WorldWideScience

Sample records for split operator method

  1. A split operator method for transient problems

    International Nuclear Information System (INIS)

    Belytschko, T.B.

    1983-01-01

    Numerous techniques have been developed for improving the computational efficiency of transient analysis: mesh partitioning, subcycling procedures and operator splitting methods. In mesh partitioning methods, the model is divided into subdomains which are integrated by different time integrators, typically implicit and explicit. Any stiff portions of the model are integrated by the implicit operator so that the size of the time step can be increased. In subcycling procedures, the stiff portions are integrated by smaller time steps, yielding similar benefits. However, in models for which the governing partial differential equations are basically of a parabolic character, explicit methods can become quite expensive for refined models because the size of the stable time step decreases with the square of the minimum element dimension. Thus explicit methods, whether employed alone or with partitioning or subcycling, have inherent limitations in these problems. A new procedure is here described for the element-by-element semi-implicit method of Hughes and coworkers which requires the solution of only small systems of equations. This procedure is described for a family of uniform gradient or strain elements which are widely used in nonlinear transient analysis. The diffusion equation and the equations of motion for both shells and continua have been treated, but only the former is considered herein. Results are presented for several examples which show the potential of this method for improving the efficiency of a large-scale linear and nonlinear computations. (orig./RW)

  2. Operator splitting method for simulation of dynamic flows in natural gas pipeline networks

    Science.gov (United States)

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; Chertkov, Michael

    2017-12-01

    We develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme is unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.

  3. Splitting methods in communication, imaging, science, and engineering

    CERN Document Server

    Osher, Stanley; Yin, Wotao

    2016-01-01

    This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. .

  4. Splitting methods for split feasibility problems with application to Dantzig selectors

    International Nuclear Information System (INIS)

    He, Hongjin; Xu, Hong-Kun

    2017-01-01

    The split feasibility problem (SFP), which refers to the task of finding a point that belongs to a given nonempty, closed and convex set, and whose image under a bounded linear operator belongs to another given nonempty, closed and convex set, has promising applicability in modeling a wide range of inverse problems. Motivated by the increasingly data-driven regularization in the areas of signal/image processing and statistical learning, in this paper, we study the regularized split feasibility problem (RSFP), which provides a unified model for treating many real-world problems. By exploiting the split nature of the RSFP, we shall gainfully employ several efficient splitting methods to solve the model under consideration. A remarkable advantage of our methods lies in their easier subproblems in the sense that the resulting subproblems have closed-form representations or can be efficiently solved up to a high precision. As an interesting application, we apply the proposed algorithms for finding Dantzig selectors, in addition to demonstrating the effectiveness of the splitting methods through some computational results on synthetic and real medical data sets. (paper)

  5. Operator Splitting Methods for Degenerate Convection-Diffusion Equations I: Convergence and Entropy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Helge; Karlsen, Kenneth H.; Lie, Knut-Andreas

    1999-10-01

    We present and analyze a numerical method for the solution of a class of scalar, multi-dimensional, nonlinear degenerate convection-diffusion equations. The method is based on operator splitting to separate the convective and the diffusive terms in the governing equation. The nonlinear, convective part is solved using front tracking and dimensional splitting, while the nonlinear diffusion equation is solved by a suitable difference scheme. We verify L{sup 1} compactness of the corresponding set of approximate solutions and derive precise entropy estimates. In particular, these results allow us to pass to the limit in our approximations and recover an entropy solution of the problem in question. The theory presented covers a large class of equations. Important subclasses are hyperbolic conservation laws, porous medium type equations, two-phase reservoir flow equations, and strongly degenerate equations coming from the recent theory of sedimentation-consolidation processes. A thorough numerical investigation of the method analyzed in this paper (and similar methods) is presented in a companion paper. (author)

  6. Point-splitting regularization of composite operators and anomalies

    International Nuclear Information System (INIS)

    Novotny, J.; Schnabl, M.

    2000-01-01

    The point-splitting regularization technique for composite operators is discussed in connection with anomaly calculation. We present a pedagogical and self-contained review of the topic with an emphasis on the technical details. We also develop simple algebraic tools to handle the path ordered exponential insertions used within the covariant and non-covariant version of the point-splitting method. The method is then applied to the calculation of the chiral, vector, trace, translation and Lorentz anomalies within diverse versions of the point-splitting regularization and a connection between the results is described. As an alternative to the standard approach we use the idea of deformed point-split transformation and corresponding Ward-Takahashi identities rather than an application of the equation of motion, which seems to reduce the complexity of the calculations. (orig.)

  7. An Operator-Integration-Factor Splitting (OIFS) method for Incompressible Flows in Moving Domains

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Saumil S. [Argonne National Lab. (ANL), Argonne, IL (United States); Fischer, Paul F. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Urbana-Champaign, IL (United States); Min, Misun [Argonne National Lab. (ANL), Argonne, IL (United States); Tomboulides, Ananias G [Argonne National Lab. (ANL), Argonne, IL (United States); Aristotle Univ., Thessaloniki (Greece)

    2017-10-21

    In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an effcient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian-Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of the scheme.

  8. First and second order operator splitting methods for the phase field crystal equation

    International Nuclear Information System (INIS)

    Lee, Hyun Geun; Shin, Jaemin; Lee, June-Yub

    2015-01-01

    In this paper, we present operator splitting methods for solving the phase field crystal equation which is a model for the microstructural evolution of two-phase systems on atomic length and diffusive time scales. A core idea of the methods is to decompose the original equation into linear and nonlinear subequations, in which the linear subequation has a closed-form solution in the Fourier space. We apply a nonlinear Newton-type iterative method to solve the nonlinear subequation at the implicit time level and thus a considerably large time step can be used. By combining these subequations, we achieve the first- and second-order accuracy in time. We present numerical experiments to show the accuracy and efficiency of the proposed methods

  9. Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization

    Science.gov (United States)

    MacArt, Jonathan F.; Mueller, Michael E.

    2016-12-01

    Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.

  10. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  11. Tensor-Train Split-Operator Fourier Transform (TT-SOFT) Method: Multidimensional Nonadiabatic Quantum Dynamics.

    Science.gov (United States)

    Greene, Samuel M; Batista, Victor S

    2017-09-12

    We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.

  12. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  13. Total-variation based velocity inversion with Bregmanized operator splitting algorithm

    Science.gov (United States)

    Zand, Toktam; Gholami, Ali

    2018-04-01

    Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.

  14. Solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators.

    Science.gov (United States)

    Zhao, Jing; Zong, Haili

    2018-01-01

    In this paper, we propose parallel and cyclic iterative algorithms for solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators. We also combine the process of cyclic and parallel iterative methods and propose two mixed iterative algorithms. Our several algorithms do not need any prior information about the operator norms. Under mild assumptions, we prove weak convergence of the proposed iterative sequences in Hilbert spaces. As applications, we obtain several iterative algorithms to solve the multiple-set split equality problem.

  15. Analysis of operator splitting errors for near-limit flame simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhen; Zhou, Hua [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Li, Shan [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China); Ren, Zhuyin, E-mail: zhuyinren@tsinghua.edu.cn [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China); Lu, Tianfeng [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269-3139 (United States); Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2017-04-15

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction–diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction of ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory

  16. Sparse Parallel MRI Based on Accelerated Operator Splitting Schemes.

    Science.gov (United States)

    Cai, Nian; Xie, Weisi; Su, Zhenghang; Wang, Shanshan; Liang, Dong

    2016-01-01

    Recently, the sparsity which is implicit in MR images has been successfully exploited for fast MR imaging with incomplete acquisitions. In this paper, two novel algorithms are proposed to solve the sparse parallel MR imaging problem, which consists of l 1 regularization and fidelity terms. The two algorithms combine forward-backward operator splitting and Barzilai-Borwein schemes. Theoretically, the presented algorithms overcome the nondifferentiable property in l 1 regularization term. Meanwhile, they are able to treat a general matrix operator that may not be diagonalized by fast Fourier transform and to ensure that a well-conditioned optimization system of equations is simply solved. In addition, we build connections between the proposed algorithms and the state-of-the-art existing methods and prove their convergence with a constant stepsize in Appendix. Numerical results and comparisons with the advanced methods demonstrate the efficiency of proposed algorithms.

  17. A three operator split-step method covering a larger set of non-linear partial differential equations

    Science.gov (United States)

    Zia, Haider

    2017-06-01

    This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.

  18. Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hepburn, I.; De Schutter, E., E-mail: erik@oist.jp [Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495 (Japan); Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp 2610 (Belgium); Chen, W. [Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495 (Japan)

    2016-08-07

    Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realistic biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.

  19. Matching-pursuit/split-operator Fourier-transform simulations of nonadiabatic quantum dynamics

    Science.gov (United States)

    Wu, Yinghua; Herman, Michael F.; Batista, Victor S.

    2005-03-01

    A rigorous and practical approach for simulations of nonadiabatic quantum dynamics is introduced. The algorithm involves a natural extension of the matching-pursuit/split-operator Fourier-transform (MP/SOFT) method [Y. Wu and V. S. Batista, J. Chem. Phys. 121, 1676 (2004)] recently developed for simulations of adiabatic quantum dynamics in multidimensional systems. The MP/SOFT propagation scheme, extended to nonadiabatic dynamics, recursively applies the time-evolution operator as defined by the standard perturbation expansion to first-, or second-order, accuracy. The expansion is implemented in dynamically adaptive coherent-state representations, generated by an approach that combines the matching-pursuit algorithm with a gradient-based optimization method. The accuracy and efficiency of the resulting propagation method are demonstrated as applied to the canonical model systems introduced by Tully for testing simulations of dual curve-crossing nonadiabatic dynamics.

  20. Projection operator method for collective tunneling transitions

    International Nuclear Information System (INIS)

    Kohmura, Toshitake; Ohta, Hirofumi; Hashimoto, Yukio; Maruyama, Masahiro

    2002-01-01

    Collective tunneling transitions take place in the case that a system has two nearly degenerate ground states with a slight energy splitting, which provides the time scale of the tunneling. The Liouville equation determines the evolution of the density matrix, while the Schroedinger equation determines that of a state. The Liouville equation seems to be more powerful for calculating accurately the energy splitting of two nearly degenerate eigenstates. However, no method to exactly solve the Liouville eigenvalue equation has been established. The usual projection operator method for the Liouville equation is not feasible. We analytically solve the Liouville evolution equation for nuclear collective tunneling from one Hartree minimum to another, proposing a simple and solvable model Hamiltonian for the transition. We derive an analytical expression for the splitting of energy eigenvalues from a spectral function of the Liouville evolution using a half-projected operator method. A full-order analytical expression for the energy splitting is obtained. We define the collective tunneling path of a microscopic Hamiltonian for collective tunneling, projecting the nuclear ground states onto n-particle n-hole state spaces. It is argued that the collective tunneling path sector of a microscopic Hamiltonian can be transformed into the present solvable model Hamiltonian. (author)

  1. A Matrix Splitting Method for Composite Function Minimization

    KAUST Repository

    Yuan, Ganzhao

    2016-12-07

    Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.

  2. A Matrix Splitting Method for Composite Function Minimization

    KAUST Repository

    Yuan, Ganzhao; Zheng, Wei-Shi; Ghanem, Bernard

    2016-01-01

    Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.

  3. Source splitting via the point source method

    International Nuclear Information System (INIS)

    Potthast, Roland; Fazi, Filippo M; Nelson, Philip A

    2010-01-01

    We introduce a new algorithm for source identification and field splitting based on the point source method (Potthast 1998 A point-source method for inverse acoustic and electromagnetic obstacle scattering problems IMA J. Appl. Math. 61 119–40, Potthast R 1996 A fast new method to solve inverse scattering problems Inverse Problems 12 731–42). The task is to separate the sound fields u j , j = 1, ..., n of n element of N sound sources supported in different bounded domains G 1 , ..., G n in R 3 from measurements of the field on some microphone array—mathematically speaking from the knowledge of the sum of the fields u = u 1 + ... + u n on some open subset Λ of a plane. The main idea of the scheme is to calculate filter functions g 1 ,…, g n , n element of N, to construct u l for l = 1, ..., n from u| Λ in the form u l (x) = ∫ Λ g l,x (y)u(y)ds(y), l=1,... n. (1) We will provide the complete mathematical theory for the field splitting via the point source method. In particular, we describe uniqueness, solvability of the problem and convergence and stability of the algorithm. In the second part we describe the practical realization of the splitting for real data measurements carried out at the Institute for Sound and Vibration Research at Southampton, UK. A practical demonstration of the original recording and the splitting results for real data is available online

  4. Pharmaceutical counselling about different types of tablet-splitting methods based on the results of weighing tests and mechanical development of splitting devices.

    Science.gov (United States)

    Somogyi, O; Meskó, A; Csorba, L; Szabó, P; Zelkó, R

    2017-08-30

    The division of tablets and adequate methods of splitting them are a complex problem in all sectors of health care. Although tablet-splitting is often required, this procedure can be difficult for patients. Four tablets were investigated with different external features (shape, score-line, film-coat and size). The influencing effect of these features and the splitting methods was investigated according to the precision and "weight loss" of splitting techniques. All four types of tablets were halved by four methods: by hand, with a kitchen knife, with an original manufactured splitting device and with a modified tablet splitter based on a self-developed mechanical model. The mechanical parameters (harness and friability) of the products were measured during the study. The "weight loss" and precision of splitting methods were determined and compared by statistical analysis. On the basis of the results, the external features (geometry), the mechanical parameters of tablets and the mechanical structure of splitting devices can influence the "weight loss" and precision of tablet-splitting. Accordingly, a new decision-making scheme was developed for the selection of splitting methods. In addition, the skills of patients and the specialties of therapy should be considered so that pharmaceutical counselling can be more effective regarding tablet-splitting. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    Science.gov (United States)

    Pasch, James Jay

    2017-02-07

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  6. A Quantitative Analysis of Children's Splitting Operations and Fraction Schemes

    Science.gov (United States)

    Norton, Anderson; Wilkins, Jesse L. M.

    2009-01-01

    Teaching experiments with pairs of children have generated several hypotheses about students' construction of fractions. For example, Steffe (2004) hypothesized that robust conceptions of improper fractions depends on the development of a splitting operation. Results from teaching experiments that rely on scheme theory and Steffe's hierarchy of…

  7. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  8. Splitting method for the combined formulation of fluid-particle problem

    International Nuclear Information System (INIS)

    Choi, Hyung Gwon; Yoo, Jung Yul; Joseph, D. D.

    2000-01-01

    A splitting method for the direct numerical simulation of solid-liquid mixtures is presented, where a symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly proposed splitting method works well with a matrix-free formulation for some bench mark problems avoiding an erroneous pressure field which appears when using the conventional pressure equation of a splitting method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to be approximated by the 'intermediate velocity' instead of treating it as unknowns since it is necessary as a boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle moves by the known form drag(pressure drag) that is calculated from the pressure equation in the previous step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by applying the projector of the combined formulation. It has been tested over some bench mark problems and gives reasonable pressure fields

  9. Examination of post operative split lung function using quantitative xenon 133 (133Xe) inhalation scan

    International Nuclear Information System (INIS)

    Omote, Yoshiharu; Maeda, Tomio; Ikeda, Koichiro; Kubo, Yoshihiko

    1992-01-01

    133 Xe inhalation scan and ordinary lung function testing were performed three times in 34 patients undergoing pulmonary resection: before surgery, and one and six months postoperatively. Forced vital capacity (FVC) and forced expiratory volume in the first second (FEV 1.0 ) were used as spirometric parameters. From the 133 Xe inhalation scan, a split lung capacity (right to left, upper, middle and lower) and T1/2 (time required for half of the inhalation of 133 Xe gas to be expired) were calculated by computer and used as indices of split lung capacity and ventilation, respectively. The predicted postoperative lung functions were calculated using preoperative spirometric respiratory function and 133 Xe inhalation data according to the formula reported by Ali and associates. At sixth postoperative month, both predicted FVC (r=0.895, p 1.0 (r=0.897, p<0.001) correlated highly with those actually observed. These results appear to be very useful for preoperative evaluation of operative indications and the choice of surgical method. The ratios of observed to predicted lung capacity in the post operative state were examined by splitting the right and left lung and the means±S.D.(%) were 80.5±9.7% on the operated side and 119.2±11.7% on the opposite side one month after surgery. Six months after surgery, the corresponding figures were 111.0±5.6% and 96.7±16.4%. The post operative T1/2 values on the operated sides were about 2.4 times the preoperative values at one month after surgery but returned to the preoperative values by the six postoperative month. From these results, it can be said that respiratory functions after pulmonary resection are maintained primarily by compensatory lung function of opposite and operated sides at one and six months, respectively. These results also provide valuable information on postoperative respiratory care for patients who have undergone lung resection. (author)

  10. Splitting and non splitting are pollution models photochemical reactions in the urban areas of greater Tehran area

    International Nuclear Information System (INIS)

    Heidarinasab, A.; Dabir, B.; Sahimi, M.; Badii, Kh.

    2003-01-01

    During the past years, one of the most important problems has been air pollution in urban areas. In this regards, ozone, as one of the major products of photochemical reactions, has great importance. The term 'photochemical' is applied to a number of secondary pollutants that appear as a result of sun-related reactions, ozone being the most important one. So far various models have been suggested to predict these pollutants. In this paper, we developed the model that has been introduced by Dabir, et al. [4]. In this model more than 48 chemical species and 114 chemical reactions are involved. The result of this development, showed good to excellent agreement across the region for compounds such as O 3 , NO, NO 2 , CO, and SO 2 with regard to VOC and NMHC. The results of the simulation were compared with previous work [4] and the effects of increasing the number of components and reactions were evaluated. The results of the operator splitting method were compared with non splitting solving method. The result showed that splitting method with one-tenth time step collapsed with non splitting method (Crank-Nicolson, under-relaxation iteration method without splitting of the equation terms). Then we developed one dimensional model to 3-D and were compared with experimental data

  11. The Split Coefficient Matrix method for hyperbolic systems of gasdynamic equations

    Science.gov (United States)

    Chakravarthy, S. R.; Anderson, D. A.; Salas, M. D.

    1980-01-01

    The Split Coefficient Matrix (SCM) finite difference method for solving hyperbolic systems of equations is presented. This new method is based on the mathematical theory of characteristics. The development of the method from characteristic theory is presented. Boundary point calculation procedures consistent with the SCM method used at interior points are explained. The split coefficient matrices that define the method for steady supersonic and unsteady inviscid flows are given for several examples. The SCM method is used to compute several flow fields to demonstrate its accuracy and versatility. The similarities and differences between the SCM method and the lambda-scheme are discussed.

  12. Efficient operator splitting algorithm for joint sparsity-regularized SPIRiT-based parallel MR imaging reconstruction.

    Science.gov (United States)

    Duan, Jizhong; Liu, Yu; Jing, Peiguang

    2018-02-01

    Self-consistent parallel imaging (SPIRiT) is an auto-calibrating model for the reconstruction of parallel magnetic resonance imaging, which can be formulated as a regularized SPIRiT problem. The Projection Over Convex Sets (POCS) method was used to solve the formulated regularized SPIRiT problem. However, the quality of the reconstructed image still needs to be improved. Though methods such as NonLinear Conjugate Gradients (NLCG) can achieve higher spatial resolution, these methods always demand very complex computation and converge slowly. In this paper, we propose a new algorithm to solve the formulated Cartesian SPIRiT problem with the JTV and JL1 regularization terms. The proposed algorithm uses the operator splitting (OS) technique to decompose the problem into a gradient problem and a denoising problem with two regularization terms, which is solved by our proposed split Bregman based denoising algorithm, and adopts the Barzilai and Borwein method to update step size. Simulation experiments on two in vivo data sets demonstrate that the proposed algorithm is 1.3 times faster than ADMM for datasets with 8 channels. Especially, our proposal is 2 times faster than ADMM for the dataset with 32 channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Applications of Operator-Splitting Methods to the Direct Numerical Simulation of Particulate and Free-Surface Flows and to the Numerical Solution of the Two-Dimensional Elliptic Monge--Ampère Equation

    OpenAIRE

    Glowinski, R.; Dean, E.J.; Guidoboni, G.; Juárez, L.H.; Pan, T.-W.

    2008-01-01

    The main goal of this article is to review some recent applications of operator-splitting methods. We will show that these methods are well-suited to the numerical solution of outstanding problems from various areas in Mechanics, Physics and Differential Geometry, such as the direct numerical simulation of particulate flow, free boundary problems with surface tension for incompressible viscous fluids, and the elliptic real Monge--Ampère equation. The results of numerical ...

  14. Numerical modeling of isothermal compositional grading by convex splitting methods

    KAUST Repository

    Li, Yiteng

    2017-04-09

    In this paper, an isothermal compositional grading process is simulated based on convex splitting methods with the Peng-Robinson equation of state. We first present a new form of gravity/chemical equilibrium condition by minimizing the total energy which consists of Helmholtz free energy and gravitational potential energy, and incorporating Lagrange multipliers for mass conservation. The time-independent equilibrium equations are transformed into a system of transient equations as our solution strategy. It is proved our time-marching scheme is unconditionally energy stable by the semi-implicit convex splitting method in which the convex part of Helmholtz free energy and its derivative are treated implicitly and the concave parts are treated explicitly. With relaxation factor controlling Newton iteration, our method is able to converge to a solution with satisfactory accuracy if a good initial estimate of mole compositions is provided. More importantly, it helps us automatically split the unstable single phase into two phases, determine the existence of gas-oil contact (GOC) and locate its position if GOC does exist. A number of numerical examples are presented to show the performance of our method.

  15. Modified Splitting FDTD Methods for Two-Dimensional Maxwell’s Equations

    Directory of Open Access Journals (Sweden)

    Liping Gao

    2017-01-01

    Full Text Available In this paper, we develop a new method to reduce the error in the splitting finite-difference method of Maxwell’s equations. By this method two modified splitting FDTD methods (MS-FDTDI, MS-FDTDII for the two-dimensional Maxwell equations are proposed. It is shown that the two methods are second-order accurate in time and space and unconditionally stable by Fourier methods. By energy method, it is proved that MS-FDTDI is second-order convergent. By deriving the numerical dispersion (ND relations, we prove rigorously that MS-FDTDI has less ND errors than the ADI-FDTD method and the ND errors of ADI-FDTD are less than those of MS-FDTDII. Numerical experiments for computing ND errors and simulating a wave guide problem and a scattering problem are carried out and the efficiency of the MS-FDTDI and MS-FDTDII methods is confirmed.

  16. A splitting method for the isentropic Baer-Nunziato two-phase flow model

    Directory of Open Access Journals (Sweden)

    Coquel Frédéric

    2013-01-01

    Full Text Available In the present work, we propose a fractional step method for computing approximate solutions of the isentropic Baer-Nunziato two-phase flow model. The scheme relies on an operator splitting method corresponding to a separate treatment of fast propagation phenomena due to the acoustic waves on the one hand and slow propagation phenomena due to the fluid motion on the other. The scheme is proved to preserve positive values of the statistical fractions and densities. We also provide two test-cases that assess the convergence of the method. Nous proposons ici une méthode à pas fractionnaires pour le calcul de solutions approchées pour la version isentropique du modèle diphasique de Baer-Nunziato. Le schéma s’appuie sur un splitting de l’opérateur temporel correspondant à la prise en compte différenciée des phéno-mènes de propagation rapide dus aux ondes acoustiques et des phénomènes de propagation lente dus aux ondes matérielles. On prouve que le schéma permet de préserver des valeurs positives pour les taux statistiques de présence des phases ainsi que pour les densités. Deux cas tests numériques permettent d’illustrer la convergence de la méthode.

  17. N3S project of fluid mechanics. High order in time methods by operator splitting. Application to Navier-Stokes equations

    International Nuclear Information System (INIS)

    Boukir, K.

    1994-06-01

    This thesis deals with the extension to higher order in time of two splitting methods for the Navier-Stokes equations: the characteristics method and the projection one. The first consists in decoupling the convection operator from the Stokes one. The second decomposes this latter into a diffusion problem and a pressure-continuity one. Concerning the characteristics method, numerical and theoretical study is developed for the second order scheme together with a finite element spatial discretization. The case of a spectral spatial discretization is also treated and theoretical analysis are given respectively for second and third order schemes. For both spatial discretizations, we obtain good error estimates, unconditionally or under non stringent stability conditions, for both velocity and pressure. Numerical results illustrate the interest of the second order scheme comparing to the first order one. Extensions of the second order scheme to the K-epsilon turbulence model are proposed and tested, in the case of a finite element spatial discretization. Concerning the projection method, we define the order schemes. The theoretical study deals with stability and convergence of first and second order projection schemes, for the incompressible Navier-Stokes equations and with a finite element spatial discretization. The numerical study concerns mainly the second order scheme applied to the Navier-Stokes equations with varying density. (authors). 63 refs., figs

  18. MODELLING AND CONTROL OF POWER-SPLIT HYBRID ELECTRIC VEHICLE USING FUZZY LOGIC METHOD

    OpenAIRE

    Mohammadpour, Ebrahim; Khajavi, Mehrdad Nouri

    2014-01-01

    Nowadays, automotive manufactures increasingly have lead to development of hybrid vehicles due to energy consumption growing and increased emissions. the power-split hybrids due to the simultaneous using of speed and torque couplings has integrated advantage of series and parallel hybrid systems and minimize their disadvantages , however the power-split hybrids control strategy is far more complex than other types. Generally the control strategy tries to use the optimize operating point of HE...

  19. Solution Procedure for Transport Modeling in Effluent Recharge Based on Operator-Splitting Techniques

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available The coupling of groundwater movement and reactive transport during groundwater recharge with wastewater leads to a complicated mathematical model, involving terms to describe convection-dispersion, adsorption/desorption and/or biodegradation, and so forth. It has been found very difficult to solve such a coupled model either analytically or numerically. The present study adopts operator-splitting techniques to decompose the coupled model into two submodels with different intrinsic characteristics. By applying an upwind finite difference scheme to the finite volume integral of the convection flux term, an implicit solution procedure is derived to solve the convection-dominant equation. The dispersion term is discretized in a standard central-difference scheme while the dispersion-dominant equation is solved using either the preconditioned Jacobi conjugate gradient (PJCG method or Thomas method based on local-one-dimensional scheme. The solution method proposed in this study is applied to the demonstration project of groundwater recharge with secondary effluent at Gaobeidian sewage treatment plant (STP successfully.

  20. Application of the operator splitting to the Maxwell equations with the source term

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Faragó, I.; Horváth, R.

    Motivated by numerical solution of the time-dependent Maxwell equations, we consider splitting methods for a linear system of differential equations $w'(t)=Aw(t)+f(t),$ $A\\in\\mathbb{R}^{n\\times n}$ split into two subproblems $w_1'(t)=A_1w_1(t)+f_1(t)$ and $w_2'(t)=A_2w_2(t)+f_2(t),$ $A=A_1+A_2,$

  1. A different and safe method of split thickness skin graft fixation: medical honey application.

    Science.gov (United States)

    Emsen, Ilteris Murat

    2007-09-01

    Honey has been used for medicinal purposes since ancient times. Its antibacterial effects have been established during the past few decades. Still, modern medical practitioners hesitate to apply honey for local treatment of wounds. This may be because of the expected messiness of such local application. Hence, if honey is to be used for medicinal purposes, it has to meet certain criteria. The authors evaluated its use for the split thickness skin graft fixation because of its adhesive and other beneficial effects in 11 patients. No complications such as graft loss, infection, and graft rejection were seen. Based on these results, the authors advised honey as a new agent for split thickness skin graft fixation. In recent years there has been a renewed interest in honey wound management. There are a range of regulated wound care products that contain honey available on the Drug Tariff. This article addresses key issues associated with the use of honey, outlining how it may be best used, in which methods of split thickness skin graft fixations it may be used, and what clinical outcomes may be anticipated. For this reason, 11 patients who underwent different diagnosis were included in this study. In all the patients same medical honey was used for the fixation of the skin graft. No graft loss was seen during both the first dressing and the last view of the grafted areas. As a result, it has been shown that honey is also a very effective agent for split thickness skin graft fixations. Because it is a natural agent, it can be easily used in all skin graft operation for the fixation of the split thickness skin grafts.

  2. Convergence and Stability of the Split-Step θ-Milstein Method for Stochastic Delay Hopfield Neural Networks

    Directory of Open Access Journals (Sweden)

    Qian Guo

    2013-01-01

    Full Text Available A new splitting method designed for the numerical solutions of stochastic delay Hopfield neural networks is introduced and analysed. Under Lipschitz and linear growth conditions, this split-step θ-Milstein method is proved to have a strong convergence of order 1 in mean-square sense, which is higher than that of existing split-step θ-method. Further, mean-square stability of the proposed method is investigated. Numerical experiments and comparisons with existing methods illustrate the computational efficiency of our method.

  3. Imitation Monte Carlo methods for problems of the Boltzmann equation with small Knudsen numbers, parallelizing algorithms with splitting

    International Nuclear Information System (INIS)

    Khisamutdinov, A I; Velker, N N

    2014-01-01

    The talk examines a system of pairwise interaction particles, which models a rarefied gas in accordance with the nonlinear Boltzmann equation, the master equations of Markov evolution of this system and corresponding numerical Monte Carlo methods. Selection of some optimal method for simulation of rarefied gas dynamics depends on the spatial size of the gas flow domain. For problems with the Knudsen number K n of order unity 'imitation', or 'continuous time', Monte Carlo methods ([2]) are quite adequate and competitive. However if K n ≤ 0.1 (the large sizes), excessive punctuality, namely, the need to see all the pairs of particles in the latter, leads to a significant increase in computational cost(complexity). We are interested in to construct the optimal methods for Boltzmann equation problems with large enough spatial sizes of the flow. Speaking of the optimal, we mean that we are talking about algorithms for parallel computation to be implemented on high-performance multi-processor computers. The characteristic property of large systems is the weak dependence of sub-parts of each other at a sufficiently small time intervals. This property is taken into account in the approximate methods using various splittings of operator of corresponding master equations. In the paper, we develop the approximate method based on the splitting of the operator of master equations system 'over groups of particles' ([7]). The essence of the method is that the system of particles is divided into spatial subparts which are modeled independently for small intervals of time, using the precise 'imitation' method. The type of splitting used is different from other well-known type 'over collisions and displacements', which is an attribute of the known Direct simulation Monte Carlo methods. The second attribute of the last ones is the grid of the 'interaction cells', which is completely absent in the imitation methods. The

  4. High efficiency beam splitting for H- accelerators

    International Nuclear Information System (INIS)

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H - accelerators. This technique uses a high intensity flash of light to strip a fraction of the H - beam to H 0 which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10 -3 to 10 -2 splitting of a 50 MeV H - beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction

  5. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Pengbin, E-mail: 120233951@qq.com [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-01-15

    Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.

  6. A New Method of Assessing Uncertainty of the Cross-Convolution Method of Shear Wave Splitting Measurement

    Science.gov (United States)

    Schutt, D.; Breidt, J.; Corbalan Castejon, A.; Witt, D. R.

    2017-12-01

    Shear wave splitting is a commonly used and powerful method for constraining such phenomena as lithospheric strain history or asthenospheric flow. However, a number of challenges with the statistics of shear wave splitting have been noted. This creates difficulties in assessing whether two separate measurements are statistically similar or are indicating real differences in anisotropic structure, as well as for created proper station averaged sets of parameters for more complex situations such as multiple or dipping layers of anisotropy. We present a new method for calculating the most likely splitting parameters using the Menke and Levin [2003] method of cross-convolution. The Menke and Levin method is used because it can more readily be applied to a wider range of anisotropic scenarios than the commonly used Silver and Chan [1991] technique. In our approach, we derive a formula for the spectral density of a function of the microseismic noise and the impulse response of the correct anisotropic model that holds for the true anisotropic model parameters. This is compared to the spectral density of the observed signal convolved with the impulse response for an estimated set of anisotropic parameters. The most likely parameters are found when the former and latter spectral densities are the same. By using the Whittle likelihood to compare the two spectral densities, a likelihood grid for all possible anisotropic parameter values is generated. Using bootstrapping, the uncertainty and covariance between the various anisotropic parameters can be evaluated. We will show this works with a single layer of anisotropy and a vertically incident ray, and discuss the usefulness for a more complex case. The method shows great promise for calculating multiple layer anisotropy parameters with proper assessment of uncertainty. References: Menke, W., and Levin, V. 2003. The cross-convolution method for interpreting SKS splitting observations, with application to one and two

  7. Weak and Strong Convergence of an Algorithm for the Split Common Fixed-Point of Asymptotically Quasi-Nonexpansive Operators

    Directory of Open Access Journals (Sweden)

    Yazheng Dang

    2013-01-01

    Full Text Available Inspired by the Moudafi (2010, we propose an algorithm for solving the split common fixed-point problem for a wide class of asymptotically quasi-nonexpansive operators and the weak and strong convergence of the algorithm are shown under some suitable conditions in Hilbert spaces. The algorithm and its convergence results improve and develop previous results for split feasibility problems.

  8. COMPARISON OF IMPLICIT SCHEMES TO SOLVE EQUATIONS OF RADIATION HYDRODYNAMICS WITH A FLUX-LIMITED DIFFUSION APPROXIMATION: NEWTON–RAPHSON, OPERATOR SPLITTING, AND LINEARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Tetsu, Hiroyuki; Nakamoto, Taishi, E-mail: h.tetsu@geo.titech.ac.jp [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2016-03-15

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.

  9. Splitting Method for Solving the Coarse-Mesh Discretized Low-Order Quasi-Diffusion Equations

    International Nuclear Information System (INIS)

    Hiruta, Hikaru; Anistratov, Dmitriy Y.; Adams, Marvin L.

    2005-01-01

    In this paper, the development is presented of a splitting method that can efficiently solve coarse-mesh discretized low-order quasi-diffusion (LOQD) equations. The LOQD problem can reproduce exactly the transport scalar flux and current. To solve the LOQD equations efficiently, a splitting method is proposed. The presented method splits the LOQD problem into two parts: (a) the D problem that captures a significant part of the transport solution in the central parts of assemblies and can be reduced to a diffusion-type equation and (b) the Q problem that accounts for the complicated behavior of the transport solution near assembly boundaries. Independent coarse-mesh discretizations are applied: the D problem equations are approximated by means of a finite element method, whereas the Q problem equations are discretized using a finite volume method. Numerical results demonstrate the efficiency of the methodology presented. This methodology can be used to modify existing diffusion codes for full-core calculations (which already solve a version of the D problem) to account for transport effects

  10. Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics

    Science.gov (United States)

    Xu, Kun

    1998-01-01

    A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.

  11. Multi-reader ROC studies with split-plot designs: a comparison of statistical methods.

    Science.gov (United States)

    Obuchowski, Nancy A; Gallas, Brandon D; Hillis, Stephen L

    2012-12-01

    Multireader imaging trials often use a factorial design, in which study patients undergo testing with all imaging modalities and readers interpret the results of all tests for all patients. A drawback of this design is the large number of interpretations required of each reader. Split-plot designs have been proposed as an alternative, in which one or a subset of readers interprets all images of a sample of patients, while other readers interpret the images of other samples of patients. In this paper, the authors compare three methods of analysis for the split-plot design. Three statistical methods are presented: the Obuchowski-Rockette method modified for the split-plot design, a newly proposed marginal-mean analysis-of-variance approach, and an extension of the three-sample U-statistic method. A simulation study using the Roe-Metz model was performed to compare the type I error rate, power, and confidence interval coverage of the three test statistics. The type I error rates for all three methods are close to the nominal level but tend to be slightly conservative. The statistical power is nearly identical for the three methods. The coverage of 95% confidence intervals falls close to the nominal coverage for small and large sample sizes. The split-plot multireader, multicase study design can be statistically efficient compared to the factorial design, reducing the number of interpretations required per reader. Three methods of analysis, shown to have nominal type I error rates, similar power, and nominal confidence interval coverage, are available for this study design. Copyright © 2012 AUR. All rights reserved.

  12. An $h$-Adaptive Operator Splitting Method for Two-Phase Flow in 3D Heterogeneous Porous Media

    KAUST Repository

    Chueh, Chih-Che; Djilali, Ned; Bangerth, Wolfgang

    2013-01-01

    The simulation of multiphase flow in porous media is a ubiquitous problem in a wide variety of fields, such as fuel cell modeling, oil reservoir simulation, magma dynamics, and tumor modeling. However, it is computationally expensive. This paper presents an interconnected set of algorithms which we show can accelerate computations by more than two orders of magnitude compared to traditional techniques, yet retains the high accuracy necessary for practical applications. Specifically, we base our approach on a new adaptive operator splitting technique driven by an a posteriori criterion to separate the flow from the transport equations, adaptive meshing to reduce the size of the discretized problem, efficient block preconditioned solver techniques for fast solution of the discrete equations, and a recently developed artificial diffusion strategy to stabilize the numerical solution of the transport equation. We demonstrate the accuracy and efficiency of our approach using numerical experiments in one, two, and three dimensions using a program that is made available as part of a large open source library. © 2013 Society for Industrial and Applied Mathematics.

  13. The behaviour of the local error in splitting methods applied to stiff problems

    International Nuclear Information System (INIS)

    Kozlov, Roman; Kvaernoe, Anne; Owren, Brynjulf

    2004-01-01

    Splitting methods are frequently used in solving stiff differential equations and it is common to split the system of equations into a stiff and a nonstiff part. The classical theory for the local order of consistency is valid only for stepsizes which are smaller than what one would typically prefer to use in the integration. Error control and stepsize selection devices based on classical local order theory may lead to unstable error behaviour and inefficient stepsize sequences. Here, the behaviour of the local error in the Strang and Godunov splitting methods is explained by using two different tools, Lie series and singular perturbation theory. The two approaches provide an understanding of the phenomena from different points of view, but both are consistent with what is observed in numerical experiments

  14. A Multilevel Adaptive Reaction-splitting Simulation Method for Stochastic Reaction Networks

    KAUST Repository

    Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

    2016-01-01

    In this work, we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks characterized by having simultaneously fast and slow reaction channels. To produce efficient simulations, our method adaptively classifies the reactions channels into fast and slow channels. To this end, we first introduce a state-dependent quantity named level of activity of a reaction channel. Then, we propose a low-cost heuristic that allows us to adaptively split the set of reaction channels into two subsets characterized by either a high or a low level of activity. Based on a time-splitting technique, the increments associated with high-activity channels are simulated using the tau-leap method, while those associated with low-activity channels are simulated using an exact method. This path simulation technique is amenable for coupled path generation and a corresponding multilevel Monte Carlo algorithm. To estimate expected values of observables of the system at a prescribed final time, our method bounds the global computational error to be below a prescribed tolerance, TOL, within a given confidence level. This goal is achieved with a computational complexity of order O(TOL-2), the same as with a pathwise-exact method, but with a smaller constant. We also present a novel low-cost control variate technique based on the stochastic time change representation by Kurtz, showing its performance on a numerical example. We present two numerical examples extracted from the literature that show how the reaction-splitting method obtains substantial gains with respect to the standard stochastic simulation algorithm and the multilevel Monte Carlo approach by Anderson and Higham. © 2016 Society for Industrial and Applied Mathematics.

  15. A Multilevel Adaptive Reaction-splitting Simulation Method for Stochastic Reaction Networks

    KAUST Repository

    Moraes, Alvaro

    2016-07-07

    In this work, we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks characterized by having simultaneously fast and slow reaction channels. To produce efficient simulations, our method adaptively classifies the reactions channels into fast and slow channels. To this end, we first introduce a state-dependent quantity named level of activity of a reaction channel. Then, we propose a low-cost heuristic that allows us to adaptively split the set of reaction channels into two subsets characterized by either a high or a low level of activity. Based on a time-splitting technique, the increments associated with high-activity channels are simulated using the tau-leap method, while those associated with low-activity channels are simulated using an exact method. This path simulation technique is amenable for coupled path generation and a corresponding multilevel Monte Carlo algorithm. To estimate expected values of observables of the system at a prescribed final time, our method bounds the global computational error to be below a prescribed tolerance, TOL, within a given confidence level. This goal is achieved with a computational complexity of order O(TOL-2), the same as with a pathwise-exact method, but with a smaller constant. We also present a novel low-cost control variate technique based on the stochastic time change representation by Kurtz, showing its performance on a numerical example. We present two numerical examples extracted from the literature that show how the reaction-splitting method obtains substantial gains with respect to the standard stochastic simulation algorithm and the multilevel Monte Carlo approach by Anderson and Higham. © 2016 Society for Industrial and Applied Mathematics.

  16. The dimension split element-free Galerkin method for three-dimensional potential problems

    Science.gov (United States)

    Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.

    2018-02-01

    This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

  17. The Splitting Loope

    Science.gov (United States)

    Wilkins, Jesse L. M.; Norton, Anderson

    2011-01-01

    Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…

  18. A Preconditioning Technique for First-Order Primal-Dual Splitting Method in Convex Optimization

    Directory of Open Access Journals (Sweden)

    Meng Wen

    2017-01-01

    Full Text Available We introduce a preconditioning technique for the first-order primal-dual splitting method. The primal-dual splitting method offers a very general framework for solving a large class of optimization problems arising in image processing. The key idea of the preconditioning technique is that the constant iterative parameters are updated self-adaptively in the iteration process. We also give a simple and easy way to choose the diagonal preconditioners while the convergence of the iterative algorithm is maintained. The efficiency of the proposed method is demonstrated on an image denoising problem. Numerical results show that the preconditioned iterative algorithm performs better than the original one.

  19. The Splitting Group

    Science.gov (United States)

    Norton, Anderson; Wilkins, Jesse L. M.

    2012-01-01

    Piagetian theory describes mathematical development as the construction and organization of mental operations within psychological structures. Research on student learning has identified the vital roles of two particular operations--splitting and units coordination--play in students' development of advanced fractions knowledge. Whereas Steffe and…

  20. A novel hypothesis splitting method implementation for multi-hypothesis filters

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Ravn, Ole; Andersen, Nils Axel

    2013-01-01

    The paper presents a multi-hypothesis filter library featuring a novel method for splitting Gaussians into ones with smaller variances. The library is written in C++ for high performance and the source code is open and free1. The multi-hypothesis filters commonly approximate the distribution tran...

  1. Transfer Pricing Profit Split Methods : A Practical Solution?

    OpenAIRE

    Quttineh, Yousef

    2009-01-01

    The purpose of this master’s thesis is to explain and analyze whether today’s existing regulations provide sufficient guidance on how to apply the Profit Split Method (PSM) in practice. Since the enterprises’ profits arising from intra-group transactions increases, the tax base for any government also becomes larger and more important. This issue will likely become even more problematic as the globalization branches out and the majority of the global trade is undertaken between associated ent...

  2. Using a Combination of FEM and Perturbation Method in Frequency Split Calculation of a Nearly Axisymmetric Shell with Middle Surface Shape Defect

    Directory of Open Access Journals (Sweden)

    D. S. Vakhlyarskiy

    2016-01-01

    Full Text Available This paper proposes a method to calculate the splitting of natural frequency of the shell of hemispherical resonator gyro. (HRG. The paper considers splitting that arises from the small defect of the middle surface, which makes the resonator different from the rotary shell. The presented method is a combination of the perturbation method and the finite element method. The method allows us to find the frequency splitting caused by defects in shape, arbitrary distributed in the circumferential direction. This is achieved by calculating the perturbations of multiple natural frequencies of the second and higher orders. The proposed method allows us to calculate the splitting of multiple frequencies for the shell with the meridian of arbitrary shape.A developed finite element is an annular element of the shell and has two nodes. Projections of movements are used on the axis of the global cylindrical system of coordinates, as the unknown. To approximate the movements are used polynomials of the second degree. Within the finite element the geometric characteristics are arranged in a series according to the small parameter of perturbations of the middle surface geometry.Movements on the final element are arranged in series according to the small parameter, and in a series according to circumferential angle. With computer used to implement the method, three-dimensional arrays are used to store the perturbed quantities. This allows the use of regular expressions for the mass and stiffness matrices, when building the finite element, instead of analytic dependencies for each perturbation of these matrices of the required order with desirable mathematical operations redefined in accordance with the perturbation method.As a test task, is calculated frequency splitting of non-circular cylindrical resonator with Navier boundary conditions. The discrepancy between the results and semi-analytic solution to this problem is less than 1%. For a cylindrical shell is

  3. Multi-line split DNA synthesis: a novel combinatorial method to make high quality peptide libraries

    Directory of Open Access Journals (Sweden)

    Ueno Shingo

    2004-09-01

    Full Text Available Abstract Background We developed a method to make a various high quality random peptide libraries for evolutionary protein engineering based on a combinatorial DNA synthesis. Results A split synthesis in codon units was performed with mixtures of bases optimally designed by using a Genetic Algorithm program. It required only standard DNA synthetic reagents and standard DNA synthesizers in three lines. This multi-line split DNA synthesis (MLSDS is simply realized by adding a mix-and-split process to normal DNA synthesis protocol. Superiority of MLSDS method over other methods was shown. We demonstrated the synthesis of oligonucleotide libraries with 1016 diversity, and the construction of a library with random sequence coding 120 amino acids containing few stop codons. Conclusions Owing to the flexibility of the MLSDS method, it will be able to design various "rational" libraries by using bioinformatics databases.

  4. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.

    1998-01-01

    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  5. Distributed Solutions for Loosely Coupled Feasibility Problems Using Proximal Splitting Methods

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Andersen, Martin Skovgaard; Hansson, Anders

    2014-01-01

    In this paper,we consider convex feasibility problems (CFPs) where the underlying sets are loosely coupled, and we propose several algorithms to solve such problems in a distributed manner. These algorithms are obtained by applying proximal splitting methods to convex minimization reformulations ...

  6. Aligning workload control theory and practice : lot splitting and operation overlapping issues

    NARCIS (Netherlands)

    Fernandes, Nuno O.; Land, Martin J.; Carmo-Silva, S.

    2016-01-01

    This paper addresses the problem of lot splitting in the context of workload control (WLC). Past studies on WLC assumed that jobs released to the shop floor proceed through the different stages of processing without being split. However, in practice, large jobs are often split into smaller transfer

  7. Triadic split-merge sampler

    Science.gov (United States)

    van Rossum, Anne C.; Lin, Hai Xiang; Dubbeldam, Johan; van der Herik, H. Jaap

    2018-04-01

    In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.

  8. Two-Loop Splitting Amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  9. Two-loop splitting amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.J.; Kosower, D.A.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  10. Split ring containment attachment device

    International Nuclear Information System (INIS)

    Sammel, A.G.

    1996-01-01

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs

  11. Splitting method for computing coupled hydrodynamic and structural response

    International Nuclear Information System (INIS)

    Ash, J.E.

    1977-01-01

    A numerical method is developed for application to unsteady fluid dynamics problems, in particular to the mechanics following a sudden release of high energy. Solution of the initial compressible flow phase provides input to a power-series method for the incompressible fluid motions. The system is split into spatial and time domains leading to the convergent computation of a sequence of elliptic equations. Two sample problems are solved, the first involving an underwater explosion and the second the response of a nuclear reactor containment shell structure to a hypothetical core accident. The solutions are correlated with experimental data

  12. An Improved Split-Step Wavelet Transform Method for Anomalous Radio Wave Propagation Modelling

    Directory of Open Access Journals (Sweden)

    A. Iqbal

    2014-12-01

    Full Text Available Anomalous tropospheric propagation caused by ducting phenomenon is a major problem in wireless communication. Thus, it is important to study the behavior of radio wave propagation in tropospheric ducts. The Parabolic Wave Equation (PWE method is considered most reliable to model anomalous radio wave propagation. In this work, an improved Split Step Wavelet transform Method (SSWM is presented to solve PWE for the modeling of tropospheric propagation over finite and infinite conductive surfaces. A large number of numerical experiments are carried out to validate the performance of the proposed algorithm. Developed algorithm is compared with previously published techniques; Wavelet Galerkin Method (WGM and Split-Step Fourier transform Method (SSFM. A very good agreement is found between SSWM and published techniques. It is also observed that the proposed algorithm is about 18 times faster than WGM and provide more details of propagation effects as compared to SSFM.

  13. About one counterexample of applying method of splitting in modeling of plating processes

    Science.gov (United States)

    Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Korobova, I. L.

    2018-05-01

    The paper presents the main factors that affect the uniformity of the thickness distribution of plating on the surface of the product. The experimental search for the optimal values of these factors is expensive and time-consuming. The problem of adequate simulation of coating processes is very relevant. The finite-difference approximation using seven-point and five-point templates in combination with the splitting method is considered as solution methods for the equations of the model. To study the correctness of the solution of equations of the mathematical model by these methods, the experiments were conducted on plating with a flat anode and cathode, which relative position was not changed in the bath. The studies have shown that the solution using the splitting method was up to 1.5 times faster, but it did not give adequate results due to the geometric features of the task under the given boundary conditions.

  14. Standard test method for splitting tensile strength for brittle nuclear waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This test method is used to measure the static splitting tensile strength of cylindrical specimens of brittle nuclear waste forms. It provides splitting tensile-strength data that can be used to compare the strength of waste forms when tests are done on one size of specimen. 1.2 The test method is applicable to glass, ceramic, and concrete waste forms that are sufficiently homogeneous (Note 1) but not to coated-particle, metal-matrix, bituminous, or plastic waste forms, or concretes with large-scale heterogeneities. Cementitious waste forms with heterogeneities >1 to 2 mm and 5 mm can be tested using this procedure provided the specimen size is increased from the reference size of 12.7 mm diameter by 6 mm length, to 51 mm diameter by 100 mm length, as recommended in Test Method C 496 and Practice C 192. Note 1—Generally, the specimen structural or microstructural heterogeneities must be less than about one-tenth the diameter of the specimen. 1.3 This test method can be used as a quality control chec...

  15. A Frequency Splitting Method For CFM Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    The performance of conventional CFM imaging will often be degraded due to the relatively low number of pulses (4-10) used for each velocity estimate. To circumvent this problem we propose a new method using frequency splitting (FS). The FS method uses broad band chirps as excitation pulses instead...... of narrow band pulses as in conventional CFM imaging. By appropriate filtration, the returned signals are divided into a number of narrow band signals which are approximately disjoint. After clutter filtering the velocities are found from each frequency band using a conventional autocorrelation estimator......, a 5 MHz linear array transducer was used to scan a vessel situated at 30 mm depth with a maximum flow velocity of 0.1 m/s. The pulse repetition frequency was 1.8 kHz and the angle between the flow and the beam was 60 deg. A 15 mus chirp was used as excitation pulse and 40 independent velocity...

  16. Systems and methods for displaying data in split dimension levels

    Science.gov (United States)

    Stolte, Chris; Hanrahan, Patrick

    2015-07-28

    Systems and methods for displaying data in split dimension levels are disclosed. In some implementations, a method includes: at a computer, obtaining a dimensional hierarchy associated with a dataset, wherein the dimensional hierarchy includes at least one dimension and a sub-dimension of the at least one dimension; and populating information representing data included in the dataset into a visual table having a first axis and a second axis, wherein the first axis corresponds to the at least one dimension and the second axis corresponds to the sub-dimension of the at least one dimension.

  17. New Resolution Strategy for Multi-scale Reaction Waves using Time Operator Splitting and Space Adaptive Multiresolution: Application to Human Ischemic Stroke*

    Directory of Open Access Journals (Sweden)

    Louvet Violaine

    2011-12-01

    Full Text Available We tackle the numerical simulation of reaction-diffusion equations modeling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive fronts, spatially very localized. A new resolution strategy was recently introduced ? that combines a performing time operator splitting with high oder dedicated time integration methods and space adaptive multiresolution. Based on recent theoretical studies of numerical analysis, such a strategy leads to a splitting time step which is not restricted neither by the fastest scales in the source term nor by stability limits related to the diffusion problem, but only by the physics of the phenomenon. In this paper, the efficiency of the method is evaluated through 2D and 3D numerical simulations of a human ischemic stroke model, conducted on a simplified brain geometry, for which a simple parallelization strategy for shared memory architectures was implemented, in order to reduce computing costs related to “detailed chemistry” features of the model.

  18. Communication: spin-orbit splittings in degenerate open-shell states via Mukherjee's multireference coupled-cluster theory: a measure for the coupling contribution.

    Science.gov (United States)

    Mück, Leonie Anna; Gauss, Jürgen

    2012-03-21

    We propose a generally applicable scheme for the computation of spin-orbit (SO) splittings in degenerate open-shell systems using multireference coupled-cluster (MRCC) theory. As a specific method, Mukherjee's version of MRCC (Mk-MRCC) in conjunction with an effective mean-field SO operator is adapted for this purpose. An expression for the SO splittings is derived and implemented using Mk-MRCC analytic derivative techniques. The computed SO splittings are found to be in satisfactory agreement with experimental data. Due to the symmetry properties of the SO operator, SO splittings can be considered a quality measure for the coupling between reference determinants in Jeziorski-Monkhorst based MRCC methods. We thus provide numerical insights into the coupling problem of Mk-MRCC theory. © 2012 American Institute of Physics

  19. A Method for Solving the Voltage and Torque Equations of the Split ...

    African Journals Online (AJOL)

    Akorede

    v′ Voltage applied across the d – axis rotor winding referred ... The embedded MATLAB function and other useful blocks from the ... III. EQUATIONS OF THE SPLIT PHASE INDUCTION MOTOR. The voltage, flux and electromagnetic torque equations are ..... of single phase induction motor using frequency control method ...

  20. A hybridized discontinuous Galerkin framework for high-order particle-mesh operator splitting of the incompressible Navier-Stokes equations

    Science.gov (United States)

    Maljaars, Jakob M.; Labeur, Robert Jan; Möller, Matthias

    2018-04-01

    A generic particle-mesh method using a hybridized discontinuous Galerkin (HDG) framework is presented and validated for the solution of the incompressible Navier-Stokes equations. Building upon particle-in-cell concepts, the method is formulated in terms of an operator splitting technique in which Lagrangian particles are used to discretize an advection operator, and an Eulerian mesh-based HDG method is employed for the constitutive modeling to account for the inter-particle interactions. Key to the method is the variational framework provided by the HDG method. This allows to formulate the projections between the Lagrangian particle space and the Eulerian finite element space in terms of local (i.e. cellwise) ℓ2-projections efficiently. Furthermore, exploiting the HDG framework for solving the constitutive equations results in velocity fields which excellently approach the incompressibility constraint in a local sense. By advecting the particles through these velocity fields, the particle distribution remains uniform over time, obviating the need for additional quality control. The presented methodology allows for a straightforward extension to arbitrary-order spatial accuracy on general meshes. A range of numerical examples shows that optimal convergence rates are obtained in space and, given the particular time stepping strategy, second-order accuracy is obtained in time. The model capabilities are further demonstrated by presenting results for the flow over a backward facing step and for the flow around a cylinder.

  1. Non-perturbative renormalization of the chromo-magnetic operator in heavy quark effective theory and the B{sup *} - B mass splitting

    Energy Technology Data Exchange (ETDEWEB)

    Guazzini, D.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Meyer, H. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics

    2007-05-15

    We carry out the non-perturbative renormalization of the chromo-magnetic operator in Heavy Quark Effective Theory. At order 1/m of the expansion, the operator is responsible for the mass splitting between the pseudoscalar and vector B mesons. We obtain its two-loop anomalous dimension in a Schroedinger functional scheme by successive oneloop conversions to the lattice MS scheme and the MS scheme. We then compute the scale evolution of the operator non-perturbatively in the N{sub f}=0 theory between {mu} {approx}0.3 GeV and {mu} {approx}100 GeV, where contact is made with perturbation theory. The overall renormalization factor that converts the bare lattice operator to its renormalization group invariant form is given for the Wilson gauge action and two standard discretizations of the heavy-quark action. As an application, we find that this factor brings the previous quenched predictions of the B{sup *}-B mass splitting closer to the experimental value than found with a perturbative renormalization. The same renormalization factor is applicable to the spin-dependent potentials of Eichten and Feinberg. (orig.)

  2. Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization

    International Nuclear Information System (INIS)

    Park, Jungsoo; Song, Soonho; Lee, Kyo Seung

    2015-01-01

    Highlights: • Model-based control of dual-loop EGR system is performed. • EGR split index is developed to provide non-dimensional index for optimization. • EGR rates are calibrated using EGR split index at specific operating conditions. • Multi-objective Pareto optimization is performed to minimize NO X and BSFC. • Optimum split strategies are suggested with LP-rich dual-loop EGR at high load. - Abstract: A proposed dual-loop exhaust-gas recirculation (EGR) system that combines the features of high-pressure (HP) and low-pressure (LP) systems is considered a key technology for improving the combustion behavior of diesel engines. The fraction of HP and LP flows, known as the EGR split, for a given dual-loop EGR rate play an important role in determining the engine performance and emission characteristics. Therefore, identifying the proper EGR split is important for the engine optimization and calibration processes, which affect the EGR response and deNO X efficiencies. The objective of this research was to develop a dual-loop EGR split strategy using numerical analysis and one-dimensional (1D) cycle simulation. A control system was modeled by coupling the 1D cycle simulation and the control logic. An EGR split index was developed to investigate the HP/LP split effects on the engine performance and emissions. Using the model-based control system, a multi-objective Pareto (MOP) analysis was used to minimize the NO X formation and fuel consumption through optimized engine operating parameters. The MOP analysis was performed using a response surface model extracted from Latin hypercube sampling as a fractional factorial design of experiment. By using an LP rich dual-loop EGR, a high EGR rate was attained at low, medium, and high engine speeds, increasing the applicable load ranges compared to base conditions

  3. Bad split during bilateral sagittal split osteotomy of the mandible with separators: a retrospective study of 427 patients.

    Science.gov (United States)

    Mensink, Gertjan; Verweij, Jop P; Frank, Michael D; Eelco Bergsma, J; Richard van Merkesteyn, J P

    2013-09-01

    An unfavourable fracture, known as a bad split, is a common operative complication in bilateral sagittal split osteotomy (BSSO). The reported incidence ranges from 0.5 to 5.5%/site. Since 1994 we have used sagittal splitters and separators instead of chisels for BSSO in our clinic in an attempt to prevent postoperative hypoaesthesia. Theoretically an increased percentage of bad splits could be expected with this technique. In this retrospective study we aimed to find out the incidence of bad splits associated with BSSO done with splitters and separators. We also assessed the risk factors for bad splits. The study group comprised 427 consecutive patients among whom the incidence of bad splits was 2.0%/site, which is well within the reported range. The only predictive factor for a bad split was the removal of third molars at the same time as BSSO. There was no significant association between bad splits and age, sex, class of occlusion, or the experience of the surgeon. We think that doing a BSSO with splitters and separators instead of chisels does not increase the risk of a bad split, and is therefore safe with predictable results. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Can the ''doublet-triplet splitting'' problem be solved without doublet-triplet splitting?

    International Nuclear Information System (INIS)

    Dvali, G.R.

    1992-03-01

    We consider a new possible mechanism for the natural solution of the doublet-triplet splitting problem in SUSY GUTs. In contrast to the usually discussed scenarios, in our case the GUT symmetry breaking does not provide any splitting between the Higgs doublet and the triplet masses. The weak doublet and its colour triplet partner both remain light, but the triplet automatically occurs decoupled from the quark and lepton superfields and cannot induce proton decay. The advantage of the above scenarios is the absence at the GUT scale of the baryon number violating the tree level d = 5 and d = 6 operators via the colour-triple exchange. It is shown that in flipped SU(5) GUT they do not appear at any scale. In the SO(10) model, such operators can be induced after SUSY breaking but are strongly suppressed. (author). 22 refs, 2 figs

  5. A gamma camera method for quantitation of split renal function in children followed for vesicoureteric reflux

    International Nuclear Information System (INIS)

    Tamminen, T.E.; Riihimaeki, E.J.; Taehti, E.E.; Helsinki Univ. Central Hospital

    1978-01-01

    A method for quantitative estimation of split renal function using a computerized gamma camera system is described. 42 children and adolescents with existing or preexisting vesicouretric reflux and recurrent urinary tract infection were investigated. Total renal clearance of DTPA was calculated with a disapperarance curve derived from the largest extrarenal area in the field of view of a gamma camera with diverging collimator. Split renal function was estimated with the slopes of second phase renograms. The plasma disaapearance clearance of DTPA, calculated using one compartement model with two late blood samples, gave similar resusults with the clearance estimated from the body disappearance curves. The proportional planimetric renal parenchymal areas had good correlation with the split clearance estimated from renogram slopes. The method offers data on renal function and urinary tract dynamics which is very valuable in the follow-up of children with recurrent urinary tract infection and vesicoureteric reflux. (orig.) [de

  6. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    Science.gov (United States)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong

    2016-07-01

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  7. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  8. The hydrogen tunneling splitting in malonaldehyde: A full-dimensional time-independent quantum mechanical method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng; Ren, Yinghui; Bian, Wensheng, E-mail: bian@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-08-21

    The accurate time-independent quantum dynamics calculations on the ground-state tunneling splitting of malonaldehyde in full dimensionality are reported for the first time. This is achieved with an efficient method developed by us. In our method, the basis functions are customized for the hydrogen transfer process which has the effect of greatly reducing the size of the final Hamiltonian matrix, and the Lanczos method and parallel strategy are used to further overcome the memory and central processing unit time bottlenecks. The obtained ground-state tunneling splitting of 24.5 cm{sup −1} is in excellent agreement with the benchmark value of 23.8 cm{sup −1} computed with the full-dimensional, multi-configurational time-dependent Hartree approach on the same potential energy surface, and we estimate that our reported value has an uncertainty of less than 0.5 cm{sup −1}. Moreover, the role of various vibrational modes strongly coupled to the hydrogen transfer process is revealed.

  9. Modelling of uranium/plutonium splitting in purex process

    International Nuclear Information System (INIS)

    Boullis, B.; Baron, P.

    1987-06-01

    A mathematical model simulating the highly complex uranium/plutonium splitting operation in PUREX process has been achieved by the french ''Commissariat a l'Energie Atomique''. The development of such a model, which includes transfer and redox reactions kinetics for all the species involved, required an important experimental work in the field of basis chemical data acquisition. The model has been successfully validated by comparison of its results with those of specific trials achieved (at laboratory scale), and with the available results of the french reprocessing units operation. It has then been used for the design of french new plants splitting operations

  10. On the Numerical Behavior of Matrix Splitting Iteration Methods for Solving Linear Systems

    Czech Academy of Sciences Publication Activity Database

    Bai, Z.-Z.; Rozložník, Miroslav

    2015-01-01

    Roč. 53, č. 4 (2015), s. 1716-1737 ISSN 0036-1429 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : matrix splitting * stationary iteration method * backward error * rounding error analysis Subject RIV: BA - General Mathematics Impact factor: 1.899, year: 2015

  11. Simple nonempirical calculations of the zero-field splitting in transition metal systems: I. The Ni(II)-water complexes

    International Nuclear Information System (INIS)

    Ribbing, C.; Odelius, M.; Laaksonen, A.; Kowalewski, J.; Roos, B.

    1990-01-01

    A simple nonempirical scheme is presented for calculating the splittings of ground state multiplets (the zero-field splitting) is transition metal complexes. The method employs single reference, single excitation CI calculations based on open-shell RHF. The spin-orbit coupling is described using an effective one-electron, one-center operators. The method is applied to the triplet state Ni(II) complexes with one to six water molecules. the validity of the second-order perturbation theory approach and of the spin-Hamiltonian formalism is found to be limited to slightly distorted octahedral systems. Generally, small changes in the geometries of the complexes are found to cause substantial variations of the splitting pattern

  12. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    Energy Technology Data Exchange (ETDEWEB)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Ilyushin, V. V.; Mescheryakov, A. A. [Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine); Alekseev, E. A. [Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine); Quantum Radiophysics Department of V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkov (Ukraine); Hougen, J. T., E-mail: jon.hougen@nist.gov [Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8441 (United States); Xu, Li-Hong [Department of Physics and Centre for Laser, Atomic, and Molecular Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5 (Canada)

    2016-07-14

    This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  13. Split-Bregman-based sparse-view CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vandeghinste, Bert; Vandenberghe, Stefaan [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Goossens, Bart; Pizurica, Aleksandra; Philips, Wilfried [Ghent Univ. (Belgium). Image Processing and Interpretation Research Group (IPI); Beenhouwer, Jan de [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Antwerp Univ., Wilrijk (Belgium). The Vision Lab; Staelens, Steven [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Antwerp Univ., Edegem (Belgium). Molecular Imaging Centre Antwerp

    2011-07-01

    Total variation minimization has been extensively researched for image denoising and sparse view reconstruction. These methods show superior denoising performance for simple images with little texture, but result in texture information loss when applied to more complex images. It could thus be beneficial to use other regularizers within medical imaging. We propose a general regularization method, based on a split-Bregman approach. We show results for this framework combined with a total variation denoising operator, in comparison to ASD-POCS. We show that sparse-view reconstruction and noise regularization is possible. This general method will allow us to investigate other regularizers in the context of regularized CT reconstruction, and decrease the acquisition times in {mu}CT. (orig.)

  14. An acoustic-convective splitting-based approach for the Kapila two-phase flow model

    Energy Technology Data Exchange (ETDEWEB)

    Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2017-02-15

    In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.

  15. On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics

    NARCIS (Netherlands)

    F.J. Gaspar Lorenz (Franscisco); C. Rodrigo (Carmen)

    2017-01-01

    textabstractThe fixed-stress split method has been widely used as solution method in the coupling of flow and geomechanics. In this work, we analyze the behavior of an inexact version of this algorithm as smoother within a geometric multigrid method, in order to obtain an efficient monolithic solver

  16. From modular invariants to graphs: the modular splitting method

    International Nuclear Information System (INIS)

    Isasi, E; Schieber, G

    2007-01-01

    We start with a given modular invariant M of a two-dimensional su-hat(n) k conformal field theory (CFT) and present a general method for solving the Ocneanu modular splitting equation and then determine, in a step-by-step explicit construction (1) the generalized partition functions corresponding to the introduction of boundary conditions and defect lines; (2) the quantum symmetries of the higher ADE graph G associated with the initial modular invariant M. Note that one does not suppose here that the graph G is already known, since it appears as a by-product of the calculations. We analyse several su-hat(3) k exceptional cases at levels 5 and 9

  17. Finite Element Analysis Design of a Split Rotor Bracket for a Bulb Turbine Generator

    Directory of Open Access Journals (Sweden)

    Yongyao Luo

    2013-01-01

    Full Text Available The rotor bracket is a key component of the generator rotor with cracks in the rotor bracket leading to rubbing between the rotor and stator, which threatens safe operation of the unit. The rotor rim is so complicated that the equivalent radial stiffness of rim was determined by numerical simulation other than engineering experience. A comprehensive numerical method including finite element analyses and the contact method for multibody dynamics has been used to design the split rotor bracket. The com-putational results showed that cracks would occur in the initial design of the bracket when the turbine operated at the runaway speed, and the bracket design should be improved. The improved design of the bracket was strong enough to avoid cracks and rub between the rotor and stator. This design experience will help improve the design of split rotor brackets for bulb turbine generators.

  18. High order three part split symplectic integrators: Efficient techniques for the long time simulation of the disordered discrete nonlinear Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Skokos, Ch., E-mail: haris.skokos@uct.ac.za [Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Gerlach, E. [Lohrmann Observatory, Technical University Dresden, D-01062 Dresden (Germany); Bodyfelt, J.D., E-mail: J.Bodyfelt@massey.ac.nz [Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University, Albany, Private Bag 102904, North Shore City, Auckland 0745 (New Zealand); Papamikos, G. [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom); Eggl, S. [IMCCE, Observatoire de Paris, 77 Avenue Denfert-Rochereau, F-75014 Paris (France)

    2014-05-01

    While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS – a hotly debated subject in current scientific literature.

  19. High order three part split symplectic integrators: Efficient techniques for the long time simulation of the disordered discrete nonlinear Schrödinger equation

    International Nuclear Information System (INIS)

    Skokos, Ch.; Gerlach, E.; Bodyfelt, J.D.; Papamikos, G.; Eggl, S.

    2014-01-01

    While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS – a hotly debated subject in current scientific literature.

  20. Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems.

    Science.gov (United States)

    Wang, An; Cao, Yang; Shi, Quan

    2018-01-01

    In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respectively.

  1. Photoelectrochemical water splitting standards, experimental methods, and protocols

    CERN Document Server

    Chen, Zhebo; Miller, Eric

    2014-01-01

    This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) - for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a "how-to" guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to deve...

  2. Window Material Daylighting Performance Assessment Algorithm: Comparing Radiosity and Split-Flux Methods

    Directory of Open Access Journals (Sweden)

    Yeo Beom Yoon

    2014-04-01

    Full Text Available Windows are the primary aperture to introduce solar radiation to the interior space of a building. This experiment explores the use of EnergyPlus software for analyzing the illuminance level on the floor of a room with reference to its distance from the window. For this experiment, a double clear glass window has been used. The preliminary modelling in EnergyPlus showed a consistent result with the experimentally monitored data in real time. EnergyPlus has two mainly used daylighting algorithms: DElight method employing radiosity technique and Detailed method employing split-flux technique. Further analysis for illuminance using DElight and Detailed methods showed significant difference in the results. Finally, we compared the algorithms of the two analysis methods in EnergyPlus.

  3. FFT-split-operator code for solving the Dirac equation in 2+1 dimensions

    Science.gov (United States)

    Mocken, Guido R.; Keitel, Christoph H.

    2008-06-01

    The main part of the code presented in this work represents an implementation of the split-operator method [J.A. Fleck, J.R. Morris, M.D. Feit, Appl. Phys. 10 (1976) 129-160; R. Heather, Comput. Phys. Comm. 63 (1991) 446] for calculating the time-evolution of Dirac wave functions. It allows to study the dynamics of electronic Dirac wave packets under the influence of any number of laser pulses and its interaction with any number of charged ion potentials. The initial wave function can be either a free Gaussian wave packet or an arbitrary discretized spinor function that is loaded from a file provided by the user. The latter option includes Dirac bound state wave functions. The code itself contains the necessary tools for constructing such wave functions for a single-electron ion. With the help of self-adaptive numerical grids, we are able to study the electron dynamics for various problems in 2+1 dimensions at high spatial and temporal resolutions that are otherwise unachievable. Along with the position and momentum space probability density distributions, various physical observables, such as the expectation values of position and momentum, can be recorded in a time-dependent way. The electromagnetic spectrum that is emitted by the evolving particle can also be calculated with this code. Finally, for planning and comparison purposes, both the time-evolution and the emission spectrum can also be treated in an entirely classical relativistic way. Besides the implementation of the above-mentioned algorithms, the program also contains a large C++ class library to model the geometric algebra representation of spinors that we use for representing the Dirac wave function. This is why the code is called "Dirac++". Program summaryProgram title: Dirac++ or (abbreviated) d++ Catalogue identifier: AEAS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing

  4. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried; Hofstä tter, Harald; Ketcheson, David I.; Koch, Othmar

    2016-01-01

    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  5. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried

    2016-07-28

    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  6. Zero Field Splitting of the chalcogen diatomics using relativistic correlated wave-function methods

    DEFF Research Database (Denmark)

    Rota, Jean-Baptiste; Knecht, Stefan; Fleig, Timo

    2011-01-01

    The spectrum arising from the (π*)2 configuration of the chalcogen dimers, namely the X21, a2 and b0+ states, is calculated using Wave-Function Theory (WFT) based methods. Two-component (2c) and four-component (4c) MultiReference Configuration Interaction (MRCI) and Fock-Space Coupled Cluster (FSCC......) methods are used as well as two-step methods Spin-Orbit Complete Active Space Perturbation Theory at 2nd order (SO-CASPT2) and Spin-Orbit Difference Dedicated Configuration Interaction (SODDCI). The energy of the X21 state corresponds to the Zero-Field Splitting (ZFS) of the ground state spin triplet...

  7. Relationship between mandibular anatomy and the occurrence of a bad split upon sagittal split osteotomy.

    Science.gov (United States)

    Aarabi, Mohammadali; Tabrizi, Reza; Hekmat, Mina; Shahidi, Shoaleh; Puzesh, Ayatollah

    2014-12-01

    A bad split is a troublesome complication of the sagittal split osteotomy (SSO). The aim of this study was to evaluate the relation between the occurrence of a bad split and mandibular anatomy in SSO using cone-beam computed tomography. The authors designed a cohort retrospective study. Forty-eight patients (96 SSO sites) were studied. The buccolingual thickness of the retromandibular area (BLR), the buccolingual thickness of the ramus at the level of the lingula (BLTR), the height of the mandible from the alveolar crest to the inferior border of the mandible, (ACIB), the distance between the sigmoid notch and the inferior border of the mandible (SIBM), and the anteroposterior width of the ramus (APWR) were measured. The independent t test was applied to compare anatomic measurements between the group with and the group without bad splits. The receiver operating characteristic (ROC) test was used to find a cutoff point in anatomic size for various parts of the mandible related to the occurrence of bad splits. The mean SIBM was 47.05±6.33 mm in group 1 (with bad splits) versus 40.66±2.44 mm in group 2 (without bad splits; P=.01). The mean BLTR was 5.74±1.11 mm in group 1 versus 3.19±0.55 mm in group 2 (P=.04). The mean BLR was 14.98±2.78 mm in group 1 versus 11.21±1.29 mm in group 2 (P=.001). No statistically significant difference was found for APWR and ACIB between the 2 groups. The ROC test showed cutoff points of 10.17 mm for BLR, 36.69 mm for SIBM, and 4.06 mm for BLTR. This study showed that certain mandibular anatomic differences can increase the risk of a bad split during SSO surgery. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Mode splitting effect in FEMs with oversized Bragg resonators

    Energy Technology Data Exchange (ETDEWEB)

    Peskov, N. Yu.; Sergeev, A. S. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Kaminsky, A. K.; Perelstein, E. A.; Sedykh, S. N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kuzikov, S. V. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Nizhegorodsky State University, Nizhny Novgorod (Russian Federation)

    2016-07-15

    Splitting of the fundamental mode in an oversized Bragg resonator with a step of the corrugation phase, which operates over the feedback loop involving the waveguide waves of different transverse structures, was found to be the result of mutual influence of the neighboring zones of the Bragg scattering. Theoretical description of this effect was developed within the framework of the advanced (four-wave) coupled-wave approach. It is shown that mode splitting reduces the selective properties, restricts the output power, and decreases the stability of the narrow-band operating regime in the free-electron maser (FEM) oscillators based on such resonators. The results of the theoretical analysis were confirmed by 3D simulations and “cold” microwave tests. Experimental data on Bragg resonators with different parameters in a 30-GHz FEM are presented. The possibility of reducing the mode splitting by profiling the corrugation parameters is shown. The use of the mode splitting effect for the output power enhancement by passive compression of the double-frequency pulse generated in the FEM with such a resonator is discussed.

  9. Image splitting and remapping method for radiological image compression

    Science.gov (United States)

    Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.

    1990-07-01

    A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.

  10. SplitDist—Calculating Split-Distances for Sets of Trees

    DEFF Research Database (Denmark)

    Mailund, T

    2004-01-01

    We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....

  11. Functional efficiency comparison between split- and parallel-hybrid using advanced energy flow analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, Philipp; Lin, Mengyan [Romax Technology, Nottingham (United Kingdom)

    2009-07-01

    The following paper presents a comparative efficiency analysis of the Toyota Prius versus the Honda Insight using advanced Energy Flow Analysis methods. The sample study shows that even very different hybrid concepts like a split- and a parallel-hybrid can be compared in a high level of detail and demonstrates the benefit showing exemplary results. (orig.)

  12. Reconstruction of Abdominal Wall of a Chronically Infected Postoperative Wound with a Rectus Abdominis Myofascial Splitting Flap

    Directory of Open Access Journals (Sweden)

    Sung Kyu Bae

    2013-01-01

    Full Text Available BackgroundIf a chronically infected abdominal wound develops, complications such as peritonitis and an abdominal wall defect could occur. This could prolong the patient's hospital stay and increase the possibility of re-operation or another infection as well. For this reason, a solution for infection control is necessary. In this study, surgery using a rectus abdominis muscle myofascial splitting flap was performed on an abdominal wall defect.MethodsFrom 2009 to 2012, 5 patients who underwent surgery due to ovarian rupture, cesarean section, or uterine myoma were chosen. In each case, during the first week after operation, the wound showed signs of infection. Surgery was chosen because the wounds did not resolve with dressing. Debridement was performed along the previous operation wound and dissection of the skin was performed to separate the skin and subcutaneous tissue from the attenuated rectus muscle and Scarpa's fascial layers. Once the anterior rectus sheath and muscle were adequately mobilized, the fascia and muscle flap were advanced medially so that the skin defect could be covered for reconstruction.ResultsUpon 3-week follow-up after a rectus abdominis myofascial splitting flap operation, no major complication occurred. In addition, all of the patients showed satisfaction in terms of function and esthetics at 3 to 6 months post-surgery.ConclusionsUsing a rectus abdominis myofascial splitting flap has many esthetic and functional benefits over previous methods of abdominal defect treatment, and notably, it enabled infection control by reconstruction using muscle.

  13. Modeling vehicle operating speed on urban roads in Montreal: a panel mixed ordered probit fractional split model.

    Science.gov (United States)

    Eluru, Naveen; Chakour, Vincent; Chamberlain, Morgan; Miranda-Moreno, Luis F

    2013-10-01

    Vehicle operating speed measured on roadways is a critical component for a host of analysis in the transportation field including transportation safety, traffic flow modeling, roadway geometric design, vehicle emissions modeling, and road user route decisions. The current research effort contributes to the literature on examining vehicle speed on urban roads methodologically and substantively. In terms of methodology, we formulate a new econometric model framework for examining speed profiles. The proposed model is an ordered response formulation of a fractional split model. The ordered nature of the speed variable allows us to propose an ordered variant of the fractional split model in the literature. The proposed formulation allows us to model the proportion of vehicles traveling in each speed interval for the entire segment of roadway. We extend the model to allow the influence of exogenous variables to vary across the population. Further, we develop a panel mixed version of the fractional split model to account for the influence of site-specific unobserved effects. The paper contributes substantively by estimating the proposed model using a unique dataset from Montreal consisting of weekly speed data (collected in hourly intervals) for about 50 local roads and 70 arterial roads. We estimate separate models for local roads and arterial roads. The model estimation exercise considers a whole host of variables including geometric design attributes, roadway attributes, traffic characteristics and environmental factors. The model results highlight the role of various street characteristics including number of lanes, presence of parking, presence of sidewalks, vertical grade, and bicycle route on vehicle speed proportions. The results also highlight the presence of site-specific unobserved effects influencing the speed distribution. The parameters from the modeling exercise are validated using a hold-out sample not considered for model estimation. The results indicate

  14. Split-Cell Exponential Characteristic Transport Method for Unstructured Tetrahedral Meshes

    International Nuclear Information System (INIS)

    Brennan, Charles R.; Miller, Rodney L.; Mathews, Kirk A.

    2001-01-01

    The nonlinear, exponential characteristic (EC) method is extended to unstructured meshes of tetrahedral cells in three-dimensional Cartesian coordinates. The split-cell approach developed for the linear characteristic (LC) method on such meshes is used. Exponential distributions of the source within a cell and of the inflow flux on upstream faces of the cell are assumed. The coefficients of these distributions are determined by nonlinear root solving so as to match the zeroth and first moments of the source or entering flux. Good conditioning is achieved by casting the formulas for the moments of the source, inflow flux, and solution flux as sums of positive functions and by using accurate and robust algorithms for evaluation of those functions. Various test problems are used to compare the performance of the EC and LC methods. The EC method is somewhat less accurate than the LC method in regions of net out leakage but is strictly positive and retains good accuracy with optically thick cells, as in shielding problems, unlike the LC method. The computational cost per cell is greater for the EC method, but the use of substantially coarser meshes can make the EC method less expensive in total cost. The EC method, unlike the LC method, may fail if negative cross sections or angular quadrature weights are used. It is concluded that the EC and LC methods should be practical, reliable, and complimentary schemes for these meshes

  15. A guiding oblique osteotomy cut to prevent bad split in sagittal split ramus osteotomy: a technical note

    Directory of Open Access Journals (Sweden)

    Gururaj Arakeri

    2015-06-01

    Full Text Available Aim: To present a simple technical modification of a medial osteotomy cut which prevents its misdirection and overcomes various anatomical variations as well as technical problems. Methods: The medial osteotomy cut is modified in the posterior half at an angle of 15°-20° following novel landmarks. Results: The proposed cut exclusively directs the splitting forces downwards to create a favorable lingual fracture, preventing the possibility of an upwards split which would cause a coronoid or condylar fracture. Conclusion: This modification has proven to be successful to date without encountering the complications of a bad split or nerve damage.

  16. Optimizing TCP Performance over UMTS with Split TCP Proxy

    DEFF Research Database (Denmark)

    Hu, Liang; Dittmann, Lars

    2009-01-01

    . To cope with large delay bandwidth product, we propose a novel concept of split TCP proxy which is placed at GGSN between UNITS network and Internet. The split proxy divides the bandwidth delay product into two parts, resulting in two TCP connections with smaller bandwidth delay products which can...... be pipelined and thus operating at higher speeds. Simulation results show, the split TCP proxy can significantly improve the TCP performance in terms of RLC throughput under high bit rate DCH channel scenario (e.g.256 kbps). On the other hand, it only brings small performance improvement under low bit rate DCH...... scenario (e.g.64 kbps). Besides, the split TCP proxy brings more performance gain for downloading large files than downloading small ones. To the end, for the configuration of the split proxy, an aggressive initial TCP congestion window size (e.g. 10 MSS) at proxy is particularly useful for radio links...

  17. On the separation of split diffuse intensity maxima from a disordered Cu-Au alloy by an X-ray counter method

    International Nuclear Information System (INIS)

    Ohshima, K.I.; Harada, Jimpei; Moss, S.C.

    1986-01-01

    The X-ray diffuse scattering from a disordered Au-24.4 at.% Cu alloy was measured at room temperature to reveal the split diffuse maxima due to short-range ordering (SRO) through the use of a higher-resolution counter method than heretofore employed. Twofold and fourfold splittings of SRO diffuse intensity could be clearly seen at 100, 110 and their equivalent positions in reciprocal space. (orig.)

  18. A Simple Method for Differentiating Complicated Parapneumonic Effusion/Empyema from Parapneumonic Effusion Using the Split Pleura Sign and the Amount of Pleural Effusion on Thoracic CT.

    Science.gov (United States)

    Tsujimoto, Naoki; Saraya, Takeshi; Light, Richard W; Tsukahara, Yayoi; Koide, Takashi; Kurai, Daisuke; Ishii, Haruyuki; Kimura, Hirokazu; Goto, Hajime; Takizawa, Hajime

    2015-01-01

    Pleural separation, the "split pleura" sign, has been reported in patients with empyema. However, the diagnostic yield of the split pleura sign for complicated parapneumonic effusion (CPPE)/empyema and its utility for differentiating CPPE/empyema from parapneumonic effusion (PPE) remains unclear. This differentiation is important because CPPE/empyema patients need thoracic drainage. In this regard, the aim of this study was to develop a simple method to distinguish CPPE/empyema from PPE using computed tomography (CT) focusing on the split pleura sign, fluid attenuation values (HU: Hounsfield units), and amount of fluid collection measured on thoracic CT prior to diagnostic thoracentesis. A total of 83 consecutive patients who underwent chest CT and were diagnosed with CPPE (n=18)/empyema (n=18) or PPE (n=47) based on the diagnostic thoracentesis were retrospectively analyzed. On univariate analysis, the split pleura sign (odds ratio (OR), 12.1; ppleural effusion (≥30 mm) (OR, 6.13; ppleural fluid were significantly higher in the CPPE/empyema group than in the PPE group. On multivariate analysis, only the split pleura sign (hazard ratio (HR), 6.70; 95% confidence interval (CI), 1.91-23.5; p=0.003) and total amount of pleural effusion (≥30 mm) on thoracic CT (HR, 7.48; 95%CI, 1.76-31.8; p=0.006) were risk factors for empyema. Sensitivity, specificity, positive predictive value, and negative predictive value of the presence of both split pleura sign and total amount of pleural effusion (≥30 mm) on thoracic CT for CPPE/empyema were 79.4%, 80.9%, 75%, and 84.4%, respectively, with an area under the curve of 0.801 on receiver operating characteristic curve analysis. This study showed a high diagnostic yield of the split pleura sign and total amount of pleural fluid (≥30 mm) on thoracic CT that is useful and simple for discriminating between CPPE/empyema and PPE prior to diagnostic thoracentesis.

  19. Transport methods: general. 8. Formulation of Transport Equation in a Split Form

    International Nuclear Information System (INIS)

    Stancic, V.

    2001-01-01

    The singular eigenfunction expansion method has enabled the application of functional analysis methods in transport theory. However, when applying it, the users were discouraged, since in most problems, including slab problems, an extra problem has occurred. It appears necessary to solve the Fredholm integral equation in order to determine the expansion coefficients. There are several reasons for this difficulty. One reason might be the use of the full-range expansion techniques even in the regions where the function is singular. Such an example is the free boundary condition that requires the distribution to be equal to zero. Moreover, at μ = 0, the transport equation becomes an integral one. Both reasons motivated us to redefine the transport equation in a more natural way. Similar to scattering theory, here we define the flux distribution as a direct sum of forward- and backward-directed neutrons, e.g., μ ≥ 0 and μ < 0, respectively. As a result, the plane geometry transport equation is being split into coupled-pair equations. Further, using an appropriate transformation, this pair of equations reduces to a self-adjoint one having the same form as the known full-range single flux. It is interesting that all the methods of full-range theory are applicable here provided the flux as well as the transformed transport operator are two-dimensional matrices. Applying this to the slab problem, we find explicit expressions for reflected and transmitted particles caused by an arbitrary plane source. That is the news in this paper. Because of space constraints, only fundamentals of this approach will be presented here. We assume that the reader is familiar with this field; therefore, the applications are noted only at the end. (author)

  20. A Split-and-Merge-Based Uterine Fibroid Ultrasound Image Segmentation Method in HIFU Therapy.

    Directory of Open Access Journals (Sweden)

    Menglong Xu

    Full Text Available High-intensity focused ultrasound (HIFU therapy has been used to treat uterine fibroids widely and successfully. Uterine fibroid segmentation plays an important role in positioning the target region for HIFU therapy. Presently, it is completed by physicians manually, reducing the efficiency of therapy. Thus, computer-aided segmentation of uterine fibroids benefits the improvement of therapy efficiency. Recently, most computer-aided ultrasound segmentation methods have been based on the framework of contour evolution, such as snakes and level sets. These methods can achieve good performance, although they need an initial contour that influences segmentation results. It is difficult to obtain the initial contour automatically; thus, the initial contour is always obtained manually in many segmentation methods. A split-and-merge-based uterine fibroid segmentation method, which needs no initial contour to ensure less manual intervention, is proposed in this paper. The method first splits the image into many small homogeneous regions called superpixels. A new feature representation method based on texture histogram is employed to characterize each superpixel. Next, the superpixels are merged according to their similarities, which are measured by integrating their Quadratic-Chi texture histogram distances with their space adjacency. Multi-way Ncut is used as the merging criterion, and an adaptive scheme is incorporated to decrease manual intervention further. The method is implemented using Matlab on a personal computer (PC platform with Intel Pentium Dual-Core CPU E5700. The method is validated on forty-two ultrasound images acquired from HIFU therapy. The average running time is 9.54 s. Statistical results showed that SI reaches a value as high as 87.58%, and normHD is 5.18% on average. It has been demonstrated that the proposed method is appropriate for segmentation of uterine fibroids in HIFU pre-treatment imaging and planning.

  1. Convergence Analysis of the Preconditioned Group Splitting Methods in Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Norhashidah Hj. Mohd Ali

    2012-01-01

    Full Text Available The construction of a specific splitting-type preconditioner in block formulation applied to a class of group relaxation iterative methods derived from the centred and rotated (skewed finite difference approximations has been shown to improve the convergence rates of these methods. In this paper, we present some theoretical convergence analysis on this preconditioner specifically applied to the linear systems resulted from these group iterative schemes in solving an elliptic boundary value problem. We will theoretically show the relationship between the spectral radiuses of the iteration matrices of the preconditioned methods which affects the rate of convergence of these methods. We will also show that the spectral radius of the preconditioned matrices is smaller than that of their unpreconditioned counterparts if the relaxation parameter is in a certain optimum range. Numerical experiments will also be presented to confirm the agreement between the theoretical and the experimental results.

  2. Dye-sensitized photocatalyst for effective water splitting catalyst

    Science.gov (United States)

    Watanabe, Motonori

    2017-12-01

    Renewable hydrogen production is a sustainable method for the development of next-generation energy technologies. Utilising solar energy and photocatalysts to split water is an ideal method to produce hydrogen. In this review, the fundamental principles and recent progress of hydrogen production by artificial photosynthesis are reviewed, focusing on hydrogen production from photocatalytic water splitting using organic-inorganic composite-based photocatalysts.

  3. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You

    2014-01-01

    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  4. Model-independent separation of poorly resolved hypperfine split spectra by a linear combination method

    International Nuclear Information System (INIS)

    Nagy, D.L.; Dengler, J.; Ritter, G.

    1988-01-01

    A model-independent evaluation of the components of poorly resolved Moessbauer spectra based on a linear combination method is possible if there is a parameter as a function of which the shape of the individual components do not but their intensities do change and the dependence of the intensities on this parameter is known. The efficiency of the method is demonstrated on the example of low temperature magnetically split spectra of the high-T c superconductor YBa 2 (Cu 0.9 Fe 0 .1 ) 3 O 7-y . (author)

  5. An Examination Of Fracture Splitting Parameters Of Crackable Connecting Rods

    Directory of Open Access Journals (Sweden)

    Zafer Özdemir

    2000-06-01

    Full Text Available Fracture splitting method is an innovative processing technique in the field of automobile engine connecting rod (con/rod manufacturing. Compared with traditional method, this technique has remarkable advantages. Manufacturing procedures, equipment and tools investment can be decreased and energy consumption reduced remarkably. Furthermore, product quality and bearing capability can also be improved. It provides a high quality, high accuracy and low cost route for producing connecting rods (con/rods. With the many advantages mentioned above, this method has attracted manufacturers attention and has been utilized in many types of con/rod manufacturing. In this article, the method and the advantages it provides, such as materials, notches for fracture splitting, fracture splitting conditions and fracture splitting equipment are discussed in detail. The paper describes an analysis of examination of fracture splitting parameters and optik-SEM fractography of C70S6 crackable connectıng rod. Force and velocity parameters are investigated. That uniform impact force distrubition starting from the starting notch causes brittle and cleavage failure mode is obtained as a result. This induces to decrease the toughness.

  6. A Regularized Algorithm for the Proximal Split Feasibility Problem

    Directory of Open Access Journals (Sweden)

    Zhangsong Yao

    2014-01-01

    Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.

  7. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    Directory of Open Access Journals (Sweden)

    Weichao Wang

    2016-01-01

    Full Text Available The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the conventional splitting tests and uniaxial compression tests. The stress-strain curves include compaction, elasticity, yielding, and failure stage. Both the vertical deformation and horizontal deformation of splitting fatigue tests under constant average loading can be divided into three stages of “loosening-tightness-loosening.” The failure modes of splitting fatigue tests under the variational average loading are not controlled by the fracturing process curve of the conventional splitting tests. The deformation extent of fatigue tests under variational average loading is even greater than that of conventional splitting test. The tensile strength of salt rock has a relationship with crystallization conditions. Tensile strength of thick crystal salt rock is lower than the bonded strength of fine-grain crystals.

  8. Time-splitting combined with exponential wave integrator fourier pseudospectral method for Schrödinger-Boussinesq system

    Science.gov (United States)

    Liao, Feng; Zhang, Luming; Wang, Shanshan

    2018-02-01

    In this article, we formulate an efficient and accurate numerical method for approximations of the coupled Schrödinger-Boussinesq (SBq) system. The main features of our method are based on: (i) the applications of a time-splitting Fourier spectral method for Schrödinger-like equation in SBq system, (ii) the utilizations of exponential wave integrator Fourier pseudospectral for spatial derivatives in the Boussinesq-like equation. The scheme is fully explicit and efficient due to fast Fourier transform. The numerical examples are presented to show the efficiency and accuracy of our method.

  9. Permanent split capacitor single phase electric motor system

    Science.gov (United States)

    Kirschbaum, H.S.

    1984-08-14

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  10. Reconstruction of Abdominal Wall of a Chronically Infected Postoperative Wound with a Rectus Abdominis Myofascial Splitting Flap

    Directory of Open Access Journals (Sweden)

    Sung Kyu Bae

    2013-01-01

    Full Text Available Background If a chronically infected abdominal wound develops, complications such asperitonitis and an abdominal wall defect could occur. This could prolong the patient’s hospitalstay and increase the possibility of re-operation or another infection as well. For this reason,a solution for infection control is necessary. In this study, surgery using a rectus abdominismuscle myofascial splitting flap was performed on an abdominal wall defect.Methods From 2009 to 2012, 5 patients who underwent surgery due to ovarian rupture,cesarean section, or uterine myoma were chosen. In each case, during the first week afteroperation, the wound showed signs of infection. Surgery was chosen because the wounds didnot resolve with dressing. Debridement was performed along the previous operation woundand dissection of the skin was performed to separate the skin and subcutaneous tissue fromthe attenuated rectus muscle and Scarpa’s fascial layers. Once the anterior rectus sheath andmuscle were adequately mobilized, the fascia and muscle flap were advanced medially sothat the skin defect could be covered for reconstruction.Results Upon 3-week follow-up after a rectus abdominis myofascial splitting flap operation,no major complication occurred. In addition, all of the patients showed satisfaction in termsof function and esthetics at 3 to 6 months post-surgery.Conclusions Using a rectus abdominis myofascial splitting flap has many esthetic andfunctional benefits over previous methods of abdominal defect treatment, and notably, itenabled infection control by reconstruction using muscle.

  11. N3S project of fluid mechanics. High order in time methods by operator splitting. Application to Navier-Stokes equations; Projet N3S. Methode en temps d`ordre eleve par decomposition d`operateurs. Application aux equations de Navier-Stokes

    Energy Technology Data Exchange (ETDEWEB)

    Boukir, K

    1994-06-01

    This thesis deals with the extension to higher order in time of two splitting methods for the Navier-Stokes equations: the characteristics method and the projection one. The first consists in decoupling the convection operator from the Stokes one. The second decomposes this latter into a diffusion problem and a pressure-continuity one. Concerning the characteristics method, numerical and theoretical study is developed for the second order scheme together with a finite element spatial discretization. The case of a spectral spatial discretization is also treated and theoretical analysis are given respectively for second and third order schemes. For both spatial discretizations, we obtain good error estimates, unconditionally or under non stringent stability conditions, for both velocity and pressure. Numerical results illustrate the interest of the second order scheme comparing to the first order one. Extensions of the second order scheme to the K-epsilon turbulence model are proposed and tested, in the case of a finite element spatial discretization. Concerning the projection method, we define the order schemes. The theoretical study deals with stability and convergence of first and second order projection schemes, for the incompressible Navier-Stokes equations and with a finite element spatial discretization. The numerical study concerns mainly the second order scheme applied to the Navier-Stokes equations with varying density. (authors). 63 refs., figs.

  12. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    International Nuclear Information System (INIS)

    Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong

    2015-01-01

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics

  13. Alteration of split renal function during Captopril treatment

    International Nuclear Information System (INIS)

    Aburano, Tamio; Takayama, Teruhiko; Nakajima, Kenichi; Tonami, Norihisa; Hisada, Kinichi; Yasuhara, Shuichirou; Miyamori, Isamu; Takeda, Ryoyu

    1987-01-01

    Two different methods to evaluate the alteration of split renal function following continued Captopril treatment were studied in a total of 21 patients with hypertension. Eight patients with renovascular hypertension (five with unilateral renal artery stenosis and three with bilateral renal artery stenoses), three patients with diabetic nephropathy, one patient with primary aldosteronism, and nine patients with essential hypertension were included. The studies were performed the day prior to receiving Captopril (baseline), and 6th or 7th day following continued Captopril treatment (37.5 mg or 75 mg/day). Split effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) after injections of I-131 hippuran and Tc-99m DTPA were measured using kidney counting corrected for depth and dose, described by Schlegel and Gates. In the patients with renovascular hypertension, split GFR in the stenotic kidney was significantly decreased 6th or 7th day following continued Captopril treatment compared to a baseline value. And split ERPF in the stenotic kidney was slightly increased although significant increase of split ERPF was not shown. In the patients with diabetic nephropathy, primary aldosteronism or essential hypertension, on the other hand, split GFR was not changed and split ERPF was slightly increased. These findings suggest that the Captopril induced alterations of split renal function may be of importance for the diagnosis of renovascular hypertension. For this purpose, split GFR determination is more useful than split ERPF determination. (author)

  14. Multiplet mass splitting in a gravitational field

    International Nuclear Information System (INIS)

    Maia, M.D.

    An expression for the mass splitting of particles belonging to the same spin multiplet defined in a space-time of general relativity is derived. The geometrical symmetry is a subgroup of SO(r,s), 9 >=r > 3, 5 >=s >=1, the mass operator being proportional to the second order Casimir operator of that subgroup. A brief analysis of the calculated values as compared to the experimental data is included. (Author) [pt

  15. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    Science.gov (United States)

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  16. A pre- and postoperative study of split isotope clearance in childhood

    International Nuclear Information System (INIS)

    Faerber, D.; Czempiel, H.; Muehle, P.; Schick, F.; Wenzl, H.; Technische Univ. Muenchen; Technische Univ. Muenchen

    1979-01-01

    In 1978 43 patients have been operated in the Department of Pediatric Surgery, Krankenhaus Muenchen-Schwabing, because of recurrent urinary-tract infections with ureterovesical reflux or obstructive urinary-tract diseases. In all patients a split whole body clearance-study with a method modified after the method of Muehle with 131 J-Hippuran was carried out pre- or postoperatively, respectively. In 78,5% of these cases the clearance-results were corresponding to the results of X-ray examination; 6 of the remaining patients had a worse clearance result and 3 had a better result than the X-ray findings would have suggested. (orig.) [de

  17. Conditional Toxin Splicing Using a Split Intein System.

    Science.gov (United States)

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  18. Optimization of operating parameters for gas-phase photocatalytic splitting of H2S by novel vermiculate packed tubular reactor.

    Science.gov (United States)

    Preethi, V; Kanmani, S

    2016-10-01

    Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators

    International Nuclear Information System (INIS)

    Wu Qian-Nan; Lan Feng; Tang Xiao-Pin; Yang Zi-Qiang

    2015-01-01

    A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators. (paper)

  20. Recent Progress in Energy-Driven Water Splitting.

    Science.gov (United States)

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong

    2017-05-01

    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  1. Application of the instanton method for analyzing tunneling splitting spectra of nonrigid molecular systems : II. Excited states

    NARCIS (Netherlands)

    Iroshnikov, GS; Sukhanov, LP

    For nonrigid molecules with two equivalent minima on their potential energy surface, expressions are obtained in terms of the instanton method for the calculation of the magnitude of the tunneling splitting of vibrational levels with the number n greater than or equal to 0 both in the harmonic

  2. Cost, operation and hospitalization times in distraction osteogenesis versus sagittal split osteotomy

    NARCIS (Netherlands)

    van Strijen, P. J.; Breuning, K. H.; Becking, A. G.; Perdijk, F. B. T.; Tuinzing, D. B.

    2003-01-01

    Distraction osteogenesis in 'common' surgical orthodontics is mentioned as an alternative for conventional sagittal split osteotomy. After a 'learning curve' in the surgical skills of distraction, the two techniques can be compared concerning time and cost aspects. Forty-seven patients (male n=28,

  3. A Proposal on the Geometry Splitting Strategy to Enhance the Calculation Efficiency in Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Gi Yeong; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    In this study, how the geometry splitting strategy affects the calculation efficiency was analyzed. In this study, a geometry splitting method was proposed to increase the calculation efficiency in Monte Carlo simulation. First, the analysis of the neutron distribution characteristics in a deep penetration problem was performed. Then, considering the neutron population distribution, a geometry splitting method was devised. Using the proposed method, the FOMs with benchmark problems were estimated and compared with the conventional geometry splitting strategy. The results show that the proposed method can considerably increase the calculation efficiency in using geometry splitting method. It is expected that the proposed method will contribute to optimizing the computational cost as well as reducing the human errors in Monte Carlo simulation. Geometry splitting in Monte Carlo (MC) calculation is one of the most popular variance reduction techniques due to its simplicity, reliability and efficiency. For the use of the geometry splitting, the user should determine locations of geometry splitting and assign the relative importance of each region. Generally, the splitting parameters are decided by the user's experience. However, in this process, the splitting parameters can ineffectively or erroneously be selected. In order to prevent it, there is a recommendation to help the user eliminate guesswork, which is to split the geometry evenly. And then, the importance is estimated by a few iterations for preserving population of particle penetrating each region. However, evenly geometry splitting method can make the calculation inefficient due to the change in mean free path (MFP) of particles.

  4. A Proposal on the Geometry Splitting Strategy to Enhance the Calculation Efficiency in Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Han, Gi Yeong; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho; Kim, Jong Kyung

    2014-01-01

    In this study, how the geometry splitting strategy affects the calculation efficiency was analyzed. In this study, a geometry splitting method was proposed to increase the calculation efficiency in Monte Carlo simulation. First, the analysis of the neutron distribution characteristics in a deep penetration problem was performed. Then, considering the neutron population distribution, a geometry splitting method was devised. Using the proposed method, the FOMs with benchmark problems were estimated and compared with the conventional geometry splitting strategy. The results show that the proposed method can considerably increase the calculation efficiency in using geometry splitting method. It is expected that the proposed method will contribute to optimizing the computational cost as well as reducing the human errors in Monte Carlo simulation. Geometry splitting in Monte Carlo (MC) calculation is one of the most popular variance reduction techniques due to its simplicity, reliability and efficiency. For the use of the geometry splitting, the user should determine locations of geometry splitting and assign the relative importance of each region. Generally, the splitting parameters are decided by the user's experience. However, in this process, the splitting parameters can ineffectively or erroneously be selected. In order to prevent it, there is a recommendation to help the user eliminate guesswork, which is to split the geometry evenly. And then, the importance is estimated by a few iterations for preserving population of particle penetrating each region. However, evenly geometry splitting method can make the calculation inefficient due to the change in mean free path (MFP) of particles

  5. On the preparation of fire-wood splitting machines equipped with feeder devices

    International Nuclear Information System (INIS)

    Jaeaeskelaeinen, M.

    1995-01-01

    As part of the Bionergy research programme, the TTS Institute's Department of Forestry conducted a study on firewood splitting machines manufactured by Bilke Oy and Peurala Oy. The said machines are the first of their kind in Finland to be equipped with a feeder device. The Bilke unit is fed by a conveyor belt arrangement while the Peurala unit is equipped with a feeder roll. In addition, both machine types are equipped with a conveyor belt discharging device (e.g. for discharging split wood directly into a trailer). The Bilke unit can also be operated on extraction racks in the woods as the stems due to be split are fed into it from the side and the conveyor discharges the split wood rearwards into the trailer. The trailer can be hooked onto the splitting unit's draw-hook. At the landing, the Bilke unit was used to split a total of 14.2 m 3 and the Peurala unit 8.0 m 3 of approx. 3-metrelong stems averaging 9 cm in diameter. In addition to this, the Bilke unit was used to split ca. 17 m 3 of 3.5 metre-long stems with on average diameter of ca. 6 cm; the stems were in bunches alongside the extraction racks. The person operating the machines for the purposes of this study was a 27-year- old forest worker. The mean productivity achieved at the landing when using the Bilke unit was 7.7 m 3 while that of the Peurala unit was 5.8 m 3 per effective hour. When operated in the woods, the productivity achieved with the Bilke unit (excluding felling-cross cutting-delimbing-bunching and forest haulage work) was 2.8 m 3 /h. When applying a productivity of 1.7 m 3 for felling-cross cutting- delimbing-bunching work and 5.5. m 3 for forest haulage, the entire harvesting chain's productivity was 0.9 m 3 per effective hour

  6. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Science.gov (United States)

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. A splitting algorithm for directional regularization and sparsification

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Nielsen, Mads

    2012-01-01

    We present a new split-type algorithm for the minimization of a p-harmonic energy with added data fidelity term. The half-quadratic splitting reduces the original problem to two straightforward problems, that can be minimized efficiently. The minimizers to the two sub-problems can typically...... be computed pointwise and are easily implemented on massively parallel processors. Furthermore the splitting method allows for the computation of solutions to a large number of more advanced directional regularization problems. In particular we are able to handle robust, non-convex data terms, and to define...

  8. Optimization of PHEV Power Split Gear Ratio to Minimize Fuel Consumption and Operation Cost

    Science.gov (United States)

    Li, Yanhe

    A Plug-in Hybrid Electric Vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery pack. The battery pack can be charged by plugging the vehicle to the electric grid and from using excess engine power. The research activity performed in this thesis focused on the development of an innovative optimization approach of PHEV Power Split Device (PSD) gear ratio with the aim to minimize the vehicle operation costs. Three research activity lines have been followed: • Activity 1: The PHEV control strategy optimization by using the Dynamic Programming (DP) and the development of PHEV rule-based control strategy based on the DP results. • Activity 2: The PHEV rule-based control strategy parameter optimization by using the Non-dominated Sorting Genetic Algorithm (NSGA-II). • Activity 3: The comprehensive analysis of the single mode PHEV architecture to offer the innovative approach to optimize the PHEV PSD gear ratio.

  9. Transverse beam splitting made operational: Key features of the multiturn extraction at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    A. Huschauer

    2017-06-01

    Full Text Available Following a successful commissioning period, the multiturn extraction (MTE at the CERN Proton Synchrotron (PS has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.

  10. Black tungsten nitride as a metallic photocatalyst for overall water splitting operable at up to 765 nm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu Lei; Li, Yu Hang; Wang, Xue Lu; Chen, Ai Ping; Yang, Hua Gui [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai (China); Nie, Ting; Gong, Xue Qing [Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai (China); Zheng, Li Rong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (China)

    2017-06-19

    Semiconductor photocatalysts are hardly employed for overall water splitting beyond 700 nm, which is due to both thermodynamic aspects and activation barriers. Metallic materials as photocatalysts are known to overcome this limitation through interband transitions for creating electron-hole pairs; however, the application of metallic photocatalysts for overall water splitting has never been fulfilled. Black tungsten nitride is now employed as a metallic photocatalyst for overall water splitting at wavelengths of up to 765 nm. Experimental and theoretical results together confirm that metallic properties play a substantial role in exhibiting photocatalytic activity under red-light irradiation for tungsten nitride. This work represents the first red-light responsive photocatalyst for overall water splitting, and may open a promising venue in searching of metallic materials as efficient photocatalysts for solar energy utilization. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. A New TS Algorithm for Solving Low-Carbon Logistics Vehicle Routing Problem with Split Deliveries by Backpack—From a Green Operation Perspective

    Science.gov (United States)

    Fu, Zhuo; Wang, Jiangtao

    2018-01-01

    In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics. PMID:29747469

  12. A New TS Algorithm for Solving Low-Carbon Logistics Vehicle Routing Problem with Split Deliveries by Backpack-From a Green Operation Perspective.

    Science.gov (United States)

    Xia, Yangkun; Fu, Zhuo; Tsai, Sang-Bing; Wang, Jiangtao

    2018-05-10

    In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics.

  13. Split kinetic energy method for quantum systems with competing potentials

    International Nuclear Information System (INIS)

    Mineo, H.; Chao, Sheng D.

    2012-01-01

    For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into “unperturbed” and “perturbed” terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double δ-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: ► A new basis set expansion method is proposed. ► Split kinetic energy method is proposed to solve quantum eigenvalue problems. ► Significant improvement has been obtained in converging to exact results. ► Extension of such methods is promising and discussed.

  14. Automated cloud screening of AVHRR imagery using split-and-merge clustering

    Science.gov (United States)

    Gallaudet, Timothy C.; Simpson, James J.

    1991-01-01

    Previous methods to segment clouds from ocean in AVHRR imagery have shown varying degrees of success, with nighttime approaches being the most limited. An improved method of automatic image segmentation, the principal component transformation split-and-merge clustering (PCTSMC) algorithm, is presented and applied to cloud screening of both nighttime and daytime AVHRR data. The method combines spectral differencing, the principal component transformation, and split-and-merge clustering to sample objectively the natural classes in the data. This segmentation method is then augmented by supervised classification techniques to screen clouds from the imagery. Comparisons with other nighttime methods demonstrate its improved capability in this application. The sensitivity of the method to clustering parameters is presented; the results show that the method is insensitive to the split-and-merge thresholds.

  15. Market Structure and Stock Splits

    OpenAIRE

    David Michayluk; Paul Kofman

    2001-01-01

    Enhanced liquidity is one possible motivation for stock splits but empirical research frequently documents declines in liquidity following stock splits. Despite almost thirty years of inquiry, little is known about all the changes in a stock's trading activity following a stock split. We examine how liquidity measures change around more than 2,500 stock splits and find a pervasive decline in most measures. Large stock splits exhibit a more severe liquidity decline than small stock splits, esp...

  16. A split accumulation gate architecture for silicon MOS quantum dots

    Science.gov (United States)

    Rochette, Sophie; Rudolph, Martin; Roy, Anne-Marie; Curry, Matthew; Ten Eyck, Gregory; Dominguez, Jason; Manginell, Ronald; Pluym, Tammy; King Gamble, John; Lilly, Michael; Bureau-Oxton, Chloé; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    We investigate tunnel barrier modulation without barrier electrodes in a split accumulation gate architecture for silicon metal-oxide-semiconductor quantum dots (QD). The layout consists of two independent accumulation gates, one gate forming a reservoir and the other the QD. The devices are fabricated with a foundry-compatible, etched, poly-silicon gate stack. We demonstrate 4 orders of magnitude of tunnel-rate control between the QD and the reservoir by modulating the reservoir gate voltage. Last electron charging energies of app. 10 meV and tuning of the ST splitting in the range 100-200 ueV are observed in two different split gate layouts and labs. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  17. Hydrogen production via thermochemical water-splitting by lithium redox reaction

    International Nuclear Information System (INIS)

    Nakamura, Naoya; Miyaoka, Hiroki; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2013-01-01

    Highlights: •Hydrogen production via water-splitting by lithium redox reactions possibly proceeds below 800 °C. •Entropy control by using nonequilibrium technique successfully reduces the reaction temperature. •The operating temperature should be further reduced by optimizing the nonequilibrium condition to control the cycle. -- Abstracts: Hydrogen production via thermochemical water-splitting by lithium redox reactions was investigated as energy conversion technique. The reaction system consists of three reactions, which are hydrogen generation by the reaction of lithium and lithium hydroxide, metal separation by thermolysis of lithium oxide, and oxygen generation by hydrolysis of lithium peroxide. The hydrogen generation reaction completed at 500 °C. The metal separation reaction is thermodynamically difficult because it requires about 3400 °C in equilibrium condition. However, it was indicated from experimental results that the reaction temperature was drastically reduced to 800 °C by using nonequilibrium technique. The hydrolysis reaction was exothermic reaction, and completed by heating up to 300 °C. Therefore, it was expected that the water-splitting by lithium redox reactions was possibly operated below 800 °C under nonequilibrium condition

  18. Normal-Mode Splitting in a Weakly Coupled Optomechanical System

    Science.gov (United States)

    Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David

    2018-02-01

    Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.

  19. An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium

    Science.gov (United States)

    Eppard, W. M.; Grossman, B.

    1993-01-01

    We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.

  20. A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations

    Directory of Open Access Journals (Sweden)

    Zhuo Su

    2013-01-01

    Full Text Available Higher order unconditionally stable methods are effective ways for simulating field behaviors of electromagnetic problems since they are free of Courant-Friedrich-Levy conditions. The development of accurate schemes with less computational expenditure is desirable. A compact fourth-order split-step unconditionally-stable finite-difference time-domain method (C4OSS-FDTD is proposed in this paper. This method is based on a four-step splitting form in time which is constructed by symmetric operator and uniform splitting. The introduction of spatial compact operator can further improve its performance. Analyses of stability and numerical dispersion are carried out. Compared with noncompact counterpart, the proposed method has reduced computational expenditure while keeping the same level of accuracy. Comparisons with other compact unconditionally-stable methods are provided. Numerical dispersion and anisotropy errors are shown to be lower than those of previous compact unconditionally-stable methods.

  1. COMPENSATION OF THE IONOSPHERIC EFFECTS ON SAR INTERFEROGRAM BASED ON RANGE SPLIT-SPECTRUM AND AZIMUTH OFFSET METHODS – A CASE STUDY OF YUSHU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    Y. F. He

    2018-04-01

    Full Text Available InSAR technique can measure the surface deformation with the accuracy of centimeter-level or even millimeter and therefore has been widely used in the deformation monitoring associated with earthquakes, volcanoes, and other geologic process. However, ionospheric irregularities can lead to the wavy fringes in the low frequency SAR interferograms, which disturb the actual information of geophysical processes and thus put severe limitations on ground deformations measurements. In this paper, an application of two common methods, the range split-spectrum and azimuth offset methods are exploited to estimate the contributions of the ionosphere, with the aim to correct ionospheric effects in interferograms. Based on the theoretical analysis and experiment, a performance analysis is conducted to evaluate the efficiency of these two methods. The result indicates that both methods can mitigate the ionospheric effect in SAR interferograms and the range split-spectrum method is more precise than the other one. However, it is also found that the range split-spectrum is easily contaminated by the noise, and the achievable accuracy of the azimuth offset method is limited by the ambiguous integral constant, especially with the strong azimuth variations induced by the ionosphere disturbance.

  2. Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations

    International Nuclear Information System (INIS)

    Wang Haifeng; Popov, Pavel P.; Pope, Stephen B.

    2010-01-01

    We study a class of methods for the numerical solution of the system of stochastic differential equations (SDEs) that arises in the modeling of turbulent combustion, specifically in the Monte Carlo particle method for the solution of the model equations for the composition probability density function (PDF) and the filtered density function (FDF). This system consists of an SDE for particle position and a random differential equation for particle composition. The numerical methods considered advance the solution in time with (weak) second-order accuracy with respect to the time step size. The four primary contributions of the paper are: (i) establishing that the coefficients in the particle equations can be frozen at the mid-time (while preserving second-order accuracy), (ii) examining the performance of three existing schemes for integrating the SDEs, (iii) developing and evaluating different splitting schemes (which treat particle motion, reaction and mixing on different sub-steps), and (iv) developing the method of manufactured solutions (MMS) to assess the convergence of Monte Carlo particle methods. Tests using MMS confirm the second-order accuracy of the schemes. In general, the use of frozen coefficients reduces the numerical errors. Otherwise no significant differences are observed in the performance of the different SDE schemes and splitting schemes.

  3. Load Sharing Multiobjective Optimization Design of a Split Torque Helicopter Transmission

    Directory of Open Access Journals (Sweden)

    Chenxi Fu

    2015-01-01

    Full Text Available Split torque designs can offer significant advantages over the traditional planetary designs for helicopter transmissions. However, it has two unique properties, gap and phase differences, which result in the risk of unequal load sharing. Various methods have been proposed to eliminate the effect of gap and promote load sharing to a certain extent. In this paper, system design parameters will be optimized to change the phase difference, thereby further improving load sharing. A nonlinear dynamic model is established to measure the load sharing with dynamic mesh forces quantitatively. Afterwards, a multiobjective optimization of a reference split torque design is conducted with the promoting of load sharing property, lightweight, and safety considered as the objectives. The load sharing property, which is measured by load sharing coefficient, is evaluated under multiple operating conditions with dynamic analysis method. To solve the multiobjective model with NSGA-II, an improvement is done to overcome the problem of time consuming. Finally, a satisfied optimal solution is picked up as the final design from the Pareto optimal front, which achieves improvements in all the three objectives compared with the reference design.

  4. The background-quantum split symmetry in two-dimensional σ-models

    International Nuclear Information System (INIS)

    Blasi, A.; Delduc, F.; Sorella, S.P.

    1989-01-01

    A generic, non-linear, background-quantum split is translated into a BRS symmetry. The renormalization of the resulting Slavnov-Taylor identity is analyzed in the class of two-dimensional σ-models with Wess-Zumino term which suggests the adoption of a regularization independent method. We discuss the cohomology of the linearized nilpotent operator derived from the Slavnov-Taylor identity. In particular, the cohomology class with zero Faddeev-Popov charge ensures the stability of the action, while the fact that the cohomology class with one unit of Faddeev-Popov charge is empty ensures the absence of anomalies. (orig.)

  5. Surgical correction of cryptotia combined with an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap.

    Science.gov (United States)

    Yu, Xiaobo; Yang, Qinghua; Jiang, Haiyue; Pan, Bo; Zhao, Yanyong; Lin, Lin

    2017-11-01

    Cryptotia is a common congenital ear deformity in Asian populations. In cryptotia, a portion of the upper ear is hidden and fixed in a pocket of the skin of the mastoid. Here we describe our method for cryptotia correction by using an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap. We developed a new method for correcting cryptotia by using an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap. Following ear release, the full-thickness skin rotation flap is rotated into the defect, and the donor site is covered with an ultra-delicate split-thickness skin graft raised in continuity with the flap. All patients exhibited satisfactory release of cryptotia. No cases involved partial or total flap necrosis, and post-operative outcomes using this new technique for cryptotia correction have been more than satisfactory. Our method of using an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap to correct cryptotia is simple and reliable. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. SplitRacer - a semi-automatic tool for the analysis and interpretation of teleseismic shear-wave splitting

    Science.gov (United States)

    Reiss, Miriam Christina; Rümpker, Georg

    2017-04-01

    We present a semi-automatic, graphical user interface tool for the analysis and interpretation of teleseismic shear-wave splitting in MATLAB. Shear wave splitting analysis is a standard tool to infer seismic anisotropy, which is often interpreted as due to lattice-preferred orientation of e.g. mantle minerals or shape-preferred orientation caused by cracks or alternating layers in the lithosphere and hence provides a direct link to the earth's kinematic processes. The increasing number of permanent stations and temporary experiments result in comprehensive studies of seismic anisotropy world-wide. Their successive comparison with a growing number of global models of mantle flow further advances our understanding the earth's interior. However, increasingly large data sets pose the inevitable question as to how to process them. Well-established routines and programs are accurate but often slow and impractical for analyzing a large amount of data. Additionally, shear wave splitting results are seldom evaluated using the same quality criteria which complicates a straight-forward comparison. SplitRacer consists of several processing steps: i) download of data per FDSNWS, ii) direct reading of miniSEED-files and an initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold. iii) an analysis of the particle motion of selected phases and successive correction of the sensor miss-alignment based on the long-axis of the particle motion. iv) splitting analysis of selected events: seismograms are first rotated into radial and transverse components, then the energy-minimization method is applied, which provides the polarization and delay time of the phase. To estimate errors, the analysis is done for different randomly-chosen time windows. v) joint-splitting analysis for all events for one station, where the energy content of all phases is inverted simultaneously. This allows to decrease the influence of noise and to increase robustness of the measurement

  7. Electrokinetic control of sample splitting at a channel bifurcation using isotachophoresis

    International Nuclear Information System (INIS)

    Persat, Alexandre; Santiago, Juan G

    2009-01-01

    We present a novel method for accurately splitting ionic samples at microchannel bifurcations. We leverage isotachophoresis (ITP) to focus and transport sample through a one-inlet, two-outlet microchannel bifurcation. We actively control the proportion of splitting by controlling potentials at end-channel reservoirs (and thereby controlling the current ratio). We explore the effect of buffer chemistry and local electric field on splitting dynamics and propose and validate a simple Kirchoff-type rule controlling the split ratio. We explore the effects of large applied electric fields on sample splitting and attribute a loss of splitting accuracy to electrohydrodynamic instabilities. We propose a scaling analysis to characterize the onset of this instability. This scaling is potentially useful for other electrokinetic flow problems with self-sharpening interfaces.

  8. A Method for Solving the Voltage and Torque Equations of the Split-Phase Induction Machines

    Directory of Open Access Journals (Sweden)

    G. A. Olarinoye

    2013-06-01

    Full Text Available Single phase induction machines have been the subject of many researches in recent times. The voltage and torque equations which describe the dynamic characteristics of these machines have been quoted in many papers, including the papers that present the simulation results of these model equations. The way and manner in which these equations are solved is not common in literature. This paper presents a detailed procedure of how these equations are to be solved with respect to the splitphase induction machine which is one of the different types of the single phase induction machines available in the market. In addition, these equations have been used to simulate the start-up response of the split phase induction motor on no-load. The free acceleration characteristics of the motor voltages, currents and electromagnetic torque have been plotted and discussed. The simulation results presented include the instantaneous torque-speed characteristics of the Split phase Induction machine. A block diagram of the method for the solution of the machine equations has also been presented.

  9. Zn(II Removal from Wastewater by Electrocoagulation/Flotation Method using New Configuration of a Split-Plate Airlift Electrochemical Reactor

    Directory of Open Access Journals (Sweden)

    Saad H. Ammar

    2018-01-01

    Full Text Available In this paper, split-plate airlift electrochemical reactor as an apparatus with new configuration for wastewater treatment was provided. Two aluminum plates were fixed inside the reactor and present two functions; first it works as split plates for internal loop generation of the airlift system (the zone between the two plates acts as riser while the other two zones act as downcomer and second it works as two electrodes for electrocoagulation process. Simulated wastewater contaminated with zinc ions was used to test the performance of this apparatus for zinc removal by studying the effect of different experimental variables such as initial concentration of zinc (50-800 ppm, electrical current density (2.67-21.4 mA/cm2, initial pH (3-11, air flowrate (12-50 LPH, and implicitly the electrocoagulation time. The results have shown the applicability of this split-plate airlift reactor as electrocoagulation cell in the treatment of wastewater such as wastewater containing Zink ions. The Zink removal percent was shown to increase upon increasing the current density and the electrolysis time. Also best removal percent was achieved in the initial pH range between 7 and 9. The minimum electrocoagulation time required for removal of ≥ 90% of Zn(II decreases from 90 to 22 min when operating current density increases from 2.67 to 21.4 mA/cm2.

  10. Entanglement branching operator

    Science.gov (United States)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  11. Point splitting in a curved space-time background

    International Nuclear Information System (INIS)

    Liggatt, P.A.J.; Macfarlane, A.J.

    1979-01-01

    A prescription is given for point splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current that can be differentiated straightforwardly, and that it involves a natural way of averaging (four-dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g., to spin-3/2 Rarita-Schwinger fermions. (author)

  12. "Split Cast Mounting: Review and New Technique".

    Science.gov (United States)

    Gundawar, S M; Pande, Neelam A; Jaiswal, Priti; Radke, U M

    2014-12-01

    For the fabrication of a prosthesis, the Prosthodontist meticulously performs all the steps. The laboratory technician then make every effort/strives to perform the remaining lab procedures. However when the processed dentures are remounted on the articulator, some changes are seen. These changes may be divided into two categories: Pre-insertion and post-insertion changes, which deal with the physical properties of the materials involved (Parker, J Prosthet Dent 31:335-342, 1974). Split cast mounting is the method of mounting casts on the articulator. It is essentially a maxillary cast constructed in two parts with a horizontal division. The procedure allows for the verification of the accuracy of the initial mounting and the ease of removal and replacement of the cast. This provides a precise means of correcting the changes in occlusion occurring as a result of the processing technique (Nogueira et al., J Prosthet Dent 91:386-388, 2004). Instability of the split mounting has always been a problem to the Prosthodontist thereby limiting its use. There are various materials mentioned in the literature. The new technique by using Dowel pins and twill thread is very easy, cheaper and simple way to stabilize the split mounting. It is useful and easy in day to day laboratory procedures. The article presents different methods of split cast mounting and the new procedure using easily available materials in prosthetic laboratory.

  13. Lateral ridge split and immediate implant placement in moderately resorbed alveolar ridges: How much is the added width?

    Directory of Open Access Journals (Sweden)

    Amin Rahpeyma

    2013-01-01

    Full Text Available Background: Lateral ridge split technique is a way to solve the problem of the width in narrow ridges with adequate height. Simultaneous insertion of dental implants will considerably reduce the edentulism time. Materials and Methods: Twenty-five patients who were managed with ridge splitting technique were enrolled. Thirty-eight locations in both jaws with near equal distribution in quadrants received 82 dental fixtures. Beta Tricalcium phosphate (Cerasorb® was used as biomaterial to fill the intercortical space. Submerged implants were used and 3 months later healing caps were placed. Direct bone measurements before and after split were done with a Collis. Patients were clinically re-evaluated at least 6 months after implant loading. All the data were analyzed by Statistical Package for Social Sciences (SPSS software version 11.5 (SPSS Inc, Chicago Illinois, USA. Frequency of edentulous spaces and pre/post operative bone width was analyzed. Paired t-test was used for statistical analysis. Difference was considered significant if P value was less than 0.05. Results: Mean value for presplit width was 3.2 ± 0.34 mm while post-split mean width was 5.57 ± 0.49 mm. Mean gain in crest ridge after ridge splitting was 2 ± 0.3 mm. Statistical analysis showed significant differences in width before and after operation ((P < 0.05. All implants (n = 82 survived and were in full function at follow up (at least 6 months after implant loading. Conclusion: Ridge splitting technique in both jaws showed the predictable outcomes, if appropriate cases selected and special attention paid to details; then the waiting time between surgery and beginning of prosthodontic treatment can be reduced to 3 month.

  14. Splitting blood and blood product packaging reduces donor exposure for patients undergoing cardiopulmonary bypass.

    Science.gov (United States)

    Nuszkowski, M M; Jonas, R A; Zurakowski, D; Deutsch, N

    2015-11-01

    Cardiopulmonary bypass for congenital heart surgery requires packed red cells (PRBC) and fresh frozen plasma (FFP) to be available, both for priming of the circuit as well as to replace blood loss. This study examines the hypothesis that splitting one unit of packed red blood cells and one unit of fresh frozen plasma into two half units reduces blood product exposure and wastage in the Operating Room. Beginning August 2013, the blood bank at Children's National Medical Center began splitting one unit of packed red blood cells (PRBC) and one unit of fresh frozen plasma (FFP) for patients undergoing cardiopulmonary bypass (CPB). The 283 patients who utilized CPB during calendar year 2013 were divided into 2 study groups: before the split and after the split. The principal endpoints were blood product usage and donor exposure intra-operatively and within 72 hours post-operatively. There was a significant decrease in median total donor exposures for FFP and cryoprecipitate from 5 to 4 per case (p = 0.007, Mann-Whitney U-test). However, there was no difference in the volume of blood and blood products used; in fact, there was a significant increase in the amount of FFP that was wasted with the switch to splitting the unit of FFP. We found that modification of blood product packaging can decrease donor exposure. Future investigation is needed as to how to modify packaging to minimize wastage. © The Author(s) 2015.

  15. Newton-Krylov methods applied to nonequilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Knoll, D.A.; Rider, W.J.; Olsen, G.L.

    1998-01-01

    The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton's method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton's method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step

  16. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...

  17. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  18. Coherent Synchrotron Radiation A Simulation Code Based on the Non-Linear Extension of the Operator Splitting Method

    CERN Document Server

    Dattoli, Giuseppe

    2005-01-01

    The coherent synchrotron radiation (CSR) is one of the main problems limiting the performance of high intensity electron accelerators. A code devoted to the analysis of this type of problems should be fast and reliable: conditions that are usually hardly achieved at the same time. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problem in accelerators. The extension of these method to the non-linear case is ideally suited to treat CSR instability problems. We report on the development of a numerical code, based on the solution of the Vlasov equation, with the inclusion of non-linear contribution due to wake field effects. The proposed solution method exploits an algebraic technique, using exponential operators implemented numerically in C++. We show that the integration procedure is capable of reproducing the onset of an instability and effects associated with bunching mechanisms leading to the growth of the instability itself. In addition, parametric studies a...

  19. A second order splitting algorithm for thermally-driven flow problems

    NARCIS (Netherlands)

    Minev, P.D.; Vosse, van de F.N.; Timmermans, L.J.P.; Steenhoven, van A.A.

    1995-01-01

    A splitting technique for solutions of the Navier—Stokes and the energy equations, in Boussinesq approximately, is presented. The equations are first integrated in time using a splitting procedure and then discretized spatially by means of a high-order spectral element method. The whole technique is

  20. Evaluation of Mandibular Anatomy Associated With Bad Splits in Sagittal Split Ramus Osteotomy of Mandible.

    Science.gov (United States)

    Wang, Tongyue; Han, Jeong Joon; Oh, Hee-Kyun; Park, Hong-Ju; Jung, Seunggon; Park, Yeong-Joon; Kook, Min-Suk

    2016-07-01

    This study aimed to identify risk factors associated with bad splits during sagittal split ramus osteotomy by using three-dimensional computed tomography. This study included 8 bad splits and 47 normal patients without bad splits. Mandibular anatomic parameters related to osteotomy line were measured. These included anteroposterior width of the ramus at level of lingula, distance between external oblique ridge and lingula, distance between sigmoid notch and inferior border of mandible, mandibular angle, distance between inferior outer surface of mandibular canal and inferior border of mandible under distal root of second molar (MCEM), buccolingual thickness of the ramus at level of lingula, and buccolingual thickness of the area just distal to first molar (BTM1) and second molar (BTM2). The incidence of bad splits in 625 sagittal split osteotomies was 1.28%. Compared with normal group, bad split group exhibited significantly thinner BTM2 and shorter sigmoid notch and inferior border of mandible (P bad splits. These anatomic data may help surgeons to choose the safest surgical techniques and best osteotomy sites.

  1. An efficient mode-splitting method for a curvilinear nearshore circulation model

    Science.gov (United States)

    Shi, Fengyan; Kirby, James T.; Hanes, Daniel M.

    2007-01-01

    A mode-splitting method is applied to the quasi-3D nearshore circulation equations in generalized curvilinear coordinates. The gravity wave mode and the vorticity wave mode of the equations are derived using the two-step projection method. Using an implicit algorithm for the gravity mode and an explicit algorithm for the vorticity mode, we combine the two modes to derive a mixed difference–differential equation with respect to surface elevation. McKee et al.'s [McKee, S., Wall, D.P., and Wilson, S.K., 1996. An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms. J. Comput. Phys., 126, 64–76.] ADI scheme is then used to solve the parabolic-type equation in dealing with the mixed derivative and convective terms from the curvilinear coordinate transformation. Good convergence rates are found in two typical cases which represent respectively the motions dominated by the gravity mode and the vorticity mode. Time step limitations imposed by the vorticity convective Courant number in vorticity-mode-dominant cases are discussed. Model efficiency and accuracy are verified in model application to tidal current simulations in San Francisco Bight.

  2. Association Splitting: A randomized controlled trial of a new method to reduce craving among inpatients with alcohol dependence.

    Science.gov (United States)

    Schneider, Brooke C; Moritz, Steffen; Hottenrott, Birgit; Reimer, Jens; Andreou, Christina; Jelinek, Lena

    2016-04-30

    Association Splitting, a novel cognitive intervention, was tested in patients with alcohol dependence as an add-on intervention in an initial randomized controlled trial. Preliminary support for Association Splitting has been found in patients with obsessive-compulsive disorder, as well as in an online pilot study of patients with alcohol use disorders. The present variant sought to reduce craving by strengthening neutral associations with alcohol-related stimuli, thus, altering cognitive networks. Eighty-four inpatients with verified diagnoses of alcohol dependence, who were currently undergoing inpatient treatment, were randomly assigned to Association Splitting or Exercise Therapy. Craving was measured at baseline, 4-week follow-up, and six months later with the Obsessive-Compulsive Drinking Scale (primary outcome) and the Alcohol Craving Questionnaire. There was no advantage for Association Splitting after three treatment sessions relative to Exercise Therapy. Among Association Splitting participants, 51.9% endorsed a subjective decline in craving and 88.9% indicated that they would use Association Splitting in the future. Despite high acceptance, an additional benefit of Association Splitting beyond standard inpatient treatment was not found. Given that participants were concurrently undergoing inpatient treatment and Association Splitting has previously shown moderate effects, modification of the study design may improve the potential to detect significant effects in future trials. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Multiparty hierarchical quantum-information splitting

    International Nuclear Information System (INIS)

    Wang Xinwen; Zhang Dengyu; Tang Shiqing; Xie Lijun

    2011-01-01

    We propose a scheme for multiparty hierarchical quantum-information splitting (QIS) with a multipartite entangled state, where a boss distributes a secret quantum state to two grades of agents asymmetrically. The agents who belong to different grades have different authorities for recovering the boss's secret. Except for the boss's Bell-state measurement, no nonlocal operation is involved. The presented scheme is also shown to be secure against eavesdropping. Such a hierarchical QIS is expected to find useful applications in the field of modern multipartite quantum cryptography.

  4. Beyond the Interconnections: Split Manufacturing in RF Designs

    Directory of Open Access Journals (Sweden)

    Yu Bi

    2015-08-01

    Full Text Available With the globalization of the integrated circuit (IC design flow of chip fabrication, intellectual property (IP piracy is becoming the main security threat. While most of the protection methods are dedicated for digital circuits, we are trying to protect radio-frequency (RF designs. For the first time, we applied the split manufacturing method in RF circuit protection. Three different implementation cases are introduced for security and design overhead tradeoffs, i.e., the removal of the top metal layer, the removal of the top two metal layers and the design obfuscation dedicated to RF circuits. We also developed a quantitative security evaluation method to measure the protection level of RF designs under split manufacturing. Finally, a simple Class AB power amplifier and a more sophisticated Class E power amplifier are used for the demonstration through which we prove that: (1 the removal of top metal layer or the top two metal layers can provide high-level protection for RF circuits with a lower request to domestic foundries; (2 the design obfuscation method provides the highest level of circuit protection, though at the cost of design overhead; and (3 split manufacturing may be more suitable for RF designs than for digital circuits, and it can effectively reduce IP piracy in untrusted off-shore foundries.

  5. Improved Bunch Splitting for the 75ns LHC Beam

    CERN Document Server

    Damerau, H

    2011-01-01

    The 75ns variant was added to the PS arsenal of LHC-type beams by adapting the 20MHz cavity used to produce the 25 and 50ns variants to operate at a switchable 13MHz. This permitted splitting from harmonic 14 to 28, but at a cost in adiabaticity compared with the h=2142 splitting of the other two cases. Consequently, a delicate empirical optimization was necessary to bring the 75ns beam inside specification. More recently the speed at which the bunches, once fully distinct, are moved apart has been revisited and further optimization achieved. As a by-product, deliberately degrading the splitting by moving the bunches apart too quickly led to sufficient coherent motion in the resultant bunch pair to permit a voltage calibration of the 13MHz cavity by means of the influence on convergence of the rf voltage input into the iterative algorithm of the Tomoscope [1,2].

  6. Dual-Band Split-Ring Antenna Design for WLAN Applications

    OpenAIRE

    BAŞARAN, S. Cumhur; ERDEMLİ, Yunus E.

    2014-01-01

    A dual-band microstrip antenna based on split-ring elements is introduced for WLAN (2.4/5.2 GHz) applications. The proposed split-ring antenna (SRA) has a compact novel design which provides about 2% impedance-bandwidth without a need for additional matching network. Analysis and design of the proposed microstrip antenna is carried out by means of full-wave simulators based on the finite-element method.

  7. The Split-Brain Phenomenon Revisited: A Single Conscious Agent with Split Perception.

    Science.gov (United States)

    Pinto, Yair; de Haan, Edward H F; Lamme, Victor A F

    2017-11-01

    The split-brain phenomenon is caused by the surgical severing of the corpus callosum, the main route of communication between the cerebral hemispheres. The classical view of this syndrome asserts that conscious unity is abolished. The left hemisphere consciously experiences and functions independently of the right hemisphere. This view is a cornerstone of current consciousness research. In this review, we first discuss the evidence for the classical view. We then propose an alternative, the 'conscious unity, split perception' model. This model asserts that a split brain produces one conscious agent who experiences two parallel, unintegrated streams of information. In addition to changing our view of the split-brain phenomenon, this new model also poses a serious challenge for current dominant theories of consciousness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  9. Stock Splits and Liquidity for Two Major Capital Markets from Central–Eastern Europe

    Directory of Open Access Journals (Sweden)

    Józef Rudnicki

    2012-12-01

    Full Text Available In the stock market there occur some events that contradict the efficient market hypothesis therefore they are called anomalies. One of the mysterious corporate events which has attracted the attention of numerous researchers is a stock split. I perform the review of implications of splitting the stock for market liquidity of companies listed on the Warsaw Stock Exchange and the Vienna Stock Exchange. I use event study, in particular Market model method and Market adjusted return method, to inspect the behavior of abnormal changes in daily trading volume for stock splits performed between 2000 through 2011 over a short run and assuming a longer time interval. Moreover, I juxtapose the results for both stock exchanges to examine whether the stock split phenomenon for two major capital markets from this part of Europe can be better explained by means of existing theories on stock splits. The research is aimed at analyzing the implications of the split for market liquidity, i.e. whether there occurs an immediate effect following the split as well as whether this corporate event improves the level of market liquidity over long run. Furthermore, the goal of the paper is to investigate whether the investors can cash in on the stock split, more specifically, whether they can profit from lower transaction costs. I document a significant growth in the market liquidity of stock splitting firms over 36 months following the split for both capital markets what is indicative of lower transaction costs for investors. The 1–percent significant results are consistent with the liquidity hypothesis on stock splits.

  10. Energy-based operator splitting approach for the time discretization of coupled systems of partial and ordinary differential equations for fluid flows: The Stokes case

    Science.gov (United States)

    Carichino, Lucia; Guidoboni, Giovanna; Szopos, Marcela

    2018-07-01

    The goal of this work is to develop a novel splitting approach for the numerical solution of multiscale problems involving the coupling between Stokes equations and ODE systems, as often encountered in blood flow modeling applications. The proposed algorithm is based on a semi-discretization in time based on operator splitting, whose design is guided by the rationale of ensuring that the physical energy balance is maintained at the discrete level. As a result, unconditional stability with respect to the time step choice is ensured by the implicit treatment of interface conditions within the Stokes substeps, whereas the coupling between Stokes and ODE substeps is enforced via appropriate initial conditions for each substep. Notably, unconditional stability is attained without the need of subiterating between Stokes and ODE substeps. Stability and convergence properties of the proposed algorithm are tested on three specific examples for which analytical solutions are derived.

  11. Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals

    International Nuclear Information System (INIS)

    Chen Zhide; Liang, J.-Q.; Pu, F.-C.

    2003-01-01

    Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved

  12. Small-bubble transport and splitting dynamics in a symmetric bifurcation

    KAUST Repository

    Qamar, Adnan

    2017-06-28

    Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.

  13. Small-bubble transport and splitting dynamics in a symmetric bifurcation.

    Science.gov (United States)

    Qamar, Adnan; Warnez, Matthew; Valassis, Doug T; Guetzko, Megan E; Bull, Joseph L

    2017-08-01

    Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.

  14. Small-bubble transport and splitting dynamics in a symmetric bifurcation

    KAUST Repository

    Qamar, Adnan; Warnez, Matthew; Valassis, Doug T.; Guetzko, Megan E.; Bull, Joseph L.

    2017-01-01

    Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.

  15. DETECTION OF FLUX EMERGENCE, SPLITTING, MERGING, AND CANCELLATION OF NETWORK FIELD. I. SPLITTING AND MERGING

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Y.; Yokoyama, T. [Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hagenaar, H. J. [Lockheed Martin Advanced Technology Center, Org. ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2012-06-20

    Frequencies of magnetic patch processes on the supergranule boundary, namely, flux emergence, splitting, merging, and cancellation, are investigated through automatic detection. We use a set of line-of-sight magnetograms taken by the Solar Optical Telescope (SOT) on board the Hinode satellite. We found 1636 positive patches and 1637 negative patches in the data set, whose time duration is 3.5 hr and field of view is 112'' Multiplication-Sign 112''. The total numbers of magnetic processes are as follows: 493 positive and 482 negative splittings, 536 positive and 535 negative mergings, 86 cancellations, and 3 emergences. The total numbers of emergence and cancellation are significantly smaller than those of splitting and merging. Further, the frequency dependence of the merging and splitting processes on the flux content are investigated. Merging has a weak dependence on the flux content with a power-law index of only 0.28. The timescale for splitting is found to be independent of the parent flux content before splitting, which corresponds to {approx}33 minutes. It is also found that patches split into any flux contents with the same probability. This splitting has a power-law distribution of the flux content with an index of -2 as a time-independent solution. These results support that the frequency distribution of the flux content in the analyzed flux range is rapidly maintained by merging and splitting, namely, surface processes. We suggest a model for frequency distributions of cancellation and emergence based on this idea.

  16. Holographic spectrum-splitting optical systems for solar photovoltaics

    Science.gov (United States)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  17. Splitting: The Development of a Measure.

    Science.gov (United States)

    Gerson, Mary-Joan

    1984-01-01

    Described the development of a scale that measures splitting as a psychological structure. The construct validity of the splitting scale is suggested by the positive relationship between splitting scores and a diagnostic measure of the narcissistic personality disorder, as well as a negative relationship between splitting scores and levels of…

  18. Comparison of two split-window methods for retrieving land surface temperature from MODIS data

    Science.gov (United States)

    Zhao, Shaohua; Qin, Qiming; Yang, Yonghui; Xiong, Yujiu; Qiu, Guoyu

    2009-08-01

    Land surface temperature (LST) is a key parameter in environment and earth science study, especially for monitoring drought. The objective of this work is a comparison of two split-window methods: Mao method and Sobrino method, for retrieving LST using MODIS (Moderate-resolution Imaging Spectroradiometer) data in North China Plain. The results show that the max, min and mean errors of Mao method are 1.33K, 1.54K and 0.13K lower than the standard LST product respectively; while those of Sobrino method are 0.73K, 1.46K and 1.50K higher than the standard respectively. Validation of the two methods using LST product based on weather stations shows a good agreement between the standard and Sobrino method, with RMSE of 1.17K, whereas RMSE of Mao method is 1.85K. Finally, the study introduces the Sobmao method, which is based on Sobrino method but simplifies the estimation of atmospheric water vapour content using Mao method. The Sobmao method has almost the same accuracy with Sobrino method. With high accuracy and simplification of water vapour content estimation, the Sobmao method is recommendable in LST inversion for good application in Ningxia region, the northwest China, with mean error of 0.33K and the RMSE value of 0.91K.

  19. Bad splits in bilateral sagittal split osteotomy: systematic review and meta-analysis of reported risk factors.

    Science.gov (United States)

    Steenen, S A; van Wijk, A J; Becking, A G

    2016-08-01

    An unfavourable and unanticipated pattern of the bilateral sagittal split osteotomy (BSSO) is generally referred to as a 'bad split'. Patient factors predictive of a bad split reported in the literature are controversial. Suggested risk factors are reviewed in this article. A systematic review was undertaken, yielding a total of 30 studies published between 1971 and 2015 reporting the incidence of bad split and patient age, and/or surgical technique employed, and/or the presence of third molars. These included 22 retrospective cohort studies, six prospective cohort studies, one matched-pair analysis, and one case series. Spearman's rank correlation showed a statistically significant but weak correlation between increasing average age and increasing occurrence of bad splits in 18 studies (ρ=0.229; Pbad split among the different splitting techniques. A meta-analysis pooling the effect sizes of seven cohort studies showed no significant difference in the incidence of bad split between cohorts of patients with third molars present and concomitantly removed during surgery, and patients in whom third molars were removed at least 6 months preoperatively (odds ratio 1.16, 95% confidence interval 0.73-1.85, Z=0.64, P=0.52). In summary, there is no robust evidence to date to show that any risk factor influences the incidence of bad split. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION

    Science.gov (United States)

    Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...

  1. Acoustic beam splitting in a sonic crystal around a directional band gap

    International Nuclear Information System (INIS)

    Cicek Ahmet; Kaya Olgun Adem; Ulug Bulent

    2013-01-01

    Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle

  2. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  3. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  4. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  5. Thermal-hydraulic mixing in the split-core ANS reactor design

    International Nuclear Information System (INIS)

    Dorning, R.J.J.

    1988-01-01

    A design has been proposed for the advanced neutron source (ANS) reactor that incorporates a split core, one purpose of which is to create a mixing plenum between the upper and lower cores. It was hoped that in addition to introducing various desirable neutronics features, such as decreasing the fast neutron flux contamination of thermal and cold neutron beams located in the reactor midplane, this mixing plenum would make possible higher operating powers by lowering the maximum core temperature. This lower temperature was to be achieved as a result of the mixing, of the hot D 2 O coolant exiting the upper-core channels, and the cold D 2 O leaving the large upper core bypass. It was expected that this mixing would bring about a significantly reduced lower core maximum coolant inlet temperature. The authors have carried out large-scale computer calculations to determine the extent to which this mixing occurs in current split-core design geometry, which does not incorporate baffles, mixing devices, or other design features introduced to enhance mixing. The large-scale self-consistent calculations summarized here indicate that innovative design ideas to enhance mixing will be necessary if the split-core concept is to achieve the amount of thermal mixing needed to make possible significantly higher power operation and corresponding higher flux sources

  6. Refrigerant lines in split-type air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Rettenberger, P

    1979-01-01

    Condensator and evaporating units of split-type air conditioners are evaluated and filled with the refrigerant by the producer. The line systems are hermetically closed and prevent the loss of refrigerant and the penetration of moisture or dirt. The best installation method is the 'bendable lines'. They combine flexibility and easy installation with the advantages of the copper pipe. Several ducting systems and their connecting elements like couplings and valves are described, their installation is explained. These flexible systems are especially suitable for small air-condition plants of the split-type the evaporating unit of which is portable and can put where it is desired.

  7. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.

    2016-10-31

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  8. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.; Sommers, J. M.; Viasus, C. J.; Wang, C. H T; Peneau, V.; Gambarotta, S.; Vidjayacoumar, B.; Al-Bahily, K. A.

    2016-01-01

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  9. Cosmetic and functional reconstruction achieved using a split myofascial bone flap for pterional craniotomy. Technical note.

    Science.gov (United States)

    Matsumoto, K; Akagi, K; Abekura, M; Ohkawa, M; Tasaki, O; Tomishima, T

    2001-04-01

    Cosmetic deformities that appear following pterional craniotomy are usually caused by temporal muscle atrophy, injury to the frontotemporal branch of the facial nerve, or bone pits in the craniotomy line. To resolve these problems during pterional craniotomy, an alternative method was developed in which a split myofascial bone flap and a free bone flap are used. The authors have used this method in the treatment of 40 patients over the last 3 years. Excellent cosmetic and functional results have been obtained. This method can provide wide exposure similar to that achieved using Yaşargil's interfascial pterional craniotomy, without limiting the operative field with a bulky temporal muscle flap.

  10. Split-illumination electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Inada, Yoshikatsu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Taniyama, Akira [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo 660-0891 (Japan); Shindo, Daisuke [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-23

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  11. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  12. Implicit flux-split schemes for the Euler equations

    Science.gov (United States)

    Thomas, J. L.; Walters, R. W.; Van Leer, B.

    1985-01-01

    Recent progress in the development of implicit algorithms for the Euler equations using the flux-vector splitting method is described. Comparisons of the relative efficiency of relaxation and spatially-split approximately factored methods on a vector processor for two-dimensional flows are made. For transonic flows, the higher convergence rate per iteration of the Gauss-Seidel relaxation algorithms, which are only partially vectorizable, is amply compensated for by the faster computational rate per iteration of the approximately factored algorithm. For supersonic flows, the fully-upwind line-relaxation method is more efficient since the numerical domain of dependence is more closely matched to the physical domain of dependence. A hybrid three-dimensional algorithm using relaxation in one coordinate direction and approximate factorization in the cross-flow plane is developed and applied to a forebody shape at supersonic speeds and a swept, tapered wing at transonic speeds.

  13. An implicit fast Fourier transform method for integration of the time dependent Schrodinger or diffusion equation

    International Nuclear Information System (INIS)

    Ritchie, A.B.; Riley, M.E.

    1997-06-01

    The authors have found that the conventional exponentiated split operator procedure is subject to difficulties in energy conservation when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. They report comparisons of this novel implicit split operator procedure with the conventional exponentiated split operator procedure on hydrogen atom solutions. The results look promising for a purely numerical approach to certain electron quantum mechanical problems

  14. Effect of Repeated Food Morsel Splitting on Jaw Muscle Control

    DEFF Research Database (Denmark)

    A, Kumar; Svensson, Krister G; Baad-Hansen, Lene

    2014-01-01

    Mastication is a complex motor task often initiated by splitting of the food morsel between the anterior teeth. Training of complex motor tasks has consistently been shown to trigger neuroplastic changes in corticomotor control and optimization of muscle function. It is not known if training...... and repeated food morsel splitting lead to changes in jaw muscle function. Objective: To investigate if repeated splitting of food morsels in participants with natural dentition changes the force and jaw muscle electromyographic (EMG) activity. Methods: Twenty healthy volunteers (mean age = 26.2 ± 3.9 years......) participated in a single one-hour session divided into six series. Each series consisted of ten trials of a standardized behavioral task (total of 60 trials). The behavioral task was to hold and split a food morsel (8 mm, 180 mg placebo tablet) placed on a bite force transducer with the anterior teeth...

  15. Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis.

    Science.gov (United States)

    van Valkenhoef, Gert; Dias, Sofia; Ades, A E; Welton, Nicky J

    2016-03-01

    Network meta-analysis enables the simultaneous synthesis of a network of clinical trials comparing any number of treatments. Potential inconsistencies between estimates of relative treatment effects are an important concern, and several methods to detect inconsistency have been proposed. This paper is concerned with the node-splitting approach, which is particularly attractive because of its straightforward interpretation, contrasting estimates from both direct and indirect evidence. However, node-splitting analyses are labour-intensive because each comparison of interest requires a separate model. It would be advantageous if node-splitting models could be estimated automatically for all comparisons of interest. We present an unambiguous decision rule to choose which comparisons to split, and prove that it selects only comparisons in potentially inconsistent loops in the network, and that all potentially inconsistent loops in the network are investigated. Moreover, the decision rule circumvents problems with the parameterisation of multi-arm trials, ensuring that model generation is trivial in all cases. Thus, our methods eliminate most of the manual work involved in using the node-splitting approach, enabling the analyst to focus on interpreting the results. © 2015 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd.

  16. A new fourth-order Fourier-Bessel split-step method for the extended nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Nash, Patrick L.

    2008-01-01

    Fourier split-step techniques are often used to compute soliton-like numerical solutions of the nonlinear Schroedinger equation. Here, a new fourth-order implementation of the Fourier split-step algorithm is described for problems possessing azimuthal symmetry in 3 + 1-dimensions. This implementation is based, in part, on a finite difference approximation Δ perpendicular FDA of 1/r (∂)/(∂r) r(∂)/(∂r) that possesses an associated exact unitary representation of e i/2λΔ perpendicular FDA . The matrix elements of this unitary matrix are given by special functions known as the associated Bessel functions. Hence the attribute Fourier-Bessel for the method. The Fourier-Bessel algorithm is shown to be unitary and unconditionally stable. The Fourier-Bessel algorithm is employed to simulate the propagation of a periodic series of short laser pulses through a nonlinear medium. This numerical simulation calculates waveform intensity profiles in a sequence of planes that are transverse to the general propagation direction, and labeled by the cylindrical coordinate z. These profiles exhibit a series of isolated pulses that are offset from the time origin by characteristic times, and provide evidence for a physical effect that may be loosely termed normal mode condensation. Normal mode condensation is consistent with experimentally observed pulse filamentation into a packet of short bursts, which may occur as a result of short, intense irradiation of a medium

  17. Cool covered sky-splitting spectrum-splitting FK

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politécnica de Madrid (UPM), Madrid (Spain)

    2014-09-26

    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

  18. A new class of massively parallel direction splitting for the incompressible Navier–Stokes equations

    KAUST Repository

    Guermond, J.L.

    2011-06-01

    We introduce in this paper a new direction splitting algorithm for solving the incompressible Navier-Stokes equations. The main originality of the method consists of using the operator (I-∂xx)(I-∂yy)(I-∂zz) for approximating the pressure correction instead of the Poisson operator as done in all the contemporary projection methods. The complexity of the proposed algorithm is significantly lower than that of projection methods, and it is shown the have the same stability properties as the Poisson-based pressure-correction techniques, either in standard or rotational form. The first-order (in time) version of the method is proved to have the same convergence properties as the classical first-order projection techniques. Numerical tests reveal that the second-order version of the method has the same convergence rate as its second-order projection counterpart as well. The method is suitable for parallel implementation and preliminary tests show excellent parallel performance on a distributed memory cluster of up to 1024 processors. The method has been validated on the three-dimensional lid-driven cavity flow using grids composed of up to 2×109 points. © 2011 Elsevier B.V.

  19. Towards three-loop QCD corrections to the time-like splitting functions

    International Nuclear Information System (INIS)

    Gituliar, O.; Moch, S.

    2015-05-01

    We report on the status of a direct computation of the time-like splitting functions at next-to-next-to-leading order in QCD. Time-like splitting functions govern the collinear kinematics of inclusive hadron production and the evolution of the parton fragmentation distributions. Current knowledge about them at three loops has been inferred by means of crossing symmetry from their related space-like counterparts, which has left certain parts of the off-diagonal quark-gluon splitting function undetermined. This motivates an independent calculation from first principles. We review the tools and methods which are applied to attack the problem.

  20. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  1. Automatic feathering of split fields for step-and-shoot intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Dogan, Nesrin; Leybovich, Leonid B; Sethi, Anil; Emami, Bahman

    2003-01-01

    Due to leaf travel range limitations of the Varian Dynamic Multileaf Collimator (DMLC) system, an IMRT field width exceeding 14.5 cm is split into two or more adjacent abutting sub-fields. The abutting sub-fields are then delivered as separate treatment fields. The accuracy of the delivery is very sensitive to multileaf positioning accuracy. The uncertainties in leaf and carriage positions cause errors in the delivered dose (e.g., hot or cold spots) along the match line of abutting sub-fields. The dose errors are proportional to the penumbra slope at the edge of each sub-field. To alleviate this problem, we developed techniques that feather the split line of IMRT fields. Feathering of the split line was achieved by dividing IMRT fields into several sub-groups with different split line positions. A Varian 21EX accelerator with an 80-leaf DLMC was used for IMRT delivery. Cylindrical targets with varying widths (>14.5 cm) were created to study the split line positions. Seven coplanar 6 MV fields were selected for planning using the NOMOS-CORVUS TM system. The isocentre of the fields was positioned at the centre of the target volume. Verification was done in a 30 x 30 x 30 cm 3 polystyrene phantom using film dosimetry. We investigated two techniques to move the split line from its original position or cause feathering of them: (1) varying the isocentre position along the target width and (2) introduction of a 'pseudo target' outside of the patient (phantom). The position of the 'pseudo target' was determined by analysing the divergence of IMRT fields. For target widths of 14-28 cm, IMRT fields were automatically split into two sub-fields, and the split line was positioned along the centre of the target by CORVUS. Measured dose distributions demonstrated that the dose to the critical structure was 10% higher than planned when the split line crossed through the centre of the target. Both methods of modifying the split line positions resulted in maximum shifts of ∼1 cm

  2. MIP Models and Hybrid Algorithms for Simultaneous Job Splitting and Scheduling on Unrelated Parallel Machines

    Science.gov (United States)

    Ozmutlu, H. Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  3. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    Science.gov (United States)

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.

  4. Modelling shear wave splitting observations from Wellington, New Zealand

    Science.gov (United States)

    Marson-Pidgeon, Katrina; Savage, Martha K.

    2004-05-01

    Frequency-dependent anisotropy was previously observed at the permanent broad-band station SNZO, South Karori, Wellington, New Zealand. This has important implications for the interpretation of measurements in other subduction zones and hence for our understanding of mantle flow. This motivated us to make further splitting measurements using events recorded since the previous study and to develop a new modelling technique. Thus, in this study we have made 67 high-quality shear wave splitting measurements using events recorded at the SNZO station spanning a 10-yr period. This station is the only one operating in New Zealand for longer than 2 yr. Using a combination of teleseismic SKS and S phases and regional ScS phases provides good azimuthal coverage, allowing us to undertake detailed modelling. The splitting measurements indicate that in addition to the frequency dependence observed previously at this station, there are also variations with propagation and initial polarization directions. The fast polarization directions range between 2° and 103°, and the delay times range between 0.75 s and 3.05 s. These ranges are much larger than observed previously at SNZO or elsewhere in New Zealand. Because of the observed frequency dependence we measure the dominant frequency of the phase used to make the splitting measurement, and take this into account in the modelling. We fit the fast polarization directions fairly well with a two-layer anisotropic model with horizontal axes of symmetry. However, such a model does not fit the delay times or explain the frequency dependence. We have developed a new inversion method which allows for an inclined axis of symmetry in each of the two layers. However, applying this method to SNZO does not significantly improve the fit over a two-layer model with horizontal symmetry axes. We are therefore unable to explain the frequency dependence or large variation in delay time values with multiple horizontal layers of anisotropy, even

  5. Reduction of Biomass Moisture by Crushing/Splitting - A Concept

    Science.gov (United States)

    Paul E. Barnett; Donald L. Sirois; Colin Ashmore

    1986-01-01

    A biomass crusher/splitter concept is presented as a possible n&ant of tsafntainfng rights-of-way (ROW) or harvesting energy wood plantations. The conceptual system would cut, crush, and split small woody biomass leaving it in windrows for drying. A subsequent operation would bale and transport the dried material for use as an energy source. A survey of twenty...

  6. Two-Loop Gluon to Gluon-Gluon Splitting Amplitudes in QCD

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes are universal functions governing the collinear behavior of scattering amplitudes for massless particles. We compute the two-loop g → gg splitting amplitudes in QCD, N = 1, and N = 4 super-Yang-Mills theories, which describe the limits of two-loop n-point amplitudes where two gluon momenta become parallel. They also represent an ingredient in a direct x-space computation of DGLAP evolution kernels at next-to-next-to-leading order. To obtain the splitting amplitudes, we use the unitarity sewing method. In contrast to the usual light-cone gauge treatment, our calculation does not rely on the principal-value or Mandelstam-Leibbrandt prescriptions, even though the loop integrals contain some of the denominators typically encountered in light-cone gauge. We reduce the integrals to a set of 13 master integrals using integration-by-parts and Lorentz invariance identities. The master integrals are computed with the aid of differential equations in the splitting momentum fraction z. The ε-poles of the splitting amplitudes are consistent with a formula due to Catani for the infrared singularities of two-loop scattering amplitudes. This consistency essentially provides an inductive proof of Catani's formula, as well as an ansatz for previously-unknown 1/ε pole terms having non-trivial color structure. Finite terms in the splitting amplitudes determine the collinear behavior of finite remainders in this formula

  7. Geometrical splitting in Monte Carlo

    International Nuclear Information System (INIS)

    Dubi, A.; Elperin, T.; Dudziak, D.J.

    1982-01-01

    A statistical model is presented by which a direct statistical approach yielded an analytic expression for the second moment, the variance ratio, and the benefit function in a model of an n surface-splitting Monte Carlo game. In addition to the insight into the dependence of the second moment on the splitting parameters the main importance of the expressions developed lies in their potential to become a basis for in-code optimization of splitting through a general algorithm. Refs

  8. TMD splitting functions in kT factorization. The real contribution to the gluon-to-gluon splitting

    International Nuclear Information System (INIS)

    Hentschinski, M.; Kusina, A.; Kutak, K.; Serino, M.

    2018-01-01

    We calculate the transverse momentum dependent gluon-to-gluon splitting function within k T -factorization, generalizing the framework employed in the calculation of the quark splitting functions in Hautmann et al. (Nucl Phys B 865:54-66, arXiv:1205.1759, 2012), Gituliar et al. (JHEP 01:181, arXiv:1511.08439, 2016), Hentschinski et al. (Phys Rev D 94(11):114013, arXiv:1607.01507, 2016) and demonstrate at the same time the consistency of the extended formalism with previous results. While existing versions of k T factorized evolution equations contain already a gluon-to-gluon splitting function i.e. the leading order Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel or the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) kernel, the obtained splitting function has the important property that it reduces both to the leading order BFKL kernel in the high energy limit, to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) gluon-to-gluon splitting function in the collinear limit as well as to the CCFM kernel in the soft limit. At the same time we demonstrate that this splitting kernel can be obtained from a direct calculation of the QCD Feynman diagrams, based on a combined implementation of the Curci-Furmanski-Petronzio formalism for the calculation of the collinear splitting functions and the framework of high energy factorization. (orig.)

  9. Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation

    Science.gov (United States)

    Grossman, B.; Cinnella, P.

    1990-01-01

    The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.

  10. Conformal scalar fields and chiral splitting on super Riemann surfaces

    International Nuclear Information System (INIS)

    D'Hoker, E.; Phong, D.H.

    1989-01-01

    We provide a complete description of correlation functions of scalar superfields on a super Riemann surface, taking into account zero modes and non-trivial topology. They are built out of chirally split correlation functions, or conformal blocks at fixed internal momenta. We formulate effective rules which determine these completely in terms of geometric invariants of the super Riemann surface. The chirally split correlation functions have non-trivial monodromy and produce single-valued amplitudes only upon integration over loop momenta. Our discussion covers the even spin structure as well as the odd spin structure case which had been the source of many difficulties in the past. Super analogues of Green's functions, holomorphic spinors, and prime forms emerge which should pave the way to function theory on super Riemann surfaces. In superstring theories, chirally split amplitudes for scalar superfields are crucial in enforcing the GSO projection required for consistency. However one really knew how to carry this out only in the operator formalism to one-loop order. Our results provide a way of enforcing the GSO projection to any loop. (orig.)

  11. About one discrete model of splitting by the physical processes of a piezoconductive medium with gas hydrate inclusions

    Science.gov (United States)

    Poveshchenko, Yu A.; Podryga, V. O.; Rahimly, P. I.; Sharova, Yu S.

    2018-01-01

    The thermodynamically equilibrium model for splitting by the physical processes of a two-component three-phase filtration fluid dynamics with gas hydrate inclusions is considered in the paper, for which a family of two-layer completely conservative difference schemes of the support operators method with time weights profiled in space is constructed. On the irregular grids of the theory of the support-operators method applied to the specifics of the processes of transfer of saturations and internal energies of water and gas in a medium with gas hydrate inclusions, methods of directwind approximation of these processes are considered. These approximations preserve the continual properties of divergence-gradient operations in their difference form and are related to the velocity field providing saturations transfer and internal energies of fluids. Fluid dynamics with gas hydrate inclusions are also calculated on the basis of the proposed approach, in particular, in areas of severe pressure depression in the collector space.

  12. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang; Wang, Jun; Vouga, Etienne; Wonka, Peter

    2013-01-01

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  13. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-06

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  14. A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows

    Science.gov (United States)

    Lei, Xin; Li, Jiequan

    2018-04-01

    This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.

  15. SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting

    Science.gov (United States)

    Reiss, M. C.; Rumpker, G.

    2017-12-01

    We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by

  16. Functional-analytic and numerical issues in splitting methods for total variation-based image reconstruction

    International Nuclear Information System (INIS)

    Hintermüller, Michael; Rautenberg, Carlos N; Hahn, Jooyoung

    2014-01-01

    Variable splitting schemes for the function space version of the image reconstruction problem with total variation regularization (TV-problem) in its primal and pre-dual formulations are considered. For the primal splitting formulation, while existence of a solution cannot be guaranteed, it is shown that quasi-minimizers of the penalized problem are asymptotically related to the solution of the original TV-problem. On the other hand, for the pre-dual formulation, a family of parametrized problems is introduced and a parameter dependent contraction of an associated fixed point iteration is established. Moreover, the theory is validated by numerical tests. Additionally, the augmented Lagrangian approach is studied, details on an implementation on a staggered grid are provided and numerical tests are shown. (paper)

  17. BILATERAL SAGITAL SPLIT OSTEOTOMY PADA MANDIBULA PROGNATI

    Directory of Open Access Journals (Sweden)

    Pradono Pradono

    2015-07-01

    Full Text Available A young girl 20 years old with mandibular prognathism, has been treated with orthodontics and surgical treatment in between. Mandibular set back was done intra orally 5 mm length and bilateral sagital split ramus osteotomy method. And rigid fixation was done by inserting three 2 mm bicortical screws for stabilizing the fragment. This method allowed the bony segments to heal properly and allowed the patients to function sooner.

  18. A new location to split Cre recombinase for protein fragment complementation.

    Science.gov (United States)

    Rajaee, Maryam; Ow, David W

    2017-11-01

    We have previously described a recombinase-mediated gene stacking system in which the Cre recombinase is used to remove lox-site flanked DNA no longer needed after each round of Bxb1 integrase-mediated site-specific integration. The Cre recombinase can be conveniently introduced by hybridization with a cre-expressing plant. However, maintaining an efficient cre-expressing line over many generations can be a problem, as high production of this DNA-binding protein might interfere with normal chromosome activities. To counter this selection against high Cre activity, we considered a split-cre approach, in which Cre activity is reconstituted after separate parts of Cre are brought into the same genome by hybridization. To insure that the recombinase-mediated gene stacking system retains its freedom to operate, we tested for new locations to split Cre into complementing fragments. In this study, we describe testing four new locations for splitting the Cre recombinase for protein fragment complementation and show that the two fragments of Cre split between Lys244 and Asn245 can reconstitute activity that is comparable to that of wild-type Cre. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Strong CP, flavor, and twisted split fermions

    International Nuclear Information System (INIS)

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri

    2005-01-01

    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)

  20. GLIMM'S METHOD FOR GAS DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip

    1980-07-01

    We investigate Glimm's method, a method for constructing approximate solutions to systems of hyperbolic conservation laws in one space variable by sampling explicit wave solutions. It is extended to several space variables by operator splitting. We consider two functional problems. 1) We propose a highly accurate form of the sampling procedure, in one space variable, based on the van der Corput sampling sequence. We test the improved sampling procedure numerically in the case of inviscid compressible flow in one space dimension and find that it gives high resolution results both in the smooth parts of the solution, as well as the discontinuities. 2) We investigate the operator splitting procedure by means of which the multidimensional method is constructed. An 0(1) error stemming from the use of this procedure near shocks oblique to the spatial grid is analyzed numerically in the case of the equations for inviscid compressible flow in two space dimensions. We present a hybrid method which eliminates this error, consisting of Glimm's method, used in continuous parts of the flow, and the nonlinear Godunov's method, used in regions where large pressure jumps are generated. The resulting method is seen to be a substantial improvement over either of the component methods for multidimensional calculations.

  1. Developing new understanding of photoelectrochemical water splitting via in-situ techniques: A review on recent progress

    Directory of Open Access Journals (Sweden)

    Jiajie Cen

    2017-04-01

    Full Text Available Photoelectrochemical (PEC water splitting is a promising technology for solar hydrogen production to build a sustainable, renewable and clean energy economy. Given the complexity of the PEC water splitting processes, it is important to note that developing in-situ techniques for studying PEC water splitting presents a formidable challenge. This review is aimed at highlighting advantages and disadvantages of each technique, while offering a pathway of potentially combining several techniques to address different aspects of interfacial processes in PEC water splitting. We reviewed recent progress in various techniques and approaches utilized to study PEC water splitting, focusing on spectroscopic and scanning-probe methods. Keywords: In-situ, Water splitting, IMPS, TAS, SPM

  2. Method of operating a thermoelectric generator

    Science.gov (United States)

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  3. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory

    2018-02-01

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  4. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system

    Science.gov (United States)

    Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan

    2012-01-01

    This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.

  5. Particulate photocatalysts for overall water splitting

    Science.gov (United States)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  6. Permanently split capacitor motor-study of the design parameters

    Science.gov (United States)

    Sarac, Vasilija; Stefanov, Goce

    2017-09-01

    Paper analyzes the influence of various design parameters on torque of permanently split capacitor motor. Motor analytical model is derived and it is used for calculating the performance characteristics of basic motor model. The acquired analytical model is applied in optimization software that uses genetic algorithms (GA) as an optimization method. Optimized motor model with increased torque is derived by varying three motor parameters in GA program: winding turns ratio, average air gap flux density and motor stack length. Increase of torque has been achieved for nominal operation but also at motor starting. Accuracy of the derived models is verified by Simulink. The acquired values of several motor parameters from transient characteristics of Simulink models are compared with the corresponding values obtained from analytical models of both motors, basic and optimized. Numerical analysis, based on finite element method (FEM), is also performed for both motor models. As a result of the FEM analysis, magnetic flux density in motor cross-section is calculated and adequate conclusions are derived in relation to core saturation and air gap flux density in both motor models.

  7. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    Science.gov (United States)

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  8. (O)Mega split

    Energy Technology Data Exchange (ETDEWEB)

    Benakli, Karim; Darmé, Luc; Goodsell, Mark D. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589,LPTHE, F-75005, Paris (France); CNRS, UMR 7589,LPTHE, F-75005, Paris (France)

    2015-11-16

    We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale M{sub S}, as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on M{sub S}, which we derive. On the other hand, we show that renormalisation group running of soft masses aboveM{sub S} barely constrains the model — in stark contrast to Split Supersymmetry — and hence we can have a “Mega Split” spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, Fake Split Extended Supersymmetry, which enjoys similar properties.

  9. Numerical solution to a multi-dimensional linear inverse heat conduction problem by a splitting-based conjugate gradient method

    International Nuclear Information System (INIS)

    Dinh Nho Hao; Nguyen Trung Thanh; Sahli, Hichem

    2008-01-01

    In this paper we consider a multi-dimensional inverse heat conduction problem with time-dependent coefficients in a box, which is well-known to be severely ill-posed, by a variational method. The gradient of the functional to be minimized is obtained by aids of an adjoint problem and the conjugate gradient method with a stopping rule is then applied to this ill-posed optimization problem. To enhance the stability and the accuracy of the numerical solution to the problem we apply this scheme to the discretized inverse problem rather than to the continuous one. The difficulties with large dimensions of discretized problems are overcome by a splitting method which only requires the solution of easy-to-solve one-dimensional problems. The numerical results provided by our method are very good and the techniques seem to be very promising.

  10. The practice and clinical implications of tablet splitting in international health

    Science.gov (United States)

    Elliott, Ivo; Mayxay, Mayfong; Yeuichaixong, Sengchanh; Lee, Sue J; Newton, Paul N

    2014-01-01

    Objective Tablet splitting is frequently performed to facilitate correct dosing, but the practice and implications in low-income settings have rarely been discussed. Methods We selected eight drugs, with narrow therapeutic indices or critical dosages, frequently divided in the Lao PDR (Laos). These were split, by common techniques used in Laos, by four nurses and four laypersons. The mean percentage deviation from the theoretical expected weight and weight loss of divided tablets/capsules were recorded. Results Five of eight study drugs failed, on splitting, to meet European Pharmacopoeia recommendations for tablet weight deviation from the expected weight of tablet/capsule halves with 10% deviating by more than 25%. There was a significant difference in splitting accuracy between nurses and laypersons (P = 0.027). Coated and unscored tablets were less accurately split than uncoated (P = 0.03 and 0.0019 for each half) and scored (0.0001 for both halves) tablets. Conclusion These findings have potential clinical implications on treatment outcome and the development of antimicrobial resistance. Investment by drug companies in a wider range of dosage units, particularly for narrow therapeutic index and critical dosage medicines, is strongly recommended. PMID:24702766

  11. An algorithm for the split-feasibility problems with application to the split-equality problem.

    Science.gov (United States)

    Chuang, Chih-Sheng; Chen, Chi-Ming

    2017-01-01

    In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.

  12. Trellis plots as visual aids for analyzing split plot experiments

    DEFF Research Database (Denmark)

    Kulahci, Murat; Menon, Anil

    2017-01-01

    The analysis of split plot experiments can be challenging due to a complicated error structure resulting from restrictions on complete randomization. Similarly, standard visualization methods do not provide the insight practitioners desire to understand the data, think of explanations, generate...... hypotheses, build models, or decide on next steps. This article demonstrates the effective use of trellis plots in the preliminary data analysis for split plot experiments to address this problem. Trellis displays help to visualize multivariate data by allowing for conditioning in a general way. They can...

  13. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage

    Science.gov (United States)

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T

    2014-01-01

    Objective Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. Description We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. Methods After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at −20 cm H2O for 30 min. Results When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, Pdrain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. Conclusion The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications. PMID:25478289

  14. Stochastic split determinant algorithms

    International Nuclear Information System (INIS)

    Horvatha, Ivan

    2000-01-01

    I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed

  15. Reactor operation method

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Hida, Kazuki; Yoshioka, Ritsuo.

    1990-01-01

    The enrichment degree of fuels initially loaded in a reactor core was made extremely lower than that of fresh fuels to be loaded in the succeeding cycle, or the enrichment degree for all of the initially loaded fuels was made identical with that of the fresh fuels in the conventional reactor operation method. In this operation method, since the initially loaded fuels are sometimes taken out after the completion of the cycle at the low burnup degree as it is, it can not be said to reduce the fuel cycle cost. As a means for dissolving this problem, at least two different kinds of initially loaded fuels are prepared. The enrichment degree of the highly enriched fuels is made identical with that of the fresh fuels, and the enrichment degree and the number of low enriched fuels are not changed after the completion of the first cycle but they are operated till the end of the second cycle. Further, all of the fuels at the low enrichment degree are taken out after the completion of the second cycle and exchanged with the fresh fuels. As a result, high burnup ratio of the initially loaded fuels can be increased, to improve the fuel economy. (I.S.)

  16. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    Science.gov (United States)

    Abgarmi, Bizhan; Ozacar, A. Arda

    2017-04-01

    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for

  17. The three-loop splitting functions Pqg(2) and Pgg(2 ,NF)

    Science.gov (United States)

    Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.

    2017-09-01

    We calculate the unpolarized twist-2 three-loop splitting functions Pqg(2) (x) and Pgg(2 ,NF) (x) and the associated anomalous dimensions using massive three-loop operator matrix elements. While we calculate Pgg(2 ,NF) (x) directly, Pqg(2) (x) is computed from 1200 even moments, without any structural prejudice, using a hierarchy of recurrences obtained for the corresponding operator matrix element. The largest recurrence to be solved is of order 12 and degree 191. We confirm results in the foregoing literature.

  18. Hybrid Discrete Differential Evolution Algorithm for Lot Splitting with Capacity Constraints in Flexible Job Scheduling

    Directory of Open Access Journals (Sweden)

    Xinli Xu

    2013-01-01

    Full Text Available A two-level batch chromosome coding scheme is proposed to solve the lot splitting problem with equipment capacity constraints in flexible job shop scheduling, which includes a lot splitting chromosome and a lot scheduling chromosome. To balance global search and local exploration of the differential evolution algorithm, a hybrid discrete differential evolution algorithm (HDDE is presented, in which the local strategy with dynamic random searching based on the critical path and a random mutation operator is developed. The performance of HDDE was experimented with 14 benchmark problems and the practical dye vat scheduling problem. The simulation results showed that the proposed algorithm has the strong global search capability and can effectively solve the practical lot splitting problems with equipment capacity constraints.

  19. New Splitting Criteria for Decision Trees in Stationary Data Streams.

    Science.gov (United States)

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej

    2018-06-01

    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  20. Extension of the direct statistical approach to a volume parameter model (non-integer splitting)

    International Nuclear Information System (INIS)

    Burn, K.W.

    1990-01-01

    The Direct Statistical Approach is a rigorous mathematical derivation of the second moment for surface splitting and Russian Roulette games attached to the Monte Carlo modelling of fixed source particle transport. It has been extended to a volume parameter model (involving non-integer ''expected value'' splitting), and then to a cell model. The cell model gives second moment and time functions that have a closed form. This suggests the possibility of two different methods of solution of the optimum splitting/Russian Roulette parameters. (author)

  1. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Splitting Ward identity

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Mahmoud [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  3. Splitting Ward identity

    International Nuclear Information System (INIS)

    Safari, Mahmoud

    2016-01-01

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  4. The three-loop splitting functions Pqg(2 and Pgg(2,NF

    Directory of Open Access Journals (Sweden)

    J. Ablinger

    2017-09-01

    Full Text Available We calculate the unpolarized twist-2 three-loop splitting functions Pqg(2(x and Pgg(2,NF(x and the associated anomalous dimensions using massive three-loop operator matrix elements. While we calculate Pgg(2,NF(x directly, Pqg(2(x is computed from 1200 even moments, without any structural prejudice, using a hierarchy of recurrences obtained for the corresponding operator matrix element. The largest recurrence to be solved is of order 12 and degree 191. We confirm results in the foregoing literature.

  5. Biomechanical analysis of the effect of occlusal force on osteosynthesis following sagittal split ramus osteotomy

    International Nuclear Information System (INIS)

    Okuda, Katsuya; Nakajima, Masahiro; Kakudo, Kenji

    2009-01-01

    Relapse is sometimes observed during the postoperative course following sagittal split ramus osteotomy which is widely used to correct jaw deformities. Relapse may be caused by biomechanical factors such as the postoperative occlusal force. We evaluated serial changes in the stress distribution associated with postoperative occlusal force and jaw-closing pressure on the mandible and osteosynthesis plate using three-dimensional finite element analysis. Based on CT data, we produced mandibular models 1, 3, 6, and 12 months after sagittal split ramus osteotomy, and subjected them to simulated occlusal force and jaw-closing pressure. Changes in equivalent stress in the proximal and distal segments, at the osteosynthesis site, and the fixation plate were evaluated by three-dimensional finite element analysis. The equivalent stresses in the proximal and distal segments slightly increased over time from 1 to 12 months after the operation. In particular, marked stress concentration was observed at the anterior border of the ramus at each measurement area. Stress at the osteosynthesis site increased from 1 to 6 months after the operation, but decreased after 12 months. As a result of postoperative occlusal forces and jaw-closing pressure, stress was concentrated at the anterior border of the ramus in the proximal segment. Between 3 and 6 months after the operation, tensile stress was concentrated at the upper and lower ends of the osteotomy line at the osteosynthesis site. These biomechanical findings indicate the application of clockwise stress on the distal segment up to 6 months after the operation. We concluded that sagittal split ramus osteotomy runs the risk of relapse between 3 and 6 months after the operation. (author)

  6. Student paper competition: Splitting the determinants of upper Hessenberg matrices and the Hyman method

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xiulin [Michigan State Univ., East Lansing, MI (United States)

    1996-12-31

    In this article, an iterative algorithm is established that splits the evaluation of determinant of an upper Hessenberg matrix into two independent parts so that the evaluation can be done in parallel. This algorithm has application in parallel non-symmetric eigenvalue problems.

  7. Splitting of the Pygmy Dipole Resonance

    International Nuclear Information System (INIS)

    Endres, J.; Zilges, A.; Butler, P.; Herzberg, R.-D.; Scheck, M.; Harakeh, M. N.; Harissopulos, S.; Lagoyannis, A.; Kruecken, R.; Ring, P.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Sonnabend, K.; Popescu, L.; Savran, D.; Stoica, V. I.; Woertche, H. J.

    2011-01-01

    In recent years investigations have been made to study the electric Pygmy Dipole Resonance (PDR) systematically, mainly in semi-magic nuclei. For this purpose the well understood high resolution (γ,γ') photon scattering method is used. In complementary (α,α'γ) coincidence experiments at E α = 136 MeV a similar γ-energy resolution and a high selectivity to E1 transitions can be obtained at the Big-Bite Spectrometer (BBS) at KVI, Groningen. In comparison to the (γ,γ') method a structural splitting of the PDR is observed in the N = 82 nuclei 138 Ba and 140 Ce and in the Z = 50 nucleus 124 Sn. The low energy part is excited in (γ,γ') as well as in (α,α'γ) while the high energy part is observed in (γ,γ') only. The experimental results together with theoretical QPM and RQTBA calculations on 124 Sn which are able to reproduce the splitting of the PDR qualitatively are presented. The low-lying group of J π = 1 - states seem to represent the more isoscalar neutron-skin oscillation of the PDR while the energetically higher-lying states seemingly belong to the transitional region between the PDR and the isovector Giant Dipole Resonance (IVGDR).

  8. Energy improvement and performance evaluation of a novel full hybrid electric motorcycle with power split e-CVT

    International Nuclear Information System (INIS)

    Chung, Cheng-Ta; Hung, Yi-Hsuan

    2014-01-01

    Highlights: • Innovative hybrid powertrain system using a planetary gearset and dual one-way clutch. • Three operation modes: EV-mode, engine-driven mode and power split e-CVT mode. • Outstanding energy improvement (max. 32+%) compared to traditional vehicles. • Experimentally implemented for light-duty vehicles in the near future. - Abstract: The power split electronic-continuously variable transmission (e-CVT) has been globally accepted as a main architecture for developing a hybrid electric vehicle (HEV). In this paper, a novel full hybrid electric motorcycle with power split e-CVT is proposed. It consists of an engine, a reversible generator, a reversible driving motor, a set of the planetary gear, two one-way clutches, and transmission components arranged for a planetary gearset and dual one-way clutch transmission (PDOC). Three operation modes were properly switched for optimal output dynamics: EV-mode, engine-driven mode, and power split e-CVT mode. Performance simulation compared with that of a baseline system using the conventional rubber-belt CVT is conducted to evaluate its feasibility and potential. The results present superior driving performance and fuel economy for the proposed motorcycle (maximum 32% fuel economy improvement) and thus offer a favorable support for further development

  9. Flagged uniform particle splitting for variance reduction in proton and carbon ion track-structure simulations

    Science.gov (United States)

    Ramos-Méndez, José; Schuemann, Jan; Incerti, Sebastien; Paganetti, Harald; Schulte, Reinhard; Faddegon, Bruce

    2017-08-01

    Flagged uniform particle splitting was implemented with two methods to improve the computational efficiency of Monte Carlo track structure simulations with TOPAS-nBio by enhancing the production of secondary electrons in ionization events. In method 1 the Geant4 kernel was modified. In method 2 Geant4 was not modified. In both methods a unique flag number assigned to each new split electron was inherited by its progeny, permitting reclassification of the split events as if produced by independent histories. Computational efficiency and accuracy were evaluated for simulations of 0.5-20 MeV protons and 1-20 MeV u-1 carbon ions for three endpoints: (1) mean of the ionization cluster size distribution, (2) mean number of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) classified with DBSCAN, and (3) mean number of SSBs and DSBs classified with a geometry-based algorithm. For endpoint (1), simulation efficiency was 3 times lower when splitting electrons generated by direct ionization events of primary particles than when splitting electrons generated by the first ionization events of secondary electrons. The latter technique was selected for further investigation. The following results are for method 2, with relative efficiencies about 4.5 times lower for method 1. For endpoint (1), relative efficiency at 128 split electrons approached maximum, increasing with energy from 47.2  ±  0.2 to 66.9  ±  0.2 for protons, decreasing with energy from 51.3  ±  0.4 to 41.7  ±  0.2 for carbon. For endpoint (2), relative efficiency increased with energy, from 20.7  ±  0.1 to 50.2  ±  0.3 for protons, 15.6  ±  0.1 to 20.2  ±  0.1 for carbon. For endpoint (3) relative efficiency increased with energy, from 31.0  ±  0.2 to 58.2  ±  0.4 for protons, 23.9  ±  0.1 to 26.2  ±  0.2 for carbon. Simulation results with and without splitting agreed within 1% (2 standard

  10. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations

    Science.gov (United States)

    Chen, Hao; Lv, Wen; Zhang, Tongtong

    2018-05-01

    We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.

  11. Node-Splitting Generalized Linear Mixed Models for Evaluation of Inconsistency in Network Meta-Analysis.

    Science.gov (United States)

    Yu-Kang, Tu

    2016-12-01

    Network meta-analysis for multiple treatment comparisons has been a major development in evidence synthesis methodology. The validity of a network meta-analysis, however, can be threatened by inconsistency in evidence within the network. One particular issue of inconsistency is how to directly evaluate the inconsistency between direct and indirect evidence with regard to the effects difference between two treatments. A Bayesian node-splitting model was first proposed and a similar frequentist side-splitting model has been put forward recently. Yet, assigning the inconsistency parameter to one or the other of the two treatments or splitting the parameter symmetrically between the two treatments can yield different results when multi-arm trials are involved in the evaluation. We aimed to show that a side-splitting model can be viewed as a special case of design-by-treatment interaction model, and different parameterizations correspond to different design-by-treatment interactions. We demonstrated how to evaluate the side-splitting model using the arm-based generalized linear mixed model, and an example data set was used to compare results from the arm-based models with those from the contrast-based models. The three parameterizations of side-splitting make slightly different assumptions: the symmetrical method assumes that both treatments in a treatment contrast contribute to inconsistency between direct and indirect evidence, whereas the other two parameterizations assume that only one of the two treatments contributes to this inconsistency. With this understanding in mind, meta-analysts can then make a choice about how to implement the side-splitting method for their analysis. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard

    2014-01-01

    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....

  13. Semi-strong split domination in graphs

    Directory of Open Access Journals (Sweden)

    Anwar Alwardi

    2014-06-01

    Full Text Available Given a graph $G = (V,E$, a dominating set $D subseteq V$ is called a semi-strong split dominating set of $G$ if $|V setminus D| geq 1$ and the maximum degree of the subgraph induced by $V setminus D$ is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted $gamma_{sss}(G$. In this work, we introduce the concept and prove several results regarding it.

  14. Photocatalytic and Photoelectrochemical Water Splitting by Inorganic Materials

    KAUST Repository

    Deng, Xiaohui

    2012-12-01

    Hydrogen has been identified as a potential energy carrier due to its high energy capacity and environmental harmlessness. Compared with hydrogen production from hydrocarbons such as methane and naphtha in a conventional hydrogen energy system, photocatalytic hydrogen evolution from water splitting offers a more economic approach since it utilizes the abundant solar irradiation as energy source and water as initial reactant. Powder photocatalyst, which generates electrons and holes under illumination, is the origin where the overall reaction happens. High solar energy conversion efficiency especially from visible range is commonly the target. Besides, cocatalyst for hydrogen and oxygen evolution is also playing an essential role in facilitating the charge separation and enhancing the kinetics. In this thesis, the objective is to achieve high energy conversion efficiency towards water splitting from diverse aspects. The third chapter focuses on a controllable method to fabricate metal pattern, which is candidate for hydrogen evolution cocatalyst while chapter 4 is on the combination of strontium titanium oxide (SrTiO3) with graphene oxide (GO) for a better photocatalytic performance. In the last chapter, photoelectrochemical water splitting by Ta3N5 photoanode and FeOOH as a novel oxygen evolution cocatalyst has been investigated.

  15. Special Operations Forces Reference Manual. Fourth Edition

    Science.gov (United States)

    2015-06-01

    activities that support an adversary’s ability to negatively affect U.S. interests. CTF support can assist SOF in the execution of core activities in...the split team concept making up two six-man teams. Assistant Detachment Operations Sergeant Methods of Infiltration Special Forces soldiers possess...Twelve ODAs per SFG can infil- trate and exfiltrate by surface swim techniques. Unless specifically identified, the only teams with designated specialty

  16. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing

    KAUST Repository

    Calatroni, Luca

    2013-08-01

    We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.

  17. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing

    KAUST Repository

    Calatroni, Luca; Dü ring, Bertram; Schö nlieb, Carola-Bibiane

    2013-01-01

    We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.

  18. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    Science.gov (United States)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  19. Silicon nanostructures-induced photoelectrochemical solar water splitting for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Dadwal, U.; Singh, R. [Nanoscale Research Facility (NRF), Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India); Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India); Ranjan, Neha [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025 (India)

    2016-05-23

    We study the photoelectrochemical (PEC) solar water splitting assisted with synthesized nanostructures. Si nanowires decorated with silver dendrite nanostructures have been synthesized using metal assisted wet chemical etching of (100) Si wafer. Etching has been carried out in an aqueous solution consisting of 5M HF and 0.02M AgNO{sub 3}. Investigations showed that such type of semiconductor nanostructures act as efficient working electrodes for the splitting of normal water in PEC method. An enhancement in the photon-to-current conversion efficiency and solar-to-hydrogen evolution was observed for obtaining a practical source of clean and renewable fuel.

  20. An electromagnetism-like method for the maximum set splitting problem

    Directory of Open Access Journals (Sweden)

    Kratica Jozef

    2013-01-01

    Full Text Available In this paper, an electromagnetism-like approach (EM for solving the maximum set splitting problem (MSSP is applied. Hybrid approach consisting of the movement based on the attraction-repulsion mechanisms combined with the proposed scaling technique directs EM to promising search regions. Fast implementation of the local search procedure additionally improves the efficiency of overall EM system. The performance of the proposed EM approach is evaluated on two classes of instances from the literature: minimum hitting set and Steiner triple systems. The results show, except in one case, that EM reaches optimal solutions up to 500 elements and 50000 subsets on minimum hitting set instances. It also reaches all optimal/best-known solutions for Steiner triple systems.

  1. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  2. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  3. Generalized field-splitting algorithms for optimal IMRT delivery efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2007-09-21

    Intensity-modulated radiation therapy (IMRT) uses radiation beams of varying intensities to deliver varying doses of radiation to different areas of the tissue. The use of IMRT has allowed the delivery of higher doses of radiation to the tumor and lower doses to the surrounding healthy tissue. It is not uncommon for head and neck tumors, for example, to have large treatment widths that are not deliverable using a single field. In such cases, the intensity matrix generated by the optimizer needs to be split into two or three matrices, each of which may be delivered using a single field. Existing field-splitting algorithms used the pre-specified arbitrary split line or region where the intensity matrix is split along a column, i.e., all rows of the matrix are split along the same column (with or without the overlapping of split fields, i.e., feathering). If three fields result, then the two splits are along the same two columns for all rows. In this paper we study the problem of splitting a large field into two or three subfields with the field width as the only constraint, allowing for an arbitrary overlap of the split fields, so that the total MU efficiency of delivering the split fields is maximized. Proof of optimality is provided for the proposed algorithm. An average decrease of 18.8% is found in the total MUs when compared to the split generated by a commercial treatment planning system and that of 10% is found in the total MUs when compared to the split generated by our previously published algorithm. For more information on this article, see medicalphysicsweb.org.

  4. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  5. Dynamic rock tests using split Hopkinson (Kolsky bar system – A review

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2015-02-01

    Full Text Available Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar (SHPB and split Hopkinson tension bar (SHTB systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of techniques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques. Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT, laser gap gauge (LGG, digital image correlation (DIC, Moiré method, caustics method, photoelastic coating method, dynamic infrared thermography are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests, dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity, and dynamic techniques for studying the influences of temperature and pore water.

  6. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Joshua A., E-mail: josh.gordon@nist.gov; Holloway, Christopher L. [National Institute of Standards and Technology (NIST), Electromagnetics Division, U.S. Department of Commerce, Boulder Laboratories, Boulder, Colorado 80305 (United States); Schwarzkopf, Andrew; Anderson, Dave A.; Miller, Stephanie; Thaicharoen, Nithiwadee; Raithel, Georg [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-07-14

    In this paper, we demonstrate the detection of millimeter waves via Autler-Townes splitting in {sup 85}Rb Rydberg atoms. This method may provide an independent, atom-based, SI-traceable method for measuring mm-wave electric fields, which addresses a gap in current calibration techniques in the mm-wave regime. The electric-field amplitude within a rubidium vapor cell in the WR-10 wave guide band is measured for frequencies of 93.71 GHz and 104.77 GHz. Relevant aspects of Autler-Townes splitting originating from a four-level electromagnetically induced transparency scheme are discussed. We measured the E-field generated by an open-ended waveguide using this technique. Experimental results are compared to a full-wave finite element simulation.

  7. Systematic Expansion of Active Spaces beyond the CASSCF Limit: A GASSCF/SplitGAS Benchmark Study.

    Science.gov (United States)

    Vogiatzis, Konstantinos D; Li Manni, Giovanni; Stoneburner, Samuel J; Ma, Dongxia; Gagliardi, Laura

    2015-07-14

    The applicability and accuracy of the generalized active space self-consistent field, (GASSCF), and (SplitGAS) methods are presented. The GASSCF method enables the exploration of larger active spaces than with the conventional complete active space SCF, (CASSCF), by fragmentation of a large space into subspaces and by controlling the interspace excitations. In the SplitGAS method, the GAS configuration interaction, CI, expansion is further partitioned in two parts: the principal, which includes the most important configuration state functions, and an extended, containing less relevant but not negligible ones. An effective Hamiltonian is then generated, with the extended part acting as a perturbation to the principal space. Excitation energies of ozone, furan, pyrrole, nickel dioxide, and copper tetrachloride dianion are reported. Various partitioning schemes of the GASSCF and SplitGAS CI expansions are considered and compared with the complete active space followed by second-order perturbation theory, (CASPT2), and multireference CI method, (MRCI), or available experimental data. General guidelines for the optimum applicability of these methods are discussed together with their current limitations.

  8. 26 CFR 1.7872-15 - Split-dollar loans.

    Science.gov (United States)

    2010-04-01

    ...'s death benefit proceeds, the policy's cash surrender value, or both. (ii) Payments that are only... regarding certain split-dollar term loans payable on the death of an individual, certain split-dollar term... insurance arrangement make a representation—(i) Requirement. An otherwise noncontingent payment on a split...

  9. Combining discrete equations method and upwind downwind-controlled splitting for non-reacting and reacting two-fluid computations

    International Nuclear Information System (INIS)

    Tang, K.

    2012-01-01

    When numerically investigating multiphase phenomena during severe accidents in a reactor system, characteristic lengths of the multi-fluid zone (non-reactive and reactive) are found to be much smaller than the volume of the reactor containment, which makes the direct modeling of the configuration hardly achievable. Alternatively, we propose to consider the physical multiphase mixture zone as an infinitely thin interface. Then, the reactive Riemann solver is inserted into the Reactive Discrete Equations Method (RDEM) to compute high speed combustion waves represented by discontinuous interfaces. An anti-diffusive approach is also coupled with RDEM to accurately simulate reactive interfaces. Increased robustness and efficiency when computing both multiphase interfaces and reacting flows are achieved thanks to an original upwind downwind-controlled splitting method (UDCS). UDCS is capable of accurately solving interfaces on multi-dimensional unstructured meshes, including reacting fronts for both deflagration and detonation configurations. (author)

  10. Final environmental statement related to the Western Nuclear, Inc., Split Rock Uranium Mill (Fremont County, Wyoming)

    International Nuclear Information System (INIS)

    1980-02-01

    The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock Uranium Mill near Jeffrey City and the Green Mountain Ion-Exchange Facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area - the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). However, although heap leaching operations were previously authorized at Frazier-Lamac, there has never been any processing of material at this site. The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U 3 O 8 through 1996 using lower-grade ores

  11. Reactor operation method

    International Nuclear Information System (INIS)

    Osumi, Katsumi; Miki, Minoru.

    1979-01-01

    Purpose: To prevent stress corrosion cracks by decreasing the dissolved oxygen and hydrogen peroxide concentrations in the coolants within a reactor container upon transient operation such as at the start-up or shutdown of bwr type reactors. Method: After a condensate has been evacuated, deaeration operation is conducted while opening a main steam drain line, as well as a main steam separation valve and a by-pass valve in a turbine by-pass line connecting the main steam line and the condenser without by way of a turbine, and the reactor is started-up by the extraction of control rods after the concentration of dissolved oxygen in the cooling water within a pressure vessel has been decreased below a predetermined value. Nuclear heating is started after the reactor water has been increased to about 150 0 C by pump heating after the end of the deaeration operation for preventing the concentration of hydrogen peroxide and oxygen in the reactor water from temporarily increasing immediately after the start-up. The corrosive atmosphere in the reactor vessel can thus be moderated. (Horiuchi, T.)

  12. Application of positron-electron annihilation method for determination of dislocation splitting width in d-transition metals

    International Nuclear Information System (INIS)

    Dekhtyar, A.I.; Kozyrskij, G.Ya.; Kononenko, V.A.

    1978-01-01

    A method for the study of the dislocation structure in d-transition metals with the application of experimental data on annihilation of electron-positron pairs is suggested. The method is based on finding the density of partially collectivized d- electrons using the technique of expanding the angular distribution of the positron-electron annihilation. In the wave vectors space, the concept of a pseudosphere was introduced, whose radius k'sub(F) is determined by the number of d-electrons. It was assumed that k'sub(F) is a parameter of the potential of effective atomic interaction in d-metals. The interaction energy between nuclei of partial dislocations was accounted for as an oscillating potential between parallel atom rows. Such a consideration makes it possible to correct the position of a partial dislocation in the neighbourhood of a wide minimum of interaction energy. The possibilities of the method for determining the splitting width of edge dislocations in various d-metals and their alloys (Mo, Ni, Fe, Nb) is shown. Using pure and doped Ni, the decrease of the packing defect energy was traced with the increase of Al content

  13. Cost of splitting in Monte Carlo transport

    International Nuclear Information System (INIS)

    Everett, C.J.; Cashwell, E.D.

    1978-03-01

    In a simple transport problem designed to estimate transmission through a plane slab of x free paths by Monte Carlo methods, it is shown that m-splitting (m > or = 2) does not pay unless exp(x) > m(m + 3)/(m - 1). In such a case, the minimum total cost in terms of machine time is obtained as a function of m, and the optimal value of m is determined

  14. Nanoscale strontium titanate photocatalysts for overall water splitting.

    Science.gov (United States)

    Townsend, Troy K; Browning, Nigel D; Osterloh, Frank E

    2012-08-28

    SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H(2) and O(2), but the activity is decreasing from 28 μmol H(2) g(-1) h(-1) (bulk STO), to 19.4 μmol H(2) g(-1) h(-1) (30 nm STO), and 3.0 μmol H(2) g(-1) h(-1) (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  15. Evaluation of the Effect of Split application of Urea on Nitrogen Losses in Furrow Fertigation

    Directory of Open Access Journals (Sweden)

    farid feizolahpour

    2017-01-01

    Full Text Available Introduction: Broadcast fertilization method increases fertilizer losses while results in lower nutrient absorption by plant roots. Fertigation is an effective method to increase water and fertilizer efficiency and to reduce the losses of nitrogen. Moreover, it allows farmers to apply the nutrients in splits and few amounts in response to crop needs. In the present study, a field experiment was conducted to investigate the effects of split application of fertilizer in furrow fertigation on nitrogen losses and corn yield. Materials and Methods: Field experiments were carried out factorially in a randomized complete block design with four replicates. Experimental treatments were consisted of three fertilizer splits (two, three, and four splits and three levels of urea fertilizer (60, 80 and 100% of required urea fertilizer, which compared with the common method (broadcasting fertilizer as used by farmers in the fields. Experiments were conducted on a one hectare field in 120 meter long and open end furrows. During the crop season, Irrigation water was applied in the same way for all fertigation treatments and the third type of the WSC flumes was used to measure the amount of input and output water in irrigation events. Moreover, for determining the indexes of uniformity of water distribution in carrying out fertigation experiments, the amount of infiltration into the soil was calculated using the Kostiakov-Louis equation. The parameters of this equation were determined using the water volume balance method. Injection of Urea fertilizer was done by using 40-liter barrels were placed at the beginning of Furrows. In this study, the injection of fertilizers was applied in the last 10 to 20 minutes of irrigation time. Results and Discussions: Results showed that water distribution uniformities of low quarter and low half in all tests were very high. Such that the water low quarter distribution uniformities for all treatments were between 90.5 to 98

  16. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  17. Tune splitting in the presence of linear coupling

    International Nuclear Information System (INIS)

    Parzen, G.

    1991-01-01

    The presence of random skew quadrupole field errors will couple the x and y motions. The x and y motions are then each given by the sum of 2 normal modes with the tunes v 1 and v 2 , which may differ appreciably from v x and v y , the unperturbed tunes. This is often called tune splitting since |v 1 - v 2 | is usually larger than |v x - v y |. This tune splitting may be large in proton accelerators using superconducting magnets, because of the relatively large random skew quadrupole field errors that are expected in these magnets. This effect is also increased by the required insertions in proton colliders which generate large β-functions in the insertion region. This tune splitting has been studied in the RHIC accelerator. For RHIC, a tune splitting as large as 0.2 was found in one worse case. A correction system has been developed for correcting this large tune splitting which uses two families of skew quadrupole correctors. It has been found that this correction system corrects most of the large tune splitting, but a residual tune splitting remains that is still appreciable. This paper discusses the corrections to this residual time

  18. A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier-Stokes equations

    Science.gov (United States)

    Piatkowski, Marian; Müthing, Steffen; Bastian, Peter

    2018-03-01

    In this paper we consider discontinuous Galerkin (DG) methods for the incompressible Navier-Stokes equations in the framework of projection methods. In particular we employ symmetric interior penalty DG methods within the second-order rotational incremental pressure correction scheme. The major focus of the paper is threefold: i) We propose a modified upwind scheme based on the Vijayasundaram numerical flux that has favourable properties in the context of DG. ii) We present a novel postprocessing technique in the Helmholtz projection step based on H (div) reconstruction of the pressure correction that is computed locally, is a projection in the discrete setting and ensures that the projected velocity satisfies the discrete continuity equation exactly. As a consequence it also provides local mass conservation of the projected velocity. iii) Numerical results demonstrate the properties of the scheme for different polynomial degrees applied to two-dimensional problems with known solution as well as large-scale three-dimensional problems. In particular we address second-order convergence in time of the splitting scheme as well as its long-time stability.

  19. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  20. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng; Yang, Yang; Wang, Zhihong; Chen, Longqing; Wang, Xianbin

    2013-01-01

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  1. Computational Screening of Materials for Water Splitting Applications

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio

    Design new materials for energy production in a photoelectrochemical cell, where water is split into hydrogen and oxygen by solar light, is one possible solution to the problem of increasing energy demand and storage. A screening procedure based on ab-initio density functional theory calculations...... Project database, which is based on the experimental ICSD database, and the bandgaps were calculated with focus on finding materials with potential as light harvesters. 24 materials have been proposed for the one-photon water splitting and 23 for the two-photon mechanism. Another method to obtain energy...... from Sun is using a photovoltaic cell that converts solar light into electricity. The absorption spectra of 70 experimentally known compounds, that are expected to be useful for light-to-electricity generation, have been calculated. 17 materials have been predicted to be promising for a single...

  2. Split-plot designs for robotic serial dilution assays.

    Science.gov (United States)

    Buzas, Jeffrey S; Wager, Carrie G; Lansky, David M

    2011-12-01

    This article explores effective implementation of split-plot designs in serial dilution bioassay using robots. We show that the shortest path for a robot to fill plate wells for a split-plot design is equivalent to the shortest common supersequence problem in combinatorics. We develop an algorithm for finding the shortest common supersequence, provide an R implementation, and explore the distribution of the number of steps required to implement split-plot designs for bioassay through simulation. We also show how to construct collections of split plots that can be filled in a minimal number of steps, thereby demonstrating that split-plot designs can be implemented with nearly the same effort as strip-plot designs. Finally, we provide guidelines for modeling data that result from these designs. © 2011, The International Biometric Society.

  3. 7 CFR 51.2731 - U.S. Spanish Splits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or broken...

  4. Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Mengling Wen

    Full Text Available The Cre/loxP system is increasingly exploited for genetic manipulation of DNA in vitro and in vivo. It was previously reported that inactive ''split-Cre'' fragments could restore Cre activity in transgenic mice when overlapping co-expression was controlled by two different promoters. In this study, we analyzed recombination activities of split-Cre proteins, and found that no recombinase activity was detected in the in vitro recombination reaction in which only the N-terminal domain (NCre of split-Cre protein was expressed, whereas recombination activity was obtained when the C-terminal (CCre or both NCre and CCre fragments were supplied. We have also determined the recombination efficiency of split-Cre proteins which were co-expressed in hair roots of transgenic tobacco. No Cre recombination event was observed in hair roots of transgenic tobacco when the NCre or CCre genes were expressed alone. In contrast, an efficient recombination event was found in transgenic hairy roots co-expressing both inactive split-Cre genes. Moreover, the restored recombination efficiency of split-Cre proteins fused with the nuclear localization sequence (NLS was higher than that of intact Cre in transgenic lines. Thus, DNA recombination mediated by split-Cre proteins provides an alternative method for spatial and temporal regulation of gene expression in transgenic plants.

  5. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  6. Numerical simulation and experiment on multilayer stagger-split die.

    Science.gov (United States)

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  7. Tensor products of higher almost split sequences

    OpenAIRE

    Pasquali, Andrea

    2015-01-01

    We investigate how the higher almost split sequences over a tensor product of algebras are related to those over each factor. Herschend and Iyama gave a precise criterion for when the tensor product of an $n$-representation finite algebra and an $m$-representation finite algebra is $(n+m)$-representation finite. In this case we give a complete description of the higher almost split sequences over the tensor product by expressing every higher almost split sequence as the mapping cone of a suit...

  8. Dispersion of guided modes in two-dimensional split ring lattices

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Koenderink, A. Femius

    2014-01-01

    . This method takes into account all retarded electrodynamic interactions as well as radiation damping self-consistently. As illustration, we analyze the dispersion of plasmon nanorod lattices, and of 2D split ring resonator lattices. Plasmon nanorod lattices support transverse and longitudinal in...

  9. Effect of Processing on the in Vitro and in Vivo Protein Quality of Yellow and Green Split Peas (Pisum sativum).

    Science.gov (United States)

    Nosworthy, Matthew G; Franczyk, Adam J; Medina, Gerardo; Neufeld, Jason; Appah, Paulyn; Utioh, Alphonsus; Frohlich, Peter; House, James D

    2017-09-06

    In order to determine the effect of extrusion, baking, and cooking on the protein quality of yellow and green split peas, a rodent bioassay was conducted and compared to an in vitro method of protein quality determination. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS) of green split peas (71.4%) was higher than that of yellow split peas (67.8%), on average. Similarly, the average Digestible Indispensable Amino Acid Score (DIAAS) of green split peas (69%) was higher than that of yellow split peas (67%). Cooked green pea flour had lower PDCAAS and DIAAS values (69.19% and 67%) than either extruded (73.61%, 70%) or baked (75.22%, 70%). Conversely, cooked yellow split peas had the highest PDCCAS value (69.19%), while extruded yellow split peas had the highest DIAAS value (67%). Interestingly, a strong correlation was found between in vivo and in vitro analysis of protein quality (R 2 = 0.9745). This work highlights the differences between processing methods on pea protein quality and suggests that in vitro measurements of protein digestibility could be used as a surrogate for in vivo analysis.

  10. Operator-Based Preconditioning of Stiff Hyperbolic Systems

    International Nuclear Information System (INIS)

    Reynolds, Daniel R.; Samtaney, Ravi; Woodward, Carol S.

    2009-01-01

    We introduce an operator-based scheme for preconditioning stiff components encountered in implicit methods for hyperbolic systems of partial differential equations posed on regular grids. The method is based on a directional splitting of the implicit operator, followed by a characteristic decomposition of the resulting directional parts. This approach allows for solution to any number of characteristic components, from the entire system to only the fastest, stiffness-inducing waves. We apply the preconditioning method to stiff hyperbolic systems arising in magnetohydro- dynamics and gas dynamics. We then present numerical results showing that this preconditioning scheme works well on problems where the underlying stiffness results from the interaction of fast transient waves with slowly-evolving dynamics, scales well to large problem sizes and numbers of processors, and allows for additional customization based on the specific problems under study

  11. Model-independent determination of the two-photon exchange contribution to hyperfine splitting in muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara; Pineda, Antonio [Grup de Física Teòrica, Dept. Física and IFAE-BIST, Universitat Autònoma de Barcelona,E-08193 Bellaterra (Barcelona) (Spain)

    2017-04-11

    We obtain a model-independent prediction for the two-photon exchange contribution to the hyperfine splitting in muonic hydrogen. We use the relation of the Wilson coefficients of the spin-dependent dimension-six four-fermion operator of NRQED applied to the electron-proton and to the muon-proton sectors. Their difference can be reliably computed using chiral perturbation theory, whereas the Wilson coefficient of the electron-proton sector can be determined from the hyperfine splitting in hydrogen. This allows us to give a precise model-independent determination of the Wilson coefficient for the muon-proton sector, and consequently of the two-photon exchange contribution to the hyperfine splitting in muonic hydrogen, which reads δĒ{sub pμ,HF}{sup TPE}(nS)=−(1/(n{sup 3}))1.161(20) meV. Together with the associated QED analysis, we obtain a prediction for the hyperfine splitting in muonic hydrogen that reads E{sub pμ,HF}{sup th}(1S)=182.623(27) meV and E{sub pμ,HF}{sup th}(2S)=22.8123(33) meV. The error is dominated by the two-photon exchange contribution.

  12. VISUALISASI DAN NAVIGASI MEDIA PENYIMPANAN DISK DENGAN MENGGUNAKAN METODE SPLIT SCREEN SYSTEM

    Directory of Open Access Journals (Sweden)

    Yulia yulia

    2002-01-01

    Full Text Available Disk is a very useful device to a computer to save data file. For that, is much needed to have a program that has a capability to represent, navigate, and operate that files. There are many computer programs that used to present, navigate, and operate disk files in text form with a lot of facilities, but only a few programs that can represent files in a graphic form and have special feature, like capability to find the biggest files that use disk space. This capability is very useful in disk file management. This software use split screen system method and tree map algorithm. Split screen system is used to navigate, where the monitor screen divided into two parts to visualize files in a disk, the small part (map navigator visualize the whole content of a drive or directory and the big part visualize the detail of a part according to focus box in the map navigator. A mouse can move focus box in the map navigator and the box size is the comparison between map navigator sizes with map view size. Tree map algorithm is used to calculate the size of box picture of the represented file. This algorithm needs a complete tree structure from a drive or directory that will be painted. The software to make this windows based program is Borland Delphi 5.0. Abstract in Bahasa Indonesia : Disk merupakan alat yang sangat bermanfaat bagi sebuah sistem komputer untuk menyimpan data berupa file. Untuk itu sangat dibutuhkan program yang dapat merepresentasikan, menavigasi dan mengoperasikan file-file tersebut. Banyak program komputer yang digunakan untuk merepresentasikan, menavigasi dan mengoperasikan file-file pada media penyimpanan disk dalam bentuk teks dengan berbagai macam fasilitas, tetapi sangat sedikit program yang merepresentasikan file-file dalam bentuk grafik atau secara visual serta mampu memberikan kelebihan-kelebihan tersendiri, seperti kemampuan untuk merepresentasikan file-file yang paling banyak menggunakan ruang media penyimpanan disk. Kemampuan

  13. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.

    2015-01-01

    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  14. On the mechanism of zircaloy cladding axial splits

    International Nuclear Information System (INIS)

    Grigoriev, V.; Josefsson, B.

    1998-01-01

    The macroscopically brittle axial splitting is treated as a process entirely accomplished by a plastic mechanism operating on a microscopic scale and is discussed in terms of the degree of plasticity and localisation of plasticity. The suggested mechanism involves hydrogen assisted localised shear (HALS) as a main factor of material deterioration. The reason and the driving force for the HALS is an in-plane shear (as for mode II loading) existing at the tip of a crack loaded in mode I (Opening). The HALS mechanism does not require brittle fracture of the hydrides and is only operable under certain combination of material strength, applied stresses, and temperature, needed for the local yielding at the crack tip. If the combination of those parameters results in the bulk yielding, the in-plane shear component is diminished and the delayed cracking is suppressed. (orig.)

  15. NNLO time-like splitting functions in QCD

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2008-07-01

    We review the status of the calculation of the time-like splitting functions for the evolution of fragmentation functions to the next-to-next-to-leading order in perturbative QCD. By employing relations between space-like and time-like deep-inelastic processes, all quark-quark and the gluon-gluon time-like splitting functions have been obtained to three loops. The corresponding quantities for the quark-gluon and gluon-quark splitting at this order are presently still unknown except for their second Mellin moments. (orig.)

  16. Development of quantification analysis software for measuring regional cerebral blood flow by the modified split-dose method with 123I-IMP before and after acetazolamide loading

    International Nuclear Information System (INIS)

    Nagaki, Akio; Kobara, Kouichi; Matsutomo, Norikazu

    2003-01-01

    We developed a quantification analysis software program for measuring regional cerebral blood flow (rCBF) at rest and under acetazolamide (ACZ) stress by the modified split-dose (MSD) method with iodine-123 N-isopropyl-p-iodoamphetamine (IMP) and compared the rCBF values measured by the MSD method and by the split dose 123 I-IMP SPECT (SD) method requiring one continuous withdrawal of arterial blood. Since the MSD method allows the input of two arterial blood sampling parameter values, the background subtraction procedure for obtaining ACZ-induced images in the MSD method is not identical to the procedure in the SD method. With our software program for rCBF quantification, the resting rCBF values determined by the MSD method were closely correlated with the values measured by the SD method (r=0.94), and there was also a good correlation between the ACZ-induced rCBF values obtained by the MSD method and by the SD method (r=0.81). The increase in rCBF under ACZ stress was estimated to be approximately 26% by the SD method and 38% by the MSD method, suggesting that the MSD method tends to overestimate the increase in rCBF under ACZ stress in comparison with the SD method, but the variability of the rCBF values at rest and during ACZ stress analyzed by the MSD method was smaller than the variability with the SD method. Further clinical studies are required to validate our rCBF quantification analysis program for the MSD method. (author)

  17. Visible-light driven nitrogen-doped petal-morphological ceria nanosheets for water splitting

    Science.gov (United States)

    Qian, Junchao; Zhang, Wenya; Wang, Yaping; Chen, Zhigang; Chen, Feng; Liu, Chengbao; Lu, Xiaowang; Li, Ping; Wang, Kaiyuan; Chen, Ailian

    2018-06-01

    Water splitting is a promising sustainable technology for solar-to-chemical energy conversion. Herein, we successfully fabricated nitrogen-doped ultrathin CeO2 nanosheets by using field poppy petals as templates, which exhibit an efficiently catalytic activity for water splitting. Abundant oxygen vacancies and substitutional N atoms were experimentally observed in the film due to its unique biomorphic texture. In view of high efficiency and long durability of the as-prepared photocatalyst, this biotemplate method may provide an alternative technique for using biomolecules to assemble 2D nanomaterials.

  18. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor......, instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  19. Noncommutative instantons via dressing and splitting approaches

    International Nuclear Information System (INIS)

    Horvath, Zalan; Lechtenfeld, Olaf; Wolf, Martin

    2002-01-01

    Almost all known instanton solutions in noncommutative Yang-Mills theory have been obtained in the modified ADHM scheme. In this paper we employ two alternative methods for the construction of the self-dual U(2) BPST instanton on a noncommutative euclidean four-dimensional space with self-dual noncommutativity tensor. Firstly, we use the method of dressing transformations, an iterative procedure for generating solutions from a given seed solution, and thereby generalize Belavin's and Zakharov's work to the noncommutative setup. Secondly, we relate the dressing approach with Ward's splitting method based on the twistor construction and rederive the solution in this context. It seems feasible to produce nonsingular noncommutative multi-instantons with these techniques. (author)

  20. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States); Varshney, Kapil [ARIES Collaborative, New York, NY (United States)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  1. Communication: Tunnelling splitting in the phosphine molecule

    Science.gov (United States)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  2. [Applicational evaluation of split tooth extractions of upper molars using piezosurgery].

    Science.gov (United States)

    Li, D; Guo, C B; Liu, Y; Wang, E B

    2016-08-18

    To evaluate the efficacy of Piezosurgery in split teeth extractions. A single-center, randomized, split-mouth study was performed using a consecutive serious of unrelated healthy patients attending the departing of oral and maxillofacial surgery, Peking University School and Hospital of Stomatology. 40 patients were selected for extraction of maxillary molars without reservation value,splitting or nonvital teeth. They were divided into control (20 patients) and test groups (20 patients) randomly. Surgical treatments for both groups were under local anesthesia. Molar teeth of control group were extracted by common equipments like dental elevators, chisels, forceps, etc. While molar teeth of experimental group were extracted by Piezosurgery, aided with the use of common equipments if needed. Then we compared the duration of surgery, frequency of the usage of chisels, expansion of postoperative bony socket surgical discomfort and postoperative pain between two groups. The average of operation time was (629.5±171.0) s in control group and (456.0±337.2) s in test group. The buccal alveolar bone reduced (1.07±0.64) mm in control group and (1.49±0.61) mm in test group. There was a significant difference between the two groups (P0.05). Piezosugery can be better to preserve alveolar bone, reduce trauma and patient's fear. Application of the piezosugery reflect the characteristics of minimally invasive extraction, which has the value of promotion. The Piezosurgery technique have the advantage of reducing change of buccal alveolar bone during the surgery, but a longer surgical time was required when compared with the conventional technique. VAS value of surgical discomfort, expansion of postoperative bony socket and the operative fear rate, there were no significant difference. Minimally invasive tooth extraction technique has good clinical results and high satisfaction. Piezosurgery proved its worth as the instrument adapted to limiting the destruction of bone tissue.

  3. Effect of split n fertilizer application on physio-agronomic traits of wheat (triticum aestivum l.) under rainfed conditions

    International Nuclear Information System (INIS)

    Sohail, M.; Hussain, I.; Din, R.U.; Haider, S.; Abbas, A.; Qamar, M.; Noman, M.

    2013-01-01

    Low soil fertility is one of the main wheat yield limiting factors under rainfed conditions. Farmers usually apply full N dose at seeding. However, winter showers during vegetative growth period provide an opportunity to apply N in split doses. Study was conducted to find out appropriate N rate and application method to enhance wheat productivity. -1 Three N rates i.e., 60, 90, and 120 kg ha and three application methods i.e. full basal N dose at planting and N application in two and three equal split doses at tiller formation and stem elongation stages. Maximum grain yield (5.20 t ha/sup -1/) was achieved when N was applied at the rate 120 kg ha in three equal split doses at planting, tiller formation and stem elongation stages. N application in 2 and 3 split doses resulted in 25 - 50% grain yield advantage at all N rates as compared to single basal N dose. Split N application was associated with significant increase (P<0.05) in spikes m, 1000 grain weight and dry matter production. Split N application was also linked with better flag leaf chlorophyll retention and cooler crop canopies during grain filling stages which showed positive association with grain yield. (author)

  4. On the additive splitting procedures and their computer realization

    DEFF Research Database (Denmark)

    Farago, I.; Thomsen, Per Grove; Zlatev, Z.

    2008-01-01

    Two additive splitting procedures are defined and studied in this paper. It is shown that these splitting procedures have good stability properties. Some other splitting procedures, which are traditionally used in mathematical models used in many scientific and engineering fields, are sketched. All...

  5. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  6. Irradiation-induced amorphization in split-dislocation cores

    International Nuclear Information System (INIS)

    Ovid'ko, I.A.; Rejzis, A.B.

    1999-01-01

    The model describing special splitting of lattice and grain-boundary dislocations as one of the micromechanisms of solid-phase amorphization in irradiated crystals is proposed. Calculation of energy characteristics of the process of dislocations special splitting is carried out [ru

  7. Joining-Splitting Interaction of Noncritical String

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    The joining-splitting interaction of noncritical bosonic string is analyzed in the light-cone formulation. The Mandelstam method of constructing tree string amplitudes is extended to the bosonic massive string models of the discrete series. The general properties of the Liouville longitudinal excitations which are necessary and sufficient for the Lorentz covariance of the light-cone amplitudes are derived. The results suggest that the covariant and the light-cone approach are equivalent also in the noncritical dimensions. Some aspects of unitarity of interacting noncritical massive string theory are discussed.

  8. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  9. Operation safety of control systems. Principles and methods

    International Nuclear Information System (INIS)

    Aubry, J.F.; Chatelet, E.

    2008-01-01

    This article presents the main operation safety methods that can be implemented to design safe control systems taking into account the behaviour of the different components with each other (binary 'operation/failure' behaviours, non-consistent behaviours and 'hidden' failures, dynamical behaviours and temporal aspects etc). To take into account these different behaviours, advanced qualitative and quantitative methods have to be used which are described in this article: 1 - qualitative methods of analysis: functional analysis, preliminary risk analysis, failure mode and failure effects analyses; 2 - quantitative study of systems operation safety: binary representation models, state space-based methods, event space-based methods; 3 - application to the design of control systems: safe specifications of a control system, qualitative analysis of operation safety, quantitative analysis, example of application; 4 - conclusion. (J.S.)

  10. Splitting Strip Detector Clusters in Dense Environments

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2018-01-01

    Tracking in high density environments, particularly in high energy jets, plays an important role in many physics analyses at the LHC. In such environments, there is significant degradation of track reconstruction performance. Between runs 1 and 2, ATLAS implemented an algorithm that splits pixel clusters originating from multiple charged particles, using charge information, resulting in the recovery of much of the lost efficiency. However, no attempt was made in prior work to split merged clusters in the Semi Conductor Tracker (SCT), which does not measure charge information. In spite of the lack of charge information in SCT, a cluster-splitting algorithm has been developed in this work. It is based primarily on the difference between the observed cluster width and the expected cluster width, which is derived from track incidence angle. The performance of this algorithm is found to be competitive with the existing pixel cluster splitting based on track information.

  11. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    Science.gov (United States)

    Huang, Lianjie

    2013-10-29

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.

  12. Draft environmental statement related to the Western Nuclear, Inc. Split Rock Mill (Fremont County, Wyoming)

    International Nuclear Information System (INIS)

    1978-11-01

    The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock uranium mill near Jeffrey City and the Green Mountain ion-exchange facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area--the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U 3 O 8 through 1996 using lower-grade ores. Conditions for the protection of the environment include reclamation, tailings, stabilization, archeological survey, monitoring, etc

  13. Fee Splitting among General Practitioners: A Cross-Sectional Study in Iran.

    Science.gov (United States)

    Parsa, Mojtaba; Larijani, Bagher; Aramesh, Kiarash; Nedjat, Saharnaz; Fotouhi, Akbar; Yekaninejad, Mir Saeed; Ebrahimian, Nejatollah; Kandi, Mohamad Jafar

    2016-12-01

    Fee splitting is a process whereby a physician refers a patient to another physician or a healthcare facility and receives a portion of the charge in return. This survey was conducted to study general practitioners' (GPs) attitudes toward fee splitting as well as the prevalence, causes, and consequences of this process. This is a cross-sectional study on 223 general practitioners in 2013. Concerning the causes and consequences of fee splitting, an unpublished qualitative study was conducted by interviewing a number of GPs and specialists and the questionnaire options were the results of the information obtained from this study. Of the total 320 GPs, 247 returned the questionnaires. The response rate was 77.18%. Of the 247 returned questionnaires, 223 fulfilled the inclusion criteria. Among the participants, 69.1% considered fee splitting completely wrong and 23.2% (frequently or rarely) practiced fee splitting. The present study showed that the prevalence of fee splitting among physicians who had positive attitudes toward fee splitting was 4.63 times higher than those who had negative attitudes. In addition, this study showed that, compared to private hospitals, fee splitting is less practiced in public hospitals. The major cause of fee splitting was found to be unrealistic/unfair tariffs and the main consequence of fee splitting was thought to be an increase in the number of unnecessary patient referrals. Fee splitting is an unethical act, contradicts the goals of the medical profession, and undermines patient's best interest. In Iran, there is no code of ethics on fee splitting, but in this study, it was found that the majority of GPs considered it unethical. However, among those who had negative attitudes toward fee splitting, there were physicians who did practice fee splitting. The results of the study showed that physicians who had a positive attitude toward fee splitting practiced it more than others. Therefore, if physicians consider fee splitting unethical

  14. The new energy management policy: Indonesian PSC-gross-split applied on steam flooding project

    Science.gov (United States)

    Irham, S.; Julyus, P.

    2018-01-01

    “SIPY” oil field has been producing oil using steam flooding technology since 1992 under the PSC-Cost-Recovery policy. In 2021, the contract will be finished, and a new agreement must be submitted to the Indonesian government. There are two applied fiscal policies on oil and gas management: PSC-Cost-Recovery and PSC-Gross-Split (introduced in 2017 as the new energy management plan). The contractor must choose between PSC-Cost-Recovery and PSC-Gross-split which makes more profit. The aim of this research is to determine the best oil and gas contract policy for the contractor. The methods are calculating contractor cash flow and comparing the Profitability Indexes. The results of this study are (1) Net Present Values for the PSC-Cost-Recovery and the PSC-Gross-Split are 15 MMUS and 61 MMUS, respectively; and (2) Internal Rate of Return values for the PSC-Cost-Recovery and PSC-Gross-Split are 10% and 11%, respectively. The conclusion is that the Net Present Value and Internal Rate of Return of PSC-Gross-Split are greater than those of PSC-Cost-Recovery, but in Pay Out Time of PSC-Gross-split is longer than Pay Out Time in PSC-Cost-Recovery. Thus, the new energy management policy will be more attractive than PSC-Cost-Recovery.

  15. The new management policy: Indonesian PSC-Gross split applied on CO2 flooding project

    Science.gov (United States)

    Irham, S.; Sibuea, S. N.; Danu, A.

    2018-01-01

    “SIAD” oil field will be developed by CO2 flooding. CO2, a famous pollutant gas, is injected into the oil reservoir to optimize the oil recovery. This technique should be conducted economically according to the energy management policy in Indonesia. In general, Indonesia has two policy contracts on oil and gas: the old one is PSC-Cost-Recovery, and the new one is PSC-Gross-Split (introduced in 2017 as the new energy management plan). The contractor must choose between PSC-Cost-Recovery and PSC-Gross-Split which makes more profit. The aim of this paper is to show the best oil and gas contract policy for the contractor. The methods are calculating and comparing the economic indicators. The result of this study are (1) NPV for the PSC-Cost-Recovery is -46 MUS, while for the PSC-Gross-Split is 73 MUS, and (2) IRR for the PSC-Cost-Recovery is 9%, whereas for the PSC-Gross-Split is 11%. The conclusion is that the NPV and IRR for PSC-Gross-Split are greater than the NPV and IRR of PSC-Cost-Recovery, but POT in PSC-Gross-split is longer than POT in PSC-Cost-Recovery. Thus, in this case, the new energy policy contract can be applied for CO2 flooding technology since it yields higher economic indicators than its antecendent.

  16. Non-destructive splitter of twisted light based on modes splitting in a ring cavity.

    Science.gov (United States)

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2016-02-08

    Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spectra will split. When mode and impedance matches between the cavity and one OAM-carried beam are achieved, this beam will transmit through the cavity and other beam will be reflected, both beams keep their spatial shapes. In this case, the cavity acts like a polarized beam splitter. Besides, the transmitting beam can be selected at your will, the splitting efficiency can reach unity if the cavity is lossless and it completely matches the beam. Furthermore, beams carry multi-OAMs can also be split by cascading ring cavities.

  17. Point-splitting in a curved space-time background. 1 -gravitational contribution to the axial anomaly

    International Nuclear Information System (INIS)

    Liggatt, P.A.J.; Macfarlane, A.J.

    1978-01-01

    A prescription is given for point-splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current which can be differentiated straightforwardly, and that it involves a natural way of averaging (four dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g. to spin -3/2 Rarita-Schwinger fermions. (author)

  18. The Split sudâmja

    Directory of Open Access Journals (Sweden)

    Petar Šimunović

    1991-12-01

    Full Text Available The name of the Split feast Sudamja!Sudajma ("festa sancti Domnii" has not yet been adequately explained. The author believes that the name originated from the Old Dalmatian adjective san(ctu + Domnĭu. In the adjective santu the cluster /an/ in front of·a consonant gave in Croatian the back nasal /q/ pronounced until the end of the 10th century and giving /u/ after that. In this way the forms *Sudumja and similar originated. The short stressed /u/ in the closed syllable was percieved by the Croatian folk as their semivowel which later gave /a/ = Sudamja. The author connects this feature with that in the toponimes Makar ( /jm/ is well known in Croatian dialectology (sumja > sujma, and it resembles the metatheses which occurs in the Split toponimes: Sukošjân > Sukojšãn ( < *santu Cassianu, Pojišân/Pojšiin (< *pasianu < Pansianu. The author finds the same feature in the toponime Dumjača (: *Dumi- + -ača. He considers these features as Croatian popular adaptations which have not occured in the personal name Dujam, the toponime Dujmovača "terrae s. Domnii" and in the adjective sandujamski, because of the link with the saint's name Domnio!Duymo etc., which has been well liked and is frequent as name of Split Romas as well as Croats from the foundation of Split, has never been broken.

  19. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-09-07

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  20. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  1. One-loop triple collinear splitting amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon; Buciuni, Francesco; Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)

    2015-09-28

    We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.

  2. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  3. Split NMSSM with electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Gorbunov, D.S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutsky per. 9, Dolgoprudny 141700 (Russian Federation); Kirpichnikov, D.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2016-11-24

    In light of the Higgs boson discovery and other results of the LHC we reconsider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  4. Mass splitting induced by gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.

    1982-08-01

    The exact combination of internal and geometrical symmetries and the associated mass splitting problem is discussed. A 10-parameter geometrical symmetry is defined in a curved space-time in such a way that it is a combination of de Sitter groups. In the flat limit it reproduces the Poincare-group and its Lie algebra has a nilpotent action on the combined symmetry only in that limit. An explicit mass splitting expression is derived and an estimation of the order of magnitude for spin-zero mesons is made. (author)

  5. Splitting of turbulent spot in transitional pipe flow

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.

  6. Quantification of rat retinal growth and vascular population changes after single and split doses of proton irradiation: translational study using stereology methods

    Science.gov (United States)

    Mao, Xiao W.; Archambeau, John O.; Kubinova, Lucie; Boyle, Soames; Petersen, Georgia; Grove, Roger; Nelson, G. A. (Principal Investigator)

    2003-01-01

    This study quantified architectural and population changes in the rat retinal vasculature after proton irradiation using stereology. A 100 MeV conformal proton beam delivered 8, 14, 20 and 28 Gy as single and split doses to the whole eye. The vascular networks were prepared from retinal digests. Stereological methods were used to obtain the area of the retina and unbiased estimates of microvessel/artery/vein endothelial, pericyte and smooth muscle population, and vessel length. The retinal area increased progressively in the unirradiated, age-matched controls and in the retinas irradiated with 8 and 14 Gy, indicating uniform progressive retinal growth. No growth occurred after 20 and 28 Gy. Regression analysis of total endothelial cell number in all vessels (arteries, veins and capillaries) after irradiation documented a progressive time- and dose-dependent cell loss occurring over 15 to 24 months. The difference from controls was significant (Ppopulations after split doses. At 10 Gy, the rate of endothelial cell loss, a dose parameter used to characterize the time- and dose-dependent loss of the endothelial population, was doubled.

  7. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  8. A fast method for linear waves based on geometrical optics

    NARCIS (Netherlands)

    Stolk, C.C.

    2009-01-01

    We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the

  9. Combined radiotherapy of uterine cervix carcinoma of stage 3 according to a split course

    International Nuclear Information System (INIS)

    Vishnevskaya, E.E.; Danilova, I.A.; Litvinova, T.M.

    1979-01-01

    A comparative evaluation of the results of combined radiation therapy of two groups of patients with neglected forms of uterine cervix carcinoma is given. The groups were nearly identical as to the age, the presence of concomitant diseases, histological structure of the tumour and the extent of its spreading. The first group was treated according to an elaborated split course of radiation therapy, and the second by the conventional method. The analysis of the data obtained allows preference to be given to the split course method since with its use the incidence of radiation complications drops by 3.3 times and the immediate results improve by 1.2 times

  10. Shear-wave splitting measurements – Problems and solutions

    Czech Academy of Sciences Publication Activity Database

    Vecsey, Luděk; Plomerová, Jaroslava; Babuška, Vladislav

    2008-01-01

    Roč. 462, č. 1-4 (2008), s. 178-196 ISSN 0040-1951 R&D Projects: GA AV ČR(CZ) KJB300120605; GA AV ČR IAA3012405; GA AV ČR IAA300120709 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic anisotropy * shear-wave splitting * comparison of cross- correlation * eigenvalue * transverse minimization methods Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.677, year: 2008

  11. Guidelines to Develop Efficient Photocatalysts for Water Splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2016-01-01

    Photocatalytic overall water splitting is the only viable solar-to-fuel conversion technology. The research discloses an investigation process wherein by dissecting the photocatalytic water splitting device, electrocatalysts, and semiconductor

  12. Exposing the QCD Splitting Function with CMS Open Data.

    Science.gov (United States)

    Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei

    2017-09-29

    The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.

  13. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  14. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  15. MO-DE-207A-07: Filtered Iterative Reconstruction (FIR) Via Proximal Forward-Backward Splitting: A Synergy of Analytical and Iterative Reconstruction Method for CT

    International Nuclear Information System (INIS)

    Gao, H

    2016-01-01

    Purpose: This work is to develop a general framework, namely filtered iterative reconstruction (FIR) method, to incorporate analytical reconstruction (AR) method into iterative reconstruction (IR) method, for enhanced CT image quality. Methods: FIR is formulated as a combination of filtered data fidelity and sparsity regularization, and then solved by proximal forward-backward splitting (PFBS) algorithm. As a result, the image reconstruction decouples data fidelity and image regularization with a two-step iterative scheme, during which an AR-projection step updates the filtered data fidelity term, while a denoising solver updates the sparsity regularization term. During the AR-projection step, the image is projected to the data domain to form the data residual, and then reconstructed by certain AR to a residual image which is in turn weighted together with previous image iterate to form next image iterate. Since the eigenvalues of AR-projection operator are close to the unity, PFBS based FIR has a fast convergence. Results: The proposed FIR method is validated in the setting of circular cone-beam CT with AR being FDK and total-variation sparsity regularization, and has improved image quality from both AR and IR. For example, AIR has improved visual assessment and quantitative measurement in terms of both contrast and resolution, and reduced axial and half-fan artifacts. Conclusion: FIR is proposed to incorporate AR into IR, with an efficient image reconstruction algorithm based on PFBS. The CBCT results suggest that FIR synergizes AR and IR with improved image quality and reduced axial and half-fan artifacts. The authors was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).

  16. Optimal field splitting for large intensity-modulated fields

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Ranka, Sanjay; Li, Jonathan; Palta, Jatinder

    2004-01-01

    The multileaf travel range limitations on some linear accelerators require the splitting of a large intensity-modulated field into two or more adjacent abutting intensity-modulated subfields. The abutting subfields are then delivered as separate treatment fields. This workaround not only increases the treatment delivery time but it also increases the total monitor units (MU) delivered to the patient for a given prescribed dose. It is imperative that the cumulative intensity map of the subfields is exactly the same as the intensity map of the large field generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. In this work, we describe field splitting algorithms that split a large intensity-modulated field into two or more intensity-modulated subfields with and without feathering, with optimal MU efficiency while satisfying the hardware constraints. Compared to a field splitting technique (without feathering) used in a commercial planning system, our field splitting algorithm (without feathering) shows a decrease in total MU of up to 26% on clinical cases and up to 63% on synthetic cases

  17. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon; Alouini, Mohamed-Slim

    2014-01-01

    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold

  18. Towards large volume big divisor D3/D7 " μ-split supersymmetry" and Ricci-flat Swiss-cheese metrics, and dimension-six neutrino mass operators

    Science.gov (United States)

    Dhuria, Mansi; Misra, Aalok

    2012-02-01

    We show that it is possible to realize a " μ-split SUSY" scenario (Cheng and Cheng, 2005) [1] in the context of large volume limit of type IIB compactifications on Swiss-cheese Calabi-Yau orientifolds in the presence of a mobile space-time filling D3-brane and a (stack of) D7-brane(s) wrapping the "big" divisor. For this, we investigate the possibility of getting one Higgs to be light while other to be heavy in addition to a heavy higgsino mass parameter. Further, we examine the existence of long lived gluino that manifests one of the major consequences of μ-split SUSY scenario, by computing its decay width as well as lifetime corresponding to the three-body decays of the gluino into either a quark, a squark and a neutralino or a quark, squark and goldstino, as well as two-body decays of the gluino into either a neutralino and a gluon or a goldstino and a gluon. Guided by the geometric Kähler potential for Σ obtained in Misra and Shukla (2010) [2] based on GLSM techniques, and the Donaldson's algorithm (Barun et al., 2008) [3] for obtaining numerically a Ricci-flat metric, we give details of our calculation in Misra and Shukla (2011) [4] pertaining to our proposed metric for the full Swiss-cheese Calabi-Yau (the geometric Kähler potential being needed to be included in the full moduli space Kähler potential in the presence of the mobile space-time filling D3-brane), but for simplicity of calculation, close to the big divisor, which is Ricci-flat in the large volume limit. Also, as an application of the one-loop RG flow solution for the higgsino mass parameter, we show that the contribution to the neutrino masses at the EW scale from dimension-six operators arising from the Kähler potential, is suppressed relative to the Weinberg-type dimension-five operators.

  19. Facile Preparation of Porous WO3 Film for Photoelectrochemical Splitting of Natural Seawater

    Science.gov (United States)

    Shi, Yonghong; Li, Yuangang; Wei, Xiaoliang; Feng, Juan; Li, Huajing; Zhou, Wanyi

    2017-12-01

    Sunlight-driven natural seawater splitting provides a promising way for large-scale conversion and storage of solar energy. Here, we develop a facile and low-cost method via a deposition-annealing technique to fabricate porous WO3 film and demonstrate its application as a photoanode for natural seawater splitting. The WO3 film yields a photocurrent density of 1.95 mA cm-2 and possesses excellent stability at 1.23 V (versus RHE), under the illumination of 100 mW cm-2 (AM 1.5G). The photoelectrochemical performance is ascribed to the large surface area and good permeation of the electrolyte into the porous film. Furthermore, the photocurrent density remains almost the same during 3 h continuous light irradiation. The evolution of chlorine gas from seawater splitting was determined with qualitative and quantitative analyses, with a Faradic efficiency of about 56%.

  20. Sunspot splitting triggering an eruptive flare

    Science.gov (United States)

    Louis, Rohan E.; Puschmann, Klaus G.; Kliem, Bernhard; Balthasar, Horst; Denker, Carsten

    2014-02-01

    Aims: We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods: Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in Hα and He I 10830 Å of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 Å and 304 Å images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results: Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete ≈6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9° h-1) and caused significant shear flows at its edge. Conclusions: The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We

  1. Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes

    Science.gov (United States)

    Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.

    2018-02-01

    The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.

  2. BaSnF4 fast ion conductor: Variations versus the method of preparation and anomalous temperature variation of the quadrupole splitting

    International Nuclear Information System (INIS)

    Hantash, Jamil; Bartlett, Alan; Denes, Georges; Muntasar, Abdualhafeed; Oldfield, Philip

    2005-01-01

    A new method of preparation of high performance fluoride ion conductor, BaSnF 4 , by water leaching of newly discovered barium tin(II) chloride fluorides, has been designed, and the materials have been studied and compared to the solid prepared by the usual dry method. The unit-cell parameters and crystallite dimensions were found to vary with the method of preparation. In addition, the crystallite dimensions were found to be highly anisotropic for the samples obtained by the wet method. The Moessbauer spectrum is made of a large tin(II) quadrupole doublet, and a broad tin(IV) oxide peak due to surface oxidation. The tin(II) spectrum is in agreement with covalently bonded tin(II) having a strongly stereoactive lone pair. An unusually high dependence of the quadrupole splitting at low temperatures was observed (5.8 times larger than for α-SnF 2 ).

  3. Shear-Wave Splitting Within the Southeastern Carpathian Arc, Transylvanian Basin, Romania

    Science.gov (United States)

    Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Munteanu, L.

    2012-12-01

    We present 75 new measurements of shear wave splitting at 4 temporary broadband seismic stations that we deployed in the Transylvanian Basin within the Carpathian Arc, Romania. The Tisza-Dacia terranes, which form the basement of this basin, were accommodated in the space between the thick, old, rigid and cold East European Platform and the Moesian Platform during the Miocene. This movement was driven by the subduction of a part of the Tethys Ocean, which led to the formation of Carpathian orogen system. In Romania, the mountains are divided into the Eastern Carpathians, at the limit of Transylvanian Basin and the East European Platform along the Tornquist-Teisseyre Suture Zone, and the Southern Carpathians, at the limit with Moesian Platform. They connect to the West of the Carpathian Bend Zone where a very active high velocity seismic body generates intermediate depth earthquakes between 70 and 200 km beneath the Vrancea seismogenic zone. We analyzed splitting of SKS and SKKS phases recorded at epicentral distances between 87 and 150 degrees using the method of Silver and Chan (1991). We estimated splitting parameters, fast shear polarization azimuth and delay time, using both weighted averages of individual splitting measurements (Helffrich et al., 1994) and simultaneous linearization of all clearly recorded SK(K)S waves (Wolfe and Silver, 1998). For COMD, located at the contact of the Carpathian Bend Zone and Transylvanian Basin, we obtained a fast shear polarization azimuth trending NE-SW, parallel to the contact and to the strike of the Vrancea seismic body. For 10 suitable events recorded at IACB, at the contact of the Neogene Volcanic zone with the Eastern Carpathians, we did not observe any splitting; we consider the station splitting to be null. The fast shear polarization azimuth for PMAR, at the limit between Tisza-Dacia block and Southern Carpathians thrust belt, and at CHDM, within the Transylvanian Basin, is NW-SE similar to a regional splitting

  4. Splitting strings on integrable backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Vicedo, Benoit

    2011-05-15

    We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)

  5. Identification of a novel SPLIT-HULL (SPH) gene associated with hull splitting in rice (Oryza sativa L.).

    Science.gov (United States)

    Lee, Gileung; Lee, Kang-Ie; Lee, Yunjoo; Kim, Backki; Lee, Dongryung; Seo, Jeonghwan; Jang, Su; Chin, Joong Hyoun; Koh, Hee-Jong

    2018-07-01

    The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency. Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.

  6. 15 CFR 30.28 - “Split shipments” by air.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false âSplit shipmentsâ by air. 30.28... Transactions § 30.28 “Split shipments” by air. When a shipment by air covered by a single EEI submission is... showing the portion of the split shipment carried on that flight, a notation will be made showing the air...

  7. Concept of expert system for modal split in transportation planning

    Directory of Open Access Journals (Sweden)

    Popović Maja M.

    2006-01-01

    Full Text Available The objective of this paper is to develop a concept of expert system based on the survey of experts' opinions and their experience concerning relations in modal split, on the basis of parameters of transport system demand and transport supply, defined through PT travel time and city size, i.e. mean trip length. This expert system could be of use both to experts and less experienced planners who could apply the knowledge contained in this expert system for further improvement, on operational as well as on strategic level.

  8. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  9. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  10. Operator theory and numerical methods

    CERN Document Server

    Fujita, H; Suzuki, T

    2001-01-01

    In accordance with the developments in computation, theoretical studies on numerical schemes are now fruitful and highly needed. In 1991 an article on the finite element method applied to evolutionary problems was published. Following the method, basically this book studies various schemes from operator theoretical points of view. Many parts are devoted to the finite element method, but other schemes and problems (charge simulation method, domain decomposition method, nonlinear problems, and so forth) are also discussed, motivated by the observation that practically useful schemes have fine mathematical structures and the converses are also true. This book has the following chapters: 1. Boundary Value Problems and FEM. 2. Semigroup Theory and FEM. 3. Evolution Equations and FEM. 4. Other Methods in Time Discretization. 5. Other Methods in Space Discretization. 6. Nonlinear Problems. 7. Domain Decomposition Method.

  11. Spin-Rotation Hyperfine Splittings at Moderate to High J Values in Methanol

    Science.gov (United States)

    Xu, Li-Hong; Hougen, Jon T.; Belov, Sergey; Golubiatnikov, G. Yu; Lapinov, Alexander; Ilyushin, V.; Alekseev, E. A.; Mescheryakov, A. A.

    2015-06-01

    In this talk we present a possible explanation, based on torsionally mediated proton-spin-overall-rotation interaction operators, for the surprising observation in Nizhny Novgorod several years ago of doublets in some Lamb-dip sub-millimeter-wave transitions between torsion-rotation states of E symmetry in methanol. These observed doublet splittings, some as large as 70 kHz, were later confirmed by independent Lamb-dip measurements in Kharkov. In this talk we first show the observed J-dependence of the doublet splittings for two b-type Q branches (one from each laboratory), and then focus on our theoretical explanation. The latter involves three topics: (i) group theoretically allowed terms in the spin-rotation Hamiltonian, (ii) matrix elements of these terms between the degenerate components of torsion-rotation E states, calculated using wavefunctions from an earlier global fit of torsion-rotation transitions of methanol in the vt = 0, 1, and 2 states, and (iii) least-squares fits of coefficients of these terms to about 35 experimentally resolved doublet splittings in the quantum number ranges of K = -2 to +2, J = 13 to 34, and vt = 0. Rather pleasing residuals are obtained for these doublet splittings, and a number of narrow transitions, in which no doublet splitting could be detected, are also in agreement with predictions from the theory. Some remaining disagreements between experiment and the present theoretical explanation will be mentioned. G. Yu. Golubiatnikov, S. P. Belov, A. V. Lapinov, "CH_3OH Sub-Doppler Spectroscopy," (Paper MF04) and S.P. Belov, A.V. Burenin, G.Yu. Golubiatnikov, A.V. Lapinov, "What is the Nature of the Doublets in the E-Methanol Lamb-dip Spectra?" (Paper FB07), 68th International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2013. Li-Hong Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman, "Torsion-Rotation Global Analysis of the First Three Torsional States (vt = 0, 1, 2

  12. Enhanced Electrocatalytic Activity for Water Splitting on NiO/Ni/Carbon Fiber Paper

    Directory of Open Access Journals (Sweden)

    Ruoyu Zhang

    2016-12-01

    Full Text Available Large-scale growth of low-cost, efficient, and durable non-noble metal-based electrocatalysts for water splitting is crucial for future renewable energy systems. Atomic layer deposition (ALD provides a promising route for depositing uniform thin coatings of electrocatalysts, which are useful in many technologies, including the splitting of water. In this communication, we report the growth of a NiO/Ni catalyst directly on carbon fiber paper by atomic layer deposition and report subsequent reduction and oxidation annealing treatments. The 10–20 nm NiO/Ni nanoparticle catalysts can reach a current density of 10 mA·cm−2 at an overpotential of 189 mV for hydrogen evolution reactions and 257 mV for oxygen evolution reactions with high stability. We further successfully achieved a water splitting current density of 10 mA·cm−2 at 1.78 V using a typical NiO/Ni coated carbon fiber paper two-electrode setup. The results suggest that nanoparticulate NiO/Ni is an active, stable, and noble-metal-free electrocatalyst, which facilitates a method for future water splitting applications.

  13. Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure.

    Science.gov (United States)

    Yang, Chao; Xi, Xin; Yu, Zhiguo; Cao, Haicheng; Li, Jing; Lin, Shan; Ma, Zhanhong; Zhao, Lixia

    2018-02-14

    On the basis of the laterally porous GaN, we designed and fabricated a composite porous GaN structure with both well-ordered lateral and vertical holes. Compared to the plane GaN, the composite porous GaN structure with the combination of the vertical holes can help to reduce UV reflectance and increase the saturation photocurrent during water splitting by a factor of ∼4.5. Furthermore, we investigated the underlying mechanism for the enhancement of the water splitting performance using a finite-difference time-domain method. The results show that the well-ordered vertical holes can not only help to open the embedded pore channels to the electrolyte at both sides and reduce the migration distance of the gas bubbles during the water splitting reactions but also help to modulate the light field. Using this composite porous GaN structure, most of the incident light can be modulated and trapped into the nanoholes, and thus the electric fields localized in the lateral pores can increase dramatically as a result of the strong optical coupling. Our findings pave a new way to develop GaN photoelectrodes for highly efficient solar water splitting.

  14. A proposed architecture and method of operation for improving the protection of privacy and confidentiality in disease registers

    Directory of Open Access Journals (Sweden)

    Churches Tim

    2003-01-01

    Full Text Available Abstract Background Disease registers aim to collect information about all instances of a disease or condition in a defined population of individuals. Traditionally methods of operating disease registers have required that notifications of cases be identified by unique identifiers such as social security number or national identification number, or by ensembles of non-unique identifying data items, such as name, sex and date of birth. However, growing concern over the privacy and confidentiality aspects of disease registers may hinder their future operation. Technical solutions to these legitimate concerns are needed. Discussion An alternative method of operation is proposed which involves splitting the personal identifiers from the medical details at the source of notification, and separately encrypting each part using asymmetrical (public key cryptographic methods. The identifying information is sent to a single Population Register, and the medical details to the relevant disease register. The Population Register uses probabilistic record linkage to assign a unique personal identification (UPI number to each person notified to it, although not necessarily everyone in the entire population. This UPI is shared only with a single trusted third party whose sole function is to translate between this UPI and separate series of personal identification numbers which are specific to each disease register. Summary The system proposed would significantly improve the protection of privacy and confidentiality, while still allowing the efficient linkage of records between disease registers, under the control and supervision of the trusted third party and independent ethics committees. The proposed architecture could accommodate genetic databases and tissue banks as well as a wide range of other health and social data collections. It is important that proposals such as this are subject to widespread scrutiny by information security experts, researchers and

  15. Optimal space-energy splitting in MCNP with the DSA

    International Nuclear Information System (INIS)

    Dubi, A.; Gurvitz, N.

    1990-01-01

    The Direct Statistical Approach (DSA) particle transport theory is based on the possibility of obtaining exact explicit expressions for the dependence of the second moment and calculation time on the splitting parameters. This allows the automatic optimization of the splitting parameters by ''learning'' the bulk parameters from which the problem dependent coefficients of the quality function (second moment time) are constructed. The above procedure was exploited to implement an automatic optimization of the splitting parameters in the Monte Carlo Neutron Photon (MCNP) code. This was done in a number of steps. In the first instance, only spatial surface splitting was considered. In this step, the major obstacle has been the truncation of an infinite series of ''products'' of ''surface path's'' leading from the source to the detector. Encouraging results from the first phase led to the inclusion of full space/energy phase space splitting. (author)

  16. Acceleration tests of the INS 25.5-MHz split coaxial RFQ

    International Nuclear Information System (INIS)

    Arai, S.; Imanishi, A.; Morimoto, T.; Tojyo, E.; Tokuda, N.; Shibuya, S.

    1991-05-01

    The INS 25.5-MHz split coaxial RFQ, a linac that accelerates ions with a charge-to-mass ratio greater than 1/30 from 1 to 45.4 keV/u, is now undergoing acceleration tests with a beam of molecular nitrogen (N 2 + ) ions. Results so far obtained show that the RFQ operates in accordance with the design. Presented are preliminary results on the beam performance: emittances of the in- and output beams, output energy and its spread, and beam transmission. (author)

  17. Piezosurgery for the Lingual Split Technique in Lingual Positioned Impacted Mandibular Third Molar Removal

    Science.gov (United States)

    Ge, Jing; Yang, Chi; Zheng, Jiawei; Qian, Wentao

    2016-01-01

    Abstract The aim of this study was to evaluate the effect and safety of lingual split technique using piezosurgery for the extraction of lingual positioned impacted mandibular 3rd molars with the goal of proposing a more minimally invasive choice for this common surgery. Eighty-nine consecutive patients with 110 lingual positioned impacted mandibular 3rd molars requiring extraction were performed the lingual split technique using piezosurgery. One sagittal osteotomy line and 2 transverse osteotomy line were designed for lingual and occlusal bone removal. The success rate, operative time, postoperative outcome, and major complications (including nerve injury, mandible fracture, severe hematoma or edema, and severe pyogenic infection) were documented and analyzed. All impacted mandibular 3rd molars were successfully removed (110/110). The average time of operation was 14.6 minutes (ranged from 7 to 28 minutes). One hundred and seven extraction sites (97.3%) were primary healing. Pain, mouth opening, swelling, and PoSSe scores on postoperative 7-day were 0.34 ± 0.63, 3.88 ± 0.66(cm), 2.4 ± 0.2(cm), and 23.7 ± 5.9, respectively. There were 6 cases (5.5%) had lingual nerve disturbance and 3 cases (2.7%) developed inferior alveolar nerve impairment, and achieved full recovery within 2 months by neurotrophic drug treatment. Our study suggested piezosurgery for lingual split technique provided an effective way for the extraction of lingual positioned and deeply impacted mandibular 3rd molar. PMID:27015214

  18. Splitting automorphisms of free Burnside groups

    International Nuclear Information System (INIS)

    Atabekyan, Varuzhan S

    2013-01-01

    It is proved that, if the order of a splitting automorphism of odd period n≥1003 of a free Burnside group B(m,n) is a prime, then the automorphism is inner. This implies, for every prime n≥1009, an affirmative answer to the question on the coincidence of the splitting automorphisms of period n of the group B(m,n) with the inner automorphisms (this question was posed in the 'Kourovka Notebook' in 1990). Bibliography: 17 titles.

  19. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  20. 7 CFR 51.2543 - U.S. Non-Split.

    Science.gov (United States)

    2010-01-01

    ... Standards for Grades of Pistachio Nuts in the Shell § 51.2543 U.S. Non-Split. “U.S. Non-Split” consists of non-split pistachio nuts in the shell which meet the following requirements: (a) Basic requirements...

  1. Radiative Improvement of the Lattice Nonrelativistic QCD Action Using the Background Field Method and Application to the Hyperfine Splitting of Quarkonium States

    International Nuclear Information System (INIS)

    Hammant, T. C.; Horgan, R. R.; Monahan, C. J.; Hart, A. G.; Hippel, G. M. von

    2011-01-01

    We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the σ·B term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.

  2. Cheating More when the Spoils Are Split

    Science.gov (United States)

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  3. Wedge splitting test method: quantification of influence of glued marble plates by two-parameter fracture mechanics

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Nieto Garcia, B.; Merta, I.

    2014-01-01

    Roč. 30, OCT (2014), s. 174-181 ISSN 1971-8993 R&D Projects: GA MŠk(CZ) 7AMB14AT012 Institutional support: RVO:68081723 Keywords : Wedge splitting test * T-stress * K-calibration curves * Stress intensity factor * Concrete fracture test Subject RIV: JL - Materials Fatigue, Friction Mechanics

  4. Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems

    Science.gov (United States)

    The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...

  5. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  6. Comparative Study of Skeletal Stability between Postoperative Skeletal Intermaxillary Fixation and No Skeletal Fixation after Bilateral Sagittal Split Ramus Osteotomy

    DEFF Research Database (Denmark)

    Hartlev, Jens; Godtfredsen, Erik; Andersen, Niels Trolle

    2014-01-01

    OBJECTIVES: The purpose of the present study was to evaluate skeletal stability after mandibular advancement with bilateral sagittal split osteotomy. MATERIAL AND METHODS: Twenty-six patients underwent single-jaw bilateral sagittal split osteotomy (BSSO) to correct skeletal Class II malocclusion....

  7. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2015-01-01

    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  8. Quantitative analysis on electric dipole energy in Rashba band splitting.

    Science.gov (United States)

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  9. Finite frequency shear wave splitting tomography: a model space search approach

    Science.gov (United States)

    Mondal, P.; Long, M. D.

    2017-12-01

    Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.

  10. Splitting Schemes & Segregation In Reaction-(Cross-)Diffusion Systems

    OpenAIRE

    Carrillo, José A.; Fagioli, Simone; Santambrogio, Filippo; Schmidtchen, Markus

    2017-01-01

    One of the most fascinating phenomena observed in reaction-diffusion systems is the emergence of segregated solutions, i.e. population densities with disjoint supports. We analyse such a reaction cross-diffusion system. In order to prove existence of weak solutions for a wide class of initial data without restriction about their supports or their positivity, we propose a variational splitting scheme combining ODEs with methods from optimal transport. In addition, this approach allows us to pr...

  11. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    International Nuclear Information System (INIS)

    Liu Jia; Xiao Jingling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron areal density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.

  12. Method of operating nuclear power plant

    International Nuclear Information System (INIS)

    Kodama, Tasuku.

    1991-01-01

    The present invention concerns a method of operating a plant in which the inside of a reactor container is filled with inert gases. That is, the pressure at the inside of the pressure vessel is controlled based on the values sent from an absolute pressure gage and a pressure low gage during usual operation. A pressure high alarm and a pressure high scram signal are generated from a pressure high detector and a scram pressure detector. With such a constitution, since the pressure at the inside of the reactor is always kept at a slightly positive level relative to the surrounding atmospheric pressure even when high atmospheric pressure approaches to the plant site, air does not flow into the reactor container. Accordingly, the oxygen concentration is not increased. When a low atmospheric pressure approaches, the control operation for the pressure at the inside of the container is not necessary. The amount of the inert gases consumed and the amount of radioactive materials released to the atmosphere are decreased. The method of the present invention improves the safety and the reliability of the reactor operation. (N.H.)

  13. Field-theoretic methods in strongly-coupled models of general gauge mediation

    International Nuclear Information System (INIS)

    Fortin, Jean-François; Stergiou, Andreas

    2013-01-01

    An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split

  14. Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods.

    Science.gov (United States)

    Ye, Jun

    2016-01-01

    An interval neutrosophic set (INS) is a subclass of a neutrosophic set and a generalization of an interval-valued intuitionistic fuzzy set, and then the characteristics of INS are independently described by the interval numbers of its truth-membership, indeterminacy-membership, and falsity-membership degrees. However, the exponential parameters (weights) of all the existing exponential operational laws of INSs and the corresponding exponential aggregation operators are crisp values in interval neutrosophic decision making problems. As a supplement, this paper firstly introduces new exponential operational laws of INSs, where the bases are crisp values or interval numbers and the exponents are interval neutrosophic numbers (INNs), which are basic elements in INSs. Then, we propose an interval neutrosophic weighted exponential aggregation (INWEA) operator and a dual interval neutrosophic weighted exponential aggregation (DINWEA) operator based on these exponential operational laws and introduce comparative methods based on cosine measure functions for INNs and dual INNs. Further, we develop decision-making methods based on the INWEA and DINWEA operators. Finally, a practical example on the selecting problem of global suppliers is provided to illustrate the applicability and rationality of the proposed methods.

  15. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  16. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1985-01-01

    Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV

  17. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    Science.gov (United States)

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Assessment of the Maximal Split-Half Coefficient to Estimate Reliability

    Science.gov (United States)

    Thompson, Barry L.; Green, Samuel B.; Yang, Yanyun

    2010-01-01

    The maximal split-half coefficient is computed by calculating all possible split-half reliability estimates for a scale and then choosing the maximal value as the reliability estimate. Osburn compared the maximal split-half coefficient with 10 other internal consistency estimates of reliability and concluded that it yielded the most consistently…

  19. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    Directory of Open Access Journals (Sweden)

    Khairi M. S. Fahelelbom

    2016-10-01

    Full Text Available Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg on certain physical parameters such as weight variation, friability, disintegration, dissolution and drug content were studied. Splitting the tablets either by hand or with a splitter resulted in a minute but statistically significant average weight loss of <0.25% of the tablet to the surrounding environment. The variability in the weight of the hand-split tablet halves was more pronounced (37 out of 40 tablet halves varied by more than 10% from the mean weight than when using the tablet splitter (3 out of 40 tablet halves. The dissolution and drug content of the hand-split tablets were therefore affected because of weight differences. However, the pharmacopoeia requirements for friability and disintegration time were met. Hand splitting of tablets can result in an inaccurate dose and may present clinical safety issues, especially for drugs with a narrow therapeutic window in which large fluctuations in drug concentrations are undesirable. It is recommended to use tablets with the exact desired dose, but if this is not an option, then a tablet splitter could be used.

  20. Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting

    Science.gov (United States)

    Gadiyar, Chethana; Loiudice, Anna; Buonsanti, Raffaella

    2017-02-01

    Colloidal nanocrystals (NCs) are among the most modular and versatile nanomaterial platforms for studying emerging phenomena in different fields thanks to their superb compositional and morphological tunability. A promising, yet challenging, application involves the use of colloidal NCs as light absorbers and electrocatalysts for water splitting. In this review we discuss how the tunability of these materials is ideal to understand the complex phenomena behind storing energy in chemical bonds and to optimize performance through structural and compositional modification. First, we describe the colloidal synthesis method as a means to achieve a high degree of control over single material NCs and NC heterostructures, including examples of the role of the ligands in modulating size and shape. Next, we focus on the use of NCs as light absorbers and catalysts to drive both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), together with some of the challenges related to the use of colloidal NCs as model systems and/or technological solution in water splitting. We conclude with a broader prospective on the use of colloidal chemistry for new material discovery.

  1. Second-order splitting schemes for a class of reactive systems

    International Nuclear Information System (INIS)

    Ren Zhuyin; Pope, Stephen B.

    2008-01-01

    We consider the numerical time integration of a class of reaction-transport systems that are described by a set of ordinary differential equations for primary variables. In the governing equations, the terms involved may require the knowledge of secondary variables, which are functions of the primary variables. Specifically, we consider the case where, given the primary variables, the evaluation of the secondary variables is computationally expensive. To solve this class of reaction-transport equations, we develop and demonstrate several computationally efficient splitting schemes, wherein the portions of the governing equations containing chemical reaction terms are separated from those parts containing the transport terms. A computationally efficient solution to the transport sub-step is achieved through the use of linearization or predictor-corrector methods. The splitting schemes are applied to the reactive flow in a continuously stirred tank reactor (CSTR) with the Davis-Skodjie reaction model, to the CO+H 2 oxidation in a CSTR with detailed chemical kinetics, and to a reaction-diffusion system with an extension of the Oregonator model of the Belousov-Zhabotinsky reaction. As demonstrated in the test problems, the proposed splitting schemes, which yield efficient solutions to the transport sub-step, achieve second-order accuracy in time

  2. Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2014-01-01

    We use density functional theory calculations to investigate the stability of cubic perovskites for photo-electrochemical water splitting taking both materials in their bulk crystal structure and dissolved phases into account. The method is validated through a detailed comparison of the calculated...

  3. Towards large volume big divisor D3/D7 “μ-split supersymmetry” and Ricci-flat Swiss-cheese metrics, and dimension-six neutrino mass operators

    International Nuclear Information System (INIS)

    Dhuria, Mansi; Misra, Aalok

    2012-01-01

    We show that it is possible to realize a “μ-split SUSY” scenario (Cheng and Cheng, 2005) in the context of large volume limit of type IIB compactifications on Swiss-cheese Calabi-Yau orientifolds in the presence of a mobile space-time filling D3-brane and a (stack of) D7-brane(s) wrapping the “big” divisor. For this, we investigate the possibility of getting one Higgs to be light while other to be heavy in addition to a heavy higgsino mass parameter. Further, we examine the existence of long lived gluino that manifests one of the major consequences of μ-split SUSY scenario, by computing its decay width as well as lifetime corresponding to the three-body decays of the gluino into either a quark, a squark and a neutralino or a quark, squark and goldstino, as well as two-body decays of the gluino into either a neutralino and a gluon or a goldstino and a gluon. Guided by the geometric Kähler potential for Σ B obtained in Misra and Shukla (2010) based on GLSM techniques, and the Donaldson's algorithm (Barun et al., 2008) for obtaining numerically a Ricci-flat metric, we give details of our calculation in Misra and Shukla (2011) pertaining to our proposed metric for the full Swiss-cheese Calabi-Yau (the geometric Kähler potential being needed to be included in the full moduli space Kähler potential in the presence of the mobile space-time filling D3-brane), but for simplicity of calculation, close to the big divisor, which is Ricci-flat in the large volume limit. Also, as an application of the one-loop RG flow solution for the higgsino mass parameter, we show that the contribution to the neutrino masses at the EW scale from dimension-six operators arising from the Kähler potential, is suppressed relative to the Weinberg-type dimension-five operators.

  4. 77 FR 8184 - Foreign Tax Credit Splitting Events

    Science.gov (United States)

    2012-02-14

    ... Foreign Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of... these proposed regulations. The regulations affect taxpayers claiming foreign tax credits. Special... of the Federal Register.] Sec. 1.909-6 Pre-2011 foreign tax credit splitting events. [The text of...

  5. Operational Dynamic Configuration Analysis

    Science.gov (United States)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  6. Vertebral split fractures: Technical feasibility of percutaneous vertebroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Huwart, Laurent, E-mail: huwart.laurent@wanadoo.fr [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Foti, Pauline, E-mail: pfoti@hotmail.fr [Department of Biostatistics, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Andreani, Olivier, E-mail: andreani.olivier@gmail.com [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Hauger, Olivier, E-mail: olivier.hauger@chubordeaux.fr [Department of Radiology, Hôpital Pellegrin, Centre Hospitalo-Universitaire de Bordeaux, Bordeaux (France); Cervantes, Elodie, E-mail: elodie.cervantes@live.fr [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Brunner, Philippe, E-mail: pbrunner@chpg.mc [Department of Radiology, Hôpital Princesse Grasse de Monaco (Monaco); Boileau, Pascal, E-mail: boileau.p@chu-nice.fr [Department of Orthopedic Surgery, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Amoretti, Nicolas, E-mail: amorettinicolas@yahoo.fr [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France)

    2014-01-15

    Objective: The treatment of vertebral split fractures remains controversial, consisting of either corset or internal fixation. The aim of this study was to evaluate the technical feasibility of CT- and fluoroscopy-guided percutaneous vertebroplasty in the treatment of vertebral split fractures. Materials and methods: Institutional review board approval and informed consent were obtained for this study. Sixty-two consecutive adult patients who had post-traumatic vertebral split fractures (A2 according to the AO classification) without neurological symptoms were prospectively treated by percutaneous vertebroplasty. All these procedures were performed by an interventional radiologist under computed tomography (CT) and fluoroscopy guidance by using only local anaesthesia. Postoperative outcome was assessed using the visual analogue scale (VAS) and Oswestry disability index (ODI) scores. Results: Vertebroplasty was performed on thoracic and lumbar vertebrae, creating a cement bridge between the displaced fragment and the rest of the vertebral body. Seven discal cement leakages (11%) were observed, without occurrence of adjacent vertebral compression fractures. The mean VAS measurements ± standard deviation (SD) significantly decreased from 7.9 ± 1.5 preoperatively to 3.3 ± 2.1 at 1 day, 2.2 ± 2.0 at 1 month, and 1.8 ± 1.4 at 6 months (P < 0.001). The mean ODI scores ± SD had also a significant improvement: 62.3 ± 17.2 preoperatively and 15.1 ± 6.0 at the 6-month follow-up (P < 0.001). Conclusion: This study suggests that type A2 vertebral fractures could be successfully treated by CT- and fluoroscopy-guided percutaneous vertebroplasty.

  7. Vertebral split fractures: Technical feasibility of percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Huwart, Laurent; Foti, Pauline; Andreani, Olivier; Hauger, Olivier; Cervantes, Elodie; Brunner, Philippe; Boileau, Pascal; Amoretti, Nicolas

    2014-01-01

    Objective: The treatment of vertebral split fractures remains controversial, consisting of either corset or internal fixation. The aim of this study was to evaluate the technical feasibility of CT- and fluoroscopy-guided percutaneous vertebroplasty in the treatment of vertebral split fractures. Materials and methods: Institutional review board approval and informed consent were obtained for this study. Sixty-two consecutive adult patients who had post-traumatic vertebral split fractures (A2 according to the AO classification) without neurological symptoms were prospectively treated by percutaneous vertebroplasty. All these procedures were performed by an interventional radiologist under computed tomography (CT) and fluoroscopy guidance by using only local anaesthesia. Postoperative outcome was assessed using the visual analogue scale (VAS) and Oswestry disability index (ODI) scores. Results: Vertebroplasty was performed on thoracic and lumbar vertebrae, creating a cement bridge between the displaced fragment and the rest of the vertebral body. Seven discal cement leakages (11%) were observed, without occurrence of adjacent vertebral compression fractures. The mean VAS measurements ± standard deviation (SD) significantly decreased from 7.9 ± 1.5 preoperatively to 3.3 ± 2.1 at 1 day, 2.2 ± 2.0 at 1 month, and 1.8 ± 1.4 at 6 months (P < 0.001). The mean ODI scores ± SD had also a significant improvement: 62.3 ± 17.2 preoperatively and 15.1 ± 6.0 at the 6-month follow-up (P < 0.001). Conclusion: This study suggests that type A2 vertebral fractures could be successfully treated by CT- and fluoroscopy-guided percutaneous vertebroplasty

  8. Simultaneous surgeries in a split forward surgical team: a case study.

    Science.gov (United States)

    Vanfosson, Christopher A; Seery, Jason M

    2011-12-01

    The 541st Forward Surgical Team performed split-based operations, with one site in the city of Pol-e-Khumri. One evening, the 10-person team received two pediatric patients simultaneously and conducted simultaneous surgeries. The 3-year-old female sustained severe injuries to bilateral lower extremities and a puncture wound to her right forearm. The 13-year-old sustained fragmentary wounds to her left hand, left foot, right medial calf, and evisceration to her left lower quadrant. The patients presented in extremis after being taken to a civilian hospital initially, spending approximately 1.5 hours receiving no resuscitative therapy. The 3-year-old underwent amputations of bilateral lower extremities and a fasciotomy of the right forearm. The 13-year-old survived an exploratory laparotomy and irrigation and debridement of intra-abdominal wounds. The successful completion of simultaneous surgeries, by a split forward surgical team at a remote location, for two critically ill patients is possible. It should not become the standard of care. Prior planning made this occurrence feasible and safer, but such situations put the patients at risk for complications.

  9. Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors.

    Science.gov (United States)

    Hines, Michael L; Eichner, Hubert; Schürmann, Felix

    2008-08-01

    Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Splitting cells is useful in attaining load balance in neural network simulations, especially when there is a wide range of cell sizes and the number of cells is about the same as the number of processors. For compute-bound simulations load balance results in almost ideal runtime scaling. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing.

  10. Estimation of Missing Observations in Two-Level Split-Plot Designs

    DEFF Research Database (Denmark)

    Almimi, Ashraf A.; Kulahci, Murat; Montgomery, Douglas C.

    2008-01-01

    Inserting estimates for the missing observations from split-plot designs restores their balanced or orthogonal structure and alleviates the difficulties in the statistical analysis. In this article, we extend a method due to Draper and Stoneman to estimate the missing observations from unreplicated...... two-level factorial and fractional factorial split-plot (FSP and FFSP) designs. The missing observations, which can either be from the same whole plot, from different whole plots, or comprise entire whole plots, are estimated by equating to zero a number of specific contrast columns equal...... to the number of the missing observations. These estimates are inserted into the design table and the estimates for the remaining effects (or alias chains of effects as the case with FFSP designs) are plotted on two half-normal plots: one for the whole-plot effects and the other for the subplot effects...

  11. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation.

    Science.gov (United States)

    Vasudevan, Erin V L; Hamzey, Rami J; Kirk, Eileen M

    2017-08-23

    Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.

  12. Plant operation monitoring method and device therefor

    International Nuclear Information System (INIS)

    Ando, Tsugio; Matsuki, Tsutomu.

    1997-01-01

    The present invention provides a method of and a device for monitoring the operation of a nuclear power plant during operation, which improves the safety and reliability of operation without increasing an operator's burden. Namely, a chief in charge orally instruct an operation to an operator upon the operation of a plant constituent equipment. The operator points the equipment and calls the name. Actual operation instruction for the equipment is inputted after confirmation by oral response. The voices of theses series of operation instruction/point-calling/response confirmation are taken into a voice recognition processing device. The processing device discriminates each of the person who calls, and discriminates the content of the calls and objective equipments to be operated. Then, the series of procedures and contents of the operation for the equipments previously disposed in the data base are compared with the order of inputted calls, discriminated contents and the objective equipments to be operated. If they are not agreed with each other, the operation instruction is blocked even if actual operation instructions are inputted. (I.S.)

  13. Splitting, impulsivity, and intimate partnerships in young obese women seeking bariatric treatment

    Directory of Open Access Journals (Sweden)

    Zmolikova J

    2016-09-01

    Full Text Available Jana Zmolikova,1,2 Dita Pichlerova,3 Petr Bob,1,4 Denisa Schückova,5 Jitka Herlesova,3 Petr Weiss6 1Department of Psychiatry, First Faculty of Medicine, Center for Neuropsychiatric Research of Traumatic Stress, Charles University, 2Department of Clinical Psychology, Na Homolce Hospital, 3OB Clinic, Prague, 4Faculty of Medicine, Central European Institute of Technology, Masaryk University, Brno, 5Iscare Clinical Centre, 6Institute of Sexology, First Faculty of Medicine, Charles University, Prague, Czech Republic Background: Splitting represents a defense mechanism that describes fragmentation of conscious experience that may occur in various psychopathological conditions. The purpose of this study was to examine the relationship of splitting with disturbed cognitive and affective functions related to impulsivity and intimate partnerships in a group of obese patients indicated for bariatric treatment and compare the results with other obese patients and patients with bulimia nervosa. Methods: In this clinical study, we assessed 102 young women. The sample was divided into three subgroups: obese women (N=30, obese women indicated for bariatric treatment (N=48, and patients with bulimia nervosa (N=24. The patients were assessed using Splitting Index and Barratt Impulsivity Scale, and selected information about their intimate partnership was documented for all the participants.Results: The main results of this study indicate significant differences in the relationship of splitting and impulsivity with difficulties in intimate partnerships. These differences discriminate obese patients indicated for bariatric treatment from other obese patients and patients with bulimia nervosa.Conclusion: These findings may have significant implications for treatment of the obese patients indicated for bariatric treatment and their presurgery psychological evaluations. Keywords: splitting, impulsivity, obesity, bulimia nervosa, bariatric treatment

  14. Heat split imbalance study for annular fuel rod

    International Nuclear Information System (INIS)

    He Xiaojun; Ji Songtao; Zhang Yingchao

    2014-01-01

    Annular fuel rod has two gaps at inner and outer side. Under irradiation condition, the dimensional change of pellets is always larger than claddings' due to thermal expansion, swelling and densification, and this tends to enlarge the inner gap and reduce the outer gap. The gap size asymmetry must induce heat split imbalance problem that the heat flux will be larger at outer side of the rod. In this work, computer code AFPAC l.0 is used to simulate this heat split imbalance phenomena. The effect of initial gap size, rod inner pressure, roughness of pellets and cladding is studied, the results reveal that: l) Adjusting initial size of both gaps, reducing inner gap and enlarging outer gap could effectively alleviate heat split imbalance problem; 2) Adjusting the initial roughness of pellets and cladding is another effective approach to reducing heat split imbalance; 3) It seems that changing the rod inner pressure has a little effect on solving the heat flux asymmetry problem. (authors)

  15. Higgs, Binos and Gluinos: Split Susy within Reach

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2012-09-14

    Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  16. Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach

    Science.gov (United States)

    Gendre, Félix; Ricot, Denis; Fritz, Guillaume; Sagaut, Pierre

    2017-08-01

    This study focuses on grid refinement techniques for the direct simulation of aeroacoustics, when using weakly compressible lattice Boltzmann models, such as the D3Q19 athermal velocity set. When it comes to direct noise computation, very small errors on the density or pressure field may have great negative consequences. Even strong acoustic density fluctuations have indeed a clearly lower amplitude than the hydrodynamic ones. This work deals with such very weak spurious fluctuations that emerge when a vortical structure crosses a refinement interface, which may contaminate the resulting aeroacoustic field. We show through an extensive literature review that, within the framework described above, this issue has never been addressed before. To tackle this problem, we develop an alternative algorithm and compare its behavior to a classical one, which fits our in-house vertex-centered data structure. Our main idea relies on a directional splitting of the continuous discrete velocity Boltzmann equation, followed by an integration over specific characteristics. This method can be seen as a specific coupling between finite difference and lattice Boltzmann, locally on the interface between the two grids. The method is assessed considering two cases: an acoustic pulse and a convected vortex. We show how very small errors on the density field arise and propagate throughout the domain when a vortical flow crosses the refinement interface. We also show that an increased free stream Mach number (but still within the weakly compressible regime) strongly deteriorates the situation, although the magnitude of the errors may remain negligible for purely aerodynamic studies. A drastically reduced level of error for the near-field spurious noise is obtained with our approach, especially for under-resolved simulations, a situation that is crucial for industrial applications. Thus, the vortex case is proved useful for aeroacoustic validations of any grid refinement algorithm.

  17. Vacuum-assisted closure device as a split-thickness skin graft bolster in the burn population.

    Science.gov (United States)

    Waltzman, Joshua T; Bell, Derek E

    2014-01-01

    The vacuum-assisted closure device (VAC) is associated with improved wound healing outcomes. Its use as a bolster device to secure a split-thickness skin graft has been previously demonstrated; however, there is little published evidence demonstrating its benefits specifically in the burn population. With use of the VAC becoming more commonplace, its effect on skin graft take and overall time to healing in burn patients deserves further investigation. Retrospective review of burn registry database at a high-volume level I trauma center and regional burn center during a 16-month period was performed. Patients who had a third-degree burn injury requiring a split-thickness skin graft and who received a VAC bolster were included. Data points included age, sex, burn mechanism, burn location, grafted area in square centimeters, need for repeat grafting, percent graft take, and time to complete reepithelialization. Sixty-seven patients were included in the study with a total of 88 skin graft sites secured with a VAC. Age ranged from skin graft in the burn population. The observed rate of zero returns to the operating room for repeat grafting was especially encouraging. Its ability to conform to contours of the body and cover large surface areas makes it especially useful in securing a graft. This method of bolstering results in decreased repeat grafting and minimal graft loss, thus decreasing morbidity compared with conventional bolster dressings.

  18. Prevalence of Split Nerve Fiber Layer Bundles in Healthy People Imaged with Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Sirel Gür Güngör

    2016-12-01

    Full Text Available Objectives: The presence of retinal nerve fiber layer (RNFL split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. Materials and Methods: We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program. In our study, a bundle was defined as ‘split’ when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Results: Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29% and unilateral superior split was observed in 15 cases (4.16%. In 325 cases (90.52% there was no split bundle. Conclusion: Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.

  19. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    International Nuclear Information System (INIS)

    Qi Pei-Han; Li Zan; Si Jiang-Bo; Gao Rui

    2014-01-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds. (interdisciplinary physics and related areas of science and technology)

  20. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    Science.gov (United States)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  1. Influence of the large-small split effect on strategy choice in complex subtraction.

    Science.gov (United States)

    Xiang, Yan Hui; Wu, Hao; Shang, Rui Hong; Chao, Xiaomei; Ren, Ting Ting; Zheng, Li Ling; Mo, Lei

    2018-04-01

    Two main theories have been used to explain the arithmetic split effect: decision-making process theory and strategy choice theory. Using the inequality paradigm, previous studies have confirmed that individuals tend to adopt a plausibility-checking strategy and a whole-calculation strategy to solve large and small split problems in complex addition arithmetic, respectively. This supports strategy choice theory, but it is unknown whether this theory also explains performance in solving different split problems in complex subtraction arithmetic. This study used small, intermediate and large split sizes, with each split condition being further divided into problems requiring and not requiring borrowing. The reaction times (RTs) for large and intermediate splits were significantly shorter than those for small splits, while accuracy was significantly higher for large and middle splits than for small splits, reflecting no speed-accuracy trade-off. Further, RTs and accuracy differed significantly between the borrow and no-borrow conditions only for small splits. This study indicates that strategy choice theory is suitable to explain the split effect in complex subtraction arithmetic. That is, individuals tend to choose the plausibility-checking strategy or the whole-calculation strategy according to the split size. © 2016 International Union of Psychological Science.

  2. Estimation of pump operational state with model-based methods

    International Nuclear Information System (INIS)

    Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina; Kestilae, Juha

    2010-01-01

    Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently.

  3. Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles

    International Nuclear Information System (INIS)

    Zamfirescu, C.; Dincer, I.; Naterer, G.F.

    2009-01-01

    This paper examines the relevant thermophysical properties of compounds of chlorine and copper that are found in thermochemical water splitting cycles. There are four variants of such Cu-Cl cycles that use heat and electricity to split the water molecule and produce H 2 and O 2 . Since the energy input is mainly in the form of thermal energy, the Cu-Cl water splitting cycle is much more efficient than water electrolysis, if the electricity generation efficiency for electrolysis is taken into account. A number of copper compounds (Cu 2 OCl 2 , CuO, CuCl 2 , CuCl) and other chemicals (Cu, HCl) are recycled within the plant, while the overall effect is splitting of the water molecule. The system includes a number of chemical reactors, heat exchangers, spray dryer and electrochemical cell. This paper identifies the available experimental data for properties of copper compounds relevant to the Cu-Cl cycle analysis and design. It also develops new regression formulas to correlate the properties, which include: specific heat, enthalpy, entropy, Gibbs free energy, density, formation enthalpy and free energy. No past literature data is available for the viscosity and thermal conductivity of molten CuCl, so estimates are provided. The properties are evaluated at 1 bar and a range of temperatures from ambient to 675-1000K, which are consistent with the operating conditions of the cycle. Updated calculations of chemical exergies are provided as follows: 21.08, 6.268, 82.474, and 75.0 kJ/mol for Cu 2 OCl 2 , CuO, CuCl 2 and CuCl, respectively. For molten CuCl, the estimated viscosity varies from 2.6 to 1.7mPa.s. (author)

  4. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    Science.gov (United States)

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G

    2015-02-24

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  5. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system

    Science.gov (United States)

    Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.; Bediako, D. Kwabena; Colón, Brendan; Way, Jeffery C.; Silver, Pamela A.; Nocera, Daniel G.

    2015-01-01

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations. PMID:25675518

  6. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  7. 77 FR 8127 - Foreign Tax Credit Splitting Events

    Science.gov (United States)

    2012-02-14

    ... Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final and... affect taxpayers claiming foreign tax credits. The text of the temporary regulations also serves as the... that if there is a foreign tax credit splitting event with respect to a foreign income tax paid or...

  8. Comparison of split double and triple twists in pair figure skating.

    Science.gov (United States)

    King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I

    2008-05-01

    In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.

  9. Split warhead simultaneous impact

    Directory of Open Access Journals (Sweden)

    Rahul Singh Dhari

    2017-12-01

    Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.

  10. Combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in patients with congenital atresia of cervix.

    Science.gov (United States)

    Zhang, Xuyin; Han, Tiantian; Ding, Jingxin; Hua, Keqin

    2015-01-01

    The aim of this study was to introduce a new technique which is combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in patients with congenital atresia of cervix and to evaluate the feasibility and the safety of it. This is a prospective observational study of 10 patients with congenital atresia of cervix who underwent combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft for cervicovaginal reconstruction from February 2013 to August 2014 in our hospital. All of the surgical procedures were carried out by the same operation team. Patient data were collected including operating time, estimated blood loss, hospital stay post-surgery, complications, total cost, and median vaginal length at 3 month, resumption of menstruation, vaginal stenosis and stricture of the cervix postoperatively. The operative procedure lasted 237±46 (175-380) min. The estimated blood loss was 160±76 (50-300) ml. The hospital stay post-surgery was 12±2 (9-18) days. None of the patients had complications or required a blood transfusion. The mean total cost was $3352±1025. The average vaginal length at 3 month was 8.3±1.1 (8-10) cm. All patients had resumption of menstruation. The patients were followed for a mean of 5±2 (1-10) months. Cervical or vaginal stenosis did not occur in any of the patients. Our experiences of combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in10 patients with congenital atresia of cervix were positive, with successful results and without complications, and cervical or vaginal stenosis.

  11. Photoelectrochemical solar water splitting: From basic principles to advanced devices

    Directory of Open Access Journals (Sweden)

    Bandar Y.Alfaifi

    2018-02-01

    Full Text Available Photoelectrochemical water splitting (PEC offers a promising path for sustainable generation of hydrogen fuel. However, improving solar fuel water splitting efficiency facing tremendous challenges, due to the energy loss related to fast recombination of the photogenerated charge carriers, electrode degradation, as well as limited light harvesting. This review focuses on the brief introduction of basic fundamental of PEC water splitting and the concept of various types of water splitting approaches. Numerous engineering strategies for the investgating of the higher efficiency of the PEC, including charge separation, light harvesting, and co-catalysts doping, have been discussed. Moreover, recent remarkable progress and developments for PEC water splitting with some promising materials are discussed. Recent advanced applications of PEC are also reviewed. Finally, the review concludes with a summary and future outlook of this hot field.

  12. ProteinSplit: splitting of multi-domain proteins using prediction of ordered and disordered regions in protein sequences for virtual structural genomics

    International Nuclear Information System (INIS)

    Wyrwicz, Lucjan S; Koczyk, Grzegorz; Rychlewski, Leszek; Plewczynski, Dariusz

    2007-01-01

    The annotation of protein folds within newly sequenced genomes is the main target for semi-automated protein structure prediction (virtual structural genomics). A large number of automated methods have been developed recently with very good results in the case of single-domain proteins. Unfortunately, most of these automated methods often fail to properly predict the distant homology between a given multi-domain protein query and structural templates. Therefore a multi-domain protein should be split into domains in order to overcome this limitation. ProteinSplit is designed to identify protein domain boundaries using a novel algorithm that predicts disordered regions in protein sequences. The software utilizes various sequence characteristics to assess the local propensity of a protein to be disordered or ordered in terms of local structure stability. These disordered parts of a protein are likely to create interdomain spacers. Because of its speed and portability, the method was successfully applied to several genome-wide fold annotation experiments. The user can run an automated analysis of sets of proteins or perform semi-automated multiple user projects (saving the results on the server). Additionally the sequences of predicted domains can be sent to the Bioinfo.PL Protein Structure Prediction Meta-Server for further protein three-dimensional structure and function prediction. The program is freely accessible as a web service at http://lucjan.bioinfo.pl/proteinsplit together with detailed benchmark results on the critical assessment of a fully automated structure prediction (CAFASP) set of sequences. The source code of the local version of protein domain boundary prediction is available upon request from the authors

  13. On the huge Lie superalgebra of pseudo superdifferential operators and super KP-hierarchies

    International Nuclear Information System (INIS)

    Sedra, M.B.

    1995-08-01

    Lie superalgebraic methods are used to establish a connection between the huge Lie superalgebra Ξ of super (pseudo) differential operators and various super KP-hierarchies. We show in particular that Ξ splits into 5 = 2 x 2 + 1 graded algebras expected to correspond to five classes of super KP-hierarchies generalizing the well-known Manin-Radul and Figueroa O'Farrill-Ramos supersymmetric KP-hierarchies. (author). 10 refs

  14. Remote methods for decontamination and decommissioning operations

    International Nuclear Information System (INIS)

    DeVore, J.R.

    1986-01-01

    Three methods for the decontamination and decommissioning of nuclear facilities are described along with operational experience associated with each method. Each method described in some way reduces radiation exposure to the operating personnel involved. Electrochemical decontamination of process tanks is described using an in-situ method. Descriptions of two processes, electropolishing and cerium redox decontamination, are listed. A method of essentially smokeless cutting of process piping using a plasma-arc cutting torch is described. In one technique, piping is cut remotely from a distance using a specially modified torch holder. In another technique, cutting is done with master-slave manipulators inside a hot cell. Finally, a method for remote cutting and scarification of contaminated concrete is described. This system, which utilizes high-pressure water jets, is coupled to a cutting head or rotating scarification head. The system is suited for cutting contaminated concrete for removal or removing a thin layer in a controlled manner for decontamination. 4 refs., 6 figs

  15. Remote methods for decontamination and decommissioning operations

    International Nuclear Information System (INIS)

    DeVore, J.R.

    1986-01-01

    Three methods for the decontamination and decommissioning of nuclear facilities are described along with operational experience associated with each method. Each method described in some way reduces radiation exposure to the operating personnel involved. Electrochemical decontamination of process tanks is described using an in-situ method. Descriptions of two processes, electropolishing and cerium redox decontamination, are listed. A method of essentially smokeless cutting of process piping using a plasma-arc cutting torch is described. In one technique, piping is cut remotely from a distance using a specially modified torch holder. In another technique, cutting is done with master-slave manipulators inside a hot cell. Finally, a method for remote cutting and scarification of contaminated concrete is described. This system, which utilizes high-pressure water jets, is coupled to a cutting head or rotating scarification head. The system is suited for cutting contaminated concrete for removal or removing a thin layer in a controlled manner for decontamination

  16. Opportunistic splitting for scheduling using a score-based approach

    KAUST Repository

    Rashid, Faraan

    2012-06-01

    We consider the problem of scheduling a user in a multi-user wireless environment in a distributed manner. The opportunistic splitting algorithm is applied to find the best group of users without reporting the channel state information to the centralized scheduler. The users find the best among themselves while requiring just a ternary feedback from the common receiver at the end of each mini-slot. The original splitting algorithm is modified to handle users with asymmetric channel conditions. We use a score-based approach with the splitting algorithm to introduce time and throughput fairness while exploiting the multi-user diversity of the network. Analytical and simulation results are given to show that the modified score-based splitting algorithm works well as a fair scheduling scheme with good spectral efficiency and reduced feedback. © 2012 IEEE.

  17. Experimental study on split air conditioner with new hybrid equipment of energy storage and water heater all year round

    International Nuclear Information System (INIS)

    Wang Shaowei; Liu Zhenyan; Li Yuan; Zhao Keke; Wang Zhigang

    2005-01-01

    This paper presents a split air conditioner with a new hybrid equipment of energy storage and water heater all year round (ACWES). The authors made a special design on the storage tank to adjust the refrigerant capacity in the storage coils under different functions, instead of adding an accumulator to the system. An ACWES prototype, rebuilt from an original split air conditioner, has been finished, and experimental study of the operation processes of the prototype was done from which some important conclusions and suggestions have been made, which were helpful in the primary design and improvement of an ACWES system for potential users

  18. Split-Framework in Mandibular Implant-Supported Prosthesis

    Directory of Open Access Journals (Sweden)

    Danny Omar Mendoza Marin

    2015-01-01

    Full Text Available During oral rehabilitation of an edentulous patient with an implant-supported prosthesis, mandibular flexure must be considered an important biomechanical factor when planning the metal framework design, especially if implants are installed posterior to the interforaminal region. When an edentulous mandible is restored with a fixed implant-supported prosthesis connected by a fixed full-arch framework, mandibular flexure may cause needless stress in the overall restorative system and lead to screw loosening, poor fit of prosthesis, loss of the posterior implant, and patient’s discomfort due to deformation properties of the mandible during functional movements. The use of a split-framework could decrease the stress with a precise and passive fit on the implants and restore a more natural functional condition of the mandible, helping in the longevity of the prosthesis. Therefore, the present clinical report describes the oral rehabilitation of an edentulous patient by a mandibular fixed implant-supported prosthesis with a split-framework to compensate for mandibular flexure. Clinical Significance. The present clinical report shows that the use of a split-framework reduced the risk of loss of the posterior implants or screws loosening with acceptable patient comfort over the period of a year. The split-framework might have compensated for the mandibular flexure during functional activities.

  19. Split brain: divided perception but undivided consciousness.

    Science.gov (United States)

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara

    2017-05-01

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Centrifuge-operated specimen staining method and apparatus

    Science.gov (United States)

    Clarke, Mark S. F. (Inventor); Feeback, Daniel L. (Inventor)

    1999-01-01

    A method of staining preselected, mounted specimens of either biological or nonbiological material enclosed within a staining chamber where the liquid staining reagents are applied and removed from the staining chamber using hypergravity as the propelling force. In the preferred embodiment, a spacecraft-operated centrifuge and method of diagnosing biological specimens while in orbit, characterized by hermetically sealing a shell assembly. The assembly contains slide stain apparatus with computer control therefor, the operative effect of which is to overcome microgravity, for example on board an International Space Station.

  1. Risk factors affecting somatosensory function after sagittal split osteotomy

    DEFF Research Database (Denmark)

    Thygesen, Torben Henrik; Jensen, Allan Bardow; Helleberg, M

    2008-01-01

    Purpose The aim of this study was to evaluate potential individual and intraoperative risk factors associated with bilateral sagittal split osteotomy (BSSO) and to correlate the findings with postoperative changes in somatosensory function. Patients and Methods A total of 18 men and 29 women (mean...... and free dissection of the inferior alveolar nerve during BSSO increased self-reported changes in lower lip sensation and lower lip tactile threshold after BSSO (P discrimination (P

  2. Multilevel hybrid split-step implicit tau-leap

    KAUST Repository

    Ben Hammouda, Chiheb

    2016-06-17

    In biochemically reactive systems with small copy numbers of one or more reactant molecules, the dynamics is dominated by stochastic effects. To approximate those systems, discrete state-space and stochastic simulation approaches have been shown to be more relevant than continuous state-space and deterministic ones. In systems characterized by having simultaneously fast and slow timescales, existing discrete space-state stochastic path simulation methods, such as the stochastic simulation algorithm (SSA) and the explicit tau-leap (explicit-TL) method, can be very slow. Implicit approximations have been developed to improve numerical stability and provide efficient simulation algorithms for those systems. Here, we propose an efficient Multilevel Monte Carlo (MLMC) method in the spirit of the work by Anderson and Higham (SIAM Multiscal Model. Simul. 10(1), 2012). This method uses split-step implicit tau-leap (SSI-TL) at levels where the explicit-TL method is not applicable due to numerical stability issues. We present numerical examples that illustrate the performance of the proposed method. © 2016 Springer Science+Business Media New York

  3. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Zhang, Ruiqi; Yang, Chao; Yang, Jinlong

    2017-11-01

    Two-dimensional phosphorene with desirable optoelectronic properties (ideal band gap, high carrier mobility, and strong visible light absorption) is a promising metal-free photocatalyst for water splitting. However, the band edge positions of the valence band maximum (VBM) and conduction band maximum (CBM) of phosphorene are higher than the redox potentials in photocatalytic water splitting reactions. Thus, phosphorene can only be used as the photocathode for hydrogen evolution reaction as a low-efficiency visible-light-driven photocatalyst for hydrogen production in solar water splitting cells. Here, we propose a new mechanism to improve the photocatalytic efficiency of phosphorene nanoribbons (PNRs) by modifying their edges for full reactions in photocatalytic water splitting. By employing first-principles density functional theory calculations, we find that pseudohalogen (CN and OCN) passivated PNRs not only show desired VBM and CBM band edge positions induced by edge electric dipole layer, but also possess intrinsic optoelectronic properties of phosphorene, for both water oxidation and hydrogen reduction in photocatalytic water splitting without using extra energy. Furthermore, our calculations also predict that the maximum energy conversion efficiency of heterojunction solar cells consisting of different edge-modified PNRs can be as high as 20% for photocatalytic water splitting.

  4. Synthesis of Porous Europium Oxide Particles for Photoelectrochemical Water Splitting

    International Nuclear Information System (INIS)

    Zeng, Cheng-Hui; Zheng, Kai; Lou, Kai-Li; Meng, Xiao-Ting; Yan, Zi-Qiao; Ye, Zhen-Ni; Su, Rui-Rui; Zhong, Shengliang

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • Porous Eu 2 O 3 particles were synthesized by a facile electrochemical method. • Porous Eu 2 O 3 NPs were firstly implemented as photoanode for PEC water splitting. • The Eu 2 O 3 NPs exhibited good PEC performance and stability. - Abstract: In this paper, we report the facile electrochemical synthesis of porous Eu 2 O 3 particles (NPs) and their implementation as photoanode for photoelectrochemical (PEC) water splitting for the first time. These porous Eu 2 O 3 NPs exhibit a significant photocurrent density of 40 μA cm −2 at 0.6 V vs. Ag/AgCl in 1 M KOH electrolyte under white light irradiation (Xe lamp, 100 mW cm −2 ). Moreover, the as-synthesized Eu 2 O 3 NPs have an excellent PEC stability with no obvious decay in its photocurrent after 100 min irradiation

  5. Research for correction pre-operative MRI images of brain during operation using particle method simulation

    International Nuclear Information System (INIS)

    Shino, Ryosaku; Koshizuka, Seiichi; Sakai, Mikio; Ito, Hirotaka; Iseki, Hiroshi; Muragaki, Yoshihiro

    2010-01-01

    In the neurosurgical procedures, surgeon formulates a surgery plan based on pre-operative images such as MRI. However, the brain is transformed by removal of the affected area. In this paper, we propose a method for reconstructing pre-operative images involving the deformation with physical simulation. First, the domain of brain is identified in pre-operative images. Second, we create particles for physical simulation. Then, we carry out the linear elastic simulation taking into account the gravity. Finally, we reconstruct pre-operative images with deformation according to movement of the particles. We show the effectiveness of this method by reconstructing the pre-operative image actually taken before surgery. (author)

  6. Design of a 50/50 splitting ratio non-polarizing beam splitter based on the modal method with fused-silica transmission gratings

    Science.gov (United States)

    Zhao, Huajun; Yuan, Dairong; Ming, Hai

    2011-04-01

    The optical design of a beam splitter that has a 50/50 splitting ratio regardless of the polarization is presented. The non-polarizing beam splitter (NPBS) is based on the fused-silica rectangular transmission gratings with high intensity tolerance. The modal method has been used to estimate the effective index of the modes excited in the grating region for TE and TM polarizations. If a phase difference equals an odd multiples of π/2 for the first two modes (i.e. modes 0 and 1), the incident light will be diffracted into the 0 and -1 orders with about 50% and 50% diffraction efficiency for TM and TE polarizations, respectively.

  7. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  8. Potential of human twin embryos generated by embryo splitting in assisted reproduction and research.

    Science.gov (United States)

    Noli, Laila; Ogilvie, Caroline; Khalaf, Yacoub; Ilic, Dusko

    2017-03-01

    -human primates. The published material, especially the studies with human embryos, is controversial. Some reports suggest that twinning technology will find clinical use in reproductive medicine in the future, whereas others conclude the opposite that human twin embryos created in vitro are unsuitable not only for clinical, but also for research, purposes. The blastomere biopsy technique of embryo splitting seems to be unsuitable for either clinical or research purposes; however, embryo bisection, a preferable method of cloning in veterinary medicine, has not yet been tested on human embryos. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon

    2014-05-01

    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold during a guard period if no user sends a feedback. However, when a feedback collision occurs at any point of time, the proposed algorithm no longer updates the threshold but narrows down the user search space by dividing the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a feedback, it is shown that the proposed algorithm significantly alleviates the signaling overhead for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots than the opportunistic splitting algorithm to make a user selection with a given level of scheduling outage probability or provides a higher ergodic capacity given a certain number of mini-slots. © 2013 IEEE.

  10. Analysis of main dynamic parameters of split power transmission

    Directory of Open Access Journals (Sweden)

    A. Janulevičius

    2008-06-01

    Full Text Available The review carried out had shown one basic approach of split power transmission to the organization of drive which is applied to stepless transmissions of tractors and parallel hybrid cars. In the split power transmission the power split device uses a planetary gear. Tractor engine power in the split power transmission is transmitted to the drive shaft via a mechanical and hydraulic path. The theoretical analysis of main parameters of the split power transmission of the tractor is presented. The angular velocity of sun and coronary gears of the differential set is estimated by solution of the system of equations in which one equation is made for planetary differential gear, and another – for hydrostatic drive. The analysis of the transmission gear-ratio dependencies on the ratio of hydraulic machines capacities is carried out. Dependence of the variation of angular velocity of the coronary and the sun gears on the ground speed of the tractor is presented. Dependence of sum shaft torque and its constituents, carried by mechanical and hydraulic lines, on sum shaft angular velocity and ground speed of tractor and engine speed is also presented.

  11. Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-06-01

    Full Text Available The synchronous tuning of the self-oscillating wireless power transfer (WPT in a close-coupling condition is studied in this paper. The Hamel locus is applied to predict the self-oscillating points in the WPT system. In order to make the system operate stably at the most efficient point, which is the middle resonant point when there are middle resonant and split frequency points caused by frequency-splitting, the receiver (RX rather than the transmitter (TX current is chosen as the self-oscillating feedback variable. The automatic delay compensation is put forward to eliminate the influence of the intrinsic delay on frequency tuning for changeable parameters. In addition, the automatic circuit parameter tuning based on the phase difference is proposed to realize the synchronous tuning of frequency and circuit parameters. The experiments verified that the synchronous tuning proposed in this paper is effective, fully automatic, and more robust than the previous self-oscillating WPT system which use the TX current as the feedback variable.

  12. Rabi splitting in an acoustic cavity embedded plate

    International Nuclear Information System (INIS)

    Ni, Xu; Liu, Xiao-Ping; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We design a structure to realize Rabi splitting and Rabi oscillation in acoustics. We develop rigorous analytical models to analyze the splitting effect from the aspect of phase matching, and from the aspect of mode coupling using a coupled mode model. In this model, we discover that the splitting effect is caused by the coupling of the Fabry–Perot fundamental mode with the resonant mode of an artificial acoustic ‘atom’. We then extract the coupling strength and analyze the impact of structural parameters on it. In addition, we demonstrate Rabi oscillation in the time domain. Such quantum phenomena in the classical regime may have potential applications in the design of novel ultrasonic devices.

  13. Reversible perspective and splitting in time.

    Science.gov (United States)

    Hart, Helen Schoenhals

    2012-01-01

    The element of time--the experience of it and the defensive use of it--is explored in conjunction with the use of reversible perspective as a psychotic defense. Clinical material from a long analysis illustrates how a psychotic patient used the reversible perspective, with its static splitting, to abolish the experience of time. When he improved and the reversible perspective became less effective for him, he replaced it with a more dynamic splitting mechanism using time gaps. With further improvement, the patient began to experience the passage of time, and along with it the excruciating pain of separation, envy, and loss.

  14. Method of operating a nuclear reactor

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Schaefer, W.F.

    1978-01-01

    A method of controlling a nuclear power generting station in the event of a malfunction of particular operating components is described. Upon identification of a malfunction, preselected groups of control rods are fully inserted sequentially until a predetermined power level is approached. Additional control rods are then selectively inserted to quickly bring the reactor to a second given power level to be compatible with safe operation of the system with the malfunctioning component. At the time the thermal power output of the reactor is being reduced, the turbine is operated at a rate consistent with the output of the reactor. In the event of a malfunction, the power generating system is operated in a turbine following reactor mode, with the reactor power rapidly reduced, in a controlled manner, to a safe level compatible with the type of malfunction experienced

  15. Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Mousseau, V.A.; Knoll, D.A.; Rider, W.J.

    2000-01-01

    An algorithm is presented for the solution of the time dependent reaction-diffusion systems which arise in non-equilibrium radiation diffusion applications. This system of nonlinear equations is solved by coupling three numerical methods, Jacobian-free Newton-Krylov, operator splitting, and multigrid linear solvers. An inexact Newton's method is used to solve the system of nonlinear equations. Since building the Jacobian matrix for problems of interest can be challenging, the authors employ a Jacobian-free implementation of Newton's method, where the action of the Jacobian matrix on a vector is approximated by a first order Taylor series expansion. Preconditioned generalized minimal residual (PGMRES) is the Krylov method used to solve the linear systems that come from the iterations of Newton's method. The preconditioner in this solution method is constructed using a physics-based divide and conquer approach, often referred to as operator splitting. This solution procedure inverts the scalar elliptic systems that make up the preconditioner using simple multigrid methods. The preconditioner also addresses the strong coupling between equations with local 2 x 2 block solves. The intra-cell coupling is applied after the inter-cell coupling has already been addressed by the elliptic solves. Results are presented using this solution procedure that demonstrate its efficiency while incurring minimal memory requirements

  16. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    Science.gov (United States)

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  17. Substantial reduction of inappropriate tablet splitting with computerised decision support: a prospective intervention study assessing potential benefit and harm

    Directory of Open Access Journals (Sweden)

    Quinzler Renate

    2009-06-01

    Full Text Available Abstract Background Currently ambulatory patients break one in four tablets before ingestion. Roughly 10% of them are not suitable for splitting because they lack score lines or because enteric or modified release coating is destroyed impairing safety and effectiveness of the medication. We assessed impact and safety of computerised decision support on the inappropriate prescription of split tablets. Methods We performed a prospective intervention study in a 1680-bed university hospital. Over a 15-week period we evaluated all electronically composed medication regimens and determined the fraction of tablets and capsules that demanded inappropriate splitting. In a subsequent intervention phase of 15 weeks duration for 10553 oral drugs divisibility characteristics were indicated in the system. In addition, an alert was generated and displayed during the prescription process whenever the entered dosage regimen demanded inappropriate splitting (splitting of capsules, unscored tablets, or scored tablets unsuitable for the intended fragmentation. Results During the baseline period 12.5% of all drugs required splitting and 2.7% of all drugs (257/9545 required inappropriate splitting. During the intervention period the frequency of inappropriate splitting was significantly reduced (1.4% of all drugs (146/10486; p = 0.0008. In response to half of the alerts (69/136 physicians adjusted the medication regimen. In the other half (67/136 no corrections were made although a switch to more suitable drugs (scored tablets, tablets with lower strength, liquid formulation was possible in 82% (55/67. Conclusion This study revealed that computerised decision support can immediately reduce the frequency of inappropriate splitting without introducing new safety hazards.

  18. A simple method for determining split renal function from dynamic {sup 99m}Tc-MAG3 scintigraphic data

    Energy Technology Data Exchange (ETDEWEB)

    Wesolowski, Michal J.; Watson, Gage; Wanasundara, Surajith N.; Babyn, Paul [University of Saskatchewan, Department of Medical Imaging, Saskatoon, SK (Canada); Conrad, Gary R. [University of Kentucky College of Medicine, Department of Radiology, Lexington, KY (United States); Samal, Martin [Charles University Prague and the General University Hospital in Prague, Department of Nuclear Medicine, First Faculty of Medicine, Praha 2 (Czech Republic); Wesolowski, Carl A. [University of Saskatchewan, Department of Medical Imaging, Saskatoon, SK (Canada); Memorial University of Newfoundland, Department of Radiology, St. John' s, NL (Canada)

    2016-03-15

    Commonly used methods for determining split renal function (SRF) from dynamic scintigraphic data require extrarenal background subtraction and additional correction for intrarenal vascular activity. The use of these additional regions of interest (ROIs) can produce inaccurate results and be challenging, e.g. if the heart is out of the camera field of view. The purpose of this study was to evaluate a new method for determining SRF called the blood pool compensation (BPC) technique, which is simple to implement, does not require extrarenal background correction and intrinsically corrects for intrarenal vascular activity. In the BPC method SRF is derived from a parametric plot of the curves generated by one blood-pool and two renal ROIs. Data from 107 patients who underwent {sup 99m}Tc-MAG3 scintigraphy were used to determine SRF values. Values calculated using the BPC method were compared to those obtained with the integral (IN) and Patlak-Rutland (PR) techniques using Bland-Altman plotting and Passing-Bablok regression. The interobserver variability of the BPC technique was also assessed for two observers. The SRF values obtained with the BPC method did not differ significantly from those obtained with the PR method and showed no consistent bias, while SRF values obtained with the IN method showed significant differences with some bias in comparison to those obtained with either the PR or BPC method. No significant interobserver variability was found between two observers calculating SRF using the BPC method. The BPC method requires only three ROIs to produce reliable estimates of SRF, was simple to implement, and in this study yielded statistically equivalent results to the PR method with appreciable interobserver agreement. As such, it adds a new reliable method for quality control of monitoring relative kidney function. (orig.)

  19. The covariant-evolution-operator method in bound-state QED

    International Nuclear Information System (INIS)

    Lindgren, Ingvar; Salomonson, Sten; Aasen, Bjoern

    2004-01-01

    The methods of quantum-electrodynamical (QED) calculations on bound atomic systems are reviewed with emphasis on the newly developed covariant-evolution-operator method. The aim is to compare that method with other available methods and also to point out possibilities to combine that with standard many-body perturbation theory (MBPT) in order to perform accurate numerical QED calculations, including quasi-degeneracy, also for light elements, where the electron correlation is relatively strong. As a background, the time-independent many-body perturbation theory (MBPT) is briefly reviewed, particularly the method with extended model space. Time-dependent perturbation theory is discussed in some detail, introducing the time-evolution operator and the Gell-Mann-Low relation, generalized to an arbitrary model space. Three methods of treating the bound-state QED problem are discussed. The standard S-matrix formulation, which is restricted to a degenerate model space, is discussed only briefly. Two methods applicable also to the quasi-degenerate problem are treated in more detail, the two-times Green's-function and the covariant-evolution-operator techniques. The treatment is concentrated on the latter technique, which has been developed more recently and which has not been discussed in more detail before. A comparison of the two-times Green's-function and the covariant-evolution-operator techniques, which have great similarities, is performed. In the appendix a simple procedure is derived for expressing the evolution-operator diagrams of arbitrary order. The possibilities of merging QED in the covariant evolution-operator formulation with MBPT in a systematic way is indicated. With such a technique it might be feasible to perform accurate QED calculations also on light elements, which is presently not possible with the techniques available

  20. The development of flux-split algorithms for flows with non-equilibrium thermodynamics and chemical reactions

    Science.gov (United States)

    Grossman, B.; Cinella, P.

    1988-01-01

    A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.

  1. Split-liver transplantation : An underused resource in liver transplantation

    NARCIS (Netherlands)

    Rogiers, Xavier; Sieders, Egbert

    2008-01-01

    Split-liver transplantation is an efficient tool to increase the number of liver grafts available for transplantation. More than 15 years after its introduction only the classical splitting technique has reached broad application. Consequently children are benefiting most from this possibility.

  2. A metamaterial terahertz modulator based on complementary planar double-split-ring resonator

    Science.gov (United States)

    Wang, Chang-hui; Kuang, Deng-feng; Chang, Sheng-jiang; Lin, Lie

    2013-07-01

    A metamaterial based on complementary planar double-split-ring resonator (DSRR) structure is presented and demonstrated, which can optically tune the transmission of the terahertz (THz) wave. Unlike the traditional DSRR metamaterials, the DSRR discussed in this paper consists of two split rings connected by two bridges. Numerical simulations with the finite-difference time-domain (FDTD) method reveal that the transmission spectra of the original and the complementary metamaterials are both in good agreement with Babinet's principle. Then by increasing the carrier density of the intrinsic GaAs substrate, the magnetic response of the complementary special DSRR metamaterial can be weakened or even turned off. This metamaterial structure is promised to be a narrow-band THz modulator with response time of several nanoseconds.

  3. Mort Rainey's Split Personality in Secret Window

    OpenAIRE

    Sandjaya, Cynthya; Limanta, Liem Satya

    2013-01-01

    Psychological issue is the main issue discussed in David Koepp's Secret Window through its main character, Mort Rainey. Rainey's psychological struggle will be the main theme in this research. This thesis examines Rainey's split personality. Furthermore, in this study, we want to analyze the process of how Mort Rainey's personality splits into two different personalities. To meet the answer of this study, we will use the theory of Dissociative Identity Disorder with a support from Sigmund Fre...

  4. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  5. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Fonseca

    Full Text Available Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  6. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    Science.gov (United States)

    Fonseca, Carlos Roberto; Coutinho, Renato M; Azevedo, Franciane; Berbert, Juliana M; Corso, Gilberto; Kraenkel, Roberto A

    2013-01-01

    Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  7. Choice of Sample Split in Out-of-Sample Forecast Evaluation

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Timmermann, Allan

    , while conversely the power of forecast evaluation tests is strongest with long out-of-sample periods. To deal with size distortions, we propose a test statistic that is robust to the effect of considering multiple sample split points. Empirical applications to predictabil- ity of stock returns......Out-of-sample tests of forecast performance depend on how a given data set is split into estimation and evaluation periods, yet no guidance exists on how to choose the split point. Empirical forecast evaluation results can therefore be difficult to interpret, particularly when several values...... and inflation demonstrate that out-of-sample forecast evaluation results can critically depend on how the sample split is determined....

  8. Registration strategy using occlusal splint based on augmented reality for mandibular angle oblique split osteotomy.

    Science.gov (United States)

    Zhu, Ming; Chai, Gang; Zhang, Yan; Ma, Xiaofei; Gan, Jiliang

    2011-09-01

    An augmented reality tool allows for visual tracking of real anatomic structures in superposition with volume-rendered computed tomographic or magnetic resonance imaging scans and thus can be used for navigated translocation of important structures during operation. In this feasibility study, ARToolKit was used in mandibular angle oblique split osteotomy to define the cutting planes according to an operative plan. We overlay the operative plan on the model of a mandible made by rapid prototyping technology, and the technology was successfully used in 15 patients. Before the operation, all patients underwent computed tomographic scan, and dental casts were prepared by surgeons. Then, surgeons make the occlusal splint according to a dental cast to fix the marker, which can be recognized by the ARToolKit. The occlusal splint and marker were transformed to three-dimensional data using a laser scanner, and a programmer that runs on a personal computer named Rapidform matches the marker and the mandible image to generate the virtual image. By this step, the virtual image describing the marker, occlusal splint, and the mandible image of the patient are integrated. During the operation, the operative plan was overlaid on the rapid prototyping model of the mandible as soon as the ARToolKit recognized the marker. The technology was successfully used in 15 patients; the virtual image of the mandible and the cutting-plane both overlaid the real model of the mandible. This study has reported a new and effective way for mandibular angle oblique split osteotomy, and using occlusal splint might be a powerful option for the registration of augmented reality. Augmented reality tools like ARToolKit may be helpful for control of maxillary translocation in orthognathic surgery.

  9. Method of operating a direct dme fuel cell system

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...

  10. Tablet splitting of narrow therapeutic index drugs: a nationwide survey in Taiwan.

    Science.gov (United States)

    Chou, Chia-Lin; Hsu, Chia-Chen; Chou, Chia-Yu; Chen, Tzeng-Ji; Chou, Li-Fang; Chou, Yueh-Ching

    2015-12-01

    Tablet splitting or pill splitting frequently occurs in daily medical practice. For drugs with special pharmacokinetic characters, such as drugs with narrow therapeutic index (NTI), unequal split tablets might lead to erroneous dose titration and it even cause toxicity. The aim of this study was to investigate the frequency of prescribing split NTI drugs at ambulatory setting in Taiwan. A population-based retrospective study was conducted using the National Health Insurance Research Database in Taiwan. All ambulatory visits were analyzed from the longitudinal cohort datasets of the National Health Insurance Research Database. The details of ambulatory prescriptions containing NTI drugs were extracted by using the claims datasets of one million beneficiaries from National Healthcare Insurance Research Database in 2010 in Taiwan. The analyses were stratified by dosage form, patient age and the number of prescribed tablets in a single dose for each NTI drugs. Main outcome measures Number and distinct dosage forms of available NTI drug items in Taiwan, number of prescriptions involved split NTI drugs, and number of patients received split NTI drugs. A total of 148,548 patients had received 512,398 prescriptions of NTI drugs and 41.8 % (n = 62,121) of patients had received 36.3 % (n = 185,936) of NTI drug prescriptions in form of split tablets. The percentage of splitting was highest in digoxin prescriptions (81.0 %), followed by warfarin (72.0 %). In the elderly patients, split tablets were very prevalent with digoxin (82.4 %) and warfarin (84.5 %). NTI drugs were frequently prescribed to be taken in split forms in Taiwan. Interventions may be needed to provide effective and convenient NTI drug use. Further studies are needed to evaluate the clinical outcome of inappropriate split NTI drugs.

  11. Polarized triple-collinear splitting functions at NLO for processes with photons

    International Nuclear Information System (INIS)

    Sborlini, Germán F.R.; Florian, Daniel de; Rodrigo, Germán

    2015-01-01

    We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling α_S, for the splitting processes γ→qq-barγ, γ→qq-barg and g→qq-barγ. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani’s formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).

  12. Polarized triple-collinear splitting functions at NLO for processes with photons

    Energy Technology Data Exchange (ETDEWEB)

    Sborlini, Germán F.R. [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain); Florian, Daniel de [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Rodrigo, Germán [Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain)

    2015-03-04

    We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling α{sub S}, for the splitting processes γ→qq-barγ, γ→qq-barg and g→qq-barγ. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani’s formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).

  13. Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

    Directory of Open Access Journals (Sweden)

    Sungyoun Hwang

    2018-04-01

    Full Text Available In this paper, a method of designing a Vivaldi type phased array antenna (PAA which operates at S-band (2.8–3.3 GHz is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a 1 × 8 array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ±53° based on a −10 dB active reflection coefficient. The operation of the scan angle is possible within ±60° with a little larger reflection coefficient (−7 dB to −8 dB. The proposed design with BC-SRRs is expected to be useful for PAA applications.

  14. Dual ant colony operational modal analysis parameter estimation method

    Science.gov (United States)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  15. Subjective alveolar nerve function after bilateral sagittal split osteotomy or distraction osteogenesis of mandible

    NARCIS (Netherlands)

    Baas, E.M.; Horsthuis, R.B.G.; de Lange, J.

    2012-01-01

    Purpose: The present retrospective cohort study compared the subjective inferior alveolar nerve (IAN) function after distraction osteogenesis (DOG) and bilateral sagittal split osteotomy (BSSO) in mandibular advancement surgery. Materials and Methods: Treatment consisted of correction of a

  16. Subjective Alveolar Nerve Function After Bilateral Sagittal Split Osteotomy or Distraction Osteogenesis of Mandible

    NARCIS (Netherlands)

    Baas, Erik M.; Horsthuis, Roy B. G.; de Lange, Jan

    2012-01-01

    Purpose: The present retrospective cohort study compared the subjective inferior alveolar nerve (IAN) function after distraction osteogenesis (DOG) and bilateral sagittal split osteotomy (BSSO) in mandibular advancement surgery. Materials and Methods: Treatment consisted of correction of a

  17. Spin-orbit coupling calculations with the two-component normalized elimination of the small component method

    Science.gov (United States)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2013-07-01

    A new algorithm for the two-component Normalized Elimination of the Small Component (2cNESC) method is presented and tested in the calculation of spin-orbit (SO) splittings for a series of heavy atoms and their molecules. The 2cNESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac SO splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000), 10.1103/PhysRevB.62.7809]. The use of the screened nucleus potential for the two-electron SO interaction leads to accurate spinor energy splittings, for which the deviations from the accurate Dirac Fock-Coulomb values are on the average far below the deviations observed for other effective one-electron SO operators. For hydrogen halides HX (X = F, Cl, Br, I, At, and Uus) and mercury dihalides HgX2 (X = F, Cl, Br, I) trends in spinor energies and SO splittings as obtained with the 2cNESC method are analyzed and discussed on the basis of coupling schemes and the electronegativity of X.

  18. Operator performance evaluation using multi criteria decision making methods

    Science.gov (United States)

    Rani, Ruzanita Mat; Ismail, Wan Rosmanira; Razali, Siti Fatihah

    2014-06-01

    Operator performance evaluation is a very important operation in labor-intensive manufacturing industry because the company's productivity depends on the performance of its operators. The aims of operator performance evaluation are to give feedback to operators on their performance, to increase company's productivity and to identify strengths and weaknesses of each operator. In this paper, six multi criteria decision making methods; Analytical Hierarchy Process (AHP), fuzzy AHP (FAHP), ELECTRE, PROMETHEE II, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) are used to evaluate the operators' performance and to rank the operators. The performance evaluation is based on six main criteria; competency, experience and skill, teamwork and time punctuality, personal characteristics, capability and outcome. The study was conducted at one of the SME food manufacturing companies in Selangor. From the study, it is found that AHP and FAHP yielded the "outcome" criteria as the most important criteria. The results of operator performance evaluation showed that the same operator is ranked the first using all six methods.

  19. Advanced split-illumination electron holography without Fresnel fringes

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Park, Hyun Soon; Matsuda, Tsuyoshi; Harada, Ken; Shindo, Daisuke

    2014-01-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible

  20. Advanced split-illumination electron holography without Fresnel fringes

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Aizawa, Shinji; Park, Hyun Soon [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Harada, Ken [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan)

    2014-02-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible.

  1. The Differences Between Stock Splits and Stock Dividends

    DEFF Research Database (Denmark)

    Bechmann, Ken L.; Raaballe, Johannes

    It is often asserted that stock splits and stock dividends are purely cosmetic events. However, many studies have documented several stock market effects associated with stock splits and stock dividends. This paper examines the effects of these two types of events for the Danish stock market...... different. Second, the positive stock market reaction is closely related to associated changes in a firm's payout policy, but the relationship varies for the two types of events. Finally, there is only very weak evidence for a change in the liquidity of the stock. On the whole, after controlling...... for the firm's payout policy, the results suggest that a stock split is a cosmetic event and that a stock dividend on its own is considered negative news....

  2. Split bundle detection in polarimetric images of the human retinal nerve fiber layer

    NARCIS (Netherlands)

    Vermeer, K. A.; Reus, N. J.; Vos, F. M.; Lemij, H. G.; Vossepoel, A. M.

    2007-01-01

    One method for assessing pathological retinal nerve fiber layer (NFL) appearance is by comparing the NFL to normative values, derived from healthy subjects. These normative values will be more specific when normal physiological differences are taken into account. One common variation is a split

  3. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  4. A Spectral Multi-Domain Penalty Method for Elliptic Problems Arising From a Time-Splitting Algorithm For the Incompressible Navier-Stokes Equations

    Science.gov (United States)

    Diamantopoulos, Theodore; Rowe, Kristopher; Diamessis, Peter

    2017-11-01

    The Collocation Penalty Method (CPM) solves a PDE on the interior of a domain, while weakly enforcing boundary conditions at domain edges via penalty terms, and naturally lends itself to high-order and multi-domain discretization. Such spectral multi-domain penalty methods (SMPM) have been used to solve the Navier-Stokes equations. Bounds for penalty coefficients are typically derived using the energy method to guarantee stability for time-dependent problems. The choice of collocation points and penalty parameter can greatly affect the conditioning and accuracy of a solution. Effort has been made in recent years to relate various high-order methods on multiple elements or domains under the umbrella of the Correction Procedure via Reconstruction (CPR). Most applications of CPR have focused on solving the compressible Navier-Stokes equations using explicit time-stepping procedures. A particularly important aspect which is still missing in the context of the SMPM is a study of the Helmholtz equation arising in many popular time-splitting schemes for the incompressible Navier-Stokes equations. Stability and convergence results for the SMPM for the Helmholtz equation will be presented. Emphasis will be placed on the efficiency and accuracy of high-order methods.

  5. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins.

    Directory of Open Access Journals (Sweden)

    Ying Lin

    Full Text Available Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11-12 aa N-intein fragment and S11 split inteins having a very small (6 aa C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85-100% of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ~1.7 × 10(-4 s(-1 to ~3.8 × 10(-4 s(-1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.

  6. Isoniazid, pyrazinamide and rifampicin content variation in split fixed-dose combination tablets.

    Science.gov (United States)

    Pouplin, Thomas; Phuong, Pham Nguyen; Toi, Pham Van; Nguyen Pouplin, Julie; Farrar, Jeremy

    2014-01-01

    In most developing countries, paediatric tuberculosis is treated with split tablets leading to potential inaccuracy in the dose delivery and drug exposure. There is no data on the quality of first-line drugs content in split fixed-dose combination tablets. To determine Isoniazid, Pyrazinamide and Rifampicin content uniformity in split FDC tablets used in the treatment of childhood tuberculosis. Drug contents of 15 whole tablets, 30 half tablets and 36 third tablets were analysed by high performance liquid chromatography. The content uniformity was assessed by comparing drug content measured in split portions with their expected amounts and the quality of split portions was assessed applying qualitative specifications for whole tablets. All whole tablets measurements fell into the USP proxy for the three drugs. But a significant number of half and third portions was found outside the tolerated variation range and the split formulation failed the requirements for content uniformity. To correct for the inaccuracy of splitting the tablets into equal portions, a weight-adjustment strategy was used but this did not improve the findings. In split tablets the content of the three drugs is non-uniform and exceeded the USP recommendations. There is an absolute need to make child-friendly formulations available for the treatment of childhood tuberculosis.

  7. Simple spectral method for solving propagation problems in cylindrical geometry with fast Fourier transforms

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1989-01-01

    We describe a spectral method for solving the paraxial wave equation in cylindrical geometry that is based on expansion of the exponential evolution operator in a Taylor series and use of fast Fourier transforms to evaluate derivatives. A fourth-order expansion gives excellent agreement with a two-transverse-dimensional split-operator calculation at a fraction of the cost in computation time per z step and at a considerable savings in storage

  8. Mathematical foundations of the projection-operator method

    International Nuclear Information System (INIS)

    Moore, S.M.

    1979-01-01

    Mathematical foundations are determined for the projection-operator method developed by Zwanzig and Mori and used in the study of cooperative phenomena in non-equilibrium processes. It is shown that the Hilbert space of operators can be taken as the Hilbert-Schmidt class. Comments are made on the possibility of a complete formulation of quantum mechanics in terms of this Hilbert space. (author)

  9. Two-loop QED corrections to the Altarelli-Parisi splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Florian, Daniel de [International Center for Advanced Studies (ICAS), UNSAM,Campus Miguelete, 25 de Mayo y Francia (1650) Buenos Aires (Argentina); Sborlini, Germán F.R.; Rodrigo, Germán [Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain)

    2016-10-11

    We compute the two-loop QED corrections to the Altarelli-Parisi (AP) splitting functions by using a deconstructive algorithmic Abelianization of the well-known NLO QCD corrections. We present explicit results for the full set of splitting kernels in a basis that includes the leptonic distribution functions that, starting from this order in the QED coupling, couple to the partonic densities. Finally, we perform a phenomenological analysis of the impact of these corrections in the splitting functions.

  10. Facilitating Neuron-Specific Genetic Manipulations in Drosophila melanogaster Using a Split GAL4 Repressor.

    Science.gov (United States)

    Dolan, Michael-John; Luan, Haojiang; Shropshire, William C; Sutcliffe, Ben; Cocanougher, Benjamin; Scott, Robert L; Frechter, Shahar; Zlatic, Marta; Jefferis, Gregory S X E; White, Benjamin H

    2017-06-01

    Efforts to map neural circuits have been galvanized by the development of genetic technologies that permit the manipulation of targeted sets of neurons in the brains of freely behaving animals. The success of these efforts relies on the experimenter's ability to target arbitrarily small subsets of neurons for manipulation, but such specificity of targeting cannot routinely be achieved using existing methods. In Drosophila melanogaster , a widely-used technique for refined cell type-specific manipulation is the Split GAL4 system, which augments the targeting specificity of the binary GAL4-UAS (Upstream Activating Sequence) system by making GAL4 transcriptional activity contingent upon two enhancers, rather than one. To permit more refined targeting, we introduce here the "Killer Zipper" (KZip + ), a suppressor that makes Split GAL4 targeting contingent upon a third enhancer. KZip + acts by disrupting both the formation and activity of Split GAL4 heterodimers, and we show how this added layer of control can be used to selectively remove unwanted cells from a Split GAL4 expression pattern or to subtract neurons of interest from a pattern to determine their requirement in generating a given phenotype. To facilitate application of the KZip + technology, we have developed a versatile set of LexA op -KZip + fly lines that can be used directly with the large number of LexA driver lines with known expression patterns. KZip + significantly sharpens the precision of neuronal genetic control available in Drosophila and may be extended to other organisms where Split GAL4-like systems are used. Copyright © 2017 Dolan et al.

  11. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage.

    Science.gov (United States)

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T

    2014-01-01

    Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at -20 cm H2O for 30 min. When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, Pdrain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications.

  12. Gauge invariant frequency splitting of the continuum Yang-Mills field

    International Nuclear Information System (INIS)

    Mitter, P.K.; Valent, G.

    1977-01-01

    Frequency splitting plays an important role in Wilson's theory of critical phenomena. Here the authors give a theory of gauge invariant frequency splitting of the Yang-Mills field in 4 dimensions. (Auth.)

  13. Multiple bunch-splitting in the PS results and plans

    CERN Document Server

    Garoby, R

    2001-01-01

    The nominal longitudinal characteristics of the PS proton beam for the LHC were attained during the year 2000, using a sequence of triple- and double-splittings to divide each PS Booster (PSB) bunch into 12. This method minimizes longitudinal emittance blow-up and preserves a gap, free of particles, in the bunch train. Some of the ideas for alternative bunch trains have also been tested. The performance achieved is described and the sources of limitations are discussed together with the foreseen improvements.

  14. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  15. Cortical splitting of the mandible after irradiation. Special reference to osteoradionecrosis

    International Nuclear Information System (INIS)

    Katsura, Kouji; Ito, Jusuke; Hayashi, Takafumi; Taira, Shuhzou; Nakajima, Syunichi

    2001-01-01

    The purpose of this study was to discuss the relationship between radiation bone injuries and a splitting of the cortical bone in the radiation field. Between January 1993 and September 1998, 53 patients with head and neck cancer received radiotherapy. The study cohort consisted of 23 patients who were followed with computed tomographic scans more than one year after radiotherapy. We evaluated clinical and computed tomographic features. Computed tomographic scanning was performed with a section thickness of 3 or 4 mm. Bone images were obtained with identical window width (4000 Haunsfield units) and window level (1000 Haunsfield units). Splitting of the cortical bone was defined as disappearance of bone density in the cortical bone, showing a linear shape running parallel to the surface of the cortex. Splitting appeared in 9 sites in 8 patients. All patients fulfilled UICC criteria for classifying oral cancer. Most of the patients received external irradiation with a total radiation dose of 50 or 60 Gy. In all cases, splitting was found in the mandibular cortex at the site of muscle attachment, that was included in the radiation field. Appearance of bone changes in chronological order were periosteal reaction, splitting and bone necrosis. We speculate that splitting results from injuries to bone structure cells caused by blood flow disturbance after surgery and radiotherapy. It is suggested that such splitting can be a predictor of osteoradionecrosis. (author)

  16. Nonlocal Cooper pair splitting in a pSn-junction

    NARCIS (Netherlands)

    Veldhorst, M.; Brinkman, Alexander

    2010-01-01

    Perfect Cooper pair splitting is proposed, based on crossed Andreev reflection (CAR) in a p-type semiconductor-superconductor-n-type semiconductor (pSn) junction. The ideal splitting is caused by the energy filtering that is enforced by the band structure of the electrodes. The pSn junction is

  17. Split Labor Markets and Black-White Relations, 1865-1920.

    Science.gov (United States)

    Marks, Carole

    1981-01-01

    This paper modifies Edna Bonacich's theory of class conflict which cites the split labor market during the period of 1920-30 as the cause of racial antagonisms. The author states that Bonacich neglected the role of employers and technological advance in the creation of the split labor market. (ML)

  18. The toughness of split graphs

    NARCIS (Netherlands)

    Woeginger, G.J.

    1998-01-01

    In this short note we argue that the toughness of split graphs can be computed in polynomial time. This solves an open problem from a recent paper by Kratsch et al. (Discrete Math. 150 (1996) 231–245).

  19. Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts

    Science.gov (United States)

    Zheng, Jingjing

    2017-08-01

    Robust electrocatalyst is a prerequisite to realize high-efficiency hydrogen evolution by water splitting. Expensive platinum (Pt) is a preferred electrode catalyst for state-of-the-art hydrogen evolution reaction (HER). We present here a category of alloyed PtNix electrocatalysts by a facile green chemical reduction method, which are used to catalyze HER during seawater splitting. The catalytic performances are optimized by tuning stoichiometric Pt/Ni ratio, yielding a maximized catalytic behavior for PtNi5 electrode. The minimized onset potential is as low as -0.38 V and the corresponding Tafel slope is 119 mV dec-1. Moreover, the launched alloy electrodes have remarkable stability at -1.2 V over 12 h. The high efficiency as well as good durability demonstrates the PtNix electrocatalysts to be promising in practical applications.

  20. Regularization of a λφ4 type tensor model, using point-splitting

    International Nuclear Information System (INIS)

    Moura Melo, W.A.; Helayel-Neto, J.A.

    1997-01-01

    The idea of using point-splitting to avoid field products in the same point was first introduced by Dirac. This splitting would be applied for example, redefining the fields present in a small vertex, at different points. More recently, Osland and Wu, in a series of papers presented used the idea as a regularization method. An generalized Lagrangian was obtained for the Qed, with interaction terms not presenting field products at the same point, exhibiting however non-locality problems. Nevertheless this fact, the authors obtained satisfactory results with this formulation, such as the Higgs mass (190 GeV) and the divergence free top quark (120 GeV). This work intends to obtain a generalized Lagrangian, modifying the original theory to avoid that the interaction terms present field products at the same point