Sample records for split step scheme

  1. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N


    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  2. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing

    KAUST Repository

    Calatroni, Luca


    We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.

  3. A Modified Halpern's Iterative Scheme for Solving Split Feasibility Problems

    Directory of Open Access Journals (Sweden)

    Jitsupa Deepho


    Full Text Available The purpose of this paper is to introduce and study a modified Halpern’s iterative scheme for solving the split feasibility problem (SFP in the setting of infinite-dimensional Hilbert spaces. Under suitable conditions a strong convergence theorem is established. The main result presented in this paper improves and extends some recent results done by Xu (Iterative methods for the split feasibility problem in infinite-dimensional Hilbert space, Inverse Problem 26 (2010 105018 and some others.

  4. Sparse Parallel MRI Based on Accelerated Operator Splitting Schemes. (United States)

    Cai, Nian; Xie, Weisi; Su, Zhenghang; Wang, Shanshan; Liang, Dong


    Recently, the sparsity which is implicit in MR images has been successfully exploited for fast MR imaging with incomplete acquisitions. In this paper, two novel algorithms are proposed to solve the sparse parallel MR imaging problem, which consists of l 1 regularization and fidelity terms. The two algorithms combine forward-backward operator splitting and Barzilai-Borwein schemes. Theoretically, the presented algorithms overcome the nondifferentiable property in l 1 regularization term. Meanwhile, they are able to treat a general matrix operator that may not be diagonalized by fast Fourier transform and to ensure that a well-conditioned optimization system of equations is simply solved. In addition, we build connections between the proposed algorithms and the state-of-the-art existing methods and prove their convergence with a constant stepsize in Appendix. Numerical results and comparisons with the advanced methods demonstrate the efficiency of proposed algorithms.

  5. Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations (United States)

    Shiuhong, Lui; Xu, Jun


    Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.

  6. Hybrid flux splitting schemes for numerical resolution of two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Flaatten, Tore


    This thesis deals with the construction of numerical schemes for approximating. solutions to a hyperbolic two-phase flow model. Numerical schemes for hyperbolic models are commonly divided in two main classes: Flux Vector Splitting (FVS) schemes which are based on scalar computations and Flux Difference Splitting (FDS) schemes which are based on matrix computations. FVS schemes are more efficient than FDS schemes, but FDS schemes are more accurate. The canonical FDS schemes are the approximate Riemann solvers which are based on a local decomposition of the system into its full wave structure. In this thesis the mathematical structure of the model is exploited to construct a class of hybrid FVS/FDS schemes, denoted as Mixture Flux (MF) schemes. This approach is based on a splitting of the system in two components associated with the pressure and volume fraction variables respectively, and builds upon hybrid FVS/FDS schemes previously developed for one-phase flow models. Through analysis and numerical experiments it is demonstrated that the MF approach provides several desirable features, including (1) Improved efficiency compared to standard approximate Riemann solvers, (2) Robustness under stiff conditions, (3) Accuracy on linear and nonlinear phenomena. In particular it is demonstrated that the framework allows for an efficient weakly implicit implementation, focusing on an accurate resolution of slow transients relevant for the petroleum industry. (author)

  7. Multilevel hybrid split-step implicit tau-leap

    KAUST Repository

    Ben Hammouda, Chiheb


    In biochemically reactive systems with small copy numbers of one or more reactant molecules, the dynamics is dominated by stochastic effects. To approximate those systems, discrete state-space and stochastic simulation approaches have been shown to be more relevant than continuous state-space and deterministic ones. In systems characterized by having simultaneously fast and slow timescales, existing discrete space-state stochastic path simulation methods, such as the stochastic simulation algorithm (SSA) and the explicit tau-leap (explicit-TL) method, can be very slow. Implicit approximations have been developed to improve numerical stability and provide efficient simulation algorithms for those systems. Here, we propose an efficient Multilevel Monte Carlo (MLMC) method in the spirit of the work by Anderson and Higham (SIAM Multiscal Model. Simul. 10(1), 2012). This method uses split-step implicit tau-leap (SSI-TL) at levels where the explicit-TL method is not applicable due to numerical stability issues. We present numerical examples that illustrate the performance of the proposed method. © 2016 Springer Science+Business Media New York

  8. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow

    International Nuclear Information System (INIS)

    Toumi, I.; Kumbaro, A.; Paillere, H.


    These course notes, presented at the 30. Von Karman Institute Lecture Series in Computational Fluid Dynamics, give a detailed and through review of upwind differencing methods for two-phase flow models. After recalling some fundamental aspects of two-phase flow modelling, from mixture model to two-fluid models, the mathematical properties of the general 6-equation model are analysed by examining the Eigen-structure of the system, and deriving conditions under which the model can be made hyperbolic. The following chapters are devoted to extensions of state-of-the-art upwind differencing schemes such as Roe's Approximate Riemann Solver or the Characteristic Flux Splitting method to two-phase flow. Non-trivial steps in the construction of such solvers include the linearization, the treatment of non-conservative terms and the construction of a Roe-type matrix on which the numerical dissipation of the schemes is based. Extension of the 1-D models to multi-dimensions in an unstructured finite volume formulation is also described; Finally, numerical results for a variety of test-cases are shown to illustrate the accuracy and robustness of the methods. (authors)

  9. Analysis of reaction schemes using maximum rates of constituent steps (United States)

    Motagamwala, Ali Hussain; Dumesic, James A.


    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  10. Analysis of reaction schemes using maximum rates of constituent steps. (United States)

    Motagamwala, Ali Hussain; Dumesic, James A


    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.

  11. Improved Fast Centralized Retransmission Scheme for High-Layer Functional Split in 5G Network (United States)

    Xu, Sen; Hou, Meng; Fu, Yu; Bian, Honglian; Gao, Cheng


    In order to satisfy the varied 5G critical requirements and the virtualization of the RAN hardware, a two-level architecture for 5G RAN has been studied in 3GPP 5G SI stage. The performance of the PDCP-RLC split option and intra-RLC split option, two mainly concerned options for high layer functional split, exist an ongoing debate. This paper firstly gives an overview of CU-DU split study work in 3GPP. By the comparison of implementation complexity, the standardization impact and system performance, our evaluation result shows the PDCP-RLC split Option outperforms the intra-RLC split option. Aiming to how to reduce the retransmission delay during the intra-CU inter-DU handover, the mainly drawback of PDCP-RLC split option, this paper proposes an improved fast centralized retransmission solution with a low implementation complexity. Finally, system level simulations show that the PDCP-RLC split option with the proposed scheme can significantly improve the UE’s experience.

  12. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried


    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  13. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi


    , instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more......Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  14. A new flux splitting scheme for the Euler equations II: E-AUSMPWAS for all speeds (United States)

    Qu, Feng; Sun, Di; Yan, Chao


    We propose a new scheme called E-AUSMPWAS (E-AUSMPW modified for all speeds) for both cases of low speeds and high speeds. This scheme adopts the Zha-Bilgen splitting procedure and constructs the mass flux as E-AUSMPW. Also, it improves the construction of the pressure flux for low speeds according to theoretical analyses. In terms of the component pu, the E-AUSMPWAS scheme adopts a different method to make it accord with theory better. Series of numerical experiments show that both E-AUSMPWAS and E-AUSMPW are robust against the shock anomaly and the unphysical 'overheating' phenomenon in the receding problem. Also, the E-AUSMPWAS scheme is with a high resolution at both high speeds and low speeds. These properties suggest that the E-AUSMPWAS scheme is promising to be widely used to accurately and efficiently simulate both simple and complex flows at all speeds.

  15. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting

    Directory of Open Access Journals (Sweden)

    Matthias Lange


    Full Text Available The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive and vivid representation in T-S diagrams provides researchers in this field with the required theoretical background to improve process development. Furthermore, results about the required entropy change in the used redox materials can be used as a guideline for material developers. The results show that CO2 splitting is advantageous at higher temperature levels, while water splitting is more feasible at lower temperature levels, as it benefits from a great entropy change during the splitting step.

  16. Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero. (United States)

    Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra


    The mapping of enthalpy landscapes is complicated by the coupling of particle position and volume coordinates. To address this issue, we have developed a new split-step eigenvector-following technique for locating minima and transition points in an enthalpy landscape at absolute zero. Each iteration is split into two steps in order to independently vary system volume and relative atomic coordinates. A separate Lagrange multiplier is used for each eigendirection in order to provide maximum flexibility in determining step sizes. This technique will be useful for mapping the enthalpy landscapes of bulk systems such as supercooled liquids and glasses.

  17. Acoustic programming in step-split-flow lateral-transport thin fractionation. (United States)

    Ratier, Claire; Hoyos, Mauricio


    We propose a new separation scheme for micrometer-sized particles combining acoustic forces and gravitational field in split-flow lateral-transport thin (SPLITT)-like fractionation channels. Acoustic forces are generated by ultrasonic standing waves set up in the channel thickness. We report on the separation of latex particles of two different sizes in a preliminary experiment using this proposed hydrodynamic acoustic sorter, HAS. Total binary separation of 5 and 10 microm diameter particles has been achieved. Numerical simulations of trajectories of particles flowing through a step-SPLITT under the conditions which combine acoustic standing waves and gravity show a very good agreement with the experiment. Calculations in order to compare separations obtained by the acoustic programming s-SPLITT fractionation and the conventional SPLITT fractionation show that the improvement in separation time is around 1 order of magnitude and could still be improved; this is the major finding of this work. This separation technique can be extended to biomimetic particles and blood cells.

  18. Medical X-ray Image Hierarchical Classification Using a Merging and Splitting Scheme in Feature Space. (United States)

    Fesharaki, Nooshin Jafari; Pourghassem, Hossein


    Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.

  19. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. (United States)

    Iwase, Akihide; Ng, Yun Hau; Ishiguro, Yoshimi; Kudo, Akihiko; Amal, Rose


    The effectiveness of reduced graphene oxide as a solid electron mediator for water splitting in the Z-scheme photocatalysis system is demonstrated. We show that a tailor-made, photoreduced graphene oxide can shuttle photogenerated electrons from an O(2)-evolving photocatalyst (BiVO(4)) to a H(2)-evolving photocatalyst (Ru/SrTiO(3):Rh), tripling the consumption of electron-hole pairs in the water splitting reaction under visible-light irradiation.

  20. Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme (United States)

    Huff, Dennis L.; Swafford, Timothy W.; Reddy, T. S. R.


    A compressible flow code that can predict the nonlinear unsteady aerodynamic associated with transonic flows over oscillating cascades is developed and validated. The code solves the two dimensional, unsteady Euler equations using a time-marching, flux-difference splitting scheme. The unsteady pressures and forces can be determined for arbitrary input motions, although only harmonic pitching and plunging motions are addressed. The code solves the flow equations on a H-grid which is allowed to deform with the airfoil motion. Predictions are presented for both flat plate cascades and loaded airfoil cascades. Results are compared to flat plate theory and experimental data. Predictions are also presented for several oscillating cascades with strong normal shocks where the pitching amplitudes, cascade geometry and interblade phase angles are varied to investigate nonlinear behavior.

  1. A two-step scheme for the advection equation with minimized dissipation and dispersion errors (United States)

    Takacs, L. L.


    A two-step advection scheme of the Lax-Wendroff type is derived which has accuracy and phase characteristics similar to that of a third-order scheme. The scheme is exactly third-order accurate in time and space for uniform flow. The new scheme is compared with other currently used methods, and is shown to simulate well the advection of localized disturbances with steep gradients. The scheme is derived for constant flow and generalized to two-dimensional nonuniform flow.

  2. A visual fluctuation splitting scheme for magnetohydrodynamics with a new sonic fix and Euler limit

    International Nuclear Information System (INIS)

    Aslan, Necdet


    This paper presents a two dimensional visual computer code developed to solve magnetohydrodynamic (MHD) equations. This code runs on structured and unstructured triangles and operates by a fluctuation splitting (FS) scheme. The FS scheme originally introduced by Roe [in: K.W. Morton, M.J. Baines (Eds.), Numerical Methods for Fluid Dynamics II, Academic Press, New York, 1982] to solve Euler equations was extended by Aslan [J. Comput. Phys. 153 (1999) 437] for solving ideal MHD equations. Aslan's method included a wave model, called MHD-A, consisting of slow and fast magneto-acoustic waves as well as an entropy and artificial magnetic monopole wave. In this work, Aslan's method was extended to include external sources, a new sonic fix, and a careful normalization in the Euler limit. It is shown by numerical experiments that VIS-MHD-A is able to work accurately for a wide range of problems including discontinuities, shock structures, and problems including smooth solutions (e.g., Rayleigh-Taylor and Kelvin-Helmholtz instability)

  3. A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs (United States)

    Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.


    In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.

  4. Differences in Movement Speed Before and After a Split-Step Between Professional and Junior Tennis Players

    Directory of Open Access Journals (Sweden)

    Filipčič Aleš


    Full Text Available This study investigated tennis players’ speed before, during and after the split-step, deceleration before and acceleration after the split-step in four different stroke groups in three age categories. Seven male professional, eleven male and ten female junior tennis players were recorded with video cameras at official tournaments. Using the SAGIT system, we gathered data on 8,545 split-steps. Tennis players performed a split-step in 82.9% of cases. A tennis player’s speed, deceleration and acceleration were measured 0.2 s before and after the split-step. Differences between categories and stroke groups for each of the five variables were analyzed with a two-way ANOVA. The differences between the groups of players were generally much higher in the speed before, during and after the split-step than in the deceleration before and acceleration after the split-step. Most of these differences were observed between the various stroke groups. These results suggest that players use three types of movement while performing a split-step. In the first type, which is typical of serving and returning, the speed before, during and after the split-step is lower (0.55 to 1.2 m/s. The second type of movement is characteristic of baseline strokes where tennis players achieve higher speed than in the first type (0.7 to 1.66 m/s. The third type occurs in strokes where a tennis player is moving or already at the net (0.78 to 1.9 m/s. Movement in tennis is an area that requires constant development in terms of designing and upgrading movement patterns, increasing speed and practice in specific game situations.

  5. Robust Power Decoupling Control Scheme for DC Side Split Decoupling Capacitor Circuit with Mismatched Capacitance in Single Phase System

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi


    imperfections when storage mismatch occurs, which may break the standard requirement such as IEEE 1547. As a consequence, a robust control scheme is then proposed for half-bridge circuit, which realized power decoupling by generating second order harmonic voltage on the split dc decoupling capacitor instead...

  6. Peer groups splitting in Croatian EQA scheme: a trade-off between homogeneity and sample size number. (United States)

    Vlašić Tanasković, Jelena; Coucke, Wim; Leniček Krleža, Jasna; Vuković Rodriguez, Jadranka


    Laboratory evaluation through external quality assessment (EQA) schemes is often performed as 'peer group' comparison under the assumption that matrix effects influence the comparisons between results of different methods, for analytes where no commutable materials with reference value assignment are available. With EQA schemes that are not large but have many available instruments and reagent options for same analyte, homogenous peer groups must be created with adequate number of results to enable satisfactory statistical evaluation. We proposed a multivariate analysis of variance (MANOVA)-based test to evaluate heterogeneity of peer groups within the Croatian EQA biochemistry scheme and identify groups where further splitting might improve laboratory evaluation. EQA biochemistry results were divided according to instruments used per analyte and the MANOVA test was used to verify statistically significant differences between subgroups. The number of samples was determined by sample size calculation ensuring a power of 90% and allowing the false flagging rate to increase not more than 5%. When statistically significant differences between subgroups were found, clear improvement of laboratory evaluation was assessed before splitting groups. After evaluating 29 peer groups, we found strong evidence for further splitting of six groups. Overall improvement of 6% reported results were observed, with the percentage being as high as 27.4% for one particular method. Defining maximal allowable differences between subgroups based on flagging rate change, followed by sample size planning and MANOVA, identifies heterogeneous peer groups where further splitting improves laboratory evaluation and enables continuous monitoring for peer group heterogeneity within EQA schemes.

  7. A Splitting Scheme for Solving Reaction-Diffusion Equations Modeling Dislocation Dynamics in Materials Subjected to Cyclic Loading (United States)

    Pontes, J.; Walgraef, D.; Christov, C. I.


    Strain localization and dislocation pattern formation are typical features of plastic deformation in metals and alloys. Glide and climb dislocation motion along with accompanying production/annihilation processes of dislocations lead to the occurrence of instabilities of initially uniform dislocation distributions. These instabilities result into the development of various types of dislocation micro-structures, such as dislocation cells, slip and kink bands, persistent slip bands, labyrinth structures, etc., depending on the externally applied loading and the intrinsic lattice constraints. The Walgraef-Aifantis (WA) (Walgraef and Aifanits, J. Appl. Phys., 58, 668, 1985) model is an example of a reaction-diffusion model of coupled nonlinear equations which describe 0 formation of forest (immobile) and gliding (mobile) dislocation densities in the presence of cyclic loading. This paper discuss two versions of the WA model and focus on a finite difference, second order in time 1-Nicolson semi-implicit scheme, with internal iterations at each time step and a spatial splitting using the Stabilizing, Correction (Christov and Pontes, Mathematical and Computer Modelling, 35, 87, 2002) for solving the model evolution equations in two dimensions. The results of two simulations are presented. More complete results will appear in a forthcoming paper.

  8. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure. (United States)

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari


    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  9. Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems. (United States)

    Wang, Yiou; Suzuki, Hajime; Xie, Jijia; Tomita, Osamu; Martin, David James; Higashi, Masanobu; Kong, Dan; Abe, Ryu; Tang, Junwang


    Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called "Z-scheme" systems, which are inspired by the photosystem II-photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field.

  10. Acceleration of step and linear discontinuous schemes for the method of characteristics in DRAGON5

    Directory of Open Access Journals (Sweden)

    Alain Hébert


    Full Text Available The applicability of the algebraic collapsing acceleration (ACA technique to the method of characteristics (MOC in cases with scattering anisotropy and/or linear sources was investigated. Previously, the ACA was proven successful in cases with isotropic scattering and uniform (step sources. A presentation is first made of the MOC implementation, available in the DRAGON5 code. Two categories of schemes are available for integrating the propagation equations: (1 the first category is based on exact integration and leads to the classical step characteristics (SC and linear discontinuous characteristics (LDC schemes and (2 the second category leads to diamond differencing schemes of various orders in space. The acceleration of these MOC schemes using a combination of the generalized minimal residual [GMRES(m] method preconditioned with the ACA technique was focused on. Numerical results are provided for a two-dimensional (2D eight-symmetry pressurized water reactor (PWR assembly mockup in the context of the DRAGON5 code.

  11. 3D elastic wave modeling using modified high‐order time stepping schemes with improved stability conditions

    KAUST Repository

    Chu, Chunlei


    We present two Lax‐Wendroff type high‐order time stepping schemes and apply them to solving the 3D elastic wave equation. The proposed schemes have the same format as the Taylor series expansion based schemes, only with modified temporal extrapolation coefficients. We demonstrate by both theoretical analysis and numerical examples that the modified schemes significantly improve the stability conditions.

  12. Efficiency of a Boris-like integration scheme with spatial stepping

    International Nuclear Information System (INIS)

    Stoltz, P.H.; Cary, J.R.; Penn, G.; Wurtele, J.


    A modified Boris-like integration, in which the spatial coordinate is the independent variable, is derived. This spatial-Boris integration method is useful for beam simulations, in which the independent variable is often the distance along the beam. The new integration method is second order accurate, requires only one force calculation per particle per step, and preserves conserved quantities more accurately over long distances than a Runge-Kutta integration scheme. Results from the spatial-Boris integration method and a Runge-Kutta scheme are compared for two simulations: (i) a particle in a uniform solenoid field and (ii) a particle in a sinusoidally varying solenoid field. In the uniform solenoid case, the spatial-Boris scheme is shown to perfectly conserve for any step size quantities such as the gyroradius and the perpendicular momentum. The Runge-Kutta integrator produces damping in these conserved quantities. In the sinusoidally varying case, the conserved quantity of canonical angular momentum is used to measure the accuracy of the two schemes. For the sinusoidally varying field simulations, error analysis is used to determine the integration distance beyond which the spatial-Boris integration method is more efficient than a fourth-order Runge-Kutta scheme. For beam physics applications where statistical quantities such as beam emittance are important, these results imply the spatial-Boris scheme is 3 times more efficient. (c) 2002 American Physical Society

  13. A chaos detectable and time step-size adaptive numerical scheme for nonlinear dynamical systems (United States)

    Chen, Yung-Wei; Liu, Chein-Shan; Chang, Jiang-Ren


    The first step in investigation the dynamics of a continuous time system described by ordinary differential equations is to integrate them to obtain trajectories. In this paper, we convert the group-preserving scheme (GPS) developed by Liu [International Journal of Non-Linear Mechanics 36 (2001) 1047-1068] to a time step-size adaptive scheme, x=x+hf(x,t), where x∈R is the system variables we are concerned with, and f(x,t)∈R is a time-varying vector field. The scheme has the form similar to the Euler scheme, x=x+Δtf(x,t), but our step-size h is adaptive automatically. Very interestingly, the ratio h/Δt, which we call the adaptive factor, can forecast the appearance of chaos if the considered dynamical system becomes chaotical. The numerical examples of the Duffing equation, the Lorenz equation and the Rossler equation, which may exhibit chaotic behaviors under certain parameters values, are used to demonstrate these phenomena. Two other non-chaotic examples are included to compare the performance of the GPS and the adaptive one.

  14. A three operator split-step method covering a larger set of non-linear partial differential equations (United States)

    Zia, Haider


    This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.

  15. A sequential two-step near-infrared quantum splitting in Ho3+ singly doped NaYF4

    Directory of Open Access Journals (Sweden)

    D. C. Yu


    Full Text Available We demonstrated an efficient sequential two-step near-infrared (NIR quantum splitting (QS in a Ho3+ singly doped β-NaYF4. An incident high-energy ultraviolet (UV-to-visible photon in the wavelength range of 300−560 nm, which enables the Ho3+:5F4,5S2 states excited, could be efficiently split into two NIR photons at 1015 and 1180 nm. Underlying mechanisms for the sequential two-step NIR-QS process are analyzed in terms of the diffuse reflection spectrum, static and dynamic photoemission spectra and monitored excitation spectra. Internal quantum yield is obtained up to 110% on the basis of experimental and theoretical calculation results.

  16. Splitting the EU ETS. Strengthening the scheme by differentiating its sectoral carbon prices

    Energy Technology Data Exchange (ETDEWEB)

    Sijm, J.P.M.; Wetzels, W.; Koutstaal, P.R. [ECN Policy Studies, Petten (Netherlands); Pollitt, H.; Chewpreecha, U. [Cambridge Econometrics, Cambridge (United Kingdom)


    The current EU ETS faces a dilemma. To induce low-carbon investments in the power sector, higher carbon prices are needed, while low carbon prices are needed to reduce the risk of carbon leakage and loss of industrial competitiveness. This study analyses the effects and implications of two alternative policy options to address this price dilemma, i.e. (1) splitting the ETS into two separated sector regimes: one more ambitious regime with a relatively high carbon price for the power sector and a less ambitious regime with a relatively low carbon price for the other sectors covered by the EU ETS (called 'industry'), and (2) imposing a carbon tax on power sector emissions additional to a single ETS carbon price for both industry and the power sector. The study uses modelling scenarios and qualitative assessments to analyse the effects and implications of these policy options. It concludes that, in a world with unequal carbon prices, there is a case for differentiating ETS sectoral carbon prices and that the first-best option to achieve this differentiation is to impose a carbon tax on power sector emissions additional to a single ETS carbon price.

  17. Enforcing the Courant-Friedrichs-Lewy condition in explicitly conservative local time stepping schemes (United States)

    Gnedin, Nickolay Y.; Semenov, Vadim A.; Kravtsov, Andrey V.


    An optimally efficient explicit numerical scheme for solving fluid dynamics equations, or any other parabolic or hyperbolic system of partial differential equations, should allow local regions to advance in time with their own, locally constrained time steps. However, such a scheme can result in violation of the Courant-Friedrichs-Lewy (CFL) condition, which is manifestly non-local. Although the violations can be considered to be "weak" in a certain sense and the corresponding numerical solution may be stable, such calculation does not guarantee the correct propagation speed for arbitrary waves. We use an experimental fluid dynamics code that allows cubic "patches" of grid cells to step with independent, locally constrained time steps to demonstrate how the CFL condition can be enforced by imposing a constraint on the time steps of neighboring patches. We perform several numerical tests that illustrate errors introduced in the numerical solutions by weak CFL condition violations and show how strict enforcement of the CFL condition eliminates these errors. In all our tests the strict enforcement of the CFL condition does not impose a significant performance penalty.

  18. A Componentwise Convex Splitting Scheme for Diffuse Interface Models with Van der Waals and Peng--Robinson Equations of State

    KAUST Repository

    Fan, Xiaolin


    This paper presents a componentwise convex splitting scheme for numerical simulation of multicomponent two-phase fluid mixtures in a closed system at constant temperature, which is modeled by a diffuse interface model equipped with the Van der Waals and the Peng-Robinson equations of state (EoS). The Van der Waals EoS has a rigorous foundation in physics, while the Peng-Robinson EoS is more accurate for hydrocarbon mixtures. First, the phase field theory of thermodynamics and variational calculus are applied to a functional minimization problem of the total Helmholtz free energy. Mass conservation constraints are enforced through Lagrange multipliers. A system of chemical equilibrium equations is obtained which is a set of second-order elliptic equations with extremely strong nonlinear source terms. The steady state equations are transformed into a transient system as a numerical strategy on which the scheme is based. The proposed numerical algorithm avoids the indefiniteness of the Hessian matrix arising from the second-order derivative of homogeneous contribution of total Helmholtz free energy; it is also very efficient. This scheme is unconditionally componentwise energy stable and naturally results in unconditional stability for the Van der Waals model. For the Peng-Robinson EoS, it is unconditionally stable through introducing a physics-preserving correction term, which is analogous to the attractive term in the Van der Waals EoS. An efficient numerical algorithm is provided to compute the coefficient in the correction term. Finally, some numerical examples are illustrated to verify the theoretical results and efficiency of the established algorithms. The numerical results match well with laboratory data.

  19. A new class of fractional step techniques for the incompressible Navier–Stokes equations using direction splitting

    KAUST Repository

    Guermond, Jean-Luc


    A new direction-splitting-based fractional time stepping is introduced for solving the incompressible Navier-Stokes equations. The main originality of the method is that the pressure correction is computed by solving a sequence of one-dimensional elliptic problems in each spatial direction. The method is very simple to program in parallel, very fast, and has exactly the same stability and convergence properties as the Poisson-based pressure-correction technique, either in standard or rotational form. © 2010 Académie des sciences.

  20. Full splitting of the first zero-field steps in the I-V curve of Josephson junctions of intermediate length

    International Nuclear Information System (INIS)

    Hansen, J.B.; Divin, Y.Y.; Mygind, J.


    We report on the observation of full splitting of the first zero-field steps in the I-V curves of Josephson transmission lines of intermediate length Lroughly-equal(3--5)lambda/sub J/, where lambda/sub J/ is the Josephson penetration length. We study in detail how this splitting of the step into two branches depends on the temperature of the junction and on a weak applied magnetic field. We relate the splitting to excitations in the junctions whose behavior is described by the perturbed Sine-Gordon equation

  1. Full splitting of the first zero-field steps in the I-V curve of Josephson junctions of intermediate length

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Divin, Yu. Ya.; Mygind, Jesper


    We report on the observation of full splitting of the first zero-field steps in the I-V curves of Josephson transmission lines of intermediate length L≊(3–5)λJ, where λJ is the Josephson penetration length. We study in detail how this splitting of the step into two branches depends...... on the temperature of the junction and on a weak applied magnetic field. We relate the splitting to excitations in the junctions whose behavior is described by the perturbed sine-Gordon equation....

  2. A new fourth-order Fourier-Bessel split-step method for the extended nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Nash, Patrick L.


    Fourier split-step techniques are often used to compute soliton-like numerical solutions of the nonlinear Schroedinger equation. Here, a new fourth-order implementation of the Fourier split-step algorithm is described for problems possessing azimuthal symmetry in 3 + 1-dimensions. This implementation is based, in part, on a finite difference approximation Δ perpendicular FDA of 1/r (∂)/(∂r) r(∂)/(∂r) that possesses an associated exact unitary representation of e i/2λΔ perpendicular FDA . The matrix elements of this unitary matrix are given by special functions known as the associated Bessel functions. Hence the attribute Fourier-Bessel for the method. The Fourier-Bessel algorithm is shown to be unitary and unconditionally stable. The Fourier-Bessel algorithm is employed to simulate the propagation of a periodic series of short laser pulses through a nonlinear medium. This numerical simulation calculates waveform intensity profiles in a sequence of planes that are transverse to the general propagation direction, and labeled by the cylindrical coordinate z. These profiles exhibit a series of isolated pulses that are offset from the time origin by characteristic times, and provide evidence for a physical effect that may be loosely termed normal mode condensation. Normal mode condensation is consistent with experimentally observed pulse filamentation into a packet of short bursts, which may occur as a result of short, intense irradiation of a medium

  3. A Rate-Splitting Based Bound-Approaching Transmission Scheme for the Two-User Symmetric Gaussian Interference Channel with Common Messages

    Directory of Open Access Journals (Sweden)

    B. ZHANG


    Full Text Available This paper is concerned with a rate-splitting based transmission strategy for the two-user symmetric Gaussian interference channel that contains common messages only. Each transmitter encodes its common message into multiple layers by multiple codebooks that drawn from one separate code book, and transmits the superposition of the messages corresponding to these layers; each receiver decodes the messages from all layers of the two users successively. Two schemes are proposed for decoding order and optimal power allocation among layers respectively. With the proposed decoding order scheme, the sum-rate can be increased by rate-splitting, especially at the optimal number of rate-splitting, using average power allocation in moderate and weak interference regime. With the two proposed schemes at the receiver and the transmitter respectively, the sum-rate achieves the inner bound of HK without time-sharing. Numerical results show that the proposed optimal power allocation scheme with the proposed decoding order can achieve significant improvement of the performance over equal power allocation, and achieve the sum-rate within two bits per channel use (bits/channel use of the sum capacity.

  4. A variable step-size NLMS algorithm employing partial update schemes for echo cancellation (United States)

    Xu, Li; Ju, Yongfeng


    Today, with increase in the demand for higher quality communication, a kind of long adaptive filter is frequently encountered in practical application, such as the acoustic echo cancellation. Increase of adaptive filter length from decades to hundreds or thousands causes the conventional adaptive algorithms encounter new challenges. Therefore, a new variable step-size normalized least-mean-square algorithm combined with Partial update is proposed and its performances are investigated through simulations. The proposed step size method takes into account the instantaneous value of the output error and provides a trade-off between the convergence rate and the steady-state coefficient error. In order to deal with this obstacle that the large number of filter coefficients diminishes the usefulness of the adaptive filtering algorithm owing to increased complexity, the new algorithm employing tap-selection partial update schemes only updates subset of the filter coefficients that correspond to the largest magnitude elements of the regression vector. Simulation results of such applications in acoustic echo cancellation verify that the proposed algorithm achieves higher rate of convergence and brings significant computation savings compared to the NLMS algorithm.

  5. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting. (United States)

    Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S


    Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 production. Cycle stability of the fibrous Ce(1-x)Zr(x)O2 (with x = 0.025) was assessed for a range of conditions by measuring rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 °C and oxidation with CO2 at 800 °C, the fibers maintain their structure with surface areas of ∼0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles.

  6. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Yu., E-mail:; Ferrer, R.; Huyse, M.; Van den Bergh, P.; Van Duppen, P. [Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven (Belgium); Vermeeren, L. [SCK-CEN, Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)


    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  7. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes. (United States)

    Kudryavtsev, Yu; Ferrer, R; Huyse, M; Van den Bergh, P; Van Duppen, P; Vermeeren, L


    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  8. An efficient single-step scheme for manipulating quantum information of two trapped ions beyond the Lamb-Dicke limit

    International Nuclear Information System (INIS)

    Wei, L.F.; Nori, Franco


    Based on the exact conditional quantum dynamics for a two-ion system, we propose an efficient single-step scheme for coherently manipulating quantum information of two trapped cold ions by using a pair of synchronous laser pulses. Neither the auxiliary atomic level nor the Lamb-Dicke approximation are needed

  9. Chiral mass splitting for cs-bar and cn-bar mesons in the U-tilde(12)-classification scheme of hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kenji; Maeda, Tomohito [Nihon University, Funabashi (Japan). Junior College Funabashi Campus. Dept. of Engineering Science; Ishida, Shin [Nihon University, Tokyo (Japan). College of Science and Technology. Research Institute of Science and Technology


    We investigate the chiral mass splitting of parity-doubled J = 0,1 states for cs-bar and cn-bar meson systems in the U-tilde(12){sub SF}-classification scheme of hadrons, using the linear sigma model to describe the light-quark pseudoscalar and scalar mesons together with the spontaneous breaking of chiral symmetry, and consequently predict the masses of as-yet-unobserved (0{sup +}, 1{sup +}) cn-bar mesons. We also mention some indications of their existence in the recent published data from the Belle and BABAR Collaborations. (author)

  10. Enhanced Photocarrier Separation in Hierarchical Graphitic-C3N4-Supported CuInS2for Noble-Metal-Free Z-Scheme Photocatalytic Water Splitting. (United States)

    Li, Xiaoxue; Xie, Keyu; Song, Long; Zhao, Mengjia; Zhang, Zhipan


    The effective separation of photogenerated electrons and holes in photocatalysts is a prerequisite for efficient photocatalytic water splitting. CuInS 2 (CIS) is a widely used light absorber that works properly in photovoltaics but only shows limited performance in solar-driven hydrogen evolution due to its intrinsically severe charge recombination. Here, we prepare hierarchical graphitic C 3 N 4 -supported CuInS 2 (denoted as GsC) by an in situ growth of CIS directly on exfoliated thin graphitic C 3 N 4 nanosheets (g-C 3 N 4 NS) and demonstrate efficient separation of photoinduced charge carriers in the GsC by forming the Z-scheme system for the first time in CIS-catalyzed water splitting. Under visible light illumination, the GsC features an enhanced hydrogen evolution rate up to 1290 μmol g -1 h -1 , which is 3.3 and 6.1 times higher than that of g-C 3 N 4 NS and bare-CIS, respectively, thus setting a new performance benchmark for CIS-based water-splitting photocatalysts.

  11. Two Step Modified Ishikawa Iteration Scheme for Multi-Valued Mappings in CAT(0 Space

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Jhade


    Full Text Available The aim of this paper is to prove some strong convergence theorems for the modified Ishikawa iteration scheme involving quasi-nonexpansive multi-valued mappings in the framework of CAT(0 spaces.

  12. Simple Numerical Schemes for the Korteweg-deVries Equation

    International Nuclear Information System (INIS)

    McKinstrie, C. J.; Kozlov, M.V.


    Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves

  13. DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting (United States)

    Ju, Lin; Dai, Ying; Wei, Wei; Li, Mengmeng; Huang, Baibiao


    Recently, extensive attention has been paid to the direct Z-scheme systems for photocatalytic water splitting where carriers migrate directly between the two semiconductors without a redox mediator. In the present work, the electronic structure and related properties of two-dimensional (2D) van de Waals (vdW) GeS/WX2 (X = O, S, Se, Te) heterojunction are systematically investigated by first-principles calculations. Our results demonstrate that, the GeS/WS2 heterojunction could form a direct Z-scheme system for photocatalytic water splitting, whereas the GeS/WX2 (X = O, Se, Te) can't, because of their respective unsuitable electronic structures. For the GeS/WS2 heterojunction, the GeS and WS2 monolayers serve as photocatalysts for the hydrogen evolution reactionand oxygen evolution reaction, respectively. The internal electric field induced by the electron transfer at the interface can promote the separation of photo-generated charge carriers and formation of the interface Z-scheme electron transfer. Remarkably, the designed GeS/WS2 heterojunction not only enhances the hydrogen production activity of GeS and the oxygen production ability of WS2 but also improves the light absorption of the two monolayers by reducing the band gaps. Moreover, it is found that narrowing the interlayer distance could enhance the internal electric field, improving the photocatalytic ability of the vdW heterojunction. This work provides fundamental insights for further design and preparation of emergent metal dichalcogenide catalysts, beneficial for the development in clean energy.

  14. Establishment and validation of a two-step screening scheme for improved performance of serological screening of nasopharyngeal carcinoma. (United States)

    Li, Tingdong; Guo, Xiaoyi; Ji, Mingfang; Li, Fugui; Wang, Han; Cheng, Weimin; Chen, Honglin; Ng, Munhon; Ge, Shengxiang; Yuan, Yong; Xia, Ningshao


    Nasopharyngeal carcinoma (NPC), which is closely associated with Epstein-Barr virus (EBV), is one of the most prevalent cancers in southeast China. Most NPC patients are diagnosed at late stage due to inconspicuous symptoms at the early stage, and the prognosis of these patients is poor. The early diagnosis rate of NPC could be significantly increased by serological screening, but the positive predictive value (PPV) is relatively low. A simple two-step serological screening scheme was established to improve the PPV of the screening strategy and was validated by a prospective cohort. Serum antibodies specific for EBNA1, Zta, Thymidine Kinase (TK), EAD, EAR, and VCA were detected by enzyme-linked immunosorbent assay. The combination of EBNA1/IgA and VCA/IgA was used in the first step of screening, and anti-early antigens (EAs) were used in the second step of screening. EAD/IgA was the most prominent marker in the second step of screening, and other anti-EAs were complementary to EAD/IgA. As validated by a prospective cohort including 4200 participants, using the combination of EAD/IgA and TK/IgA in the second step decreased the number of high-risk participants from 128 to 27, and increased the PPV from 4.69% to 18.52%, with only one very early-stage case missed. The two-step screening scheme provides a standardized approach for NPC screening with an improved PPV and may be used in future field studies. With this two-step serological screening method, more people benefit from the screening program without increasing the need for fiberoptic endoscopy. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  15. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods (United States)

    Huang, Lianjie


    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.

  16. A conservative finite volume scheme with time-accurate local time stepping for scalar transport on unstructured grids (United States)

    Cavalcanti, José Rafael; Dumbser, Michael; Motta-Marques, David da; Fragoso Junior, Carlos Ruberto


    In this article we propose a new conservative high resolution TVD (total variation diminishing) finite volume scheme with time-accurate local time stepping (LTS) on unstructured grids for the solution of scalar transport problems, which are typical in the context of water quality simulations. To keep the presentation of the new method as simple as possible, the algorithm is only derived in two space dimensions and for purely convective transport problems, hence neglecting diffusion and reaction terms. The new numerical method for the solution of the scalar transport is directly coupled to the hydrodynamic model of Casulli and Walters (2000) that provides the dynamics of the free surface and the velocity vector field based on a semi-implicit discretization of the shallow water equations. Wetting and drying is handled rigorously by the nonlinear algorithm proposed by Casulli (2009). The new time-accurate LTS algorithm allows a different time step size for each element of the unstructured grid, based on an element-local Courant-Friedrichs-Lewy (CFL) stability condition. The proposed method does not need any synchronization between different time steps of different elements and is by construction locally and globally conservative. The LTS scheme is based on a piecewise linear polynomial reconstruction in space-time using the MUSCL-Hancock method, to obtain second order of accuracy in both space and time. The new algorithm is first validated on some classical test cases for pure advection problems, for which exact solutions are known. In all cases we obtain a very good level of accuracy, showing also numerical convergence results; we furthermore confirm mass conservation up to machine precision and observe an improved computational efficiency compared to a standard second order TVD scheme for scalar transport with global time stepping (GTS). Then, the new LTS method is applied to some more complex problems, where the new scalar transport scheme has also been coupled to

  17. Introducing an experimental split-cylinder to study flows with geophysical interest: First steps and first results (United States)

    Rodriguez-Garcia, Jesus O.; Burguete, Javier


    A new experimental setup has been developed in order to study rotating flows. Our research is derived from the experiments carried out in our group relating to this kind of flows, and the setup is inspired by the simulations performed by Lopez & Gutierrez-Castillo using a split-cylinder flow. In their work they study the different bifurcations taking place into the flow, among others, finding inertial waves in different configurations of the movement of the split-cylinder. Our setup consists in a split-cylinder in which each half can move in co-rotation or in counter-rotation. Moreover, we can set the rotation velocity of each half independently in order to study these different configurations of the flow. The aspect ratio defined as Γ = H / R can be modified, where H is the internal length of the cylinder and R is its radius. With this setup, we study the flow developed inside the split-cylinder depending on the Reynolds number like the different symmetry-breaking that should appear according to Lopez & Gutierrez-Castillo. To obtain the experimental data we use both laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques. The firsts results got are in the co-rotation case rotating one half faster than the other. We acknowledge support from Spanish Government Grant FIS 2014-54101-P. Jesús O. Rodríguez-García acknowledge research Grant from Asociación de Amigos de la Universidad de Navarra.

  18. Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions

    Directory of Open Access Journals (Sweden)

    Aldo Steinfeld


    Full Text Available This article provides a comprehensive overview of the work to date on the two‑step solar H2O and/or CO2 splitting thermochemical cycles with Zn/ZnO redox reactions to produce H2 and/or CO, i.e., synthesis gas—the precursor to renewable liquid hydrocarbon fuels. The two-step cycle encompasses: (1 The endothermic dissociation of ZnO to Zn and O2 using concentrated solar energy as the source for high-temperature process heat; and (2 the non-solar exothermic oxidation of Zn with H2O/CO2 to generate H2/CO, respectively; the resulting ZnO is then recycled to the first step. An outline of the underlying science and the technological advances in solar reactor engineering is provided along with life cycle and economic analyses.

  19. A Maximum Power Point Tracker with Automatic Step Size Tuning Scheme for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Kuei-Hsiang Chao


    Full Text Available The purpose of this paper is to study on a novel maximum power point tracking (MPPT method for photovoltaic (PV systems. First, the simulation environment for PV systems is constructed by using PSIM software package. A 516 W PV system established with Kyocera KC40T photovoltaic modules is used as an example to finish the simulation of the proposed MPPT method. When using incremental conductance (INC MPPT method, it usually should consider the tradeoff between the dynamic response and the steady-state oscillation, whereas the proposed modified incremental conductance method based on extension theory can automatically adjust the step size to track the maximum power point (MPP of PV array and effectively improve the dynamic response and steady-state performance of the PV systems, simultaneously. Some simulation and experimental results are made to verify that the proposed extension maximum power point tracking method can provide a good dynamic response and steady-state performance for a photovoltaic power generation system.

  20. Etude Climat no. 34 'Including international aviation in the EU ETS: a first step towards a global scheme'

    International Nuclear Information System (INIS)

    Alberola, Emilie; Solier, Boris


    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: CO 2 emissions from international aviation, which accounted for 2% of global emissions in 2009, are not currently capped by any international agreement. The inclusion of the aviation sector in the European Union Emissions Trading Scheme (EU ETS) from January 1 2012 onwards represents a first step towards the implementation of emission reduction regulations based on an emissions trading scheme After the gradual extension of the scope of the EU ETS to new countries since 2005, the European Commission is now assimilating around 5,400 airlines that operate in Europe, two-thirds of which are non-European, into the EU ETS to join the energy generation and manufacturing industries. This European Union's decision assigns quantified CO 2 emission reduction targets to airlines: a 3% reduction in 2012 compared with average CO 2 emissions for the sector between 2004 and 2006, then a 5% reduction between 2013 and 2020. In the short term, the inclusion of the aviation sector in the EU ETS should have an impact on the scheme. Indeed, the aviation sector is expected to represent a new source of demand for allowances. Based on the assumption of an average 2.5% increase in annual emissions between 2012 and 2014, and then of an increase of 2% over the period between 2015 and 2020, airlines would create a shortfall of 382 MtCO 2 between 2012 and 2020. The limited use of Kyoto credits to help them comply offers a maximum import potential of almost 65 MtCO 2 between 2012 and 2020. This inclusion is a test of the EU's proactive policy, which involves encouraging other countries to define their own climate policy, without breaching international law,. The potential exemption of airline operators from emitter countries that introduce equivalent regulations would be a success for the European policy. For the time being, the reaction of some

  1. An adaptive time step scheme for a system of stochastic differential equations with multiple multiplicative noise: chemical Langevin equation, a proof of concept. (United States)

    Sotiropoulos, Vassilios; Kaznessis, Yiannis N


    Models involving stochastic differential equations (SDEs) play a prominent role in a wide range of applications where systems are not at the thermodynamic limit, for example, biological population dynamics. Therefore there is a need for numerical schemes that are capable of accurately and efficiently integrating systems of SDEs. In this work we introduce a variable size step algorithm and apply it to systems of stiff SDEs with multiple multiplicative noise. The algorithm is validated using a subclass of SDEs called chemical Langevin equations that appear in the description of dilute chemical kinetics models, with important applications mainly in biology. Three representative examples are used to test and report on the behavior of the proposed scheme. We demonstrate the advantages and disadvantages over fixed time step integration schemes of the proposed method, showing that the adaptive time step method is considerably more stable than fixed step methods with no excessive additional computational overhead.

  2. Efficient Visible-Light-Driven Z-Scheme Overall Water Splitting Using a MgTa2O(6-x)N(y)/TaON Heterostructure Photocatalyst for H2 Evolution. (United States)

    Chen, Shanshan; Qi, Yu; Hisatomi, Takashi; Ding, Qian; Asai, Tomohiro; Li, Zheng; Ma, Su Su Khine; Zhang, Fuxiang; Domen, Kazunari; Li, Can


    An (oxy)nitride-based heterostructure for powdered Z-scheme overall water splitting is presented. Compared with the single MgTa2O(6-x)N(y) or TaON photocatalyst, a MgTa2O(6-x)N(y)/TaON heterostructure fabricated by a simple one-pot nitridation route was demonstrated to effectively suppress the recombination of carriers by efficient spatial charge separation and decreased defect density. By employing Pt-loaded MgTa2O(6-x)N(y)/TaON as a H2-evolving photocatalyst, a Z-scheme overall water splitting system with an apparent quantum efficiency (AQE) of 6.8% at 420 nm was constructed (PtO(x)-WO3 and IO3(-)/I(-) pairs were used as an O2-evolving photocatalyst and a redox mediator, respectively), the activity of which is circa 7 or 360 times of that using Pt-TaON or Pt-MgTa2O(6-x)N)y) as a H2-evolving photocatalyst, respectively. To the best of our knowledge, this is the highest AQE among the powdered Z-scheme overall water splitting systems ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Embryo splitting


    Karl Illmensee; Mike Levanduski


    Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board appr...

  4. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee


    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  5. Malaysian qualification and certification scheme for NDT personnel: achievements and steps toward harmonization in accordance with ISO 9712

    International Nuclear Information System (INIS)

    Abd Nassir Ibrahim


    Development of skilled manpower in the field of NDT is one the most important component that must be given priority in order to ensure the sustainability of the technology in any country. In this respect ISO 9712 provides a guideline on the implementation of HRD program in the field of NDT that involved training, qualification and certification processes. ISO 9712 was developed with the hope that it provided a guideline for the establishment of qualification and certification scheme acceptable to the whole NDT community throughout the world. With this guideline, the process of qualification and certification of NDT personnel of different countries throughout the world will be harmonized. In Malaysia, such a scheme was established in 1985 with the National Vocational Training Council was appointed as the Certification Body. Although the scheme was developed based on ISO 97121 some local requirement were included which made the scheme somewhat deviated from the ISO practices. Twenty years after it was first implemented, the scheme was revised and amended to ensure that requirements of ISO 9712 are complied. The new scheme was revised and approved in April 2000 and was implemented for the first time in November radiography level 1 examination. (Author)

  6. Schemes of high-voltage pulse shapers on the basics of stepped transmission lines for high-current accelerators

    International Nuclear Information System (INIS)

    Gordeev, V.S.


    In the course of creating high current linear induction accelerators (LIA) there was developed a new type of multi-cascade high-voltage pulse generators designed of homogeneous transmission lines of equal electric length. The examples of different-type schemes of capacitive generator inductive generator and inductive-capacitate type generator are given

  7. Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime

    International Nuclear Information System (INIS)

    Zumbusch, G


    Numerical schemes for Einstein's vacuum equation are developed. Einstein's equation in harmonic gauge is second-order symmetric hyperbolic. It is discretized in four-dimensional spacetime by finite differences, finite elements and interior penalty discontinuous Galerkin methods, the latter being related to Regge calculus. The schemes are split into space and time and new time-stepping schemes for wave equations are derived. The methods are evaluated for linear and nonlinear test problems of the Apples-with-Apples collection.

  8. On the sensitivity of probe-corrected spherical near-field antenna measurements with high-order probes using double phi-step theta-scanning scheme against various measurement uncertainties

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund


    In this paper, the relatively recently introduced double phi-step theta-scanning scheme and the probe correction technique associated with it is examined against the traditional phi-scanning scheme and the first-order probe correction. The important result of this paper is that the double phi......-step theta-scanning scheme is shown to be clearly less sensitive to the probe misalignment errors compared to the phi-scanning scheme. The two methods show similar sensitivity to noise and channel balance error....

  9. A Computer Clone of Human Expert for Mobility Management Scheme (E-MMS): Step toward Green Transportation (United States)

    Resdiansyah; O. K Rahmat, R. A.; Ismail, A.


    Green transportation refers to a sustainable transport that gives the least impact in terms of social and environmental but at the same time is able to supply energy sources globally that includes non-motorized transport strategies deployment to promote healthy lifestyles, also known as Mobility Management Scheme (MMS). As construction of road infrastructure cannot help solve the problem of congestion, past research has shown that MMS is an effective measure to mitigate congestion and to achieve green transportation. MMS consists of different strategies and policies that subdivided into categories according to how they are able to influence travel behaviour. Appropriate selection of mobility strategies will ensure its effectiveness in mitigating congestion problems. Nevertheless, determining appropriate strategies requires human expert and depends on a number of success factors. This research has successfully developed a computer clone system based on human expert, called E-MMS. The process of knowledge acquisition for MMS strategies and the next following process to selection of strategy has been encode in a knowledge-based system using a shell expert system. The newly developed computer cloning system was successfully verified, validated and evaluated (VV&E) by comparing the result output with the real transportation expert recommendation in which the findings suggested Introduction

  10. Volume and dosimetric changes and initial clinical experience of a two-step adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer

    International Nuclear Information System (INIS)

    Nishi, Tamaki; Nishimura, Yasumasa; Shibata, Toru; Tamura, Masaya; Nishigaito, Naohiro; Okumura, Masahiko


    Purpose: The aim of this study was to show the benefit of a two-step intensity modulated radiotherapy (IMRT) method by examining geometric and dosimetric changes. Material and Methods: Twenty patients with pharyngeal cancers treated with two-step IMRT combined with chemotherapy were included. Treatment-planning CT was done twice before IMRT (CT-1) and at the third or fourth week of IMRT for boost IMRT (CT-2). Transferred plans recalculated initial plan on CT-2 were compared with the initial plans on CT-1. Dose parameters were calculated for a total dose of 70 Gy for each plan. Results: The volumes of primary tumors and parotid glands on CT-2 regressed significantly. Parotid glands shifted medially an average of 4.2 mm on CT-2. The mean doses of the parotid glands in the initial and transferred plans were 25.2 Gy and 30.5 Gy, respectively. D 2 (dose to 2% of the volume) doses of the spinal cord were 37.1 Gy and 39.2 Gy per 70 Gy, respectively. Of 15 patients in whom xerostomia scores could be evaluated 1–2 years after IMRT, no patient complained of grade 2 or more xerostomia. Conclusions: This two-step IMRT method as an adaptive RT scheme could adapt to changes in body contour, target volumes and risk organs during IMRT

  11. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. (United States)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin


    Accurately assessment of adipose tissue volume inside a human body plays an important role in predicting disease or cancer risk, diagnosis and prognosis. In order to overcome limitation of using only one subjectively selected CT image slice to estimate size of fat areas, this study aims to develop and test a computer-aided detection (CAD) scheme based on deep learning technique to automatically segment subcutaneous fat areas (SFA) and visceral fat areas (VFA) depicting on volumetric CT images. A retrospectively collected CT image dataset was divided into two independent training and testing groups. The proposed CAD framework consisted of two steps with two convolution neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. The first CNN was trained using 2,240 CT slices to select abdominal CT slices depicting SFA and VFA. The second CNN was trained with 84,000pixel patches and applied to the selected CT slices to identify fat-related pixels and assign them into SFA and VFA classes. Comparing to the manual CT slice selection and fat pixel segmentation results, the accuracy of CT slice selection using the Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using the Segmentation-CNN was 96.8%. This study demonstrated the feasibility of applying a new deep learning based CAD scheme to automatically recognize abdominal section of human body from CT scans and segment SFA and VFA from volumetric CT data with high accuracy or agreement with the manual segmentation results. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Alternating Direction Implicit (ADI) schemes for a PDE-based image osmosis model (United States)

    Calatroni, L.; Estatico, C.; Garibaldi, N.; Parisotto, S.


    We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.

  13. Split Sn-Cu Alloys on Carbon Nanofibers by One-step Heat Treatment for Long-Lifespan Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Shen, Zhen; Hu, Yi; Chen, Renzhong; He, Xia; Chen, Yanli; Shao, Hanfeng; Zhang, Xiangwu; Wu, Keshi


    Highlights: • Spilt Sn–Cu alloys and amorphous CNF anodes are introduced. • Sn–Cu–CNFs were prepared by one-step carbonization-alloying reactions. • The spilt Sn–Cu alloys consist of Cu 6 Sn 5 and Cu 3 Sn. • The coexistence of Cu 6 Sn 5 and Cu 3 Sn led to the enhanced cycle durability. - Abstract: To develop next-generation lithium-ion batteries (LIBs) with novel designs, reconsidering traditional materials with enhanced cycle stability and excellent rate performance is crucial. We herein report the successful preparation of three-dimensional (3D) composites in which spilt Sn–Cu alloys are uniformly dispersed in an amorphous carbon nanofiber matrix (Sn–Cu–CNFs) via one-step carbonization-alloying reactions. The spilt Sn–Cu alloys consist of active Cu 6 Sn 5 and inactive Cu 3 Sn, and are controllable by optimization of the carbonization-alloying reaction temperature. The 3D carbon nanofiber framework allowed the Sn–Cu–CNFs to be used directly as anodes in lithium-ion batteries without the requirement for polymer binders or electrical conductors. These composite electrodes exhibited a stable cyclability with a discharge capacity of 400 mA h g −1 at a high current density of 1.0 A g −1 after 1200 cycles, as well as an excellent rate capability, which could be attributed to the improved electrochemical properties of the Sn–Cu–CNFs provided by the buffering effect of Cu 3 Sn and the 3D carbon nanofiber framework. This one-step synthesis is expected to be widely applicable in the targeted structural design of traditional tin-based anode materials.

  14. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa


    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  15. Development of a one-step approach for the reconstruction of full thickness skin defects using minced split thickness skin grafts and biodegradable synthetic scaffolds as a dermal substitute. (United States)

    Sharma, Kavita; Bullock, Anthony; Ralston, David; MacNeil, Sheila


    Tissue engineering has progressed in delivering laboratory-expanded keratinocytes to the clinic; however the production of a suitable alternative to a skin graft, containing both epidermis and dermis still remains a challenge. To develop a one-step approach to wound reconstruction using finely minced split thickness skin and a biodegradable synthetic dermal substitute. This was explored in vitro using scalpel diced pieces of split thickness human skin combined with synthetic electrospun polylactide (PLA) scaffolds. To aid the spreading of tissue, 1% methylcellulose was used and platelet releasate was examined for its effect on cellular outgrowth from tissue explants. The outcome parameters included the metabolic activity of the migrating cells and their ability to produce collagen. Cell presence and migration on the scaffolds were assessed using fluorescence microscopy and SEM. Cells were identified as keratinocytes by immunostaining for pan-cytokeratin. Collagen deposition was quantified by using Sirius red. Skin cells migrated along the fibers of the scaffold and formed new collagen. 1% methylcellulose improved the tissue handling properties of the minced skin. Platelet releasate did not stimulate the migration of skin cells along scaffold fibers. Immunohistochemistry and SEM confirmed the presence of both epithelial and stromal cells in the new tissue. We describe the first key steps in the production of a skin substitute to be assembled in theatre eliminating the need for cell culture. Whilst further experiments are needed to develop this technique it can be a useful addition to armamentarium of the reconstructive surgeon. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  16. Split warhead simultaneous impact

    Directory of Open Access Journals (Sweden)

    Rahul Singh Dhari


    Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.

  17. Evaluation of Euler fluxes by a high-order CFD scheme: shock instability (United States)

    Tu, Guohua; Zhao, Xiaohui; Mao, Meiliang; Chen, Jianqiang; Deng, Xiaogang; Liu, Huayong


    The construction of Euler fluxes is an important step in shock-capturing/upwind schemes. It is well known that unsuitable fluxes are responsible for many shock anomalies, such as the carbuncle phenomenon. Three kinds of flux vector splittings (FVSs) as well as three kinds of flux difference splittings (FDSs) are evaluated for the shock instability by a fifth-order weighted compact nonlinear scheme. The three FVSs are Steger-Warming splitting, van Leer splitting and kinetic flux vector splitting (KFVS). The three FDSs are Roe's splitting, advection upstream splitting method (AUSM) type splitting and Harten-Lax-van Leer (HLL) type splitting. Numerical results indicate that FVSs and high dissipative FDSs undergo a relative lower risk on the shock instability than that of low dissipative FDSs. However, none of the fluxes evaluated in the present study can entirely avoid the shock instability. Generally, the shock instability may be caused by any of the following factors: low dissipation, high Mach number, unsuitable grid distribution, large grid aspect ratio, and the relative shock-internal flow state (or position) between upstream and downstream shock waves. It comes out that the most important factor is the relative shock-internal state. If the shock-internal state is closer to the downstream state, the computation is at higher susceptibility to the shock instability. Wall-normal grid distribution has a greater influence on the shock instability than wall-azimuthal grid distribution because wall-normal grids directly impact on the shock-internal position. High shock intensity poses a high risk on the shock instability, but its influence is not as much as the shock-internal state. Large grid aspect ratio is also a source of the shock instability. Some results of a second-order scheme and a first-order scheme are also given. The comparison between the high-order scheme and the two low-order schemes indicates that high-order schemes are at a higher risk of the shock

  18. Analysis of operator splitting errors for near-limit flame simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhen; Zhou, Hua [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Li, Shan [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China); Ren, Zhuyin, E-mail: [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China); Lu, Tianfeng [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269-3139 (United States); Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)


    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction–diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction of ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory

  19. Analysis of operator splitting errors for near-limit flame simulations (United States)

    Lu, Zhen; Zhou, Hua; Li, Shan; Ren, Zhuyin; Lu, Tianfeng; Law, Chung K.


    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction-diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction of ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory

  20. Timelike single-logarithm-resummed splitting functions

    International Nuclear Information System (INIS)

    Albino, S.; Bolzoni, P.; Kniehl, B.A.; Kotikov, A.V.; Joint Inst. of Nuclear Research, Moscow


    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e + e - annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  1. An Operator-Integration-Factor Splitting (OIFS) method for Incompressible Flows in Moving Domains

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Saumil S. [Argonne National Lab. (ANL), Argonne, IL (United States); Fischer, Paul F. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Urbana-Champaign, IL (United States); Min, Misun [Argonne National Lab. (ANL), Argonne, IL (United States); Tomboulides, Ananias G [Argonne National Lab. (ANL), Argonne, IL (United States); Aristotle Univ., Thessaloniki (Greece)


    In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an effcient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian-Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of the scheme.

  2. Explicit TE/TM scheme for particle beam simulations

    International Nuclear Information System (INIS)

    Dohlus, M.; Zagorodnov, I.


    In this paper we propose an explicit two-level conservative scheme based on a TE/TM like splitting of the field components in time. Its dispersion properties are adjusted to accelerator problems. It is simpler and faster than the implicit version. It does not have dispersion in the longitudinal direction and the dispersion properties in the transversal plane are improved. The explicit character of the new scheme allows a uniformly stable conformal method without iterations and the scheme can be parallelized easily. It assures energy and charge conservation. A version of this explicit scheme for rotationally symmetric structures is free from the progressive time step reducing for higher order azimuthal modes as it takes place for Yee's explicit method used in the most popular electrodynamics codes. (orig.)

  3. Water splitting by cooperative catalysis

    NARCIS (Netherlands)

    Hetterscheid, D.G.H.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.


    A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced

  4. Shear-Wave Splitting in a Critical Crust: the Next Step Biréfringence des ondes transversales dans les croûtes critiques : la prochaine étape

    Directory of Open Access Journals (Sweden)

    Crampin S.


    Full Text Available Arguably, shear-wave splitting displaying azimuthal anisotropy has not lived up to its initial promise of opening a new window for understanding cracks and stress in the crust. This paper reviews two recent related developments which appear to renew these initial hopes and provide new opportunities for monitoring, modelling, and even predicting, the (pre-fracturing deformation of fluid-saturated microcracked rock. A recently developed model of anisotropic poro-elasticity (APE for the stress-induced evolution of fluid-saturated microcracked rock matches a wide range of otherwise inexplicable or dissociated phenomena and appears to be a good first-order approximation to the evolution of fluid-saturated microcracked rock. Since the parameters that control small-scale (pre-fracturing deformation also control shear-wave splitting, it appears that the evolution of fluid-saturated microcracked rock can be directly monitored by shear-wave splitting, and the response to future changes predicted by APE. The success of APE-modelling and observations of shear-wave splitting imply that almost all rock is close to a state of fracture criticality associated with the percolation threshold, when shear-strength is lost and through-going fractures can propagate. This confirms other evidence for the self-organized criticality of in situ rock. The significance of this identification is that the small-scale physics that controls the whole phenomena can now be identified as the stress-induced manipulation of fluids around intergranular microcracks. This has the possibly unique advantage amongst critical systems that details of the pre-fracturing deformation and the approach to the criticality threshold (in this case the proximity to fracturing can be monitored at each locality by appropriate observations of shear-wave splitting. This paper reviews the these developments and discusses their implications and applications, particularly the implications of self

  5. Scheme of stepmotor control

    International Nuclear Information System (INIS)

    Grashilin, V.A.; Karyshev, Yu.Ya.


    A 6-cycle scheme of step motor is described. The block-diagram and the basic circuit of the step motor control are presented. The step motor control comprises a pulse shaper, electronic commutator and power amplifiers. The step motor supply from 6-cycle electronic commutator provides for higher reliability and accuracy than from 3-cycle commutator. The control of step motor work is realised by the program given by the external source of control signals. Time-dependent diagrams for step motor control are presented. The specifications of the step-motor is given

  6. Particulate photocatalysts for overall water splitting (United States)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari


    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  7. A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations

    International Nuclear Information System (INIS)

    Lu, T.; Neittaanmaeki, P.


    The traditional splitting-up method or fractional step method is suitable for sequential computing. This means that the computing of the present fractional step needs the value of the previous fractional steps. In this paper we propose a new splitting-up scheme for which the computing of the fractional steps is independent of each other and therefore can be computed by parallel processors. We have proved the convergence estimates of this scheme both for steady state and nonsteady state linear and nonlinear problems. To use finite element method to solve Navier-Stokes problems it is always difficult to handle the zero-divergent finite element spaces. Here, by using the splitting-up method we can use the usual finite element spaces to solve it. Moreover, the proposed method can solve the steady and nonsteady state Navier-Stokes problem by only solving some one dimensional linear systems. All these one dimensional systems are independent of each other, so they can be computed by parallel processors. (author). 20 refs

  8. Enhanced residual mean circulation during the evolution of split type ...

    Indian Academy of Sciences (India)


    keywords: split events, stratospheric sudden warming, residual mean circulation. 1 Introduction ... sudden warming. It is characterized by a rapid cooling of the polar cap tempera- ture (Kuroda, 2008). The competition between planetary waves and gravity waves to the residual .... any automated scheme. The split events ...

  9. Generalized finite-difference time-domain schemes for solving nonlinear Schrodinger equations (United States)

    Moxley, Frederick Ira, III

    The nonlinear Schrodinger equation (NLSE) is one of the most widely applicable equations in physical science, and characterizes nonlinear dispersive waves, optics, water waves, and the dynamics of molecules. The NLSE satisfies many mathematical conservation laws. Moreover, due to the nonlinearity, the NLSE often requires a numerical solution, which also satisfies the conservation laws. Some of the more popular numerical methods for solving the NLSE include the finite difference, finite element, and spectral methods such as the pseudospectral, split-step with Fourier transform, and integrating factor coupled with a Fourier transform. With regard to the finite difference and finite element methods, higher-order accurate and stable schemes are often required to solve a large-scale linear system. Conversely, spectral methods via Fourier transforms for space discretization coupled with Runge-Kutta methods for time stepping become too complex when applied to multidimensional problems. One of the most prevalent challenges in developing these numerical schemes is that they satisfy the conservation laws. The objective of this dissertation was to develop a higher-order accurate and simple finite difference scheme for solving the NLSE. First, the wave function was split into real and imaginary components and then substituted into the NLSE to obtain coupled equations. These components were then approximated using higher-order Taylor series expansions in time, where the derivatives in time were replaced by the derivatives in space via the coupled equations. Finally, the derivatives in space were approximated using higher-order accurate finite difference approximations. As such, an explicit and higher order accurate finite difference scheme for solving the NLSE was obtained. This scheme is called the explicit generalized finite-difference time-domain (explicit G-FDTD). For purposes of completeness, an implicit G-FDTD scheme for solving the NLSE was also developed. In this

  10. Computing with high-resolution upwind schemes for hyperbolic equations

    International Nuclear Information System (INIS)

    Chakravarthy, S.R.; Osher, S.; California Univ., Los Angeles)


    Computational aspects of modern high-resolution upwind finite-difference schemes for hyperbolic systems of conservation laws are examined. An operational unification is demonstrated for constructing a wide class of flux-difference-split and flux-split schemes based on the design principles underlying total variation diminishing (TVD) schemes. Consideration is also given to TVD scheme design by preprocessing, the extension of preprocessing and postprocessing approaches to general control volumes, the removal of expansion shocks and glitches, relaxation methods for implicit TVD schemes, and a new family of high-accuracy TVD schemes. 21 references

  11. Advances in sequential data assimilation and numerical weather forecasting: An Ensemble Transform Kalman-Bucy Filter, a study on clustering in deterministic ensemble square root filters, and a test of a new time stepping scheme in an atmospheric model (United States)

    Amezcua, Javier

    in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.

  12. Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation (United States)

    Baskaran, Arvind; Hu, Zhengzheng; Lowengrub, John S.; Wang, Cheng; Wise, Steven M.; Zhou, Peng


    In this paper we present two unconditionally energy stable finite difference schemes for the modified phase field crystal (MPFC) equation, a sixth-order nonlinear damped wave equation, of which the purely parabolic phase field crystal (PFC) model can be viewed as a special case. The first is a convex splitting scheme based on an appropriate decomposition of the discrete energy and is first order accurate in time and second order accurate in space. The second is a new, fully second-order scheme that also respects the convex splitting of the energy. Both schemes are nonlinear but may be formulated from the gradients of strictly convex, coercive functionals. Thus, both are uniquely solvable regardless of the time and space step sizes. The schemes are solved by efficient nonlinear multigrid methods. Numerical results are presented demonstrating the accuracy, energy stability, efficiency, and practical utility of the schemes. In particular, we show that our multigrid solvers enjoy optimal, or nearly optimal complexity in the solution of the nonlinear schemes.

  13. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar


    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  14. Split Cord Malformations

    Directory of Open Access Journals (Sweden)

    Yurdal Gezercan


    Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207

  15. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  16. Colour schemes

    DEFF Research Database (Denmark)

    van Leeuwen, Theo


    This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation.......This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation....

  17. The homogeneous property and flux splitting in gas dynamics (United States)

    Lerat, A.

    The homogeneous property of fluxes in gas dynamics is investigated, and its consequences concerning the flux splitting introduced by Steger and Warming (1981) are examined. It is shown that, for any hyperbolic system w sub t + f(w) sub x = 0 which satisfies the homogeneous property, the flux f(w) can be expressed in terms of the eigenvalues and eigenvectors of the matrix A(w) = df(w)/dw. This same result is also found to hold for the split fluxes f(+)(w) and f(-)(w). The problem of the validity of flux splitting is studied using these results. Three applications of flux splitting are then considered. The first application concerns uncentered schemes and particularly a precise analysis of their stability, the second is connected with a method for correcting the dispersive error of second-order accurate schemes, and the third deals with a nonreflective boundary condition.

  18. A structure-preserving split finite element discretization of the split 1D linear shallow-water equations (United States)

    Bauer, Werner; Behrens, Jörn


    We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger

  19. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You


    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  20. Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics (United States)

    Xu, Kun


    A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.

  1. A Power System Network Splitting Strategy Based on Contingency Analysis

    Directory of Open Access Journals (Sweden)

    Nur Zawani Saharuddin


    Full Text Available This paper proposes a network splitting strategy following critical line outages based on N-1 contingency analysis. Network splitting is the best option for certain critical outages when the tendency of severe cascading failures is very high. Network splitting is executed by splitting the power system network into feasible set of islands. Thus, it is essential to identify the optimal splitting solution (in terms of minimal power flow disruption that satisfies certain constraints. This paper determines the optimal splitting solution for each of the critical line outage using discrete evolutionary programming (DEP optimization technique assisted by heuristic initialization approach. Heuristic initialization provides the best initial cutsets which will guide the optimization technique to find the optimal splitting solution. Generation–load balance and transmission line overloading analysis are carried out in each island to ensure the steady state stability is achieved. Load shedding scheme is initiated if the power balance criterion is violated in any island to sustain the generation–load balance. The proposed technique is validated on the IEEE 118 bus system. Results show that the proposed approach produces an optimal splitting solution with lower power flow disruption during network splitting execution.

  2. Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media

    KAUST Repository

    El-Amin, Mohamed F.


    This paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem under consideration. The mathematical model consists of equations of pressure, saturation, heat, nanoparticles concentration in the water–phase, deposited nanoparticles concentration on the pore–walls, and entrapped nanoparticles concentration in the pore–throats. We propose a multiscale time splitting IMplicit Pressure Explicit Saturation–IMplicit Temperature Concentration (IMPES-IMTC) scheme to solve the system of governing equations. The time step-size adaptation is achieved by satisfying the stability Courant–Friedrichs–Lewy (CFL<1) condition. Moreover, numerical test of a highly heterogeneous porous medium is provided and the water saturation, the temperature, the nanoparticles concentration, the deposited nanoparticles concentration, and the permeability are presented in graphs.

  3. Aspects of Split Supersymmetry

    CERN Document Server

    Arkani-Hamed, N; Giudice, Gian Francesco; Romanino, A


    We explore some fundamental differences in the phenomenology, cosmology and model building of Split Supersymmetry compared with traditional low-scale supersymmetry. We show how the mass spectrum of Split Supersymmetry naturally emerges from theories where the dominant source of supersymmetry breaking preserves an $R$ symmetry, characterize the class of theories where the unavoidable $R$-breaking by gravity can be neglected, and point out a new possibility, where supersymmetry breaking is directly communicated at tree level to the visible sector via renormalizable interactions. Next, we discuss possible low-energy signals for Split Supersymmetry. The absence of new light scalars removes all the phenomenological difficulties of low-energy supersymmetry, associated with one-loop flavor and CP violating effects. However, the electric dipole moments of leptons and quarks do arise at two loops, and are automatically at the level of present limits with no need for small phases, making them accessible to several ongo...

  4. Tradable schemes

    NARCIS (Netherlands)

    J.K. Hoogland (Jiri); C.D.D. Neumann


    textabstractIn this article we present a new approach to the numerical valuation of derivative securities. The method is based on our previous work where we formulated the theory of pricing in terms of tradables. The basic idea is to fit a finite difference scheme to exact solutions of the pricing

  5. Split Malcev algebras

    Indian Academy of Sciences (India)

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form M = U + ∑ j I j with U a subspace of the abelian Malcev subalgebra and any I j a well described ideal of satisfying [ I j , I k ] = 0 if ≠ .

  6. Splitting of Comets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Splitting of Comets. Utpal Mukhopadhyay. General Article Volume 7 Issue 1 January 2002 pp 11-22. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords. Cometary ...

  7. Atom beams split by gentle persuasion

    International Nuclear Information System (INIS)

    Pool, R.


    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state

  8. Visible-light-induced water splitting on a chip

    NARCIS (Netherlands)

    Zoontjes, M.G.C.


    In this thesis, a photoelectrochemical water splitting cell concept is discussed, based on a combination of semiconductors comprising a Z-scheme. The motivation for the development of the cell is that in the future a transition will take place from a fossil fuel-based economy, to an economy based on

  9. On split Lie triple systems

    Indian Academy of Sciences (India)

    We also introduced in [1] techniques of connection of roots in the framework of split Lie algebras. In the present paper we extend these techniques to the framework of split Lie triple systems so as to obtain a generalization of the results in [1]. We consider the wide class of split Lie triple systems (which contains the class of.

  10. Low complexity split digital backpropagation for digital subcarrier-multiplexing optical transmissions. (United States)

    Xiao, Zhuopeng; Zhuge, Qunbi; Fu, Songnian; Zhang, Fangyuan; Qiu, Meng; Tang, Ming; Liu, Deming; Plant, David V


    A split digital backpropagation (DBP) scheme for digital subcarrier-multiplexing (SCM) transmissions, denoted as SSDBP, is proposed and studied in both experiments and simulations. The implementation of the SSDBP is split at the transmitter and the receiver, leveraging existing chromatic dispersion (CD) compensation blocks to reduce complexity. We experimentally demonstrate that the SSDBP, with a complexity reduction up to 50% compared to the original receiver based SCM-DBP, can achieve a nonlinear compensation Q 2 gain of 0.7-dB and 0.9-dB for 1920-km and 2880-km 34.94-GBd single channel PDM-16QAM transmissions, respectively. The maximum reach can be extended by 31.6% using 2-step SSDBP with only 27.5 complex multiplications per sample. Meanwhile, using 3-step SSDBP, the reach extension can be increased to 40.8%. The benefit of implementing part of SSDBP at the transmitter is experimentally validated with 0.1-dB Q 2 improvement at 4-dBm launch power. We also numerically investigate the impact of the digital-to-analog converter (DAC) resolution and fiber parameter uncertainties on the nonlinear compensation performance of the SSDBP.

  11. Opportunistic splitting for scheduling using a score-based approach

    KAUST Repository

    Rashid, Faraan


    We consider the problem of scheduling a user in a multi-user wireless environment in a distributed manner. The opportunistic splitting algorithm is applied to find the best group of users without reporting the channel state information to the centralized scheduler. The users find the best among themselves while requiring just a ternary feedback from the common receiver at the end of each mini-slot. The original splitting algorithm is modified to handle users with asymmetric channel conditions. We use a score-based approach with the splitting algorithm to introduce time and throughput fairness while exploiting the multi-user diversity of the network. Analytical and simulation results are given to show that the modified score-based splitting algorithm works well as a fair scheduling scheme with good spectral efficiency and reduced feedback. © 2012 IEEE.

  12. Next Step for STEP

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Claire [CTSI; Bremner, Brenda [CTSI


    The Siletz Tribal Energy Program (STEP), housed in the Tribe’s Planning Department, will hire a data entry coordinator to collect, enter, analyze and store all the current and future energy efficiency and renewable energy data pertaining to administrative structures the tribe owns and operates and for homes in which tribal members live. The proposed data entry coordinator will conduct an energy options analysis in collaboration with the rest of the Siletz Tribal Energy Program and Planning Department staff. An energy options analysis will result in a thorough understanding of tribal energy resources and consumption, if energy efficiency and conservation measures being implemented are having the desired effect, analysis of tribal energy loads (current and future energy consumption), and evaluation of local and commercial energy supply options. A literature search will also be conducted. In order to educate additional tribal members about renewable energy, we will send four tribal members to be trained to install and maintain solar panels, solar hot water heaters, wind turbines and/or micro-hydro.

  13. Comparison of SMAC, PISO, and iterative time-advancing schemes for unsteady flows (United States)

    Kim, Sang-Wook; Benson, Thomas J.


    Calculations of unsteady flows using a simplified marker and cell (SMAC), a pressure implicit splitting of operators (PSIO), and an iterative time advancing scheme (ITA) are presented. A partial differential equation for incremental pressure is used in each time advancing scheme. Example flows considered are a polar cavity flow starting from rest and self-sustained oscillating flows over a circular and a square cylinder. For a large time step size, the SMAC and ITA are more strongly convergent and yield more accurate results than PSIO. The SMAC is the most efficient computationally. For a small time step size, the three time advancing schemes yield equally accurate Strouhal numbers. The capability of each time advancing scheme to accurately resolve unsteady flows is attributed to the use of new pressure correction algorithm that can strongly enforce the conservation of mass. The numerical results show that the low frequency of the vortex shedding is caused by the growth time of each vortex shed into the wake region.

  14. Comparison of the SMAC, PISO, and iterative time-advancing schemes for unsteady flows (United States)

    Kim, S.-W.; Benson, T. J.


    Calculations of unsteady flows using a simplified marker and cell (SMAC), a pressure implicit splitting of operators (PISO), and an iterative time advancing scheme (ITA) are presented. A partial differential equation for incremental pressure is used in each time advancing scheme. Example flows considered are a polar cavity flow starting from rest and self-sustained oscillating flows over a circular and a square cylinder. For a large time step size, the SMAC and ITA are more strongly convergent and yield more accurate results than PISO. The SMAC is the most efficient computationally. For a small time step size, the three time advancing schemes yield equally accurate Strouhal numbers. The capability of each time advancing scheme to accurately resolve unsteady flows is attributed to the use of new pressure correction algorithm that can strongly enforce the conservation of mass. The numerical results show that the low frequency of the vortex shedding is caused by the growth time of each vortex shed into the wake region.

  15. A Hybrid DGTD-MNA Scheme for Analyzing Complex Electromagnetic Systems

    KAUST Repository

    Li, Peng


    A hybrid electromagnetics (EM)-circuit simulator for analyzing complex systems consisting of EM devices loaded with nonlinear multi-port lumped circuits is described. The proposed scheme splits the computational domain into two subsystems: EM and circuit subsystems, where field interactions are modeled using Maxwell and Kirchhoff equations, respectively. Maxwell equations are discretized using a discontinuous Galerkin time domain (DGTD) scheme while Kirchhoff equations are discretized using a modified nodal analysis (MNA)-based scheme. The coupling between the EM and circuit subsystems is realized at the lumped ports, where related EM fields and circuit voltages and currents are allowed to “interact’’ via numerical flux. To account for nonlinear lumped circuit elements, the standard Newton-Raphson method is applied at every time step. Additionally, a local time-stepping scheme is developed to improve the efficiency of the hybrid solver. Numerical examples consisting of EM systems loaded with single and multiport linear/nonlinear circuit networks are presented to demonstrate the accuracy, efficiency, and applicability of the proposed solver.

  16. An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium (United States)

    Palmer, Grant


    An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.

  17. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    Energy Technology Data Exchange (ETDEWEB)

    Finn, John M., E-mail: [T-5, Applied Mathematics and Plasma Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)


    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  18. Cures for the shock instability: Development of a shock-stable Roe scheme

    CERN Document Server

    Kim, S S; Rho, O H; Kyu-Hong, S


    This paper deals with the development of an improved Roe scheme that is free from the shock instability and still preserves the accuracy and efficiency of the original Roe's Flux Difference Splitting (FDS). Roe's FDS is known to possess good accuracy but to suffer from the shock instability, such as the carbuncle phenomenon. As the first step towards a shock-stable scheme, Roe's FDS is compared with the HLLE scheme to identify the source of the shock instability. Through a linear perturbation analysis on the odd-even decoupling problem, damping characteristic is examined and Mach number-based functions f and g are introduced to balance damping and feeding rates, which leads to a shock-stable Roe scheme. In order to satisfy the conservation of total enthalpy, which is crucial in predicting surface heat transfer rate in high-speed steady flows, an analysis of dissipation mechanism in the energy equation is carried out to find out the error source and to make the proposed scheme preserve total enthalpy. By modif...

  19. Central upwind scheme for a compressible two-phase flow model. (United States)

    Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul


    In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.

  20. Central upwind scheme for a compressible two-phase flow model.

    Directory of Open Access Journals (Sweden)

    Munshoor Ahmed

    Full Text Available In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.

  1. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco


    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  2. Scheme Program Documentation Tools

    DEFF Research Database (Denmark)

    Nørmark, Kurt


    This paper describes and discusses two different Scheme documentation tools. The first is SchemeDoc, which is intended for documentation of the interfaces of Scheme libraries (APIs). The second is the Scheme Elucidator, which is for internal documentation of Scheme programs. Although the tools...... as named functions in Scheme. Finally, the Scheme Elucidator is able to integrate SchemeDoc resources as part of an internal documentation resource....

  3. TVD schemes for open channel flow (United States)

    Delis, A. I.; Skeels, C. P.


    The Saint Venant equations for modelling flow in open channels are solved in this paper, using a variety of total variation diminishing (TVD) schemes. The performance of second- and third-order-accurate TVD schemes is investigated for the computation of free-surface flows, in predicting dam-breaks and extreme flow conditions created by the river bed topography. Convergence of the schemes is quantified by comparing error norms between subsequent iterations. Automatically calculated time steps and entropy corrections allow high CFL numbers and smooth transition between different conditions. In order to compare different approaches with TVD schemes, the most accurate of each type was chosen. All four schemes chosen proved acceptably accurate. However, there are important differences between the schemes in the occurrence of clipping, overshooting and oscillating behaviour and in the highest CFL numbers allowed by a scheme. These variations in behaviour stem from the different orders and inherent properties of the four schemes.

  4. Pharmaceutical counselling about different types of tablet-splitting methods based on the results of weighing tests and mechanical development of splitting devices. (United States)

    Somogyi, O; Meskó, A; Csorba, L; Szabó, P; Zelkó, R


    The division of tablets and adequate methods of splitting them are a complex problem in all sectors of health care. Although tablet-splitting is often required, this procedure can be difficult for patients. Four tablets were investigated with different external features (shape, score-line, film-coat and size). The influencing effect of these features and the splitting methods was investigated according to the precision and "weight loss" of splitting techniques. All four types of tablets were halved by four methods: by hand, with a kitchen knife, with an original manufactured splitting device and with a modified tablet splitter based on a self-developed mechanical model. The mechanical parameters (harness and friability) of the products were measured during the study. The "weight loss" and precision of splitting methods were determined and compared by statistical analysis. On the basis of the results, the external features (geometry), the mechanical parameters of tablets and the mechanical structure of splitting devices can influence the "weight loss" and precision of tablet-splitting. Accordingly, a new decision-making scheme was developed for the selection of splitting methods. In addition, the skills of patients and the specialties of therapy should be considered so that pharmaceutical counselling can be more effective regarding tablet-splitting. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A Novel Iris Segmentation Scheme

    Directory of Open Access Journals (Sweden)

    Chen-Chung Liu


    Full Text Available One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil, sclera, eyelashes, and eyebrows of a captured eye-image. This paper presents a novel iris segmentation scheme which utilizes the orientation matching transform to outline the outer and inner iris boundaries initially. It then employs Delogne-Kåsa circle fitting (instead of the traditional Hough transform to further eliminate the outlier points to extract a more precise iris area from an eye-image. In the extracted iris region, the proposed scheme further utilizes the differences in the intensity and positional characteristics of the iris, eyelid, and eyelashes to detect and delete these noises. The scheme is then applied on iris image database, UBIRIS.v1. The experimental results show that the presented scheme provides a more effective and efficient iris segmentation than other conventional methods.

  6. Multiscale time-splitting strategy for multiscale multiphysics processes of two-phase flow in fractured media

    KAUST Repository

    Sun, S.


    The temporal discretization scheme is one important ingredient of efficient simulator for two-phase flow in the fractured porous media. The application of single-scale temporal scheme is restricted by the rapid changes of the pressure and saturation in the fractured system with capillarity. In this paper, we propose a multi-scale time splitting strategy to simulate multi-scale multi-physics processes of two-phase flow in fractured porous media. We use the multi-scale time schemes for both the pressure and saturation equations; that is, a large time-step size is employed for the matrix domain, along with a small time-step size being applied in the fractures. The total time interval is partitioned into four temporal levels: the first level is used for the pressure in the entire domain, the second level matching rapid changes of the pressure in the fractures, the third level treating the response gap between the pressure and the saturation, and the fourth level applied for the saturation in the fractures. This method can reduce the computational cost arisen from the implicit solution of the pressure equation. Numerical examples are provided to demonstrate the efficiency of the proposed method.

  7. A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier-Stokes equations (United States)

    Piatkowski, Marian; Müthing, Steffen; Bastian, Peter


    In this paper we consider discontinuous Galerkin (DG) methods for the incompressible Navier-Stokes equations in the framework of projection methods. In particular we employ symmetric interior penalty DG methods within the second-order rotational incremental pressure correction scheme. The major focus of the paper is threefold: i) We propose a modified upwind scheme based on the Vijayasundaram numerical flux that has favourable properties in the context of DG. ii) We present a novel postprocessing technique in the Helmholtz projection step based on H (div) reconstruction of the pressure correction that is computed locally, is a projection in the discrete setting and ensures that the projected velocity satisfies the discrete continuity equation exactly. As a consequence it also provides local mass conservation of the projected velocity. iii) Numerical results demonstrate the properties of the scheme for different polynomial degrees applied to two-dimensional problems with known solution as well as large-scale three-dimensional problems. In particular we address second-order convergence in time of the splitting scheme as well as its long-time stability.

  8. Splitting and acquiring quantum information with perfect W states based on weak cross-Kerr nonlinearities (United States)

    Xiu, Xiao-Ming; Cui, Cen; Lin, Yan-Fang; Dong, Li; Dong, Hai-Kuan; Gao, Ya-Jun


    With the assistance of weak cross-Kerr nonlinear interaction between photons and coherent states via Kerr media, we propose a scheme to split and acquire quantum information with three-photon perfect W states. By means of a fault-tolerant circuit, the perfect W states are distributed to the participants without being affected by the collective noise. And on this basis we present a scheme for splitting and acquiring a single-photon state with the shared perfect W states. Together with the mature techniques of classical feed-forward, simple and available linear optical elements are applied in the procedure, afford enhancing the feasibility of the theoretical scheme proposed here.

  9. Resonance ionization scheme development for europium

    CERN Document Server

    Chrysalidis, K; Fedosseev, V N; Marsh, B A; Naubereit, P; Rothe, S; Seiffert, C; Kron, T; Wendt, K


    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  10. Resonance ionization scheme development for europium

    Energy Technology Data Exchange (ETDEWEB)

    Chrysalidis, K., E-mail:; Goodacre, T. Day; Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Naubereit, P. [Johannes Gutenberg-Universität, Institiut für Physik (Germany); Rothe, S.; Seiffert, C. [CERN (Switzerland); Kron, T.; Wendt, K. [Johannes Gutenberg-Universität, Institiut für Physik (Germany)


    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  11. Split SUSY Radiates Flavor

    CERN Document Server

    Baumgart, Matthew; Zorawski, Thomas


    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  12. How rivers split (United States)

    Seybold, H. F.; Yi, R.; Devauchelle, O.; Petroff, A.; Rothman, D.


    River networks have fascinated mankind for centuries. They exhibit a striking geometry with similar shapes repeating on all scales. Yet, how these networks form and create these geometries remains elusive. Recently we have shown that channels fed by subsurface flow split at a characteristic angle of 2π/5 unambiguously consistent with our field measurements in a seepage network on the Florida Panhandle (Fig.1). Our theory is based only on the simple hypothesis that the channels grow in the direction at which the ground water enters the spring and classical solutions of subsurface hydrology. Here we apply our analysis to the ramification of large drainage basins and extend our theory to include slope effects. Using high resolution stream networks from the National Hydrography Dataset (NHD), we scrutinize our hypothesis in arbitrary channel networks and investigate the branching angle dependence on Horton-Strahler order and the maturity of the streams.; High-resolution topographic map of valley networks incised by groundwater flow, located on the Florida Panhandle near Bristol, FL.

  13. Split supersymmetry radiates flavor (United States)

    Baumgart, Matthew; Stolarski, Daniel; Zorawski, Thomas


    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of mini-split supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and dark matter as a weakly interacting massive particle. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY-breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  14. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.


    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  15. Multiple Schemes for Mobile Payment Authentication Using QR Code and Visual Cryptography

    Directory of Open Access Journals (Sweden)

    Jianfeng Lu


    Full Text Available QR code (quick response code is used due to its beneficial properties, especially in the mobile payment field. However, there exists an inevitable risk in the transaction process. It is not easily perceived that the attacker tampers with or replaces the QR code that contains merchant’s beneficiary account. Thus, it is of great urgency to conduct authentication of QR code. In this study, we propose a novel mechanism based on visual cryptography scheme (VCS and aesthetic QR code, which contains three primary schemes for different concealment levels. The main steps of these schemes are as follows. Firstly, one original QR code is split into two shadows using VC multiple rules; secondly, the two shadows are embedded into the same background image, respectively, and the embedded results are fused with the same carrier QR code, respectively, using XOR mechanism of RS and QR code error correction mechanism. Finally, the two aesthetic QR codes can be stacked precisely and the original QR code is restored according to the defined VCS. Experiments corresponding to three proposed schemes are conducted and demonstrate the feasibility and security of the mobile payment authentication, the significant improvement of the concealment for the shadows in QR code, and the diversity of mobile payment authentication.

  16. Global Locator, Local Locator, and Identifier Split (GLI-Split

    Directory of Open Access Journals (Sweden)

    Michael Menth


    Full Text Available The locator/identifier split is an approach for a new addressing and routing architecture to make routing in the core of the Internet more scalable. Based on this principle, we developed the GLI-Split framework, which separates the functionality of current IP addresses into a stable identifier and two independent locators, one for routing in the Internet core and one for edge networks. This makes routing in the Internet more stable and provides more flexibility for edge networks. GLI-Split can be incrementally deployed and it is backward-compatible with the IPv6 Internet. We describe its architecture, compare it to other approaches, present its benefits, and finally present a proof-of-concept implementation of GLI-Split.

  17. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira


    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  18. An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium (United States)

    Eppard, W. M.; Grossman, B.


    We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.

  19. Additive Difference Schemes for Filtration Problems in Multilayer Systems

    CERN Document Server

    Ayrjan, E A; Pavlush, M; Fedorov, A V


    In the present paper difference schemes for solution of the plane filtration problem in multilayer systems are analyzed within the framework of difference schemes general theory. Attention is paid to splitting the schemes on physical processes of filtration along water-carring layers and vertical motion between layers. Some absolutely stable additive difference schemes are obtained the realization of which needs no software modification. Parallel algorithm connected with the solving of the filtration problem in every water-carring layer on a single processor is constructed. Program realization on the multi-processor system SPP2000 at JINR is discussed.

  20. Splitting the spectral flow and the SU(3) Casson invariant for spliced sums

    DEFF Research Database (Denmark)

    Boden, Hans U.; Himpel, Benjamin


    We show that the SU(3) Casson invariant for spliced sums along certain torus knots equals 16 times the product of their SU(2) Casson knot invariants. The key step is a splitting formula for su(n) spectral flow for closed 3–manifolds split along a torus....

  1. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab


    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  2. New Splitting Criteria for Decision Trees in Stationary Data Streams. (United States)

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek


    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type-$I$ splitting criteria guarantee, with high probability, the highest expected value of split measure. Type-$II$ criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  3. An intelligent robotics control scheme (United States)

    Orlando, N. E.


    The problem of robot control is viewed at the level of communicating high-level commands produced by intelligent algorithms to the actuator/sensor controllers. Four topics are considered in the design of an integrated control and communications scheme for an intelligent robotic system: the use of abstraction spaces, hierarchical versus heterarchical control, distributed processing, and the interleaving of the steps of plan creation and plan execution. A scheme is presented for an n-level distributed hierarchical/heterarchical control system that effectively interleaves intelligent planning, execution, and sensory feedback. A three-level version of this scheme has been successfully implemented in the Intelligent Systems Research Lab at NASA Langley Research Center. This implementation forms the control structure for DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), a testbed system integrating AI software with robotics hardware.

  4. Theoretical study and design of a splitting-recombining style homogenizer

    International Nuclear Information System (INIS)

    Park, Seong Hee; Ko, Do Kyeong; Kim, Hyun Su; Lim, Gwon; Cha, Byeong Hun; Kim, Cheol Jung


    For a flat-top laser beam with low low divergence, new scheme based on splitting, inverting, and recombining has been developed. The previous system developed in MicroLas for multimode Excimer lasers, however, cannot apply to a Gaussian beam. By adding functions of path compensation and adjustable beam overlapping, a new splitting-recombining style homogenizer can convert a Gaussian beam to a flat-top beam. Since this scheme is sensitive to accuracy of separation, ratio of beam splitting, and timing of recombination, input laser beam should be collimated to large size and a beam splitter with dielectric coating should be fabricated with high accuracy. We design and study theoretically the new splitting-recombining style homogenizer for a Gaussian laser beam, including the tolerance caused by misalignment or coating quality, the beam quality depending on the beam overlapping ratio, and the effects of longitudinal pulse profile and time delay between transmitted and re-combined beam.

  5. Traffic safety and step-by-step driving licence for young people

    DEFF Research Database (Denmark)

    Tønning, Charlotte; Agerholm, Niels


    Young novice car drivers are much more accident-prone than other drivers - up to 10 times that of their parents' generation. A central solution to improve the traffic safety for this group is implementation of a step-by-step driving licence. A number of countries have introduced a step...... presents a review of safety effects from step-by-step driving licence schemes. Most of the investigated schemes consist of a step-by-step driving licence with Step 1) various tests and education, Step 2) a period where driving is only allowed together with an experienced driver and Step 3) driving without...... companion is allowed but with various restrictions and, in some cases, additional driving education and tests. In general, a step-by-step driving licence improves traffic safety even though the young people are permitted to drive a car earlier on. The effects from driving with an experienced driver vary...

  6. How can conceptual schemes change teaching? (United States)

    Wickman, Per-Olof


    Lundqvist, Almqvist and Östman describe a teacher's manner of teaching and the possible consequences it may have for students' meaning making. In doing this the article examines a teacher's classroom practice by systematizing the teacher's transactions with the students in terms of certain conceptual schemes, namely the epistemological moves, educational philosophies and the selective traditions of this practice. In connection to their study one may ask how conceptual schemes could change teaching. This article examines how the relationship of the conceptual schemes produced by educational researchers to educational praxis has developed from the middle of the last century to today. The relationship is described as having been transformed in three steps: (1) teacher deficit and social engineering, where conceptual schemes are little acknowledged, (2) reflecting practitioners, where conceptual schemes are mangled through teacher practice to aid the choices of already knowledgeable teachers, and (3) the mangling of the conceptual schemes by researchers through practice with the purpose of revising theory.

  7. Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat. (United States)

    Kuczynski, Victoria; Telonio, Alessandro; Thibaudier, Yann; Hurteau, Marie-France; Dambreville, Charline; Desrochers, Etienne; Doelman, Adam; Ross, Declan; Frigon, Alain


    During split-belt locomotion in humans where one leg steps faster than the other, the symmetry of step lengths and double support periods of the slow and fast legs is gradually restored. When returning to tied-belt locomotion, there is an after-effect, with a reversal in the asymmetry observed in the early split-belt period, indicating that the new pattern was stored within the central nervous system. In this study, we investigated if intact and spinal-transected cats show a similar pattern of adaptation to split-belt locomotion by measuring kinematic variables and electromyography before, during and after 10 min of split-belt locomotion. The results show that cats do not adapt to prolonged split-belt locomotion. Our results suggest an important physiological difference in how cats and humans respond to prolonged asymmetric locomotion. In humans, gait adapts to prolonged walking on a split-belt treadmill, where one leg steps faster than the other, by gradually restoring the symmetry of interlimb kinematic variables, such as double support periods and step lengths, and by reducing muscle activity (EMG, electromyography). The adaptation is also characterized by reversing the asymmetry of interlimb variables observed during the early split-belt period when returning to tied-belt locomotion, termed an after-effect. To determine if cats adapt to prolonged split-belt locomotion and to assess if spinal locomotor circuits participate in the adaptation, we measured interlimb variables and EMG in intact and spinal-transected cats before, during and after 10 min of split-belt locomotion. In spinal cats, only the hindlimbs performed stepping with the forelimbs stationary. In intact and spinal cats, step lengths and double support periods were, on average, symmetric, during tied-belt locomotion. They became asymmetric during split-belt locomotion and remained asymmetric throughout the split-belt period. Upon returning to tied-belt locomotion, symmetry was immediately restored

  8. Finite-volume component-wise TVD schemes for 2D shallow water equations (United States)

    Lin, Gwo-Fong; Lai, Jihn-Sung; Guo, Wen-Dar

    Four finite-volume component-wise total variation diminishing (TVD) schemes are proposed for solving the two-dimensional shallow water equations. In the framework of the finite volume method, a proposed algorithm using the flux-splitting technique is established by modifying the MacCormack scheme to preserve second-order accuracy in both space and time. Based on this algorithm, four component-wise TVD schemes, including the Liou-Steffen splitting (LSS), van Leer splitting, Steger-Warming splitting and local Lax-Friedrichs splitting schemes, are developed. These schemes are verified through the simulations of the 1D dam-break, the oblique hydraulic jump, the partial dam-break and circular dam-break problems. It is demonstrated that the proposed schemes are accurate, efficient and robust to capture the discontinuous shock waves without any spurious oscillations in the complex flow domains with dry-bed situation, bottom slope or friction. The simulated results also show that the LSS scheme has the best numerical accuracy among the schemes tested.

  9. Diffeomorphic image registration with automatic time-step adjustment

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru; Klein, S.; Sommer, Stefan Horst


    In this paper, we propose an automated Euler's time-step adjustment scheme for diffeomorphic image registration using stationary velocity fields (SVFs). The proposed variational problem aims at bounding the inverse consistency error by adaptively adjusting the number of Euler's step required to r...... accuracy as a fixed time-step scheme however at a much less computational cost....

  10. Semiconductor Nanowires for Photoelectrochemical Water Splitting (United States)

    Hwang, Yun Jeong

    the higher surface potential on the n-TiO 2 (photoanode) side relative to the p-Si (photocathode) side under UV illumination as the result of hole accumulation on the TiO2 side and electron accumulation on the Si side which are desirable charge separation for solar water splitting. In chapter five, TiO2 is replaced with single phase InGaN nanowire in a dual bandgap photoanode to show the potential for solar water splitting with high surface area Si/InGaN hierarchical nanowire arrays and InGaN as a possible candidate for visible light absorber. An enhancement of 5 times in photocurrent was observed when the surface area increased from InGaN nanowires on planar Si to InGaN nanowires on Si wires. Chapter six demonstrates a self-driven water splitting device with the p/n PEC cell which consists of a photocathode and a photoanode. The operating photocurrent (Iop) with the p/n PEC cell is enhanced when n-Si/p-Si photovoltage cell was embedded under an n-TiO2 photoanode by utilizing the photovoltage generated by a Si PV cell. Also, the Si nanowire photocathode surface is modified with Pt and TiO2 to increase hydrogen reducing activity and stability which enhances Iop of the p/n PEC cell as well. When Si/TiO 2 nanowire photocathode is linked with n-Si/p-Si photovoltage cell embedded TiO2 nanowire photoanode, the p/n PEC cell shows water splitting without bias voltage confirmed with 2:1 ratio of hydrogen:oxygen gas evolution and a 92 % Faradic efficiency. These studies represent a significant step towards realizing the benefit of the advanced 1D nanowire configuration for efficient solar to energy conversion.

  11. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. (United States)

    Li, Chao-Feng; Li, Xian-Hua; Li, Qiu-Li; Guo, Jing-Hui; Li, Xiang-Hui; Yang, Yue-Heng


    Thermal ionization mass spectrometry (TIMS) offers the excellent precision and accuracy of the Sr and Nd isotopic ratio analysis for geological samples, but this method is labour intensive, expensive and time-consuming. In this study, a new analytical protocol by TIMS is presented that aims at improving analytical efficiency and cutting down experimental cost. Using the single-step cation exchange resin technique, mixed Sr and rare earth elements (REEs) fractions were separated from matrix and evaporated to dryness. Afterwards, mixed Sr+REEs fractions were dissolved and loaded onto the same Re filament using 1 μL of 2 M HCl. Then, Sr and Nd were sequentially measured without venting using TIMS. In contrast to conventional TIMS methods, the merits of this analytical protocol are its cost- and time-saving adaptations. The applicability of our method is evaluated by replicated measurements of (87)Sr/(86)Sr and (143)Nd/(144)Nd for nine international silicate rock reference materials, spanning a wide range of bulk compositions. The typical internal precision in this study is ca. 0.001% (RSE) for (87)Sr/(86)Sr and (143)Nd/(144)Nd; the analytical results obtained for these standard rocks show a good agreement with reported values, indicating the effectiveness of the proposed method. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Single-step digital backpropagation for nonlinearity mitigation

    DEFF Research Database (Denmark)

    Secondini, Marco; Rommel, Simon; Meloni, Gianluca


    Nonlinearity mitigation based on the enhanced split-step Fourier method (ESSFM) for the implementation of low-complexity digital backpropagation (DBP) is investigated and experimentally demonstrated. After reviewing the main computational aspects of DBP and of the conventional split-step Fourier...... is experimentally demonstrated by using a single-step DBP based on the ESSFM. The proposed DBP implementation requires only a single step of the ESSFM algorithm to achieve a transmission distance of 3200 km over a dispersion-unmanaged link. In comparison, a conventional DBP implementation requires 20 steps...

  13. Splitting strings on integrable backgrounds

    International Nuclear Information System (INIS)

    Vicedo, Benoit


    We use integrability to construct the general classical splitting string solution on R x S 3 . Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet σ-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL 2 (C). (orig.)

  14. Novel efficient hybrid‐DEM collision integration scheme


    Buist, Kay A.; Seelen, Luuk J.H.; Deen, Niels G.; Padding, Johan T.; Kuipers, Hans J.A.M.


    A hybrid collision integration scheme is introduced, benefiting from the efficient handling of binary collisions in the hard sphere scheme and the robust time scaling of the soft sphere scheme. In typical dynamic dense granular flow, simulated with the soft sphere scheme, the amount of collisions involving more than two particles are limited, and necessarily so because of loss of energy decay otherwise. Because most collisions are binary, these collisions can be handled within one time step w...

  15. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Directory of Open Access Journals (Sweden)

    Alessandro Moro


    Full Text Available The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  16. Operator splitting method for simulation of dynamic flows in natural gas pipeline networks (United States)

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; Chertkov, Michael


    We develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme is unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.

  17. Relaxation schemes for the shallow water equations (United States)

    Delis, A. I.; Katsaounis, Th.


    We present a class of first and second order in space and time relaxation schemes for the shallow water (SW) equations. A new approach of incorporating the geometrical source term in the relaxation model is also presented. The schemes are based on classical relaxation models combined with Runge-Kutta time stepping mechanisms. Numerical results are presented for several benchmark test problems with or without the source term present.

  18. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W ...

  19. VBSCan Split 2017 Workshop Summary

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Christoph Falk; et al.


    This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.

  20. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    journal of. November 2006 physics pp. 793–802. Split supersymmetry in brane models. IGNATIOS ANTONIADIS∗. Department of Physics, CERN-Theory Division, 1211 Geneva 23, Switzerland. E-mail: Ignatios. ... that LEP data favor the unification of the three SM gauge couplings are smoking guns for the presence of new ...

  1. On split Lie triple systems

    Indian Academy of Sciences (India)

    Lie triple system; system of roots; root space; split Lie algebra; structure theory. 1. Introduction and previous definitions. Throughout this paper, Lie triple systems T are considered of arbitrary dimension and over an arbitrary field K. It is worth to mention that, unless otherwise stated, there is not any restriction on dim Tα or {k ...

  2. On split Lie triple systems

    Indian Academy of Sciences (India)

    The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems. Author Affiliations. Antonio J Calderón Martín1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 25 January 2008. Proceedings – Mathematical Sciences.

  3. Two-step rational cononical function in the numerical integration of ...

    African Journals Online (AJOL)

    By collocation, an explicit nonlinerar two-step scheme is obtained. Numerical examples are provided to demonstrate the performance of the scheme. The results obtained were found to be quite comparable with those by existing schemes. Key Words: Collocation two-step scheme. [Global Jnl Mathematical Sci Vol.2(1) 2003: ...

  4. SplitRacer - a semi-automatic tool for the analysis and interpretation of teleseismic shear-wave splitting (United States)

    Reiss, Miriam Christina; Rümpker, Georg


    We present a semi-automatic, graphical user interface tool for the analysis and interpretation of teleseismic shear-wave splitting in MATLAB. Shear wave splitting analysis is a standard tool to infer seismic anisotropy, which is often interpreted as due to lattice-preferred orientation of e.g. mantle minerals or shape-preferred orientation caused by cracks or alternating layers in the lithosphere and hence provides a direct link to the earth's kinematic processes. The increasing number of permanent stations and temporary experiments result in comprehensive studies of seismic anisotropy world-wide. Their successive comparison with a growing number of global models of mantle flow further advances our understanding the earth's interior. However, increasingly large data sets pose the inevitable question as to how to process them. Well-established routines and programs are accurate but often slow and impractical for analyzing a large amount of data. Additionally, shear wave splitting results are seldom evaluated using the same quality criteria which complicates a straight-forward comparison. SplitRacer consists of several processing steps: i) download of data per FDSNWS, ii) direct reading of miniSEED-files and an initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold. iii) an analysis of the particle motion of selected phases and successive correction of the sensor miss-alignment based on the long-axis of the particle motion. iv) splitting analysis of selected events: seismograms are first rotated into radial and transverse components, then the energy-minimization method is applied, which provides the polarization and delay time of the phase. To estimate errors, the analysis is done for different randomly-chosen time windows. v) joint-splitting analysis for all events for one station, where the energy content of all phases is inverted simultaneously. This allows to decrease the influence of noise and to increase robustness of the measurement

  5. A general hybrid radiation transport scheme for star formation simulations on an adaptive grid

    Energy Technology Data Exchange (ETDEWEB)

    Klassen, Mikhail; Pudritz, Ralph E. [Department of Physics and Astronomy, McMaster University 1280 Main Street W, Hamilton, ON L8S 4M1 (Canada); Kuiper, Rolf [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany); Peters, Thomas [Institut für Computergestützte Wissenschaften, Universität Zürich Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Banerjee, Robi; Buntemeyer, Lars, E-mail: [Hamburger Sternwarte, Universität Hamburg Gojenbergsweg 112, D-21029 Hamburg (Germany)


    Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.

  6. Electrocatalytic water splitting to produce fuel hydrogen (United States)

    Yuan, Hao

    into TiO2 to build a composite photoanode. Results show that the composite photoanode has good activity under ultraviolet (UV) illumination, and that its catalytic performance can be significantly improved by enabling light collection over a wider range of wavelengths. We have also proposed a scheme for a solar-driven water splitting device that integrates both electrocatalysts with solar energy collection and intensification, and is capable of minimizing mass transfer resistance. The dissertation concludes with suggested future work to further explore the MnOx and Ni/Ni(OH) 2 electrocatalysts.

  7. Splitting and non splitting are pollution models photochemical reactions in the urban areas of greater Tehran area

    International Nuclear Information System (INIS)

    Heidarinasab, A.; Dabir, B.; Sahimi, M.; Badii, Kh.


    During the past years, one of the most important problems has been air pollution in urban areas. In this regards, ozone, as one of the major products of photochemical reactions, has great importance. The term 'photochemical' is applied to a number of secondary pollutants that appear as a result of sun-related reactions, ozone being the most important one. So far various models have been suggested to predict these pollutants. In this paper, we developed the model that has been introduced by Dabir, et al. [4]. In this model more than 48 chemical species and 114 chemical reactions are involved. The result of this development, showed good to excellent agreement across the region for compounds such as O 3 , NO, NO 2 , CO, and SO 2 with regard to VOC and NMHC. The results of the simulation were compared with previous work [4] and the effects of increasing the number of components and reactions were evaluated. The results of the operator splitting method were compared with non splitting solving method. The result showed that splitting method with one-tenth time step collapsed with non splitting method (Crank-Nicolson, under-relaxation iteration method without splitting of the equation terms). Then we developed one dimensional model to 3-D and were compared with experimental data

  8. Using Protection Layers for a 2-Photon Water Splitting Device

    DEFF Research Database (Denmark)

    Seger, Brian; Mei, Bastian Timo; Frydendal, Rasmus


    The 2-photon tandem device for photocatalytic water splitting has been theoretically shown to provide a higher efficiency than a single photon device(1). This increased efficiency can be achieved by having one material optimized to absorb high energy photons (large bandgap) and another material...... optimized to absorb low energy photons (small bandgap). To a large degree this approach has been hindered by corrosion issues. In this talk I will first discuss how our computational screening of 2,400 materials showed that very few materials can efficiently absorb light without corroding in water splitting...... conditions.(2) I will follow this up by discussing how protection layers bypass the corrosion issue by creating a buffer layer.(3) Finally I will show how we integrated a photocatalyst/protection layer/(co-catalyst) scheme to produce highly efficient H2 evolution photocathodes and O2 evolution photoanodes.(3...

  9. A novel modulation scheme for noise reduction in analog fiber optic links

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; van Etten, Wim; Megret, P.; Wuilpart, M.; Bette, S.; Staquet, N.


    A novel balanced modulation and detection scheme for analog fiber optic links is proposed to overcome the limitations in signal-to-noise ratio (SNR) and dynamic range (DR).In this scheme, the modulating signal is split into positive and negative halves and applied to a pair of laser diodes. Both

  10. Stability of split Stirling refrigerators

    International Nuclear Information System (INIS)

    Waele, A T A M de; Liang, W


    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold finger are connected by a flexible tube. The displacer in the cold head is suspended by a spring. Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility of spontaneous mechanical oscillations if a large temperature gradient develops in the cold finger, e.g. during or after cool down. These oscillations would be superimposed on the pressure oscillations of the compressor and could ruin the cooler performance.

  11. High-order scheme for the source-sink term in a one-dimensional water temperature model.

    Directory of Open Access Journals (Sweden)

    Zheng Jing

    Full Text Available The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China. The modeling results were in an excellent agreement with measured data.

  12. An acoustic-convective splitting-based approach for the Kapila two-phase flow model

    Energy Technology Data Exchange (ETDEWEB)

    Eikelder, M.F.P. ten, E-mail: [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)


    In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.

  13. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili


    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  14. 7 CFR 51.2002 - Split shell. (United States)


    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...

  15. Simple and fast method for step size determination in computations of signal propagation through nonlinear fibres

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen


    Presents a simple and fast method for determination of the step size that exactly leads to a prescribed accuracy when signal propagation through nonlinear optical fibres is computed using the split-step Fourier method.......Presents a simple and fast method for determination of the step size that exactly leads to a prescribed accuracy when signal propagation through nonlinear optical fibres is computed using the split-step Fourier method....

  16. Performance evaluation of multi-step paging scheme in mobile ...

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 22, No 2 (2015) >. Log in or Register to get access to full text downloads.

  17. The Mawala irrigation scheme


    de Bont, Chris


    This booklet was written to share research results with farmers and practitioners in Tanzania. It gives a summary of the empirical material collected during three months of field work in the Mawala irrigation scheme (Kilimanjaro Region), and includes maps, tables and photos. It describes the history of the irrigation scheme, as well current irrigation and farming practices. It especially focuses on the different kinds of infrastructural improvement in the scheme (by farmers and the government...

  18. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model. (United States)

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong


    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  19. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.


    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  20. Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH (United States)

    Liu, W. T.; Sun, P. N.; Ming, F. R.; Zhang, A. M.


    Smoothed particle hydrodynamics (SPH) method with numerical diffusive terms shows satisfactory stability and accuracy in some violent fluid-solid interaction problems. However, in most simulations, uniform particle distributions are used and the multi-resolution, which can obviously improve the local accuracy and the overall computational efficiency, has seldom been applied. In this paper, a dynamic particle splitting method is applied and it allows for the simulation of both hydrostatic and hydrodynamic problems. The splitting algorithm is that, when a coarse (mother) particle enters the splitting region, it will be split into four daughter particles, which inherit the physical parameters of the mother particle. In the particle splitting process, conservations of mass, momentum and energy are ensured. Based on the error analysis, the splitting technique is designed to allow the optimal accuracy at the interface between the coarse and refined particles and this is particularly important in the simulation of hydrostatic cases. Finally, the scheme is validated by five basic cases, which demonstrate that the present SPH model with a particle splitting technique is of high accuracy and efficiency and is capable for the simulation of a wide range of hydrodynamic problems.

  1. Succesful labelling schemes

    DEFF Research Database (Denmark)

    Juhl, Hans Jørn; Stacey, Julia


    to carry out a campaign targeted at this segment. The awareness percentage is already 92 % and 67% of the respondents believe they know the meaning of the scheme. But it stands to reason to study whether the respondents actually know what the labelling scheme stands for or if they just think they do...

  2. Parallel BLAST on split databases. (United States)

    Mathog, David R


    BLAST programs often run on large SMP machines where multiple threads can work simultaneously and there is enough memory to cache the databases between program runs. A group of programs is described which allows comparable performance to be achieved with a Beowulf configuration in which no node has enough memory to cache a database but the cluster as an aggregate does. To achieve this result, databases are split into equal sized pieces and stored locally on each node. Each query is run on all nodes in parallel and the resultant BLAST output files from all nodes merged to yield the final output. Source code is available from

  3. Needed Computations Shortcutting Needed Steps

    DEFF Research Database (Denmark)

    Antoy, Sergio; Johannsen, Jacob; Libby, Steven

    We define a compilation scheme for a constructor-based strongly-sequential graph rewriting system which shortcuts some needed steps. The result of this compilation is another constructor-based graph rewriting system that is normalizing for the original system when using an innermost strategy. We...... then modify the resulting rewrite sytem in a way that avoids totally or partially the construction of the contracta of some needed steps of a computation. The resulting rewrite system can be easily implemented by eager functions in a variety of programming languages. When computing normal forms in this way...

  4. Adaptive protection scheme

    Directory of Open Access Journals (Sweden)

    R. Sitharthan


    Full Text Available This paper aims at modelling an electronically coupled distributed energy resource with an adaptive protection scheme. The electronically coupled distributed energy resource is a microgrid framework formed by coupling the renewable energy source electronically. Further, the proposed adaptive protection scheme provides a suitable protection to the microgrid for various fault conditions irrespective of the operating mode of the microgrid: namely, grid connected mode and islanded mode. The outstanding aspect of the developed adaptive protection scheme is that it monitors the microgrid and instantly updates relay fault current according to the variations that occur in the system. The proposed adaptive protection scheme also employs auto reclosures, through which the proposed adaptive protection scheme recovers faster from the fault and thereby increases the consistency of the microgrid. The effectiveness of the proposed adaptive protection is studied through the time domain simulations carried out in the PSCAD⧹EMTDC software environment.

  5. Numerical modeling of isothermal compositional grading by convex splitting methods

    KAUST Repository

    Li, Yiteng


    In this paper, an isothermal compositional grading process is simulated based on convex splitting methods with the Peng-Robinson equation of state. We first present a new form of gravity/chemical equilibrium condition by minimizing the total energy which consists of Helmholtz free energy and gravitational potential energy, and incorporating Lagrange multipliers for mass conservation. The time-independent equilibrium equations are transformed into a system of transient equations as our solution strategy. It is proved our time-marching scheme is unconditionally energy stable by the semi-implicit convex splitting method in which the convex part of Helmholtz free energy and its derivative are treated implicitly and the concave parts are treated explicitly. With relaxation factor controlling Newton iteration, our method is able to converge to a solution with satisfactory accuracy if a good initial estimate of mole compositions is provided. More importantly, it helps us automatically split the unstable single phase into two phases, determine the existence of gas-oil contact (GOC) and locate its position if GOC does exist. A number of numerical examples are presented to show the performance of our method.

  6. A detailed analysis of inviscid flux splitting algorithms for real gases with equilibrium or finite-rate chemistry (United States)

    Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram


    The extension of the known flux-vector and flux-difference splittings to real gases via rigorous mathematical procedures is demonstrated. Formulations of both equilibrium and finite-rate chemistry for real-gas flows are described, with emphasis on derivations of finite-rate chemistry. Split-flux formulas from other authors are examined. A second-order upwind-based TVD scheme is adopted to eliminate oscillations and to obtain a sharp representation of discontinuities.

  7. SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting (United States)

    Reiss, M. C.; Rumpker, G.


    We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by

  8. Protein subcellular localization assays using split fluorescent proteins (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM


    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  9. Threshold Signature Schemes Application

    Directory of Open Access Journals (Sweden)

    Anastasiya Victorovna Beresneva


    Full Text Available This work is devoted to an investigation of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, elliptic curves and bilinear pairings were examined. Different methods of generation and verification of threshold signatures were explored, the availability of practical usage of threshold schemes in mobile agents, Internet banking and e-currency was shown. The topics of further investigation were given and it could reduce a level of counterfeit electronic documents signed by a group of users.

  10. PI controller scheme for charge balance in implantable electrical ...

    Indian Academy of Sciences (India)

    parator and an FIR filter, and the scheme was validated in simulation by studying the step responses of the system. In a similar scheme in [11], a P-I controller was used ...... [6] Sooksood K, Stieglitz T and Ortmanns M 2009 An experimen- tal study on passive charge balancing. Adv. Radio Sci. 7(15):. 197–200. [7] Lee E K F ...

  11. Comparison of vortex-element and finite-volume simulations of low Reynolds number flow over a confined backward-facing step

    International Nuclear Information System (INIS)

    Barber, R.W.; Fonty, A.


    This paper describes a novel vortex element method for simulating incompressible laminar flow over a two-dimensional backward-facing step. The model employs an operator-splitting technique to compute the evolution of the vorticity field downstream of abrupt changes in flow geometry. During the advective stage of the computation, a semi-Lagrangian scheme is used to update the positions of the vortex elements, whilst an analytical diffusion algorithm employing Oseen vortices is implemented during the diffusive time step. Redistributing the vorticity analytically instead of using the more traditional random-walk method enables the numerical model to simulate steady flows directly and avoids the need to filter the results to remove the oscillations created by the random-walk procedure. Model validation has been achieved by comparing the length of the recirculating eddy behind a confined backward-facing step against data from experimental and alternative numerical investigations. In addition, results from the vortex element method are compared against predictions obtained using the commercial finite-volume computational fluid dynamics code, CFD-ACE+. The results show that the vortex element scheme marginally overpredicts the length of the downstream recirculating eddy, implying that the method may be associated with an artificial reduction in the vorticity diffusion rate. Nevertheless the results demonstrate that the proposed vortex redistribution scheme provides a practical alternative to traditional random-walk discrete vortex algorithms. (author)

  12. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tongsong, E-mail: [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)


    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  13. Deitmar schemes, graphs and zeta functions (United States)

    Mérida-Angulo, Manuel; Thas, Koen


    In Thas (2014) it was explained how one can naturally associate a Deitmar scheme (which is a scheme defined over the field with one element, F1) to a so-called "loose graph" (which is a generalization of a graph). Several properties of the Deitmar scheme can be proven easily from the combinatorics of the (loose) graph, and known realizations of objects over F1 such as combinatorial F1-projective and F1-affine spaces exactly depict the loose graph which corresponds to the associated Deitmar scheme. In this paper, we first modify the construction of loc. cit., and show that Deitmar schemes which are defined by finite trees (with possible end points) are "defined over F1" in Kurokawa's sense; we then derive a precise formula for the Kurokawa zeta function for such schemes (and so also for the counting polynomial of all associated Fq-schemes). As a corollary, we find a zeta function for all such trees which contains information such as the number of inner points and the spectrum of degrees, and which is thus very different than Ihara's zeta function (which is trivial in this case). Using a process called "surgery," we show that one can determine the zeta function of a general loose graph and its associated {Deitmar, Grothendieck}-schemes in a number of steps, eventually reducing the calculation essentially to trees. We study a number of classes of examples of loose graphs, and introduce the Grothendieck ring ofF1-schemes along the way in order to perform the calculations. Finally, we include a computer program for performing more tedious calculations, and compare the new zeta function to Ihara's zeta function for graphs in a number of examples.

  14. Asymptotic preserving and all-regime Lagrange-Projection like numerical schemes: application to two-phase flows in low mach regime

    International Nuclear Information System (INIS)

    Girardin, Mathieu


    Two-phase flows in Pressurized Water Reactors belong to a wide range of Mach number flows. Computing accurate approximate solutions of those flows may be challenging from a numerical point of view as classical finite volume methods are too diffusive in the low Mach regime. In this thesis, we are interested in designing and studying some robust numerical schemes that are stable for large time steps and accurate even on coarse meshes for a wide range of flow regimes. An important feature is the strategy to construct those schemes. We use a mixed implicit-explicit strategy based on an operator splitting to solve fast and slow phenomena separately. Then, we introduce a modification of a Suliciu type relaxation scheme to improve the accuracy of the numerical scheme in some regime of interest. Two approaches have been used to assess the ability of our numerical schemes to deal with a wide range of flow regimes. The first approach, based on the asymptotic preserving property, has been used for the gas dynamics equations with stiff source terms. The second approach, based on the all-regime property, has been used for the gas dynamics equations and the homogeneous two-phase flows models HRM and HEM in the low Mach regime. We obtained some robustness and stability properties for our numerical schemes. In particular, some discrete entropy inequalities are shown. Numerical evidences, in 1D and in 2D on unstructured meshes, assess the gain in term of accuracy and CPU time of those asymptotic preserving and all-regime numerical schemes in comparison with classical finite volume methods. (author) [fr

  15. Application of stepping motor

    International Nuclear Information System (INIS)


    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  16. Testing PVLAS axions with resonant photon splitting

    CERN Document Server

    Gabrielli, E; Gabrielli, Emidio; Giovannini, Massimo


    The photon splitting gamma -> gamma gamma in a time-independent and inhomogeneous magnetized background is considered when neutral and ultralight spin-0 particles are coupled to two-photons. Depending on the inhomogeneity scale of the external field, resonant photon splitting can occur. If an optical laser crosses a magnetic field of few Tesla with typical inhomogeneity scale of the order of the meter, a potentially observable rate of photon splittings is expected for the PVLAS range of couplings and masses.

  17. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen


    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  18. Tabled Execution in Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Willcock, J J; Lumsdaine, A; Quinlan, D J


    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  19. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei


    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Scheme of energy utilities

    International Nuclear Information System (INIS)


    This scheme defines the objectives relative to the renewable energies and the rational use of the energy in the framework of the national energy policy. It evaluates the needs and the potentialities of the regions and preconizes the actions between the government and the territorial organizations. The document is presented in four parts: the situation, the stakes and forecasts; the possible actions for new measures; the scheme management and the regional contributions analysis. (A.L.B.)

  1. Dark matter from split seesaw

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.


    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  2. Emittance compensation in split photoinjectors

    Directory of Open Access Journals (Sweden)

    Klaus Floettmann


    Full Text Available The compensation of correlated emittance contributions is of primary importance to optimize the performance of high brightness photoinjectors. While only extended numerical simulations can capture the complex beam dynamics of space-charge-dominated beams in sufficient detail to optimize a specific injector layout, simplified models are required to gain a deeper understanding of the involved dynamics, to guide the optimization procedure, and to interpret experimental results. In this paper, a slice envelope model for the emittance compensation process in a split photoinjector is presented. The emittance term is included in the analytical solution of the beam envelope in a drift, which is essential to take the emittance contribution due to a beam size mismatch into account. The appearance of two emittance minima in the drift is explained, and the matching into the booster cavity is discussed. A comparison with simulation results points out effects which are not treated in the envelope model, such as overfocusing and field nonlinearities.

  3. Gauge mediated mini-split (United States)

    Cohen, Timothy; Craig, Nathaniel; Knapen, Simon


    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ- b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 105 to 108 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  4. Minimal Doubling and Point Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.


    Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.

  5. Gauge mediated mini-split

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)


    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  6. Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping

    KAUST Repository

    Bonito, Andrea


    © Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.

  7. SplitDist—Calculating Split-Distances for Sets of Trees

    DEFF Research Database (Denmark)

    Mailund, T


    We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....

  8. 3D geometric split-merge segmentation of brain MRI datasets. (United States)

    Marras, Ioannis; Nikolaidis, Nikolaos; Pitas, Ioannis


    In this paper, a novel method for MRI volume segmentation based on region adaptive splitting and merging is proposed. The method, called Adaptive Geometric Split Merge (AGSM) segmentation, aims at finding complex geometrical shapes that consist of homogeneous geometrical 3D regions. In each volume splitting step, several splitting strategies are examined and the most appropriate is activated. A way to find the maximal homogeneity axis of the volume is also introduced. Along this axis, the volume splitting technique divides the entire volume in a number of large homogeneous 3D regions, while at the same time, it defines more clearly small homogeneous regions within the volume in such a way that they have greater probabilities of survival at the subsequent merging step. Region merging criteria are proposed to this end. The presented segmentation method has been applied to brain MRI medical datasets to provide segmentation results when each voxel is composed of one tissue type (hard segmentation). The volume splitting procedure does not require training data, while it demonstrates improved segmentation performance in noisy brain MRI datasets, when compared to the state of the art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. REMINDER: Saved Leave Scheme (SLS)

    CERN Multimedia


    Transfer of leave to saved leave accounts Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'* annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that unused leave of all those taking part in the saved leave scheme at the closure of the leave year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2003 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they ar...

  10. Split kinetic energy method for quantum systems with competing potentials

    International Nuclear Information System (INIS)

    Mineo, H.; Chao, Sheng D.


    For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into “unperturbed” and “perturbed” terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double δ-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: ► A new basis set expansion method is proposed. ► Split kinetic energy method is proposed to solve quantum eigenvalue problems. ► Significant improvement has been obtained in converging to exact results. ► Extension of such methods is promising and discussed.

  11. Split Questionnaire Design for Massive Surveys

    NARCIS (Netherlands)

    Adiguzel, F.; Wedel, M.


    Companies are conducting more and longer surveys than ever before. Massive questionnaires are pervasive in marketing practice. As an alternative to the heuristic methods that are currently used to split questionnaires, this study develops a methodology to design the split questionnaire in a way that

  12. Cheating More when the Spoils Are Split (United States)

    Wiltermuth, Scott S.


    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  13. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.


    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  14. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.


    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  15. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen


    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  16. On split Lie triple systems II

    Indian Academy of Sciences (India)

    Lie triple system with a coherent 0-root space is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of T is characterized. In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces. Keywords.

  17. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model (United States)

    Guillén-González, F.; Tierra, G.


    Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.

  18. Numerical scheme of WAHA code for simulation of fast transients in piping systems

    International Nuclear Information System (INIS)

    Iztok Tiselj


    terms: A δΨ-vector/δt = S-vector relaxation Convective terms and source terms due to the smooth area change, wall friction and volumetric forces are solved in the first sub step. Eigenvalues and eigenvectors of the system are found numerically. Such approach allows easier introduction of the new correlations, which might contain derivatives. Non-relaxation source terms in Eq. (3) are integrated with upwind discretization and with the same time step as the convection terms. Relaxation source terms: inter-phase heat, mass and momentum exchange terms are stiff, i.e., their characteristic time scales can be much shorter that the time scales of the hyperbolic part of the equations. Integration of the relaxation sources within the operator-splitting scheme - Eq. (4) - is performed with variable time steps, which depend on the stiffness of the source terms. Up-winding is not used for calculation of the relaxation source terms. (author)

  19. New bounded skew central difference scheme. Part 1: Formulation and testing

    Energy Technology Data Exchange (ETDEWEB)

    Moukalled, F.; Darwish, M. [American Univ. of Beirut (Lebanon)


    The skew central difference scheme is combined with the normalized variable formulation to yield a new bounded skew central difference scheme. The newly developed scheme is tested and compared with the upwind scheme, the bounded skew upwind scheme, and the high-resolution SMART scheme by solving four problems: (1) pure convection of a step profile in an oblique velocity field; (2) sudden expansion of an oblique flow field in a rectangular cavity; (3) driven flow in a skew cavity; and (4) gradual expansion in an axisymmetric, nonorthogonal channel. Results generated reveal the new scheme to be bounded and to be the most accurate among those investigated.

  20. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel


    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  1. Three-Step Predictor-Corrector of Exponential Fitting Method for Nonlinear Schroedinger Equations

    International Nuclear Information System (INIS)

    Tang Chen; Zhang Fang; Yan Haiqing; Luo Tao; Chen Zhanqing


    We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three-step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.

  2. Compact Spreader Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.


    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  3. Compact spreader schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C., E-mail:


    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  4. The effect of Ghana's National Health Insurance Scheme on health ...

    African Journals Online (AJOL)

    Objectives: The study investigates the effect of Ghana's National Health Insurance Scheme (NHIS) on health care utilisation. Methods: We provide a short history of health insurance in Ghana, and briefly discuss general patterns of enrolment in Ghana as well as in Accra in a first step. In a second step, we use data from the ...

  5. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle. (United States)

    He, Yong; Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di


    We propose a theoretical scheme to determine the vacuum Rabi splitting in a single semiconductor quantum dot (SQD) induced by a metal nanoparticle (MNP). Based on cavity quantum electrodynamics, the exciton-plasmon interaction between the SQD and the MNP is considered while a strong pump laser and a weak probe laser are simultaneously presented. By decreasing the distance between them, we can increase the coupling strength. At resonance, thanks to the strong coupling, a vacuum Rabi splitting can be observed clearly in the probe absorption spectrum. The coupling strength can be obtained by measuring the vacuum Rabi splitting. This strong coupling is significant for the investigation of surface-plasmon-based quantum information processing.

  6. Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture. (United States)

    Miyamoto, Kenji; Kuwano, Shigeru; Terada, Jun; Otaka, Akihiro


    We analyze the mobile fronthaul (MFH) bandwidth and the wireless transmission performance in the split-PHY processing (SPP) architecture, which redefines the functional split of centralized/cloud RAN (C-RAN) while preserving high wireless coordinated multi-point (CoMP) transmission/reception performance. The SPP architecture splits the base stations (BS) functions between wireless channel coding/decoding and wireless modulation/demodulation, and employs its own CoMP joint transmission and reception schemes. Simulation results show that the SPP architecture reduces the MFH bandwidth by up to 97% from conventional C-RAN while matching the wireless bit error rate (BER) performance of conventional C-RAN in uplink joint reception with only 2-dB signal to noise ratio (SNR) penalty.

  7. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya


    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  8. Hybrid Discrete Differential Evolution Algorithm for Lot Splitting with Capacity Constraints in Flexible Job Scheduling

    Directory of Open Access Journals (Sweden)

    Xinli Xu


    Full Text Available A two-level batch chromosome coding scheme is proposed to solve the lot splitting problem with equipment capacity constraints in flexible job shop scheduling, which includes a lot splitting chromosome and a lot scheduling chromosome. To balance global search and local exploration of the differential evolution algorithm, a hybrid discrete differential evolution algorithm (HDDE is presented, in which the local strategy with dynamic random searching based on the critical path and a random mutation operator is developed. The performance of HDDE was experimented with 14 benchmark problems and the practical dye vat scheduling problem. The simulation results showed that the proposed algorithm has the strong global search capability and can effectively solve the practical lot splitting problems with equipment capacity constraints.

  9. Numerical methods for systems of conservation laws of mixed type using flux splitting (United States)

    Shu, Chi-Wang


    The essentially non-oscillatory (ENO) finite difference scheme is applied to systems of conservation laws of mixed hyperbolic-elliptic type. A flux splitting, with the corresponding Jacobi matrices having real and positive/negative eigenvalues, is used. The hyperbolic ENO operator is applied separately. The scheme is numerically tested on the van der Waals equation in fluid dynamics. Convergence was observed with good resolution to weak solutions for various Riemann problems, which are then numerically checked to be admissible as the viscosity-capillarity limits. The interesting phenomena of the shrinking of elliptic regions if they are present in the initial conditions were also observed.

  10. Modified Projection Algorithms for Solving the Split Equality Problems

    Directory of Open Access Journals (Sweden)

    Qiao-Li Dong


    proposed a CQ algorithm for solving it. In this paper, we propose a modification for the CQ algorithm, which computes the stepsize adaptively and performs an additional projection step onto two half-spaces in each iteration. We further propose a relaxation scheme for the self-adaptive projection algorithm by using projections onto half-spaces instead of those onto the original convex sets, which is much more practical. Weak convergence results for both algorithms are analyzed.

  11. A high-fidelity memory scheme for quantum data buses

    International Nuclear Information System (INIS)

    Liu Bo-Yang; Chen Xi; Zhang Ming; Cui Wei; Dai Hong-Yi


    A novel quantum memory scheme is proposed for quantum data buses in scalable quantum computers by using adjustable interaction. Our investigation focuses on a hybrid quantum system including coupled flux qubits and a nitrogen–vacancy center ensemble. In our scheme, the transmission and storage (retrieval) of quantum state are performed in two separated steps, which can be controlled by adjusting the coupling strength between the computing unit and the quantum memory. The scheme can be used not only to reduce the time of quantum state transmission, but also to increase the robustness of the system with respect to detuning caused by magnetic noises. In comparison with the previous memory scheme, about 80% of the transmission time is saved. Moreover, it is exemplified that in our scheme the fidelity could achieve 0.99 even when there exists detuning, while the one in the previous scheme is 0.75. (paper)

  12. 4. Payment Schemes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Electronic Commerce - Payment Schemes. V Rajaraman. Series Article Volume 6 Issue 2 February 2001 pp 6-13. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  13. Link Monotonic Allocation Schemes

    NARCIS (Netherlands)

    Slikker, M.


    A network is a graph where the nodes represent players and the links represent bilateral interaction between the players. A reward game assigns a value to every network on a fixed set of players. An allocation scheme specifies how to distribute the worth of every network among the players. This

  14. Alternative health insurance schemes

    DEFF Research Database (Denmark)

    Keiding, Hans; Hansen, Bodil O.


    In this paper, we present a simple model of health insurance with asymmetric information, where we compare two alternative ways of organizing the insurance market. Either as a competitive insurance market, where some risks remain uninsured, or as a compulsory scheme, where however, the level...... competitive insurance; this situation turns out to be at least as good as either of the alternatives...

  15. 4. Payment Schemes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Electronic Commerce - Payment Schemes. V Rajaraman. Series Article Volume 6 Issue 2 February 2001 pp 6-13 ... Author Affiliations. V Rajaraman1. IBM Professor of Information Technology JNCASR Bangalore 560 064, India.

  16. CSR schemes in agribusiness

    DEFF Research Database (Denmark)

    Pötz, Katharina Anna; Haas, Rainer; Balzarova, Michaela


    of schemes that can be categorized on focus areas, scales, mechanisms, origins, types and commitment levels. Research limitations/implications – The findings contribute to conceptual and empirical research on existing models to compare and analyse CSR standards. Sampling technique and depth of analysis limit...

  17. Simple monotonic interpolation scheme

    International Nuclear Information System (INIS)

    Greene, N.M.


    A procedure for presenting tabular data, such as are contained in the ENDF/B files, that is simpler, more general, and potentially much more compact than the present schemes used with ENDF/B is presented. The method has been successfully used for Bondarenko interpolation in a module of the AMPX system. 1 figure, 1 table

  18. Splitting of electrons and violation of the Luttinger sum rule (United States)

    Quinn, Eoin


    We obtain a controlled description of a strongly correlated regime of electronic behavior. We begin by arguing that there are two ways to characterize the electronic degree of freedom, either by the canonical fermion algebra or the graded Lie algebra su (2 |2 ) . The first underlies the Fermi liquid description of correlated matter, and we identify a regime governed by the latter. We exploit an exceptional central extension of su (2 |2 ) to employ a perturbative scheme recently developed by Shastry and obtain a series of successive approximations for the electronic Green's function. We then focus on the leading approximation, which reveals a splitting in two of the electronic dispersion. The Luttinger sum rule is violated, and a Mott metal-insulator transition is exhibited. We offer a perspective.

  19. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard


    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... absorption, this is the more difficult side to optimize. Nevertheless, by using TiO2 as a transparent cathode protection layer in conjunction with known H-2 evolution catalysts, protection is clearly feasible for a large bandgap photocathode. This suggests that there may be promising strategies...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....

  20. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)


    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  1. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department


    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  2. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik


    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature...

  3. Modified Halfspace-Relaxation Projection Methods for Solving the Split Feasibility Problem

    Directory of Open Access Journals (Sweden)

    Min Li


    Full Text Available This paper presents modified halfspace-relaxation projection (HRP methods for solving the split feasibility problem (SFP. Incorporating with the techniques of identifying the optimal step length with positive lower bounds, the new methods improve the efficiencies of the HRP method (Qu and Xiu (2008. Some numerical results are reported to verify the computational preference.

  4. Quadratic String Method for Locating Instantons in Tunneling Splitting Calculations. (United States)

    Cvitaš, Marko T


    The ring-polymer instanton (RPI) method is an efficient technique for calculating approximate tunneling splittings in high-dimensional molecular systems. In the RPI method, tunneling splitting is evaluated from the properties of the minimum action path (MAP) connecting the symmetric wells, whereby the extensive sampling of the full potential energy surface of the exact quantum-dynamics methods is avoided. Nevertheless, the search for the MAP is usually the most time-consuming step in the standard numerical procedures. Recently, nudged elastic band (NEB) and string methods, originaly developed for locating minimum energy paths (MEPs), were adapted for the purpose of MAP finding with great efficiency gains [ J. Chem. Theory Comput. 2016 , 12 , 787 ]. In this work, we develop a new quadratic string method for locating instantons. The Euclidean action is minimized by propagating the initial guess (a path connecting two wells) over the quadratic potential energy surface approximated by means of updated Hessians. This allows the algorithm to take many minimization steps between the potential/gradient calls with further reductions in the computational effort, exploiting the smoothness of potential energy surface. The approach is general, as it uses Cartesian coordinates, and widely applicable, with computational effort of finding the instanton usually lower than that of determining the MEP. It can be combined with expensive potential energy surfaces or on-the-fly electronic-structure methods to explore a wide variety of molecular systems.

  5. Optimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems

    KAUST Repository

    Parsani, Matteo


    Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.

  6. Splitting Strip Detector Clusters in Dense Environments

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration


    Tracking in high density environments, particularly in high energy jets, plays an important role in many physics analyses at the LHC. In such environments, there is significant degradation of track reconstruction performance. Between runs 1 and 2, ATLAS implemented an algorithm that splits pixel clusters originating from multiple charged particles, using charge information, resulting in the recovery of much of the lost efficiency. However, no attempt was made in prior work to split merged clusters in the Semi Conductor Tracker (SCT), which does not measure charge information. In spite of the lack of charge information in SCT, a cluster-splitting algorithm has been developed in this work. It is based primarily on the difference between the observed cluster width and the expected cluster width, which is derived from track incidence angle. The performance of this algorithm is found to be competitive with the existing pixel cluster splitting based on track information.

  7. Structural basis of photosynthetic water-splitting

    International Nuclear Information System (INIS)

    Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 Å resolution, from which, the detailed structure of the Mn 4 CaO 5 -cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed

  8. Irrational beliefs, attitudes about competition, and splitting. (United States)

    Watson, P J; Morris, R J; Miller, L


    Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization. Copyright 2001 John Wiley & Sons, Inc.

  9. On Converting Secret Sharing Scheme to Visual Secret Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Wang Daoshun


    Full Text Available Abstract Traditional Secret Sharing (SS schemes reconstruct secret exactly the same as the original one but involve complex computation. Visual Secret Sharing (VSS schemes decode the secret without computation, but each share is m times as big as the original and the quality of the reconstructed secret image is reduced. Probabilistic visual secret sharing (Prob.VSS schemes for a binary image use only one subpixel to share the secret image; however the probability of white pixels in a white area is higher than that in a black area in the reconstructed secret image. SS schemes, VSS schemes, and Prob. VSS schemes have various construction methods and advantages. This paper first presents an approach to convert (transform a -SS scheme to a -VSS scheme for greyscale images. The generation of the shadow images (shares is based on Boolean XOR operation. The secret image can be reconstructed directly by performing Boolean OR operation, as in most conventional VSS schemes. Its pixel expansion is significantly smaller than that of VSS schemes. The quality of the reconstructed images, measured by average contrast, is the same as VSS schemes. Then a novel matrix-concatenation approach is used to extend the greyscale -SS scheme to a more general case of greyscale -VSS scheme.

  10. Mort Rainey's Split Personality in Secret Window


    Sandjaya, Cynthya; Limanta, Liem Satya


    Psychological issue is the main issue discussed in David Koepp's Secret Window through its main character, Mort Rainey. Rainey's psychological struggle will be the main theme in this research. This thesis examines Rainey's split personality. Furthermore, in this study, we want to analyze the process of how Mort Rainey's personality splits into two different personalities. To meet the answer of this study, we will use the theory of Dissociative Identity Disorder with a support from Sigmund Fre...

  11. A split SUSY model from SUSY GUT


    Wang, FeiDepartment of Physics and Engineering, Zhengzhou University, Zhengzhou, 450000, P.R. China; Wang, Wenyu(Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology, Beijing, 100124, P.R. China); Yang, Jin(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China)


    We propose to split the sparticle spectrum from the hierarchy between the GUT scale and the Planck scale. A split supersymmetric model, which gives non-universal gaugino masses, is built with proper high dimensional operators in the framework of SO(10) GUT. Based on a calculation of two-loop beta functions for gauge couplings (taking into account all weak scale threshold corrections), we check the gauge coupling unification and dark matter constraints (relic density and direct detections). We...

  12. Split School of High Energy Physics 2015

    CERN Document Server


    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  13. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory


    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  14. Antenna Splitting Functions for Massive Particles

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC


    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  15. What can density functional theory tell us about artificial catalytic water splitting? (United States)

    Mavros, Michael G; Tsuchimochi, Takashi; Kowalczyk, Tim; McIsaac, Alexandra; Wang, Lee-Ping; Voorhis, Troy Van


    Water splitting by artificial catalysts is a critical process in the production of hydrogen gas as an alternative fuel. In this paper, we examine the essential role of theoretical calculations, with particular focus on density functional theory (DFT), in understanding the water-splitting reaction on these catalysts. First, we present an overview of DFT thermochemical calculations on water-splitting catalysts, addressing how these calculations are adapted to condensed phases and room temperature. We show how DFT-derived chemical descriptors of reactivity can be surprisingly good estimators for reactive trends in water-splitting catalysts. Using this concept, we recover trends for bulk catalysts using simple model complexes for at least the first-row transition-metal oxides. Then, using the CoPi cobalt oxide catalyst as a case study, we examine the usefulness of simulation for predicting the kinetics of water splitting. We demonstrate that the appropriate treatment of solvent effects is critical for computing accurate redox potentials with DFT, which, in turn, determine the rate-limiting steps and electrochemical overpotentials. Finally, we examine the ability of DFT to predict mechanism, using ruthenium complexes as a focal point for discussion. Our discussion is intended to provide an overview of the current strengths and weaknesses of the state-of-the-art DFT methodologies for condensed-phase molecular simulation involving transition metals and also to guide future experiments and computations toward the understanding and development of novel water-splitting catalysts.

  16. Beyond Scheme F

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C.J.; Fisher, H.; Pepin, J. [Los Alamos National Lab., NM (United States); Gillmann, R. [Federal Highway Administration, Washington, DC (United States)


    Traffic classification techniques were evaluated using data from a 1993 investigation of the traffic flow patterns on I-20 in Georgia. First we improved the data by sifting through the data base, checking against the original video for questionable events and removing and/or repairing questionable events. We used this data base to critique the performance quantitatively of a classification method known as Scheme F. As a context for improving the approach, we show in this paper that scheme F can be represented as a McCullogh-Pitts neural network, oar as an equivalent decomposition of the plane. We found that Scheme F, among other things, severely misrepresents the number of vehicles in Class 3 by labeling them as Class 2. After discussing the basic classification problem in terms of what is measured, and what is the desired prediction goal, we set forth desirable characteristics of the classification scheme and describe a recurrent neural network system that partitions the high dimensional space up into bins for each axle separation. the collection of bin numbers, one for each of the axle separations, specifies a region in the axle space called a hyper-bin. All the vehicles counted that have the same set of in numbers are in the same hyper-bin. The probability of the occurrence of a particular class in that hyper- bin is the relative frequency with which that class occurs in that set of bin numbers. This type of algorithm produces classification results that are much more balanced and uniform with respect to Classes 2 and 3 and Class 10. In particular, the cancellation of errors of classification that occurs is for many applications the ideal classification scenario. The neural network results are presented in the form of a primary classification network and a reclassification network, the performance matrices for which are presented.

  17. A New time Integration Scheme for Cahn-hilliard Equations

    KAUST Repository

    Schaefer, R.


    In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.

  18. Scalable Nonlinear Compact Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)


    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  19. Quantum identification schemes with entanglements

    International Nuclear Information System (INIS)

    Mihara, Takashi


    We need secure identification schemes because many situations exist in which a person must be identified. In this paper, we propose three quantum identification schemes with entanglements. First, we propose a quantum one-time pad password scheme. In this scheme, entanglements play the role of a one-time pad password. Next, we propose a quantum identification scheme that requires a trusted authority. Finally, we propose a quantum message authentication scheme that is constructed by combining a different quantum cryptosystem with an ordinary authentication tag

  20. Efficient Scheme for Chemical Flooding Simulation

    Directory of Open Access Journals (Sweden)

    Braconnier Benjamin


    Full Text Available In this paper, we investigate an efficient implicit scheme for the numerical simulation of chemical enhanced oil recovery technique for oil fields. For the sake of brevity, we only focus on flows with polymer to describe the physical and numerical models. In this framework, we consider a black oil model upgraded with the polymer modeling. We assume the polymer only transported in the water phase or adsorbed on the rock following a Langmuir isotherm. The polymer reduces the water phase mobility which can change drastically the behavior of water oil interfaces. Then, we propose a fractional step technique to resolve implicitly the system. The first step is devoted to the resolution of the black oil subsystem and the second to the polymer mass conservation. In such a way, jacobian matrices coming from the implicit formulation have a moderate size and preserve solvers efficiency. Nevertheless, the coupling between the black-oil subsystem and the polymer is not fully resolved. For efficiency and accuracy comparison, we propose an explicit scheme for the polymer for which large time step is prohibited due to its CFL (Courant-Friedrichs-Levy criterion and consequently approximates accurately the coupling. Numerical experiments with polymer are simulated : a core flood, a 5-spot reservoir with surfactant and ions and a 3D real case. Comparisons are performed between the polymer explicit and implicit scheme. They prove that our polymer implicit scheme is efficient, robust and resolves accurately the coupling physics. The development and the simulations have been performed with the software PumaFlow [PumaFlow (2013 Reference manual, release V600, Beicip Franlab].

  1. Holographic spectrum-splitting optical systems for solar photovoltaics (United States)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  2. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems. (United States)

    Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele


    Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

  3. A scheme comparison of Autler-Townes based slow light in inhomogeneously broadened quantum dot media

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Mørk, Jesper


    We propose a method to achieve significant optical signal delays exploiting the effect of Autler–Townes splitting (ATS) in an inhomogeneously broadened quantum dot medium. The absorption and slowdown effects are compared for three schemes i.e., Ξ, V, and Λ, corresponding to different excitation...

  4. Thermodynamic consideration on the constitution of multi-thermochemical water splitting process

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki


    The multi-thermochemical water splitting cycle comprises individual chemical reactions which are generalized as hydrolysis, hydrogen generation, oxygen generation and regeneration of the circulating materials. The circulating agents are required for the constitution of the cycle, but the guiding principle of selecting them is not available yet. In the present report, thermodynamic properties, especially Gibbs free energies for formation, of the agents are examined as a function of temperature. Oxides, sulfo-oxides, chlorides, bromides and iodides are chosen as the compounds. The chemical reactions for hydrolysis, hydrogen generation and oxygen generation are reviewed in detail. The general formulas for the three step splitting cycle are represented with discussion. (auth.)

  5. GEOMIT: A Step toward Reality

    International Nuclear Information System (INIS)

    Hesham, N.; Morota, H.; Masui, A.


    GEOMIT is a CAD/MCNP conversion interface code. It is developed to automatically generate Monte Carlo geometrical data from CAD data due to the difference in the representation scheme. GEOMIT is capable of importing several CAD formats as well as exporting several CAD formats. GEOMIT has a capability to produce solid cells as well as void cells without using complement operator. While loading the CAD shapes (Solids), GEOMIT assigns a material number and a density of each solid according to its color on the original CAD data. Shape fixing process is applied to cure errors in the CAD data. Vertex location correctness is evaluated first, and then free edges and small faces are removed. The Binary Space Portioning (BSP) tree technique is used to automatically split complicated solids into simpler cells. As a result, excessive complicated cells decrease and MCNP calculations run faster. Duplicated MCNP surfaces are removed with an automatic surface reduction function before creating the final input data. CAD data of various test problems were successfully converted to MCNP input data, which were validated by checking lost particles and comparing volumes calculated with MCNP to those of the original CAD data. Calculated results for the various test problems agreed with those with previously produced input data.

  6. ESCAP mobile training scheme. (United States)

    Yasas, F M


    In response to a United Nations resolution, the Mobile Training Scheme (MTS) was set up to provide training to the trainers of national cadres engaged in frontline and supervisory tasks in social welfare and rural development. The training is innovative in its being based on an analysis of field realities. The MTS team consisted of a leader, an expert on teaching methods and materials, and an expert on action research and evaluation. The country's trainers from different departments were sent to villages to work for a short period and to report their problems in fulfilling their roles. From these grass roots experiences, they made an analysis of the job, determining what knowledge, attitude and skills it required. Analysis of daily incidents and problems were used to produce indigenous teaching materials drawn from actual field practice. How to consider the problems encountered through government structures for policy making and decisions was also learned. Tasks of the students were to identify the skills needed for role performance by job analysis, daily diaries and project histories; to analyze the particular community by village profiles; to produce indigenous teaching materials; and to practice the role skills by actual role performance. The MTS scheme was tried in Nepal in 1974-75; 3 training programs trained 25 trainers and 51 frontline workers; indigenous teaching materials were created; technical papers written; and consultations were provided. In Afghanistan the scheme was used in 1975-76; 45 participants completed the training; seminars were held; and an ongoing Council was created. It is hoped that the training program will be expanded to other countries.

  7. Bonus Schemes and Trading Activity

    NARCIS (Netherlands)

    Pikulina, E.S.; Renneboog, L.D.R.; Ter Horst, J.R.; Tobler, P.N.


    Abstract: Little is known about how different bonus schemes affect traders’ propensity to trade and which bonus schemes improve traders’ performance. We study the effects of linear versus threshold (convex) bonus schemes on traders’ behavior. Traders purchase and sell shares in an experimental stock

  8. 12 CFR 7.2023 - Reverse stock splits. (United States)


    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Reverse stock splits. 7.2023 Section 7.2023... Corporate Practices § 7.2023 Reverse stock splits. (a) Authority to engage in reverse stock splits. A national bank may engage in a reverse stock split if the transaction serves a legitimate corporate purpose...

  9. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production (United States)

    Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin


    In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.

  10. Time-division-multiplex control scheme for voltage multiplier rectifiers

    Directory of Open Access Journals (Sweden)

    Bin-Han Liu


    Full Text Available A voltage multiplier rectifier with a novel time-division-multiplexing (TDM control scheme for high step-up converters is proposed in this study. In the proposed TDM control scheme, two full-wave voltage doubler rectifiers can be combined to realise a voltage quadrupler rectifier. The proposed voltage quadrupler rectifier can reduce transformer turn ratio and transformer size for high step-up converters and also reduce voltage stress for the output capacitors and rectifier diodes. An N-times voltage rectifier can be straightforwardly produced by extending the concepts from the proposed TDM control scheme. A phase-shift full-bridge (PSFB converter is adopted in the primary side of the proposed voltage quadrupler rectifier to construct a PSFB quadrupler converter. Experimental results for the PSFB quadrupler converter demonstrate the performance of the proposed TDM control scheme for voltage quadrupler rectifiers. An 8-times voltage rectifier is simulated to determine the validity of extending the proposed TDM control scheme to realise an N-times voltage rectifier. Experimental and simulation results show that the proposed TDM control scheme has great potential to be used in high step-up converters.

  11. The way to collisions, step by step

    CERN Multimedia


    While the LHC sectors cool down and reach the cryogenic operating temperature, spirits are warming up as we all eagerly await the first collisions. No reason to hurry, though. Making particles collide involves the complex manoeuvring of thousands of delicate components. The experts will make it happen using a step-by-step approach.

  12. Fano resonance Rabi splitting of surface plasmons. (United States)

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan


    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  13. Photochemical Water-Splitting with Organomanganese Complexes. (United States)

    Kadassery, Karthika J; Dey, Suman Kr; Cannella, Anthony F; Surendhran, Roshaan; Lacy, David C


    Certain organometallic chromophores with water-derived ligands, such as the known [Mn(CO) 3 (μ 3 -OH)] 4 (1) tetramer, drew our attention as possible platforms to study water-splitting reactions. Herein, we investigate the UV irradiation of various tricarbonyl organomanganese complexes, including 1, and demonstrate that dihydrogen, CO, and hydrogen peroxide form as products in a photochemical water-splitting decomposition reaction. The organic and manganese-containing side products are also characterized. Labeling studies with 18 O-1 suggest that the source of oxygen atoms in H 2 O 2 originates from free water that interacts with 1 after photochemical dissociation of CO (1-CO) constituting the oxidative half-reaction of water splitting mediated by 1. Hydrogen production from 1 is the result of several different processes, one of which involves the protons derived from the hydroxido ligands in 1 constituting the reductive half-reaction of water splitting mediated by 1. Other processes that generate H 2 are also operative and are described. Collectively the results from the photochemical decomposition of 1 provide an opportunity to propose a mechanism, and it is discussed within the context of developing new strategies for water-splitting reactions with organomanganese complexes.

  14. Split-hand/split-foot malformation with paternal mutation in the p63 gene.

    NARCIS (Netherlands)

    Witters, I.; Bokhoven, J.H.L.M. van; Goossens, A.; Assche, F.A. van; Fryns, J.P.


    We report the prenatal diagnosis at 16 weeks' gestation of bilateral split-hand/split-foot malformation (SHSFM) with severe lobster claw deformity of hands and feet in a male fetus without associated malformations. A minor manifestation of SHSFM was present in the father with only mild bilateral

  15. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang


    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  16. Four-Point n-Ary Interpolating Subdivision Schemes

    Directory of Open Access Journals (Sweden)

    Ghulam Mustafa


    Full Text Available We present an efficient and simple algorithm to generate 4-point n-ary interpolating schemes. Our algorithm is based on three simple steps: second divided differences, determination of position of vertices by using second divided differences, and computation of new vertices. It is observed that 4-point n-ary interpolating schemes generated by completely different frameworks (i.e., Lagrange interpolant and wavelet theory can also be generated by the proposed algorithm. Furthermore, we have discussed continuity, Hölder regularity, degree of polynomial generation, polynomial reproduction, and approximation order of the schemes.

  17. Pseudoparticle representation and positivity analysis of explicit and implicit Steger-Warming FVS schemes (United States)

    Tang, H.-Z.; Xu, K.

    This paper is about the pseudo-particle representation and the positivity analysis of an explicit and an implicit Steger and Warming's flux vector splitting (FVS) scheme for the compressible Euler equations. The positivity proof is based on the motion of pseudo-particles. For the explicit scheme, it shows that the density and the internal energy could keep non-negative values under the CFL-like condition for the Steger-Warming FVS scheme once the initial gas stays in a physically realizable state. For the implicit method, under a stronger CFL-like condition, the positivity property can also be preserved.

  18. Step-Growth Polymerization. (United States)

    Stille, J. K.


    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  19. Stepping motor controller (United States)

    Bourret, Steven C.; Swansen, James E.


    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  20. Packet reversed packet combining scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.


    The packet combining scheme is a well defined simple error correction scheme with erroneous copies at the receiver. It offers higher throughput combined with ARQ protocols in networks than that of basic ARQ protocols. But packet combining scheme fails to correct errors when the errors occur in the same bit locations of two erroneous copies. In the present work, we propose a scheme that will correct error if the errors occur at the same bit location of the erroneous copies. The proposed scheme when combined with ARQ protocol will offer higher throughput. (author)

  1. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    Photoelectrochemical water splitting represents an eco-friendly technology that could enable the production of hydrogen using water as reactant and solar energy as primary energy source. The exploitation of solar energy for the production of hydrogen would help modern society to reduce the reliance...... (bismuth vanadate) was investigated in view of combining this 2.4 eV large bandgap semiconductor with a Si back-illuminated photocathode. A device obtained by mechanical stacking of BiVO4 photoanode and standard Si photocathode performs non-assisted water splitting under illumination with Solar......-to-Hydrogen efficiency lower than 0.5%. In addition, BiVO4 was synthesized on the back-side of a Si back-illuminated photocathode to produce a preliminary monolithic solar water splitting device.The Faradaic efficiency of different types of catalysts for the electrochemical production of hydrogen or oxygen was evaluated...

  2. Multiple spectral splits of supernova neutrinos. (United States)

    Dasgupta, Basudeb; Dighe, Amol; Raffelt, Georg G; Smirnov, Alexei Yu


    Collective oscillations of supernova neutrinos swap the spectra f(nu(e))(E) and f(nu[over ](e))(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu[over ] channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f(nu(e))=f(nu(x)), f(nu[over ](e))=f(nu[over ](x)) as well as E-->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.

  3. Split Notochord Syndrome: A Rare Variant (United States)

    Dhawan, Vidhu; Kapoor, Kanchan; Singh, Balbir; Kochhar, Suman; Sehgal, Alka; Dada, Rima


    Split notochord syndrome represents an extremely rare and pleomorphic form of spinal dysraphism characterized by a persistent communication between the endoderm and the ectoderm, resulting in splitting or deviation of the notochord. It manifests as a cleft in the dorsal midline of the body through which intestinal loops are exteriorized and even myelomeningoceles or teratomas may occur at the site. A rare variant was diagnosed on autopsy of a 23+4-week-old fetus showing a similar dorsal enteric fistula and midline protruding intestinal loops in thoracolumbar region. The anteroposterior radiograph showed a complete midline cleft in the vertebral bodies from T11 to L5 region, and a split in the spinal cord was further confirmed by ultrasonography. Myelomeningocele was erroneously reported on antenatal ultrasound. Thus, awareness of this rare anomaly is necessary to thoroughly evaluate the cases of such spinal defects or suspected myelomeningoceles. PMID:28904581

  4. Fuzzy split and merge for shadow detection

    Directory of Open Access Journals (Sweden)

    Remya K. Sasi


    Full Text Available Presence of shadow in an image often causes problems in computer vision applications such as object recognition and image segmentation. This paper proposes a method to detect the shadow from a single image using fuzzy split and merge approach. Split and merge is a classical algorithm used in image segmentation. Predicate function in the classical approach is replaced by a Fuzzy predicate in the proposed approach. The method follows a top down approach of recursively splitting an image into homogeneous quadtree blocks, followed by a bottom up approach by merging adjacent unique regions. The method has been compared with previous approaches and found to be better in performance in terms of accuracy.

  5. Taxonomy and Classification Scheme for Artificial Space Objects (United States)


    on the fact, that the nodes and roots are overpopulated in order to find meaningful nodes and roots, that represent the lower tree structures well, the...alternative approach, does equal to BIRCH in the overpopulated case, but provides a more meaningful structure, in sparse regions, where... overpopulation is not reached to enforce splitting in the BIRCH algorithm. It is hence more flexible to data which is not circularly shaped. In a second step all

  6. Time step length versus efficiency of Monte Carlo burnup calculations

    International Nuclear Information System (INIS)

    Dufek, Jan; Valtavirta, Ville


    Highlights: • Time step length largely affects efficiency of MC burnup calculations. • Efficiency of MC burnup calculations improves with decreasing time step length. • Results were obtained from SIE-based Monte Carlo burnup calculations. - Abstract: We demonstrate that efficiency of Monte Carlo burnup calculations can be largely affected by the selected time step length. This study employs the stochastic implicit Euler based coupling scheme for Monte Carlo burnup calculations that performs a number of inner iteration steps within each time step. In a series of calculations, we vary the time step length and the number of inner iteration steps; the results suggest that Monte Carlo burnup calculations get more efficient as the time step length is reduced. More time steps must be simulated as they get shorter; however, this is more than compensated by the decrease in computing cost per time step needed for achieving a certain accuracy

  7. Faster multiple emulsification with drop splitting. (United States)

    Abate, Adam R; Weitz, David A


    Microfluidic devices can form emulsions in which the drops have an intricate, controlled structure; however, a challenge is that the droplets are produced slowly, typically only a few millilitres per hour. Here, we present a simple technique to increase the production rate. Using a large drop maker, we produce large drops at a fast volumetric rate; by splitting these drops several times in a splitting array, we create drops of the desired small size. The advantage of this over forming the small drops directly using a small drop maker is that the drops can be formed at much faster rates. This can be applied to the production of single and multiple emulsions.

  8. Hyperfine splitting in lithium-like bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)


    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  9. Microsoft Office professional 2010 step by step

    CERN Document Server

    Cox, Joyce; Frye, Curtis


    Teach yourself exactly what you need to know about using Office Professional 2010-one step at a time! With STEP BY STEP, you build and practice new skills hands-on, at your own pace. Covering Microsoft Word, PowerPoint, Outlook, Excel, Access, Publisher, and OneNote, this book will help you learn the core features and capabilities needed to: Create attractive documents, publications, and spreadsheetsManage your e-mail, calendar, meetings, and communicationsPut your business data to workDevelop and deliver great presentationsOrganize your ideas and notes in one placeConnect, share, and accom

  10. An energy-stable finite-difference scheme for the binary fluid-surfactant system (United States)

    Gu, Shuting; Zhang, Hui; Zhang, Zhengru


    We present an unconditionally energy stable finite-difference scheme for the binary fluid-surfactant system. The proposed method is based on the convex splitting of the energy functional with two variables. Here are two distinct features: (i) the convex splitting energy method is applied to energy functional with two variables, and (ii) the stability issue is related to the decay of the corresponding energy. The full discrete scheme leads to a decoupled system including a linear sub-system and a nonlinear sub-system. Algebraic multigrid and Newton-multigrid methods are adopted to solve the linear and nonlinear systems, respectively. Numerical experiments are shown to verify the stability of such a scheme.

  11. Third Order Reconstruction of the KP Scheme for Model of River Tinnelva

    Directory of Open Access Journals (Sweden)

    Susantha Dissanayake


    Full Text Available The Saint-Venant equation/Shallow Water Equation is used to simulate flow of river, flow of liquid in an open channel, tsunami etc. The Kurganov-Petrova (KP scheme which was developed based on the local speed of discontinuity propagation, can be used to solve hyperbolic type partial differential equations (PDEs, hence can be used to solve the Saint-Venant equation. The KP scheme is semi discrete: PDEs are discretized in the spatial domain, resulting in a set of Ordinary Differential Equations (ODEs. In this study, the common 2nd order KP scheme is extended into 3rd order scheme while following the Weighted Essentially Non-Oscillatory (WENO and Central WENO (CWENO reconstruction steps. Both the 2nd order and 3rd order schemes have been used in simulation in order to check the suitability of the KP schemes to solve hyperbolic type PDEs. The simulation results indicated that the 3rd order KP scheme shows some better stability compared to the 2nd order scheme. Computational time for the 3rd order KP scheme for variable step-length ode solvers in MATLAB is less compared to the computational time of the 2nd order KP scheme. In addition, it was confirmed that the order of the time integrators essentially should be lower compared to the order of the spatial discretization. However, for computation of abrupt step changes, the 2nd order KP scheme shows a more accurate solution.

  12. On Computational Small Steps and Big Steps

    DEFF Research Database (Denmark)

    Johannsen, Jacob

    rules in the small-step semantics cause the refocusing step of the syntactic correspondence to be inapplicable. Second, we propose two solutions to overcome this in-applicability: backtracking and rule generalization. Third, we show how these solutions affect the other transformations of the two......We study the relationship between small-step semantics, big-step semantics and abstract machines, for programming languages that employ an outermost reduction strategy, i.e., languages where reductions near the root of the abstract syntax tree are performed before reductions near the leaves....... In particular, we investigate how Biernacka and Danvy’s syntactic correspondence and Reynolds’s functional correspondence can be applied to interderive semantic specifications for such languages. The main contribution of this dissertation is three-fold: First, we identify that backward overlapping reduction...

  13. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale


    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  14. Analysis of a multi-module split coaxial RFQ

    International Nuclear Information System (INIS)

    Arai, Shigeaki.


    A split coaxial RFQ linac with modulated vanes is under development for acceleration of very heavy ions. As a first step, a 1/4 scaled model with flat vanes has been constructed. Easy assembling of vanes and good mechanical stability of the structure have been achieved by employing a multi-module cavity arrangement. In this paper, theoretical treatments for the estimation of rf parameters and the interpretation of resonance characteristics are described in detail and their results are compared with the experimental data. The resonant frequency predicted by using the estimated inductance and the measured capacitance agrees with the experimental value within 2 % accuracy. Dispersion characteristics and longitudinal voltage distribution at each resonance mode are qualitatively well explained by an equivalent circuit analysis. (author)


    Directory of Open Access Journals (Sweden)

    Constanta RADULESCU


    Full Text Available This paper presents one of the steps that help us to determine the optimal tolerances depending on thetechnological capability of processing equipment. To determine the tolerances in this way is necessary to takethe study and to represent schematically the operations are used in technological process of making a piece.Also in this phase will make the tree diagram of the dimensions and machining tolerances, dimensions andtolerances shown that the design execution. Determination processes, and operations of the dimensions andtolerances tree scheme will make for a machined piece is both indoor and outdoor.

  16. The osmotic stress response of split influenza vaccine particles in an acidic environment. (United States)

    Choi, Hyo-Jick; Kim, Min-Chul; Kang, Sang-Moo; Montemagno, Carlo D


    Oral influenza vaccine provides an efficient means of preventing seasonal and pandemic disease. In this work, the stability of envelope-type split influenza vaccine particles in acidic environments has been investigated. Owing to the fact that hyper-osmotic stress can significantly affect lipid assembly of vaccine, osmotic stress-induced morphological change of split vaccine particles, in conjunction with structural change of antigenic proteins, was investigated by the use of stopped-flow light scattering (SFLS), intrinsic fluorescence, transmission electron microscopy (TEM), and hemagglutination assay. Split vaccine particles were found to exhibit a step-wise morphological change in response to osmotic stress due to double-layered wall structure. The presence of hyper-osmotic stress in acidic medium (0.3 osmolarity, pH 2.0) induced a significant level of membrane perturbation as measured by SFLS and TEM, imposing more damage to antigenic proteins on vaccine envelope than can be caused by pH-induced conformational change at acidic iso-osmotic condition. Further supports were provided by the intrinsic fluorescence and hemagglutinin activity measurements. Thus, hyper-osmotic stress becomes an important factor for determining stability of split vaccine particles in acidic medium. These results are useful in better understanding the destabilizing mechanism of split influenza vaccine particles in gastric environment and in designing oral influenza vaccine formulations.

  17. Iron-Doped BaMnO3for Hybrid Water Splitting and Syngas Generation. (United States)

    Haribal, Vasudev Pralhad; He, Feng; Mishra, Amit; Li, Fanxing


    A rationalized strategy to optimize transition-metal-oxide-based redox catalysts for water splitting and syngas generation through a hybrid solar-redox process is proposed and validated. Monometallic transition metal oxides do not possess desirable properties for water splitting; however, density functional theory calculations indicate that the redox properties of perovskite-structured BaMn x Fe 1-x O 3-δ can be varied by changing the B-site cation compositions. Specifically, BaMn 0.5 Fe 0.5 O 3-δ is projected to be suitable for the hybrid solar-redox process. Experimental studies confirm such predictions, demonstrating 90 % steam-to-hydrogen conversion in water splitting and over 90 % syngas yield in the methane partial-oxidation step after repeated redox cycles. Compared to state-of-the-art solar-thermal water-splitting catalysts, the rationally designed redox catalyst reported is capable of splitting water at a significantly lower temperature and with ten-fold increase in steam-to-hydrogen conversion. Process simulations indicate the potential to operate the hybrid solar-redox process at a higher efficiency than state-of-the-art hydrogen and liquid-fuel production processes with 70 % lower CO 2 emissions for hydrogen production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Discrete objects, splitting closure and connectedness | Castellini ...

    African Journals Online (AJOL)

    Notions of discrete and indiscrete classes with respect to a closure operator are introduced and studied. These notions are strongly related to splitting and cosplitting closure operators. By linking the above concepts, two Galois connections arise whose composition provides a third Galois connection that can be used as a ...

  19. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav


    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...

  20. Split Coil Forms for Rotary Transformers (United States)

    Mclyman, C. W. T.


    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  1. Split Beta-Lactamase Complementation Assay

    Indian Academy of Sciences (India)

    IAS Admin

    Concept of split beta. -lactamase protein fragment complementation assay. (A) and (B) are vector systems involved in the assay. As an example, a vector system for bacterial host is described here. (C) Co-transformation of complementation vectors in appropriate bacterial host. (D) and (E) are types of inter- actions expected ...

  2. Molecular catalytic system for efficient water splitting

    NARCIS (Netherlands)

    Joya, Khurram Saleem


    The aim of this dissertation is to construct and explore artificial oxygen evolving complexes that are synthetically accessible, stable, functionally robust and efficient. To achieve this, a class of mono metal water splitting catalysts is introduced in this manuscript and exploitation of these

  3. Splitting up Beta’s change


    Suarez, Ronny


    In this paper we estimated IBM beta from 2000 to 2013, then using differential equation mathematical formula we split up the annual beta’s change attributed to the volatility market effect, the stock volatility effect, the correlation effect and the jointly effect of these variables.

  4. Shear-wave splitting and moonquakes (United States)

    Dimech, J. L.; Weber, R. C.; Savage, M. K.


    Shear-wave splitting is a powerful tool for measuring anisotropy in the Earth's crust and mantle, and is sensitive to geological features such as fluid filled cracks, thin alternating layers of rock with different elastic properties, and preferred mineral orientations caused by strain. Since a shear wave splitting measurement requires only a single 3-component seismic station, it has potential applications for future single-station planetary seismic missions, such as the InSight geophysical mission to Mars, as well as possible future missions to Europa and the Moon. Here we present a preliminary shear-wave splitting analysis of moonquakes detected by the Apollo Passive Seismic Experiment. Lunar seismic data suffers from several drawbacks compared to modern terrestrial data, including severe seismic scattering, low intrinsic attenuation, 10-bit data resolution, thermal spikes, and timing errors. Despite these drawbacks, we show that it is in principle possible to make a shear wave splitting measurement using the S-phase arrival of a relatively high-quality moonquake, as determined by several agreeing measurement criteria. Encouraged by this finding, we further extend our analysis to clusters of "deep moonquake" events by stacking multiple events from the same cluster together to further enhance the quality of the S-phase arrivals that the measurement is based on.

  5. Split brain: divided perception but undivided consciousness. (United States)

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara


    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email:

  6. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)


    Abstract. Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change signi- ficantly with rising phase of the solar cycle. We also find temporal varia- tions in the rotation rate near the solar ...

  7. Czech, Slovak science ten years after split

    CERN Multimedia


    Ten years after the split of Czechoslovakia Czech and Slovak science are facing the same difficulties: shortage of money for research, poor salaries, obsolete equipment and brain drain, especially of the young, according to a feature in the Daily Lidove Noviny (1 page).

  8. Comparing Electrochemical and Biological Water Splitting

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Dimitrievski, Kristian; Siegbahn, P.


    On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system...

  9. Transmission usage cost allocation schemes

    International Nuclear Information System (INIS)

    Abou El Ela, A.A.; El-Sehiemy, R.A.


    This paper presents different suggested transmission usage cost allocation (TCA) schemes to the system individuals. Different independent system operator (ISO) visions are presented using the proportional rata and flow-based TCA methods. There are two proposed flow-based TCA schemes (FTCA). The first FTCA scheme generalizes the equivalent bilateral exchanges (EBE) concepts for lossy networks through two-stage procedure. The second FTCA scheme is based on the modified sensitivity factors (MSF). These factors are developed from the actual measurements of power flows in transmission lines and the power injections at different buses. The proposed schemes exhibit desirable apportioning properties and are easy to implement and understand. Case studies for different loading conditions are carried out to show the capability of the proposed schemes for solving the TCA problem. (author)

  10. Two notes about Ponzi schemes


    Patrick Honohan


    A Ponzi scheme is an arrangement whereby a promoter offers an investment opportunity with attractive dividends, but where the only basis for the dividends is the future receipts from new investors. The first of these two notes explores some of the analytical properties of a Ponzi scheme, addressing in particular the question whether it is possible for a Ponzi scheme to exist if all the participants are rational. The second note briefly examines the collapse of the PMPA insurance company whos...

  11. Entropy conservative finite element schemes (United States)

    Tadmor, E.


    The question of entropy stability for discrete approximations to hyperbolic systems of conservation laws is studied. The amount of numerical viscosity present in such schemes is quantified and related to their entropy stability by means of comparison. To this end, two main ingredients are used: entropy variables and the construction of certain entropy conservative schemes in terms of piecewise-linear finite element approximations. It is then shown that conservative schemes are entropy stable, if and (for three-point schemes) only if, they contain more numerical viscosity than the abovementioned entropy conservation ones.

  12. New Ideas on Labeling Schemes

    DEFF Research Database (Denmark)

    Rotbart, Noy Galil

    in a distributed fashion increases. Second, attempting to answer queries on vertices of a graph stored in a distributed fashion can be significantly more complicated. In order to lay theoretical foundations to the first penalty mentioned a large body of work concentrated on labeling schemes. A labeling scheme...... evaluation of fully dynamic labeling schemes. Due to a connection between adjacency labeling schemes and the graph theoretical study of induced universal graphs, we study these in depth and show novel results for bounded degree graphs and power-law graphs. We also survey and make progress on the related...

  13. One-step lowrank wave extrapolation

    KAUST Repository

    Sindi, Ghada Atif


    Wavefield extrapolation is at the heart of modeling, imaging, and Full waveform inversion. Spectral methods gained well deserved attention due to their dispersion free solutions and their natural handling of anisotropic media. We propose a scheme a modified one-step lowrank wave extrapolation using Shanks transform in isotropic, and anisotropic media. Specifically, we utilize a velocity gradient term to add to the accuracy of the phase approximation function in the spectral implementation. With the higher accuracy, we can utilize larger time steps and make the extrapolation more efficient. Applications to models with strong inhomogeneity and considerable anisotropy demonstrates the utility of the approach.

  14. hybrid modulation scheme fo rid modulation scheme fo dulation ...

    African Journals Online (AJOL)


    This work proposes a switching technique for ca proposes a switching technique for ca. (SCSPWM) scheme is employed in the generation circulation schemes are presented for this concepts, it is now possible to generate equal ave pts, it is now possible to generate equal ave semiconductor switches. This results in equal ...

  15. Broadband non-polarizing terahertz beam splitters with variable split ratio

    KAUST Repository

    Wei, Minggui


    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  16. Step to improve neural cryptography against flipping attacks. (United States)

    Zhou, Jiantao; Xu, Qinzhen; Pei, Wenjiang; He, Zhenya; Szu, Harold


    Synchronization of neural networks by mutual learning has been demonstrated to be possible for constructing key exchange protocol over public channel. However, the neural cryptography schemes presented so far are not the securest under regular flipping attack (RFA) and are completely insecure under majority flipping attack (MFA). We propose a scheme by splitting the mutual information and the training process to improve the security of neural cryptosystem against flipping attacks. Both analytical and simulation results show that the success probability of RFA on the proposed scheme can be decreased to the level of brute force attack (BFA) and the success probability of MFA still decays exponentially with the weights' level L. The synchronization time of the parties also remains polynomial with L. Moreover, we analyze the security under an advanced flipping attack.

  17. Non-Mendelian transmission in a human developmental disorder: split hand/split foot.


    Jarvik, G. P.; Patton, M. A.; Homfray, T.; Evans, J. P.


    The study of Mendelian disorders that do not meet some Mendelian expectations has led to an increased understanding of such previously obscure genetic phenomena as anticipation. Split hand/split foot (SHSF), a human developmental malformation, demonstrates such distinctive genetic features as reduced penetrance and variable expressivity. In this study, new pedigrees with defined ascertainment confirm the existence of non-Mendelian transmission characterized by the overtransmission of SHSF fro...

  18. Splitting, splitting and splitting again: A brief history of the development of regional government in Indonesia since independence

    Directory of Open Access Journals (Sweden)

    Anne Booth


    Full Text Available The paper reviews the changes in the structure and role of provincial and sub-provincial governments in Indonesia since independence. Particular attention is paid to the process of splitting both provinces and districts (kabupaten and kota into smaller units. The paper points out that this process has been going on since the 1950s, but has accelerated in the post-Soeharto era. The paper examines why the splitting of government units has occurred in some parts of the Outer Islands to a much greater extent than in Java, and also examines the implications of developments since 1999 for the capacity of local government units to deliver basic services such as health and education.

  19. Step by Step Microsoft Office Visio 2003

    CERN Document Server

    Lemke, Judy


    Experience learning made easy-and quickly teach yourself how to use Visio 2003, the Microsoft Office business and technical diagramming program. With STEP BY STEP, you can take just the lessons you need, or work from cover to cover. Either way, you drive the instruction-building and practicing the skills you need, just when you need them! Produce computer network diagrams, organization charts, floor plans, and moreUse templates to create new diagrams and drawings quicklyAdd text, color, and 1-D and 2-D shapesInsert graphics and pictures, such as company logosConnect shapes to create a basic f

  20. Split mandrel versus split sleeve coldworking: Dual methods for extending the fatigue life of metal structures (United States)

    Rodman, Geoffrey A.; Creager, Matthew


    It is common practice to use split sleeve coldworking of fastener holes as a means of extending the fatigue life of metal structures. In search of lower manufacturing costs, the aerospace industry is examining the split mandrel (sleeveless) coldworking process as an alternative method of coldworking fastener holes in metal structures. The split mandrel process (SpM) significantly extends the fatigue life of metal structures through the introduction of a residual compressive stress in a manner that is very similar to the split sleeve system (SpSl). Since the split mandrel process is significantly less expensive than the split sleeve process and more adaptable to robotic automation, it will have a notable influence upon other new manufacture of metal structures which require coldworking a significant number of holes, provided the aerospace community recognizes that the resulting residual stress distributions and fatigue life improvement are the same for both processes. Considerable testing has validated the correctness of that conclusion. The findings presented in this paper represent the results of an extensive research and development program, comprising data collected from over 400 specimens fabricated from 2024-T3 and 7075-T651 aluminum alloys in varied configurations, which quantify the benefits (fatigue enhancement and cost savings) of automating a sleeveless coldworking system.

  1. Variable flavor scheme for final state jets

    International Nuclear Information System (INIS)

    Pietrulewicz, P.


    In this thesis I describe a setup to treat mass effects from secondary radiation of heavy quark pairs in inclusive hard scattering processes with various dynamical scales. The resulting variable flavor number scheme (VFNS) generalizes a well-known scheme for massive initial state quarks which has been developed for deep inelastic scattering (DIS) in the classical region 1 - x ⁓ O(1) and which will be also discussed here. The setup incorporated in the formalism of Soft-Collinear Effective Theory (SCET) consistently takes into account the effects of massive quark loops and allows to deal with all hierarchies between the mass scale and the involved kinematic scales corresponding to collinear and soft radiation. It resums all large logarithms due to flavor number dependent evolution, achieves both decoupling for very large masses and the correct massless behavior for very small masses, and provides a continuous description in between. In the bulk of this work I will concentrate on DIS in the endpoint region x → 1 serving mainly as a showcase for the concepts and on the thrust distribution for e + e - -collisions in the dijet limit as a phenomenologically relevant example for an event shape. The computations of the corrections to the structures in the factorization theorems are described explicitly for the singular terms at O(α s 2 C F T F ) arising from secondary radiation of massive quarks through gluon splitting. Apart from the soft function for thrust, which requires a dedicated calculation, these results are directly obtained from the corresponding results for the radiation of a massive gauge boson with vector coupling at O(α s ) with the help of dispersion relations, and most of the relevant conceptual and technical issues can be dealt with already at this level. Finally, to estimate the impact of the corrections I carry out a numerical analysis for secondary massive bottom and top quarks on thrust distributions at different center-of-mass energies

  2. Effect of Split-File Digital Workflow on Crown Margin Adaptation (United States)


    implant -supported crowns is a common procedure in dental practice. Computer- aided design /computer-aided manufacturing (CAD/CAM) has broadened the...interest Abstract Purpose: Computer-aided design /computer-aided manufacturing (CAD/CAM) is becoming increasingly integrated into dental practice...negating need for intermediary steps that add time and resources. Providers may design restorations from the implant up and split this restoration

  3. A gradient stable scheme for a phase field model for the moving contact line problem

    KAUST Repository

    Gao, Min


    In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.

  4. Progress with multigrid schemes for hypersonic flow problems

    International Nuclear Information System (INIS)

    Radespiel, R.; Swanson, R.C.


    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 X 10 6 and Mach numbers up to 25. 32 refs., 31 figs., 1 tab

  5. Nonoscillatory shock capturing scheme using flux limited dissipation

    International Nuclear Information System (INIS)

    Jameson, A.


    A method for modifying the third order dissipative terms by the introduction of flux limiters is proposed. The first order dissipative terms can then be eliminated entirely, and in the case of a scalar conservation law the scheme is converted into a total variation diminishing scheme provided that an appropriate value is chosen for the dissipative coefficient. Particular attention is given to: (1) the treatment of the scalar conservation law; (2) the treatment of the Euler equations for inviscid compressible flow; (3) the boundary conditions; and (4) multistage time stepping and multigrid schemes. Numerical results for transonic flows suggest that a central difference scheme augmented by flux limited dissipative terms can lead to an effective nonoscillatory shock capturing method. 20 references

  6. Diabetes PSA (:30) Step By Step

    Centers for Disease Control (CDC) Podcasts


    First steps to preventing diabetes. For Hispanic and Latino American audiences.  Created: 10/24/2009 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health.   Date Released: 10/24/2009.

  7. Diabetes PSA (:60) Step By Step

    Centers for Disease Control (CDC) Podcasts


    First steps to preventing diabetes. For Hispanic and Latino American audiences.  Created: 10/24/2009 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health.   Date Released: 10/24/2009.


    African Journals Online (AJOL)

    The schemes are based on rational interpolation obtained from canonical polynomials. They are A-stable. The test problems show that they give better results than Euler backward method and trapezoidal method near a singular point. KEY WORDS: backward differentiation scheme, collocation, initial value problems.

  9. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young


    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  10. A Regularized Algorithm for the Proximal Split Feasibility Problem

    Directory of Open Access Journals (Sweden)

    Zhangsong Yao


    Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.

  11. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats. (United States)

    Frigon, A; Thibaudier, Y; Hurteau, M-F


    The modulation of the neural output to forelimb and hindlimb muscles when the left and right sides step at different speeds from one another in quadrupeds was assessed by obtaining electromyography (EMG) in seven intact adult cats during split-belt locomotion. To determine if changes in EMG during split-belt locomotion were modulated according to the speed of the belt the limb was stepping on, values were compared to those obtained during tied-belt locomotion (equal left-right speeds) at matched speeds. Cats were chronically implanted for EMG, which was obtained from six muscles: biceps brachii, triceps brachii, flexor carpi ulnaris, sartorius, vastus lateralis and medial gastrocnemius. During tied-belt locomotion, cats stepped from 0.4 to 1.0m/s in 0.1m/s increments whereas during split-belt locomotion, cats stepped with left-right speed differences of 0.1 to 0.4m/s in 0.1m/s increments. During tied-belt locomotion, EMG burst durations and mean EMG amplitudes of all muscles respectively decreased and increased with increasing speed. During split-belt locomotion, there was a clear differential modulation of the EMG patterns between flexors and extensors and between the slow and fast sides. Changes in the EMG pattern of some muscles could be explained by the speed of the belt the limb was stepping on, while in other muscles there were clear dissociations from tied-belt values at matched speeds. Therefore, results show that EMG patterns during split-belt locomotion are modulated to meet task requirements partly via signals related to the stepping speed of the homonymous limb and from the other limbs. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling. (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W


    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  13. Meshed split skin graft for extensive vitiligo

    Directory of Open Access Journals (Sweden)

    Srinivas C


    Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.

  14. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro


    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  15. On split Lie triple systems II

    Indian Academy of Sciences (India)

    In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces. Author Affiliations. Antonio J Calderón Martín1 M Forero Piulestán1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 24 June 2009 ...

  16. The chirally split diffeomorphism anomaly and the μ-holomorphic projective connection

    International Nuclear Information System (INIS)

    Kachkachi, M.; Dafounansou, O.; El Rhalami


    The relationship between the μ-holomorphic projective connection and the action Γ II necessary to write down the chirally split diffeomorphism anomaly when it is shifted to the Weyl anomaly is given. Then, using the δ bar-Cauchy kernel on the complex plane to solve the μ-holomorphic projective connection equation, we get the general expression for this type of projective connection. This enables us to compute the Green's functions contribution of the action Γ II to the shifting scheme. (author)

  17. Investigation of an upwind finite element flux-split algorithm for the steady compressible Euler equations (United States)

    Lamarche, L.; Degrez, G.; Prince, A.

    A method is described that combines the geometric flexibility of finite element methodology with recent developments of high-resolution finite difference schemes for hyperbolic systems of equations. It is proposed to use the standard weighted residual approach to set up the discrete equations. Upwinding is then achieved via a modified quadrature rule. The Gaussian point is chosen to match the finite difference discretization on a model scalar equation. The extension to systems of equations is then obtained following the flux-splitting approach suggested by Steger and Warming (1981) and Van Leer (1982).

  18. Space-Time Transformation in Flux-form Semi-Lagrangian Schemes

    Directory of Open Access Journals (Sweden)

    Peter C. Chu Chenwu Fan


    Full Text Available With a finite volume approach, a flux-form semi-Lagrangian (TFSL scheme with space-time transformation was developed to provide stable and accurate algorithm in solving the advection-diffusion equation. Different from the existing flux-form semi-Lagrangian schemes, the temporal integration of the flux from the present to the next time step is transformed into a spatial integration of the flux at the side of a grid cell (space for the present time step using the characteristic-line concept. The TFSL scheme not only keeps the good features of the semi-Lagrangian schemes (no Courant number limitation, but also has higher accuracy (of a second order in both time and space. The capability of the TFSL scheme is demonstrated by the simulation of the equatorial Rossby-soliton propagation. Computational stability and high accuracy makes this scheme useful in ocean modeling, computational fluid dynamics, and numerical weather prediction.

  19. A Regev-Type Fully Homomorphic Encryption Scheme Using Modulus Switching (United States)

    Chen, Zhigang; Wang, Jian; Song, Xinxia


    A critical challenge in a fully homomorphic encryption (FHE) scheme is to manage noise. Modulus switching technique is currently the most efficient noise management technique. When using the modulus switching technique to design and implement a FHE scheme, how to choose concrete parameters is an important step, but to our best knowledge, this step has drawn very little attention to the existing FHE researches in the literature. The contributions of this paper are twofold. On one hand, we propose a function of the lower bound of dimension value in the switching techniques depending on the LWE specific security levels. On the other hand, as a case study, we modify the Brakerski FHE scheme (in Crypto 2012) by using the modulus switching technique. We recommend concrete parameter values of our proposed scheme and provide security analysis. Our result shows that the modified FHE scheme is more efficient than the original Brakerski scheme in the same security level. PMID:25093212

  20. Transonymization as Revitalization: Old Toponyms of Split

    Directory of Open Access Journals (Sweden)

    Katarina Lozić Knezović


    Full Text Available The paper deals with ancient toponyms of Split, a city in the centre of the Croatian region of Dalmatia. Along with numerous monuments of spiritual and material culture, toponyms are part of the two-thousand-year-old city’s historical heritage. Split in particular abounds with sources that provide valuable information concerning ancient toponyms. In terms of the study and preservation of toponymy, three basic sources are crucial: the living oral tradition, written records, and old charts — mostly cadastral plans. In addition to researching, recording, documenting, and publishing Split’s ancient place names through toponomastic, geographical, and town planning studies, toponymic heritage preservation is also implemented through the direct use of the names in everyday life. One of the ways of such revitalization of Split’s ancient place names is their transonymization into the category of chrematonyms, i.e. their secondary use as names of institutions, shops, restaurants, schools, sports associations and facilities, bars and coffee shops, cemeteries, and so on. The present paper provides a classification and etymological analysis of detoponymic chrematonyms of Split. The authors propose measures to raise public awareness of the historical information conveyed by the names and raise some issues for consideration regarding further study of transonymization as a means of revitalizing local toponymic tradition.

  1. 26 CFR 1.7872-15 - Split-dollar loans. (United States)


    ...) INCOME TAXES General Actuarial Valuations § 1.7872-15 Split-dollar loans. (a) General rules—(1... split-dollar loan depend upon the relationship between the parties and upon whether the loan is a demand...-dollar demand loan is any split-dollar loan that is payable in full at any time on the demand of the...

  2. 7 CFR 51.2731 - U.S. Spanish Splits. (United States)


    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or broken...

  3. Symplectic integrators with adaptive time steps (United States)

    Richardson, A. S.; Finn, J. M.


    In recent decades, there have been many attempts to construct symplectic integrators with variable time steps, with rather disappointing results. In this paper, we identify the causes for this lack of performance, and find that they fall into two categories. In the first, the time step is considered a function of time alone, Δ = Δ(t). In this case, backward error analysis shows that while the algorithms remain symplectic, parametric instabilities may arise because of resonance between oscillations of Δ(t) and the orbital motion. In the second category the time step is a function of phase space variables Δ = Δ(q, p). In this case, the system of equations to be solved is analyzed by introducing a new time variable τ with dt = Δ(q, p) dτ. The transformed equations are no longer in Hamiltonian form, and thus do not benefit from integration methods which would be symplectic for Hamiltonian systems. We analyze two methods for integrating the transformed equations which do, however, preserve the structure of the original equations. The first is an extended phase space method, which has been successfully used in previous studies of adaptive time step symplectic integrators. The second, novel, method is based on a non-canonical mixed-variable generating function. Numerical trials for both of these methods show good results, without parametric instabilities or spurious growth or damping. It is then shown how to adapt the time step to an error estimate found by backward error analysis, in order to optimize the time-stepping scheme. Numerical results are obtained using this formulation and compared with other time-stepping schemes for the extended phase space symplectic method.

  4. MO-DE-207A-07: Filtered Iterative Reconstruction (FIR) Via Proximal Forward-Backward Splitting: A Synergy of Analytical and Iterative Reconstruction Method for CT

    International Nuclear Information System (INIS)

    Gao, H


    Purpose: This work is to develop a general framework, namely filtered iterative reconstruction (FIR) method, to incorporate analytical reconstruction (AR) method into iterative reconstruction (IR) method, for enhanced CT image quality. Methods: FIR is formulated as a combination of filtered data fidelity and sparsity regularization, and then solved by proximal forward-backward splitting (PFBS) algorithm. As a result, the image reconstruction decouples data fidelity and image regularization with a two-step iterative scheme, during which an AR-projection step updates the filtered data fidelity term, while a denoising solver updates the sparsity regularization term. During the AR-projection step, the image is projected to the data domain to form the data residual, and then reconstructed by certain AR to a residual image which is in turn weighted together with previous image iterate to form next image iterate. Since the eigenvalues of AR-projection operator are close to the unity, PFBS based FIR has a fast convergence. Results: The proposed FIR method is validated in the setting of circular cone-beam CT with AR being FDK and total-variation sparsity regularization, and has improved image quality from both AR and IR. For example, AIR has improved visual assessment and quantitative measurement in terms of both contrast and resolution, and reduced axial and half-fan artifacts. Conclusion: FIR is proposed to incorporate AR into IR, with an efficient image reconstruction algorithm based on PFBS. The CBCT results suggest that FIR synergizes AR and IR with improved image quality and reduced axial and half-fan artifacts. The authors was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).

  5. New advection schemes for free surface flows

    International Nuclear Information System (INIS)

    Pavan, Sara


    The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in

  6. Microsoft Office Word 2007 step by step

    CERN Document Server

    Cox, Joyce


    Experience learning made easy-and quickly teach yourself how to create impressive documents with Word 2007. With Step By Step, you set the pace-building and practicing the skills you need, just when you need them!Apply styles and themes to your document for a polished lookAdd graphics and text effects-and see a live previewOrganize information with new SmartArt diagrams and chartsInsert references, footnotes, indexes, a table of contentsSend documents for review and manage revisionsTurn your ideas into blogs, Web pages, and moreYour all-in-one learning experience includes:Files for building sk

  7. A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations

    KAUST Repository

    Liu, Meilin


    A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.

  8. Likely near-term solar-thermal water splitting technologies

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, C.; Weimer, A.W. [University of Colorado, Boulder, CO (United States). Engineering Center


    Thermodynamic and materials considerations were made for some two- and three-step thermochemical cycles to split water using solar-thermal processing. The direct thermolysis of water to produce H{sub 2} using solar-thermal processing is unlikely in the near term due to ultra-high-temperature requirements exceeding 3000 K and the need to separate H{sub 2} from O{sub 2} at these temperatures. However, several lower temperature (<2500 K) thermochemical cycles including ZnO/Zn, Mn{sub 2}O{sub 3}/MnO, substituted iron oxide, and the sulfur-iodine route (S-I) provide an opportunity for high-temperature solar-thermal development. Although zirconia-based materials are well suited for metal oxide routes in terms of chemical compatibility at these temperatures, thermal shock issues are a major concern for solar-thermal applications. Hence, efforts need to be directed towards methods for designing reactors to eliminate thermal shock (ZrO{sub 2} based) or that use graphite (very compatible in terms of temperature and thermal shock) with designs that prevent contact of chemical species with graphite materials at high temperatures. Fluid-wall reactor configurations where inert gases provide a blanket to protect the graphite wall appear promising in this regard, but their use will impact process efficiency. For the case of S-I up to 1800 K, silicon carbide appears to be a suitable material for the high-temperature H{sub 2}SO{sub 4} dissociation. There is a need for a significant amount of work to be done in the area of high-temperature solar-thermal reactor engineering to develop thermochemical water splitting processes. (author)

  9. Communication: spin-orbit splittings in degenerate open-shell states via Mukherjee's multireference coupled-cluster theory: a measure for the coupling contribution. (United States)

    Mück, Leonie Anna; Gauss, Jürgen


    We propose a generally applicable scheme for the computation of spin-orbit (SO) splittings in degenerate open-shell systems using multireference coupled-cluster (MRCC) theory. As a specific method, Mukherjee's version of MRCC (Mk-MRCC) in conjunction with an effective mean-field SO operator is adapted for this purpose. An expression for the SO splittings is derived and implemented using Mk-MRCC analytic derivative techniques. The computed SO splittings are found to be in satisfactory agreement with experimental data. Due to the symmetry properties of the SO operator, SO splittings can be considered a quality measure for the coupling between reference determinants in Jeziorski-Monkhorst based MRCC methods. We thus provide numerical insights into the coupling problem of Mk-MRCC theory. © 2012 American Institute of Physics

  10. Splitting methods for split feasibility problems with application to Dantzig selectors (United States)

    He, Hongjin; Xu, Hong-Kun


    The split feasibility problem (SFP), which refers to the task of finding a point that belongs to a given nonempty, closed and convex set, and whose image under a bounded linear operator belongs to another given nonempty, closed and convex set, has promising applicability in modeling a wide range of inverse problems. Motivated by the increasingly data-driven regularization in the areas of signal/image processing and statistical learning, in this paper, we study the regularized split feasibility problem (RSFP), which provides a unified model for treating many real-world problems. By exploiting the split nature of the RSFP, we shall gainfully employ several efficient splitting methods to solve the model under consideration. A remarkable advantage of our methods lies in their easier subproblems in the sense that the resulting subproblems have closed-form representations or can be efficiently solved up to a high precision. As an interesting application, we apply the proposed algorithms for finding Dantzig selectors, in addition to demonstrating the effectiveness of the splitting methods through some computational results on synthetic and real medical data sets.

  11. Spectral scheme for spacetime physics

    International Nuclear Information System (INIS)

    Seriu, Masafumi


    Based on the spectral representation of spatial geometry, we construct an analysis scheme for spacetime physics and cosmology, which enables us to compare two or more universes with each other. In this scheme the spectral distance plays a central role, which is the measure of closeness between two geometries defined in terms of the spectra. We apply this scheme for analyzing the averaging problem in cosmology; we explicitly investigate the time evolution of the spectra, distance between two nearby spatial geometries, simulating the relation between the real Universe and its model. We then formulate the criteria for a model to be a suitable one

  12. Coordinated renewable energy support schemes

    DEFF Research Database (Denmark)

    Morthorst, P.E.; Jensen, S.G.


    This paper illustrates the effect that can be observed when support schemes for renewable energy are regionalised. Two theoretical examples are used to explain interactive effects on, e.g., the price of power, conditions for conventional power producers, and changes in import and export of power...... RES-E support schemes already has a common liberalised power market. In this case the introduction of a common support scheme for renewable technologies will lead to more efficient sitings of renewable plants, improving economic and environmental performance of the total power system...

  13. Block factorization of step response model predictive control problems

    DEFF Research Database (Denmark)

    Kufoalor, D. K.M.; Frison, Gianluca; Imsland, L.


    implemented in the HPMPC framework, and the performance is evaluated through simulation studies. The results confirm that a computationally fast controller is achieved, compared to the traditional step response MPC scheme that relies on an explicit prediction formulation. Moreover, the tailored condensing......By introducing a stage-wise prediction formulation that enables the use of highly efficient quadratic programming (QP) solution methods, this paper expands the computational toolbox for solving step response MPC problems. We propose a novel MPC scheme that is able to incorporate step response data...... algorithm exhibits superior performance and produces solution times comparable to that achieved when using a condensing scheme for an equivalent (but much smaller) state-space model derived from first-principles. Implementation aspects necessary for high performance on embedded platforms are discussed...

  14. Pension scheme in Austria

    Directory of Open Access Journals (Sweden)

    Greta Alikaj


    Full Text Available Driven by unfavorable demographic developments and unsustainable, outdated or fragmented systems, pension reform has been at the top of political agendas across the globe for many years now (Prinz, Stanovnik & Stropnik, 2000. Over the last two decades, almost all western European countries have been trimming their public pension systems in an effort to strengthen pension sustainability. One main target of reform was to increase the retirement age. Other measures (e.g. changing the pension calculation, broadening the assessment base, changing the adjustment mechanism were designed to lower replacement rates. The reform process in the wide range of countries addressed by this survey differs considerably from country to country. This is why Allianz first introduced the Pension Sustainability Index (PSI, which combines the various characteristics of pension systems with the factors that influence them to help track and evaluate policy changes made in different countries around the world. In addressing the sustainability of a country’s public pension system, the PSI can give an indication of a country’s need for reforms to maintain long-term financial sustainability. This can be difficult to assess given the many country-specific institutional, technical and legal parameters. The PSI is able to evaluate the long-term sustainability of national pension systems and thus the pressure on governments to reform these (International pension Papers, 1.2014. The speed of reform, however, differs between countries. Those which recently introduced major reforms were able to improve in the PSI ranking because of active steps taken, while others were lost in comparison due to their passive policymaking.

  15. Insights Into Electrochemical and Photoelectrochemical Water-Splitting (United States)

    Vargas-Barbosa, Nella M.

    The water-splitting reaction has been known for over a century, yet its efficient execution remains to be one of the "holy grails" for current researchers. Here, molecular water is converted to oxygen and hydrogen gas via multiple proton- and electron-transfer steps. Although the product of interest is high-purity hydrogen gas fuel, the thermodynamic and kinetic requirements of the oxygen evolution reaction (OER) are the main limiting factor. The goal of this dissertation was to develop and understand model electro- and photoelectro-catalytic systems that can address the kinetic limitations of the OER, as well as guidelines for the future development of water-splitting devices. Chapter 1 introduces the kinetic theory of heterogeneous electron-transfer reactions and how it is applied to the understanding of the watersplitting reaction. The chemical properties that make iridium oxide an ideal model electrocatalyst for the OER are discussed, as well as an overview of previous work on this material. Furthermore, the fundamentals of photo-electrochemical water-splitting are presented. Here, sunlight is used as the main driving force for producing oxygen and hydrogen. It has been previously demonstrated that the synthesis of IrOx˙nH 2O colloids by alkaline hydrolysis of Ir(III) or Ir(IV) salts proceeds through iridium hydroxide intermediates. Chapter 2 is a detailed spectro-electrochemical and DFT study of such intermediates and their effect in photoelectrochemical water-splitting cells. Primarily, we have identified the monomeric nature of this hydroxide intermediates as well as their most likely chemical composition and their relative ratio between Ir(III) and Ir(IV). The results from this study address a very important, current dilemma in IrOx˙nH2O-based photoelectrochemical water-splitting cells: how does the chemistry of the catalyst and its interface with the semiconductor influence the photoresponse of the cell? The careful preparation and characterization of

  16. Flow Cytometric Bead Sandwich Assay Based on a Split Aptamer. (United States)

    Shen, Luyao; Bing, Tao; Liu, Xiangjun; Wang, Junyan; Wang, Linlin; Zhang, Nan; Shangguan, Dihua


    A few aptamers still bind their targets after being split into two moieties. Split aptamers have shown great potential in the development of aptameric sensors. However, only a few split aptamers have been generated because of lack of knowledge on the binding structure of their parent aptamers. Here, we report the design of a new split aptamer and a flow cytometric bead sandwich assay using a split aptamer instead of double antibodies. Through DMS footprinting and mutation assay, we figured out the target-binding moiety and the structure-stabilizing moiety of the l-selectin aptamer, Sgc-3b. By separating the duplex strand in the structure-stabilizing moiety, we obtained a split aptamer that bound l-selectin. After optimization of one part of the split sequence to eliminate the nonspecific binding of the split sequence pair, we developed a split-aptamer-based cytometric bead assay (SACBA) for the detection of soluble l-selectin. SACBA showed good sensitivity and selectivity to l-selectin and was successfully applied for the detection of spiked l-selectin in the human serum. The strategies for generating split aptamers and designing the split-aptamer-based sandwich assay are simple and efficient and show good practicability in aptamer engineering.

  17. Relaxation schemes for Chebyshev spectral multigrid methods (United States)

    Kang, Yimin; Fulton, Scott R.


    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  18. An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations

    Directory of Open Access Journals (Sweden)

    João Luiz F. Azevedo


    Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.

  19. SplitRFLab: A MATLAB GUI toolbox for receiver function analysis based on SplitLab (United States)

    Xu, Mijian; Huang, Hui; Huang, Zhouchuan; Wang, Liangshu


    We add new modules for receiver function (RF) analysis in SplitLab toolbox, which includes the manual RF analysis module, automatic RF analysis and related quality control modules, and H- k stacking module. The updated toolbox (named SplitRFLab toolbox), especially its automatic RF analysis module, could calculate the RFs quickly and efficiently, which is very useful in RF analysis with huge amount of seismic data. China is now conducting the ChinArray project that plans to deploy thousands of portable stations across Chinese mainland. Our SplitRFLab toolbox may obtain reliable RF results quickly at the first time, which provide essentially new constraint to the crustal and mantle structures.

  20. A VR Based Interactive Genetic Algorithm Framework For Design of Support Schemes to Deep Excavations

    International Nuclear Information System (INIS)

    Wei, Riyu; Wu, Heng


    An interactive genetic algorithm (IGA) framework for the design of support schemes to deep excavations is proposed in this paper, in which virtual reality (VR) is used as an aid to the evaluation of design schemes that is performed interactively. The fitness of a scheme individual is evaluated by two steps. Firstly a fitness value is automatically assigned to a scheme individual according to the the estimated construction cost of the individual. And the human evaluation is introduced to modify the fitness value by taking into account other factors, such as the feasibility factor. The design scheme is composed of four basic categories, i. e., cantilever walls, reinforced soil walls, tieback systems and bracing systems, each of which is encoded by a binary string. To assist human evaluation, 3D models of design schemes are created and visualized in a virtual reality environment, providing designers with a reality sense of various schemes

  1. Good governance for pension schemes

    CERN Document Server

    Thornton, Paul


    Regulatory and market developments have transformed the way in which UK private sector pension schemes operate. This has increased demands on trustees and advisors and the trusteeship governance model must evolve in order to remain fit for purpose. This volume brings together leading practitioners to provide an overview of what today constitutes good governance for pension schemes, from both a legal and a practical perspective. It provides the reader with an appreciation of the distinctive characteristics of UK occupational pension schemes, how they sit within the capital markets and their social and fiduciary responsibilities. Providing a holistic analysis of pension risk, both from the trustee and the corporate perspective, the essays cover the crucial role of the employer covenant, financing and investment risk, developments in longevity risk hedging and insurance de-risking, and best practice scheme administration.

  2. Tradable credit scheme for rush hour travel choice with heterogeneous commuters

    Directory of Open Access Journals (Sweden)

    Ling-Ling Xiao


    Full Text Available This article proposes a tradable credit scheme for managing commuters’ travel choices. The scheme considers bottleneck congestion and modal split in a competitive highway–transit network with heterogeneous commuters who are distinguished by their valuation of travel time. The scheme charges all auto travelers who pass the bottleneck during a peak-time window in the form of mobility credits. Those who avoid the peak-time window, by either traveling outside the peak-time window or switching to the transit mode, may be rewarded credits. An artificial market is created so that the travelers may trade these credits with each other. We formulate the credit price and the rewarded and charged credits under tradable credit scheme. Our analyses indicate that the optimal tradable credit scheme can achieve nearly 40% efficiency gains depending on the level of commuters’ heterogeneity. In addition, this scheme distributes the benefits among all the commuters directly through the credit trading. Our results suggest that in assessing the efficiency of tradable credit scheme, it is important to take into account the commuters’ heterogeneity. Numerical experiments are conducted to examine the sensitivity of tradable credit scheme designs to various system parameters.

  3. Numerical schemes for explosion hazards

    International Nuclear Information System (INIS)

    Therme, Nicolas


    In nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. Blast waves resulting from explosions are modeled by the system of Euler equations for compressible flows, whereas Navier-Stokes equations with reactive source terms and level set techniques are used to simulate the propagation of flame front during the deflagration phase. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations, then the buildup of reliable schemes for the front propagation. In both cases, explicit in time schemes are used, but we also introduce a pressure correction scheme for the Euler equations. Staggered discretization is used in space. It is based on the internal energy formulation of the Euler system, which insures its positivity and avoids tedious discretization of the total energy over staggered grids. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance at the limit. High order methods of MUSCL type are used in the discrete convective operators, based solely on material velocity. They lead to positivity of density and internal energy under CFL conditions. This ensures that the total energy cannot grow and we can furthermore derive a discrete entropy inequality. Under stability assumptions of the discrete L8 and BV norms of the scheme's solutions one can prove that a sequence of converging discrete solutions necessarily converges towards the weak solution of the Euler system. Besides it satisfies a weak entropy inequality at the limit. Concerning the front propagation, we transform the flame front evolution equation (the so

  4. Breeding schemes in reindeer husbandry

    Directory of Open Access Journals (Sweden)

    Lars Rönnegård


    Full Text Available The objective of the paper was to investigate annual genetic gain from selection (G, and the influence of selection on the inbreeding effective population size (Ne, for different possible breeding schemes within a reindeer herding district. The breeding schemes were analysed for different proportions of the population within a herding district included in the selection programme. Two different breeding schemes were analysed: an open nucleus scheme where males mix and mate between owner flocks, and a closed nucleus scheme where the males in non-selected owner flocks are culled to maximise G in the whole population. The theory of expected long-term genetic contributions was used and maternal effects were included in the analyses. Realistic parameter values were used for the population, modelled with 5000 reindeer in the population and a sex ratio of 14 adult females per male. The standard deviation of calf weights was 4.1 kg. Four different situations were explored and the results showed: 1. When the population was randomly culled, Ne equalled 2400. 2. When the whole population was selected on calf weights, Ne equalled 1700 and the total annual genetic gain (direct + maternal in calf weight was 0.42 kg. 3. For the open nucleus scheme, G increased monotonically from 0 to 0.42 kg as the proportion of the population included in the selection programme increased from 0 to 1.0, and Ne decreased correspondingly from 2400 to 1700. 4. In the closed nucleus scheme the lowest value of Ne was 1300. For a given proportion of the population included in the selection programme, the difference in G between a closed nucleus scheme and an open one was up to 0.13 kg. We conclude that for mass selection based on calf weights in herding districts with 2000 animals or more, there are no risks of inbreeding effects caused by selection.

  5. Small-scale classification schemes

    DEFF Research Database (Denmark)

    Hertzum, Morten


    . While coordination mechanisms focus on how classification schemes enable cooperation among people pursuing a common goal, boundary objects embrace the implicit consequences of classification schemes in situations involving conflicting goals. Moreover, the requirements specification focused on functional...... requirements and provided little information about why these requirements were considered relevant. This stands in contrast to the discussions at the project meetings where the software engineers made frequent use of both abstract goal descriptions and concrete examples to make sense of the requirements...

  6. Method of orthogonally splitting imaging pose measurement (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong


    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  7. Injuries caused by firewood splitting machines. (United States)

    Hellstrand, P H


    The aim of this paper is to present the types of injury caused by firewood splitting machines and also to elucidate the accident mechanism. The study is based on 15 cases. The machine has a rotating spiral cone, and usually the victims' gloved fingertips were caught by the point of the cone. This led to either amputations, usually of radial fingers and/or penetrating wounds through the middle of the hand. In most cases the accidents could not be blamed on bad working techniques. The study of the mechanisms of injury points to insufficient protective devices in a machine construction which has a potentially dangerous working principle.

  8. Computational Abstraction Steps

    DEFF Research Database (Denmark)

    Thomsen, Lone Leth; Thomsen, Bent; Nørmark, Kurt


    and class instantiations. Our teaching experience shows that many novice programmers find it difficult to write programs with abstractions that materialise to concrete objects later in the development process. The contribution of this paper is the idea of initiating a programming process by creating......In this paper we discuss computational abstraction steps as a way to create class abstractions from concrete objects, and from examples. Computational abstraction steps are regarded as symmetric counterparts to computational concretisation steps, which are well-known in terms of function calls...

  9. Urease inhibitor (NBPT and efficiency of single or split application of urea in wheat crop

    Directory of Open Access Journals (Sweden)

    Marcelo Curitiba Espindula


    Full Text Available NBPT (N-(n-butyl thiophosphoric triamide, a urease inhibitor, has been reported as one of the most promising compounds to maximize urea nitrogen use in agricultural systems. The objective of this study was to evaluate the performance of irrigated wheat fertilized with urea or urea + NBPT as single or split application. The experiment was conducted from June to October 2006 in Viçosa, MG, Brazil. The experimental design followed a 2×2 factorial scheme, in which urea or urea + NBPT were combined with two modes of application: full dose at sowing (60kg ha-1 or split (20kg ha-1 at sowing + 40kg ha-1 as topdressing at tillering, in randomized blocks with ten replications. The split application of nitrogen fertilization does not improve the yield wheat under used conditions. The use of urease inhibitor improves the grain yield of wheat crop when urea is applied in topdressing at tillering, but its use does not promote difference when urea is applied in the furrow at planting.

  10. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering. (United States)

    Shinagawa, Tatsuya; Takanabe, Kazuhiro


    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Set of difference spitting schemes for solving the Navier-Stokes incompressible equations in natural variables

    International Nuclear Information System (INIS)

    Koleshko, S.B.


    A three-parametric set of difference schemes is suggested to solve Navier-Stokes equations with the use of the relaxation form of the continuity equation. The initial equations are stated for time increments. Use is made of splitting the operator into one-dimensional forms that reduce calculations to scalar factorizations. Calculated results for steady- and unsteady-state flows in a cavity are presented

  12. Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force (United States)

    Vazquez, Alejandro; Statton, Matthew A.; Busgang, Stefanie A.


    Motor learning during reaching not only recalibrates movement but can also lead to small but consistent changes in the sense of arm position. Studies have suggested that this sensory effect may be the result of recalibration of a forward model that associates motor commands with their sensory consequences. Here we investigated whether similar perceptual changes occur in the lower limbs after learning a new walking pattern on a split-belt treadmill—a task that critically involves proprioception. Specifically, we studied how this motor learning task affects perception of leg speed during walking, perception of leg position during standing or walking, and perception of contact force during stepping. Our results show that split-belt adaptation leads to robust motor aftereffects and alters the perception of leg speed during walking. This is specific to the direction of walking that was trained during adaptation (i.e., backward or forward). The change in leg speed perception accounts for roughly half of the observed motor aftereffect. In contrast, split-belt adaptation does not alter the perception of leg position during standing or walking and does not change the perception of stepping force. Our results demonstrate that there is a recalibration of a sensory percept specific to the domain of the perturbation that was applied during walking (i.e., speed but not position or force). Furthermore, the motor and sensory consequences of locomotor adaptation may be linked, suggesting overlapping mechanisms driving changes in the motor and sensory domains. PMID:26424576

  13. Giant onsite electronic entropy enhances the performance of ceria for water splitting. (United States)

    Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris


    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.

  14. Efficient and Effective Total Variation Image Super-Resolution: A Preconditioned Operator Splitting Approach

    Directory of Open Access Journals (Sweden)

    Li-Li Huang


    Full Text Available Super-resolution is a fusion process for reconstructing a high-resolution image from a set of low-resolution images. This paper proposes a novel approach to image super-resolution based on total variation (TV regularization. We applied the Douglas-Rachford splitting technique to the constrained TV-based variational SR model which is separated into three subproblems that are easy to solve. Then, we derive an efficient and effective iterative scheme, which includes a fast iterative shrinkage/thresholding algorithm for denoising problem, a very simple noniterative algorithm for fusion part, and linear equation systems for deblurring process. Moreover, to speed up convergence, we provide an accelerated scheme based on precondition design of initial guess and forward-backward splitting technique which yields linear systems of equations with a nice structure. The proposed algorithm shares a remarkable simplicity together with a proven global rate of convergence which is significantly better than currently known lagged diffusivity fixed point iteration algorithm and fast decoupling algorithm by exploiting the alternating minimizing approach. Experimental results are presented to illustrate the effectiveness of the proposed algorithm.

  15. Randomized clinical trial comparing fixed-time split dosing and split dosing of oral Picosulfate regimen for bowel preparation. (United States)

    Jun, Jae Hyuck; Han, Koon Hee; Park, Jong Kyu; Seo, Hyun Il; Kim, Young Don; Lee, Sang Jin; Jun, Baek Gyu; Hwang, Min Sik; Park, Yoon Kyoo; Kim, Myeong Jong; Cheon, Gab Jin


    To compare the efficacy of fixed-time split dose and split dose of an oral sodium picosulfate for bowel preparation. This is study was prospective, randomized controlled study performed at a single Institution (2013-058). A total of 204 subjects were assigned to receive one of two sodium picosulfate regimens ( i.e ., fixed-time split or split) prior to colonoscopy. Main outcome measurements were bowel preparation quality and subject tolerability. There was no statistical difference between the fixed-time split dose regimen group and the split dose regimen group (Ottawa score mean 2.57 ± 1.91 vs 2.80 ± 2.51, P = 0.457). Cecal intubation time and physician's satisfaction of inspection were not significantly different between the two groups ( P = 0.428, P = 0.489). On subgroup analysis, for afternoon procedures, the fixed-time split dose regimen was equally effective as compared with the split dose regimen (Ottawa score mean 2.56 ± 1.78 vs 2.59 ± 2.27, P = 0.932). There was no difference in tolerability or compliance between the two groups. Nausea was 21.2% in the fixed-time split dose group and 14.3% in the split dose group ( P = 0.136). Vomiting was 7.1% and 2.9% ( P = 0.164), abdominal discomfort 7.1% and 4.8% ( P = 0.484), dizziness 1% and 4.8% ( P = 0.113), cold sweating 1% and 0% ( P = 0.302) and palpitation 0% and 1% ( P = 0.330), respectively. Sleep disturbance was two (2%) patients in the fixed-time split dose group and zero (0%) patient in the split dose preparation ( P = 0.143) group. A fixed-time split dose regimen with sodium picosulfate is not inferior to a split dose regimen for bowel preparation and equally effective for afternoon colonoscopy.

  16. The Regularity of Functions on Dual Split Quaternions in Clifford Analysis

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim


    Full Text Available This paper shows some properties of dual split quaternion numbers and expressions of power series in dual split quaternions and provides differential operators in dual split quaternions and a dual split regular function on Ω⊂ℂ2×ℂ2 that has a dual split Cauchy-Riemann system in dual split quaternions.

  17. Optimized low-order explicit Runge-Kutta schemes for high- order spectral difference method

    KAUST Repository

    Parsani, Matteo


    Optimal explicit Runge-Kutta (ERK) schemes with large stable step sizes are developed for method-of-lines discretizations based on the spectral difference (SD) spatial discretization on quadrilateral grids. These methods involve many stages and provide the optimal linearly stable time step for a prescribed SD spectrum and the minimum leading truncation error coefficient, while admitting a low-storage implementation. Using a large number of stages, the new ERK schemes lead to efficiency improvements larger than 60% over standard ERK schemes for 4th- and 5th-order spatial discretization.

  18. Focal cryotherapy: step by step technique description. (United States)

    Redondo, Cristina; Srougi, Victor; da Costa, José Batista; Baghdad, Mohammed; Velilla, Guillermo; Nunes-Silva, Igor; Bergerat, Sebastien; Garcia-Barreras, Silvia; Rozet, François; Ingels, Alexandre; Galiano, Marc; Sanchez-Salas, Rafael; Barret, Eric; Cathelineau, Xavier


    Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa). The purpose of this video is to describe the procedure step by step. We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipament utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40ºC) to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1-5). Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment. Copyright® by the International Brazilian Journal of Urology.

  19. Focal cryotherapy: step by step technique description

    Directory of Open Access Journals (Sweden)

    Cristina Redondo

    Full Text Available ABSTRACT Introduction and objective: Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa. The purpose of this video is to describe the procedure step by step. Materials and methods: We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. Results: The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipment utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40°C to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1–5. Conclusions: Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment.

  20. Splitting of the weak hypercharge quantum

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.


    The ratio between the weak hypercharge quantum for particles having no coupling to the gauge bosons corresponding to the semisimple component of the gauge group and the smallest hypercharge quantum for particles that do have such couplings is exceptionally large for the standard model, considering its rank. To compare groups with respect to this property we propose a quantity χ which depends on the rank of the group and the splitting ratio of the hypercharge(s) to be found in the group. The quantity χ has maximal value for the gauge group of the standard model. This suggest that the hypercharge splitting may play an important role either in the origin of the gauge symmetry at a fundamental scale or in some kind of selection mechanism at a scale perhaps nearer to the experimental scale. Such selection mechanism might be what we have called confusion which removes groups with many (so called generalized) automorphisms. The quantity χ tends to be large for groups with few generalized automorphisms. (orig.)

  1. Strong CP, flavor, and twisted split fermions

    International Nuclear Information System (INIS)

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri


    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)

  2. Finite element or Galerkin type semidiscrete schemes (United States)

    Durgun, K.


    A finite element of Galerkin type semidiscrete method is proposed for numerical solution of a linear hyperbolic partial differential equation. The question of stability is reduced to the stability of a system of ordinary differential equations for which Dahlquist theory applied. Results of separating the part of numerical solution which causes the spurious oscillation near shock-like response of semidiscrete scheme to a step function initial condition are presented. In general all methods produce such oscillatory overshoots on either side of shocks. This overshoot pathology, which displays a behavior similar to Gibb's phenomena of Fourier series, is explained on the basis of dispersion of separated Fourier components which relies on linearized theory to be satisfactory. Expository results represented.

  3. An Iterative Algorithm for the Split Equality and Multiple-Sets Split Equality Problem

    Directory of Open Access Journals (Sweden)

    Luoyi Shi


    Full Text Available The multiple-sets split equality problem (MSSEP requires finding a point x∈∩i=1NCi, y∈∩j=1MQj such that Ax=By, where N and M are positive integers, {C1,C2,…,CN} and {Q1,Q2,…,QM} are closed convex subsets of Hilbert spaces H1, H2, respectively, and A:H1→H3, B:H2→H3 are two bounded linear operators. When N=M=1, the MSSEP is called the split equality problem (SEP. If  B=I, then the MSSEP and SEP reduce to the well-known multiple-sets split feasibility problem (MSSFP and split feasibility problem (SFP, respectively. One of the purposes of this paper is to introduce an iterative algorithm to solve the SEP and MSSEP in the framework of infinite-dimensional Hilbert spaces under some more mild conditions for the iterative coefficient.

  4. Extended lattice Boltzmann scheme for droplet combustion. (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas


    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  5. Studying ignition schemes on European laser facilities (United States)

    Jacquemot, S.; Amiranoff, F.; Baton, S. D.; Chanteloup, J. C.; Labaune, C.; Koenig, M.; Michel, D. T.; Perez, F.; Schlenvoigt, H. P.; Canaud, B.; Cherfils Clérouin, C.; Debras, G.; Depierreux, S.; Ebrardt, J.; Juraszek, D.; Lafitte, S.; Loiseau, P.; Miquel, J. L.; Philippe, F.; Rousseaux, C.; Blanchot, N.; Edwards, C. B.; Norreys, P.; Atzeni, S.; Schiavi, A.; Breil, J.; Feugeas, J. L.; Hallo, L.; Lafon, M.; Ribeyre, X.; Santos, J. J.; Schurtz, G.; Tikhonchuk, V.; Debayle, A.; Honrubia, J. J.; Temporal, M.; Batani, D.; Davies, J. R.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Gizzi, L. A.; Koester, P.; Labate, L.; Badziak, J.; Klimo, O.


    Demonstrating ignition and net energy gain in the near future on MJ-class laser facilities will be a major step towards determining the feasibility of Inertial Fusion Energy (IFE), in Europe as in the United States. The current status of the French Laser MégaJoule (LMJ) programme, from the laser facility construction to the indirectly driven central ignition target design, is presented, as well as validating experimental campaigns, conducted, as part of this programme, on various laser facilities. However, the viability of the IFE approach strongly depends on our ability to address the salient questions related to efficiency of the target design and laser driver performances. In the overall framework of the European HiPER project, two alternative schemes both relying on decoupling target compression and fuel heating—fast ignition (FI) and shock ignition (SI)—are currently considered. After a brief presentation of the HiPER project's objectives, FI and SI target designs are discussed. Theoretical analysis and 2D simulations will help to understand the unresolved key issues of the two schemes. Finally, the on-going European experimental effort to demonstrate their viability on currently operated laser facilities is described.

  6. Single particle level scheme for alpha decay

    International Nuclear Information System (INIS)

    Mirea, M.


    The fine structure phenomenon in alpha decay was evidenced by Rosenblum. In this process the kinetic energy of the emitted particle has several determined values related to the structure of the parent and the daughter nucleus. The probability to find the daughter in a low lying state was considered strongly dependent on the spectroscopic factor defined as the square of overlap between the wave function of the parent in the ground state and the wave functions of the specific excited states of the daughter. This treatment provides a qualitative agreement with the experimental results if the variations of the penetrability between different excited states are neglected. Based on single particle structure during fission, a new formalism explained quantitatively the fine structure of the cluster decay. It was suggested that this formalism can be applied also to alpha decay. For this purpose, the first step is to construct the level scheme of this type of decay. Such a scheme, obtained with the super-asymmetric two-center potential, is plotted for the alpha decay of 223 Ra. It is interesting to note that, diabatically, the level with spin 3/2 emerging from 1i 11/2 (ground state of the parent) reaches an excited state of the daughter in agreement with the experiment. (author)

  7. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad


    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  8. Explicit solution of the time domain volume integral equation using a stable predictor-corrector scheme

    KAUST Repository

    Al Jarro, Ahmed


    An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.

  9. Higher-order time integration schemes for the unsteady Navier-Stokes equations on unstructured meshes

    International Nuclear Information System (INIS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.


    The efficiency gains obtained using higher-order implicit Runge-Kutta (RK) schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each time step are presented. The first algorithm (nonlinear multigrid, NMG) is a pseudo-time-stepping scheme which employs a nonlinear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the generalized minimal residual method. Results demonstrating the relative superiority of these Newton's method based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes such as fourth-order Runge-Kutta (RK64) with the more efficient inexact Newton's method based schemes (LMG)

  10. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.


    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  11. Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface (United States)

    Yaji, Koichiro; Ohtsubo, Yoshiyuki; Hatta, Shinichiro; Okuyama, Hiroshi; Miyamoto, Koji; Okuda, Taichi; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki; Aruga, Tetsuya


    The generation of spin-polarized electrons at room temperature is an essential step in developing semiconductor spintronic applications. To this end, we studied the electronic states of a Ge(111) surface, covered with a lead monolayer at a fractional coverage of 4/3, by angle-resolved photoelectron spectroscopy (ARPES), spin-resolved ARPES and first-principles electronic structure calculation. We demonstrate that a metallic surface-state band with a dominant Pb 6p character exhibits a large Rashba spin splitting of 200 meV and an effective mass of 0.028 me at the Fermi level. This finding provides a material basis for the novel field of spin transport/accumulation on semiconductor surfaces. Charge density analysis of the surface state indicated that large spin splitting was induced by asymmetric charge distribution in close proximity to the nuclei of Pb atoms. PMID:20975678

  12. Copper Oxide Nanograss for Efficient and Stable Photoelectrochemical Hydrogen Production by Water Splitting (United States)

    Borkar, Rajnikant; Dahake, Rashmi; Rayalu, Sadhana; Bansiwal, Amit


    A biphasic copper oxide thin film of grass-like appendage morphology is synthesized by two-step electro-deposition method and later investigated for photoelectrochemical (PEC) water splitting for hydrogen production. Further, the thin film was characterized by UV-Visible spectroscopy, x-ray diffraction (XRD), Scanning electron microscopy (SEM) and PEC techniques. The XRD analysis confirms formation of biphasic copper oxide phases, and SEM reveals high surface area grass appendage-like morphology. These grass appendage structures exhibit a high cathodic photocurrent of - 1.44 mAcm-2 at an applied bias of - 0.7 (versus Ag/AgCl) resulting in incident to photon current efficiency (IPCE) of ˜ 10% at 400 nm. The improved light harvesting and charge transport properties of grass appendage structured biphasic copper oxides makes it a potential candidate for PEC water splitting for hydrogen production.

  13. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik; Haglind, Fredrik


    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature results in an improved match between the heat source and working fluid temperature profiles, decreasing the entropy generation in the heat recovery system. The present work compares the thermodynamic performance of this power cycle with the conventional Kalina process, and investigates the impact of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina cycle with reheat, and by 4.3% points without reheat. The cycle efficiency varies by 14% points for a variation of the exhaust gas temperature of 100 °C, and by 1% point for a cold water temperature variation of 30 °C. This analysis also pinpoints the large irreversibilities in the low-pressure turbine and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle. - Highlights: • The thermodynamic performance of the Kalina split-cycle is assessed. • The Kalina split-cycle is compared to the Kalina cycle, with and without reheat. • An exergy analysis is performed to evaluate its thermodynamic performance. • The impact of varying boundary conditions is investigated. • The Kalina split-cycle displays high exergetic efficiency for low- and medium-temperature applications

  14. Exact free oscillation spectra, splitting functions and the resolvability of Earth's density structure (United States)

    Akbarashrafi, F.; Al-Attar, D.; Deuss, A.; Trampert, J.; Valentine, A. P.


    Seismic free oscillations, or normal modes, provide a convenient tool to calculate low-frequency seismograms in heterogeneous Earth models. A procedure called `full mode coupling' allows the seismic response of the Earth to be computed. However, in order to be theoretically exact, such calculations must involve an infinite set of modes. In practice, only a finite subset of modes can be used, introducing an error into the seismograms. By systematically increasing the number of modes beyond the highest frequency of interest in the seismograms, we investigate the convergence of full-coupling calculations. As a rule-of-thumb, it is necessary to couple modes 1-2 mHz above the highest frequency of interest, although results depend upon the details of the Earth model. This is significantly higher than has previously been assumed. Observations of free oscillations also provide important constraints on the heterogeneous structure of the Earth. Historically, this inference problem has been addressed by the measurement and interpretation of splitting functions. These can be seen as secondary data extracted from low frequency seismograms. The measurement step necessitates the calculation of synthetic seismograms, but current implementations rely on approximations referred to as self- or group-coupling and do not use fully accurate seismograms. We therefore also investigate whether a systematic error might be present in currently published splitting functions. We find no evidence for any systematic bias, but published uncertainties must be doubled to properly account for the errors due to theoretical omissions and regularization in the measurement process. Correspondingly, uncertainties in results derived from splitting functions must also be increased. As is well known, density has only a weak signal in low-frequency seismograms. Our results suggest this signal is of similar scale to the true uncertainties associated with currently published splitting functions. Thus, it seems

  15. Pressure correction schemes for compressible flows: application to baro-tropic Navier-Stokes equations and to drift-flux model; Methodes de correction de pression pour les ecoulements compressibles: application aux equations de Navier-Stokes barotropes et au modele de derive

    Energy Technology Data Exchange (ETDEWEB)

    Gastaldo, L


    We develop in this PhD thesis a simulation tool for bubbly flows encountered in some late phases of a core-melt accident in pressurized water reactors, when the flow of molten core and vessel structures comes to chemically interact with the concrete of the containment floor. The physical modelling is based on the so-called drift-flux model, consisting of mass balance and momentum balance equations for the mixture (Navier-Stokes equations) and a mass balance equation for the gaseous phase. First, we propose a pressure correction scheme for the compressible Navier-Stokes equations based on mixed non-conforming finite elements. An ad hoc discretization of the advection operator, by a finite volume technique based on a dual mesh, ensures the stability of the velocity prediction step. A priori estimates for the velocity and the pressure yields the existence of the solution. We prove that this scheme is stable, in the sense that the discrete entropy is decreasing. For the conservation equation of the gaseous phase, we build a finite volume discretization which satisfies a discrete maximum principle. From this last property, we deduce the existence and the uniqueness of the discrete solution. Finally, on the basis of these works, a conservative and monotone scheme which is stable in the low Mach number limit, is build for the drift-flux model. This scheme enjoys, moreover, the following property: the algorithm preserves a constant pressure and velocity through moving interfaces between phases (i.e. contact discontinuities of the underlying hyperbolic system). In order to satisfy this property at the discrete level, we build an original pressure correction step which couples the mass balance equation with the transport terms of the gas mass balance equation, the remaining terms of the gas mass balance being taken into account with a splitting method. We prove the existence of a discrete solution for the pressure correction step. Numerical results are presented; they

  16. One-qubit fingerprinting schemes

    International Nuclear Information System (INIS)

    Beaudrap, J. Niel de


    Fingerprinting is a technique in communication complexity in which two parties (Alice and Bob) with large data sets send short messages to a third party (a referee), who attempts to compute some function of the larger data sets. For the equality function, the referee attempts to determine whether Alice's data and Bob's data are the same. In this paper, we consider the extreme scenario of performing fingerprinting where Alice and Bob both send either one bit (classically) or one qubit (in the quantum regime) messages to the referee for the equality problem. Restrictive bounds are demonstrated for the error probability of one-bit fingerprinting schemes, and show that it is easy to construct one-qubit fingerprinting schemes which can outperform any one-bit fingerprinting scheme. The author hopes that this analysis will provide results useful for performing physical experiments, which may help to advance implementations for more general quantum communication protocols

  17. Modulation Schemes for Wireless Access

    Directory of Open Access Journals (Sweden)

    F. Vejrazka


    Full Text Available Four modulation schemes, namely minimum shift keying (MSK, Gaussianminimum shift keying (GMSK, multiamplitude minimum shift keying(MAMSK and π/4 differential quadrature phase shift keying (π/4-QPSKare described and their applicability to wireless access is discussedin the paper. Low complexity receiver structures based on differentialdetection are analysed to estimate the performance of the modulationschemes in the additive Gaussian noise and the Rayleigh and Riceenvelope fast fading channel. The bandwidth efficiency is calculated toevaluate the modulation schemes. The results show that the MAMSK schemegives the greatest bandwidth efficiency, but its performance in theRayleigh channel is rather poor. In contrast, the MSK scheme is lessbandwidth efficient, but it is more resistant to Rayleigh fading. Theperformance of π/4-QPSK signal is considerably improved by appropriateprefiltering.

  18. Electrical injection schemes for nanolasers

    DEFF Research Database (Denmark)

    Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten


    injection schemes have been compared: vertical pi- n junction through a current post structure as in1 and lateral p-i-n junction with either uniform material as in2 or with a buried heterostructure (BH) as in3. To allow a direct comparison of the three schemes the same active material composition consisting......The performance of injection schemes among recently demonstrated electrically pumped photonic crystal nanolasers has been investigated numerically. The computation has been carried out at room temperature using a commercial semiconductor simulation software. For the simulations two electrical...... threshold current has been achieved with the lateral electrical injection through the BH; while the lowest resistance has been obtained from the current post structure even though this model shows a higher current threshold because of the lack of carrier confinement. Final scope of the simulations...

  19. Simple scheme for gauge mediation

    International Nuclear Information System (INIS)

    Murayama, Hitoshi; Nomura, Yasunori


    We present a simple scheme for constructing models that achieve successful gauge mediation of supersymmetry breaking. In addition to our previous work [H. Murayama and Y. Nomura, Phys. Rev. Lett. 98, 151803 (2007)] that proposed drastically simplified models using metastable vacua of supersymmetry breaking in vectorlike theories, we show there are many other successful models using various types of supersymmetry-breaking mechanisms that rely on enhanced low-energy U(1) R symmetries. In models where supersymmetry is broken by elementary singlets, one needs to assume U(1) R violating effects are accidentally small, while in models where composite fields break supersymmetry, emergence of approximate low-energy U(1) R symmetries can be understood simply on dimensional grounds. Even though the scheme still requires somewhat small parameters to sufficiently suppress gravity mediation, we discuss their possible origins due to dimensional transmutation. The scheme accommodates a wide range of the gravitino mass to avoid cosmological problems

  20. The impact of payment splitting on liquidity requirements in RTGS


    Denbee, Edward; Norman, Ben


    This paper examines the impact that payment splitting could have upon the liquidity requirements and efficiency of a large-value payment system, such as the United Kingdom’s CHAPS. Using the Bank of Finland Payment and Settlement Simulator and real UK payments data we find that payment splitting could reduce the liquidity required to settle payments. The reduction in required liquidity would increase as the payment splitting threshold decreased but the relationship is non-linear. Liquidity sa...

  1. Splitting methods in communication, imaging, science, and engineering

    CERN Document Server

    Osher, Stanley; Yin, Wotao


    This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. .

  2. Electrical Injection Schemes for Nanolasers

    DEFF Research Database (Denmark)

    Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten


    Three electrical injection schemes based on recently demonstrated electrically pumped photonic crystal nanolasers have been numerically investigated: 1) a vertical p-i-n junction through a post structure; 2) a lateral p-i-n junction with a homostructure; and 3) a lateral p-i-n junction....... For this analysis, the properties of different schemes, i.e., electrical resistance, threshold voltage, threshold current, and internal efficiency as energy requirements for optical interconnects are compared and the physics behind the differences is discussed....

  3. Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. (United States)

    Hines, Michael L; Eichner, Hubert; Schürmann, Felix


    Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Splitting cells is useful in attaining load balance in neural network simulations, especially when there is a wide range of cell sizes and the number of cells is about the same as the number of processors. For compute-bound simulations load balance results in almost ideal runtime scaling. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing.

  4. Evaluation of PBL schemes in WRF for high Arctic conditions

    DEFF Research Database (Denmark)

    Kirova-Galabova, Hristina; Batchvarova, Ekaterina; Gryning, Sven-Erik


    We examined the features of the Arctic boundary layer during winter (land and sea covered by snow/ice) and summer (sea covered by sea ice) using Weather Research and Forecasting (WRF) model version 3.4.1 and radiosounding data collected at Station Nord (81.65N, 16.65W) . The dataset consist...... was examined through two configurations (25 vertical levels and 4km grid step, 42 vertical levels and 1.33 km grid step). WRF was run with two planetary boundary layer schemes: Mellor –Yamada – Janjic with local vertical closure and non – local Yonsei University scheme. Temporal evolution of planetary boundary...... for temperature, above 150 m for relative humidity and for all levels for wind speed. Direct comparison of model and measured data showed that vertical profiles of studied parameters were reconstructed by the model relatively better in cloudy sky conditions, compared to clear skies....

  5. Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Todd M; Lichty, Paul R; Perkins, Christopher; Tucker, Melinda; Kreider, Peter B; Funke, Hans H; Lewandowski, A; Weimer, Alan W


    There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500°C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700°C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar-driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

  6. A Classification Scheme for Glaciological AVA Responses (United States)

    Booth, A.; Emir, E.


    A classification scheme is proposed for amplitude vs. angle (AVA) responses as an aid to the interpretation of seismic reflectivity in glaciological research campaigns. AVA responses are a powerful tool in characterising the material properties of glacier ice and its substrate. However, before interpreting AVA data, careful true amplitude processing is required to constrain basal reflectivity and compensate amplitude decay mechanisms, including anelastic attenuation and spherical divergence. These fundamental processing steps can be difficult to design in cases of noisy data, e.g. where a target reflection is contaminated by surface wave energy (in the case of shallow glaciers) or by energy reflected from out of the survey plane. AVA methods have equally powerful usage in estimating the fluid fill of potential hydrocarbon reservoirs. However, such applications seldom use true amplitude data and instead consider qualitative AVA responses using a well-defined classification scheme. Such schemes are often defined in terms of the characteristics of best-fit responses to the observed reflectivity, e.g. the intercept (I) and gradient (G) of a linear approximation to the AVA data. The position of the response on a cross-plot of I and G then offers a diagnostic attribute for certain fluid types. We investigate the advantages in glaciology of emulating this practice, and develop a cross-plot based on the 3-term Shuey AVA approximation (using I, G, and a curvature term C). Model AVA curves define a clear lithification trend: AVA responses to stiff (lithified) substrates fall discretely into one quadrant of the cross-plot, with positive I and negative G, whereas those to fluid-rich substrates plot diagonally opposite (in the negative I and positive G quadrant). The remaining quadrants are unoccupied by plausible single-layer responses and may therefore be diagnostic of complex thin-layer reflectivity, and the magnitude and polarity of the C term serves as a further indicator

  7. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John


    Most of today’s complex systems and processes involve several stages through which input or the raw material has to go before the final product is obtained. Also in many cases factors at different stages interact. Therefore, a holistic approach for experimentation that considers all stages...... on the Kronecker product representation of orthogonal designs and can be used for any number of stages, for various numbers of subplots and for different number of subplots for each stage. The procedure is demonstrated on both regular and nonregular designs and provides the maximum number of factors that can...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  8. A Frequency Splitting Method For CFM Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt


    The performance of conventional CFM imaging will often be degraded due to the relatively low number of pulses (4-10) used for each velocity estimate. To circumvent this problem we propose a new method using frequency splitting (FS). The FS method uses broad band chirps as excitation pulses instead...... of narrow band pulses as in conventional CFM imaging. By appropriate filtration, the returned signals are divided into a number of narrow band signals which are approximately disjoint. After clutter filtering the velocities are found from each frequency band using a conventional autocorrelation estimator....... Finally the velocity estimates from each frequency band are averaged to obtain an improved velocity estimate. The FS method has been evaluated in simulations using the Field II program and in flow phantom experiments using the experimental ultrasound scanner RASMUS. In both simulations and experiments...

  9. Total variation superiorization schemes in proton computed tomography image reconstruction. (United States)

    Penfold, S N; Schulte, R W; Censor, Y; Rosenfeld, A B


    Iterative projection reconstruction algorithms are currently the preferred reconstruction method in proton computed tomography (pCT). However, due to inconsistencies in the measured data arising from proton energy straggling and multiple Coulomb scattering, the noise in the reconstructed image increases with successive iterations. In the current work, the authors investigated the use of total variation superiorization (TVS) schemes that can be applied as an algorithmic add-on to perturbation-resilient iterative projection algorithms for pCT image reconstruction. The block-iterative diagonally relaxed orthogonal projections (DROP) algorithm was used for reconstructing GEANT4 Monte Carlo simulated pCT data sets. Two TVS schemes added on to DROP were investigated; the first carried out the superiorization steps once per cycle and the second once per block. Simplifications of these schemes, involving the elimination of the computationally expensive feasibility proximity checking step of the TVS framework, were also investigated. The modulation transfer function and contrast discrimination function were used to quantify spatial and density resolution, respectively. With both TVS schemes, superior spatial and density resolution was achieved compared to the standard DROP algorithm. Eliminating the feasibility proximity check improved the image quality, in particular image noise, in the once-per-block superiorization, while also halving image reconstruction time. Overall, the greatest image quality was observed when carrying out the superiorization once per block and eliminating the feasibility proximity check. The low-contrast imaging made possible with TVS holds a promise for its incorporation into future pCT studies.

  10. Molecular concepts of water splitting. Nature's approach

    International Nuclear Information System (INIS)

    Cox, Nicholas; Lubitz, Wolfgang


    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  11. Combination of scoring schemes for protein docking

    Directory of Open Access Journals (Sweden)

    Schomburg Dietmar


    Full Text Available Abstract Background Docking algorithms are developed to predict in which orientation two proteins are likely to bind under natural conditions. The currently used methods usually consist of a sampling step followed by a scoring step. We developed a weighted geometric correlation based on optimised atom specific weighting factors and combined them with our previously published amino acid specific scoring and with a comprehensive SVM-based scoring function. Results The scoring with the atom specific weighting factors yields better results than the amino acid specific scoring. In combination with SVM-based scoring functions the percentage of complexes for which a near native structure can be predicted within the top 100 ranks increased from 14% with the geometric scoring to 54% with the combination of all scoring functions. Especially for the enzyme-inhibitor complexes the results of the ranking are excellent. For half of these complexes a near-native structure can be predicted within the first 10 proposed structures and for more than 86% of all enzyme-inhibitor complexes within the first 50 predicted structures. Conclusion We were able to develop a combination of different scoring schemes which considers a series of previously described and some new scoring criteria yielding a remarkable improvement of prediction quality.

  12. Split-Doa10: a naturally split polytopic eukaryotic membrane protein generated by fission of a nuclear gene.

    Directory of Open Access Journals (Sweden)

    Elisabeth Stuerner

    Full Text Available Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12-16 transmembrane helices (TMs, but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS. A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.

  13. Predicting multiple step placements for human balance recovery tasks. (United States)

    Aftab, Zohaib; Robert, Thomas; Wieber, Pierre-Brice


    Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a single step recovery considered, etc.). The purpose of this study is to overcome these limitations and to develop a simple balance recovery model which can predict a complete multiple step recovery response. Inspired by the field of walking robots, we adapted a control scheme formerly proposed for biped robot locomotion. The scheme relies on a Linear Model Predictive Controller (LMPC) which estimates the best foot placements to zero the velocity of the Center of Mass (CoM), i.e. to reach a steady posture. The predicted step placements were compared against previously reported experimental data for tether-release conditions. They match correctly for various perturbation levels and both single step or multiple steps recovery. Although the current model still suffers from limitations (e.g., limited to the sagittal plane), these results demonstrate its ability to reproduce balance recovery reactions for different experimental scenarios. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Efficient adaptive fuzzy control scheme

    NARCIS (Netherlands)

    Papp, Z.; Driessen, B.J.F.


    The paper presents an adaptive nonlinear (state-) feedback control structure, where the nonlinearities are implemented as smooth fuzzy mappings defined as rule sets. The fine tuning and adaption of the controller is realized by an indirect adaptive scheme, which modifies the parameters of the fuzzy

  15. New practicable Siberian Snake schemes

    International Nuclear Information System (INIS)

    Steffen, K.


    Siberian Snake schemes can be inserted in ring accelerators for making the spin tune almost independent of energy. Two such schemes are here suggested which lend particularly well to practical application over a wide energy range. Being composed of horizontal and vertical bending magnets, the proposed snakes are designed to have a small maximum beam excursion in one plane. By applying in this plane a bending correction that varies with energy, they can be operated at fixed geometry in the other plane where most of the bending occurs, thus avoiding complicated magnet motion or excessively large magnet apertures that would otherwise be needed for large energy variations. The first of the proposed schemes employs a pair of standard-type Siberian Snakes, i.e. of the usual 1st and 2nd kind which rotate the spin about the longitudinal and the transverse horizontal axis, respectively. The second scheme employs a pair of novel-type snakes which rotate the spin about either one of the horizontal axes that are at 45 0 to the beam direction. In obvious reference to these axes, they are called left-pointed and right-pointed snakes. (orig.)

  16. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min


    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  17. A new parallelization algorithm of ocean model with explicit scheme (United States)

    Fu, X. D.


    This paper will focus on the parallelization of ocean model with explicit scheme which is one of the most commonly used schemes in the discretization of governing equation of ocean model. The characteristic of explicit schema is that calculation is simple, and that the value of the given grid point of ocean model depends on the grid point at the previous time step, which means that one doesn’t need to solve sparse linear equations in the process of solving the governing equation of the ocean model. Aiming at characteristics of the explicit scheme, this paper designs a parallel algorithm named halo cells update with tiny modification of original ocean model and little change of space step and time step of the original ocean model, which can parallelize ocean model by designing transmission module between sub-domains. This paper takes the GRGO for an example to implement the parallelization of GRGO (Global Reduced Gravity Ocean model) with halo update. The result demonstrates that the higher speedup can be achieved at different problem size.


    Bajaj, Chandrajit


    We present Laguerre Voronoi based subdivision algorithms for the quadrilateral and hexahedral meshing of particle systems within a bounded region in two and three dimensions, respectively. Particles are smooth functions over circular or spherical domains. The algorithm first breaks the bounded region containing the particles into Voronoi cells that are then subsequently decomposed into an initial quadrilateral or an initial hexahedral scaffold conforming to individual particles. The scaffolds are subsequently refined via applications of recursive subdivision (splitting and averaging rules). Our choice of averaging rules yield a particle conforming quadrilateral/hexahedral mesh, of good quality, along with being smooth and differentiable in the limit. Extensions of the basic scheme to dynamic re-meshing in the case of addition, deletion, and moving particles are also discussed. Motivating applications of the use of these static and dynamic meshes for particle systems include the mechanics of epoxy/glass composite materials, bio-molecular force field calculations, and gas hydrodynamics simulations in cosmology.

  19. SSeCloud: Using secret sharing scheme to secure keys (United States)

    Hu, Liang; Huang, Yang; Yang, Disheng; Zhang, Yuzhen; Liu, Hengchang


    With the use of cloud storage services, one of the concerns is how to protect sensitive data securely and privately. While users enjoy the convenience of data storage provided by semi-trusted cloud storage providers, they are confronted with all kinds of risks at the same time. In this paper, we present SSeCloud, a secure cloud storage system that improves security and usability by applying secret sharing scheme to secure keys. The system encrypts uploading files on the client side and splits encrypted keys into three shares. Each of them is respectively stored by users, cloud storage providers and the alternative third trusted party. Any two of the parties can reconstruct keys. Evaluation results of prototype system show that SSeCloud provides high security without too much performance penalty.

  20. Learning SQL in Steps

    Directory of Open Access Journals (Sweden)

    Philip Garner


    Full Text Available Learning SQL is a common problem for many Computer Science (CS students, the steps involved are quite different to those mastered when learning procedural or object-oriented programming languages. The introduction of commercial products that include shortcuts into the learning environment can initially appear to benefit the student, however, transferring these skills to a textual environment can be difficult for many students. Computer Science students are required to build textual SQL queries because the demands of complex queries can quickly out grow the capabilities of graphical query builders available in many software packages. SQL in Steps (SiS is a graphical user interface centred around the textual translation of a query; this combination of a GUI and a clear representation of its textual meaning has the potential to improve the way in which users gain an understanding of SQL. SiS allows for an incremental and evolutionary development of queries by enabling students to build queries step by step until their goal is reached. A planned evaluation of SiS hopes to quantify the extent to which the introduction of such a user interface into the learning environment can improve the students' understanding of the language.

  1. Queen Mary Two Step


    Melin, Mats H.


    n/a Dance devised by Mats Melin in October 2007 whilst teaching Ceilidh dancing on board the cruise ship Queen Mary 2 crossing the Atlantic from Southampton to New York and back with the Ian Muir Sound from Prestwick. The segment of music featured is from Ian Muir Scottish Dance Band's recording of an Eva Three step.

  2. Stepping in the river

    Directory of Open Access Journals (Sweden)

    Julie Kearney


    Full Text Available 'Stepping in the River' is about the cultural misunderstandings and small betrayals that arise when First World tourists visit Third World countries. It is also about the enduring love that people in these countries can inspire, imperfect though that love may be.

  3. Step-Change

    NARCIS (Netherlands)

    Babah Daouda, Falylath; Ingenbleek, P.T.M.; Trijp, van H.C.M.


    With upcoming middle classes in Africa, micro-entrepreneurs witness new opportunities that can potentially lift them out of poverty. Exploiting these opportunities requires entrepreneurs to make a ‘step-change’ away from the bottom of the pyramid to middle-class markets. This process hosts

  4. Stable low-dissipation schemes for turbulent compressible flows (United States)

    Subbareddy, Pramod Kumar V.

    Shock capturing schemes, which are commonly used in compressible flow simulations, introduce excessive amounts of numerical viscosity which smears out small scale flow features. A few low-dissipation methods have been proposed in the recent literature. They are more selective in the sense that they explicitly identify the portion of the numerical flux that is diffusive and damp its effect in 'smooth' regions of the flow. This work employs flux vector splitting methods; the dissipative portions of the Steger-Warming schemes are explicitly identified and various shock detection switches are explored. For high Reynolds number flows, especially when the energetic scales are close to the Nyquist limits of the grids used, aliasing errors become noticeable. These high frequency oscillations that arise due to the nonlinear nature of the Navier-Stokes equations cause solutions to become unstable. When dissipative methods are used, these errors are suppressed; however when using low-dissipation schemes, they can be prominent and need to be addressed by some other means. In this thesis, we focus on methods that enhance stability by enforcing 'secondary conservation' - the fluxes are constrained in such a way that a conservation law for a secondary, positive quantity is also satisified. In particular, we focus on kinetic energy, and a fully discrete (in time and space) 'kinetic energy consistent' scheme is derived and tested. Hybrid RAMS-LES methods such as Detached Eddy Simulations are necessary in order to make simulations of high speed flows with attached boundary layers affordable. A popular DES model is based on the Spalart-Allmaras RANS equation; a minor modification to the length scale makes the model behave in a hybrid manner. The S-A model itself was constructed using mostly empirical arguments by the authors. This model is analyzed and its connection to other turbulence models, in particular, the ksgs equation, is explored. A dynamic version of the model is proposed

  5. Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD (United States)

    Yee, H. C.; Sjoegreen, B.


    The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free of numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multi-resolution wavelets (WAV) (for the above types of flow feature). These filter approaches also provide a natural and efficient way for the minimization of Div(B) numerical error. The filter scheme consists of spatially sixth order or higher non-dissipative spatial difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small amount of high order linear dissipation is used to remove spurious high frequency oscillations. For example, an eighth-order centered linear dissipation (AD8) might be included in conjunction with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for the viscous flux derivatives. After the completion of a full time step of the base scheme step, the solution is adaptively filtered by the product of a 'flow detector' and the 'nonlinear dissipative portion' of a high-resolution shock-capturing scheme. In addition, the scheme independent wavelet flow detector can be used in conjunction with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet filter schemes using the dissipative portion of a second-order shock-capturing scheme with sixth-order spatial central base scheme for both the inviscid and viscous MHD flux

  6. Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows (United States)

    Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang


    The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.

  7. Theory of Square-Wave Voltammetry of Two-Step Electrode Reaction Using an Inverse Scan Direction


    Lovrić, Milivoj; Komorsky-Lovrić, Šebojka


    A theory of square-wave voltammetry of two-step electrode reaction with kinetically controlled electron transfers is developed, and a special case of thermodynamically unstable intermediate is analyzed. If the first reaction step is reversible and the second one is quasireversible, the response splits into two peaks if the scan direction is inverted. The separation of these peaks increases with frequency.

  8. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.


    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  9. 77 FR 8127 - Foreign Tax Credit Splitting Events (United States)


    ... Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final and... affect taxpayers claiming foreign tax credits. The text of the temporary regulations also serves as the... that if there is a foreign tax credit splitting event with respect to a foreign income tax paid or...

  10. 77 FR 8184 - Foreign Tax Credit Splitting Events (United States)


    ... Foreign Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of... these proposed regulations. The regulations affect taxpayers claiming foreign tax credits. Special... of the Federal Register.] Sec. 1.909-6 Pre-2011 foreign tax credit splitting events. [The text of...

  11. Clonal differences in log end splitting in Eucalyptus grandis in ...

    African Journals Online (AJOL)

    This paper discusses the juvenile–mature correlation of log end splitting among Eucalyptus grandis clones from two trials and how differences in splitting relate to differences in wood density, pith-to-bark gradient and growth rate. Two approximately 20-year-old Eucalyptus grandis clonal trials at Bergvliet plantation were ...

  12. April / May 2006. 108 Harvesting split thickness skin in

    African Journals Online (AJOL)


    Background: In the third world countries like Ethiopia the majority of Hospitals have difficulties in harvesting split thickness skin ... The grafts were well taken by the recipient areas and technically there was no danger of deep bite. Conclusion: Split ... to meet the hospital needs. Thus we need to improvise and use appropriate.

  13. Pulse splitting in nonlinear media with anisotropic dispersion properties

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.


    to a singularity in the transverse plane. Instead, the pulse spreads out along the direction of negative dispersion and splits up into small-scale cells, which may undergo further splitting events. The analytical results are supported by direct numerical solutions of the three dimensional cubic Schrodinger...

  14. Split-liver transplantation : An underused resource in liver transplantation

    NARCIS (Netherlands)

    Rogiers, Xavier; Sieders, Egbert


    Split-liver transplantation is an efficient tool to increase the number of liver grafts available for transplantation. More than 15 years after its introduction only the classical splitting technique has reached broad application. Consequently children are benefiting most from this possibility.

  15. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting

    NARCIS (Netherlands)

    Valenti, M.; Jonsson, M.P.; Biskos, G.; Schmidt-Ott, A.; Smith, W.A.


    Photoelectrochemical (PEC) water splitting is a promising technology that uses light absorbing semiconductors to convert solar energy directly into a chemical fuel (i.e., hydrogen). PEC water splitting has the potential to become a key technology in achieving a sustainable society, if high solar

  16. Recent developments in solar H 2 generation from water splitting

    Indian Academy of Sciences (India)

    Assistance of metal nanostructures and quantum dots to semiconductors attains vital importance as they are exuberant visible light harvesters and charge carrier amplifiers. Benevolent use of quantum dots in solar water splitting and photoelectrochemical water splitting provides scope to revolutionize the quantum efficiency ...

  17. 7 CFR 51.2753 - U.S. Virginia Splits. (United States)


    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Virginia Splits. 51.2753 Section 51.2753... STANDARDS) United States Standards for Shelled Virginia Type Peanuts Grades § 51.2753 U.S. Virginia Splits. “U.S. Virginia Splits” consists of shelled Virginia type peanut kernels of similar varietal...

  18. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.


    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  19. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    Directory of Open Access Journals (Sweden)

    Khairi M. S. Fahelelbom


    Full Text Available Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg on certain physical parameters such as weight variation, friability, disintegration, dissolution and drug content were studied. Splitting the tablets either by hand or with a splitter resulted in a minute but statistically significant average weight loss of <0.25% of the tablet to the surrounding environment. The variability in the weight of the hand-split tablet halves was more pronounced (37 out of 40 tablet halves varied by more than 10% from the mean weight than when using the tablet splitter (3 out of 40 tablet halves. The dissolution and drug content of the hand-split tablets were therefore affected because of weight differences. However, the pharmacopoeia requirements for friability and disintegration time were met. Hand splitting of tablets can result in an inaccurate dose and may present clinical safety issues, especially for drugs with a narrow therapeutic window in which large fluctuations in drug concentrations are undesirable. It is recommended to use tablets with the exact desired dose, but if this is not an option, then a tablet splitter could be used.

  20. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi


    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  1. Task discrimination from myoelectric activity: a learning scheme for EMG-based interfaces. (United States)

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J


    A learning scheme based on Random Forests is used to discriminate the task to be executed using only myoelectric activity from the upper limb. Three different task features can be discriminated: subspace to move towards, object to be grasped and task to be executed (with the object). The discrimination between the different reach to grasp movements is accomplished with a random forests classifier, which is able to perform efficient features selection, helping us to reduce the number of EMG channels required for task discrimination. The proposed scheme can take advantage of both a classifier and a regressor that cooperate advantageously to split the task space, providing better estimation accuracy with task-specific EMG-based motion decoding models, as reported in [1] and [2]. The whole learning scheme can be used by a series of EMG-based interfaces, that can be found in rehabilitation cases and neural prostheses.

  2. Small steps for hydro

    International Nuclear Information System (INIS)

    Wicke, Peter


    The government in Peru has decided to utilise its gas reserves and restrict hydro to relatively small schemes. A number of reasons for the decision are given. In 1997, the Shell-Mobile-Bechtel-COSAPI consortium was formed and agreements were signed regarding exploiting Gas de Camisea. The country's energy needs to 2010 are being assessed. It is likely that by 2001 the whole of south Peru will be receiving gas from Camisea. The Peru situation is discussed under the headings of (i) existing capacity, (ii) growing demands, (iii) a history of hydro in Peru, (iv) electrification and SHP and (v) outlook. The future for Peru's electric energy development is bright. While most of its new power capacity will come from natural gas, the small hydros also have a part to play. A stronger commitment of national and regional political authorities to consider supplies outside the big cities is said to be needed. (UK)

  3. Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik


    The split cylinder testis subjected to an analysis combining nonlinear fracture mechanics and plasticity. The fictitious crack model is applied for the analysis of splitting tensile fracture, and the Mohr-Coulomb yield criterion is adopted for modelling the compressive crushing/sliding failure. Two...... demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive...... properties. This implies that the linear elastic interpretation of the ultimate splitting force in term of the uniaxial tensile strength of the material is only valid for special situations, e.g. for very large cylinders. Furthermore, the numerical analysis suggests that the split cylinder test is not well...

  4. Optimizing TCP Performance over UMTS with Split TCP Proxy

    DEFF Research Database (Denmark)

    Hu, Liang; Dittmann, Lars


    . To cope with large delay bandwidth product, we propose a novel concept of split TCP proxy which is placed at GGSN between UNITS network and Internet. The split proxy divides the bandwidth delay product into two parts, resulting in two TCP connections with smaller bandwidth delay products which can...... be pipelined and thus operating at higher speeds. Simulation results show, the split TCP proxy can significantly improve the TCP performance in terms of RLC throughput under high bit rate DCH channel scenario (e.g.256 kbps). On the other hand, it only brings small performance improvement under low bit rate DCH...... scenario (e.g.64 kbps). Besides, the split TCP proxy brings more performance gain for downloading large files than downloading small ones. To the end, for the configuration of the split proxy, an aggressive initial TCP congestion window size (e.g. 10 MSS) at proxy is particularly useful for radio links...

  5. Photoelectrochemical solar water splitting: From basic principles to advanced devices

    Directory of Open Access Journals (Sweden)

    Bandar Y.Alfaifi


    Full Text Available Photoelectrochemical water splitting (PEC offers a promising path for sustainable generation of hydrogen fuel. However, improving solar fuel water splitting efficiency facing tremendous challenges, due to the energy loss related to fast recombination of the photogenerated charge carriers, electrode degradation, as well as limited light harvesting. This review focuses on the brief introduction of basic fundamental of PEC water splitting and the concept of various types of water splitting approaches. Numerous engineering strategies for the investgating of the higher efficiency of the PEC, including charge separation, light harvesting, and co-catalysts doping, have been discussed. Moreover, recent remarkable progress and developments for PEC water splitting with some promising materials are discussed. Recent advanced applications of PEC are also reviewed. Finally, the review concludes with a summary and future outlook of this hot field.

  6. Comparing Split and Unsplit Numerical Methods for Simulating Low and High Mach Number Turbulent Flows in Xrage (United States)

    Saenz, Juan; Grinstein, Fernando; Dolence, Joshua; Rauenzahn, Rick; Masser, Thomas; Francois, Marianne; LANL Team


    We report progress in evaluating an unsplit hydrodynamic solver being implemented in the radiation adaptive grid Eulerian (xRAGE) code, and compare to a split scheme. xRage is a Eulerian hydrodynamics code used for implicit large eddy simulations (ILES) of multi-material, multi-physics flows where low and high Mach number (Ma) processes and instabilities interact and co-exist. The hydrodynamic solver in xRAGE uses a directionally split, second order Godunov, finite volume (FV) scheme. However, a standard, unsplit, Godunov-type FV scheme with 2nd and 3rd order reconstruction options, low Ma correction and a variety of Riemann solvers has recently become available. To evaluate the hydrodynamic solvers for turbulent low Ma flows, we use simulations of the Taylor Green Vortex (TGV), where there is a transition to turbulence via vortex stretching and production of small-scale eddies. We also simulate a high-low Ma shock-tube flow, where a shock passing over a perturbed surface generates a baroclinic Richtmyer-Meshkov instability (RMI); after the shock has passed, the turbulence in the accelerated interface region resembles Rayleigh Taylor (RT) instability. We compare turbulence spectra and decay in simulated TGV flows, and we present progress in simulating the high-low Ma RMI-RT flow. LANL is operated by LANS LLC for the U.S. DOE NNSA under Contract No. DE-AC52-06NA25396.

  7. Linear step drive

    International Nuclear Information System (INIS)

    Haniger, L.; Elger, R.; Kocandrle, L.; Zdebor, J.


    A linear step drive is described developed in Czechoslovak-Soviet cooperation and intended for driving WWER-1000 control rods. The functional principle is explained of the motor and the mechanical and electrical parts of the drive, power control, and the indicator of position are described. The motor has latches situated in the reactor at a distance of 3 m from magnetic armatures, it has a low structural height above the reactor cover, which suggests its suitability for seismic localities. Its magnetic circuits use counterpoles; the mechanical shocks at the completion of each step are damped using special design features. The position indicator is of a special design and evaluates motor position within ±1% of total travel. A drive diagram and the flow chart of both the control electronics and the position indicator are presented. (author) 4 figs

  8. Stepping Stone Mobility.


    Jovanovic, B.; Nyarko, Y.


    People at the top of an occupational ladder earn more partly because they have spent time on lower rungs, where they have learned something. But what precisely do they learn? There are two contrasting views: First, the Bandit model assumes that people are different, that experience reveals their characteristics, and that consequently an occupational switch can result. Second, in our Stepping Stone model, experience raises a worker's productivity on a given task and the acquired skill can in p...

  9. Learning SQL in Steps


    Philip Garner; John Mariani


    Learning SQL is a common problem for many Computer Science (CS) students, the steps involved are quite different to those mastered when learning procedural or object-oriented programming languages. The introduction of commercial products that include shortcuts into the learning environment can initially appear to benefit the student, however, transferring these skills to a textual environment can be difficult for many students. Computer Science students are required to build textual SQL queri...

  10. Three steps ahead


    Heller, Yuval


    We study a variant of the repeated Prisoner's Dilemma with uncertain horizon, in which each player chooses his foresight ability: that is, the timing in which he is informed about the realized length of the interaction. In addition, each player has an independent probability to observe the opponent's foresight ability. We show that if this probability is not too close to zero or one, then the game admits an evolutionarily stable strategy, in which agents who look one step ahead and agents who...

  11. Joint angles of the ankle, knee, and hip and loading conditions during split squats. (United States)

    Schütz, Pascal; List, Renate; Zemp, Roland; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio


    The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject's movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.

  12. Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces

    KAUST Repository

    Shinagawa, Tatsuya


    Direct photon to chemical energy conversion using semiconductor-electrocatalyst-electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties (1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces (3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface (5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing "photocatalysis by design" concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory. Photocatalytic water splitting (especially hydrogen evolution on metal surfaces) was selected as a topic, and the photophysical and electrochemical processes that occur at semiconductor-metal, semiconductor-electrolyte and metal-electrolyte interfaces are discussed.

  13. Variational-based higher-order energy-momentum schemes with incompatible modes for fiber-reinforced materials (United States)

    Groß, Michael; Dietzsch, Julian


    In this paper, a new class of time-stepping schemes for structural dynamics is presented, which originally emanate from Gauss-Runge-Kutta schemes as traditional representatives of higher-order symplectic-momentum schemes. The presented time stepping schemes belong to the family of higher-order energy-momentum schemes, which represent Gauss-Runge-Kutta schemes with a physically motivated time approximation of the considered mechanical system. As higher-order energy-momentum schemes so far are not derived by using a straight-forward design method, a variational-based design of energy-momentum schemes is shown. Here, a differential variational principle of continuum mechanics, Jourdain's principle, is discretized, and energy-momentum schemes emanate as discrete Euler-Lagrange equations. This procedure is strong related, but is not identical, to the derivation of variational integrators (VI), which emanate from discretising a Lagrange function or Hamilton's principle, respectively. Furthermore, this design procedure is well suited to connect energy-momentum schemes with numerical modifications based on mixed variational principles, as the enhanced assumed strain elements for improving the spatial discretisation in direction of a locking-free discrete formulation. Therefore, a Q1/E9 energy-momentum scheme of higher order for the continuum formulation of fiber-reinforced materials is presented. This material formulation is important for simulating dynamics of light-weight structures.

  14. Project financing renewable energy schemes

    International Nuclear Information System (INIS)

    Brandler, A.


    The viability of many Renewable Energy projects is critically dependent upon the ability of these projects to secure the necessary financing on acceptable terms. The principal objective of the study was to provide an overview to project developers of project financing techniques and the conditions under which project finance for Renewable Energy schemes could be raised, focussing on the potential sources of finance, the typical project financing structures that could be utilised for Renewable Energy schemes and the risk/return and security requirements of lenders, investors and other potential sources of financing. A second objective is to describe the appropriate strategy and tactics for developers to adopt in approaching the financing markets for such projects. (author)

  15. Finite volume schemes for Vlasov

    Directory of Open Access Journals (Sweden)

    Crouseilles Nicolas


    Full Text Available We present finite volume schemes for the numerical approximation of the one-dimensional Vlasov-Poisson equation (FOV CEMRACS 2011 project. Stability analysis is performed for the linear advection and links with semi-Lagrangian schemes are made. Finally, numerical results enable to compare the different methods using classical plasma test cases. Des schémas de type volumes finis sont étudiés ici pour l’approximation de l’équation de Vlasov-Poisson (projet FOV, CEMRACS 2011. Une analyse de stabilité est effectuée dans le cas de l’advection linéaire et plusieurs liens sont faits entre les méthodes volumes finis et semi-Lagrangiennes. Enfin, les méthodes sont comparées sur des cas tests académiques de la physique des plasmas.

  16. Distance labeling schemes for trees

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Gørtz, Inge Li; Bistrup Halvorsen, Esben


    We consider distance labeling schemes for trees: given a tree with n nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et al. [Gavoille...... variants such as, for example, small distances in trees [Alstrup et al., SODA, 2003]. We improve the known upper and lower bounds of exact distance labeling by showing that 1/4 log2(n) bits are needed and that 1/2 log2(n) bits are sufficient. We also give (1 + ε)-stretch labeling schemes using Theta...

  17. Anti-aliasing lifting scheme for mechanical vibration fault feature extraction (United States)

    Bao, Wen; Zhou, Rui; Yang, Jianguo; Yu, Daren; Li, Ning


    A troublesome problem in application of wavelet transform for mechanical vibration fault feature extraction is frequency aliasing. In this paper, an anti-aliasing lifting scheme is proposed to solve this problem. With this method, the input signal is firstly transformed by a redundant lifting scheme to avoid the aliasing caused by split and merge operations. Then the resultant coefficients and their single subband reconstructed signals are further processed to remove the aliasing caused by the unideal frequency property of lifting filters based on the fast Fourier transform (FFT) technique. Because the aliasing in each subband signal is eliminated, the ratio of signal to noise (SNR) is improved. The anti-aliasing lifting scheme is applied to analyze a practical vibration signal measured from a faulty ball bearing and testing results confirm that the proposed method is effective for extracting weak fault feature from a complex background. The proposed method is also applied to the fault diagnosis of valve trains in different working conditions on a gasoline engine. The experimental results show that using the features extracted from the anti-aliasing lifting scheme for classification can obtain a higher accuracy than using those extracted from the lifting scheme and the redundant lifting scheme.

  18. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu


    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  19. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab


    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  20. New schemes for particle accelerators

    International Nuclear Information System (INIS)

    Nishida, Y.


    In the present paper, the authors propose new schemes for realizing the v/sub p/xB accelerator, by using no plasma system for producing the strong longitudinal waves. The first method is to use a grating for obtaining extended interaction of an electron beam moving along the grating surface with light beam incident also along the surface. Here, the light beam propagates obliquely to the grating grooves for producing strong electric field, and the electron beam propagates in parallel to the light beam. The static magnetic field is applied perpendicularly to the grating surface. In the present system, the beam interacts synchronously with the p-polarized wave which has the electric field be parallel to the grating surface. Another conventional scheme is to use a delay circuit. Here, the light beam propagates obliquely between a pair of array of conductor fins or slots. The phase velocity of the spatial harmonics in the y-direction (right angle to the array of slots) is slower than the speed of light. With the aid of powerful laser light or microwave source, it should be possible to miniaturise linacs by using the v/sub p/xB effect and schemes proposed here

  1. An Arbitrated Quantum Signature Scheme without Entanglement"*

    International Nuclear Information System (INIS)

    Li Hui-Ran; Luo Ming-Xing; Peng Dai-Yuan; Wang Xiao-Jun


    Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks . (paper)

  2. An Arbitrated Quantum Signature Scheme without Entanglement* (United States)

    Li, Hui-Ran; Luo, Ming-Xing; Peng, Dai-Yuan; Wang, Xiao-Jun


    Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks.

  3. Analogical Argument Schemes and Complex Argument Structure

    Directory of Open Access Journals (Sweden)

    Andre Juthe


    Full Text Available This paper addresses several issues in argumentation theory. The over-arching goal is to discuss how a theory of analogical argument schemes fits the pragma-dialectical theory of argument schemes and argument structures, and how one should properly reconstruct both single and complex argumentation by analogy. I also propose a unified model that explains how formal valid deductive argumentation relates to argument schemes in general and to analogical argument schemes in particular. The model suggests “scheme-specific-validity” i.e. that there are contrasting species of validity for each type of argument scheme that derive from one generic conception of validity.

  4. Dark matter detection in two easy steps (United States)

    Pospelov, Maxim; Weiner, Neal; Yavin, Itay


    Multicomponent dark matter particles may have a more intricate direct detection signal than simple elastic scattering on nuclei. In a broad class of well-motivated models, the inelastic excitation of dark matter particles is followed by de-excitation via γ decay. In experiments with fine energy resolution, such as many 0ν2β decay experiments, this motivates a highly model-independent search for the sidereal daily modulation of an unexpected γ line. Such a signal arises from a two-step weakly interacting massive particle (WIMP) interaction: the WIMP is first excited in the lead shielding and subsequently decays back to the ground state via the emission of a monochromatic γ within the detector volume. We explore this idea in detail by considering the model of magnetic inelastic WIMPs and take a sequence of CUORE-type detectors as an example. We find that under reasonable assumptions about detector performance it is possible to efficiently explore mass splittings of up to a few hundred keV for a WIMP of weak-scale mass and transitional magnetic moments. The modulation can be cheaply and easily enhanced by the presence of additional asymmetric lead shielding. We devise a toy simulation to show that a specially designed asymmetric shielding may result in up to 30% diurnal modulations of the two-step WIMP signal, leading to additional strong gains in sensitivity.

  5. Hydrogen production from formic acid solution by modified TiO2 and titanate nanotubes in a two-step system under visible light irradiation. (United States)

    Yeh, H M; Lo, S L; Chen, M J; Chen, H Y


    Hydrogen gas is one of the most promising renewable energy sources, and the final product of hydrogen combustion is nothing but water. However, it is still a big challenge to produce hydrogen and store it. Many studies have been conducted into produce hydrogen from water using photocatalysts. Z-scheme photocatalysis is a two-photocatalyst system that comprises a hydrogen catalyst and an oxygen catalyst to produce hydrogen and oxygen respectively. Compared to the one-step system, the two-step system can promote the efficiency of water splitting. In addition, formic acid (FA) is a convenient hydrogen-storage material and can be safely handled in aqueous solutions. Therefore, this study investigated the photocatalytic conversion of FA solution to hydrogen using visible light with several types of hydrogen catalysts (CdS/titanate nanotubes (TNTs), CdS/TiO2, Pt/CdS/TNTs) and WO3 as the oxygen catalyst. The results showed that the yield of hydrogen with CdS/TNTs + WO3 was much higher than with CdS/TiO2 + WO3. Moreover, coating the photocatalysts with metal could further promote the reaction. The optimal platinum loading was 0.01 wt%, and the hydrogen production achieved was 852.5 μmol · h(-1) with 20 vol% FA solution.

  6. A Modified Iterative Algorithm for Split Feasibility Problems of Right Bregman Strongly Quasi-Nonexpansive Mappings in Banach Spaces with Applications

    Directory of Open Access Journals (Sweden)

    Anantachai Padcharoen


    Full Text Available In this paper, we present a new iterative scheme for finding a common element of the solution set F of the split feasibility problem and the fixed point set F ( T of a right Bregman strongly quasi-nonexpansive mapping T in p-uniformly convex Banach spaces which are also uniformly smooth. We prove strong convergence theorem of the sequences generated by our scheme under some appropriate conditions in real p-uniformly convex and uniformly smooth Banach spaces. Furthermore, we give some examples and applications to illustrate our main results in this paper. Our results extend and improve the recent ones of some others in the literature.

  7. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan


    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  8. Statistical behaviour of adaptive multilevel splitting algorithms in simple models

    International Nuclear Information System (INIS)

    Rolland, Joran; Simonnet, Eric


    Adaptive multilevel splitting algorithms have been introduced rather recently for estimating tail distributions in a fast and efficient way. In particular, they can be used for computing the so-called reactive trajectories corresponding to direct transitions from one metastable state to another. The algorithm is based on successive selection–mutation steps performed on the system in a controlled way. It has two intrinsic parameters, the number of particles/trajectories and the reaction coordinate used for discriminating good or bad trajectories. We investigate first the convergence in law of the algorithm as a function of the timestep for several simple stochastic models. Second, we consider the average duration of reactive trajectories for which no theoretical predictions exist. The most important aspect of this work concerns some systems with two degrees of freedom. They are studied in detail as a function of the reaction coordinate in the asymptotic regime where the number of trajectories goes to infinity. We show that during phase transitions, the statistics of the algorithm deviate significatively from known theoretical results when using non-optimal reaction coordinates. In this case, the variance of the algorithm is peaking at the transition and the convergence of the algorithm can be much slower than the usual expected central limit behaviour. The duration of trajectories is affected as well. Moreover, reactive trajectories do not correspond to the most probable ones. Such behaviour disappears when using the optimal reaction coordinate called committor as predicted by the theory. We finally investigate a three-state Markov chain which reproduces this phenomenon and show logarithmic convergence of the trajectory durations


    Directory of Open Access Journals (Sweden)

    Darinka Korovljev


    Full Text Available Following the development of the powerful sport industry, in front of us appeared a lot of new opportunities for creating of the new programmes of exercising with certain requisites. One of such programmes is certainly step-aerobics. Step-aerobics can be defined as a type of aerobics consisting of the basic aerobic steps (basic steps applied in exercising on stepper (step bench, with a possibility to regulate its height. Step-aerobics itself can be divided into several groups, depending on the following: type of music, working methods and adopted knowledge of the attendants. In this work, the systematization of the basic steps in step-aerobics was made on the basis of the following criteria: steps origin, number of leg motions in stepping and relating the body support at the end of the step. Systematization of the basic steps of the step-aerobics is quite significant for making a concrete review of the existing basic steps, thus making creation of the step-aerobics lesson easier

  10. Computational scheme for transient temperature distribution in PWR vessel wall

    International Nuclear Information System (INIS)

    Dedovic, S.; Ristic, P.


    Computer code TEMPNES is a part of joint effort made in Gosa Industries in achieving the technique for structural analysis of heavy pressure vessels. Transient heat conduction problems analysis is based on finite element discretization of structures non-linear transient matrix formulation and time integration scheme as developed by Wilson (step-by-step procedure). Convection boundary conditions and the effect of heat generation due to radioactive radiation are both considered. The computation of transient temperature distributions in reactor vessel wall when the water temperature suddenly drops as a consequence of reactor cooling pump failure is presented. The vessel is treated as as axisymmetric body of revolution. The program has two finite time element options a) fixed predetermined increment and; b) an automatically optimized time increment for each step dependent on the rate of change of the nodal temperatures. (author)

  11. Stepping Stones through Time

    Directory of Open Access Journals (Sweden)

    Emily Lyle


    Full Text Available Indo-European mythology is known only through written records but it needs to be understood in terms of the preliterate oral-cultural context in which it was rooted. It is proposed that this world was conceptually organized through a memory-capsule consisting of the current generation and the three before it, and that there was a system of alternate generations with each generation taking a step into the future under the leadership of a white or red king.

  12. Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes. (United States)

    Lin, Linhan; Wang, Mingsong; Wei, Xiaoling; Peng, Xiaolei; Xie, Chong; Zheng, Yuebing


    Rabi splitting that arises from strong plasmon-molecule coupling has attracted tremendous interests. However, it has remained elusive to integrate Rabi splitting into the hybrid plasmon-waveguide modes (HPWMs), which have advantages of both subwavelength light confinement of surface plasmons and long-range propagation of guided modes in dielectric waveguides. Herein, we explore a new type of HPWMs based on hybrid systems of Al nanodisk arrays covered by PMMA thin films that are doped with photochromic molecules and demonstrate the photoswitchable Rabi splitting with a maximum splitting energy of 572 meV in the HPWMs by controlling the photoisomerization of the molecules. Through our experimental measurements combined with finite-difference time-domain (FDTD) simulations, we reveal that the photoswitchable Rabi splitting arises from the switchable coupling between the HPWMs and molecular excitons. By harnessing the photoswitchable Rabi splitting, we develop all-optical light modulators and rewritable waveguides. The demonstration of Rabi splitting in the HPWMs will further advance scientific research and device applications of hybrid plasmon-molecule systems.

  13. 23 µW 8.9-effective number of bit 1.1 MS/s successive approximation register analog-to-digital converter with an energy-efficient digital-to-analog converter switching scheme

    Directory of Open Access Journals (Sweden)

    Lei Sun


    Full Text Available This study presents a successive approximation register analog-to-digital converter with an energy-efficient switching scheme. A split-most significant bit capacitor array is used with a least significant bit-down switching scheme. Compared with the conventional binary-weighted capacitor array, it reduces the area and average switching energy by 50 and 87% under the same unit capacitor. Moreover, capacitor matching requirement is relaxed by 75%. A prototype design was fabricated in a 0.13 µm complementary metal oxide semiconductor process. It consumes 23.2 µW under 1 V analog supply and 0.5 V digital supply. Measured results show a peak signal-to-distortion-and-noise ratio of 55.2 dB and an effective resolution bandwidth up to 1.1 MHz when it operates at 1.1 MS/s. Its figure-of-merit is 44.1 fJ/conversion-step.

  14. Decoupling schemes for the SSC Collider

    International Nuclear Information System (INIS)

    Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.


    A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper

  15. Decoupling schemes for the SCC Collider

    International Nuclear Information System (INIS)

    Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.


    A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper

  16. Algebraic K-theory of generalized schemes

    DEFF Research Database (Denmark)

    Anevski, Stella Victoria Desiree

    Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry and ge...

  17. Algebraic K-theory of generalized schemes

    DEFF Research Database (Denmark)

    Anevski, Stella Victoria Desiree

    Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...

  18. Time-splitting combined with exponential wave integrator fourier pseudospectral method for Schrödinger-Boussinesq system (United States)

    Liao, Feng; Zhang, Luming; Wang, Shanshan


    In this article, we formulate an efficient and accurate numerical method for approximations of the coupled Schrödinger-Boussinesq (SBq) system. The main features of our method are based on: (i) the applications of a time-splitting Fourier spectral method for Schrödinger-like equation in SBq system, (ii) the utilizations of exponential wave integrator Fourier pseudospectral for spatial derivatives in the Boussinesq-like equation. The scheme is fully explicit and efficient due to fast Fourier transform. The numerical examples are presented to show the efficiency and accuracy of our method.

  19. Matching-pursuit/split-operator Fourier-transform simulations of nonadiabatic quantum dynamics (United States)

    Wu, Yinghua; Herman, Michael F.; Batista, Victor S.


    A rigorous and practical approach for simulations of nonadiabatic quantum dynamics is introduced. The algorithm involves a natural extension of the matching-pursuit/split-operator Fourier-transform (MP/SOFT) method [Y. Wu and V. S. Batista, J. Chem. Phys. 121, 1676 (2004)] recently developed for simulations of adiabatic quantum dynamics in multidimensional systems. The MP/SOFT propagation scheme, extended to nonadiabatic dynamics, recursively applies the time-evolution operator as defined by the standard perturbation expansion to first-, or second-order, accuracy. The expansion is implemented in dynamically adaptive coherent-state representations, generated by an approach that combines the matching-pursuit algorithm with a gradient-based optimization method. The accuracy and efficiency of the resulting propagation method are demonstrated as applied to the canonical model systems introduced by Tully for testing simulations of dual curve-crossing nonadiabatic dynamics.

  20. Convergence Analysis of the Preconditioned Group Splitting Methods in Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Norhashidah Hj. Mohd Ali


    Full Text Available The construction of a specific splitting-type preconditioner in block formulation applied to a class of group relaxation iterative methods derived from the centred and rotated (skewed finite difference approximations has been shown to improve the convergence rates of these methods. In this paper, we present some theoretical convergence analysis on this preconditioner specifically applied to the linear systems resulted from these group iterative schemes in solving an elliptic boundary value problem. We will theoretically show the relationship between the spectral radiuses of the iteration matrices of the preconditioned methods which affects the rate of convergence of these methods. We will also show that the spectral radius of the preconditioned matrices is smaller than that of their unpreconditioned counterparts if the relaxation parameter is in a certain optimum range. Numerical experiments will also be presented to confirm the agreement between the theoretical and the experimental results.

  1. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE


    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  2. Wideband metasurface filter based on complementary split-ring resonators (United States)

    Zhang, Tong; Zhang, Jiameng; Xu, Jianchun; Wang, Qingmin; Zhao, Ruochen; Liu, Hao; Dong, Guoyan; Hao, Yanan; Bi, Ke


    A wideband metasurface filter based on complementary split-ring resonators (CSRR) has been prepared. The frequency and transmission bandwidth of the metasurface filters with different split widths are discussed. After analyzing the mechanism of the metasurface, the proposed metasurface filters are fabricated. The electromagnetic properties of the metasurface are measured by a designed test system. The measured results are in good agreement with the simulated ones, which shows that the metasurface filter has a wideband property. As the split width of the CSRR increases, the frequency of the passband shifts to higher frequency regions and the transmission bandwidth decreases.

  3. A splitting algorithm for directional regularization and sparsification

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Nielsen, Mads


    We present a new split-type algorithm for the minimization of a p-harmonic energy with added data fidelity term. The half-quadratic splitting reduces the original problem to two straightforward problems, that can be minimized efficiently. The minimizers to the two sub-problems can typically...... be computed pointwise and are easily implemented on massively parallel processors. Furthermore the splitting method allows for the computation of solutions to a large number of more advanced directional regularization problems. In particular we are able to handle robust, non-convex data terms, and to define...

  4. Ridge Splitting Technique for Horizontal Augmentation and Immediate Implant Placement

    Directory of Open Access Journals (Sweden)

    Papathanasiou Ioannis


    Full Text Available Insufficient width of the alveolar ridge often prevents ideal implant placement. Guided bone regeneration, bone grafting, alveolar ridge splitting and combinations of these techniques are used for the lateral augmentation of the alveolar ridge. Ridge splitting is a minimally invasive technique indicated for alveolar ridges with adequate height, which enables immediate implant placement and eliminates morbidity and overall treatment time. The classical approach of the technique involves splitting the alveolar ridge into 2 parts with use of ostetomes and chisels. Modifications of this technique include the use of rotating instrument, screw spreaders, horizontal spreaders and ultrasonic device.

  5. Market Split based Congestion Management for Networks with Loops (United States)

    Marmiroli, Marta; Tanimoto, Masahiko; Tsukamoto, Yukitoki; Yokoyama, Ryuichi

    Market splitting is one of the methods to solve the transmission congestion problem associated with the introduction of competitive electricity market and transmission access. Based on the concept of price difference among congested areas, the market splitting approach produces a solution that strongly informs market participants of congestion path. In this paper, an algorithm to solve the market splitting problem for complex networks including loop structures is proposed. The method, based on an algebraic approach, ensures a feasible optimal solution verifiable and easily understandable by the market participants. Complex networks are transformed into simple radial ones using the delta-star approach. The method was tested on large problems to evaluate the performances.

  6. MIRD radionuclide data and decay schemes

    CERN Document Server

    Eckerman, Keith F


    For all physicians, scientists, and physicists working in the nuclear medicine field, the MIRD: Radionuclide Data and Decay Schemes updated edition is an essential sourcebook for radiation dosimetry and understanding the properties of radionuclides. Includes CD Table of Contents Decay schemes listed by atomic number Radioactive decay processes Serial decay schemes Decay schemes and decay tables This essential reference for nuclear medicine physicians, scientists and physicists also includes a CD with tabulations of the radionuclide data necessary for dosimetry calculations.

  7. Secret Sharing Schemes and Advanced Encryption Standard (United States)


    Secret Sharing Scheme, they have only been better under certain parameters; there is always a trade -off with some parameter of the scheme. xiv...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SECRET SHARING SCHEMES AND ADVANCED ENCRYPTION STANDARD by Bing Yong Lim September 2015 Thesis...AND SUBTITLE SECRET SHARING SCHEMES AND ADVANCED ENCRYPTION STANDARD 5. FUNDING NUMBERS 6. AUTHOR(S) Lim, Bin Yong 7. PERFORMING ORGANIZATION NAME(S

  8. Tightly Secure Signatures From Lossy Identification Schemes


    Abdalla , Michel; Fouque , Pierre-Alain; Lyubashevsky , Vadim; Tibouchi , Mehdi


    International audience; In this paper, we present three digital signature schemes with tight security reductions in the random oracle model. Our first signature scheme is a particularly efficient version of the short exponent discrete log-based scheme of Girault et al. (J Cryptol 19(4):463–487, 2006). Our scheme has a tight reduction to the decisional short discrete logarithm problem, while still maintaining the non-tight reduction to the computational version of the problem upon which the or...

  9. Power adaptive multi-filter carrierless amplitude and phase access scheme for visible light communication network (United States)

    Li, Wei; Huang, Zhitong; Li, Haoyue; Ji, Yuefeng


    Visible light communication (VLC) is a promising candidate for short-range broadband access due to its integration of advantages for both optical communication and wireless communication, whereas multi-user access is a key problem because of the intra-cell and inter-cell interferences. In addition, the non-flat channel effect results in higher losses for users in high frequency bands, which leads to unfair qualities. To solve those issues, we propose a power adaptive multi-filter carrierless amplitude and phase access (PA-MF-CAPA) scheme, and in the first step of this scheme, the MF-CAPA scheme utilizing multiple filters as different CAP dimensions is used to realize multi-user access. The character of orthogonality among the filters in different dimensions can mitigate the effect of intra-cell and inter-cell interferences. Moreover, the MF-CAPA scheme provides different channels modulated on the same frequency bands, which further increases the transmission rate. Then, the power adaptive procedure based on MF-CAPA scheme is presented to realize quality fairness. As demonstrated in our experiments, the MF-CAPA scheme yields an improved throughput compared with multi-band CAP access scheme, and the PA-MF-CAPA scheme enhances the quality fairness and further improves the throughput compared with the MF-CAPA scheme.

  10. SPAR-H Step-by-Step Guidance

    Energy Technology Data Exchange (ETDEWEB)

    W. J. Galyean; A. M. Whaley; D. L. Kelly; R. L. Boring


    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

  11. Optimal order and time-step criterion for Aarseth-type N-body integrators

    International Nuclear Information System (INIS)

    Makino, Junichiro


    How the selection of the time-step criterion and the order of the integrator change the efficiency of Aarseth-type N-body integrators is discussed. An alternative to Aarseth's scheme based on the direct calculation of the time derivative of the force using the Hermite interpolation is compared to Aarseth's scheme, which uses the Newton interpolation to construct the predictor and corrector. How the number of particles in the system changes the behavior of integrators is examined. The Hermite scheme allows a time step twice as large as that for the standard Aarseth scheme for the same accuracy. The calculation cost of the Hermite scheme per time step is roughly twice as much as that of the standard Aarseth scheme. The optimal order of the integrators depends on both the particle number and the accuracy required. The time-step criterion of the standard Aarseth scheme is found to be inapplicable to higher-order integrators, and a more uniformly reliable criterion is proposed. 18 refs

  12. Optimal order and time-step criterion for Aarseth-type N-body integrators (United States)

    Makino, Junichiro


    How the selection of the time-step criterion and the order of the integrator change the efficiency of Aarseth-type N-body integrators is discussed. An alternative to Aarseth's scheme based on the direct calculation of the time derivative of the force using the Hermite interpolation is compared to Aarseth's scheme, which uses the Newton interpolation to construct the predictor and corrector. How the number of particles in the system changes the behavior of integrators is examined. The Hermite scheme allows a time step twice as large as that for the standard Aarseth scheme for the same accuracy. The calculation cost of the Hermite scheme per time step is roughly twice as much as that of the standard Aarseth scheme. The optimal order of the integrators depends on both the particle number and the accuracy required. The time-step criterion of the standard Aarseth scheme is found to be inapplicable to higher-order integrators, and a more uniformly reliable criterion is proposed.

  13. Optimal order and time-step criterion for Aarseth-type N-body integrators

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Junichiro (Tokyo Univ. (Japan))


    How the selection of the time-step criterion and the order of the integrator change the efficiency of Aarseth-type N-body integrators is discussed. An alternative to Aarseth's scheme based on the direct calculation of the time derivative of the force using the Hermite interpolation is compared to Aarseth's scheme, which uses the Newton interpolation to construct the predictor and corrector. How the number of particles in the system changes the behavior of integrators is examined. The Hermite scheme allows a time step twice as large as that for the standard Aarseth scheme for the same accuracy. The calculation cost of the Hermite scheme per time step is roughly twice as much as that of the standard Aarseth scheme. The optimal order of the integrators depends on both the particle number and the accuracy required. The time-step criterion of the standard Aarseth scheme is found to be inapplicable to higher-order integrators, and a more uniformly reliable criterion is proposed. 18 refs.

  14. Outage Analysis of Cooperative Transmission with Energy Harvesting Relay: Time Switching versus Power Splitting

    Directory of Open Access Journals (Sweden)

    Guanyao Du


    Full Text Available This paper investigates the multiuser transmission network with an energy harvesting (EH cooperative relay, where a source transmits independent information to multiple destinations with the help of an energy constrained relay. The relay can harvest energy from the radio frequency (RF signals transmitted from the source, and it helps the multiuser transmission only by consuming the harvested energy. By adopting the time switching and the power splitting relay receiver architectures, we firstly propose two protocols, the time switching cooperative multiuser transmission (TSCMT protocol and the power splitting cooperative multiuser transmission (PSCMT protocol, to enable the simultaneous information processing and EH at the relay for the system. To evaluate the system performance, we theoretically analyze the system outage probability for the two proposed protocols and then derive explicit expressions for each of them, respectively. Numerical results are provided to demonstrate the accuracy of our analytical results and reveal that compared with traditional noncooperative scheme our proposed protocols are green solutions to offer reliable communication and lower system outage probability without consuming additional energy. In particular, for the same transmit power at the source, the PSCMT protocol is superior to the TSCMT protocol to obtain lower system outage probability.

  15. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks. (United States)

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng


    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.

  16. A new perspective on hydrogen production by photosynthetic water-splitting

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.W.; Greenbaum, E.


    Present energy systems are heavily dependent on fossil fuels. This will eventually lead to the foreseeable depletion of fossil energy resources and, according to some reports, global climate changes due to the emission of carbon dioxide. In principle, hydrogen production by biophotolysis of water can be an ideal solar energy conversion system for sustainable development of human activities in harmony with the global environment. In photosynthetic hydrogen production research, there are currently two main efforts: (1) Direct photoevolution of hydrogen and oxygen by photosynthetic water splitting using the ferredoxin/hydrogenase pathway; (2) Dark hydrogen production by fermentation of organic reserves such as starch that are generated by photosynthesis during the light period. In this chapter, the advantages and challenges of the two approaches for hydrogen production will be discussed, in relation to a new opportunity brought by our recent discovery of a new photosynthetic water-splitting reaction which, potentially, has twice the energy efficiency of conventional watersplitting via the two light reaction Z-scheme of photosynthesis.

  17. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting

    KAUST Repository

    Varadhan, Purushothaman


    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of −31 mA/cm at −0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  18. A parallel imaging technique using mutual calibration for split-blade diffusion-weighted PROPELLER. (United States)

    Li, Zhiqiang; Pipe, James G; Aboussouan, Eric; Karis, John P; Huo, Donglai


    Split-blade diffusion-weighted periodically rotated overlapping parallel lines with enhanced reconstruction (DW-PROPELLER) was proposed to address the issues associated with diffusion-weighted echo planar imaging such as geometric distortion and difficulty in high-resolution imaging. The major drawbacks with DW-PROPELLER are its high SAR (especially at 3T) and violation of the Carr-Purcell-Meiboom-Gill condition, which leads to a long scan time and narrow blade. Parallel imaging can reduce scan time and increase blade width; however, it is very challenging to apply standard k-space-based techniques such as GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) to split-blade DW-PROPELLER due to its narrow blade. In this work, a new calibration scheme is proposed for k-space-based parallel imaging method without the need of additional calibration data, which results in a wider, more stable blade. The in vivo results show that this technique is very promising. Copyright © 2010 Wiley-Liss, Inc.


    African Journals Online (AJOL)


    and Wait (SW), Selective Repeat (SR), Stutter. (ST) and Go-Back-N (GBN) (Lin and Costello,. 2003). Combinations of these schemes lead to mixed mode schemes which include the SR-. GBN, SR-ST1 and SR-ST2. In the mixed mode schemes, when a prescribed number of failures occur in the SR mode, the GBN or ST ...

  20. The Original Management Incentive Schemes


    Richard T. Holden


    During the 1990s, the structure of pay for top corporate executives shifted markedly as the use of stock options greatly expanded. By the early 2000s, as the dot-com boom ended and the Nasdaq stock index melted down, these modern executive incentive schemes were being sharply questioned on many grounds—for encouraging excessive risk-taking and a short-run orientation, for being an overly costly and inefficient method of providing incentives, and even for tempting managers of firms like Enron,...