state. The splitting intervals of sub-EIT windows are well consistent with theoretical calculation. (author)

  7. [Study on emission standard system of air pollutants].

    Science.gov (United States)

    Jiang, Mei; Zhang, Guo-Ning; Zhang, Ming-Hui; Zou, Lan; Wei, Yu-Xia; Ren, Chun

    2012-12-01

    Scientific and reasonable emission standard system of air pollutants helps to systematically control air pollution, enhance the protection of the atmospheric environment effect and improve the overall atmospheric environment quality. Based on the study of development, situation and characteristics of national air pollutants emission standard system, the deficiencies of system were pointed out, which were not supportive, harmonious and perfect, and the improvement measures of emission standard system were suggested.

  8. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  9. Performance assessment and transient optimization of air precooling in multi-stage solid desiccant air conditioning systems

    International Nuclear Information System (INIS)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-01-01

    Highlights: • Studying three two-stage solid desiccant cooling systems using Maisotsenko cooler. • Proposing precooling to improve two-stage desiccant systems’ COP for humid climates. • Performing transient analysis for a two-stage solid desiccant cooler in UAE. • Optimizing daily performance of a two-stage solid desiccant cooler for UAE. - Abstract: Renewable energy is one of the most promising solutions to both energy and global warming crisis. Energy consumption can be minimized considerably by utilizing solar energy in air conditioning systems operation. One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, conventional desiccant air conditioning systems have a relatively low coefficient of performance (COP). In consequence, two-stage desiccant air-conditioning systems are proposed to improve desiccant air conditioning systems’ COP. Moreover, a recently commercialized cooling method named Maisotsenko cooling cycle which is capable of cooling air near to its dew point temperature is considered to be integrated within the proposed multi-stage desiccant cooling systems. In this paper, three new two-stage desiccant air conditioning systems incorporating Maisotsenko cooling cycle are proposed and investigated in details for hot and humid climates such as UAE. Furthermore, air precooling is considered to improve two stage desiccant air conditioning systems’ COP. Moreover, full transient analysis and optimization are carried out in UAE within June–October. The proposed system can minimize the required solar heating during noon time as the ambient air dry bulb temperature rises. Average COP of the system during electricity load peak hours (10:00–14:00) for all five considered and combined months is 1.77. Average rate of heat input required to operate the system and average building cooling load are determined to be 100.3 kW and 46.2 kW, respectively. Therefore, system average COP is computed to be 0.46.

  10. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction systems ducts and air duct systems. 29.1103 Section 29.1103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1103 Induction systems ducts and air duct...

  11. Bacterial community structures in air conditioners installed in Japanese residential buildings.

    Science.gov (United States)

    Hatayama, Kouta; Oikawa, Yurika; Ito, Hiroyuki

    2018-01-01

    The bacterial community structures in four Japanese split-type air conditioners were analyzed using a next-generation sequencer. A variety of bacteria were detected in the air filter of an air conditioner installed on the first floor. In the evaporator of this air conditioner, bacteria belonging to the genus Methylobacterium, or the family of Sphingomonadaceae, were predominantly detected. On the other hand, the majority of bacteria detected in the air filters and evaporators of air conditioners installed on the fifth and twelfth floors belonged to the family Enterobacteriaceae. The source of bacteria belonging to the family Enterobacteriaceae may have been aerosols generated by toilet flushing in the buildings. Our results suggested the possibility that the bacterial contamination in the air conditioners was affected by the floor level on which they were installed. The air conditioner installed on the lower floor, near the ground, may have been contaminated by a variety of outdoor bacteria, whereas the air conditioners installed on floors more distant from the ground may have been less contaminated by outdoor bacteria. However, these suppositions may apply only to the specific split-type air conditioners that we analyzed, because our sample size was small.

  12. Utilization of Solar Energy for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Sutikno Juwari Purwo

    2018-01-01

    Full Text Available The purposes of this research are to do a system simulation of air conditioning utilizing solar energy with single effect absorption refrigeration method, analyze the coefficient of performance (COP for each absorbent-refrigerant variable and compare the effectivity of every absorbent-refrigerant variable used. COP is a constant that denotes the effeciency of a refrigeration system, that is ratio of work or useful output to the amount of work or energy input. The higher the number of COP, the more efficient the system is. Absorbent-refrigerant (working fluids variables used in this research depend on its chemical and thermodynamics properties. Steps in this research are including data collection and tabulation from literature and do a simulation of air conditioning system both commercial air conditioning system (using electrical energy and solar energy air conditioning system with Aspen Plus software. Next, run the simulation for each working fluid variables used and calculate the COP for each variable. Subsequently, analyze and compare the effectivity of all variables used from COP value and economical point of view with commercial air conditioning system. From the result of the simulation, can be concluded that solar air conditioning can achieve 98,85 % of energy savings than commercial air conditioning. Furthermore, from the calculation of COP, the highest COP value is achieved by solar conditioning system with LiNO3-NH3 as working fluid where 55% of the composition is the refrigerant and 45% of absorbent.

  13. Variable volume combustor with an air bypass system

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael; Keener, Christopher Paul

    2017-02-07

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  14. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  15. Bad split during bilateral sagittal split osteotomy of the mandible with separators: a retrospective study of 427 patients.

    Science.gov (United States)

    Mensink, Gertjan; Verweij, Jop P; Frank, Michael D; Eelco Bergsma, J; Richard van Merkesteyn, J P

    2013-09-01

    An unfavourable fracture, known as a bad split, is a common operative complication in bilateral sagittal split osteotomy (BSSO). The reported incidence ranges from 0.5 to 5.5%/site. Since 1994 we have used sagittal splitters and separators instead of chisels for BSSO in our clinic in an attempt to prevent postoperative hypoaesthesia. Theoretically an increased percentage of bad splits could be expected with this technique. In this retrospective study we aimed to find out the incidence of bad splits associated with BSSO done with splitters and separators. We also assessed the risk factors for bad splits. The study group comprised 427 consecutive patients among whom the incidence of bad splits was 2.0%/site, which is well within the reported range. The only predictive factor for a bad split was the removal of third molars at the same time as BSSO. There was no significant association between bad splits and age, sex, class of occlusion, or the experience of the surgeon. We think that doing a BSSO with splitters and separators instead of chisels does not increase the risk of a bad split, and is therefore safe with predictable results. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Temperature-dependent fine structure splitting in InGaN quantum dots

    Science.gov (United States)

    Wang, Tong; Puchtler, Tim J.; Zhu, Tongtong; Jarman, John C.; Kocher, Claudius C.; Oliver, Rachel A.; Taylor, Robert A.

    2017-07-01

    We report the experimental observation of temperature-dependent fine structure splitting in semiconductor quantum dots using a non-polar (11-20) a-plane InGaN system, up to the on-chip Peltier cooling threshold of 200 K. At 5 K, a statistical average splitting of 443 ± 132 μeV has been found based on 81 quantum dots. The degree of fine structure splitting stays relatively constant for temperatures less than 100 K and only increases above that temperature. At 200 K, we find that the fine structure splitting ranges between 2 and 12 meV, which is an order of magnitude higher than that at low temperatures. Our investigations also show that phonon interactions at high temperatures might have a correlation with the degree of exchange interactions. The large fine structure splitting at 200 K makes it easier to isolate the individual components of the polarized emission spectrally, increasing the effective degree of polarization for potential on-chip applications of polarized single-photon sources.

  17. Airport Information Retrieval System (AIRS) System Support Manual

    Science.gov (United States)

    1973-01-01

    This handbook is a support manual for prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load prediction...

  18. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  19. A Matrix Splitting Method for Composite Function Minimization

    KAUST Repository

    Yuan, Ganzhao

    2016-12-07

    Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.

  20. A Matrix Splitting Method for Composite Function Minimization

    KAUST Repository

    Yuan, Ganzhao; Zheng, Wei-Shi; Ghanem, Bernard

    2016-01-01

    Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.

  1. The "Family Tree" of Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2011-01-01

    In this paper all total volume air distribution principles are addressed based on discussions of air flow pattern in a room with heat sources giving a cooling load. The supply and exhaust air openings are considered to have different locations and sizes in the room, and it is possible to show tha...... conditions which are not used for air distribution in general. A number of experiments with different air distribution systems are addressed, and they illustrate the behaviour at the different conditions discussed in the paper....... that all the known types of air distribution systems are interconnected in a “family tree”. The influence of supplied momentum flow versus buoyancy forces is discussed, and geometries for high ventilation effectiveness are indicated as well as geometries for fully mixed flow. The paper will also show......In this paper all total volume air distribution principles are addressed based on discussions of air flow pattern in a room with heat sources giving a cooling load. The supply and exhaust air openings are considered to have different locations and sizes in the room, and it is possible to show...

  2. The Integrated Air Transportation System Evaluation Tool

    Science.gov (United States)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  3. Analysis of Direct Outdoor Air Cooling Efficency for Combined Variable Air Volume Air-conditioning System in Stores in Cold Climates of China

    OpenAIRE

    Luo, Zhiwen

    2006-01-01

    Direct outdoor air cooling contributes a lot not only to the improvement of the indoor air quality but also to the energy saving. Its full use will reduce the water chiller’s running time especially in some stores where cooling load keeps much higher and longer than that in other buildings. A novel air-conditioning system named Combined Variable Air Volume system (CVAV), combining a normal AHU with a separate outdoor air supply system, was proposed firstly by the authors. The most attractive ...

  4. Split kinetic energy method for quantum systems with competing potentials

    International Nuclear Information System (INIS)

    Mineo, H.; Chao, Sheng D.

    2012-01-01

    For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into “unperturbed” and “perturbed” terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double δ-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: ► A new basis set expansion method is proposed. ► Split kinetic energy method is proposed to solve quantum eigenvalue problems. ► Significant improvement has been obtained in converging to exact results. ► Extension of such methods is promising and discussed.

  5. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-Jiang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [College of Mechanical Engineering, Tongji University, 4800 Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed. (author)

  6. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weijiang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang Chunlu, E-mail: chunlu.zhang@carrier.utc.co [College of Mechanical Engineering, Tongji University, 4800 Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed.

  7. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    International Nuclear Information System (INIS)

    Zhang Weijiang; Zhang Chunlu

    2011-01-01

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed.

  8. Time-splitting combined with exponential wave integrator fourier pseudospectral method for Schrödinger-Boussinesq system

    Science.gov (United States)

    Liao, Feng; Zhang, Luming; Wang, Shanshan

    2018-02-01

    In this article, we formulate an efficient and accurate numerical method for approximations of the coupled Schrödinger-Boussinesq (SBq) system. The main features of our method are based on: (i) the applications of a time-splitting Fourier spectral method for Schrödinger-like equation in SBq system, (ii) the utilizations of exponential wave integrator Fourier pseudospectral for spatial derivatives in the Boussinesq-like equation. The scheme is fully explicit and efficient due to fast Fourier transform. The numerical examples are presented to show the efficiency and accuracy of our method.

  9. Geometrical splitting in Monte Carlo

    International Nuclear Information System (INIS)

    Dubi, A.; Elperin, T.; Dudziak, D.J.

    1982-01-01

    A statistical model is presented by which a direct statistical approach yielded an analytic expression for the second moment, the variance ratio, and the benefit function in a model of an n surface-splitting Monte Carlo game. In addition to the insight into the dependence of the second moment on the splitting parameters the main importance of the expressions developed lies in their potential to become a basis for in-code optimization of splitting through a general algorithm. Refs

  10. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  11. TMD splitting functions in kT factorization. The real contribution to the gluon-to-gluon splitting

    International Nuclear Information System (INIS)

    Hentschinski, M.; Kusina, A.; Kutak, K.; Serino, M.

    2018-01-01

    We calculate the transverse momentum dependent gluon-to-gluon splitting function within k T -factorization, generalizing the framework employed in the calculation of the quark splitting functions in Hautmann et al. (Nucl Phys B 865:54-66, arXiv:1205.1759, 2012), Gituliar et al. (JHEP 01:181, arXiv:1511.08439, 2016), Hentschinski et al. (Phys Rev D 94(11):114013, arXiv:1607.01507, 2016) and demonstrate at the same time the consistency of the extended formalism with previous results. While existing versions of k T factorized evolution equations contain already a gluon-to-gluon splitting function i.e. the leading order Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel or the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) kernel, the obtained splitting function has the important property that it reduces both to the leading order BFKL kernel in the high energy limit, to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) gluon-to-gluon splitting function in the collinear limit as well as to the CCFM kernel in the soft limit. At the same time we demonstrate that this splitting kernel can be obtained from a direct calculation of the QCD Feynman diagrams, based on a combined implementation of the Curci-Furmanski-Petronzio formalism for the calculation of the collinear splitting functions and the framework of high energy factorization. (orig.)

  12. Air quality and future energy system planning

    Science.gov (United States)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  13. Acceptance test report for 241-AW process air system

    International Nuclear Information System (INIS)

    Kostelnik, A.J.

    1994-01-01

    The acceptance test procedure (ATP) for the compressed air system at building 241-AW-273 was completed on March 11, 1993. The system was upgraded to provide a reliable source of compressed air to the tank farm. The upgrade included the demolition of the existing air compressor and associated piping, as well as the installation of a new air compressor with a closed loop cooling system. A compressed air cross-tie was added to allow the process air compressor to function as a back-up to the existing instrument air compressor. The purpose of the ATP was to achieve three primary objectives: verify system upgrade in accordance with the design media; provide functional test of system components and controls; and prepare the system for the Operational Test. The ATP was successfully completed with thirteen exceptions, which were resolved prior to completing the acceptance test. The repaired exceptions had no impact to safety or the environment and are briefly summarized. Testing ensured that the system was installed per design, that its components function as required and that it is ready for operational testing and subsequent turnover to operations

  14. Gap solitons in a chain of split-ring resonator dimers

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Wei-na, E-mail: cuiweinaa@163.com [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Li, Hong-xia, E-mail: hxli@njust.edu.cn [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Sun, Min [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Bu, Ling-bing [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2017-06-21

    Dynamics of a chain of split-ring resonator dimers with Kerr nonlinear interaction are investigated. A dimer is built as a pair of coupled split-ring resonators with different size. It is shown that the gap solitons with frequency lying in the gap exist due to the interaction of the discreteness and nonlinearity. Such localized structures are studied in the phase plane and analytical and numerical expressions are also obtained. - Highlights: • The coupling of the two modes is studied in the chain of split-ring resonator dimers with Kerr nonlinear interaction. • The evolution of the localized structures is studied in the phase plane. • This system supports gap solitons with the frequencies lying in the gap.

  15. Deaths Due to Accidental Air Conditioner Compressor Explosion: A Case Series.

    Science.gov (United States)

    Behera, Chittaranjan; Bodwal, Jatin; Sikary, Asit K; Chauhan, Mohit Singh; Bijarnia, Manjul

    2017-01-01

    In an air-conditioning system, the compressor is a large electric pump that pressurizes the refrigerant gas as part of the process of turning it back into a liquid. The explosion of an air conditioner (AC) compressor is an uncommon event, and immediate death resulted from the blast effect is not reported in forensic literature. We report three such cases in which young AC mechanics were killed on the spot due to compressor blast, while repairing the domestic split AC unit. The autopsy findings, the circumstances leading to the explosion of the compressor, are discussed in this study. © 2016 American Academy of Forensic Sciences.

  16. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) - GRAPHICS

    Science.gov (United States)

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  17. The ''Nuclear-Karlsruhe'' air-filter system

    International Nuclear Information System (INIS)

    Berliner, P.; Ohlmeyer, M.; Stotz, W.

    1976-01-01

    Increasing requirements for exhaust-air filter systems used in nuclear facilities induced the Gesellschaft fuer Kernforschung to develop the ''Nuclear-Karlsruhe'' HEPA filter system. This novel development has profited by experience gained in previous incidents as well as by maitenance and decontamination work performed with different HEPA filter systems. The proved ''Nuclear-Karlsruhe'' system takes equally into account the demands for optimum safety, maximum efficiency and economy, and is distinguished by the following features: (1) The air current is defected by 180 0 in the casing. Deflection causes quite a number of improvements, results in substantial reduction of space requirements, and avoids the dispersion of pollutants to the clean-air side. Besides, the HEPA filter is protected from damage by condensed particles or foreign materials entrained; (2) The ''Nuclear-Karlsruhe'' system allows gas-tight filter replacement. Special replacement collars have been provided at the casing, which allow the tight fastening of replacement bags which are self-locking. (3) In-place testing in the operating condition can be carried out very conveniently because the air is deflected. Minimum leaks in the filter medium or in the filter gasket can be detected by the high-sensitivity visual oil-thread test, which makes leaks distinctly visible as oil mist threads through a transparent front window provided on the clean-air side. The test takes only some minutes and its sensitivity is hardly matched by any other technique. (4) The clamping mechanism is installed outside the casing, i.e. outside the polluted or aggressive media. The contact force is spring-loaded absolutely uniformly to the circular filter gasket. (5) For practical and econmic reasons the filter casings can be locked individually so as to be gas-tight. (6) The entire system is made of stainless or coated steel and metal parts which are corrosion and fire-resistant. (author)

  18. Manganese-based Materials Inspired by Photosynthesis for Water-Splitting

    Directory of Open Access Journals (Sweden)

    Harvey J.M. Hou

    2011-09-01

    Full Text Available In nature, the water-splitting reaction via photosynthesis driven by sunlight in plants, algae, and cyanobacteria stores the vast solar energy and provides vital oxygen to life on earth. The recent advances in elucidating the structures and functions of natural photosynthesis has provided firm framework and solid foundation in applying the knowledge to transform the carbon-based energy to renewable solar energy into our energy systems. In this review, inspired by photosynthesis robust photo water-splitting systems using manganese-containing materials including Mn-terpy dimer/titanium oxide, Mn-oxo tetramer/Nafion, and Mn-terpy oligomer/tungsten oxide, in solar fuel production are summarized and evaluated. Potential problems and future endeavors are also discussed.

  19. Developing a dynamic control system for mine compressed air networks

    OpenAIRE

    Van Heerden, S.W.; Pelzer, R.; Marais, J.H.

    2014-01-01

    Mines in general, make use of compressed air systems for daily operational activities. Compressed air on mines is traditionally distributed via compressed air ring networks where multiple shafts are supplied with compressed air from an integral system. These compressed air networks make use of a number of compressors feeding the ring from various locations in the network. While these mines have sophisticated control systems to control these compressors, they are not dynamic systems. Compresso...

  20. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang; Wang, Jun; Vouga, Etienne; Wonka, Peter

    2013-01-01

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  1. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-06

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  2. Improving compressed air system performance: A sourcebook for industry

    OpenAIRE

    Mckane, Aimee T.

    2003-01-01

    Compressed air is used widely throughout industry and is often considered the "fourth utility" at many facilities. Almost every industrial plant, from a small machine shop to an immense pulp and paper mill, has some type of compressed air system. In many cases, the compressed air system is so vital that the facility cannot operate without it. Plant air compressor systems can vary in size from a small unit of 5 horsepower (hp) to huge systems with more than 50,000 hp. In many industrial facili...

  3. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  4. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying; Raja, Suresh; Ferro, Andrea R.; Jaques, Peter A.; Hopke, Philip K. [Clarkson University, 8 Clarkson Avenue, Center for Air Resources Engineering and Science, Potsdam, NY 13699 (United States); Gressani, Cheryl; Wetzel, Larry E. [Air Innovations, Inc, 7000 Performance Drive, North Syracuse, NY 13212 (United States)

    2010-02-15

    Poor indoor air quality has been linked to the exacerbation of asthma symptoms in children. Because people spend most of their time indoors, improving indoor air quality may provide some relief to asthma sufferers. A study was conducted to assess whether operating an air cleaning/ventilating unit (HEPAiRx {sup registered}) in a child's bedroom can improve his/her respiratory health. Thirty children diagnosed with asthma were randomly split into two groups. For the first six weeks, group A had the air cleaning/ventilating unit (HEPAiRx {sup registered}) running in the bedrooms of the participants and group B did not; for the second six weeks, both groups had the cleaners running in the bedrooms; and, for the final six weeks, group A turned the cleaners off and group B kept theirs running. Indoor air quality parameters, including temperature, relative humidity, particulate matter (PM 0.5-10 {mu}m), carbon monoxide, carbon dioxide and total volatile organic compound (TVOC) concentrations, were monitored in each bedroom using an AirAdvice indoor air quality multi-meter. As a measure of pulmonary inflammation, exhaled breath condensate (EBC) was collected every sixth day and analyzed for nitrate and pH. Peak expiratory flow (PEF) was also measured. PM and TVOC concentrations decreased with operation of the HEPAiRx an average of 72% and 59%, respectively. The EBC nitrate concentrations decreased significantly and the EBC pH and PEF values increased significantly with operation of the unit (p < 0.001 when comparing on/off sample means). These results indicate that air cleaning in combination with ventilation can effectively reduce symptoms for asthma sufferers. (author)

  5. Air conditioning system with supplemental ice storing and cooling capacity

    Science.gov (United States)

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  6. Relationship between mandibular anatomy and the occurrence of a bad split upon sagittal split osteotomy.

    Science.gov (United States)

    Aarabi, Mohammadali; Tabrizi, Reza; Hekmat, Mina; Shahidi, Shoaleh; Puzesh, Ayatollah

    2014-12-01

    A bad split is a troublesome complication of the sagittal split osteotomy (SSO). The aim of this study was to evaluate the relation between the occurrence of a bad split and mandibular anatomy in SSO using cone-beam computed tomography. The authors designed a cohort retrospective study. Forty-eight patients (96 SSO sites) were studied. The buccolingual thickness of the retromandibular area (BLR), the buccolingual thickness of the ramus at the level of the lingula (BLTR), the height of the mandible from the alveolar crest to the inferior border of the mandible, (ACIB), the distance between the sigmoid notch and the inferior border of the mandible (SIBM), and the anteroposterior width of the ramus (APWR) were measured. The independent t test was applied to compare anatomic measurements between the group with and the group without bad splits. The receiver operating characteristic (ROC) test was used to find a cutoff point in anatomic size for various parts of the mandible related to the occurrence of bad splits. The mean SIBM was 47.05±6.33 mm in group 1 (with bad splits) versus 40.66±2.44 mm in group 2 (without bad splits; P=.01). The mean BLTR was 5.74±1.11 mm in group 1 versus 3.19±0.55 mm in group 2 (P=.04). The mean BLR was 14.98±2.78 mm in group 1 versus 11.21±1.29 mm in group 2 (P=.001). No statistically significant difference was found for APWR and ACIB between the 2 groups. The ROC test showed cutoff points of 10.17 mm for BLR, 36.69 mm for SIBM, and 4.06 mm for BLTR. This study showed that certain mandibular anatomic differences can increase the risk of a bad split during SSO surgery. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting

    Science.gov (United States)

    Reiss, M. C.; Rumpker, G.

    2017-12-01

    We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by

  8. Air sampling system for airborne surveys

    International Nuclear Information System (INIS)

    Jupiter, C.; Tipton, W.J.

    1975-01-01

    An air sampling system has been designed for installation on the Beechcraft King Air A-100 aircraft as a part of the Aerial Radiological Measuring System (ARMS). It is intended for both particle and whole gas sampling. The sampling probe is designed for isokinetic sampling and is mounted on a removable modified escape hatch cover, behind the co-pilot's seat, and extends about two feet forward of the hatch cover in the air stream lines. Directly behind the sampling probe inside the modified hatch cover is an expansion chamber, space for a 5-inch diameter filter paper cassette, and an optional four-stage cascade impactor for particle size distribution measurements. A pair of motors and blower pumps provide the necessary 0.5 atmosphere pressure across the type MSA 1106 B glass fiber filter paper to allow a flow rate of 50 cfm. The MSA 1106 B filter paper is designed to trap sub-micrometer particles with a high efficiency; it was chosen to enable a quantitative measurement of airborne radon daughters, one of the principal sources of background signals when radiological surveys are being performed. A venturi section and pressure gauges allow air flow rate measurements so that airborne contaminant concentrations may be quantified. A whole gas sampler capable of sampling a cubic meter of air is mounted inside the aircraft cabin. A nuclear counting system on board the aircraft provides capability for α, β and γ counting of filter paper samples. Design data are presented and types of survey missions which may be served by this system are described

  9. Ventilation and air-conditioning system for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ohmoto, Kenji

    1987-01-01

    This report outlines the ventilation and air conditioning facilities for PWR nuclear power plant as well as design re-evaluation and optimization of ventilation and air-conditioning. The primary PWR installations are generally housed in the nuclear reactor building, auxiliary buildings and control building, which are equipped with their own ventilation and air-conditioning systems to serve for their specific purposes. A ventilation/air-conditioning system should be able to work effectively not only for maintaining the ordinary reactor operation but also for controlling the environmental temperature in the event of an accident. Designing of a ventilation/air-conditioning system relied on empirical data in the past, but currently it is performed based on information obtained from various analyses to optimize the system configuration and ventilation capacity. Design re-evaluation of ventilation/air-conditioning systems are conducted widely in various areas, aiming at the integration of safety systems, optimum combination of air-cooling and water-cooling systems, and optimization of the ventilation rate for controlling the concentrations of radioactive substances in the atmosphere in the facilities. It is pointed out that performance evaluation of ventilation/air-conditioning systems, which has been conducted rather macroscopically, should be carried out more in detal in the future to determine optimum air streams and temperature distribution. (Nogami, K.)

  10. Ventilation-air conditioner system in nuclear power plant

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko.

    1989-01-01

    This invention concerns a ventilation-air conditioner system which enables, upon occurrence of accidents in a nuclear power plant, continuous operation for other adjacent nuclear power plants with no effect of accidents. Air supply system and exhaust system are operated during usual operaiton. If loss of coolants accidents should occur in an adjacent nuclear power plants, operation is switched from ventilation operaiton to the operation of re-cycling system based on an AND logic of three signals, that is, a pressure HIGH signal for the reactor container, a water level LOW signal for the reactor and a radioactivity signal of the ventilation-air conditioner sytem on the side of air supply in the nuclear power plant. Thus, nuclear reactor buildings of the nuclear power plant are from the external atmosphere. Therefore, the radioactivity HIGH signal for switching to the emergency air conditioner system of the nuclear power plant is not actuated due to the loss of coolant accidents in the adjacent nuclear power plant. In addition, since the atmospheric temperature in the nuclear reactor building can be maintained by a cooling device disposed to the recycling system, reactor shutdown can be prevented. (I.S.)

  11. Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)

    International Nuclear Information System (INIS)

    García, Lázaro; González, Daniel; García, Carlos; García, Laura; Brayner, Carlos

    2013-01-01

    The current hydrogen production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. Thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. Although, solar hydrogen production could be also used for practical applications because it's lower environmental impact. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur–iodine (S–I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Softwares based on CPS (chemical process simulation) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility respect to the thermodynamics parameters: temperature, pressure and mass flow is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model for different values of initial reactant's flow, is analyzed. - Highlights: • Chemical Process Simulation (CPS) of the complete sulfur iodine cycle. • Conceptual design of an accelerator driven system for hydrogen production. • Radial and axial temperature profile for the end of stationary cycle (EOC). • Thermal stability of the sulfuric and hydriodic acid sections determination. • Sulfur iodine cycle efficiency analyses for different heat flow from the ADS

  12. Air conditioning for data processing system areas

    Directory of Open Access Journals (Sweden)

    Hernando Camacho García

    1996-09-01

    Full Text Available The appropiate selection of air conditioners for data processing system areas requires the knowledge of the environmental desing conditions, the air conditioning systems succssfully used computer and the cooling loads to handle. This work contains information about a wide variety of systems designed for computer room applications. a complete example of calculation to determine the amount of heat to be removed for satisfactory operation, is also included.

  13. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-10-14

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  14. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  15. Compressed air system audit in a chemical company

    Energy Technology Data Exchange (ETDEWEB)

    Radgen, P. [Fraunhofer ISI, Karlsruhe (Germany)

    2005-07-01

    This paper describes the results achieved during a compressed air system audit at a chemical company in Switzerland. The aim of the audit conducted in Muttenz at the site of Clariant Schweiz AG was to analyse the installed compressed air system and its operation in order to identify energy and cost saving potentials. Because there was measurement equipment already installed, it was not necessary to install a new meter. Instead the existing data had to be extracted from the controlled system and regrouped for the analysis. Aggregated data for 2003 and 2004 and a set of detailed data acquired in the course of one week were used for the analysis. The audit identified a number of measures to improve the compressed air system, but had to conclude that the saving potentials at this site are below average. The audit included the compressors, the air treatment and air distribution up to production or storage buildings. The saving potential identified was quantified as about 300 000 kWh/a, or 13.3% of the compressed air energy demand. The cost savings were calculated to be around 41 852 Swiss Franks. (orig.)

  16. Optimizing the Air Dissolution Parameters in an Unpacked Dissolved Air Flotation System

    Directory of Open Access Journals (Sweden)

    Adam Dassey

    2011-12-01

    Full Text Available Due to the various parameters that influence air solubility and microbubble production in dissolved air flotation (DAF, a multitude of values that cover a large range for these parameters are suggested for field systems. An unpacked saturator and an air quantification unit were designed to specify the effects of power, pressure, temperature, hydraulic retention time, and air flow on the DAF performance. It was determined that a pressure of 621 kPa, hydraulic retention time of 18.2 min, and air flow of 8.5 L/h would be the best controlled parameters for maximum efficiency in this unit. A temperature of 7 °C showed the greatest microbubble production, but temperature control would not be expected in actual application. The maximum microbubble flow from the designed system produced 30 mL of air (±1.5 per L of water under these conditions with immediate startup. The maximum theoretical dissolved air volume of 107 mL (±6 was achieved at a retention time of 2 h and a pressure of 621 kPa. To isolate and have better control over the various DAF operational parameters, the DAF unit was operated without the unsaturated flow stream. This mode of operation led to the formation of large bubbles at peak bubble production rates. In a real-world application, the large bubble formation will be avoided by mixing with raw unsaturated stream and by altering the location of dissolved air output flow.

  17. Emergency air cleaning system development for LMFBR containments

    International Nuclear Information System (INIS)

    McCormack, J.D.; Hilliard, R.K.; Postma, A.K.; Muhlestein, L.D.

    1975-01-01

    Criteria for evaluating the various types of Emergency Air Cleaning Systems which may be used in LMFBR plants have been established for both single containment and containment-confinement arrangements. These two plant arrangements have quite different air cleaning requirements for postulated design base accident conditions. Work is currently in progress to select from a list of candidate air cleaning systems those which best meet the criteria requirements. By means of a weighted rating system, areas of strength or weakness can be found and the conceptual system design then optimized. The final system arrangements will be ranked and several of the most promising systems selected for large-scale tests in the former CSE vessel at Hanford. 8 references. (U.S.)

  18. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  19. Secondary air injection system and method

    Science.gov (United States)

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  20. Zn(II Removal from Wastewater by Electrocoagulation/Flotation Method using New Configuration of a Split-Plate Airlift Electrochemical Reactor

    Directory of Open Access Journals (Sweden)

    Saad H. Ammar

    2018-01-01

    Full Text Available In this paper, split-plate airlift electrochemical reactor as an apparatus with new configuration for wastewater treatment was provided. Two aluminum plates were fixed inside the reactor and present two functions; first it works as split plates for internal loop generation of the airlift system (the zone between the two plates acts as riser while the other two zones act as downcomer and second it works as two electrodes for electrocoagulation process. Simulated wastewater contaminated with zinc ions was used to test the performance of this apparatus for zinc removal by studying the effect of different experimental variables such as initial concentration of zinc (50-800 ppm, electrical current density (2.67-21.4 mA/cm2, initial pH (3-11, air flowrate (12-50 LPH, and implicitly the electrocoagulation time. The results have shown the applicability of this split-plate airlift reactor as electrocoagulation cell in the treatment of wastewater such as wastewater containing Zink ions. The Zink removal percent was shown to increase upon increasing the current density and the electrolysis time. Also best removal percent was achieved in the initial pH range between 7 and 9. The minimum electrocoagulation time required for removal of ≥ 90% of Zn(II decreases from 90 to 22 min when operating current density increases from 2.67 to 21.4 mA/cm2.

  1. Cycle performance of alternative refrigerants for domestic air-conditioning system based on a small finned tube heat exchanger

    International Nuclear Information System (INIS)

    Cheng, Song; Wang, Shuangfeng; Liu, Zhongmin

    2014-01-01

    In order to find alternative refrigerants which exhibit both favorable cycle performance and environmental friendliness, R32 and R290 were utilized to contrast to R22 and R410A as substitutes in the present study. The experiments were conducted with a 5 mm finned tube heat exchanger based on the enthalpy method in a small split household air conditioner. The results showed that in nominal cooling conditions, the COP R of R32 and R290 were 26.8% and 20.4% higher than R22, 7.3% and 2.1% higher than R410A. And in nominal heating conditions, the COP HR of R32 and R290 were both 11.0% higher than R22, 5.3% higher than R410A. The systems with R290 and R32 have similar capacities to that with R22 and R410A in heating mode, but a relatively huge difference of capacities in cooling mode. In consideration of charge amount, R290 could be considered as the most superior alternative refrigerant in air conditioners with the small finned tube heat exchanger. - Highlights: •Comparisons are made in the air conditioner system based on 5 mm tube fin heat exchanger. •The R22 system has a similar performance to others in heating mode while a huge difference in cooling mode. •The optimal charge of R290 is reduced with nearly no decline in the capacity and COP. •SLHX is attached to the system of R290 and successfully promote safety and capacity. •Heat loads are taken into account to evaluate the advantages and disadvantages of R290 and R32

  2. Ventilation-air conditioning system

    International Nuclear Information System (INIS)

    Kubokoya, Takashi.

    1991-01-01

    Heretofore, in ventilation-air conditioning systems in a nuclear power plant, exhaust gases from each of the ventilation-air conditioning systems of a reactor building, a turbine building, a waste processing building are joined and they are released into atmosphere from the top of a high main exhaustion stack. In order to build such a high main exhaustion stack, a considerable construction cost is required and, in addition, there is a worry of lacking balance with surrounding scenery. Then, in the present invention, exhaust gases are heated by waste heat in a turbine during their introduction from the ventilation-air conditioning facility in the building of a power plant to the main exhaust stack. With such a constitution, since the exhaust gases are heated and their temperature is elevated, they uprise by natural convection when they are released from the top of the main exhaustion stack to the atmosphere. Accordingly, they are released to a level higher than the conventional case in view of the volume of the blower which sends the exhaust gases under pressure, to diffuse them to the atmosphere more sufficiently compared with a conventional case. Further, the height of the main exhaustion stack can be reduced, enabling to minimize the cost for moving the blower. (T.M.)

  3. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    Science.gov (United States)

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  4. (O)Mega split

    Energy Technology Data Exchange (ETDEWEB)

    Benakli, Karim; Darmé, Luc; Goodsell, Mark D. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589,LPTHE, F-75005, Paris (France); CNRS, UMR 7589,LPTHE, F-75005, Paris (France)

    2015-11-16

    We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale M{sub S}, as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on M{sub S}, which we derive. On the other hand, we show that renormalisation group running of soft masses aboveM{sub S} barely constrains the model — in stark contrast to Split Supersymmetry — and hence we can have a “Mega Split” spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, Fake Split Extended Supersymmetry, which enjoys similar properties.

  5. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building

    International Nuclear Information System (INIS)

    Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A.

    2016-01-01

    Highlights: • Genetic Algorithm is used for tri-objective design of hybrid energy system. • The objective is minimizing the Life Cycle Cost, CO_2 emissions and dump energy. • Small split diesel generators are used in place of big single diesel generator. • The split diesel generators are aggregable based on certain set of rules. • The proposed algorithm achieves the set objectives (LCC, CO_2 emission and dump). - Abstract: In this paper, a Genetic Algorithm (GA) is utilized to implement a tri-objective design of a grid independent PV/Wind/Split-diesel/Battery hybrid energy system for a typical residential building with the objective of minimizing the Life Cycle Cost (LCC), CO_2 emissions and dump energy. To achieve some of these objectives, small split Diesel generators are used in place of single big Diesel generator and are aggregable based on certain set of rules depending on available renewable energy resources and state of charge of the battery. The algorithm was utilized to study five scenarios (PV/Battery, Wind/Battery, Single big Diesel generator, aggregable 3-split Diesel generators, PV/Wind/Split-diesel/Battery) for a typical load profile of a residential house using typical wind and solar radiation data. The results obtained revealed that the PV/Wind/Split-diesel/Battery is the most attractive scenario (optimal) having LCC of $11,273, COE of 0.13 ($/kW h), net dump energy of 3 MW h, and net CO_2 emission of 13,273 kg. It offers 46%, 28%, 82% and 94% reduction in LCC, COE, CO_2 emission and dump energy respectively when compared to a single big Diesel generator scenario.

  6. Air Quality Monitoring System and Benchmarking

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2017-01-01

    Air quality monitoring has become an integral part of smart city solutions. This paper presents an air quality monitoring system based on Internet of Things (IoT) technologies, and establishes a cloud-based platform to address the challenges related to IoT data management and processing capabilit...... capabilities, including data collection, storage, analysis, and visualization. In addition, this paper also benchmarks four state-of-the-art database systems to investigate the appropriate technologies for managing large-scale IoT datasets....

  7. Traffic and Technological Assumptions for the Metro in the City of Split

    Directory of Open Access Journals (Sweden)

    Vinko Višnjić

    2007-05-01

    Full Text Available Rationalization of the traffic systems in major cities, whichincludes Split, is possible at present only by providing a more diverseand higher quality supply of public urban transport.In Split the situation in public urban transport shows that itdoes not meet its basic function. Only partial or transitional solutionsare offered. All this contributes to the delay in makingthe decision which is the only possible one in the city of Split regardingits size and the level of motorization.The solution of the public urban transport lies in the introductionof the metro system through phase construction. Eachphase represents in fact the construction of one line. Due to thecomplexity of the construction of the underground section (tunnelconstntction in the centre of the City the first phase is themost demanding one regarding construction works, with twometro lines intersecting (the need to build two-level stationsand therefore this section is the most complex and the most expensivepart in the network of the metro line system.

  8. An algorithm for the split-feasibility problems with application to the split-equality problem.

    Science.gov (United States)

    Chuang, Chih-Sheng; Chen, Chi-Ming

    2017-01-01

    In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.

  9. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  10. INTEGRATED SAFETY MANAGEMENT SYSTEM IN AIR TRAFFIC SERVICES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-06-01

    Full Text Available The article deals with the analysis of the researches conducted in the field of safety management systems.Safety management system framework, methods and tools for safety analysis in Air Traffic Control have been reviewed.Principles of development of Integrated safety management system in Air Traffic Services have been proposed.

  11. Stochastic split determinant algorithms

    International Nuclear Information System (INIS)

    Horvatha, Ivan

    2000-01-01

    I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed

  12. Testing of Model Water Chiller System with Hidrokarbon as a Primer Refrigeran

    Directory of Open Access Journals (Sweden)

    Nengah Suarnadwipa

    2012-11-01

    Full Text Available Now days, there are two issues that give a negative impact on the environment due to the uses of synthetic refrigerant on therefrigeration system and air conditioning system. The first issue was the Ozon Layer Depletion and the second issue was theGlobal Warming. Regarding those condition, it will be investigated the design and examination of performance the use of thesplit type AC system as water chiller system and using hydrocarbon as a primer refrigerant. As a result, in the examination ofthe standard split type AC system using refrigerant R-22, it founded that the cooling rate of 1958 Watt and COP of 5.29.While the examination on the modified split type AC system into water chiller system using hydrocarbon (hycool 22, hasgiven cooling rate of 1832 Watt and COP of 4.19. Finally, it could be councluded that the split type AC system could be usedas water chiller system.

  13. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    Science.gov (United States)

    Abgarmi, Bizhan; Ozacar, A. Arda

    2017-04-01

    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for

  14. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  15. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  16. A new location to split Cre recombinase for protein fragment complementation.

    Science.gov (United States)

    Rajaee, Maryam; Ow, David W

    2017-11-01

    We have previously described a recombinase-mediated gene stacking system in which the Cre recombinase is used to remove lox-site flanked DNA no longer needed after each round of Bxb1 integrase-mediated site-specific integration. The Cre recombinase can be conveniently introduced by hybridization with a cre-expressing plant. However, maintaining an efficient cre-expressing line over many generations can be a problem, as high production of this DNA-binding protein might interfere with normal chromosome activities. To counter this selection against high Cre activity, we considered a split-cre approach, in which Cre activity is reconstituted after separate parts of Cre are brought into the same genome by hybridization. To insure that the recombinase-mediated gene stacking system retains its freedom to operate, we tested for new locations to split Cre into complementing fragments. In this study, we describe testing four new locations for splitting the Cre recombinase for protein fragment complementation and show that the two fragments of Cre split between Lys244 and Asn245 can reconstitute activity that is comparable to that of wild-type Cre. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Investigation and evaluation of the cause about the loss of split pin which was set to pipe support system of the primary cooling system of Monju

    International Nuclear Information System (INIS)

    Ichikawa, Shoichi; Kawanago, Sho; Nishio, Ryuichi; Wakimoto, Fumitsugu; Fujimura, Tomofumi; Kobayashi, Takanori; Sakamoto, Tsutomu

    2015-07-01

    The loss of the retaining split pins (four pieces) for clevis pin was confirmed at the inspection of the pipe supports in the Monju prototype fast-breeder reactor (hereinafter referred to Monju) in May, 2014. The split pins (two pieces) of ROD RESTRAINT and CONSTANT HANGER were fallen off. The split pins (two pieces) of MECHANICAL SNUBBER were broken at both ends of them. As a result of investigation, a dimple pattern was observed in a fracture surface of broken split pin. This observation result showed that fracture morphology is ductile fracture. A reproduction test, whether split pin was broken by loading the external force to the clevis pin, also gave the same fracture morphology. As the result of all cause investigation, the reason of the broken split pins is that the split pins were loaded shearing stress by the external force loaded to the clevis pin axial direction. The result of the cause investigation and a recurrence prevention measure of this trouble was reported. (author)

  19. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  20. Indoor air quality environmental information handbook: Building system characteristics

    International Nuclear Information System (INIS)

    1987-01-01

    This manual, the third in a series, focuses on residential building system characteristics and their effects on indoor air quality. The manual addresses: residential indoor air pollutants by source, indoor concentrations, health effects, source control and mitigation techniques, standards and guidelines; building system characteristics of air exchange, pollutant source strength, residence volume, site characteristics, structural design, construction, and operation, infiltration and ventilation system, building occupancy; and monitoring methods

  1. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  2. Operating experience feedback report - Air systems problems

    International Nuclear Information System (INIS)

    Ornstein, H.L.

    1987-12-01

    This report highlights significant operating events involving observed or potential failures of safety-related systems in U.S. plants that resulted from degraded or malfunctioning non-safety grade air systems. Based upon the evaluation of these events, the Office for Analysis and Evaluation of Operational Data (AEOD) concludes that the issue of air systems problems is an important one which requires additional NRC and industry attention. This report also provides AEOD's recommendations for corrective actions to deal with the issue. (author)

  3. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  4. AIR TICKETS RATES MONITORING: INFORMATION SYSTEM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Oleg Smirnov

    2015-05-01

    Full Text Available In the article conduct analysis of preconditions of air tickets fares dynamics. Monitoring informational system formation in aim of public regulation of air transport on base of an assessment of the current state and development prospects of Russian civil aviation, and formed the conceptual basis for information system architecture at the levels of the presentation layer, business-logic and data access layer.

  5. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  6. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Gross, R.; Huebl, H.; Goennenwein, S. T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Munich (Germany); Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada)

    2016-08-15

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  7. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  8. Load-Sharing Characteristics of Power-Split Transmission System Based on Deformation Compatibility and Loaded Tooth Contact Analysis

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2015-01-01

    Full Text Available In order to implement the uniform load distribution of the power-split transmission system, a pseudostatic model is built. Based on the loaded tooth contact analysis (LTCA technique, the actual meshing process of each gear pair is simulated and the fitting curve of time-varying mesh stiffness is obtained. And then, the torsional angle deformation compatibility conditions are proposed according to the closed-loop characteristic of power flow, which will be combined with the torque equilibrium conditions and elastic support conditions to calculate the transfer torque of each gear pair. Finally, the load-sharing coefficient of the power-split transmission system is obtained, and the influences of the installation errors are analyzed. The results show that the above-mentioned installation errors comprehensively influence the load-sharing characteristics, and the reduction of only one error could not effectively achieve perfect load-sharing characteristics. Allowing for the spline clearance floating and constrained by the radial spacing ring, the influence of the floating pinion is analyzed. It shows that the floating pinion can improve the load-sharing characteristics. Through the comparison between the theoretical and related experimental data, the reasonability and feasibility of the above-proposed method and model are verified.

  9. Alteration of split renal function during Captopril treatment

    International Nuclear Information System (INIS)

    Aburano, Tamio; Takayama, Teruhiko; Nakajima, Kenichi; Tonami, Norihisa; Hisada, Kinichi; Yasuhara, Shuichirou; Miyamori, Isamu; Takeda, Ryoyu

    1987-01-01

    Two different methods to evaluate the alteration of split renal function following continued Captopril treatment were studied in a total of 21 patients with hypertension. Eight patients with renovascular hypertension (five with unilateral renal artery stenosis and three with bilateral renal artery stenoses), three patients with diabetic nephropathy, one patient with primary aldosteronism, and nine patients with essential hypertension were included. The studies were performed the day prior to receiving Captopril (baseline), and 6th or 7th day following continued Captopril treatment (37.5 mg or 75 mg/day). Split effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) after injections of I-131 hippuran and Tc-99m DTPA were measured using kidney counting corrected for depth and dose, described by Schlegel and Gates. In the patients with renovascular hypertension, split GFR in the stenotic kidney was significantly decreased 6th or 7th day following continued Captopril treatment compared to a baseline value. And split ERPF in the stenotic kidney was slightly increased although significant increase of split ERPF was not shown. In the patients with diabetic nephropathy, primary aldosteronism or essential hypertension, on the other hand, split GFR was not changed and split ERPF was slightly increased. These findings suggest that the Captopril induced alterations of split renal function may be of importance for the diagnosis of renovascular hypertension. For this purpose, split GFR determination is more useful than split ERPF determination. (author)

  10. Designing and testing the optimum design of automotive air-to-air thermoelectric air conditioner (TEAC) system

    International Nuclear Information System (INIS)

    Attar, Alaa; Lee, HoSung

    2016-01-01

    Highlights: • The optimum design of automotive thermoelectric AC system is proposed. • It is optimized by combining the thermal isolation and the dimensionless methods. • An experiment is conducted to validate the analytical design. - Abstract: The current project is discussing the optimization of counter flow air-to-air thermoelectric air conditioners (TEAC) system. Previous work showed an analytical model with experimental validation of a unit cell of TEAC system. However, the focus of this work is to simulate the optimum design of a whole TEAC system from given inlet parameters (i.e., hot and cold air mass flow rates and ambient temperatures). The analytical model was built by combining an optimal design method with dimensional analysis, which was recently developed, and the thermal isolation method in order to optimize the thermoelectric parameters (i.e., electrical current supplied and the number of thermocouples or the geometric factor, simultaneously). Moreover, based on the designed model, an experiment was conducted in order to study the accuracy of the analytical model. Even though the analytical model was built based on the thermoelectric ideal equations, it shows a good agreement with the experiment. This agreement was mainly a result of the use of the thermoelectric effective material properties which are obtained from the measured maximum thermoelectric module parameters. Since the experiment validate the analytical model, this model provides uncomplicated method to study the optimum design at given inputs.

  11. A special correcting winding for the l = 2 torsatron with split-type helical coils

    International Nuclear Information System (INIS)

    Kotenko, V.G.

    2012-01-01

    A split-type special correcting winding (split-type SCW) for the l = 2 torsatron toroidal magnetic system with split-type helical coils is considered. The split-type SCW gives the possibility of controlling the position of the magnetic surface configuration in the direction perpendicular to the torus equatorial plane. Numerical simulations were carried out to investigate the influence of the split-type SCW magnetic field on centered and distant relative to the torus surface magnetic surface configuration with a plane magnetic axis, being promising for the fusion reactor. The configuration is realized in the l = 2 torsatron with split-type helical coils and with the coils of an additional toroidal magnetic field. The calculations show that the split-type SCW magnetic field influence on the initial magnetic surface configuration leads mainly to the magnetic surface configuration displacement along the straight z axis of torus rotation. The displacement of ∼0.1a, a is the minor radius of the torus, has no critical effect on the magnetic surface parameters. An idea on the split-type SCW magnetic field structure is obtained by numerical simulations of the effect of this field as a minority magnetic field imposed on the magnetic field of a well-known configuration. The split-type SCW magnetic field is directed, predominantly along the major radius of the torus within its volume. The displacement range of the closed magnetic surface configuration depends on the split-type SCW magnetic field value.

  12. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  14. Computational fluid dynamics for turbomachinery internal air systems.

    Science.gov (United States)

    Chew, John W; Hills, Nicholas J

    2007-10-15

    Considerable progress in development and application of computational fluid dynamics (CFD) for aeroengine internal flow systems has been made in recent years. CFD is regularly used in industry for assessment of air systems, and the performance of CFD for basic axisymmetric rotor/rotor and stator/rotor disc cavities with radial throughflow is largely understood and documented. Incorporation of three-dimensional geometrical features and calculation of unsteady flows are becoming commonplace. Automation of CFD, coupling with thermal models of the solid components, and extension of CFD models to include both air system and main gas path flows are current areas of development. CFD is also being used as a research tool to investigate a number of flow phenomena that are not yet fully understood. These include buoyancy-affected flows in rotating cavities, rim seal flows and mixed air/oil flows. Large eddy simulation has shown considerable promise for the buoyancy-driven flows and its use for air system flows is expected to expand in the future.

  15. Splitting Ward identity

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Mahmoud [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  16. Splitting Ward identity

    International Nuclear Information System (INIS)

    Safari, Mahmoud

    2016-01-01

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  17. Automatic feathering of split fields for step-and-shoot intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Dogan, Nesrin; Leybovich, Leonid B; Sethi, Anil; Emami, Bahman

    2003-01-01

    Due to leaf travel range limitations of the Varian Dynamic Multileaf Collimator (DMLC) system, an IMRT field width exceeding 14.5 cm is split into two or more adjacent abutting sub-fields. The abutting sub-fields are then delivered as separate treatment fields. The accuracy of the delivery is very sensitive to multileaf positioning accuracy. The uncertainties in leaf and carriage positions cause errors in the delivered dose (e.g., hot or cold spots) along the match line of abutting sub-fields. The dose errors are proportional to the penumbra slope at the edge of each sub-field. To alleviate this problem, we developed techniques that feather the split line of IMRT fields. Feathering of the split line was achieved by dividing IMRT fields into several sub-groups with different split line positions. A Varian 21EX accelerator with an 80-leaf DLMC was used for IMRT delivery. Cylindrical targets with varying widths (>14.5 cm) were created to study the split line positions. Seven coplanar 6 MV fields were selected for planning using the NOMOS-CORVUS TM system. The isocentre of the fields was positioned at the centre of the target volume. Verification was done in a 30 x 30 x 30 cm 3 polystyrene phantom using film dosimetry. We investigated two techniques to move the split line from its original position or cause feathering of them: (1) varying the isocentre position along the target width and (2) introduction of a 'pseudo target' outside of the patient (phantom). The position of the 'pseudo target' was determined by analysing the divergence of IMRT fields. For target widths of 14-28 cm, IMRT fields were automatically split into two sub-fields, and the split line was positioned along the centre of the target by CORVUS. Measured dose distributions demonstrated that the dose to the critical structure was 10% higher than planned when the split line crossed through the centre of the target. Both methods of modifying the split line positions resulted in maximum shifts of ∼1 cm

  18. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  19. Pharmaceutical counselling about different types of tablet-splitting methods based on the results of weighing tests and mechanical development of splitting devices.

    Science.gov (United States)

    Somogyi, O; Meskó, A; Csorba, L; Szabó, P; Zelkó, R

    2017-08-30

    The division of tablets and adequate methods of splitting them are a complex problem in all sectors of health care. Although tablet-splitting is often required, this procedure can be difficult for patients. Four tablets were investigated with different external features (shape, score-line, film-coat and size). The influencing effect of these features and the splitting methods was investigated according to the precision and "weight loss" of splitting techniques. All four types of tablets were halved by four methods: by hand, with a kitchen knife, with an original manufactured splitting device and with a modified tablet splitter based on a self-developed mechanical model. The mechanical parameters (harness and friability) of the products were measured during the study. The "weight loss" and precision of splitting methods were determined and compared by statistical analysis. On the basis of the results, the external features (geometry), the mechanical parameters of tablets and the mechanical structure of splitting devices can influence the "weight loss" and precision of tablet-splitting. Accordingly, a new decision-making scheme was developed for the selection of splitting methods. In addition, the skills of patients and the specialties of therapy should be considered so that pharmaceutical counselling can be more effective regarding tablet-splitting. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  1. Dynamic load-sharing characteristic analysis of face gear power-split gear system based on tooth contact characteristics

    Science.gov (United States)

    Dong, Hao; Hu, Yahui

    2018-04-01

    The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.

  2. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard

    2014-01-01

    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....

  3. Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.

    Science.gov (United States)

    Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng

    2012-12-01

    RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.

  4. Permanently split capacitor motor-study of the design parameters

    Science.gov (United States)

    Sarac, Vasilija; Stefanov, Goce

    2017-09-01

    Paper analyzes the influence of various design parameters on torque of permanently split capacitor motor. Motor analytical model is derived and it is used for calculating the performance characteristics of basic motor model. The acquired analytical model is applied in optimization software that uses genetic algorithms (GA) as an optimization method. Optimized motor model with increased torque is derived by varying three motor parameters in GA program: winding turns ratio, average air gap flux density and motor stack length. Increase of torque has been achieved for nominal operation but also at motor starting. Accuracy of the derived models is verified by Simulink. The acquired values of several motor parameters from transient characteristics of Simulink models are compared with the corresponding values obtained from analytical models of both motors, basic and optimized. Numerical analysis, based on finite element method (FEM), is also performed for both motor models. As a result of the FEM analysis, magnetic flux density in motor cross-section is calculated and adequate conclusions are derived in relation to core saturation and air gap flux density in both motor models.

  5. Semi-strong split domination in graphs

    Directory of Open Access Journals (Sweden)

    Anwar Alwardi

    2014-06-01

    Full Text Available Given a graph $G = (V,E$, a dominating set $D subseteq V$ is called a semi-strong split dominating set of $G$ if $|V setminus D| geq 1$ and the maximum degree of the subgraph induced by $V setminus D$ is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted $gamma_{sss}(G$. In this work, we introduce the concept and prove several results regarding it.

  6. Transformations in Air Transportation Systems For the 21st Century

    Science.gov (United States)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  7. Air-conditioning and ventilation systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide defines the requirements for the design, implementation and operation of the air-conditioning and ventilation systems of nuclear facilities belonging to safety classes 3 and 4, and for the related documents to be submitted to STUK (Radiation and Nuclear Safety Authority, Finland). Furthermore, the Guide describes the inspections of air-conditioning and ventilation systems to be conducted by STUK during construction and operation of the facilities. As far as systems and components belonging to safety class 2 are concerned, STUK sets additional requirements case by case. In general, air-conditioning systems refer to systems designed to manage the indoor air cleanness, temperature, humidity and movement. In some rooms of a nuclear power plant, ventilation systems are also used to prevent radioactive materials from spreading outside the rooms. Guide YVL1.0 defines the safety principles concerning the air-conditioning and ventilation of nuclear power plants. Guide YVL2.0 gives the requirements for the design of nuclear power plant systems. In addition, YVLGuide groups 3, 4, 5 and 7 deal with the requirements for air-conditioning and ventilation systems with regard to the mechanical equipment, fire prevention, electrical systems, instrumentation and control technology, and the restriction of releases. The rules and regulations issued by the Ministry of the Environment and the Ministry of the Interior (RakMK, the Finnish building code) concerning the design and operation of air-conditioning and ventilation systems and the related fire protection design bases also apply to nuclear facilities. Exhaust gas treatment systems, condenser vacuum systems of boiling water reactor plants and leak collection systems are excluded from the scope of this Guide

  8. Efficient energy recovering air inlet system for an internal combustion engine

    NARCIS (Netherlands)

    2011-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  9. Efficient energy recovering air inlet system for an international combustion engine

    NARCIS (Netherlands)

    2013-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  10. Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…

  11. Humidification dehumidification desalination system using parabolic trough solar air collector

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.; Zubair, M. Ifras; Atif, Maimoon; Gandhidasan, Palanichamy; Al-Dini, Salem A.; Antar, Mohamed A.

    2015-01-01

    This paper deals with a detailed thermodynamic analysis to assess the performance of an HDH system with an integrated parabolic trough solar collector (PTSC). The HDH system considered is an open air, open water, air heated system that uses a PTSC as an air heater. Two different configurations were considered of the HDH system. In the first configuration, the solar air heater was placed before the humidifier whereas in the second configuration the solar air heater was placed between the humidifier and the dehumidifier. The current study revealed that PTSCs are well suited for air heated HDH systems for high radiation location, such as Dhahran, Saudi Arabia. The comparison between the two HDH configurations demonstrates that the gained output ratio (GOR) of the first configuration is, on average, about 1.5 whereas for the second configuration the GOR increases up to an average value of 4.7. The study demonstrates that the HDH configuration with the air heater placed between the humidifier and the dehumidifier has a better performance and a higher productivity. - Highlights: • Thermodynamic analysis of an HDH system driven by a parabolic trough solar collector was conducted. • The first configuration reveals a GOR of 1.5 while the second configuration reveals a GOR of 4.7. • Effective heating of the HDH system was obtained through parabolic trough solar collector

  12. Performance of a hydraulic air compressor for use in compressed air energy storage power systems

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. A.; Ahrens, F. W.

    1978-01-01

    A fluid mechanical analysis of a hydraulic air compression system for Compressed Air Energy Storage (CAES) application is presented. With this compression concept, air is charged into an underground reservoir, for later use in power generation, by entraining bubbles into a downward flow of water from a surface reservoir. Upon releasing the air in the underground reservoir, the water is pumped back to the surface. The analytical model delineated is used to predict the hydraulic compressor performance characteristics (pumping power, pump head, compression efficiency) as a function of water flow rate and system geometrical parameters. The results indicate that, although large water pumps are needed, efficiencies as high as 90% (relative to ideal isothermal compression) can be expected. This should result in lower compression power than for conventional compressor systems, while eliminating the need for the usual intercoolers and aftercooler.

  13. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  14. Molecular concepts of water splitting. Nature's approach

    International Nuclear Information System (INIS)

    Cox, Nicholas; Lubitz, Wolfgang

    2013-01-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  15. Status report on the 12T split coil test facility SULTAN

    International Nuclear Information System (INIS)

    Blau, B.; Aebli, E.; Jakob, B.; Pasztor, G.; Vecsey, G.; della Corte, A.; Pasotti, G.; Sacchetti, N.; Spadoni, M.

    1992-01-01

    The third phase of upgrading of the superconductor test facility SULTAN into a split coil system (SULTAN III) is in progress. SULTAN III a join project of ENEA (Italy) and PSI (Switzerland) consists of two coil packages, each containing three concentrically mounted superconducting solenoids. Together they will produce a field of nearly 12T between the two coil packages, inside a solenoid bore of 58 cm. The outermost 6T coils have NbTi conductors, whereas the inner 9T and 12T coils are made of A-15 cables. All Nb 3 Sn coils are manufactured by the react-and-wind technique. The split coil arrangement, in connection with a sophisticated sample insert containing a 50 kA superconducting transformer, will allow testing of short samples of high current carrying superconductors, e.g. for fusion applications. The sample insert was designed to allow changing the samples within a few hours without warming up the whole magnet system. This paper deals with the present status and potential of the Split Coil Test Facility SULTAN III

  16. Thermalization dynamics of two correlated bosonic quantum wires after a split

    Science.gov (United States)

    Huber, Sebastian; Buchhold, Michael; Schmiedmayer, Jörg; Diehl, Sebastian

    2018-04-01

    Cherently splitting a one-dimensional Bose gas provides an attractive, experimentally established platform to investigate many-body quantum dynamics. At short enough times, the dynamics is dominated by the dephasing of single quasiparticles, and well described by the relaxation towards a generalized Gibbs ensemble corresponding to the free Luttinger theory. At later times on the other hand, the approach to a thermal Gibbs ensemble is expected for a generic, interacting quantum system. Here, we go one step beyond the quadratic Luttinger theory and include the leading phonon-phonon interactions. By applying kinetic theory and nonequilibrium Dyson-Schwinger equations, we analyze the full relaxation dynamics beyond dephasing and determine the asymptotic thermalization process in the two-wire system for a symmetric splitting protocol. The major observables are the different phonon occupation functions and the experimentally accessible coherence factor, as well as the phase correlations between the two wires. We demonstrate that, depending on the splitting protocol, the presence of phonon collisions can have significant influence on the asymptotic evolution of these observables, which makes the corresponding thermalization dynamics experimentally accessible.

  17. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    Energy Technology Data Exchange (ETDEWEB)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  18. SplitRacer - a semi-automatic tool for the analysis and interpretation of teleseismic shear-wave splitting

    Science.gov (United States)

    Reiss, Miriam Christina; Rümpker, Georg

    2017-04-01

    We present a semi-automatic, graphical user interface tool for the analysis and interpretation of teleseismic shear-wave splitting in MATLAB. Shear wave splitting analysis is a standard tool to infer seismic anisotropy, which is often interpreted as due to lattice-preferred orientation of e.g. mantle minerals or shape-preferred orientation caused by cracks or alternating layers in the lithosphere and hence provides a direct link to the earth's kinematic processes. The increasing number of permanent stations and temporary experiments result in comprehensive studies of seismic anisotropy world-wide. Their successive comparison with a growing number of global models of mantle flow further advances our understanding the earth's interior. However, increasingly large data sets pose the inevitable question as to how to process them. Well-established routines and programs are accurate but often slow and impractical for analyzing a large amount of data. Additionally, shear wave splitting results are seldom evaluated using the same quality criteria which complicates a straight-forward comparison. SplitRacer consists of several processing steps: i) download of data per FDSNWS, ii) direct reading of miniSEED-files and an initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold. iii) an analysis of the particle motion of selected phases and successive correction of the sensor miss-alignment based on the long-axis of the particle motion. iv) splitting analysis of selected events: seismograms are first rotated into radial and transverse components, then the energy-minimization method is applied, which provides the polarization and delay time of the phase. To estimate errors, the analysis is done for different randomly-chosen time windows. v) joint-splitting analysis for all events for one station, where the energy content of all phases is inverted simultaneously. This allows to decrease the influence of noise and to increase robustness of the measurement

  19. Diffuse Ceiling Inlet Systems and the Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Rong, Li

    2010-01-01

    A diffuse ceiling inlet system is an air distribution system which is supplying the air through the whole ceiling. The system can remove a large heat load without creating draught in the room. The paper describes measurements in the case of both cooling and heating, and CFD predictions are given...

  20. Split and delay photon correlation spectroscopy with a visible light

    International Nuclear Information System (INIS)

    Rasch, Marten

    2016-04-01

    The development and performance of a setup constructed with the aim for the split pulse photon correlation spectroscopy is presented in this thesis. The double pulse time structure is accomplished with help of an Acusto-Optic Modulator (AOM) crystal, which mimics the splitting and delaying of photon pulses. The setup provides double pulses and allows to control the pulse width and delay and to synchronize them into one camera exposure window. The performance of the setup was successfully verified in a proof of principle experiment with a model system of polystyrene particles following Brownian motion. The measured radius of particles obtained with from the split pulse experiment (R h =(2.567±0.097) μm) is in agreement with the particle size provided by the manufacturer (R=(2.26±0.08) μm). The achieved results show higher statistics compared to a standard Dynamic Light Scattering (DLS) measurement.

  1. Photocatalytic and Photoelectrochemical Water Splitting by Inorganic Materials

    KAUST Repository

    Deng, Xiaohui

    2012-12-01

    Hydrogen has been identified as a potential energy carrier due to its high energy capacity and environmental harmlessness. Compared with hydrogen production from hydrocarbons such as methane and naphtha in a conventional hydrogen energy system, photocatalytic hydrogen evolution from water splitting offers a more economic approach since it utilizes the abundant solar irradiation as energy source and water as initial reactant. Powder photocatalyst, which generates electrons and holes under illumination, is the origin where the overall reaction happens. High solar energy conversion efficiency especially from visible range is commonly the target. Besides, cocatalyst for hydrogen and oxygen evolution is also playing an essential role in facilitating the charge separation and enhancing the kinetics. In this thesis, the objective is to achieve high energy conversion efficiency towards water splitting from diverse aspects. The third chapter focuses on a controllable method to fabricate metal pattern, which is candidate for hydrogen evolution cocatalyst while chapter 4 is on the combination of strontium titanium oxide (SrTiO3) with graphene oxide (GO) for a better photocatalytic performance. In the last chapter, photoelectrochemical water splitting by Ta3N5 photoanode and FeOOH as a novel oxygen evolution cocatalyst has been investigated.

  2. Calibration of NASA Turbulent Air Motion Measurement System

    Science.gov (United States)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  3. Performance study of desiccant coated heat exchanger air conditioning system in winter

    International Nuclear Information System (INIS)

    Ge, T.S.; Dai, Y.J.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of desiccant coated heat exchanger AC system is predicted. • Effects of main operation parameters and climatic conditions are discussed. • Regeneration temperature of 30 °C is recommended under simulation condition. • Higher ambient humidity ratio results in increased humidity ratio of supply air. • Temperature of ambient air has neglectable effect on supply air. - Abstract: Conventional air source heat pump system faces several challenges when adopted in winter season. Solid desiccant air conditioning system can provide humidification and heating power simultaneously and can be driven by low grade thermal energy; it provides a good alternative for air source heat pump systems. However, conventional solid desiccant air conditioning system adopts desiccant wheel with high cost as core component, which hinders the development of such system. Recently, desiccant coated heat exchanger (DCHE) with low initial cost and high efficiency was developed and this paper aims to investigate performance of DCHE air conditioning system adopted in Shanghai winter season. Performance of the system is predicted by a developed mathematical model where supply air states, mass of humidification and coefficient of performance (COP) are adopted as performance indices to evaluate the feasibility and energy utilization ratio of the system. Effects of regeneration water temperature on system performance are analyzed. It is found that under the simulation condition, relatively low regeneration temperature (such as 20 °C) cannot meet the designed standard and relatively high regeneration temperature (such as 40 °C) provides too much extra heating power, thus moderate regeneration temperature around 30 °C is recommended. Meanwhile, switch time is a crucial operation parameter for the system to obtain satisfied supply air, switch time from 40 s to 80 s and from 70 s to 240 s are recommended for transient and average supply air states, respectively. Both

  4. Modeling and optimization of the air system in polymer exchange membrane fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Cheng; Ouyang, Minggao [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); Yi, Baolian [Dalian Institute of Chemical Physics, CAS, Dalian 116023 (China)

    2006-06-01

    Stack and air system are the two most important components in the fuel cell system (FCS). It is meaningful to study their properties and the trade-off between them. In this paper, a modified one-dimensional steady-state analytical fuel cell model is used. The logarithmic mean of the inlet and the outlet oxygen partial pressure is adopted to avoid underestimating the effect of air stoichiometry. And the pressure drop model in the grid-distributed flow field is included in the stack analysis. Combined with the coordinate change preprocessing and analog technique, neural network is used to treat the MAP of compressor and turbine in the air system. Three kinds of air system topologies, the pure screw compressor, serial booster and exhaust expander are analyzed in this article. A real-code genetic algorithm is programmed to obtain the global optimum air stoichiometric ratio and the cathode outlet pressure. It is shown that the serial booster and expander with the help of exhaust recycling, can improve more than 3% in the FCS efficiency comparing to the pure screw compressor. As the net power increases, the optimum cathode outlet pressure keeps rising and the air stoichiometry takes on the concave trajectory. The working zone of the proportional valve is also discussed. This presented work is helpful to the design of the air system in fuel cell system. The steady-state optimum can also be used in the dynamic control. (author)

  5. Modeling and optimization of the air system in polymer exchange membrane fuel cell systems

    Science.gov (United States)

    Bao, Cheng; Ouyang, Minggao; Yi, Baolian

    Stack and air system are the two most important components in the fuel cell system (FCS). It is meaningful to study their properties and the trade-off between them. In this paper, a modified one-dimensional steady-state analytical fuel cell model is used. The logarithmic mean of the inlet and the outlet oxygen partial pressure is adopted to avoid underestimating the effect of air stoichiometry. And the pressure drop model in the grid-distributed flow field is included in the stack analysis. Combined with the coordinate change preprocessing and analog technique, neural network is used to treat the MAP of compressor and turbine in the air system. Three kinds of air system topologies, the pure screw compressor, serial booster and exhaust expander are analyzed in this article. A real-code genetic algorithm is programmed to obtain the global optimum air stoichiometric ratio and the cathode outlet pressure. It is shown that the serial booster and expander with the help of exhaust recycling, can improve more than 3% in the FCS efficiency comparing to the pure screw compressor. As the net power increases, the optimum cathode outlet pressure keeps rising and the air stoichiometry takes on the concave trajectory. The working zone of the proportional valve is also discussed. This presented work is helpful to the design of the air system in fuel cell system. The steady-state optimum can also be used in the dynamic control.

  6. Design of a Hydraulic Motor System Driven by Compressed Air

    Directory of Open Access Journals (Sweden)

    Jyun-Jhe Yu

    2013-06-01

    Full Text Available This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power. To evaluate the theoretical efficiency, the principle of balance of energy is applied. The theoretical efficiency of converting air into hydraulic energy is found to be a function of pressure; thus, the maximum converting efficiency can be determined. To confirm the theoretical evaluation, a prototype of the pneumatic hydraulic system is built. The experiment verifies that the theoretical evaluation of the system efficiency is reasonable, and that the layout of the system is determined by the results of theoretical evaluation.

  7. Development of multiplexing network for air conditioner systems; Eakon yo LAN system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T; Nakazawa, Y; Nakase, M; Sato, Y [Nissan Motor Co. Ltd., Tokyo (Japan); Nomura, M; Okasato, Y; Sunaga, H [Calsonic Corp., Tokyo (Japan)

    1997-10-01

    Plural air flap actuators of the air conditioner system in a vehicle have been integrated into a single-type actuator using two newly developed technologies: super-low-cost multiplexing network technology and digital motor control technology with a 1-bit A/D converter. The number of harnesses and connectors and the handling load of the air conditioner control microcomputer are reduced, so that we succeeded in sharply reducing the cost of the air conditioner system. 9 figs., 2 tabs.

  8. k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals

    KAUST Repository

    Grytsiuk, Sergii

    2016-05-23

    We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.

  9. k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals

    KAUST Repository

    Grytsyuk, Sergiy; Belabbes, Abderrezak; Haney, Paul M.; Lee, Hyun-Woo; Lee, Kyung-Jin; Stiles, M. D.; Schwingenschlö gl, Udo; Manchon, Aurelien

    2016-01-01

    We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.

  10. Economics of water injected air screw compressor systems

    Science.gov (United States)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  11. Testing of nuclear air-cleaning systems

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A standard is presented which describes methods for field-testing nuclear power plant air cleaning systems. Included are specifications for visual inspection; duct and housing leak test; mounting frame pressure leak test; airflow capacity, distribution, and residence time tests; air-aerosol mixing uniformity test; in place leak test of HEPA filter banks; multiple sampling technique; in-place leak test of adsorber stage; laboratory testing of adsorbent; and duct heater performance test

  12. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    Science.gov (United States)

    Wilson, Eric J. H.

    2011-12-01

    This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both

  13. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  14. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    Science.gov (United States)

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  15. The Adverse Effects of Air Pollution on the Nervous System

    Science.gov (United States)

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  16. Application of the operator splitting to the Maxwell equations with the source term

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Faragó, I.; Horváth, R.

    Motivated by numerical solution of the time-dependent Maxwell equations, we consider splitting methods for a linear system of differential equations $w'(t)=Aw(t)+f(t),$ $A\\in\\mathbb{R}^{n\\times n}$ split into two subproblems $w_1'(t)=A_1w_1(t)+f_1(t)$ and $w_2'(t)=A_2w_2(t)+f_2(t),$ $A=A_1+A_2,$

  17. Optimal Control of Hybrid Systems in Air Traffic Applications

    Science.gov (United States)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  18. Air data system optimization using a genetic algorithm

    Science.gov (United States)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  19. 26 CFR 1.7872-15 - Split-dollar loans.

    Science.gov (United States)

    2010-04-01

    ...'s death benefit proceeds, the policy's cash surrender value, or both. (ii) Payments that are only... regarding certain split-dollar term loans payable on the death of an individual, certain split-dollar term... insurance arrangement make a representation—(i) Requirement. An otherwise noncontingent payment on a split...

  20. Advanced Air Data Systems for Commercial Aircraft

    Science.gov (United States)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  1. A guiding oblique osteotomy cut to prevent bad split in sagittal split ramus osteotomy: a technical note

    Directory of Open Access Journals (Sweden)

    Gururaj Arakeri

    2015-06-01

    Full Text Available Aim: To present a simple technical modification of a medial osteotomy cut which prevents its misdirection and overcomes various anatomical variations as well as technical problems. Methods: The medial osteotomy cut is modified in the posterior half at an angle of 15°-20° following novel landmarks. Results: The proposed cut exclusively directs the splitting forces downwards to create a favorable lingual fracture, preventing the possibility of an upwards split which would cause a coronoid or condylar fracture. Conclusion: This modification has proven to be successful to date without encountering the complications of a bad split or nerve damage.

  2. Facilitating Neuron-Specific Genetic Manipulations in Drosophila melanogaster Using a Split GAL4 Repressor.

    Science.gov (United States)

    Dolan, Michael-John; Luan, Haojiang; Shropshire, William C; Sutcliffe, Ben; Cocanougher, Benjamin; Scott, Robert L; Frechter, Shahar; Zlatic, Marta; Jefferis, Gregory S X E; White, Benjamin H

    2017-06-01

    Efforts to map neural circuits have been galvanized by the development of genetic technologies that permit the manipulation of targeted sets of neurons in the brains of freely behaving animals. The success of these efforts relies on the experimenter's ability to target arbitrarily small subsets of neurons for manipulation, but such specificity of targeting cannot routinely be achieved using existing methods. In Drosophila melanogaster , a widely-used technique for refined cell type-specific manipulation is the Split GAL4 system, which augments the targeting specificity of the binary GAL4-UAS (Upstream Activating Sequence) system by making GAL4 transcriptional activity contingent upon two enhancers, rather than one. To permit more refined targeting, we introduce here the "Killer Zipper" (KZip + ), a suppressor that makes Split GAL4 targeting contingent upon a third enhancer. KZip + acts by disrupting both the formation and activity of Split GAL4 heterodimers, and we show how this added layer of control can be used to selectively remove unwanted cells from a Split GAL4 expression pattern or to subtract neurons of interest from a pattern to determine their requirement in generating a given phenotype. To facilitate application of the KZip + technology, we have developed a versatile set of LexA op -KZip + fly lines that can be used directly with the large number of LexA driver lines with known expression patterns. KZip + significantly sharpens the precision of neuronal genetic control available in Drosophila and may be extended to other organisms where Split GAL4-like systems are used. Copyright © 2017 Dolan et al.

  3. [Assessment of the air quality improment of cleaning and disinfection on central air-conditioning ventilation system].

    Science.gov (United States)

    Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming

    2009-09-01

    To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.

  4. Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics

    Science.gov (United States)

    Xu, Kun

    1998-01-01

    A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.

  5. Fighting corrosion in air pollution control systems

    International Nuclear Information System (INIS)

    Rittenhouse, R.C.

    1991-01-01

    This paper reports that materials is the name of the game for corrosion prevention in air pollution control equipment. Whether the system is already in place, a retrofit, are specified for a new power pant, preventing corrosion is critical, because such deterioration easily undermines reliability. Hence, materials can heavily influence power plant compliance to the 1990 Clean Air Act amendments. Flue gas desulfurization (FGD) systems, perhaps the most vulnerable area to corrosion, are expected to be the method of choice for sulfur removal in many power plants in the near term. Components of these systems have various degrees of susceptibility to corrosion and related problems

  6. Thermal comfort and indoor air quality in rooms with integrated personalized ventilation and under-floor air distribution systems

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar ., S. C.; Melikov, Arsen Krikor

    2011-01-01

    A comprehensive study comprising physical measurements and human subject experiments was conducted to explore the potential for improving occupants' thermal comfort and indoor air quality (IAQ) using a personalized ventilation (PV) system combined with an under-floor air distribution(UFAD) system....... The integrated PV-UFAD system, when operated at relatively high temperature of the air supplied from the UFAD system, provided comfortable cooling of the facial region, improved inhaled air quality, and decreased the risk of "cold feet," which is often reported in rooms with UFAD alone. This article explores...... and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Velocity and temperature distribution in the chamber were measured. A breathing thermal manikin was used to measure the heat loss from 26 body segments and to determine the equivalent temperature. The responses of 30 human...

  7. METHODOLOGY FOR ANALYSIS OF DECISION MAKING IN AIR NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2011-03-01

    Full Text Available Abstract. In the research of Air Navigation System as a complex socio-technical system the methodologyof analysis of human-operator's decision-making has been developed. The significance of individualpsychologicalfactors as well as the impact of socio-psychological factors on the professional activities of ahuman-operator during the flight situation development from normal to catastrophic were analyzed. On thebasis of the reflexive theory of bipolar choice the expected risks of decision-making by the Air NavigationSystem's operator influenced by external environment, previous experience and intentions were identified.The methods for analysis of decision-making by the human-operator of Air Navigation System usingstochastic networks have been developed.Keywords: Air Navigation System, bipolar choice, human operator, decision-making, expected risk, individualpsychologicalfactors, methodology of analysis, reflexive model, socio-psychological factors, stochastic network.

  8. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    Science.gov (United States)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  9. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  10. The three-loop splitting functions in QCD. The helicity-dependent case

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2014-09-01

    We present the next-to-next-to-leading order (NNLO) contributions to the main splitting functions for the evolution of longitudinally polarized parton densities of hadrons in perturbative QCD. The quark-quark and gluon-quark splitting functions have been obtained by extending our previous all Mellin-N calculations to the structure function g 1 in electromagnetic deep-inelastic scattering (DIS). Their quark-gluon and gluon-gluon counterparts have been derived using third-order fixed-N calculations of structure functions in graviton-exchange DIS, relations to the unpolarized case and mathematical tools for systems of Diophantine equations. The NNLO corrections to the splitting functions are small outside the region of small momentum fractions x where they exhibit a large double-logarithmic enhancement, yet the corrections to the evolution of the parton densities can be unproblematic down to at least x∼10 -4 .

  11. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  12. Frequency Splitting Elimination and Cross-Coupling Rejection of Wireless Power Transfer to Multiple Dynamic Receivers

    Directory of Open Access Journals (Sweden)

    Narayanamoorthi R.

    2018-01-01

    Full Text Available Simultaneous power transfer to multiple receiver (Rx system is one of the key advantages of wireless power transfer (WPT system using magnetic resonance. However, determining the optimal condition to uniformly transfer the power to a selected Rx at high efficiency is the challenging task under the dynamic environment. The cross-coupling and frequency splitting are the dominant issues present in the multiple Rx dynamic WPT system. The existing analysis is performed by considering any one issue present in the system; on the other hand, the cross coupling and frequency splitting issues are interrelated in dynamic Rx’s, which requires a comprehensive design strategy by considering both the problems. This paper proposes an optimal design of multiple Rx WPT system, which can eliminate cross coupling, frequency splitting issues and increase the power transfer efficiency (PTE of selected Rx. The cross-coupling rejection, uniform power transfer is performed by adding an additional relay coil and independent resonance frequency tuning with capacitive compensation to each Rx unit. The frequency splitting phenomena are eliminated using non-identical transmitter (Tx and Rx coil structure which can maintain the coupling between the coil under the critical coupling limit. The mathematical analysis of the compensation capacitance calculation and optimal Tx coil size identification is performed for the four Rx WPT system. Finite element analysis and experimental investigation are carried out for the proposed design in static and dynamic conditions.

  13. LDA merging and splitting with applications to multiagent cooperative learning and system alteration.

    Science.gov (United States)

    Pang, Shaoning; Ban, Tao; Kadobayashi, Youki; Kasabov, Nikola K

    2012-04-01

    To adapt linear discriminant analysis (LDA) to real-world applications, there is a pressing need to equip it with an incremental learning ability to integrate knowledge presented by one-pass data streams, a functionality to join multiple LDA models to make the knowledge sharing between independent learning agents more efficient, and a forgetting functionality to avoid reconstruction of the overall discriminant eigenspace caused by some irregular changes. To this end, we introduce two adaptive LDA learning methods: LDA merging and LDA splitting. These provide the benefits of ability of online learning with one-pass data streams, retained class separability identical to the batch learning method, high efficiency for knowledge sharing due to condensed knowledge representation by the eigenspace model, and more preferable time and storage costs than traditional approaches under common application conditions. These properties are validated by experiments on a benchmark face image data set. By a case study on the application of the proposed method to multiagent cooperative learning and system alternation of a face recognition system, we further clarified the adaptability of the proposed methods to complex dynamic learning tasks.

  14. Airport Information Retrieval System (AIRS) User's Guide

    Science.gov (United States)

    1973-08-01

    The handbook is a user's guide for a prototype air traffic flow control automation system developed for the FAA's System Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load predictions ...

  15. Assessment methodology for air defence control systems

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2013-09-01

    Full Text Available In Command and Control, humans have to make sense of the situation to support decision making on the required action. Development of an Air Defence Control system through a Systems Engineering process starts with assessment of existing systems...

  16. Split-plot designs for robotic serial dilution assays.

    Science.gov (United States)

    Buzas, Jeffrey S; Wager, Carrie G; Lansky, David M

    2011-12-01

    This article explores effective implementation of split-plot designs in serial dilution bioassay using robots. We show that the shortest path for a robot to fill plate wells for a split-plot design is equivalent to the shortest common supersequence problem in combinatorics. We develop an algorithm for finding the shortest common supersequence, provide an R implementation, and explore the distribution of the number of steps required to implement split-plot designs for bioassay through simulation. We also show how to construct collections of split plots that can be filled in a minimal number of steps, thereby demonstrating that split-plot designs can be implemented with nearly the same effort as strip-plot designs. Finally, we provide guidelines for modeling data that result from these designs. © 2011, The International Biometric Society.

  17. Improving Compressed Air System Performance: A Sourcebook for Industry v3

    Energy Technology Data Exchange (ETDEWEB)

    Ron Marshall, William Scales, Gary Shafer, Paul Shaw, Paul Sheaffer, Rick Stasyshan, H.P.

    2016-03-01

    This sourcebook is designed to provide compressed air system users with a reference that outlines opportunities for system performance improvements. It is not intended to be a comprehensive technical text on improving compressed air systems, but rather a document that makes compressed air system users aware of the performance improvement potential, details some of the significant opportunities, and directs users to additional sources of assistance.

  18. Thermodynamic analysis of the two-phase ejector air-conditioning system for buses

    International Nuclear Information System (INIS)

    Ünal, Şaban; Yilmaz, Tuncay

    2015-01-01

    Air-conditioning compressors of the buses are usually operated with the power taken from the engine of the buses. Therefore, an improvement in the air-conditioning system will reduce the fuel consumption of the buses. The improvement in the coefficient of performance (COP) of the air-conditioning system can be provided by using the two-phase ejector as an expansion valve in the air-conditioning system. In this study, the thermodynamic analysis of bus air-conditioning system enhanced with a two-phase ejector and two evaporators is performed. Thermodynamic analysis is made assuming that the mixing process in ejector occurs at constant cross-sectional area and constant pressure. The increase rate in the COP with respect to conventional system is analyzed in terms of the subcooling, condenser and evaporator temperatures. The analysis shows that COP improvement of the system by using the two phase ejector as an expansion device is 15% depending on design parameters of the existing bus air-conditioning system. - Highlights: • Thermodynamic analysis of the two-phase ejector refrigeration system. • Analysis of the COP increase rate of bus air-conditioning system. • Analysis of the entrainment ratio of the two-phase ejector refrigeration system

  19. Air pollution restrictions in electrical production system

    International Nuclear Information System (INIS)

    Gallizioli, G.

    1993-01-01

    A description of the principal characteristics regarding the Italian electrical power system and the evolution of standardization in air pollution control is given. Afterwards, ENEL (the Italian National Electricity Board) actions in the environmental protection field (with particular respect to thermo-electrical production) are presented. Finally, principal ENEL research programs on new air pollution control technologies are discussed

  20. 7 CFR 51.2731 - U.S. Spanish Splits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or broken...

  1. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  2. Numerical simulation and experiment on multilayer stagger-split die.

    Science.gov (United States)

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  3. Tensor products of higher almost split sequences

    OpenAIRE

    Pasquali, Andrea

    2015-01-01

    We investigate how the higher almost split sequences over a tensor product of algebras are related to those over each factor. Herschend and Iyama gave a precise criterion for when the tensor product of an $n$-representation finite algebra and an $m$-representation finite algebra is $(n+m)$-representation finite. In this case we give a complete description of the higher almost split sequences over the tensor product by expressing every higher almost split sequence as the mapping cone of a suit...

  4. Cooling load calculations of radiant and all-air systems for commercial buildings

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Bauman, Fred; Schiavon, Stefano

    The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when they are......The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when...

  5. Prediction of Splitting Tensile Strength of Concrete Containing Zeolite and Diatomite by ANN

    Directory of Open Access Journals (Sweden)

    E. Gülbandılar

    2017-01-01

    Full Text Available This study was designed to investigate with two different artificial neural network (ANN prediction model for the behavior of concrete containing zeolite and diatomite. For purpose of constructing this model, 7 different mixes with 63 specimens of the 28, 56 and 90 days splitting tensile strength experimental results of concrete containing zeolite, diatomite, both zeolite and diatomite used in training and testing for ANN systems was gathered from the tests. The data used in the ANN models are arranged in a format of seven input parameters that cover the age of samples, Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer and an output parameter which is splitting tensile strength of concrete. In the model, the training and testing results have shown that two different ANN systems have strong potential as a feasible tool for predicting 28, 56 and 90 days the splitting tensile strength of concrete containing zeolite and diatomite.

  6. Exergy analysis of a system using a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Granovskii, M.; Dincer, I.; Rosen, M. A.; Pioro, I

    2007-01-01

    the heat transfer to the water splitting cycle. A preliminary exergy analysis of the proposed heat pump is conducted and a coefficient of performance (COP), taking into account a decrease in electricity generation in the nuclear power generation cycle, is evaluated. The calculated per unit mass flow heat supply rate to the thermochemical cycle increases by a factor of 3 to 5 depending on the steam temperature. A combined system comprising a SCW nuclear plant, a chemical heat pump and a lower temperature UT-3 thermochemical water splitting cycle is presented. Despite a decrease in electricity generation, the calculated exergy efficiency of hydrogen production in the considered system appears to be competitive with that for low temperature water electrolysis

  7. The Design of Compressed air system in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Cho, S. W.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Jo, J. H.

    2012-01-01

    The Compressed Air System (CA) supplies compressed air for all air operated devices and instruments, pneumatic equipment and other miscellaneous air user points in the Conventional Facilities of Proton Engineering Frontier Project. CA System consist of the Instrument Air System and the Service air System. The Instrument Air System supplies oil-free, dried, filtered, and compressed instrument air for the air operated control devices and instruments in the Accelerator and Beam Application Building, Ion Beam Application Building, Utility Building and etc.. The Service air System supplies compressed air for pneumatic equipment and other services

  8. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.

    2015-01-01

    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  9. Solar air heating system for combined DHW and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-12-01

    The project deals with the development and testing of a simple system for utilization of the summer excess heat from small solar air heating systems for preheating of fresh air. The principle of the system is to lead the heated air down around a domestic hot water tank letting the surface of the tank act as heat exchanger between the air and the water. In order to increase the heat transfer, coefficient fins into the air stream were mounted on the tank. A complete system with 3 m{sup 2} solar air collector, ductworks and a 85 litre storage were set up and extensively monitored. The air stream through the system was created by a fan connected directly to one or two PV-panels leading to a solar radiation dependent flow rate without the use of any other control. Based on monitoring results the system was characterized and a TRNSYS model of the system was developed and calibrated/validated. The monitoring and the simulations with the TRNSYS model revealed several interesting things about the system. The monitoring revealed that the system is capable of bringing the temperature of the water in the storage above 60 deg. C at warm days with clear sky conditions. The storage is very stratified, which is beneficial as usable hot water temperatures rather quickly are obtained. The performance was highly dependent on the airflow rate through the system. It can be concluded that the investigated system will have a performance in the order of 500 kWh during the winter, spring and autumn months and around 250 kWh during the four summer months - or in total a yearly performance of 750 kWh/m{sup 2}. A small traditional solar heating system for preheating of domestic hot water would have a higher performance during the four summer months, but no performance during the rest of the year if the system is installed in a summer house, which only is occupied during the summer. The parametric analysis further indicates that it is possible to further optimise the system when the thermal

  10. The application of gas ejector for road transport air conditioning system

    Science.gov (United States)

    Sumeru, Nasution, Henry; Ani, Farid Nasir

    2012-06-01

    The depletion of fossil fuel supply requires fuel and energy saving in energy utilization system. Therefore, these required the development of new and efficient technologies as to reduce fuel consumption especially in air conditioning of road vehicles. Currently, the air conditioning for road vehicles uses vapor compression system. Although the vapor compression system has high COP, the compressor is driven by vehicle engines, which take additional fuel consumption when the air conditioning system is in operation. In this study, the waste heat of radiator drives the ejector refrigeration for air conditioning. Although the ejector refrigeration system has low COP, the use of heat driven air conditioning will reduce the fuel consumption as compared with conventional system. This is because the systems do not use the mechanical engine load. The analysis of this study is based on the ejector refrigeration system using natural refrigerant (isobutene). The evaporation temperature is 10°C, condensation temperature is 35°C, generator temperature is 90°C with ejector isentropic efficiency of 0.7, and the COP system is 0.25. The heat released by the radiator of typical small road vehicles is between 60 to 100 kW and if the generator absorbs 20% of the heat, the heat contained in the generator is 12 to 20 kW. When the ejector air conditioning system has a COP 0.25, it will generate cooling capacity between 3 to 5 kW, compared with the conventional air conditioning of similar vehicles, which is approximately 2 to 4.4 kW.

  11. Emergency Air Rescue System in Romania

    Directory of Open Access Journals (Sweden)

    Tranca Sebastian

    2018-03-01

    Full Text Available The helicopter, as a means of transport, has facilitated a significant decrease in intervention time at the site of request, increasing the chances of survival of the critical patient. Since 2003, SMURD has managed to form a fleet composed of nine helicopters and two airplanes. From an operational and strategic point of view, the SMURD intervention unit, set up seven Aeromedical Operational Bases (A.O.B. equipped with helicopters and materials necessary for their operation. There is a dynamic increase in the number of air rescue missions in Romania, with most missions being carried out by the air rescue bases in Târgu Mureş and Bucharest. Specialty literature has clearly demonstrated the positive impact on the survival of critical patients assisted by airborne crews, so it is necessary for the Romanian air rescue system to grow up. It is necessary to increase the number of air bases, purchase new helicopters and to continue the training programs of both pilots and medical personnel.

  12. Human-system safety methods for development of advanced air traffic management systems

    International Nuclear Information System (INIS)

    Nelson, William R.

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems (author) (ml)

  13. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.

    2016-10-31

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  14. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.; Sommers, J. M.; Viasus, C. J.; Wang, C. H T; Peneau, V.; Gambarotta, S.; Vidjayacoumar, B.; Al-Bahily, K. A.

    2016-01-01

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  15. MODELLING AND CONTROL OF POWER-SPLIT HYBRID ELECTRIC VEHICLE USING FUZZY LOGIC METHOD

    OpenAIRE

    Mohammadpour, Ebrahim; Khajavi, Mehrdad Nouri

    2014-01-01

    Nowadays, automotive manufactures increasingly have lead to development of hybrid vehicles due to energy consumption growing and increased emissions. the power-split hybrids due to the simultaneous using of speed and torque couplings has integrated advantage of series and parallel hybrid systems and minimize their disadvantages , however the power-split hybrids control strategy is far more complex than other types. Generally the control strategy tries to use the optimize operating point of HE...

  16. The three-loop splitting functions in QCD: The helicity-dependent case

    Directory of Open Access Journals (Sweden)

    S. Moch

    2014-12-01

    Full Text Available We present the next-to-next-to-leading order (NNLO contributions to the main splitting functions for the evolution of longitudinally polarized parton densities of hadrons in perturbative QCD. The quark–quark and gluon–quark splitting functions have been obtained by extending our previous all Mellin-N calculations to the structure function g1 in electromagnetic deep-inelastic scattering (DIS. Their quark–gluon and gluon–gluon counterparts have been derived using third-order fixed-N calculations of structure functions in graviton-exchange DIS, relations to the unpolarized case and mathematical tools for systems of Diophantine equations. The NNLO corrections to the splitting functions are small outside the region of small momentum fractions x where they exhibit a large double-logarithmic enhancement, yet the corrections to the evolution of the parton densities can be unproblematic down to at least x≈10−4.

  17. NNLO time-like splitting functions in QCD

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2008-07-01

    We review the status of the calculation of the time-like splitting functions for the evolution of fragmentation functions to the next-to-next-to-leading order in perturbative QCD. By employing relations between space-like and time-like deep-inelastic processes, all quark-quark and the gluon-gluon time-like splitting functions have been obtained to three loops. The corresponding quantities for the quark-gluon and gluon-quark splitting at this order are presently still unknown except for their second Mellin moments. (orig.)

  18. Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Mengling Wen

    Full Text Available The Cre/loxP system is increasingly exploited for genetic manipulation of DNA in vitro and in vivo. It was previously reported that inactive ''split-Cre'' fragments could restore Cre activity in transgenic mice when overlapping co-expression was controlled by two different promoters. In this study, we analyzed recombination activities of split-Cre proteins, and found that no recombinase activity was detected in the in vitro recombination reaction in which only the N-terminal domain (NCre of split-Cre protein was expressed, whereas recombination activity was obtained when the C-terminal (CCre or both NCre and CCre fragments were supplied. We have also determined the recombination efficiency of split-Cre proteins which were co-expressed in hair roots of transgenic tobacco. No Cre recombination event was observed in hair roots of transgenic tobacco when the NCre or CCre genes were expressed alone. In contrast, an efficient recombination event was found in transgenic hairy roots co-expressing both inactive split-Cre genes. Moreover, the restored recombination efficiency of split-Cre proteins fused with the nuclear localization sequence (NLS was higher than that of intact Cre in transgenic lines. Thus, DNA recombination mediated by split-Cre proteins provides an alternative method for spatial and temporal regulation of gene expression in transgenic plants.

  19. Aluminum-air battery: System design alternatives and status of components

    Science.gov (United States)

    Maimoni, A.

    1988-09-01

    This report summarizes the status of the various components of the aluminum-air battery system developed for the U.S. Department of Energy Technology Base Project for Electrochemical Energy Storage from 1978 to mid-1987, and presents results of system analysis. Preliminary information indicated that the concentration of carbon dioxide in the incoming air will need to be reduced to 5--100 ppM. A detailed calculation was performed to predict the performance of a full-size-vehicle system with 6-m air-cathode surface area; results showed that previous estimates of system performance are reasonable and consistent with currently available components.

  20. Building the Platform of Digital Earth with Sphere Split Bricks

    Directory of Open Access Journals (Sweden)

    WANG Jinxin

    2015-06-01

    Full Text Available Discrete global grids, a modeling framework for big geo-spatial data, is always used to build the Digital Earth platform. Based on the sphere split bricks (Earth system spatial grids, it can not only build the true three-dimensional digital Earth model, but also can achieve integration, fusion, expression and application of the spatial data which locates on, under or above the Earth subsurface. The theoretical system of spheroid geodesic QTM octree grid is discussed, including the partition principle, analysis of grid geometry features and coding/ decoding method etc, and a prototype system of true-3D digital Earth platform with the sphere split bricks is developed. The functions of the system mainly include the arbitrary sphere segmentation and the visualization of physical models of underground, surface and aerial entities. Results show that the sphere geodesic QTM octree grid has many application advantages, such as simple subdivision rules, the grid system neat, clear geometric features, strong applicability etc. In particular, it can be extended to the ellipsoid, so it can be used for organization, management, integration and application of the global spatial big data.

  1. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  2. Compressed-air flow control system.

    Science.gov (United States)

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  3. New challenges to air/gas cleaning systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.L. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  4. Systems Engineering Management Training at Naval Air Systems Command

    National Research Council Canada - National Science Library

    Rebel, James

    2000-01-01

    Within the past few years, the Naval Air Systems Command (NAVAIR) has undergone several major changes including an engineering reorganization from a matrix organization to an Integrated Program Team/Competency Aligned Organization (IPT/CAO...

  5. Recent Progress in Energy-Driven Water Splitting.

    Science.gov (United States)

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong

    2017-05-01

    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  6. Photochemical reaction products in air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, E R; Darley, E F; Taylor, O C; Scott, W E

    1961-01-01

    Isolation and purification of peroxyacetyl nitrate (PAN) from artificial photochemical reaction of olefins and NO/sub x/ in air are analyzed. Olefin splits at the double bond, one end forming carbonyl compound and the other yielding PAN, among others. At concentrations below 1 ppM, PAN causes plant damage. At a concentration of about 1 ppM, PAN is a strong eye irritant.

  7. Communication: Tunnelling splitting in the phosphine molecule

    Science.gov (United States)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  8. Identifying the contribution of different urban highway air pollution sources

    International Nuclear Information System (INIS)

    Peace, H.; Owen, B.; Raper, D.W.

    2004-01-01

    This paper describes the methodology and results, and draws conclusions from a large-scale source apportionment study undertaken in a large urban conurbation in the northwest of England. Annual average oxides of nitrogen (NOx) emission and ambient air pollution contributions have been estimated for road traffic sources. Ground level air pollution concentrations were estimated over a 1552-km 2 area with a resolution of up to 20 m, using emissions estimates and the second generation ADMS-Urban Gaussian dispersion model. Road traffic emissions were split into car and motorcycles; heavy and light goods vehicles; and buses to represent domestic users; commercial users and bus companies. Car related emissions were split further in to journey lengths under 3 km; journeys between 3 and 8 km; and journeys over 8 km to represent journeys which could be either walked or cycled; journeys for which a bus can easily be used and other journeys. These source sections were chosen so that the relevant authorities could target key groups in terms of reducing air pollution. The results confirm that the areas most likely to exceed air quality objectives are typically close to main arterial routes and close to urban centres and that the major culprits of road traffic related air pollution are goods vehicles and car journeys over 8 km. The paper also discusses the implications of the results and suggests how these can be used in the assessment of actions to reduce air pollution concentrations

  9. Identifying the contribution of different urban highway air pollution sources.

    Science.gov (United States)

    Peace, H; Owen, B; Raper, D W

    2004-12-01

    This paper describes the methodology and results, and draws conclusions from a large-scale source apportionment study undertaken in a large urban conurbation in the northwest of England. Annual average oxides of nitrogen (NOx) emission and ambient air pollution contributions have been estimated for road traffic sources. Ground level air pollution concentrations were estimated over a 1552-km(2) area with a resolution of up to 20 m, using emissions estimates and the second generation ADMS-Urban Gaussian dispersion model. Road traffic emissions were split into car and motorcycles; heavy and light goods vehicles; and buses to represent domestic users; commercial users and bus companies. Car related emissions were split further in to journey lengths under 3 km; journeys between 3 and 8 km; and journeys over 8 km to represent journeys which could be either walked or cycled; journeys for which a bus can easily be used and other journeys. These source sections were chosen so that the relevant authorities could target key groups in terms of reducing air pollution. The results confirm that the areas most likely to exceed air quality objectives are typically close to main arterial routes and close to urban centres and that the major culprits of road traffic related air pollution are goods vehicles and car journeys over 8 km. The paper also discusses the implications of the results and suggests how these can be used in the assessment of actions to reduce air pollution concentrations.

  10. Air bubble migration is a random event post embryo transfer.

    Science.gov (United States)

    Confino, E; Zhang, J; Risquez, F

    2007-06-01

    Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.

  11. Solving vertical transport and chemistry in air pollution models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Krol, M.C.; Peters, W.; Verwer, J.G.; Chock, David P.; Carmichael, Gregory R.; Brick, Patricia

    2002-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  12. Solving Vertical Transport and Chemistry in Air Pollution Models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  13. On the additive splitting procedures and their computer realization

    DEFF Research Database (Denmark)

    Farago, I.; Thomsen, Per Grove; Zlatev, Z.

    2008-01-01

    Two additive splitting procedures are defined and studied in this paper. It is shown that these splitting procedures have good stability properties. Some other splitting procedures, which are traditionally used in mathematical models used in many scientific and engineering fields, are sketched. All...

  14. Evaluation of an improved air distribution system for aircraft cabin

    DEFF Research Database (Denmark)

    Pang, Liping; Xu, Jie; Fang, Lei

    2013-01-01

    An improved air distribution system for aircraft cabin was proposed in this paper. Personalized outlets were introduced and placed at the bottom of the baggage hold. Its ratio of fresh air to recirculation air and the conditioned temperature of different types of inlets were also designed carefully...... to meet the goals of high air quality, thermal comfort and energy saving. Some experiments were conducted to evaluate and compare its performances with two other systems. First the Flow Visualization with Green Laser (FVGL) technology was used to analyze the air flow. The top-in-side bottom-out pattern...... may have the disadvantages of an indirect path to deliver fresh air to passengers, a low fresh air utilization ratio and the potential to widely spreading airborne infectious diseases. The bottom-in-top-out pattern can overcome these disadvantages very well, but it also faces the stratification...

  15. Splitting methods in communication, imaging, science, and engineering

    CERN Document Server

    Osher, Stanley; Yin, Wotao

    2016-01-01

    This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. .

  16. Air conditioning systems as non-infectious health hazards inducing acute respiratory symptoms.

    Science.gov (United States)

    Gerber, Alexander; Fischer, Axel; Willig, Karl-Heinz; Groneberg, David A

    2006-04-01

    Chronic and acute exposure to toxic aerosols belongs to frequent causes of airway diseases. However, asthma attacks due to long-distance inhalative exposure to organic solvents, transmitted via an air condition system, have not been reported so far. The present case illustrates the possibility of air conditioning systems as non-infectious health hazards in occupational medicine. So far, only infectious diseases such as legionella pneumophila pneumonia have commonly been associated to air-conditioning exposures but physicians should be alert to the potential of transmission of toxic volatile substances via air conditioning systems. In view of the events of the 11th of September 2001 with a growing danger of large building terrorism which may even use air conditioning systems to transmit toxins, facility management security staff should be alerted to possible non-infectious toxic health hazards arising from air-conditioning systems.

  17. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    Science.gov (United States)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  18. Irradiation-induced amorphization in split-dislocation cores

    International Nuclear Information System (INIS)

    Ovid'ko, I.A.; Rejzis, A.B.

    1999-01-01

    The model describing special splitting of lattice and grain-boundary dislocations as one of the micromechanisms of solid-phase amorphization in irradiated crystals is proposed. Calculation of energy characteristics of the process of dislocations special splitting is carried out [ru

  19. Air Quality System (AQS) Monitoring Network, EPA OAR OAQPS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains points which depict air quality monitors within EPA's Air Quality System (AQS) monitoring network. This dataset is updated weekly to...

  20. Operability Test Report for 241-U Compressed Air System and heat pump

    International Nuclear Information System (INIS)

    Rensink, G.E.

    1995-01-01

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The system was upgraded. The operability test showed that the system operates within its intended design parameters. System performance was monitored, recorded, and used to identify areas of concern. Exceptions to the OTP and additional items for safe system performance were minimal and have been resolved; the air system is ready for Operation's use

  1. Air and liquid solar heating system with heatpump, VP-SOL

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Jensen, Søren Østergaard

    1998-01-01

    For more than a year, measurements have been made on an air/fluid solar heating system with heat pump. The annual thermal performance of the system has been found and compared with simulations carried out by means of the simulation program KVIKSOL.The heat loss of the hot water tank is calculated...... be changed in such a way that the air is drawn through the solar collectors when the air temperature of the solar collectors is e.g. 5 K higher than the open air temperature.It has turned out that under the given conditions the system (compared to the simulations) performs as expected.If the heat pump...... is changed in such a way that it only heats the tank to max. 55ºC the net utilized solar energy of the system can be increased by approximately 30%.All things considered, it is estimated that the net utilized solar energy of the system can be increased by about 40% on condition that the proposed changes...

  2. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  3. R744 air conditioner with stop/start air conditioning, parking air conditioning and heat pump function in the ''COMET'' test car; R744-Klimaanlage mit Stopp/Start- und Standklimatisierung sowie Waermepumpenfunktion im Versuchstraeger ''COMET''

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H.; Horstmann, P.; Kneifel, M.; Hohl, R. [Robert Bosch GmbH, Schwieberdingen (Germany)

    2006-07-01

    Within a several years development project Robert Bosch GmbH has setup a test vehicle to investigate an integral energy management concept (COMET - Control of Mechanical, Electrical and Thermal Power). Key feature of the COMET vehicle concept is the hybrid drive train comprising the standard combustion engine and two electrical motors - each with 8 kW - being integrated in the power splitting Dual-E gearbox. Directly via the gearbox the compressor of the CO{sub 2} A/C system is driven so that an electrically parking and start-stop air condition and heating function using a CO{sub 2} heat pump can be realized. System setup, Cool down and heating up tests are shown and discussed. (orig.)

  4. Air cargo: An Integrated Systems View. 1978 Summer Faculty Fellowship Program in Engineering Systems Design

    Science.gov (United States)

    Keaton, A. (Editor); Eastman, R. (Editor); Hargrove, A. (Editor); Rabiega, W. (Editor); Olsen, R. (Editor); Soberick, M. (Editor)

    1978-01-01

    The national air cargo system is analyzed and how it should be in 1990 is prescribed in order to operate successfully through 2015; that is through one equipment cycle. Elements of the system which are largely under control of the airlines and the aircraft manufacturers are discussed. The discussion deals with aircraft, networks, facilities, and procedures. The regulations which govern the movement of air freight are considered. The larger public policy interests which must be served by the kind of system proposed, the air cargo integrated system (ACIS), are addressed. The possible social, economical, political, and environment impacts of the system are considered. Recommendations are also given.

  5. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried; Hofstä tter, Harald; Ketcheson, David I.; Koch, Othmar

    2016-01-01

    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  6. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried

    2016-07-28

    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  7. Hydrogen production via thermochemical water-splitting by lithium redox reaction

    International Nuclear Information System (INIS)

    Nakamura, Naoya; Miyaoka, Hiroki; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2013-01-01

    Highlights: •Hydrogen production via water-splitting by lithium redox reactions possibly proceeds below 800 °C. •Entropy control by using nonequilibrium technique successfully reduces the reaction temperature. •The operating temperature should be further reduced by optimizing the nonequilibrium condition to control the cycle. -- Abstracts: Hydrogen production via thermochemical water-splitting by lithium redox reactions was investigated as energy conversion technique. The reaction system consists of three reactions, which are hydrogen generation by the reaction of lithium and lithium hydroxide, metal separation by thermolysis of lithium oxide, and oxygen generation by hydrolysis of lithium peroxide. The hydrogen generation reaction completed at 500 °C. The metal separation reaction is thermodynamically difficult because it requires about 3400 °C in equilibrium condition. However, it was indicated from experimental results that the reaction temperature was drastically reduced to 800 °C by using nonequilibrium technique. The hydrolysis reaction was exothermic reaction, and completed by heating up to 300 °C. Therefore, it was expected that the water-splitting by lithium redox reactions was possibly operated below 800 °C under nonequilibrium condition

  8. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    Science.gov (United States)

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  9. Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system

    CERN Document Server

    Huot, F; Bertrand, P; Sonnendrücker, E; Coulaud, O

    2003-01-01

    The Time Splitting Scheme (TSS) has been examined within the context of the one-dimensional (1D) relativistic Vlasov-Maxwell model. In the strongly relativistic regime of the laser-plasma interaction, the TSS cannot be applied to solve the Vlasov equation. We propose a new semi-Lagrangian scheme based on a full 2D advection and study its advantages over the classical Splitting procedure. Details of the underlying integration of the Vlasov equation appear to be important in achieving accurate plasma simulations. Examples are given which are related to the relativistic modulational instability and the self-induced transparency of an ultra-intense electromagnetic pulse in the relativistic regime.

  10. The Splitting Loope

    Science.gov (United States)

    Wilkins, Jesse L. M.; Norton, Anderson

    2011-01-01

    Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…

  11. Operability test procedure for 241-U compressed air system and heat pump

    International Nuclear Information System (INIS)

    Freeman, R.D.

    1994-01-01

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The supply piping to the 241-U Tank Farm is not included in the modification. Modifications to the 241-U-701 compressed air system include installation of a 15 HP Reciprocating Air Compressor, Ingersoll-Rand Model 10T3NLM-E15; an air dryer, Hankinson, Model DH-45; and miscellaneous system equipment and piping (valves, filters, etc.) to meet the design. A newly installed heat pump allows the compressor to operate within an enclosed relatively dust free atmosphere and keeps the compressor room within a standard acceptable temperature range, which makes possible efficient compressor operation, reduces maintenance, and maximizes compressor operating life. This document is an Operability Test Procedure (OTP) which will further verify (in addition to the Acceptance Test Procedure) that the 241-U-701 compressed air system and heat pump operate within their intended design parameters. The activities defined in this OTP will be performed to ensure the performance of the new compressed air system will be adequate, reliable and efficient. Completion of this OTP and sign off of the OTP Acceptance of Test Results is necessary for turnover of the compressed air system from Engineering to Operations

  12. Splitting Strip Detector Clusters in Dense Environments

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2018-01-01

    Tracking in high density environments, particularly in high energy jets, plays an important role in many physics analyses at the LHC. In such environments, there is significant degradation of track reconstruction performance. Between runs 1 and 2, ATLAS implemented an algorithm that splits pixel clusters originating from multiple charged particles, using charge information, resulting in the recovery of much of the lost efficiency. However, no attempt was made in prior work to split merged clusters in the Semi Conductor Tracker (SCT), which does not measure charge information. In spite of the lack of charge information in SCT, a cluster-splitting algorithm has been developed in this work. It is based primarily on the difference between the observed cluster width and the expected cluster width, which is derived from track incidence angle. The performance of this algorithm is found to be competitive with the existing pixel cluster splitting based on track information.

  13. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  14. An under-aisle air distribution system facilitating humidification of commercial aircraft cabins

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tengfei; Yin, Shi; Wang, Shugang [School of Civil and Hydraulic Engineering, Dalian University of Technology (DUT), 2 Linggong Road, Dalian 116024 (China)

    2010-04-15

    Air environment in aircraft cabins has long been criticized especially for the dryness of the air within. Low moisture content in cabins is known to be responsible for headache, tiredness and many other non-specific symptoms. In addition, current widely used air distribution systems on airplanes dilute internally generated pollutants by promoting air mixing and thus impose risks of infectious airborne disease transmission. To boost air humidity level while simultaneously restricting air mixing, this investigation uses a validated computational fluid dynamics (CFD) program to design a new under-aisle air distribution system for wide-body aircraft cabins. The new system supplies fully outside, dry air at low momentum through a narrow channel passage along both side cabin walls to middle height of the cabin just beneath the stowage bins, while simultaneously humidified air is supplied through both perforated under aisles. By comparing with the current mixing air distribution system in terms of distribution of relative humidity, CO{sub 2} concentration, velocity, temperature and draught risk, the new system is found being able to improve the relative humidity from the existent 10% to the new level of 20% and lessen the inhaled CO{sub 2} concentration by 30%, without causing moisture condensation on cabin interior and inducing draught risks for passengers. The water consumption rate in air humidification is only around 0.05 kg/h per person, which should be affordable by airliners. (author)

  15. The air pollution index system in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Lee, F.Y.P.; Gervat, G.P. [Hong Kong Government, Wanchai (Hong Kong). Environmental Protection Dept.

    1995-12-31

    The Hong Kong Environmental Protection Department (EPD) is currently operating an air quality monitoring network in the territory. There are nine monitoring stations, each with air quality monitoring equipment, meteorological instruments and a data logger. Five minute averaged data are transmitted through telephone lines to the central computer at the EPD Air Laboratory and are also stored in the data logger on site, as backup. At present, the EPD releases its air quality measurements to the public via monthly and special press releases, and annual reports. However, as public awareness of air pollution problems has increased, there has been an urgent need for timely and simpler information about air pollution levels. The development and operation of an Air Pollution Index (API) system has addressed that need. This presentation discusses the API computation, the information and advice released to the general public and how they can access the API information. Some API results are also presented. (author)

  16. The air pollution index system in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Lee, F Y.P.; Gervat, G P [Hong Kong Government, Wanchai (Hong Kong). Environmental Protection Dept.

    1996-12-31

    The Hong Kong Environmental Protection Department (EPD) is currently operating an air quality monitoring network in the territory. There are nine monitoring stations, each with air quality monitoring equipment, meteorological instruments and a data logger. Five minute averaged data are transmitted through telephone lines to the central computer at the EPD Air Laboratory and are also stored in the data logger on site, as backup. At present, the EPD releases its air quality measurements to the public via monthly and special press releases, and annual reports. However, as public awareness of air pollution problems has increased, there has been an urgent need for timely and simpler information about air pollution levels. The development and operation of an Air Pollution Index (API) system has addressed that need. This presentation discusses the API computation, the information and advice released to the general public and how they can access the API information. Some API results are also presented. (author)

  17. New research on bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  18. Does the air condition system in busses spread allergic fungi into driver space?

    Science.gov (United States)

    Sowiak, Małgorzata; Kozajda, Anna; Jeżak, Karolina; Szadkowska-Stańczyk, Irena

    2018-02-01

    The aim of this study was to establish whether the air-conditioning system in buses constitutes an additional source of indoor air contamination with fungi, and whether or not the fungi concentration depends on the period from the last disinfection of the system, combined with replacement of the cabin dust particle filter. The air samples to fungi analysis using impact method were taken in 30 buses (20 with an air-conditioning system, ACS; 10 with a ventilation system, VS) in two series: 1 and 22 weeks after cabin filter replacement and disinfection of the air-conditioning system. During one test in each bus were taken two samples: before the air-conditioning or ventilation system switched on and 6 min after operating of these systems. The atmospheric air was the external background (EB). After 1 week of use of the system, the fungi concentrations before starting of the ACS and VS system were 527.8 and 1053.0 cfu/m 3 , respectively, and after 22 weeks the concentrations were 351.9 and 1069.6 cfu/m 3 , respectively. While in the sample after 6 min of ACS and VS system operating, the fungi concentration after 1 week of use was 127.6 and 233.7 cfu/m 3 , respectively, and after 22 weeks it was 113.3 and 324.9 cfu/m 3 , respectively. Results do not provide strong evidence that air-conditioning system is an additional source of indoor air contamination with fungi. A longer operation of the system promoted increase of fungi concentration in air-conditioned buses only.

  19. The Split sudâmja

    Directory of Open Access Journals (Sweden)

    Petar Šimunović

    1991-12-01

    Full Text Available The name of the Split feast Sudamja!Sudajma ("festa sancti Domnii" has not yet been adequately explained. The author believes that the name originated from the Old Dalmatian adjective san(ctu + Domnĭu. In the adjective santu the cluster /an/ in front of·a consonant gave in Croatian the back nasal /q/ pronounced until the end of the 10th century and giving /u/ after that. In this way the forms *Sudumja and similar originated. The short stressed /u/ in the closed syllable was percieved by the Croatian folk as their semivowel which later gave /a/ = Sudamja. The author connects this feature with that in the toponimes Makar ( /jm/ is well known in Croatian dialectology (sumja > sujma, and it resembles the metatheses which occurs in the Split toponimes: Sukošjân > Sukojšãn ( < *santu Cassianu, Pojišân/Pojšiin (< *pasianu < Pansianu. The author finds the same feature in the toponime Dumjača (: *Dumi- + -ača. He considers these features as Croatian popular adaptations which have not occured in the personal name Dujam, the toponime Dujmovača "terrae s. Domnii" and in the adjective sandujamski, because of the link with the saint's name Domnio!Duymo etc., which has been well liked and is frequent as name of Split Romas as well as Croats from the foundation of Split, has never been broken.

  20. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-09-07

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  1. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik; Haglind, Fredrik

    2014-01-01

    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature results in an improved match between the heat source and working fluid temperature profiles, decreasing the entropy generation in the heat recovery system. The present work compares the thermodynamic performance of this power cycle with the conventional Kalina process, and investigates the impact of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina cycle with reheat, and by 4.3% points without reheat. The cycle efficiency varies by 14% points for a variation of the exhaust gas temperature of 100 °C, and by 1% point for a cold water temperature variation of 30 °C. This analysis also pinpoints the large irreversibilities in the low-pressure turbine and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle. - Highlights: • The thermodynamic performance of the Kalina split-cycle is assessed. • The Kalina split-cycle is compared to the Kalina cycle, with and without reheat. • An exergy analysis is performed to evaluate its thermodynamic performance. • The impact of varying boundary conditions is investigated. • The Kalina split-cycle displays high exergetic efficiency for low- and medium-temperature applications

  2. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  3. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  4. The Splitting Group

    Science.gov (United States)

    Norton, Anderson; Wilkins, Jesse L. M.

    2012-01-01

    Piagetian theory describes mathematical development as the construction and organization of mental operations within psychological structures. Research on student learning has identified the vital roles of two particular operations--splitting and units coordination--play in students' development of advanced fractions knowledge. Whereas Steffe and…

  5. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  6. One-loop triple collinear splitting amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon; Buciuni, Francesco; Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)

    2015-09-28

    We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.

  7. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  8. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  9. Split ring containment attachment device

    International Nuclear Information System (INIS)

    Sammel, A.G.

    1996-01-01

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs

  10. Split NMSSM with electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Gorbunov, D.S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutsky per. 9, Dolgoprudny 141700 (Russian Federation); Kirpichnikov, D.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2016-11-24

    In light of the Higgs boson discovery and other results of the LHC we reconsider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  11. Mass splitting induced by gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.

    1982-08-01

    The exact combination of internal and geometrical symmetries and the associated mass splitting problem is discussed. A 10-parameter geometrical symmetry is defined in a curved space-time in such a way that it is a combination of de Sitter groups. In the flat limit it reproduces the Poincare-group and its Lie algebra has a nilpotent action on the combined symmetry only in that limit. An explicit mass splitting expression is derived and an estimation of the order of magnitude for spin-zero mesons is made. (author)

  12. Splitting of turbulent spot in transitional pipe flow

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.

  13. On the Numerical Behavior of Matrix Splitting Iteration Methods for Solving Linear Systems

    Czech Academy of Sciences Publication Activity Database

    Bai, Z.-Z.; Rozložník, Miroslav

    2015-01-01

    Roč. 53, č. 4 (2015), s. 1716-1737 ISSN 0036-1429 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : matrix splitting * stationary iteration method * backward error * rounding error analysis Subject RIV: BA - General Mathematics Impact factor: 1.899, year: 2015

  14. Automotive engine air intake system with variable noise control

    Science.gov (United States)

    Moenssen, David J.; Hellie, Mark D.; Koston, John D.; Shaw, Christopher E.

    2005-09-01

    Engine air intake systems are routinely tasked with delivering a specific target sound which involves meeting an overall noise level and, in many cases, desired frequency content over the entire engine speed range. In order to meet these targets, it is generally necessary to incorporate one or more reactive tuning devices, such as Helmholtz resonators, into the intake system. Traditional devices provide deep attenuation at their designed frequency, but they also introduce undesirable sideband resonances at a higher and a lower frequency. Even after the addition of several devices, it may still not be possible to match the desired intake noise targets due to their deep attenuation and sideband amplification. The subject of this work is to introduce an electronically controlled variable noise control (VNC) device for engine air intake systems which is capable of adjusting the air intake system's frequency response as commanded by the engine operating conditions. The VNC device permits the desired amount of attenuation of peaks in the air intake noise without introducing undesirable sideband resonances. In addition, because the tuning is controlled electronically, the VNC device can deliver a target-specific response using the same hardware across multiple vehicle programs.

  15. Minimax robust power split in AF relays based on uncertain long-term CSI

    KAUST Repository

    Nisar, Muhammad Danish

    2011-09-01

    An optimal power control among source and relay nodes in presence of channel state information (CSI) is vital for an efficient amplify and forward (AF) based cooperative communication system. In this work, we study the optimal power split (power control) between the source and relay node in presence of an uncertainty in the CSI. The prime contribution is to solve the problem based on an uncertain long-term knowledge of both the first and second hop CSI (requiring less frequent updates), and under an aggregate network-level power constraint. We employ the minimax optimization methodology to arrive at the minimax robust optimal power split, that offers the best possible guarantee on the end-to-end signal to noise ratio (SNR). The derived closed form analytical expressions admit simple intuitive interpretations and are easy to implement in real-world AF relaying systems. Numerical results confirm the advantages of incorporating the presence of uncertainty into the optimization problem, and demonstrate the usefulness of the proposed minimax robust optimal power split. © 2011 IEEE.

  16. Air driven fiber optic coupled pulser system for ZT-40

    International Nuclear Information System (INIS)

    Nunnally, W.C.; Brousseau, A.T.

    1977-01-01

    The design, construction, and operation of an air powered fiber optic coupled pulser system for initiating various high-voltage systems in the ZT-40 experiment is displayed. The air fiber optic system provides complete electrical isolation of the experimental high-voltage circuits from the digital timing and control circuits. In addition, this pulser system prevents cross talk between individual output channels and eliminates trigger system ground loops. The system uses an additional fiber optic bundle to confirm pulser output in the screen room

  17. Split2 Protein-Ligation Generates Active IL-6-Type Hyper-Cytokines from Inactive Precursors.

    Science.gov (United States)

    Moll, Jens M; Wehmöller, Melanie; Frank, Nils C; Homey, Lisa; Baran, Paul; Garbers, Christoph; Lamertz, Larissa; Axelrod, Jonathan H; Galun, Eithan; Mootz, Henning D; Scheller, Jürgen

    2017-12-15

    Trans-signaling of the major pro- and anti-inflammatory cytokines Interleukin (IL)-6 and IL-11 has the unique feature to virtually activate all cells of the body and is critically involved in chronic inflammation and regeneration. Hyper-IL-6 and Hyper-IL-11 are single chain designer trans-signaling cytokines, in which the cytokine and soluble receptor units are trapped in one complex via a flexible peptide linker. Albeit, Hyper-cytokines are essential tools to study trans-signaling in vitro and in vivo, the superior potency of these designer cytokines are accompanied by undesirable stress responses. To enable tailor-made generation of Hyper-cytokines, we developed inactive split-cytokine-precursors adapted for posttranslational reassembly by split-intein mediated protein trans-splicing (PTS). We identified cutting sites within IL-6 (E 134 /S 135 ) and IL-11 (G 116 /S 117 ) and obtained inactive split-Hyper-IL-6 and split-Hyper-IL-11 cytokine precursors. After fusion with split-inteins, PTS resulted in reconstitution of active Hyper-cytokines, which were efficiently secreted from transfected cells. Our strategy comprises the development of a background-free cytokine signaling system from reversibly inactivated precursor cytokines.

  18. Guidelines to Develop Efficient Photocatalysts for Water Splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2016-01-01

    Photocatalytic overall water splitting is the only viable solar-to-fuel conversion technology. The research discloses an investigation process wherein by dissecting the photocatalytic water splitting device, electrocatalysts, and semiconductor

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  20. Aerosol challenges to air cleaning systems during severe accidents in nuclear plants

    International Nuclear Information System (INIS)

    Gieseke, J.A.

    1985-01-01

    A variety of air cleaning systems may be operating in nuclear power plants and under severe accident conditions, these systems may be treating airborne concentrations of aerosols which are very high. Predictions of airborne aerosol concentrations in nuclear power plant containments under severe accident conditions are reviewed to provide a basis for evaluating the potential effects on the air cleaning systems. The air cleaning systems include filters, absorber beds, sprays, water pools, ice beds, and condensers. Not all of these were intended to operate as air cleaners but will in fact be good aerosol collectors. Knowledge of expected airborne concentrations will allow better evaluation of system performances

  1. Free radicals of an aromatic nature in air samples from iron foundries

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, L M

    1982-01-01

    Free radicals of relatively long life were identified as spin adducts of phenyl-N-tert-butylnitrone. Pyrolysis studies showed the radicals were oxy-radicals. The hyperfine splitting constants of spin adducts of radicals from the pyrolysis in air of benzo(a)pyrene, coal tar pitch, and moulding sand containing hard coal dust were the same as those of the radicals found in foundry air. Since these radicals can bind to DNA, they must be considered when estimating the hazardous effects of polluted air.

  2. Flow splitting in numerical simulations of oceanic dense-water outflows

    Science.gov (United States)

    Marques, Gustavo M.; Wells, Mathew G.; Padman, Laurie; Özgökmen, Tamay M.

    2017-05-01

    Flow splitting occurs when part of a gravity current becomes neutrally buoyant and separates from the bottom-trapped plume as an interflow. This phenomenon has been previously observed in laboratory experiments, small-scale water bodies (e.g., lakes) and numerical studies of small-scale systems. Here, the potential for flow splitting in oceanic gravity currents is investigated using high-resolution (Δx = Δz = 5 m) two-dimensional numerical simulations of gravity flows into linearly stratified environments. The model is configured to solve the non-hydrostatic Boussinesq equations without rotation. A set of experiments is conducted by varying the initial buoyancy number B0 =Q0N3 /g‧2 (where Q0 is the volume flux of the dense water flow per unit width, N is the ambient stratification and g‧ is the reduced gravity), the bottom slope (α) and the turbulent Prandtl number (Pr). Regardless of α or Pr, when B0 ≤ 0.002 the outflow always reaches the deep ocean forming an underflow. Similarly, when B0 ≥ 0.13 the outflow always equilibrates at intermediate depths, forming an interflow. However, when B0 ∼ 0.016, flow splitting always occurs when Pr ≥ 10, while interflows always occur for Pr = 1. An important characteristic of simulations that result in flow splitting is the development of Holmboe-like interfacial instabilities and flow transition from a supercritical condition, where the Froude number (Fr) is greater than one, to a slower and more uniform subcritical condition (Fr internal hydraulic jump and consequent mixing enhancement. Although our experiments do not take into account three-dimensionality and rotation, which are likely to influence mixing and the transition between flow regimes, a comparison between our results and oceanic observations suggests that flow splitting may occur in dense-water outflows with weak ambient stratification, such as Antarctic outflows.

  3. Exposing the QCD Splitting Function with CMS Open Data.

    Science.gov (United States)

    Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei

    2017-09-29

    The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.

  4. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  5. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  6. The behaviour of the local error in splitting methods applied to stiff problems

    International Nuclear Information System (INIS)

    Kozlov, Roman; Kvaernoe, Anne; Owren, Brynjulf

    2004-01-01

    Splitting methods are frequently used in solving stiff differential equations and it is common to split the system of equations into a stiff and a nonstiff part. The classical theory for the local order of consistency is valid only for stepsizes which are smaller than what one would typically prefer to use in the integration. Error control and stepsize selection devices based on classical local order theory may lead to unstable error behaviour and inefficient stepsize sequences. Here, the behaviour of the local error in the Strang and Godunov splitting methods is explained by using two different tools, Lie series and singular perturbation theory. The two approaches provide an understanding of the phenomena from different points of view, but both are consistent with what is observed in numerical experiments

  7. Mixture of Electromagnetically Induced Transparency and Autler–Townes Splitting in a Five-Level Atomic System

    International Nuclear Information System (INIS)

    Zhang Xiao-Yun; Wu Shan; Li Hai-Chao

    2017-01-01

    Discerning electromagnetically induced transparency (EIT) from Autler–Townes splitting (ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steady-state approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips (i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference. (paper)

  8. Impact of AIRS radiance in the NCUM 4D-VAR assimilation system

    Science.gov (United States)

    Srinivas, Desamsetti; Indira Rani, S.; Mallick, Swapan; George, John P.; Sharma, Priti

    2016-04-01

    The hyperspectral radiances from Atmospheric InfraRed Sounder (AIRS), on board NASA-AQUA satellite, have been processed through the Observation Processing System (OPS) and assimilated in the Variational Assimilation (VAR) System of NCMRWF Unified Model (NCUM). Numerical experiments are conducted in order to study the impact of the AIRS radiance in the NCUM analysis and forecast system. NCMRWF receives AIRS radiance from EUMETCAST through MOSDAC. AIRS is a grating spectrometer having 2378 channels covering the thermal infrared spectrum between 3 and 15 μm. Out of 2378 channels, 324 channels are selected for assimilation according to the peaking of weighting function and meteorological importance. According to the surface type and day-night conditions, some of the channels are not assimilated in the VAR. Observation Simulation Experiments (OSEs) are conducted for a period of 15 days to see the impact of AIRS radiances in NCUM. Statistical parameters like bias and RMSE are calculated to see the real impact of AIRS radiances in the assimilation system. Assimilation of AIRS in the NCUM system reduced the bias and RMSE in the radiances from instruments onboard other satellites. The impact of AIRS is clearly seen in the hyperspectral radiances like IASI and CrIS and also in infrared (HIRS) and microwave (AMSU, ATMS, etc.) sensors.

  9. AIR GAP CONTROL SYSTEM FOR HYDROGENERATORS

    Directory of Open Access Journals (Sweden)

    I. O. Zaitsev

    2017-01-01

    Full Text Available In this paper, we report of the solving the actual problem of control the air gap in the hydrogenerators. The aim of the study was development of a computerized information-measuring system for measuring the air gap in the hydrogenator, which used two capacitive sensors with parallel coplanar electrodes, and the method of determining the shape of the envelope parameters hydrogenerator rotor poles relative to the center axis of rotation, using the measurement results of the air gap.In practical studies of the sensor circuit it has been shown that its use allows for the informative value of the sensor capacitance conversion function to obtain a high accuracy and resolution measurement with digital linearization of converting function of the sensor with use program utility. To determine the form deviations of the envelope line of the rotor pole from the ideal cylinder, which is one of the main structural defects of the technological errors as results the distortion of the shape of the air gap in the hydrogenator, when the machine was manufacture and assembly. It is proposed to describe the shape of the envelope to use a Fourier transform. Calculation of the coefficients of the Fourier series is performed using the method of least squares as the regression coefficients.Application of this method in processing the measuring data in a computerized information-measuring system the developed with the primary converter with coplanar parallel electrodes allowed attaining the high measurement accuracy and resolution informative in magnitude of the capacity.

  10. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  11. Merging Air Quality and Public Health Decision Support Systems

    Science.gov (United States)

    Hudspeth, W. B.; Bales, C. L.

    2003-12-01

    The New Mexico Air Quality Mapper (NMAQM) is a Web-based, open source GIS prototype application that Earth Data Analysis Center is developing under a NASA Cooperative Agreement. NMAQM enhances and extends existing data and imagery delivery systems with an existing Public Health system called the Rapid Syndrome Validation Project (RSVP). RSVP is a decision support system operating in several medical and public health arenas. It is evolving to ingest remote sensing data as input to provide early warning of human health threats, especially those related to anthropogenic atmospheric pollutants and airborne pathogens. The NMAQM project applies measurements of these atmospheric pollutants, derived from both remotely sensed data as well as from in-situ air quality networks, to both forecasting and retrospective analyses that influence human respiratory health. NMAQM provides a user-friendly interface for visualizing and interpreting environmentally-linked epidemiological phenomena. The results, and the systems made to provide the information, will be applicable not only to decision-makers in the public health realm, but also to air quality organizations, demographers, community planners, and other professionals in information technology, and social and engineering sciences. As an accessible and interactive mapping and analysis application, it allows environment and health personnel to study historic data for hypothesis generation and trend analysis, and then, potentially, to predict air quality conditions from daily data acquisitions. Additional spin off benefits to such users include the identification of gaps in the distribution of in-situ monitoring stations, the dissemination of air quality data to the public, and the discrimination of local vs. more regional sources of air pollutants that may bear on decisions relating to public health and public policy.

  12. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya

    2016-12-17

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  13. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2016-01-01

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  14. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Science.gov (United States)

    2010-10-01

    ... board aircraft. Air-ground systems operating in these frequency bands are referred to in this part as... systems. 22.857 Section 22.857 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground...

  15. Number fluctuations of cold, spatially split bosonic objects

    International Nuclear Information System (INIS)

    Sakmann, Kaspar; Streltsov, Alexej I.; Cederbaum, Lorenz S.; Alon, Ofir E.

    2011-01-01

    We investigate the number fluctuations of spatially split many-boson systems employing a theorem about the maximally and minimally attainable variances of an observable. The number fluctuations of many-boson systems are given for different numbers of lattice sites and both mean-field and many-body wave functions. It is shown which states maximize the particle number fluctuations, both in lattices and double wells. The fragmentation of the states is discussed, and it is shown that the number fluctuations of some fragmented states are identical to those of fully condensed states.

  16. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  17. Design of a Hydraulic Motor System Driven by Compressed Air

    OpenAIRE

    Shaw, Dein; Yu, Jyun-Jhe; Chieh, Cheng

    2013-01-01

    This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power....

  18. Demand control on room level of the supply air temperature in an air heating and ventilation system

    DEFF Research Database (Denmark)

    Polak, Joanna; Afshari, Alireza; Bergsøe, Niels Christian

    2017-01-01

    air heating and ventilation system in a high performance single family house using BSim simulation software. The provision of the desired thermal conditions in different rooms was examined. Results show that the new control strategy can facilitate maintaining of desired temperatures in various rooms......The aim of this study was to investigate a new strategy for control of supply air temperature in an integrated air heating and ventilation system. The new strategy enables demand control of supply air temperature in individual rooms. The study is based on detailed dynamic simulations of a combined....... Moreover, this control strategy enables controlled temperature differentiation between rooms within the house and therefore provides flexibility and better balance in heat delivery. Consequently, the thermal conditions in the building can be improved....

  19. Self-sustained Oscillation Pulsed Air Blowing System for Energy Saving

    Institute of Scientific and Technical Information of China (English)

    CAI Maolin; XU Weiqing

    2010-01-01

    Currently, many studies have been made for years on dimensions of pneumatic nozzle, which influence the flow characteristic of blowing system. For the purpose of outputting the same blowing force, the supply pressure could be reduced by decreasing the ratio of length to diameter of nozzle. The friction between high speed air and pipe wall would be reduced if the nozzle is designed to be converging shape comparing with straight shape. But the volume flow and pressure, discussed in these studies, do not describe energy loss of the blowing system directly. Pneumatic power is an innovative principle to estimate pneumatic system's energy consumption directly. Based on the above principle, a pulse blowing method is put forward for saving energy. A flow experiment is carried out, in which the high speed air flows from the pulse blowing system and continuous blowing system respectively to a plate with grease on top. Supply pressure and the volume of air used for removing the grease are measured to calculate energy consumption. From the experiment result, the pulse blowing system performs to conserve energy comparing with the continuous blowing system. The frequency and duty ratio of pulse flow influence the blowing characteristic. The pulse blowing system performs to be the most efficient at the specified frequency and duty ratio. Then a pneumatic self-oscillated method based on air operated valve is put forward to generate pulse flow. A simulation is made about dynamic modeling the air operated valve and calculating the motion of the valve core and output pressure. The simulation result verifies the system to be able to generate pulse flow, and predicts the key parameters of the frequency and duty ratio measured by experiment well. Finally, on the basis of simplifying and solution of the pulse blowing system's mathematic model, the relationship between system's frequency duty ratio and the dimensions of components is simply described with four algebraic equations. The

  20. A mathematical model for order splitting in a multiple supplier single-item inventory system

    DEFF Research Database (Denmark)

    Abginehchi, Soheil; Farahani, Reza Zanjirani; Rezapour, Shabnam

    2013-01-01

    systems. The item acquisition lead times of suppliers are random variables. Backorder is allowed and shortage cost is charged based on not only per unit in shortage but also per time unit. Continuous review (s,Q) policy has been assumed. When the inventory level depletes to a reorder level, the total...... order is split among n suppliers. Since the suppliers have different characteristics, the quantity ordered to different suppliers may be different. The problem is to determine the reorder level and quantity ordered to each supplier so that the expected total cost per time unit, including ordering cost......, procurement cost, inventory holding cost, and shortage cost, is minimized. We also conduct extensive numerical experiments to show the advantages of our model compared with the models in the literature. According to our extensive experiments, the model developed in this paper is the best model...

  1. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  2. An expert fault diagnosis system for vehicle air conditioning product development

    NARCIS (Netherlands)

    Tan, C.F.; Tee, B.T.; Khalil, S.N.; Chen, W.; Rauterberg, G.W.M.

    2015-01-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to

  3. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... fully develop improved brake systems and also to ensure vehicle control and stability while braking... [Docket No. NHTSA 2009-0175] RIN 2127-AK62 Federal Motor Vehicle Safety Standards; Air Brake Systems... Federal motor vehicle safety standard for air brake systems by requiring substantial improvements in...

  4. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... initial speeds, vehicle manufacturers will need to develop unique or complicated braking systems to comply... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring...

  5. Modeling activities in air traffic control systems: antecedents and consequences of a mid-air collision.

    Science.gov (United States)

    de Carvalho, Paulo Victor R; Ferreira, Bemildo

    2012-01-01

    In this article we present a model of some functions and activities of the Brazilian Air traffic Control System (ATS) in the period in which occurred a mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the ATM. Modeling in some detail activities during the collision and related them to overall behavior and antecedents that stress the organization uncover some drift into failure mechanisms that erode safety defenses provided by the Air Navigation Service Provider (ANSP), enabling a mid-air collision to be happen.

  6. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    Science.gov (United States)

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  7. Air conditioning systems of Porsche Panamera; Das Klimatisierungssystem des Porsche Panamera

    Energy Technology Data Exchange (ETDEWEB)

    Mall, Gernot; Deyhle, Hagen [Porsche AG, Stuttgart (Germany); Engelhardt, Martin [Behr GmbH und Co. KG, Stuttgart (Germany); Gremme, Johannes [BehrHella Thermocontrol GmbH, Lippstadt (Germany)

    2010-07-01

    The Porsche Panama, an innovative Gran Turismo is the newest edition to the Porsche sportscar family. The Panamera climate control system is a major contributor in achieving the goal of premium driver comfort. In addition to excellent performance and comfort requirements on the system and package and an uncompromising lightweight design, premium comfort for the rear seat passengers was of special emphasis. These targets were achieved through a newly developed 2- respective 4-zone climate control system. The climatic comfort from the passenger's point of view is enhanced due to the ability to individually set temperature, air distribution and air volume for every passenger. The system incorporates a model based ''air volume control'' and uses a distinguishing feature, a dashboard integrated air distribution field. (orig.)

  8. Interaction of Air Flow in Complex Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Zhorzh G. Levitskiy

    2013-01-01

    Full Text Available The article presents the results of study of interaction of air flow in complex ventilation systems. The study used Taylor and Maclaurin’s series and Lagrange formula to create the functional connections on estimation of the impact of changing aerodynamic parameters of one or several simultaneously working regulators on the air flow distribution in mines

  9. Point-splitting regularization of composite operators and anomalies

    International Nuclear Information System (INIS)

    Novotny, J.; Schnabl, M.

    2000-01-01

    The point-splitting regularization technique for composite operators is discussed in connection with anomaly calculation. We present a pedagogical and self-contained review of the topic with an emphasis on the technical details. We also develop simple algebraic tools to handle the path ordered exponential insertions used within the covariant and non-covariant version of the point-splitting method. The method is then applied to the calculation of the chiral, vector, trace, translation and Lorentz anomalies within diverse versions of the point-splitting regularization and a connection between the results is described. As an alternative to the standard approach we use the idea of deformed point-split transformation and corresponding Ward-Takahashi identities rather than an application of the equation of motion, which seems to reduce the complexity of the calculations. (orig.)

  10. Splitting strings on integrable backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Vicedo, Benoit

    2011-05-15

    We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)

  11. Performance evaluation of an integrated automotive air conditioning and heat pump system

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.

    2006-01-01

    This study deals with the performance characteristics of an R134a automotive air conditioning system capable of operating as an air-to-air heat pump using ambient air as a heat source. For this aim, an experimental analysis has been performed on a plant made up of original components from an automobile air conditioning system and some extra equipment employed to operate the system in the reverse direction. The system has been tested in the air conditioning and heat pump modes by varying the compressor speed and air temperatures at the inlets of the indoor and outdoor coils. Evaluation of the data gathered in steady state test runs has shown the effects of the operating conditions on the capacity, coefficient of performance, compressor discharge temperature and the rate of exergy destroyed by each component of the system for both operation modes. It has been observed that the heat pump operation provides adequate heating only in mild weather conditions, and the heating capacity drops sharply with decreasing outdoor temperature. However, compared with the air conditioning operation, the heat pump operation usually yields a higher coefficient of performance and a lower rate of exergy destruction per unit capacity. It is also possible to improve the heating mode performance of the system by redesigning the indoor coil, using another refrigerant with a higher heat rejection rate in the condenser and employing a better heat source such as the engine coolant or exhaust gases

  12. HESTIA Phase I Test Results: The Air Revitalization System

    Science.gov (United States)

    Wright, Sarah E.; Hansen, Scott W.

    2016-01-01

    In any human spaceflight mission, a number of Environmental Control & Life Support System (ECLSS) technologies work together to provide the conditions astronauts need to live healthily, productively, and comfortably in space. In a long-duration mission, many of these ECLSS technologies may use materials supplied by In-Situ Resource Utilization (ISRU), introducing more interactions between systems. The Human Exploration Spacecraft Test-bed for Integration & Advancement (HESTIA) Project aims to create a test-bed to evaluate ECLSS and ISRU technologies and how they interact in a high-fidelity, closed-loop, human-rated analog habitat. Air purity and conditioning are essential components within any ECLSS and for HESTIA's first test they were achieved with the Air Revitalization System (ARS) described below. The ARS provided four essential functions to the test-bed chamber: cooling the air, removing humidity from the air, removing trace contaminants, and scrubbing carbon dioxide (CO2) from the air. In this case, the oxygen supply function was provided by ISRU. In the current configuration, the ARS is a collection of different subsystems. A fan circulates the air, while a condensing heat exchanger (CHX) pulls humidity out of the air. A Trace Contaminant Removal System (TCRS) filters the air of potentially harmful contaminants. Lastly, a Reactive Plastic Lithium Hydroxide (RP-LiOH) unit removes CO2 from the breathing air. During the HESTIA Phase I test in September 2015, the ARS and its individual components each functioned as expected, although further analysis is underway. During the Phase I testing and in prior bench-top tests, the energy balance of heat removed by the CHX was not equal to the cooling it received. This indicated possible instrument error and therefore recalibration of the instruments and follow-up testing is planned in 2016 to address the issue. The ARS was tested in conjunction with two other systems: the Human Metabolic Simulator (HMS) and the

  13. Global Positioning System: Observations on Quarterly Reports from the Air Force

    Science.gov (United States)

    2016-10-17

    Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning , navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX)

  14. Identification of a novel SPLIT-HULL (SPH) gene associated with hull splitting in rice (Oryza sativa L.).

    Science.gov (United States)

    Lee, Gileung; Lee, Kang-Ie; Lee, Yunjoo; Kim, Backki; Lee, Dongryung; Seo, Jeonghwan; Jang, Su; Chin, Joong Hyoun; Koh, Hee-Jong

    2018-07-01

    The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency. Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.

  15. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2011-07-27

    ... [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards; Air Brake Systems... final rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... between Bendix Commercial Vehicle Systems and Dana Corporation; and ArvinMeritor. The agency received four...

  16. AN INTEROPERABLE ARCHITECTURE FOR AIR POLLUTION EARLY WARNING SYSTEM BASED ON SENSOR WEB

    Directory of Open Access Journals (Sweden)

    F. Samadzadegan

    2013-09-01

    Full Text Available Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE framework of the Open Geospatial Consortium (OGC, which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research

  17. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    Science.gov (United States)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an

  18. Numerical modeling of isothermal compositional grading by convex splitting methods

    KAUST Repository

    Li, Yiteng

    2017-04-09

    In this paper, an isothermal compositional grading process is simulated based on convex splitting methods with the Peng-Robinson equation of state. We first present a new form of gravity/chemical equilibrium condition by minimizing the total energy which consists of Helmholtz free energy and gravitational potential energy, and incorporating Lagrange multipliers for mass conservation. The time-independent equilibrium equations are transformed into a system of transient equations as our solution strategy. It is proved our time-marching scheme is unconditionally energy stable by the semi-implicit convex splitting method in which the convex part of Helmholtz free energy and its derivative are treated implicitly and the concave parts are treated explicitly. With relaxation factor controlling Newton iteration, our method is able to converge to a solution with satisfactory accuracy if a good initial estimate of mole compositions is provided. More importantly, it helps us automatically split the unstable single phase into two phases, determine the existence of gas-oil contact (GOC) and locate its position if GOC does exist. A number of numerical examples are presented to show the performance of our method.

  19. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  20. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  1. Pseudospin-orbit splitting and its consequences for the central depression in nuclear density

    Science.gov (United States)

    Li, Jia Jie; Long, Wen Hui; Song, Jun Ling; Zhao, Qiang

    2016-05-01

    The occurrence of the bubble-like structure has been studied, in the light of pseudospin degeneracy, within the relativistic Hartree-Fock-Bogoliubov (RHFB) theory. It is concluded that the charge/neutron bubble-like structure is predicted to occur in the mirror system of {34Si,34Ca } commonly by the selected Lagrangians, due to the persistence of Z (N )=14 subshell gaps above which the π (ν ) 2 s1 /2 states are not occupied. However, for the popular candidate 46Ar, the RHFB Lagrangian PKA1 does not support the occurrence of the bubble-like structure in the charge (proton) density profiles, due to the almost degenerate pseudospin doublet {π 2 s1 /2,π 1 d3 /2} and coherent pairing effects. The formation of a semibubble in heavy nuclei is less possible as a result of small pseudospin-orbit (PSO) splitting, while it tends to appear at Z =120 superheavy systems which coincides with large PSO splitting of the doublet {π 3 p3 /2,π 2 f5 /2} and couples with significant shell effects. Pairing correlations, which can work against bubble formation, significantly affect the PSO splitting. Furthermore, we found that the influence on semibubble formation due to different types of pairing interactions is negligible. The quenching of the spin-orbit splitting in the p orbit has been also stressed, and it may be considered the hallmark for semibubble nuclei.

  2. Operational air quality forecasting system for Spain: CALIOPE

    Science.gov (United States)

    Baldasano, J. M.; Piot, M.; Jorba, O.; Goncalves, M.; Pay, M.; Pirez, C.; Lopez, E.; Gasso, S.; Martin, F.; García-Vivanco, M.; Palomino, I.; Querol, X.; Pandolfi, M.; Dieguez, J. J.; Padilla, L.

    2009-12-01

    The European Commission (EC) and the United States Environmental Protection Agency (US-EPA) have shown great concerns to understand the transport and dynamics of pollutants in the atmosphere. According to the European directives (1996/62/EC, 2002/3/EC, 2008/50/EC), air quality modeling, if accurately applied, is a useful tool to understand the dynamics of air pollutants, to analyze and forecast the air quality, and to develop programs reducing emissions and alert the population when health-related issues occur. The CALIOPE project, funded by the Spanish Ministry of the Environment, has the main objective to establish an air quality forecasting system for Spain. A partnership of four research institutions composes the CALIOPE project: the Barcelona Supercomputing Center (BSC), the center of investigation CIEMAT, the Earth Sciences Institute ‘Jaume Almera’ (IJA-CSIC) and the CEAM Foundation. CALIOPE will become the official Spanish air quality operational system. This contribution focuses on the recent developments and implementation of the integrated modelling system for the Iberian Peninsula (IP) and Canary Islands (CI) with a high spatial and temporal resolution (4x4 sq. km for IP and 2x2 sq. km for CI, 1 hour), namely WRF-ARW/HERMES04/CMAQ/BSC-DREAM. The HERMES04 emission model has been specifically developed as a high-resolution (1x1 sq. km, 1 hour) emission model for Spain. It includes biogenic and anthropogenic emissions such as on-road and paved-road resuspension production, power plant generation, ship and plane traffic, airports and ports activities, industrial and agricultural sectors as well as domestic and commercial emissions. The qualitative and quantitative evaluation of the model was performed for a reference year (2004) using data from ground-based measurement networks. The products of the CALIOPE system will provide 24h and 48h forecasts for O3, NO2, SO2, CO, PM10 and PM2.5 at surface level. An operational evaluation system has been developed

  3. The effects of air leaks on solar air heating systems

    Science.gov (United States)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  4. Molecular concepts of water splitting. Nature's approach

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Nicholas; Lubitz, Wolfgang [Max-Planck-Institut fuer Chemische Energiekonversion, Muelheim an der Ruhr (Germany)

    2013-07-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  5. A Level 1+ Probabilistic Safety Assessment of the high flux Australian reactor. Vol. 2. Appendix C: System analysis models and results

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This section contains the results of the quantitative system/top event analysis. Section C. 1 gives the basic event coding scheme. Section C.2 shows the master frequency file (MFF), which contains the split fraction names, the top events they belong to, the mean values of the uncertainty distribution that is generated by the Monte Carlo quantification in the System Analysis module of RISKMAN, and a brief description of each split fraction. The MFF is organized by the systems modeled, and within each system, the top events associated with the system. Section C.3 contains the fault trees developed for the system/top event models and the RISKMAN reports for each of the system/top event models. The reports are organized under the following system headings: Compressed/Service Air Supply (AIR); Containment Isolation System (CIS); Heavy Water Cooling System (D20); Emergency Core Cooling System (ECCS); Electric Power System (EPS); Light Water Cooling system (H20); Helium Gas System (HE); Mains Water System (MW); Miscellaneous Top Events (MISC); Operator Actions (OPER) Reactor Protection System (RPS); Space Conditioner System (SCS); Condition/Status Switch (SWITCH); RCB Ventilation System (VENT); No. 1 Storage Block Cooling System (SB)

  6. A Level 1+ Probabilistic Safety Assessment of the high flux Australian reactor. Vol. 2. Appendix C: System analysis models and results

    International Nuclear Information System (INIS)

    1998-01-01

    This section contains the results of the quantitative system/top event analysis. Section C. 1 gives the basic event coding scheme. Section C.2 shows the master frequency file (MFF), which contains the split fraction names, the top events they belong to, the mean values of the uncertainty distribution that is generated by the Monte Carlo quantification in the System Analysis module of RISKMAN, and a brief description of each split fraction. The MFF is organized by the systems modeled, and within each system, the top events associated with the system. Section C.3 contains the fault trees developed for the system/top event models and the RISKMAN reports for each of the system/top event models. The reports are organized under the following system headings: Compressed/Service Air Supply (AIR); Containment Isolation System (CIS); Heavy Water Cooling System (D20); Emergency Core Cooling System (ECCS; Electric Power System (EPS); Light Water Cooling system (H20); Helium Gas System (HE); Mains Water System (MW); Miscellaneous Top Events (MISC); Operator Actions (OPER) Reactor Protection System (RPS); Space Conditioner System (SCS); Condition/Status Switch (SWITCH); RCB Ventilation System (VENT); No. 1 Storage Block Cooling System (SB)

  7. A radioactive aerosols in air monitoring system - 'ASIA'

    International Nuclear Information System (INIS)

    Belaish, I.; Levinson, S.; Pelled, O.; German, U.; Laichter, Y.; Gonen, E.; Wengrowicz, U.; Tirosh, D.; Barak, D.

    1997-01-01

    A continuous air monitoring system called 'ASIA' (Aerosols Sampler In Air) was developed at the NRCN for monitoring and measuring the concentration of airborne alpha emitting radionuclides such as Radon or natural Uranium. The 'ASIA' is a stationary multi-channel analyzer based system. The air passes through a 2.5 cm diameter filter and the radioactivity accumulated on it is monitored by a Silicon solid state detector. The sampling unit can be separated from the display and control unit to enable environment sampling close to the workers. The ASIA uses modern hardware and software in order to improve noise and background reduction and to allow friendly and flexible use. Remote communication is also available. The spectrum and additional data are displayed on line. The system was checked according to ANSI N42.17B -1989. The linearity and efficiency were evaluated by using various alpha sources. The Minimum Detectable Activity (MDA) and Decision Limit (Lc) were calculated according to ANSI N13.30. Long time stability measurements were performed using a natural Uranium source. (authors)

  8. Shear-Wave Splitting Within the Southeastern Carpathian Arc, Transylvanian Basin, Romania

    Science.gov (United States)

    Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Munteanu, L.

    2012-12-01

    We present 75 new measurements of shear wave splitting at 4 temporary broadband seismic stations that we deployed in the Transylvanian Basin within the Carpathian Arc, Romania. The Tisza-Dacia terranes, which form the basement of this basin, were accommodated in the space between the thick, old, rigid and cold East European Platform and the Moesian Platform during the Miocene. This movement was driven by the subduction of a part of the Tethys Ocean, which led to the formation of Carpathian orogen system. In Romania, the mountains are divided into the Eastern Carpathians, at the limit of Transylvanian Basin and the East European Platform along the Tornquist-Teisseyre Suture Zone, and the Southern Carpathians, at the limit with Moesian Platform. They connect to the West of the Carpathian Bend Zone where a very active high velocity seismic body generates intermediate depth earthquakes between 70 and 200 km beneath the Vrancea seismogenic zone. We analyzed splitting of SKS and SKKS phases recorded at epicentral distances between 87 and 150 degrees using the method of Silver and Chan (1991). We estimated splitting parameters, fast shear polarization azimuth and delay time, using both weighted averages of individual splitting measurements (Helffrich et al., 1994) and simultaneous linearization of all clearly recorded SK(K)S waves (Wolfe and Silver, 1998). For COMD, located at the contact of the Carpathian Bend Zone and Transylvanian Basin, we obtained a fast shear polarization azimuth trending NE-SW, parallel to the contact and to the strike of the Vrancea seismic body. For 10 suitable events recorded at IACB, at the contact of the Neogene Volcanic zone with the Eastern Carpathians, we did not observe any splitting; we consider the station splitting to be null. The fast shear polarization azimuth for PMAR, at the limit between Tisza-Dacia block and Southern Carpathians thrust belt, and at CHDM, within the Transylvanian Basin, is NW-SE similar to a regional splitting

  9. The Performance of Diffuse Ceiling Inlet and other Room Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jakubowska, Ewa

    2009-01-01

    The paper analyses different room air distribution systems, and describes a design chart which can be used for the evaluation of variables as air quality, air velocity and temperature gradient as a function of flow rate and temperature difference in the supply system. The design chart can also be...

  10. Optimal space-energy splitting in MCNP with the DSA

    International Nuclear Information System (INIS)

    Dubi, A.; Gurvitz, N.

    1990-01-01

    The Direct Statistical Approach (DSA) particle transport theory is based on the possibility of obtaining exact explicit expressions for the dependence of the second moment and calculation time on the splitting parameters. This allows the automatic optimization of the splitting parameters by ''learning'' the bulk parameters from which the problem dependent coefficients of the quality function (second moment time) are constructed. The above procedure was exploited to implement an automatic optimization of the splitting parameters in the Monte Carlo Neutron Photon (MCNP) code. This was done in a number of steps. In the first instance, only spatial surface splitting was considered. In this step, the major obstacle has been the truncation of an infinite series of ''products'' of ''surface path's'' leading from the source to the detector. Encouraging results from the first phase led to the inclusion of full space/energy phase space splitting. (author)

  11. Hybrid flux splitting schemes for numerical resolution of two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Flaatten, Tore

    2003-07-01

    This thesis deals with the construction of numerical schemes for approximating. solutions to a hyperbolic two-phase flow model. Numerical schemes for hyperbolic models are commonly divided in two main classes: Flux Vector Splitting (FVS) schemes which are based on scalar computations and Flux Difference Splitting (FDS) schemes which are based on matrix computations. FVS schemes are more efficient than FDS schemes, but FDS schemes are more accurate. The canonical FDS schemes are the approximate Riemann solvers which are based on a local decomposition of the system into its full wave structure. In this thesis the mathematical structure of the model is exploited to construct a class of hybrid FVS/FDS schemes, denoted as Mixture Flux (MF) schemes. This approach is based on a splitting of the system in two components associated with the pressure and volume fraction variables respectively, and builds upon hybrid FVS/FDS schemes previously developed for one-phase flow models. Through analysis and numerical experiments it is demonstrated that the MF approach provides several desirable features, including (1) Improved efficiency compared to standard approximate Riemann solvers, (2) Robustness under stiff conditions, (3) Accuracy on linear and nonlinear phenomena. In particular it is demonstrated that the framework allows for an efficient weakly implicit implementation, focusing on an accurate resolution of slow transients relevant for the petroleum industry. (author)

  12. Method and system for estimating and predicting airflow around air vehicles

    KAUST Repository

    Claudel, Christian G.; Salama, Khaled N.; Calo, Victor M.; Ghommem, Mehdi; Eslshurafa, Amro; Shaqura, Mohammad

    2015-01-01

    A method, system, and sensor for air flow sensing. The system can include a cantilever, a transducer, and a processing module. The method can include measuring beam deflections of one or more cantilevers, extracting information about air flow

  13. Fundamental understanding of the Di-Air system (an alternative NO

    NARCIS (Netherlands)

    Wang, Y.; Makkee, M.

    2018-01-01

    Toyota's Di-Air DeNOx system is a promising DeNOx system to meet NOx emission requirement during the real driving, yet, a fundamental understanding largely lacks, e.g. the benefit of fast frequency fuel injection. Ceria is the main ingredient in Di-Air catalyst

  14. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    International Nuclear Information System (INIS)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER

  15. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  16. Splitting automorphisms of free Burnside groups

    International Nuclear Information System (INIS)

    Atabekyan, Varuzhan S

    2013-01-01

    It is proved that, if the order of a splitting automorphism of odd period n≥1003 of a free Burnside group B(m,n) is a prime, then the automorphism is inner. This implies, for every prime n≥1009, an affirmative answer to the question on the coincidence of the splitting automorphisms of period n of the group B(m,n) with the inner automorphisms (this question was posed in the 'Kourovka Notebook' in 1990). Bibliography: 17 titles.

  17. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  18. 7 CFR 51.2543 - U.S. Non-Split.

    Science.gov (United States)

    2010-01-01

    ... Standards for Grades of Pistachio Nuts in the Shell § 51.2543 U.S. Non-Split. “U.S. Non-Split” consists of non-split pistachio nuts in the shell which meet the following requirements: (a) Basic requirements...

  19. Nitrogen fertilization efficiency with Urea (15N) in Brachiaria brizantha cv. Marandu associated with split application of ordinary superphosphate and potassium chloride

    International Nuclear Information System (INIS)

    Oliveira, P.P.A.; Trivelin, P.C.O.; Oliveira, W.S.

    2003-01-01

    In pastures, the evaluation of fertilization efficiency of urea-N is important since it is applied on a massive scale. Several studies report an enhancement of the fertilizers efficiency by associated applications of urea with potassium chloride (KCl) and ordinary superphosphate (OSP). In the recovery of degraded pastures or in intensive exploration systems, high quantities of KCl and OSP used as corrective fertilization are applied at the november, beginning of the rain season. Split applications of KCl and OSP could easily be associated with urea-N surface application without additional costs. An evaluation of this management was the objective of this experiment. The annual balance of 15 N application with urea was obtained in treatments where OSP and/or KCl were split, top-dressed in five applications associated with urea, or when both were applied together in November. Highest forage production was obtained when OSP was split, followed by split KCl, the unique application of both together, and finally both split. The recovery of urea-N in the aerial part and the soil-pasture system remained unaltered by the treatments. However, the recovery of plant crown and root system differed among the treatments and was positively correlated with forage production. Fertilizer-N recovery in the litter was favored by splitting KCl. Even though the total recovery of the system was not improved by the treatments, splitting of KCl and OSP are indicated for an increased recovery of urea-N in numerous plant structures, resulting in a higher forage production. (author)

  20. A passive decay heat removal system for LWRs based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [Graduate School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2015-05-15

    Highlights: • A passive decay heat removal system for LWRs is discussed. • An air cooler model which condenses steam is developed. • The decay heat can be removed by air coolers with forced convection. • The dimensions of the air cooler are proposed. - Abstract: The present paper describes the capability of an air cooling system (ACS) to remove decay heat from a core of LWR such as an advanced boiling water reactor (ABWR) and a pressurized water reactor (PWR). The motivation of the present research is the Fukushima severe accident (SA) on 11 March 2011. Since emergency cooling systems using electricity were not available due to station blackout (SBO) and malfunctions, many engineers might understand that water cooling was not completely reliable. Therefore, a passive decay heat removal (DHR) system would be proposed in order to prevent such an SA under the conditions of an SBO event. The plant behaviors during the SBO are calculated using the system code NETFLOW++ for the ABWR and PWR with the ACS. Two types of air coolers (ACs) are applied for the ABWR, i.e., a steam condensing air cooler (SCAC) of which intake for heat transfer tubes is provided in the steam region, and single-phase type of which intake is provided in the water region. The DHR characteristics are calculated under the conditions of the forced air circulation and also the natural air convection. As a result of the calculations, the decay heat can be removed safely by the reasonably sized ACS when heat transfer tubes are cooled with the forced air circulation. The heat removal rate per one finned heat transfer tube is evaluated as a function of air flow rate. The heat removal rate increases as a function of the air flow rate.