WorldWideScience

Sample records for split dose repair

  1. Effects of cytotoxic chemotherapeutic agents on split-dose repair in intestinal crypt cells

    International Nuclear Information System (INIS)

    Phillips, Theodore L.; Ross, Glenda Y.

    1997-01-01

    Purpose: Many cancer chemotherapeutic agents interact with radiation to enhance the amount of radiation damage observed in both tumor and normal tissues. It is important to predict this interaction and to determine the effect of drug on sublethal damage repair. To evaluate for effects in rapid renewing normal tissues, the intestinal crypt cell in vivo assay is an excellent one to employ. These studies investigate the effect of eleven cancer chemotherapeutic drugs on split-dose repair in the intestinal crypt cell of the mouse. Methods and Materials: LAF1 male mice, age 10-12 weeks, were exposed to whole-body irradiation with orthovoltage x-rays delivered as a single dose or as equally divided doses delivered with intervals between the two exposures of 2 to 24 h. In the experimental group, the cancer chemotherapeutic agent was administered intraperitoneally 2 h before the first radiation dose. At 3.6 days after the second irradiation, the mice were sacrificed; the jejunum was removed, fixed, and sectioned for light microscopy. The number of regenerating crypts were counted and corrected to represent the number of surviving cells per circumference. Results: Of the eleven drugs tested, only carmustine eliminated split-dose repair. Cisplatin delayed repair, and methotrexate caused marked synchronization obliterating the observation of split-dose repair. Conclusions: Most cytotoxic chemotherapeutic agents do not inhibit sublethal damage repair in intestinal crypt cells when given 2 h before the first radiation exposure. Absence of the initial increase in survival seen with split-dose radiation is noted with carmustine and high-dose methotrexate

  2. Characteristics of repair following very low doses

    International Nuclear Information System (INIS)

    Braby, L.A.; Metting, N.F.; Nelson, J.M.

    1987-01-01

    The effects of ionizing radiation on living systems being with the physical processes of energy deposition and develop through many stages of chemical reaction and biological response. The modeling effort attempts to organize the available data and theories of all of these stages into self-consistent models that can be compared and tested. In some cases, important differences among models result in only small differences in cell survival within the ranges of dose and dose rate that are normally investigated. To overcome this limitation, new ways of irradiating cells at extremes of dose rate, or ways of evaluating the effects of very small doses, are developed. Mathematical modeling and cellular studies complement each other. It has recently been found that some mechanisms are not adequate to account for the interaction of dose and repair time as they affect the reproductive survival of plateau-phase Chinese hamster ovary (CHO) cells. Repair of radiation-induced cellular damage plays a central role in the survival of cells exposed to doses of 1 Gy or more. This repair is responsible for the dose rate, split-dose and delayed plating effect and can be evaluated. Because split-dose and dose-rate experiments involve repair during irradiation and delayed plating experiments involve repair after irradiation is completed, it was originally thought that different repair processes were involved. It is now clear that this is not necessarily the case. Appropriately designed models can account for observed effects at conventional doses (1 Gy or more) whether they assume all damage is lethal unless repaired or some damage is innocuous unless it interacts with additional damage. The fact that the survival following a plating delay is always less than the survival following immediate plating at low doses indicates that the damage produced is probably not potentially lethal

  3. Repair of sublethal damage in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Epp, E.R.; Michaels, H.B.; Ling, C.C.; Peterson, E.C.

    1979-01-01

    The lethal response of asynchronous Chinese hamster ovary (CHO) cells exposed to single and split doses of radiation at conventional or ultrahigh dose rates has been examined to determine whether repair of sublethal damage occurs in cells irradiated at ultrahigh dose rates. The high-intensity irradiations were performed with electrons delivered in single 3-nsec pulses from a 600-kV field emission source under medium-removed, thin-layer conditions. Conventional dose-rate experiments were done under identical thin-layer conditions with 50-kVp x rays, or under full-medium conditions with 280-kVp x rays. Oxygenated cells were irradiated and maintained at 22 to 24 0 C between exposures. Survival did not increase as the time between two doses of pulsed electrons increased from 0 to 4 min, indicating no evidence of fast repair. However, increased survival was observed when 30 to 90 min was allowed to elapse between the split doses. The half-time for maximum repair was approx. = 30 min irrespective of the exposure conditions and radiation modality used. Observed repair ratios increased from approx. = 2 to 4 as the single-dose surviving fraction decreased from 10 -2 to 5 x 10 -4 . Over this survival range the repair ratios, measured at the same value of surviving fraction, were independent of dose rate. The observed repair ratios imply that the shoulder regions of the nonfractionated x-ray and pulsed-electron survival curves were not completely restored between the split doses. However, the fraction of the shoulder restored between split doses of radiation was dose-rate-independent. It is concluded that sublethal damage can be repaired in oxygenated CHO cells irradiated at dose rates of the order of 10 11 rad/sec

  4. The influence of dose per fraction on repair kinetics

    International Nuclear Information System (INIS)

    Rojas, A.; Joiner, M.C.

    1989-01-01

    The use of multiple fractions per day (MFD) in radiotherapy requires information about the rate of repair of radiation injury. It is important to know the minimum interval between fractions necessary for maximum sparing of normal tissue damage, whether rate of repair is dependent on the size of dose per fraction and if it is different in early and late responding tissues and in tumours. To address these questions, the rate of repair between radiation dose fractions was measured in mouse skin (acute damage), mouse kidney (late damage) and a mouse tumour (carcinoma NT). Skin and kidney measurements were made using multiple split doses of X-rays, followed by a neutron top-up. For skin, faster recovery was obtained with 4.4 Gy fractions (t1/2 = 3.46 ± 0.88 h). In contrast kidney showed slower recovery at a low dose per fraction of 2 Gy (t1/2 = 1.69 ± 0.39 h) than at a higher dose of 7 Gy per fraction (t1/2 = 0.92 ± 0.1h). These data show that repair rate is dependent on the size of dose per fraction, but not in a simple way. T1/2 values now available for many different tissues generally lie in the range of 1-2h, and are not correlated with proliferation status or early versus late response to treatment. At the doses used currently in clinical MFD treatments, these data indicate that damage in almost all normal tissues would increase if interfraction intervals less than 6 h were used. The t1/2 for CaNT (0.31 ± 0.15 h) is less than for any normal tissue. This underlines that the excess morbidity resulting from interfraction intervals < 6 h will not be paralleled by an increased effect in tumours. (author). 25 refs.; 7 figs

  5. Mechanistic formulation of a lineal-quadratic-linear (LQL) model: Split-dose experiments and exponentially decaying sources

    International Nuclear Information System (INIS)

    Guerrero, Mariana; Carlone, Marco

    2010-01-01

    Purpose: In recent years, several models were proposed that modify the standard linear-quadratic (LQ) model to make the predicted survival curve linear at high doses. Most of these models are purely phenomenological and can only be applied in the particular case of acute doses per fraction. The authors consider a mechanistic formulation of a linear-quadratic-linear (LQL) model in the case of split-dose experiments and exponentially decaying sources. This model provides a comprehensive description of radiation response for arbitrary dose rate and fractionation with only one additional parameter. Methods: The authors use a compartmental formulation of the LQL model from the literature. They analytically solve the model's differential equations for the case of a split-dose experiment and for an exponentially decaying source. They compare the solutions of the survival fraction with the standard LQ equations and with the lethal-potentially lethal (LPL) model. Results: In the case of the split-dose experiment, the LQL model predicts a recovery ratio as a function of dose per fraction that deviates from the square law of the standard LQ. The survival fraction as a function of time between fractions follows a similar exponential law as the LQ but adds a multiplicative factor to the LQ parameter β. The LQL solution for the split-dose experiment is very close to the LPL prediction. For the decaying source, the differences between the LQL and the LQ solutions are negligible when the half-life of the source is much larger than the characteristic repair time, which is the clinically relevant case. Conclusions: The compartmental formulation of the LQL model can be used for arbitrary dose rates and provides a comprehensive description of dose response. When the survival fraction for acute doses is linear for high dose, a deviation of the square law formula of the recovery ratio for split doses is also predicted.

  6. Split dose recovery studies using homologous recombination deficient gene knockout chicken B lymphocyte cells

    International Nuclear Information System (INIS)

    Rao, B.S.S.; Tano, Kaori; Utsumi, Hiroshi; Takeda, Shunichi

    2007-01-01

    To understand the role of proteins involved in double strand breaks (DSB) repair modulating sublethal damage (SLD) recovery, chicken B lymphoma (DT 40) cell lines either proficient or deficient in RAD52, XRCC2, XRCC3, RAD51C and RAD51D were subjected to fractionated irradiation and their survival curves charted. Survival curves of both WT DT40 and RAD52 -/- cells had a big shoulder while all the other cells exhibited small shoulders. However, at the higher doses of radiation, RAD51C -/- cells displayed hypersensitivity comparable to the data obtained for the homologous recombination deficient RAD54 -/- cells. Repair of SLD was measured as an increase in survival after a split dose irradiation with an interval of incubation between the radiation doses. All the cell lines (parental DT40 and genetic knockout cell lines viz., RAD52 -/- , XRCC2 -/- XRCC3 -/- RAD51C -/- and RAD51D -/- ) used in this study demonstrated a typical split-dose recovery capacity with a specific peak, which varied depending on the cell type. The maximum survival of WT DT40 and RAD52 -/- was reached at about 1-2 hours after the first dose of radiation and then decreased to a minimum thereafter (5 h). The increase in the survival peaked once again by about 8 hours. The survival trends observed in XRCC2 -/- , XRCC3 -/- , RAD51C -/- and RAD51D -/- knockout cells were also similar, except for the difference in the initial delay of a peak survival for RAD51D -/- and lower survival ratios. The second phase of increase in the survival in these cell lines was much slower in XRCC2 -/- , XRCC3 -/- , RAD51C -/- nd RAD51D -/- and further delayed when compared with that of RAD52 -/- and parental DT40 cells suggesting a dependence on their cell cycle kinetics. This study demonstrates that the participation of RAD52, XRCC2, XRCC3, RAD51C and RAD51D in the DSB repair via homologous recombination is of less importance in comparison to RAD54, as RAD54 deficient cells demonstrated complete absence of SLD recovery

  7. Role of repair saturation in the response of plateau-phase Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Braby, L.A.; Nelson, J.M.; Metting, N.F.

    1987-01-01

    Two repair rates are seen in split-dose experiments on starved plateau-phase CHO cells. It has been assumed that this indicates two different processes repairing two distinct types of sublethal damage. However results of experiments at different dose levels are not consistent with models that assume that the damage is entirely sublethal. Another hypothesis that has been considered is the saturation of a repair mechanism having a limited pool of repair enzymes. Such saturation phenomena have been observed in biochemical repair studies and have thus formed the basis for a model of cellular response, which was shown to be capable of producing dose response curves in good agreement with experimental observations. This model can be extended to account for both dose-rate and split-dose effects

  8. Repair and dose-response at low doses

    International Nuclear Information System (INIS)

    Totter, J.R.; Weinberg, A.M.

    1977-04-01

    The DNA of each individual is subject to formation of some 2-4 x 10 14 ion pairs during the first 30 years of life from background radiation. If a single hit is sufficient to cause cancer, as is implicit in the linear, no-threshold theories, it is unclear why all individuals do not succumb to cancer, unless repair mechanisms operate to remove the damage. We describe a simple model in which the exposed population displays a distribution of repair thresholds. The dose-response at low dose is shown to depend on the shape of the threshold distribution at low thresholds. If the probability of zero threshold is zero, the response at low dose is quadratic. The model is used to resolve a longstanding discrepancy between observed incidence of leukemia at Nagasaki and the predictions of the usual linear hypothesis

  9. 'Regular' and 'emergency' repair

    International Nuclear Information System (INIS)

    Luchnik, N.V.

    1975-01-01

    Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)

  10. The influence of split doses of γ-radiation on human erythrocytes

    International Nuclear Information System (INIS)

    Koziczak, R.; Gonciarz, M.; Krokosz, A.; Szweda-Lewandowska, Z.

    2003-01-01

    Human erythrocyte suspensions in an isotonic Na-phosphate buffer, pH 7.4, of hematocrit of 2% were exposed under air to gamma radiation at a dose rate of 2.2 kGy. Erythrocytes were irradiated with single doses, and identical doses split into two fractions with an interval time of 3.5 h between following exposures. The obtained results indicated that the irradiation of enucleated human erythrocytes with split doses caused a reduction of hemolysis (2.4 times), a decrease in the level of damage to membrane lipids and the contents of MetHb, compared with identical single doses. However, the splitting of radiation doses did not change the level of damage to the membrane proteins, as was estimated with a maleimide spin label. The obtained results suggest that a decrease in the level of damage to lipids was related to a decrease in hemolysis. (author)

  11. Repair of human DNA in molecules that replicate or remain unreplicated following ultraviolet irradiation

    International Nuclear Information System (INIS)

    Waters, R.

    1980-01-01

    The extent of DNA replication, the incidence of uv induced pyrimidine dimers and the repair replication observed after their excision was monitored in human fibroblasts uv irradiated with single or split uv doses. The excision repair processes were measured in molecules that remained unreplicated or in those that replicated after the latter uv irradiation. Less DNA replication was observed after a split as opposed to single uv irradiation. Furthermore, a split dose did not modify the excision parameters measured after a single irradiation, regardless of whether the DNA had replicated or not

  12. Split high-dose oral levothyroxine treatment as a successful therapy option in myxedema coma.

    Science.gov (United States)

    Charoensri, Suranut; Sriphrapradang, Chutintorn; Nimitphong, Hataikarn

    2017-10-01

    High-dose intravenous thyroxine (T4) is the preferable treatment for myxedema coma. We describe the clinical course of a 69-year-old man who presented with myxedema coma and received oral levothyroxine (LT4) therapy (1 mg) in a split dose. This suggests split high-dose oral LT4 as a therapeutic option in myxedema coma.

  13. Isoniazid, pyrazinamide and rifampicin content variation in split fixed-dose combination tablets.

    Science.gov (United States)

    Pouplin, Thomas; Phuong, Pham Nguyen; Toi, Pham Van; Nguyen Pouplin, Julie; Farrar, Jeremy

    2014-01-01

    In most developing countries, paediatric tuberculosis is treated with split tablets leading to potential inaccuracy in the dose delivery and drug exposure. There is no data on the quality of first-line drugs content in split fixed-dose combination tablets. To determine Isoniazid, Pyrazinamide and Rifampicin content uniformity in split FDC tablets used in the treatment of childhood tuberculosis. Drug contents of 15 whole tablets, 30 half tablets and 36 third tablets were analysed by high performance liquid chromatography. The content uniformity was assessed by comparing drug content measured in split portions with their expected amounts and the quality of split portions was assessed applying qualitative specifications for whole tablets. All whole tablets measurements fell into the USP proxy for the three drugs. But a significant number of half and third portions was found outside the tolerated variation range and the split formulation failed the requirements for content uniformity. To correct for the inaccuracy of splitting the tablets into equal portions, a weight-adjustment strategy was used but this did not improve the findings. In split tablets the content of the three drugs is non-uniform and exceeded the USP recommendations. There is an absolute need to make child-friendly formulations available for the treatment of childhood tuberculosis.

  14. Split high‐dose oral levothyroxine treatment as a successful therapy option in myxedema coma

    OpenAIRE

    Charoensri, Suranut; Sriphrapradang, Chutintorn; Nimitphong, Hataikarn

    2017-01-01

    Key Clinical Message High‐dose intravenous thyroxine (T4) is the preferable treatment for myxedema coma. We describe the clinical course of a 69‐year‐old man who presented with myxedema coma and received oral levothyroxine (LT4) therapy (1 mg) in a split dose. This suggests split high‐dose oral LT4 as a therapeutic option in myxedema coma.

  15. Adaptive repair induced by small doses of γ radiation in repair-defective human cells

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; L'vova, G.N.; Vasil'eva, I.M.; Sinel'shchikova, T.A.; Semyachkina, A.N.

    1993-01-01

    Adaptive repair induced by small doses of gamma radiation was studied in repair-defective xeroderma pigmentosum, gout, and homocystinuria cells. The adaptation of cells induced by small doses of radiation was estimated after subsequent exposure to gamma radiation, 4-nitroquinoline-1-oxide, and N-methyl-N-nitro-N-nitrosoguanidine by three methods: (1) by the reduction in DNA breaks; (2) by induction of resistant DNA synthesis; and (3) by increased reactivation of vaccinia virus. The three cell types in response to the three different mutagens revealed differences in the mechanism of cell defense in excision repair, in the adaptive response, and in Weigl reactivation

  16. Efficacy of prokinetics with a split-dose of polyethylene glycol in bowel preparation for morning colonoscopy: a randomized controlled trial.

    Science.gov (United States)

    Kim, Hyoung Jun; Kim, Tae Oh; Shin, Bong Chul; Woo, Jae Gon; Seo, Eun Hee; Joo, Hee Rin; Heo, Nae-Yun; Park, Jongha; Park, Seung Ha; Yang, Sung Yeon; Moon, Young Soo; Shin, Jin-Yong; Lee, Nae Young

    2012-01-01

    Currently, a split-dose of polyethylene glycol (PEG) is the mainstay of bowel preparation due to its tolerability, bowel-cleansing action, and safety. However, bowel preparation with PEG is suboptimal because residual fluid reduces the polyp detection rate and requires a more thorough colon inspection. The aim of our study was to demonstrate the efficacy of a sufficient dose of prokinetics on bowel cleansing together with split-dose PEG. A prospective endoscopist-blinded study was conducted. Patients were randomly allocated to two groups: prokinetic with split-dose PEG or split-dose PEG alone. A prokinetic [100 mg itopride (Itomed)], was administered twice simultaneously with each split-dose of PEG. Bowel-cleansing efficacy was measured by endoscopists using the Ottawa scale and the segmental fluidity scale score. Each participant completed a bowel preparation survey. Mean scores from the Ottawa scale, segmental fluid scale, and rate of poor preparation were compared between both groups. Patients in the prokinetics with split-dose PEG group showed significantly lower total Ottawa and segmental fluid scores compared with patients in the split-dose of PEG alone group. A sufficient dose of prokinetics with a split-dose of PEG showed efficacy in bowel cleansing for morning colonoscopy, largely due to the reduction in colonic fluid. Copyright © 2012 S. Karger AG, Basel.

  17. Effects of low dose radiation on repair processes in human lymphocytes

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Egg, D.; Guenther, R.

    1978-10-01

    DNA excision repair was investigated in lymphocytes of persons occupationally exposed to low dose radiation of 222 Rn. Autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine incorporation by repair replication into double stranded and single-strand containing DNA fractions obtained by BND cellulose chromatography seem to indicate a stimulatory effect of repeated low dose radiation on repair enzymes. (author)

  18. An experimental study on the alteration of thermal enhancement ratio by combination of split dose hyperthermia irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ok; Kim, Hee Seup [Ewha Womens University College of Medicine, Seoul (Korea, Republic of)

    1983-06-15

    The study was undertaken to evaluate the alteration of thermal enhancement ratio as a function of time intervals between two split dose hyperthermias followed by irradiation. For the experiments, 330 mice were divided into 3 groups; the first, 72 mice were used to evaluate the heat reaction by single dose hyperthermia and heat resistance by split dose hyperthermia, the second, 36 mice were used to evaluate the radiation reaction by irradiation only, and the third, 222 mice were used for TER observation by combination of single dose hyperthermia and irradiation, and TER alteration by combination of split dose hyperthermia and irradiation. For each group the skin reaction score of mouse tail was used for observation and evaluation of the result of heat and irradiation. The results obtained are summarized as follows: 1. The heating time resulting 50% necrosis (ND{sub 5}0) Was 101 minutes in 43 .deg. C and 24 minutes in 45 .deg. C hyperthermia, which indicated that three is reciprocal proportion between temperature and heating time. 2. Development of heat resistance was observed by split dose hyperthermia. 3. The degree of skin reaction by irradiation only was increased proportionally as a function of radiation dose, and calculated radiation dose corresponding to skin score 1.5 (D{sub 1}.5) was 4,137 rads. 4. Obtained thermal enhancement ratio by combination of single dose hyperthermia and irradiation was increased proportionally as a function of heating time. 5. Thermal enhancement ratio was decreased by combination of split dose hyperthermia and irradiation, which was less intense and lasted longer than development of heat resistance. In summary, these studies indicate that the alteration of thermal enhancement ratio has influence on heat resistance by split dose hyperthermia and irradiation.

  19. Modification of damage following low doses

    International Nuclear Information System (INIS)

    Braby, L.A.; Nelson, J.M.; Metting, N.F.

    1988-01-01

    At very low doses the damage-interaction mechanism is responsible for very little lethal or potentially lethal damage, and repair of the latter should essentially disappear. An alternative model suggests that potentially lethal damage is either repaired with a constant half time or misrepaired at a rate which is proportional to the square of the damage concentration. In this case, as the dose decreases, the probability of misrepair decreases faster than the probability of repair, and repair becomes a more pronounced feature of the cell response. Since the consequence of unrepaired damage is an important question in determining the effects of low doses of radiation delivered at low dose rates, we have attempted to determine which of these two types of models is consistent with the response of plateau-phase CHO cells. In the earlier experiments, there was no indication of repair after a 50-rad exposure with a 24-hour split dose or plating delay; in fact, immediate plating resulted in survival slightly above control and delayed plating in survival slightly below the control value

  20. Endoleak detection using single-acquisition split-bolus dual-energy computer tomography (DECT)

    Energy Technology Data Exchange (ETDEWEB)

    Javor, D.; Wressnegger, A.; Unterhumer, S.; Kollndorfer, K.; Nolz, R.; Beitzke, D.; Loewe, C. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria)

    2017-04-15

    To assess a single-phase, dual-energy computed tomography (DECT) with a split-bolus technique and reconstruction of virtual non-enhanced images for the detection of endoleaks after endovascular aneurysm repair (EVAR). Fifty patients referred for routine follow-up post-EVAR CT and a history of at least one post-EVAR follow-up CT examination using our standard biphasic (arterial and venous phase) routine protocol (which was used as the reference standard) were included in this prospective trial. An in-patient comparison and an analysis of the split-bolus protocol and the previously used double-phase protocol were performed with regard to differences in diagnostic accuracy, radiation dose, and image quality. The analysis showed a significant reduction of radiation dose of up to 42 %, using the single-acquisition split-bolus protocol, while maintaining a comparable diagnostic accuracy (primary endoleak detection rate of 96 %). Image quality between the two protocols was comparable and only slightly inferior for the split-bolus scan (2.5 vs. 2.4). Using the single-acquisition, split-bolus approach allows for a significant dose reduction while maintaining high image quality, resulting in effective endoleak identification. (orig.)

  1. Superiority of split dose midazolam as conscious sedation for outpatient colonoscopy.

    Science.gov (United States)

    Lee, Hyuk; Kim, Jeong Hwan

    2009-08-14

    To elucidate the efficacy and safety of a split dose of midazolam in combination with meperidine for colonoscopy. Eighty subjects undergoing outpatient colonoscopy were randomly assigned to group A or B. Group A (n = 40) received a split dose of midazolam in combination with meperidine. Group B (n = 40) received a single dose of midazolam in combination with meperidine. Outcome measurements were level of sedation, duration of sedation and recovery, degree of pain and satisfaction, procedure-related memory, controllability, and adverse events. Group A had a lower frequency of significant hypoxemia (P = 0.043) and a higher sedation score on withdrawal of the endoscope from the descending colon than group B (P = 0.043). Group B recovered from sedation slightly sooner than group A (P memory, except insertion-related memory, were lower in group A one week after colonoscopic examination (P = 0.018 and P sedation status during colonoscopic examination and a reduction in procedure-related pain and memory, but resulted in longer recovery time.

  2. Use of 99mTc-bicisate in activation studies by split-dose technique

    DEFF Research Database (Denmark)

    Holm, S; Madsen, P L; Sperling, B

    1994-01-01

    The properties of the brain single photon emission computed tomography (SPECT) tracer 99mTc-bicisate (ethyl cysteinate dimer) were examined in regard to its use in test-retest studies with short-interval, split-dose studies. The stimulus applied in these tests was a visual activation by a "flicke......The properties of the brain single photon emission computed tomography (SPECT) tracer 99mTc-bicisate (ethyl cysteinate dimer) were examined in regard to its use in test-retest studies with short-interval, split-dose studies. The stimulus applied in these tests was a visual activation...

  3. Enhancement of postreplication repair in ultraviolet-light-irradiated Chinese hamster cells by irradiation in G2 or s-phase

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Aebersold, P.M.; Setlow, R.B.

    1978-01-01

    Postreplication repair in synchronous Chinese hamster cells was determined after split doses of ultraviolet (uv) radiation. Repair was enhanced by irradiation of cells in G 2 or S-phase with a small dose of uv radiation at least 1.5 h before a three-fold larger dose of uv. There was significantly greater enhancement when the first dose was given in G 2 than when it was given in the S-phase 0.5 to 1.5 h before the test dose. These data indicate that enhancement of postreplication repair does not require active DNA replication and qualitatively is independent of when in the cell cycle the cells are irradiated

  4. Protective effect of hypoxia in the ram testis during single and split-dose X-irradiation

    International Nuclear Information System (INIS)

    Vliet, J. van; Wensing, C.J.G.; Bootsma, A.L.; Peperzeel, H.A. van; Schipper, J.

    1988-01-01

    Spertogonial stem-cell survival in the ram was studied after single (6Gy) and split-dose X-irradiation both under normal and hypoxic conditions. Hypoxia was induced by inflation of an occluder implanted around the testicular artery. The occluders were inflated about 10 min before irradiation and deflated immediately after. Stem-cell survival was measured at 5 or 7 weeks after irradiation by determination of the Repopulation Index (RI) in histological testis sections. The RI-values after fractionated irradiation were only half those after single dose irradiation. Hypoxia had a protective effect on the stem-cell survival. After split-dose irradiation under hypoxic conditions two times more stem cells survived than under normal oxic conditions; the RI-values increased from 34% (oxic) to 68% (hypoxic). This effect of hypoxia was also found after single dose irradiation where the RI-values increased from 68% (oxic) to 84% (hypoxic). The development of the epithelium in repopulated tubules was also studied. Under hypoxia, a significantly higher fraction of tubules with complete epithelium was found after single (38 vs. 4%) as well as after split-dose irradiation (12 vs. 0%)

  5. Mathematical simulation of dose fields in the planning of repair stuff irradiation

    International Nuclear Information System (INIS)

    Tashlykov, O.L.; Shcheklein, S.E.; Markelov, N.I.

    2004-01-01

    The role of planning stage in the cycle of optimization when organizing repair works at NPPs is discussed. The methods used for forecasting irradiation doses for personnel engaged in repair works are considered. The importance of the problems of simulating the doses connected with estimation of dose rate values in different points of the working area and working time period in corresponding radiation fields is shown. The calculated data on distributions of γ radiation dose rate fields from surface and linear sources are given [ru

  6. Evidence that progression of cells into S-phase is not a prerequisite for recovery between split doses of U.V.-light in synchronized and plateau phase cultures of Ehrlich ascites tumour cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Nuesse, M.

    1982-01-01

    The ability of Ehrlich ascites tumour cells (EAT-cells) to perform split-dose recovery after U.V. exposure was studied with unfed plateau phase as well as with synchronized cells selected from exponentially growing cultures. The cells were kept in balanced salt solution which inhibited the progression of the cells through the cell cycle. The results indicated that split-dose recovery occurred in EAT-cells in all phases of the cell cycle and that progression of the cells into S-phase was not a prerequisite for this type of repair. The second-dose survival curves of G 1 -and S-phase cells showed, 24 hours after the first U.V. exposure, a shoulder width comparable to that of singly irradiated cells. Second-dose survival curves for G 2 -cells showed, after the same time interval, a shoulder width smaller than that for singly exposed cells, presumably due to some cell division. The recovery time constant (t 50 between 4 and 8 hours) increased with increasing U.V. exposure. (author)

  7. Three-dimensional dose accumulation in pseudo-split-field IMRT and brachytherapy for locally advanced cervical cancer.

    Science.gov (United States)

    Sun, Baozhou; Yang, Deshan; Esthappan, Jackie; Garcia-Ramirez, Jose; Price, Samantha; Mutic, Sasa; Schwarz, Julie K; Grigsby, Perry W; Tanderup, Kari

    2015-01-01

    Dose accumulation of split-field external beam radiotherapy (EBRT) and brachytherapy (BT) is challenging because of significant EBRT and BT dose gradients in the central pelvic region. We developed a method to determine biologically effective dose parameters for combined split-field intensity-modulated radiation therapy (IMRT) and image-guided BT in locally advanced cervical cancer. Thirty-three patients treated with split-field-IMRT to 45.0-51.2 Gy in 1.6-1.8 Gy per fraction to the elective pelvic lymph nodes and to 20 Gy to the central pelvis region were included in this study. Patients received six weekly fractions of high-dose rate BT to 6.5-7.3 Gy per fraction. A dose tracker software was developed to compute the equivalent dose in 2-Gy fractions (EQD2) to gross tumor volume (GTV), organs-at-risk and point A. Total dose-volume histogram parameters were computed on the 3D combined EQD2 dose based on rigid image registration. The dose accumulation uncertainty introduced by organ deformations between IMRT and BT was evaluated. According to International Commission on Radiation Unit and Measurement and GEC European Society for Therapeutic Radiology and Oncology recommendations, D98, D90, D50, and D2cm3 EQD2 dose-volume histogram parameters were computed. GTV D98 was 84.0 ± 26.5 Gy and D2cc was 99.6 ± 13.9 Gy, 67.4 ± 12.2 Gy, 75.0 ± 10.1 Gy, for bladder, rectum, and sigmoid, respectively. The uncertainties induced by organ deformation were estimated to be -1 ± 4 Gy, -3 ± 5 Gy, 2 ± 3 Gy, and -3 ± 5 Gy for bladder, rectum, sigmoid, and GTV, respectively. It is feasible to perform 3D EQD2 dose accumulation to assess high and intermediate dose regions for combined split-field IMRT and BT. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. Aspects of DNA repair and nucleotide pool imbalance

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R.

    1985-01-01

    Evidence that optimum repair depends on adequate pools of deoxynucleotide triphosphates (dNTPs) comes from the study of pyrimidine auxotrophs of Ustilago maydis. These strains are sensitive to UV light and X-rays, and for pyr1-1 it has been shown that the intracellular concentration of dTTP is reduced about 7-fold. The survival curve of pyr1-1 after UV-treatment, and split dose experiments with wild-type cells, provide evidence for an inducible repair mechanism, which probably depends on genetic recombination. Although inducible repair saves cellular resources, it has the disadvantage of becoming ineffective at doses which are high enough to inactivate the repressed structural gene(s) for repair enzymes. It is clear that a wide variety of repair mechanisms have evolved to remove lesions which arise either spontaneously or as a result of damage from external agents. Nevertheless, it would be incorrect to assume that all species require all possible pathways of repair. It is now well established that the accuracy of DNA and protein synthesis depends on proof-reading or editing mechanisms. Optimum accuracy levels will evolve from the balance between error avoidance in macromolecular synthesis and physiological efficiency in growth and propagation.

  9. Induction of lacI- mutations in Escherichia coli cells after single and split-dose irradiation

    International Nuclear Information System (INIS)

    Kozubek, S.; Ryznar, L.

    1992-01-01

    In the lacI system of Escherichia coli, X-ray mutagenesis follows a linear-quadratic curve with suppression; the survival curve is exponential. Dose fractionation leads to nearly complete repair of premutational lesions during an incubation interval of 3.5 h. Repair starts with a delay of 1.5-2 h, suggesting the involvement of an inducible repair/mutation fixation system. The dose-dependence of mutagenesis is described by a simple model assuming two hits being required. A probable explanation might be that the premutagenic lesions consist of two closely spaced lesions on the opposite strands of the DNA molecule. (author)

  10. Mutation induction in haploid yeast after split-dose radiation-exposure. Pt. 1

    International Nuclear Information System (INIS)

    Schenk, K.; Zoelzer, F.; Kiefer, J.

    1989-01-01

    Mutation induction was investigated in wild-type haploid yeast Saccharomyces cerevisiae after split-dose UV-irradiation. Cells were exposed to fractionated 254 nm-UV-doses separated by intervals from 0 to 6 h with incubation either on non-nutrient or nutrient agar between. The test parameter was resistance to canavanine. If modifications of sensitivity due to incubation are appropriately taken into account there is no change of mutation frequency. (orig.)

  11. Repair of radiation damage caused by cyclotron-produced neutrons

    International Nuclear Information System (INIS)

    Martins, B.I.

    1979-01-01

    Hall et al. present experimental data on repair of sublethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 60 Co γ rays. Hall and Kraljevic present experimental data on repair of potentially lethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 210 kVp x rays. These results of Hall et al. are very difficult to explain from basic concepts in radiobiology. Contrary to Rossi, these data do not support his thesis that repair of radiation damage is dose-dependent and linear energy transfer independent. Nor do these results meet the expectations of multitarget-single hit theory which would require dose-independent repair equal to n. The observation of the same extrapolation number for neutrons and for x rays is also surprising. From the point of view of radiotherapy, the doses of interest are about 140 rad for neutrons and about 300 rad for x rays. There are no data for repair of potentially lethal damage below 800 rad for x rays and 400 rad for neutrons. The difference in survival between single and split dose is negligible up to a total of about 600 rad of x rays or of neutrons. These data of Hall et al. therefore have little significance to radiotherapists and are an enigma to radiobiologists

  12. Continuous Aspirin Use Does Not Increase Bleeding Risk of Split-Thickness Skin Transplantation Repair to Chronic Wounds.

    Science.gov (United States)

    Sun, Yanwei; Wang, Yibing; Li, Liang; Zhang, Zheng; Wang, Ning; Wu, Dan

    Discontinuation of aspirin therapy before cutaneous surgery may cause serious complications. The aim of this prospective study was to evaluate the bleeding risk of split-thickness skin transplantation repair to chronic wounds in patients on aspirin therapy. A total of 97 patients who underwent split-thickness skin transplantation surgery of chronic wounds during a 2-year period were enrolled. They were categorized on the basis of aspirin therapies. The primary outcome was postoperative bleeding and bleeding complications. Univariate analysis was performed to examine the association between aspirin and bleeding complications. Among the 26 patients taking aspirin continuously in group A, there were 5 bleeding complications (19.23%). Among the 55 nonusers in group B, there were 10 bleeding complications (18.18%). Among the 16 discontinuous patients in group C, there were 3 bleeding complications (18.75%). No statistical differences were found among the groups ( P = .956). Univariate analysis showed that continuous aspirin use was not significantly associated with bleeding complications (odds ratio, 0.933; 95% confidence interval, 0.283-3.074; P = .910 in the aspirin and control groups) and that discontinuous aspirin use was not significantly associated with bleeding complications (odds ratio, 0.963; 95% confidence interval, 0.230-4.025; P = .959 in the aspirin and control groups; odds ratio, 0.969; 95% confidence interval, 0.198-4.752; P = .969 in the aspirin and discontinuous groups). Continuous aspirin use does not produce an additional bleeding risk in patients who undergo split-thickness skin transplantation repair of chronic wounds.

  13. The optimal fraction size in high-dose-rate brachytherapy: dependency on tissue repair kinetics and low-dose rate

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Fowler, Jack F.

    2002-01-01

    Background and Purpose: Indications of the existence of long repair half-times on the order of 2-4 h for late-responding human normal tissues have been obtained from continuous hyperfractionated accelerated radiotherapy (CHART). Recently, these data were used to explain, on the basis of the biologically effective dose (BED), the potential superiority of fractionated high-dose rate (HDR) with large fraction sizes of 5-7 Gy over continuous low-dose rate (LDR) irradiation at 0.5 Gy/h in cervical carcinoma. We investigated the optimal fraction size in HDR brachytherapy and its dependency on treatment choices (overall treatment time, number of HDR fractions, and time interval between fractions) and treatment conditions (reference low-dose rate, tissue repair characteristics). Methods and Materials: Radiobiologic model calculations were performed using the linear-quadratic model for incomplete mono-exponential repair. An irradiation dose of 20 Gy was assumed to be applied either with HDR in 2-12 fractions or continuously with LDR for a range of dose rates. HDR and LDR treatment regimens were compared on the basis of the BED and BED ratio of normal tissue and tumor, assuming repair half-times between 1 h and 4 h. Results: With the assumption that the repair half-time of normal tissue was three times longer than that of the tumor, hypofractionation in HDR relative to LDR could result in relative normal tissue sparing if the optimum fraction size is selected. By dose reduction while keeping the tumor BED constant, absolute normal tissue sparing might therefore be achieved. This optimum HDR fraction size was found to be largely dependent on the LDR dose rate. On the basis of the BED NT/TUM ratio of HDR over LDR, 3 x 6.7 Gy would be the optimal HDR fractionation scheme for replacement of an LDR scheme of 20 Gy in 10-30 h (dose rate 2-0.67 Gy/h), while at a lower dose rate of 0.5 Gy/h, four fractions of 5 Gy would be preferential, still assuming large differences between tumor

  14. Radiation damage repair-preliminary studies

    International Nuclear Information System (INIS)

    Bird, R.P.

    1985-01-01

    An experiment was done with Cs-137 gamma rays to determine the effect of temperature on repair processes and cell-cycle progression. Chinese hamster V79 cells were synchronized with hydroxyurea to be at the G 1 /S transition at time T = O. Starting then at room temperature and either holding at room temperature of incubating at 37 0 C, the responses to a single dose at time T were compared, split doses separated by time T, were comparaed at different temperature, and delayed removal of hydroxyurea at the time T after a single dose at T = O was compared for the two temperatures. Reduced temperature was of minimal influence on the surviving fractions in all three cases. 9 refs., 1 fig

  15. Induction of mutations in blue-green alga Anacystis nidulans by consolidated and split UV irradiation

    International Nuclear Information System (INIS)

    Amla, D.V.

    1979-01-01

    Ultraviolet mutability of consolidated and split dose treatment in A. nidulans was investigated with reference to induction of phage- and streptomycin-resistant markers. The consolidated UV treatment induced both the markers about 100-150-fold, whereas under photoreactivating conditions the survival of alga was enhanced and mutation frequency was decreased. The split UV treatment with 6 hr dark incubation between two UV exposures enhanced the survival and mutation frequencies to 500-700 fold above the back-ground level. The data give indirect evidence for the presence of error-prone dark repair system in this organism. (auth.)

  16. γ-ray dose rate effect in DNA double-strand break repair deficient murine cells

    International Nuclear Information System (INIS)

    Li Liya; Li Peiwen

    2002-01-01

    Objective: To analyze the dose rate effect and potentially lethal damage repair in DNA double-strand break repair deficient murine cells (SCID) irradiated by γ-ray. Methods: The wild type (CB.17+/+) and SCID cells were exposed to γ-ray at high and low dose rates. The high dose rate exposure was fractionated into two equal doses at 24 h intervals. The survival rates of irradiated cells were calculated by clone-forming analysis. Results: When γ-ray was given to wild type (CB.17+/+) cells in two fractions at 24 h intervals, the survival rate was significantly higher than that when the same total dose was given singly. In contrast, there was no difference in the survival rates between the single and fractionated exposure in SCID cells. SCID cells were more sensitive than CB.17+/+ cells to both low and high dose rates γ-ray exposure for cell killing. The survival rate by low dose rate exposure was significantly higher than that by high dose rate exposure, not only in CB.17+/+ cells but also in SCID cells. Conclusions: SCID cells are deficient in repairing γ-ray induced double-strand breaks. There is dose rate effect in both SCID and CB.17+/+ cells

  17. DNA excision repair as a component of adaptation to low doses of ionizing radiation Escherichia coli

    International Nuclear Information System (INIS)

    Huang, H.; Claycamp, H.G.

    1993-01-01

    In this study the authors examined whether or not DNA excision repair is a component of adaptation induced by very low-dose ionizing radiation in Escherichia coli, a well-characterized prokaryote, and investigated the relationship between enhanced excision repair and the SOS response. Their data suggest that there seems to be narrow 'windows' of dose-effect for the induction of SOS-independent DNA excision repair. Being similar to mammalian cell studies, the dose range for this effect was about 200-fold less than D 37 for radiation survival. (author)

  18. Split-Course, High-Dose Palliative Pelvic Radiotherapy for Locally Progressive Hormone-Refractory Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gogna, Nirdosh Kumar, E-mail: kumar_gogna@health.qld.gov.au [Radiation Oncology Services, Mater Centre, Brisbane, Queensland (Australia); Baxi, Siddhartha; Hickey, Brigid; Baumann, Kathryn [Radiation Oncology Services, Mater Centre, Brisbane, Queensland (Australia); Burmeister, Elizabeth [Princess Alexandra Hospital, Brisbane, Queensland (Australia); Holt, Tanya [Radiation Oncology Services, Mater Centre, Brisbane, Queensland (Australia)

    2012-06-01

    Purpose: Local progression, in patients with hormone-refractory prostate cancer, often causes significant morbidity. Pelvic radiotherapy (RT) provides effective palliation in this setting, with most published studies supporting the use of high-dose regimens. The aim of the present study was to examine the role of split-course hypofractionated RT used at our institution in treating this group of patients. Methods and Materials: A total of 34 men with locoregionally progressive hormone-refractory prostate cancer, treated with a split course of pelvic RT (45-60 Gy in 18-24 fractions) between 2000 and 2008 were analyzed. The primary endpoints were the response rate and actuarial locoregional progression-free survival. Secondary endpoints included overall survival, compliance, and acute and late toxicity. Results: The median age was 71 years (range, 53-88). Treatment resulted in an overall initial response rate of 91%, a median locoregional progression-free survival of 43 months, and median overall survival of 28 months. Compliance was excellent and no significant late toxicity was reported. Conclusions: The split course pelvic RT described has an acceptable toxicity profile, is effective, and compares well with other high-dose palliative regimens that have been previously reported.

  19. Mutation induction in haploid yeast after split-dose radiation-exposure. I. Fractionated UV-irradiation.

    Science.gov (United States)

    Schenk, K; Zölzer, F; Kiefer, J

    1989-01-01

    Mutation induction was investigated in wild-type haploid yeast Saccharomyces cerevisiae after split-dose UV-irradiation. Cells were exposed to fractionated 254 nm-UV-doses separated by intervals from 0 to 6 h with incubation either on non-nutrient or nutrient agar between. The test parameter was resistance to canavanine. If modifications of sensitivity due to incubation are appropriately taken into account there is no change of mutation frequency.

  20. Hematopoietic tissue repair under chronic low daily dose irradiation

    International Nuclear Information System (INIS)

    Seed, T.M.

    1994-01-01

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). We have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3-26.3 cGy d -1 ). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup (1), the failure to augment basic m-pair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments particularly marked within erythroid compartments. that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccomodated and either prone- or not prone to ML, subgroup 2 ampersand 3 appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high- tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity

  1. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Yezzi, M.J.

    1985-01-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, was compared to the wild-type cell, CHO-SC1, in single- and split-radiation-dose schemes. When the cultures were incubated at 40 0 C for 2 hrs before a first dose and maintained at 40 0 C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal X-ray damage. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Distinct perturbations in the cell-cycle progression were noted following heat alone or heat with radiation. A delay in the progression of synchronized G 1 -phase and S-phase cells was demonstrated autoradiographically after inhibition of protein synthesis. In addition, treated S-phase cells showed a transient increase in the percent labelled cells after the cells were returned to their normal growth temperature of 35 0 C. This observation was suggestive of an unusual pattern of DNA synthesis during the recovery period. Split-dose experiments were done using incubation with cycloheximide to chemically inhibit protein synthesis. Both the chemical and thermal inhibition of protein synthesis substantiate its necessity for the repair of sublethal damage

  2. Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite

    International Nuclear Information System (INIS)

    Sykora, Peter; Snow, Elizabeth T.

    2008-01-01

    Base excision repair (BER) is crucial for development and for the repair of endogenous DNA damage. However, unlike nucleotide excision repair, the regulation of BER is not well understood. Arsenic, a well-established human carcinogen, is known to produce oxidative DNA damage, which is repaired primarily by BER, whilst high doses of arsenic can also inhibit DNA repair. However, the mechanism of repair inhibition by arsenic and the steps inhibited are not well defined. To address this question we have investigated the regulation of DNA polymerase β (Pol β) and AP endonuclease (APE1), in response to low, physiologically relevant doses of arsenic. GM847 lung fibroblasts and HaCaT keratinocytes were exposed to sodium arsenite, As(III), and mRNA, protein levels and BER activity were assessed. Both Pol β and APE1 mRNA exhibited significant dose-dependant down regulation at doses of As(III) above 1 μM. However, at lower doses Pol β mRNA and protein levels, and consequently, BER activity were significantly increased. In contrast, APE1 protein levels were only marginally increased by low doses of As(III) and there was no correlation between APE1 and overall BER activity. Enzyme supplementation of nuclear extracts confirmed that Pol β was rate limiting. These changes in BER correlated with overall protection against sunlight UV-induced toxicity at low doses of As(III) and produced synergistic toxicity at high doses. The results provide evidence that changes in BER due to low doses of arsenic could contribute to a non-linear, threshold dose response for arsenic carcinogenesis

  3. Defective recovery of semi-conservative DNA synthesis in xeroderma pigmentosum cells following split-dose ultraviolet irradiation

    International Nuclear Information System (INIS)

    Moustacchi, E.; Ehmann, U.K.; Friedberg, E.C.

    1979-01-01

    In normal human fibroblasts the authors observe an enhancement of the recovery of the rate of semi-conservative DNA synthesis after split-dose UV-irradation relative to a single total UV dose. The enhanced recovery is totally absent in both a xeroderma pigmentosum variant line and two xeroderma pigmentosum lines belonging to complementation groups A and C. (Auth.)

  4. Implications of tissue target-cell survival-curve shape for values of split-dose recovery doses: late versus early effects

    International Nuclear Information System (INIS)

    Redpath, J.L.; Peel, D.M.; Hopewell, J.W.

    1984-01-01

    Recent data from this laboratory on split-dose recovery for early and late effects in pig skin are consistent with the linear-quadratic model for cell survival, and with relative cell survival-curve shapes for early- and late-effect target cells where the early-effect cells have an intially steeper and straighter survival-curve than the late-effect cells. (author)

  5. Implementation of a split-bolus single-pass CT protocol at a UK major trauma centre to reduce excess radiation dose in trauma pan-CT

    International Nuclear Information System (INIS)

    Leung, V.; Sastry, A.; Woo, T.D.; Jones, H.R.

    2015-01-01

    Aim: To quantify the dose reduction and ensure that the use of a split-bolus protocol provided sufficient vascular enhancement. Materials and methods: Between 1 January 2014 and 31 May 2014, both split bolus and traditional two-phase scans were performed on a single CT scanner (SOMATOM Definition AS+, Siemens Healthcare) using a two-pump injector (Medrad Stellant). Both protocols used Siemens' proprietary tube current and tube voltage modulation techniques (CARE dose and CARE kV). The protocols were compared retrospectively to assess the dose–length product (DLP), aortic radiodensity at the level of the coeliac axis and radiodensity of the portal vein. Results: There were 151 trauma CT examinations during this period. Seventy-eight used the split-bolus protocol. Seventy-one had traditional two-phase imaging. One patient was excluded as they were under the age of 18 years. The radiodensity measurements for the portal vein were significantly higher (p<0.001) in the split-bolus protocol. The mean aortic enhancement in both protocols exceeded 250 HU, although the traditional two-phase protocol gave greater arterial enhancement (p<0.001) than the split-bolus protocol. The split-bolus protocol had a significantly lower (p<0.001) DLP with 43.5% reduction in the mean DLP compared to the traditional protocol. Conclusion: Split-bolus CT imaging offers significant dose reduction for this relatively young population while retaining both arterial and venous enhancement. -- Highlights: •We implemented a split bolus pan-CT protocol for trauma CT. •We compared the radiation dose and vascular enhancement of the split bolus protocol to a traditional two phase protocol. •The split bolus protocol had a 43.5% reduction in mean DLP

  6. Electiveness of photorepair, influence of dark-repair on shape of dose-response curves, and high-dose decline, in UV-induced colour mutations of Serratia

    International Nuclear Information System (INIS)

    Kaplan, R.W.

    1978-01-01

    Strain CV of Serratia marcescens mutates by UV with high frequency to 3 groups of mutants (w, h, s) differing in colour from the red wild-type. The mutational dose-response curve has a curvature corresponding to about 3 hits. It reaches a peak and declines at high doses. Inactivation curves have a broad shoulder and mostly, but not always, a break to a lesser slope at UV doses near the peak of mutations. Photo reactivation (PR) gives a dose reduction of about 2 for both inactivation and mutation including the break and peak. The dose curve with PR for w-mutations shows 1 hit-, the other types 2-hit curvature leading to a change of mutation spectrum with dose due to PR. The UV-sensitive mutant uvs21 of CV has a survival curve with a small shoulder and a long upward concavity without a break, and the mutation curve is of the one-hit type without a peak and decline. PR gives a dose reduction of 12 for inactivation and of 7.5 for mutation. The 3-hit mutation curve of CV is interpreted by assuming that 2 further hits are required to protect the 1-hit pre-mutations from being abolished by the repair lacking in uvs21. UV induction of SOS repair cannot be responsible for the 3-hit curvature because UVR of phages and induction of prophage are already saturated at rather low doses. As high-dose decline is not observed in uvs21, possibly the non-mutagenic repair lacking from uvs21 interferes with the mutation finishing processes at high doses in the repair-proficient strain CV. However, UV induction of this interference cannot be a one-hit process but requires a very large number of hits. (Auth.)

  7. Protein synthesis and sublethal damage repair in synchronized CHO cells

    International Nuclear Information System (INIS)

    Yezzi, M.J.; Tobias, C.A.; Blakely, E.A.

    1984-01-01

    The authors have previously reported that the split dose survival response to x-rays of asynchronous CHO-TSH1 cells is reduced if the cells are held at 40 0 C,a temperature that inhibits protein synthesis, for 2 hours before the first dose and during a 2-hour interval between doses. In conjunction with the survival experiments on asynchronous cells, the authors also examined the DNA rejoining ability in split dose studies with and without inhibition of protein synthesis. The results of these experiments suggest that inhibition of protein synthesis affects a pool of proteins that are necessary for the correct expression of the DNA, although they do not appear to be involved in rejoining DNA breaks. They have extended this work to the study of cells synchronized in G1 phase (2 hour post-mitosis) and S phase (10 hour post-mitosis). Autoradiographic analyses, using 3H-TdR pulse labeling, demonstrated that a delay in the progression of each synchronized cell population occurs after inhibition of protein synthesis. Data are reported on the effects of inhibition of protein synthesis on the ability of G1 and S phase cells to repair sublethal damage

  8. Effects of split-dose irradiation of the rabbit's eye - a histopathological study

    International Nuclear Information System (INIS)

    Grabenbauer, G.G.

    1987-01-01

    Thirty-six rabbits were included in a study investigating into the effects of split-dose 300 KV X-irradiation on the cornea, ciliary body, nictitating membrane and lacrimal gland. In each animal, soly the right the eye was irradiated using total doses of 21 Gy, 30 Gy, 36 Gy and 45 Gy that were administered according to a fixed schedule in fractions of 3 Gy five times per week. After latency periods of six weeks, three months and six months the animals receiving 21 Gy, 30 Gy and 36 Gy showed no changes of the bulbi, eye lids and lacrimal glands that could be ascertained by histopathological evaluation. In the animals exposed to the 45 Gy dose, changes of the cornea and conjunctiva caused by radiation injuries to the lacrimal glands and conjunctival goblet cells started to appear after a minimum period of 3 months. This dose level was also the threshold for the occurrence of corneal damage or even ulceration as a result of secondary reduction or qualitative change of lacrimal secretions. (ECB) [de

  9. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    Science.gov (United States)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  10. Split-bolus CT-urography using dual-energy CT: Feasibility, image quality and dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuru, E-mail: m2rbimn@gmail.com [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Kawai, Tatsuya; Ito, Masato; Ogawa, Masaki [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Ohashi, Kazuya [Nagoya City University Hospital, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Hara, Masaki; Shibamoto, Yuta [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan)

    2012-11-15

    Purpose: To prospectively evaluate the feasibility of dual-energy (DE) split-bolus CT-urography (CTU) and the quality of virtual non-enhanced images (VNEI) and DE combined nephrographic-excretory phase images (CNEPI), and to estimate radiation dose reduction if true non-enhanced images (TNEI) could be omitted. Patients and methods: Between August and September 2011, 30 consecutive patients with confirmed or suspected urothelial cancer or with hematuria underwent DE CT. Single-energy TNEI and DE CNEPI were obtained. VNEI was reconstructed from CNEPI. Image quality of CNEPI and VNEI was evaluated using a 5-point scale. The attenuation of urine in the bladder on TNEI and VNEI was measured. The CT dose index volume (CTDI (vol)) of the two scans was recorded. Results: The mean image quality score of CNEPI and VNEI was 4.7 and 3.3, respectively. The mean differences in urine attenuation between VNEI and TNEI were 14 {+-} 15 [SD] and -16 {+-} 29 in the anterior and posterior parts of the bladder, respectively. The mean CTDI (vol) for TNEI and CNEPI was 11.8 and 10.9 mGy, respectively. Omission of TNEI could reduce the total radiation dose by 52%. Conclusion: DE split-bolus CTU is technically feasible and can reduce radiation exposure; however, an additional TNEI scan is necessary when the VNEI quality is poor or quantitative evaluation of urine attenuation is required.

  11. A generalised formulation of the 'incomplete-repair' model for cell survival and tissue response to fractionated low dose-rate irradiation

    International Nuclear Information System (INIS)

    Nilsson, P.; Joiner, M.C.

    1990-01-01

    A generalized equation for cell survival or tissue effects after fractionated low dose-rate irradiations, when there is incomplete repair between fractions and significant repair during fractions, is derived in terms of the h- and g-functions of the 'incomplete-repair' (IR) model. The model is critically dependent on α/β, repair half-time, treatment time and interfraction interval, and should therefore be regarded primarily as a tool for the analysis of fractionation and dose-rate effects in carefully designed radiobiological experiments, although it should also be useful in exploring, in a general way, the feasibility of clinical treatment protocols using fractionated low dose-rate treatments. (author)

  12. Cellular and molecular repair of X-ray-induced damage: dependence on oxygen tension and nutritional status

    International Nuclear Information System (INIS)

    Spiro, I.J.; Kennedy, K.A.; Stickler, R.; Ling, C.C.

    1985-01-01

    Cellular and molecular repair was studied at 23 0 C using split-dose recovery and alkaline elution techniques, respectively, as a function of cellular oxygen and nutrient conditions. Hypoxic cells in full medium showed a partial reduction in the level of sublethal damage (SLD) repair relative to aerated cells; the respective repair kinetics were similar with a common repair half-time of 30 min. Similarly, hypoxic cells showed a slight reduction in strand break rejoining capacity compared to aerated cells. Under nutrient deprivation, anoxic cells displayed no SLD repair or strand break repair, while aerated cells exhibited the same level of SLD and strand break repair as for well-fed cells. In addition, nutrient deprived cells at low O 2 levels displayed normal SLD and strand break repair capability. These results indicate that both nutrient and O 2 deprivation are necessary for complete inhibition of cellular and molecular repair, and low levels of O 2 can effectively reverse this inhibition

  13. Quantitative assessment of the dose-response of alkylating agents in DNA repair proficient and deficient ames tester strains.

    Science.gov (United States)

    Tang, Leilei; Guérard, Melanie; Zeller, Andreas

    2014-01-01

    Mutagenic and clastogenic effects of some DNA damaging agents such as methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) have been demonstrated to exhibit a nonlinear or even "thresholded" dose-response in vitro and in vivo. DNA repair seems to be mainly responsible for these thresholds. To this end, we assessed several mutagenic alkylators in the Ames test with four different strains of Salmonella typhimurium: the alkyl transferases proficient strain TA1535 (Ogt+/Ada+), as well as the alkyl transferases deficient strains YG7100 (Ogt+/Ada-), YG7104 (Ogt-/Ada+) and YG7108 (Ogt-/Ada-). The known genotoxins EMS, MMS, temozolomide (TMZ), ethylnitrosourea (ENU) and methylnitrosourea (MNU) were tested in as many as 22 concentration levels. Dose-response curves were statistically fitted by the PROAST benchmark dose model and the Lutz-Lutz "hockeystick" model. These dose-response curves suggest efficient DNA-repair for lesions inflicted by all agents in strain TA1535. In the absence of Ogt, Ada is predominantly repairing methylations but not ethylations. It is concluded that the capacity of alkyl-transferases to successfully repair DNA lesions up to certain dose levels contributes to genotoxicity thresholds. Copyright © 2013 Wiley Periodicals, Inc.

  14. Effects of single and split doses of cobalt-60 gamma rays and 14 MeV neutrons on mouse stem cell spermatogonia.

    Science.gov (United States)

    Hacker-Klom, U B; Köhnlein, W; Göhde, W

    2000-12-01

    The long-term effects of ionizing radiation on male gonads may be the result of damage to spermatogonial stem cells. Doses of 10 cGy to 15 Gy (60)Co gamma rays or 10 cGy to 7 Gy 14 MeV neutrons were given to NMRI mice as single or split doses separated by a 24-h interval. The ratios of haploid spermatids/2c cells and the coefficients of variation of DNA histogram peaks as measures of both the cytocidal and the clastogenic actions of radiation were analyzed by DNA flow cytometry after DAPI staining. The coefficient of variation is not only a statistical examination of the data but is also used here as a measure of residual damage to DNA (i.e. a biological dosimeter). Testicular histology was examined in parallel. At 70 days after irradiation, the relative biological effectiveness for neutrons at 50% survival of spermatogonial stem cells was 3.6 for single doses and 2.8 for split doses. The average coefficient of variation of unirradiated controls of elongated spermatids was doubled when stem cells were irradiated with single doses of approximately 14 Gy (60)Co gamma rays or 3 Gy neutrons and observed 70 days later. Split doses of (60)Co gamma rays were more effective than single doses, doubling DNA dispersion at 7 Gy. No fractionation effect was found with neutrons with coefficients of variation.

  15. Chronic radiation-induced leukemogenesis: alterations of hematopoietic progenitor repair functions during preclinical phases

    International Nuclear Information System (INIS)

    Seed, T.M.; Kaspar, L.V.; Grdina, D.J.; Frazier, M.E.

    1987-01-01

    Chronic exposure to low daily doses of whole-body gamma irradiation elicits a high incidence of myeloid leukemia (ML) and related myeloproliferative diseases (MPD) in beagles. Previously, the authors identified and partially characterized a four-phase sequence of evolving MPD as a consequence of chronic radiation exposure. With a focus on preclinical alterations in granulocyte/monocyte-committed stem cells, they have identified two critical events in the process: (i) an early event, involving the coupling of acquired radioresistance of the stem cell with renewed proliferative capacity; and (ii) a late event, involving acquired autocrine functions and associated change in stem cell clonality. In terms of the early event, repair-associated parameters are currently being examined on the cellular level by both split-dose and low dose-rate-type assays with survival enhancement used as the measured end point. On the molecular level, these parameters are examined by microfluorometric alkaline elution assays with DNA damage and repair used as end points

  16. Tissue repair capacity and repair kinetics deduced from multifractionated or continuous irradiation regimens with incomplete repair

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.; Peters, L.J.

    1984-01-01

    A model is proposed for cell survival after multiple doses, when the interfraction interval is insufficient for complete Elkind repair. In the limit of ever-increasing number of ever-smaller fractional doses, the model transforms into the accumulation model of survival after continuous irradiation. When adapted to describe tissue responses to isoeffective multifractionated regimens, wherein repair is incomplete, a generalization of the usually linear plot of reciprocal total dose versus dose per fraction is obtained, in which downward curvature is evident. There is an advantage in studying tissue responses to multifractionated regimens with incomplete repair in the interfraction intervals, or continuous exposures at various dose rates since, in addition to determination of repair capacity, there is an estimate of repair kinetics. Results of analyses of previously published data are presented as illustration. Estimated from the response of three acutely responding normal tissues in the mouse (jejunum, colon and bone marrow), repair halftimes ranged from 0.3-0.9 h and values of β/delta were approximately 0.1 Gy -1 . From the response of mouse lung (LD50 for pneumonitis) to multifractionated regimens with incomplete repair, the repair halftime was estimated at 1.5 h and β/delta was 0.27 Gy -1 . In the rat spinal cord β/delta was 0.7 Gy -1 and Tsub(1/2) was 1.5 h. (U.K.)

  17. Three-dimensional dose accumulation in pseudo-split-field IMRT and brachytherapy for locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Sun, Baozhou; Yang, Deshan; Esthappan, Jackie

    2015-01-01

    -field intensity-modulated radiation therapy (IMRT) and image-guided BT in locally advanced cervical cancer. METHODS AND MATERIALS: Thirty-three patients treated with split-field-IMRT to 45.0-51.2 Gy in 1.6-1.8 Gy per fraction to the elective pelvic lymph nodes and to 20 Gy to the central pelvis region were...... included in this study. Patients received six weekly fractions of high-dose rate BT to 6.5-7.3 Gy per fraction. A dose tracker software was developed to compute the equivalent dose in 2-Gy fractions (EQD2) to gross tumor volume (GTV), organs-at-risk and point A. Total dose-volume histogram parameters were...

  18. Effect of different intervals of x-ray split doses on shoot production of in vitro derived explants of Gerbera jamesonii Bolus

    Energy Technology Data Exchange (ETDEWEB)

    Walther, F; Sauer, A [Federal Research Centre for Horticultural Plant Breeding, Ahrensburg (Germany)

    1990-01-01

    Full text: Linearity between rising x-ray doses and mutation rate is limited by the simultaneously increasing radiation damage; induced chromosome aberrations eliminate valuable factor mutations. The application of fractionated doses provides the opportunity for repair of a distinct portion of damage. The dose of 30 Gy was fractionated into two identical parts. The periods for repair were 0.5 to 48 hs. The absolute and cumulative number of post-irradiation regenerated axillary shoots on 4 subsequent dates of cutoff were used as parameters to estimate radiosensitivity. From an economical point of view the interval of 4 hs between two dose fractions may be recommended for practice. (author)

  19. Early death, late death and repair factor in three human tumour cell lines

    International Nuclear Information System (INIS)

    Courdi, A.; Gioanni, J.; Mari, D.; Chauvel, P.

    1997-01-01

    The in vivo colony method used to generate survival curves following exposure to ionizing irradiation allows to score large clones, representing surviving cells, and small colonies, representing late reproductive death. By subtraction, early-dying cells can be estimated. In the three human tumour cell lines examined, we have observed that early cell death is a major mode of action of irradiation. The contribution of early cell death to total mortality increases as the dose increases. Moreover, repair due to dose-splitting and delayed plating in densely-inhibited cells is not observed in early-dying cells. (authors)

  20. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.

    1989-01-01

    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  1. Optimal preparation-to-colonoscopy interval in split-dose PEG bowel preparation determines satisfactory bowel preparation quality: an observational prospective study.

    Science.gov (United States)

    Seo, Eun Hee; Kim, Tae Oh; Park, Min Jae; Joo, Hee Rin; Heo, Nae Yun; Park, Jongha; Park, Seung Ha; Yang, Sung Yeon; Moon, Young Soo

    2012-03-01

    Several factors influence bowel preparation quality. Recent studies have indicated that the time interval between bowel preparation and the start of colonoscopy is also important in determining bowel preparation quality. To evaluate the influence of the preparation-to-colonoscopy (PC) interval (the interval of time between the last polyethylene glycol dose ingestion and the start of the colonoscopy) on bowel preparation quality in the split-dose method for colonoscopy. Prospective observational study. University medical center. A total of 366 consecutive outpatients undergoing colonoscopy. Split-dose bowel preparation and colonoscopy. The quality of bowel preparation was assessed by using the Ottawa Bowel Preparation Scale according to the PC interval, and other factors that might influence bowel preparation quality were analyzed. Colonoscopies with a PC interval of 3 to 5 hours had the best bowel preparation quality score in the whole, right, mid, and rectosigmoid colon according to the Ottawa Bowel Preparation Scale. In multivariate analysis, the PC interval (odds ratio [OR] 1.85; 95% CI, 1.18-2.86), the amount of PEG ingested (OR 4.34; 95% CI, 1.08-16.66), and compliance with diet instructions (OR 2.22l 95% CI, 1.33-3.70) were significant contributors to satisfactory bowel preparation. Nonrandomized controlled, single-center trial. The optimal time interval between the last dose of the agent and the start of colonoscopy is one of the important factors to determine satisfactory bowel preparation quality in split-dose polyethylene glycol bowel preparation. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  2. Radiobiological basis of total body irradiation with different dose rate and fractionation: repair capacity of hemopoietic cells

    International Nuclear Information System (INIS)

    Song, C.W.; Kim, T.H.; Khan, F.M.; Kersey, J.H.; Levitt, S.H.

    1981-01-01

    Total body irradiation (TBI) followed by bone marrow transplantation is being used in the treatment of malignant or non-malignant hemopoietic disorders. It has been believed that the ability of hemopoietic cells to repair sublethal radiation damage is negligible. Therefore, several schools of investigators suggested that TBI in a single exposure at extremely low dose rate (5 rad/min) over several hours, or in several fractions in 2-3 days, should yield a higher therapeutic gain, as compared with a single exposure at a high dose rate (26 rad/min). We reviewed the existing data in the literature, in particular, the response of hemopoietic cells to fractionated doses of irradiation and found that the repair capacity of both malignant and non-malignant hemopoietic cells might be greater than has been thought. It is concluded that we should not underestimate the ability of hemopoietic cells to repair sublethal radiation damage in using TBI

  3. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40 0 C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40 0 C for 2 hrs before a first dose and maintained at 40 0 C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G 1 -phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35 0 C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs

  4. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40/sub 0/C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40/sup 0/C for 2 hrs before a first dose and maintained at 40/sup 0/C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G/sub 1/-phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35/sup 0/C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs.

  5. A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring

    Directory of Open Access Journals (Sweden)

    Rohith Srivas

    2013-12-01

    Full Text Available Efficient repair of UV-induced DNA damage requires the precise coordination of nucleotide excision repair (NER with numerous other biological processes. To map this crosstalk, we generated a differential genetic interaction map centered on quantitative growth measurements of >45,000 double mutants before and after different doses of UV radiation. Integration of genetic data with physical interaction networks identified a global map of 89 UV-induced functional interactions among 62 protein complexes, including a number of links between the RSC complex and several NER factors. We show that RSC is recruited to both silenced and transcribed loci following UV damage where it facilitates efficient repair by promoting nucleosome remodeling. Finally, a comparison of the response to high versus low levels of UV shows that the degree of genetic rewiring correlates with dose of UV and reveals a network of dose-specific interactions. This study makes available a large resource of UV-induced interactions, and it illustrates a methodology for identifying dose-dependent interactions based on quantitative shifts in genetic networks.

  6. Radiopotentiation by the oral platinum agent, JM216: role of repair inhibition

    International Nuclear Information System (INIS)

    Amorino, George P.; Freeman, Michael L.; Carbone, David P.; Lebwohl, David E.; Choy, Hak

    1999-01-01

    Purpose: To test for in vitro radiopotentiation by the orally-administered platinum (IV) complex, JM216; to compare these results to cisplatin and carboplatin; and to investigate whether the mechanism of radiopotentiation involves repair inhibition of radiation-induced DNA damage. Methods and Materials: H460 human lung carcinoma cells were incubated with the drugs for 1 h at 37 deg. C, irradiated at room temperature, and returned to 37 deg. C for 20 min. Cells were then rinsed and colony forming ability was assessed. Wild-type V79 Chinese hamster cells and radiosensitive, DNA repair-deficient mutant cells (XR-V15B) were also studied along with H460 cells. Ku86 cDNA, which encodes part of a protein involved in DNA repair, was transfected into XR-V15B cells as previously described. The effect of JM216 on sublethal damage repair (SLDR) was also assessed using split-dose recovery. Results: Using equally cytotoxic doses of JM216, cisplatin, and carboplatin, the radiation dose enhancement ratios (DER) were 1.39, 1.31, and 1.20, respectively; the DER with 20 μM JM216 was 1.57. JM216 (20 μM) did not significantly change the final slope of radiation survival curves, but greatly reduced the survival curve shoulder. V79 cells also showed radioenhancement using 20 μM JM216, but no enhancement occurred using XR-V15B cells. Transfection of Ku86 cDNA into XR-V15B cells restored radiopotentiation by JM216 to wild-type V79 levels. In addition, 20 μM JM216 completely inhibited sublethal damage repair in H460 cells. Conclusion: Our results show that JM216 can potentiate the effects of radiation in human lung cancer cells, and that the mechanism of this effect is probably inhibition of DNA repair by JM216

  7. Clamp wins pipe repair prize

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-04-01

    This paper describes the permanent pipeline repair system, developed by Tekmar, which is powered by seawater hydraulics and is easily installed and tested by any workclass remotely operated vehicle (rov). Details are given of the two main components of the system, namely, the diverless high pressure split repair clamp and the rov-operated tool to install it.

  8. Repairable-conditionally repairable damage model based on dual Poisson processes.

    Science.gov (United States)

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  9. Quantification of rat retinal growth and vascular population changes after single and split doses of proton irradiation: translational study using stereology methods

    Science.gov (United States)

    Mao, Xiao W.; Archambeau, John O.; Kubinova, Lucie; Boyle, Soames; Petersen, Georgia; Grove, Roger; Nelson, G. A. (Principal Investigator)

    2003-01-01

    This study quantified architectural and population changes in the rat retinal vasculature after proton irradiation using stereology. A 100 MeV conformal proton beam delivered 8, 14, 20 and 28 Gy as single and split doses to the whole eye. The vascular networks were prepared from retinal digests. Stereological methods were used to obtain the area of the retina and unbiased estimates of microvessel/artery/vein endothelial, pericyte and smooth muscle population, and vessel length. The retinal area increased progressively in the unirradiated, age-matched controls and in the retinas irradiated with 8 and 14 Gy, indicating uniform progressive retinal growth. No growth occurred after 20 and 28 Gy. Regression analysis of total endothelial cell number in all vessels (arteries, veins and capillaries) after irradiation documented a progressive time- and dose-dependent cell loss occurring over 15 to 24 months. The difference from controls was significant (Ppopulations after split doses. At 10 Gy, the rate of endothelial cell loss, a dose parameter used to characterize the time- and dose-dependent loss of the endothelial population, was doubled.

  10. Biological effect of pulsed dose rate brachytherapy with stepping sources if short half-times of repair are present in tissues

    International Nuclear Information System (INIS)

    Fowler, Jack F.; Limbergen, Erik F.M. van

    1997-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR) for local tissue dose rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. Increased effect is more likely for tissues with short half-times of repair of the order of a few minutes, similar to pulse durations. Methods and Materials: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to exponential repair. The situation with two components of T (1(2)) is addressed. A constant overall time of 140 h and a constant total dose of 70 Gy were assumed throughout, the continuous low dose rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, covering the gap in an earlier publication. Four schedules were examined: doses per pulse of 0.5, 1, 1.5, and 2 Gy given at repetition frequencies of 1, 2, 3, and 4 h, respectively, each with a range of assumed half-times of repair of 4 min to 1.5 h. Results are presented for late-responding tissues, the differences from CLDR being two or three times greater than for early-responding tissues and most tumors. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (2 Gy) if the half-time of repair in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in tissue, and--when T (1(2)) is short--the instantaneous dose rate. Maximum ratios of PDR/CLDR occur when the dose rate is such that pulse duration is approximately equal to T (1(2)) . As dose rate in the pulse is increased, a plateau of effect is reached, for most T (1(2)) s, above 10 to 20 Gy/h, which is

  11. Piezosurgery for the repair of middle cranial fossa meningoencephaloceles.

    Science.gov (United States)

    Acharya, Aanand N; Rajan, Gunesh P

    2015-03-01

    To describe the use of a piezosurgery medical device to perform a craniotomy and produce a split calvarial graft for the repair of middle cranial fossa meningoencephaloceles. Retrospective case review. Tertiary referral hospital. Ten consecutive patients undergoing middle cranial fossa approach for the repair of meningoencephaloceles. Therapeutic. Intraoperative and postoperative complications, success rate as defined by the ability to fashion a split calvarial graft that achieves complete closure of the tegmen defect. As a secondary outcome measure, evidence of integration of the split calvarial bone graft with the adjacent skull base was assessed. There were no intraoperative or postoperative complications. An appropriately sized calvarial bone graft was produced, and complete closure of the tegmen defect was achieved in all 10 cases. Computed tomography demonstrated evidence of integration of the bone graft in eight cases between 4 and 9 months after surgery. The piezosurgery medical device provides a safe and effective means by which the middle fossa craniotomy and split calvarial bone graft can be produced to repair defects of the middle fossa tegmen, with integration of the bone graft in the majority of cases.

  12. Generalized field-splitting algorithms for optimal IMRT delivery efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2007-09-21

    Intensity-modulated radiation therapy (IMRT) uses radiation beams of varying intensities to deliver varying doses of radiation to different areas of the tissue. The use of IMRT has allowed the delivery of higher doses of radiation to the tumor and lower doses to the surrounding healthy tissue. It is not uncommon for head and neck tumors, for example, to have large treatment widths that are not deliverable using a single field. In such cases, the intensity matrix generated by the optimizer needs to be split into two or three matrices, each of which may be delivered using a single field. Existing field-splitting algorithms used the pre-specified arbitrary split line or region where the intensity matrix is split along a column, i.e., all rows of the matrix are split along the same column (with or without the overlapping of split fields, i.e., feathering). If three fields result, then the two splits are along the same two columns for all rows. In this paper we study the problem of splitting a large field into two or three subfields with the field width as the only constraint, allowing for an arbitrary overlap of the split fields, so that the total MU efficiency of delivering the split fields is maximized. Proof of optimality is provided for the proposed algorithm. An average decrease of 18.8% is found in the total MUs when compared to the split generated by a commercial treatment planning system and that of 10% is found in the total MUs when compared to the split generated by our previously published algorithm. For more information on this article, see medicalphysicsweb.org.

  13. Evidence for dark repair of far ultraviolet light damage in the blue-green alga, Gloeocapsa alpicola

    International Nuclear Information System (INIS)

    Williams, E.; Lambert, J.; O'Brien, P.; Houghton, J.A.

    1979-01-01

    The inactivating effect of far UV light on the unicellular blue-green alga Gloeocapsa alpicola could be totally reversed by exposure to blue light immediately after irradiation. However, if the irradiated cells were held in the dark before exposure to blue light, reversal became progressively less efficient, and almost disappeared after 60-80 h holding. Caffeine and acriflavine inhibited loss of photoreversibility, suggesting an involvement of excision functions. Chloramphenicol and rifampicin slightly increased the rate of loss of photoreversibility, indicating that inducible functions play only a minor role. Split UV dose experiments indicated that light-dependent repair remained operational during dark liquid holding. These results provide preliminary evidence for dark repair in G. alpicola. (author)

  14. Flexural strength of structural concrete repaired with HBPMM cement

    International Nuclear Information System (INIS)

    Memon, G.H.; Khaskheli, G.B.; Kumar, A.

    2009-01-01

    To repair damaged concrete structures, Dadabhoy Cement Factory in Sindh has launched a product known as HBPMM (Hi-Bond Polymer Modified Mortar) cement. HBPMM is used to repair various concrete structures in Pakistan but the experimental back up regarding the real performance of the product, as far as flexural strength of concrete is concerned, is not well known yet. This study is thus aimed to investigate the flexural strength of structural concrete repaired with HBPMM compared to that repaired with OPC (Ordinary Portland Cement). In total 32 concrete beams (6x6x18) having compressive strength of 3000 and 5000 psi were manufactured. To obtain flexural strength of the beams, these were splitted by using a UTM (Universal Testing Machine). Beams were then repaired with different applications of HBPMM and OPC. After 28 days of curing, the repaired beams were re-splitted to determine the flexural strength of repaired beams. Results show that both HBPMM and OPC are not very effective. However, the performance of HBPMM remained slightly better than that of OPC. Both OPC and HBPMM remained more efficient in case of 5000 psi concrete than that of 3000 psi concrete. Flexural strength of repaired beams could be increased by increasing application of the repairing material. (author)

  15. Mutation induction in haploid yeast after split-dose radiation exposure. II. Combination of UV-irradiation and X-rays.

    Science.gov (United States)

    Keller, B; Zölzer, F; Kiefer, J

    2004-01-01

    Split-dose protocols can be used to investigate the kinetics of recovery from radiation damage and to elucidate the mechanisms of cell inactivation and mutation induction. In this study, a haploid strain of the yeast, Saccharomyces cerevisiae, wild-type with regard to radiation sensitivity, was irradiated with 254-nm ultraviolet (UV) light and then exposed to X-rays after incubation for 0-6 hr. The cells were incubated either on nutrient medium or salt agar between the treatments. Loss of reproductive ability and mutation to canavanine resistance were measured. When the X-ray exposure immediately followed UV-irradiation, the X-ray survival curves had the same slope irrespective of the pretreatment, while the X-ray mutation induction curves were changed from linear to linear quadratic with increasing UV fluence. Incubations up to about 3 hr on nutrient medium between the treatments led to synergism with respect to cell inactivation and antagonism with respect to mutation, but after 4-6 hr the two treatments acted independently. Incubation on salt agar did not cause any change in the survival curves, but there was a strong suppression of X-ray-induced mutation with increasing UV fluence. On the basis of these results, we suggest that mutation after combined UV and X-ray exposure is affected not only by the induction and suppression of DNA repair processes, but also by radiation-induced modifications of cell-cycle progression and changes in the expression of the mutant phenotype. Copyright 2004 Wiley-Liss, Inc.

  16. Mountain Plains Learning Experience Guide: Electric Motor Repair.

    Science.gov (United States)

    Ziller, T.

    This Electric Motor Repair Course is designed to provide the student with practical information for winding, repairing, and troubleshooting alternating current and direct current motors, and controllers. The course is comprised of eight units: (1) Electric Motor Fundamentals, (2) Rewinding, (3) Split-phase Induction Motors, (4) Capacitor Motors,…

  17. Role of the DNA repair system in increasing the viability of E. coli cells under the action of small UV doses

    Energy Technology Data Exchange (ETDEWEB)

    Kuzin, A M; Vilenchik, M M; Isakov, B K [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki; AN Kazakhskoj SSR, Alma-Ata. Inst. Botaniki)

    1976-12-01

    The authors studied the action of the ultraviolet light (UV) on the colony-forming ability of E.coli K12-HCR/sup +/ cultured in a meat infusion broth in the presence of glucose. An unusual shape of the curve indicates that the number of viable cells increases under the action of low UV doses. The experiment was repeated seven times, and each time the phenomenon was fully asserted (p 0.01). So it was suggested that low UV doses (about 140 erg/mm/sup 2/) activate the system of dark DNA repair (induction of the synthesis of repair enzymes) which repairs 'spontaneous' DNA defects and increases the number of colony-forming cells.

  18. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures

  19. Maternal methadone dosing schedule and fetal neurobehavior

    Science.gov (United States)

    Jansson, Lauren M.; DiPietro, Janet A.; Velez, Martha; Elko, Andrea; Knauer, Heather; Kivlighan, Katie T.

    2008-01-01

    Objective Daily methadone maintenance is the standard of care for opiate dependency during pregnancy. Previous research has indicated that single-dose maternal methadone administration significantly suppresses fetal neurobehaviors. The purpose of this study was to determine if split-dosing would have less impact on fetal neurobehavior than single-dose administration. Methods Forty methadone-maintained women were evaluated at peak and trough maternal methadone levels on single- and split-dosing schedules. Monitoring sessions occurred at 36 and 37 weeks gestation in a counterbalanced study design. Fetal measures included heart rate, variability, accelerations, motor activity and fetal movement-heart rate coupling (FM-FHR). Maternal measures included heart period, variability, skin conductance, respiration and vagal tone. Repeated measure analysis of variance was used to evaluate within-subject changes between split- and single-dosing regimens. Results All fetal neurobehavioral parameters were suppressed by maternal methadone administration, regardless of dosing regimen. Fetal parameters at peak were significantly lower during single vs. split methadone administration. FM-FHR coupling was less suppressed from trough to peak during split-dosing vs. single-dosing. Maternal physiologic parameters were generally unaffected by dosing condition. Conclusion Split- dosed fetuses displayed less neurobehavioral suppression from trough to peak maternal methadone levels as compared to single-dosed fetuses. Split-dosing may be beneficial for methadone-maintained pregnant women. PMID:19085624

  20. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    Directory of Open Access Journals (Sweden)

    Khairi M. S. Fahelelbom

    2016-10-01

    Full Text Available Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg on certain physical parameters such as weight variation, friability, disintegration, dissolution and drug content were studied. Splitting the tablets either by hand or with a splitter resulted in a minute but statistically significant average weight loss of <0.25% of the tablet to the surrounding environment. The variability in the weight of the hand-split tablet halves was more pronounced (37 out of 40 tablet halves varied by more than 10% from the mean weight than when using the tablet splitter (3 out of 40 tablet halves. The dissolution and drug content of the hand-split tablets were therefore affected because of weight differences. However, the pharmacopoeia requirements for friability and disintegration time were met. Hand splitting of tablets can result in an inaccurate dose and may present clinical safety issues, especially for drugs with a narrow therapeutic window in which large fluctuations in drug concentrations are undesirable. It is recommended to use tablets with the exact desired dose, but if this is not an option, then a tablet splitter could be used.

  1. Optimal field splitting for large intensity-modulated fields

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Ranka, Sanjay; Li, Jonathan; Palta, Jatinder

    2004-01-01

    The multileaf travel range limitations on some linear accelerators require the splitting of a large intensity-modulated field into two or more adjacent abutting intensity-modulated subfields. The abutting subfields are then delivered as separate treatment fields. This workaround not only increases the treatment delivery time but it also increases the total monitor units (MU) delivered to the patient for a given prescribed dose. It is imperative that the cumulative intensity map of the subfields is exactly the same as the intensity map of the large field generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. In this work, we describe field splitting algorithms that split a large intensity-modulated field into two or more intensity-modulated subfields with and without feathering, with optimal MU efficiency while satisfying the hardware constraints. Compared to a field splitting technique (without feathering) used in a commercial planning system, our field splitting algorithm (without feathering) shows a decrease in total MU of up to 26% on clinical cases and up to 63% on synthetic cases

  2. Saturation of DNA repair in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F E; Setlow, R B

    1979-01-01

    Excision repair seems to reach a plateau in normal human cells at a 254 nm dose near 20 J/m/sup 2/. We measured excision repair in normal human fibroblasts up to 80 J/m/sup 2/. The four techniques used (unscheduled DNA synthesis, photolysis of BrdUrd incorporated during repair, loss of sites sensitive to a UV endonuclease from Micrococcus luteus, and loss of pyrimidine dimers from DNA) showed little difference between the two doses. Moreover, the loss of endonuclease sites in 24h following two 20 J/m/sup 2/ doses separated by 24h was similar to the loss observed following one dose. Hence, we concluded that the observed plateau in excision repair is real and does not represent some inhibitory process at high doses but a true saturation of one of the rate limiting steps in repair.

  3. Dose escalation without split-course chemoradiation for anal cancer: results of a phase II RTOG study

    International Nuclear Information System (INIS)

    John, Madhu; Pajak, Thomas; Kreig, Richard; Pinover, Wayne H.; Myerson, Robert

    1997-01-01

    PURPOSE: An attempt at radiotherapy (RT) dose escalation (from 45 Gy to 59.6 Gy) in a Radiation Therapy Oncology Group (RTOG) chemoradiation protocol for advanced anal cancers had resulted in an unexpectedly high 1-year colostomy rate (23%) and local failure (The Cancer Journal from Scientific American 2 (4):205-211, 1996). This was felt to be probably secondary to the split course chemoradiation (CR) that was mandated in the protocol. A second phase of this dose escalation study was therefore undertaken without a mandatory split and with an identical RT dose (59.6 Gy) and chemotherapy. MATERIALS AND METHODS: Twenty patients with anal cancers ≥2 cms were treated with a concurrent combination of 59.6 Gy to the pelvis and perineum (1.8 Gy daily, 5 times per week in 33 fractions over 6 (1(2)) weeks) and two cycles of 5 fluorouracil infusion (1000 mg/m 2 over 24 hours for 4 days) and mitomycin C (10 mg/m 2 bolus). A 10 day rest period was allowed only for severe skin reactions. A comparative analysis was made with the 47 patients in the earlier phase of this study who were treated with the identical chemoradiation course but with a mandatory 2-week break at the 36.00 Gy level. RESULTS: Predominant Grade 3 and 4 toxicities in 18 evaluable patients with dermatitis ((14(18)) or 78%), hematologic ((14(18)) or 78%), infection ((3(18)) or 17%) and gastrointestinal ((5(18)) or 28%). There were no fatalities. Nine patients (50%) completed the planned course without a break; 9 others (50%) had their treatments interrupted for a median of 11 days (range 7-19 days) at a median dose of 41.4 Gy (range 32.4 to 48.6 Gy). This compared to (40(47)) patients (85%) who had a 12 day treatment interruption at 36 Gy total dose in a planned break group. One patient had an abdomino-perineal resection (APR) for persistent disease and another for an anal fissure for (2(18)) or 11% 1-year colostomy rate. This was again favorably comparable to 23% 1-year colostomy rate for the earlier group of

  4. Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells.

    Science.gov (United States)

    Haruta, Nami; Kubota, Yoshino; Hishida, Takashi

    2012-09-01

    UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.

  5. The role of the DNA repair system in increasing the viability of E.coli cells under the action of small UV doses

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Vilenchik, M.M.; Isakov, B.K.; AN Kazakhskoj SSR, Alma-Ata. Inst. Botaniki)

    1976-01-01

    The authors studied the action of the ultraviolet light (UV) on the colony-forming ability of E.coli K12-HCR + cultured in a meat infusion broth in the presence of glucose. An unusual shape of the curve indicates that the number of viable cells increases under the action of low UV doses. The experiment was repeated seven times, and each time the phenomenon was fully asserted (p 0.01). So it was suggested that low UV doses (about 140 erg/mm 2 ) activate the system of dark DNA repair (induction of the synthesis of repair enzymes) which repairs 'spontaneous' DNA defects and increases the number of colony-forming cells. (orig.) [de

  6. Dose-response relationship of induction kinetics of In vivo DNA damage and repair in mouse leukocytes exposed to gamma radiation

    International Nuclear Information System (INIS)

    Mendiola C, M.T.; Morales, R.P.

    2000-01-01

    The Unicellular electrophoresis in gel technique is a useful tool in the determination of simple ruptures and labile sites to the alkali in DNA of eucariontes cells. The determination of the induction kinetics of damage and repair of DNA can give more information. The objective of this work was to determine whether the analysis of the area under the damage/repair induction kinetics curve in comets percent or the comets frequency in the two peaks of maximum induction is adequate for determining the dose-response relationship. The mice were exposed at the doses of 0.5, 1.0, 2.0 Gy. (Author)

  7. Influence of phosphorus and the application of split doses of nitrogen on the nitrogen fertilizer use efficiency of a potato crop

    International Nuclear Information System (INIS)

    Bastidas, O.G.; Urquiaga, S.

    1988-01-01

    The study was performed in an inceptisol at the ''San Jorge'' experimental station (altitude 2.900 m), Bogota, Colombia. The influence of phosphate and the application of split doses of nitrogen on the nitrogen fertilizer use efficiency of a potato crop. (Solanum tuberosum, L.) cv Tequendama, was evaluated. The phosphate was applied at levels of 100, 150 and 200 Kg P 2 O 5 ha -1 in the form of triple super phosphate. The nitrogen (100 Kg N. ha -1 ) was applied in split doses at seeding and 60 days after emergence (DAE) in the following proportions: 1/3: 2/3 or 1/2. The N source used was Urea labelled with 1.5 atom % 15 N excess. The results showed that: a) The maximum tuber yield (41 t.ha -1 ) was experience with 100 Kg P 2 O 5 Ha -1 and this was significantly higher than a zero phosphate control (24t. ha -1 ) even though the soluble soil phosphorus (Bray II) was high. b) The phosphate favoured the productivity of the crop and increased the N fertilizer use efficiency (% FUE) from 28 to 51%.c). The different splitting of the N fertilizer application had no detectable effect on yield % FUE. d) The tubers represented 76% of the total dry matter and contained 63% of the total nitrogen and fertilizer N accumulated by the crop

  8. Radiosensitivity of Nicotiana protoplasts. Action on cell; cycle effects of low dose and fractionated irradiations; biological repair

    International Nuclear Information System (INIS)

    Magnien, E.

    1981-10-01

    Leaf protoplasts of Nicotiana plumbaginifolia and Nicotiana sylvestris demonstrate five main qualities: they can be maintained as haploid lines; they constitute starting populations with a remarkable cytological homogeneity; they show a transient initial lag-phase; they yield very high plating efficiencies and retain permanently a complete differentiation capacity; being derived of a cell wall, they appear well adapted for fusion experiments or enzymatic dosages. The resumption of mitotic activity was followed by cytophotometric measurements, labelling experiments, nuclear sizing and enzymatic assays. The action of 5 Gy gamma-ray irradiations delayed entrance in the S-phase, provoked an otherwise not verified dependency between transcription, translation and protein synthesis, increased nuclear volumes in the G2-phase, and slightly stimulated the activity of a repair enzyme. The plating efficiency was a sensitive end-point which allowed the evaluation of the biological effectiveness of low to medium radiation-doses after gamma-ray and fast neutron irradiations. The neutron dose-RBE relationship increased from 3 to 25 when the dose decreased from 5 Gy to 5 mGy. When fractionated into low single doses only, a neutron dose of 300 mGy markedly increased its biological effectiveness: this phenomenon could not be explained by cell progression, and necessitated additional hypotheses involving other mechanisms in the specific action of low radiation doses. Radiation-induced UDS was measured in presence of aphidicolin. A beta-like DNA-polymerase was shown to be definitely involved in nuclear repair synthesis [fr

  9. Tensile strength of structural concrete repaired with hi-bond polymer modified mortar

    International Nuclear Information System (INIS)

    Khaskheli, G.B.

    2009-01-01

    Repair of cracks in concrete is often required to save the concrete structures. Appearance of crack in concrete is bound with the tensile strength of concrete. Recently a cement factory in Sindh has launched a HBPMM (Hi-Bond Polymer Modified Mortar) that can be used as a concrete repairing material instead of normal OPC (Ordinary Portland Cement). It is needed to investigate its performance compared to that of OPC. In total 144 concrete cylinders (150x300mm) having strength of 3000 and 5000 psi were manufactured. These cylinders were then splitted by using a UTM (Universal Testing Machine) and their actual tensile strength was obtained. The concrete cylinders were then repaired with different applications of HBPMM and arc. The repaired samples were again splitted at different curing ages (3, 7 and 28 days) and their tensile strength after repair was obtained. The results show that the concrete cylinders repaired with HBPMM could give better tensile strength than that repaired with arc, the tensile strength of concrete cylinders after repair could increase with increase in the application of repairing material i.e. HBPMM or OPC and with curing time, and HBPMM could remain more effective in case of rich mix concrete than that of normal mix concrete. (author)

  10. An Automated Inpatient Split-dose Bowel Preparation System Improves Colonoscopy Quality and Reduces Repeat Procedures.

    Science.gov (United States)

    Yadlapati, Rena; Johnston, Elyse R; Gluskin, Adam B; Gregory, Dyanna L; Cyrus, Rachel; Werth, Lindsay; Ciolino, Jody D; Grande, David P; Keswani, Rajesh N

    2017-07-19

    Inpatient colonoscopy preparations are often inadequate, compromising patient safety and procedure quality, while resulting in greater hospital costs. The aims of this study were to: (1) design and implement an electronic inpatient split-dose bowel preparation order set; (2) assess the intervention's impact upon preparation adequacy, repeated colonoscopies, hospital days, and costs. We conducted a single center prospective pragmatic quasiexperimental study of hospitalized adults undergoing colonoscopy. The experimental intervention was designed using DMAIC (define, measure, analyze, improve, and control) methodology. Prospective data collected over 12 months were compared with data from a historical preintervention cohort. The primary outcome was bowel preparation quality and secondary outcomes included number of repeated procedures, hospital days, and costs. On the basis of a Delphi method and DMAIC process, we created an electronic inpatient bowel preparation order set inclusive of a split-dose bowel preparation algorithm, automated orders for rescue medications, and nursing bowel preparation checks. The analysis data set included 969 patients, 445 (46%) in the postintervention group. The adequacy of bowel preparation significantly increased following intervention (86% vs. 43%; P<0.01) and proportion of repeated procedures decreased (2.0% vs. 4.6%; P=0.03). Mean hospital days from bowel preparation initiation to discharge decreased from 8.0 to 6.9 days (P=0.02). The intervention resulted in an estimated 1-year cost-savings of $46,076 based on a reduction in excess hospital days associated with repeated and delayed procedures. Our interdisciplinary initiative targeting inpatient colonoscopy preparations significantly improved quality and reduced repeat procedures, and hospital days. Other institutions should consider utilizing this framework to improve inpatient colonoscopy value.

  11. Thymus repair compared with hemopoiesis repair in spleen after protracted irradiation

    International Nuclear Information System (INIS)

    Mackova, N.

    1987-01-01

    Matured female mice of ICR strain were irradiated from a 60 Co source with a daily dose rate of 5 Gy till total accumulated dose of 10 Gy for 2 days. Animals were examined in various intervals within 42 days after irradiation. The results revealed that protracted irradiation will induce a massive injury to hemopoiesis. The first repair processes occurred in thymus and were characterized by two phases. The first repair wave peaked about the day 10 and the second about the day 30 after irradiation. The repair processes observed in the red pulp of the spleen reached their highest intensity approximately between the days 14-16 after irradiation. (author)

  12. Radiobiological responses for two cell lines following continuous low dose-rate (CLDR) and pulsed dose rate (PDR) brachytherapy

    International Nuclear Information System (INIS)

    Hanisch, Per Henrik; Furre, Torbjoern; Olsen, Dag Rune; Pettersen, Erik O.

    2007-01-01

    The iso-effective irradiation of continuous low-dose-rate (CLDR) irradiation was compared with that of various schedules of pulsed dose rate (PDR) irradiation for cells of two established human lines, T-47D and NHIK 3025. Complete single-dose response curves were obtained for determination of parameters α and β by fitting of the linear quadratic formula. Sublethal damage repair constants μ and T 1/2 were determined by split-dose recovery experiments. On basis of the acquired parameters of each cell type the relative effectiveness of the two regimens of irradiation (CLDR and PDR) was calculated by use of Fowler's radiobiological model for iso-effect irradiation for repeated fractions of dose delivered at medium dose rates. For both cell types the predicted and observed relative effectiveness was compared at low and high iso-effect levels. The results indicate that the effect of PDR irradiation predicted by Fowler's model is equal to that of CLDR irradiation for both small and large doses with T-47D cells. With NHIK 3025 cells PDR irradiation induces a larger effect than predicted by the model for small doses, while it induces the predicted effect for high doses. The underlying cause of this difference is unclear, but cell-cycle parameters, like G2-accumulation is tested and found to be the same for the two cell lines

  13. In Situ Splitting of a Rib Bone Graft for Reconstruction of Orbital Floor and Medial Wall.

    Science.gov (United States)

    Uemura, Tetsuji; Yanai, Tetsu; Yasuta, Masato; Harada, Yoshimi; Morikawa, Aya; Watanabe, Hidetaka; Kurokawa, Masato

    2017-06-01

    In situ splitting of rib bone graft was conducted in 22 patients for the repair of orbital fracture with no other complicating fractures. A bone graft was harvested from the sixth or seventh rib in the right side. The repair of the orbital floor and medial wall was successful in all the cases. Ten patients had bone grafting to the orbital floor, eight had it done onto medial wall, and 4 onto both floor and wall after reduction. The mean length of in situ rib bone graft was 40.9 mm (range, 20-70 mm), the mean width of these was 14.9 mm (range, 8-20 mm). The bone grafting was done by one leaf for 15 cases and two leafs for 7 cases in size of defects. The technique of in situ splitting of a rib bone graft for the repair of the orbital floor and medial wall is a simple and safe procedure, easily taking out the in situ splitting of a rib, and less pain in donor site. It has proved to be an optimal choice in craniofacial reconstruction, especially the defects of orbital floor and medial wall.

  14. Exciting News From Va. Tech - Repaired Pallets May Be Stronger Than the Original

    Science.gov (United States)

    John W. Clarke; Marshall S. White; T.E. McLain; Philip A. Araman

    1995-01-01

    Virginia Tech, in cooperation with the NWPCA and the Southern Research Station of the USDA Forest Service, conducted a research program on the use of metal plates for repair of stringer pallets. This study looked at common stringer failure locations: splits between the notches, splits above the notches, and splits in the end feet. One of the research objectives was to...

  15. Effect of cell cycle stage, dose rate and repair of sublethal damage of radiation-induced apoptosis in F9 teratocarcinoma cells

    International Nuclear Information System (INIS)

    Langley, R.E.; Quartuccio, S.G.; Kennealey, P.T.

    1995-01-01

    There are at least two different models of cell death after treatment with ionizing radiation. The first is a failure to undergo sustained cell division despite metabolic survival, and we refer to this end point as open-quotes classical reproductive cell death.close quotes The second is a process that results in loss of cell integrity. This second category includes cellular necrosis as well as apoptosis. Earlier studies in our laboratory showed that the predominant mechanism of cell death for irradiated F9 cell is apoptosis, and there is no indication that these cells die by necrosis. We have therefore used cells of this cell line to reassess basic radiobiological principles with respect to apoptosis. Classical reproductive cell death was determined by staining colonies derived from irradiated cells and scoring colonies of less than 50 cells as reproductively dead and colonies of more than 50 cells as survivors. Cells that failed to produce either type of colony (detached from the plate or disintegrated) were scored as having undergone apoptosis. Using these criteria we found that the fraction of the radiation-killed F9 cells that died by apoptosis did not vary when cells were irradiated at different stages of the cell cycle despite large variations in overall survival. This suggests that the factors that influence radiation sensitivity throughout the cell cycle have an equal impact on apoptosis and classical reproductive cell death. There was no difference in cell survival between split doses and single doses of X rays, suggesting that sublethal damage repair is not a factor in radiation-induced apoptosis of F9 cells. Apoptosis was not affected by changes in dose rate in the range of 0.038-4.96 Gy/min. 48 refs., 6 figs., 1 tab

  16. Phenotypic characterization of thymic prelymphoma cells of B10 mice treated with split-dose irradiation

    International Nuclear Information System (INIS)

    Muto, M.; Kubo, E.; Kamisaku, H.; Sado, T.

    1990-01-01

    Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells

  17. Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica).

    Science.gov (United States)

    Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne L

    2016-04-15

    We investigated how concentrations of sensory relevant compounds: glucosinolates (GLSs), flavonoid glycosides, hydroxycinnamic acid derivatives and sugars in kale responded to split dose and reduced nitrogen (N) fertilization, plant age and controlled frost exposure. In addition, frost effects on sensory properties combined with N supply were assessed. Seventeen week old kale plants showed decreased aliphatic GLSs at split dose N fertilization; whereas reduced N increased aliphatic and total GLSs. Ontogenetic effects were demonstrated for all compounds: sugars, aliphatic and total GLSs increased throughout plant development, whereas kaempferol and total flavonoid glycosides showed higher concentrations in 13 week old plants. Controlled frost exposure altered sugar composition slightly, but not GLSs or flavonoid glycosides. Reduced N supply resulted in less bitterness, astringency and pungent aroma, whereas frost exposure mainly influenced aroma and texture. N treatment explained most of the sensory variation. Producers should not rely on frost only to obtain altered sensory properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+

    Science.gov (United States)

    Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan

    2008-12-01

    Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.

  19. TH-E-BRF-01: Exploiting Tumor Shrinkage in Split-Course Radiotherapy

    International Nuclear Information System (INIS)

    Unkelbach, J; Craft, D; Hong, T; Papp, D; Wolfgang, J; Bortfeld, T; Ramakrishnan, J; Salari, E

    2014-01-01

    Purpose: In split-course radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated by radiobiological considerations. However, using modern image-guidance, it also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. In this work, we consider the optimal design of split-course treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. Methods: We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of splitcourse radiotherapy is formulated as a mathematical optimization problem in which the total dose to the liver is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. Results: We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one third of the dose should be delivered in the first stage. The projected benefit of split-course treatments in terms of liver sparing depends on model assumptions. However, the model predicts large liver dose reductions by more than a factor of two for plausible model parameters. Conclusion: The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at split-course radiotherapy for selected disease sites where substantial tumor regression translates into reduced

  20. TH-E-BRF-01: Exploiting Tumor Shrinkage in Split-Course Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, J; Craft, D; Hong, T; Papp, D; Wolfgang, J; Bortfeld, T [Massachusetts General Hospital, Boston, MA (United States); Ramakrishnan, J [University of Wisconsin, Madison, Wisconsin (United States); Salari, E [Wichita State University, Wichita, KS (United States)

    2014-06-15

    Purpose: In split-course radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated by radiobiological considerations. However, using modern image-guidance, it also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. In this work, we consider the optimal design of split-course treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. Methods: We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of splitcourse radiotherapy is formulated as a mathematical optimization problem in which the total dose to the liver is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. Results: We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one third of the dose should be delivered in the first stage. The projected benefit of split-course treatments in terms of liver sparing depends on model assumptions. However, the model predicts large liver dose reductions by more than a factor of two for plausible model parameters. Conclusion: The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at split-course radiotherapy for selected disease sites where substantial tumor regression translates into reduced

  1. Effect of split n fertilizer application on physio-agronomic traits of wheat (triticum aestivum l.) under rainfed conditions

    International Nuclear Information System (INIS)

    Sohail, M.; Hussain, I.; Din, R.U.; Haider, S.; Abbas, A.; Qamar, M.; Noman, M.

    2013-01-01

    Low soil fertility is one of the main wheat yield limiting factors under rainfed conditions. Farmers usually apply full N dose at seeding. However, winter showers during vegetative growth period provide an opportunity to apply N in split doses. Study was conducted to find out appropriate N rate and application method to enhance wheat productivity. -1 Three N rates i.e., 60, 90, and 120 kg ha and three application methods i.e. full basal N dose at planting and N application in two and three equal split doses at tiller formation and stem elongation stages. Maximum grain yield (5.20 t ha/sup -1/) was achieved when N was applied at the rate 120 kg ha in three equal split doses at planting, tiller formation and stem elongation stages. N application in 2 and 3 split doses resulted in 25 - 50% grain yield advantage at all N rates as compared to single basal N dose. Split N application was associated with significant increase (P<0.05) in spikes m, 1000 grain weight and dry matter production. Split N application was also linked with better flag leaf chlorophyll retention and cooler crop canopies during grain filling stages which showed positive association with grain yield. (author)

  2. A new incomplete-repair model based on a ''reciprocal-time'' pattern of sublethal damage repair

    International Nuclear Information System (INIS)

    Dale, R.G.; Fowler, J.F.

    1999-01-01

    A radiobiological model for closely spaced non-instantaneous radiation fractions is presented, based on the premise that the time process of sublethal damage (SLD) repair is 'reciprocal-time' (second order), rather than exponential (first order), in form. The initial clinical implications of such an incomplete-repair model are assessed. A previously derived linear-quadratic-based model was revised to take account of the possibility that SLD may repair with time such that the fraction of an element of initial damage remaining at time t is given as 1/(1+zt), where z is an appropriate rate constant; z is the reciprocal of the first half-time (τ) of repair. The general equation so derived for incomplete repair is applicable to all types of radiotherapy delivered at high, low and medium dose-rate in fractions delivered at regular time intervals. The model allows both the fraction duration and interfraction intervals to vary between zero and infinity. For any given value of z, reciprocal repair is associated with an apparent 'slowing-down' in the SLD repair rate as treatment proceeds. The instantaneous repair rates are not directly governed by total dose or dose per fraction, but are influenced by the treatment duration and individual fraction duration. Instantaneous repair rates of SLD appear to be slower towards the end of a continuous treatment, and are also slower following 'long' fractions than they are following 'short' fractions. The new model, with its single repair-rate parameter, is shown to be capable of providing a degree of quantitative explanation for some enigmas that have been encountered in clinical studies. A single-component reciprocal repair process provides an alternative explanation for the apparent existence of a range of repair rates in human tissues, and which have hitherto been explained by postulating the existence of a multi-exponential repair process. The build-up of SLD over extended treatments is greater than would be inferred using a

  3. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits.

    Science.gov (United States)

    Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q

    2017-02-01

    To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Radiation sensitivity for delayed reproductive death (DRD) following single or split-dose irradiation

    International Nuclear Information System (INIS)

    Hagemann, G.; Lipfert, C.H.; Wueppen, G.

    2001-01-01

    Materials and Methods: CHO-cells of a sub clone of the line T71 have a spontaneous cell loss rate of l of the DRD can be defined as the proportional factor of the linear relationship between the MCD on one side and the dose K x the cell division factor m on the other side. E l is dependent on the age of the cells during irradiation and the cell line. The slope of the dually logarithmic growth curve of the cell population is: s=1-E l . K. Experimentally E l was found to be equal for single and split dose irradiation and amounted to E l =0.065 with s d =±0.004. - Literature analysis for the mathematical estimation of E l . K was based on reports of measurements of the local tumor recurrence growth of carcinomas and sarcomas of rodents and pulmonary metastases of sarcomas in humans, respectively, after fractional irradiation. We obtained values of ≤E l . K≤0.77. Values for E l are independent of the dose and lie considerably below data derived from in-vitro measurements of different cell cultures. Conclusions: Since recurrence kinetics of tumors are determined by the radiation sensitivity E l of the DRD, E l can be used for estimating the kinetics of tumor recurrence. As lately described, MCD is linearly proportional to the micro-nucleus frequency. Determinations of the micro-nucleus frequencies in tumor cell biopsies pre and post radiation onset offer the option for developing a fast predictive assay. Organ malformations of embryos after exposition to ionizing radiation can be mathematically deduced by DRD to the partial cell mortality. (orig.) [de

  5. The effect of postirradiation holding at 22 degrees C on the repair of sublethal, potentially lethal and potentially neoplastic transforming damage in gamma-irradiated HeLa x skin fibroblast human hybrid cells

    International Nuclear Information System (INIS)

    Redpath, J.L.; Antoniono, R.J.; Mendonca, M.S.; Sun, C.

    1994-01-01

    The effect of postirradiation holding at 22 degrees C on cell growth, progression of cells through the cell cycle, and the repair of sublethal, potentially lethal and potentially neoplastic transforming damage in γ-irradiated HeLa x skin fibroblast human hybrid cells has been examined. Cell growth and cell cycle progression were essentially stopped at this reduced temperature. Cell survival was dramatically reduced by holding confluent cultures for 6 h at 22 degrees C, as opposed to 37 degrees C, after 7.5 Gy γ radiation delivered at a rate of 2 Gy/min. Return of the cells to 37 degrees C for 6 h after holding at 22 degrees C did not result in increased survival. A similar effect was obtained when the cells were held at 22 degrees C between split-dose irradiation of log-phase cultures where no increase in survival was observed over a split-dose interval of 4 h. In this case a partial increase in survival was observed upon returning the cells to 37 degrees C for 3 h after holding at 22 degrees C for the first 3 h of the split-dose interval. Neoplastic transformation frequency was not enhanced by holding confluent cultures for 6 h at 22 degrees C after 7.5 Gy γ radiation. This is consistent with previous observations that misrepair of potentially neoplastic transforming damage already occurs at 37 degrees C. The overall results are interpreted in terms of the reduced temperature favoring misrepair, rather than inhibition of repair, of sublethal, potentially lethal and potentially transforming radiation damage. 24 refs., 5 figs., 3 tabs

  6. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    Science.gov (United States)

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  7. Inhibition of DNA-double strand break repair by antimony compounds

    International Nuclear Information System (INIS)

    Takahashi, Sentaro; Sato, Hiroshi; Kubota, Yoshihisa; Utsumi, Hiroshi; Bedford, Joel S.; Okayasu, Ryuichi

    2002-01-01

    DNA double strand breaks (DSBs), induced by γ-irradiation in Chinese hamster ovary cells, were used to examine whether antimony compounds affect the repair of DNA damage. The cells were first incubated with antimony trichloride or antimony potassium tartrate (both Sb(III)) for 2 h, and then irradiated with γ-rays at a dose of 40 Gy. The DNA DSB was quantified with pulsed field gel electrophoresis immediately after irradiation (non-repair group) as well as at 30 min post-irradiation (repair group). The degree of repair inhibition was determined by the differences in the amount of DNA DSB between non-repair and repair groups. Both antimony compounds inhibited repair of DNA DSB in a dose dependent manner. In trichloride, 0.2 mM antimony significantly inhibited the rejoining of DSB, while 0.4 mM was necessary in potassium antimony tartrate. The mean lethal doses, D 0 , for the treatment with antimony trichloride and antimony potassium tartrate, were approximately 0.21 and 0.12 mM, respectively. This indicates that the repair inhibition by antimony trichloride occurred in the dose range near D 0 , but the antimony potassium tartrate inhibited the repair at doses where most cells lost their proliferating ability. This is the first report to indicate that antimony compounds may inhibit the repair of radiation-induced DNA DSB

  8. Modification of radiation dose-rate sparing effects in a human carcinoma of the cervix cell line by inhibitors of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Kelland, L.R.; Steel, G.G.

    1988-08-01

    The in vitro cell survival of a human cervix carcinoma cell line (HX156c) was assessed using /sup 60/Co ..gamma..-rays administered at 150 cGy/min or 3.2 cGy/min dose rate. Recovery during low dose-rate irradiation was observed; dose reduction factor at 10/sup -2/ cell kill for 150 versus 3.2 cGy/min was around 1.3. Possible underlying mechanisms of this recovery process have been investigated by addition of non-toxic concentrations of various agents thought to inhibit eukaryotic DNA repair. Differential effects among inhibitors were observed; aphidicolin had no effect on cell survival, novobiocin, hydroxyurea and 3-aminobenzamide reduced survival by a similar extent at both dose rates, ..beta..-ara A and caffeine reduced survival to a greater extent during low dose-rate irradiation. ..beta..-ara A and caffeine seemed to effect mainly by increasing the alpha component of the acute survival curve. Since survival curves obtained at dose rates of around 3 cGy/min help define a dominant component of the initial slope of the acute curve the authors claim to demonstrate that ..beta..-ara A and caffeine modify the initial slope, probably by inhibiting DNA repair processes involved in tumour cell sparing during protracted irradiation.

  9. Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens.

    Science.gov (United States)

    Fahrer, Jörg; Kaina, Bernd

    2017-08-01

    Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, which is causally linked to dietary habits, notably the intake of processed and red meat. Processed and red meat contain dietary carcinogens, including heterocyclic aromatic amines (HCAs) and N-nitroso compounds (NOC). NOC are agents that induce various N-methylated DNA adducts and O 6 -methylguanine (O 6 -MeG), which are removed by base excision repair (BER) and O 6 -methylguanine-DNA methyltransferase (MGMT), respectively. HCAs such as the highly mutagenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) cause bulky DNA adducts, which are removed from DNA by nucleotide excision repair (NER). Both O 6 -MeG and HCA-induced DNA adducts are linked to the occurrence of KRAS and APC mutations in colorectal tumors of rodents and humans, thereby driving CRC initiation and progression. In this review, we focus on DNA repair pathways removing DNA lesions induced by NOC and HCA and assess their role in protecting against mutagenicity and carcinogenicity in the large intestine. We further discuss the impact of DNA repair on the dose-response relationship in colorectal carcinogenesis in view of recent studies, demonstrating the existence of 'no effect' point of departures (PoDs), i.e. thresholds for genotoxicity and carcinogenicity. The available data support the threshold concept for NOC with DNA repair being causally involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. High-dose mode of mortality in Tribolium: A model system for study of radiation injury and repair in non-proliferative tissues

    International Nuclear Information System (INIS)

    Cheng, Chihing Christina.

    1989-01-01

    With appropriate doses of ionizing radiation, both the acute, or lethal-midlethal, dose-independent pattern of mortality, and the hyperacute, dose-dependent pattern, were demonstrated within a single insect genus (Tribolium). This demonstration provides resolution of apparently contradictory reports of insect radiation responses in terms of doses required to cause lethality and those based on survival time as a function of dose. A dose-dependent mortality pattern was elicited in adult Tribolium receiving high doses, viz., 300 Gy or greater; its time course was complete in 10 days, before the dose-independent pattern of mortality began. Visual observations of heavily-irradiated Tribolium suggested neural and/or neuromuscular damage, as had been previously proposed by others for lethally-irradiated wasps, flies, and mosquitoes. Results of experiments using fractionated high doses supported the suggestion that the hyperacute or high-dose mode of death is the result of damage to nonproliferative tissues. Relative resistance of a strain to the hyperacute or high-dose mode of death was not correlated with resistance to the midlethal mode, which is believed to be the result of damage to the proliferative cells of the midgut. Using the high-dose mode of death as a model of radiation damage to nonproliferative tissues, the effects of age, and of a moderate priming dose were assessed. Beetles showed age-related increase in sensitivity to the high-dose mode of death, suggesting a decline in capacity to repair radiation damage to postmitotic tissue. This correlated with a decrease (50%) in the amount of repair reflected in the sparing effect of dose-fractionation (SDF) between the age of 1 to 3 months. The age related increase in radiosensitivity was reduced by a moderate priming dose (40 or 65 Gy) given at a young age

  11. Survival of spermatogonial stem cells in the rat after split dose irradiation during LH-RH analogue treatment

    International Nuclear Information System (INIS)

    Kroonenburgh, M.J.P.G. van; Daal, W.A.J. van; Beck, J.L.; Vemer, H.M.; Rolland, R.

    1987-01-01

    A rat model has been created in which a single injection of an LH-RH analogue depot preparation (Zoladex, ICI 118630) produced a temporary interruption of the pituitary-gonadal axis. This effect applied during irradiation was investigated as a possible mechanism to protect the testis from radiation damage. A local testicular irradiation dose of 6.0 Gy was given either as a single dose or as a fractionated (2 x 3.0 Gy) dose at different time intervals ranging from 8 to 72 h. Stem cell survival was measured 11 weeks after irradiation by means of the repopulation index and the number of haploid cells (spermatids) measured by flow cytometry. Serum gonadotrophins and testosterone concentrations were measured to evaluate hormonal recovery. No significant differences were observed between serum concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone and the duration of the fractionation interval. Stem cell survival was higher following fractionated irradiation in comparison with the single dose. For the 8 h interval an increase in recovery ratio was found, amounting to a factor of 5 of the single dose value. The fluctuating pattern of the recovery curves indicated changes in radiosensitivity of stem cells. The combination of hormonal inhibition of spermatogenesis and fractionated irradiation led to a decrease in the absolute numbers of stem cells. However, the stem cell recovery curves were identical to those seen without hormonal inhibition. It was concluded that hormonal pretreatment with Zoladex during split dose irradiation had no protective effect on stem cell survival. 37 refs.; 4 figs

  12. Patients with History of Colonoscopy Are Less Likely to Achieve High Quality Preparation After Implementing Split-Dose Bowel Preparation.

    Science.gov (United States)

    Madhoun, M F; Bitar, H; Parava, P; Bashir, M H; Zia, H

    2017-01-01

    Anecdotally, we observed that patients who had previous colonoscopies were less likely to follow newly implemented split-dose bowel preparation (SDBP) instructions. We investigated whether the indication for colonoscopy is an independent factor for achieving high quality bowel preparation among patients asked to follow SDBP. We performed a retrospective study of data from 1478 patients who received outpatient colonoscopies in 2014 (the year of SDBP implementation) at our Veterans Affairs Medical Center. We collected information related to demographics and factors known to affect bowel preparations. Reasons for colonoscopy were dichotomized into surveillance (previous colonoscopy) vs. non-surveillance (positive occult blood test or screening). Bowel preparation quality was scored using the Boston Bowel Preparation Scale (BBPS), and was categorized as either excellent vs. not excellent (BBPS≥7 vs. BBPSquality was excellent in 60% of colonoscopies and adequate in 84% of colonoscopies. Thirty-six percent (535) were surveillance colonoscopies. In multivariate logistic regression analysis, more patients in the non-surveillance group achieved excellent (OR 0.8 ; 95% CI [0.7-0.8], P <0.0001) and adequate (OR 0.8 ; 95% CI [0.7-0.9], P <0.006) bowel preparation than did patients in the surveillance group. Patients with a prior colonoscopy might not follow the split-dose bowel preparation instructions. Educational interventions emphasizing the benefits of SDBP in this group of patients may help ensure compliance and prevent the habitual use of day-before preparations. © Acta Gastro-Enterologica Belgica.

  13. Repair mechanisms and exposure standards

    International Nuclear Information System (INIS)

    Mills, W.A.

    1978-01-01

    The following topics are discussed; public policy for setting radiation standards; use of linear, nonthreshold theory in setting radiation standards; dose-rate dependence; occupational exposure to radiation; radon inhalation from radium in the soil in the vicinity of the phosphate industry; relation of repair mechanisms for cell survival to cancer induction; application of information on genetic repair to humans and to cancer induction; importance of repair processes in radiation protection standards; corrective factors for repair processes; relation of repair processes to age, sex, and other factors; and population distribution in radiosensitivity

  14. Recovery from damage induced by acridine plus near-ultraviolet light in Escherichia coli

    International Nuclear Information System (INIS)

    Wagner, S.; Feldman, A.; Snipes, W.

    1982-01-01

    Escherichia coli cells treated with sublethal doses of acridine plus near-UV light exhibit an effective split-dose recovery response that requires an incubation period of about 30-45 min. Studies of the metabolic requirements for split-dose recovery revealed the following: (a) DNA synthesis is not required for split-dose recovery: (b) inhibition of electron transport or protein synthesis reduces the efficiency of split-dose recovery by about one-half: (c) inhibition of phospholipid synthesis or cell wall synthesis completely eliminates the split-dose recovery response. These results suggest an involvement of membrane repair mechanisms in response to damage by acridine plus near-UV light. Additional evidence for such a process was provided by more direct assays for membrane recovery. It was found that cells treated with sublethal doses of acridine plus near-UV light are sensitive to low concentrations of detergents, and lose that sensitivity upon incubation. Likewise, treated cells are susceptible to lethal osmotic shock, but can recover from this susceptibility if incubated after treatment but prior to exposure to low osmotic conditions. Based on accumulating evidence it is proposed that E. coli cells are capable of repairing membrane damage resulting from exposure to acridine plus near-UV light. (author)

  15. Alteration of split renal function during Captopril treatment

    International Nuclear Information System (INIS)

    Aburano, Tamio; Takayama, Teruhiko; Nakajima, Kenichi; Tonami, Norihisa; Hisada, Kinichi; Yasuhara, Shuichirou; Miyamori, Isamu; Takeda, Ryoyu

    1987-01-01

    Two different methods to evaluate the alteration of split renal function following continued Captopril treatment were studied in a total of 21 patients with hypertension. Eight patients with renovascular hypertension (five with unilateral renal artery stenosis and three with bilateral renal artery stenoses), three patients with diabetic nephropathy, one patient with primary aldosteronism, and nine patients with essential hypertension were included. The studies were performed the day prior to receiving Captopril (baseline), and 6th or 7th day following continued Captopril treatment (37.5 mg or 75 mg/day). Split effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) after injections of I-131 hippuran and Tc-99m DTPA were measured using kidney counting corrected for depth and dose, described by Schlegel and Gates. In the patients with renovascular hypertension, split GFR in the stenotic kidney was significantly decreased 6th or 7th day following continued Captopril treatment compared to a baseline value. And split ERPF in the stenotic kidney was slightly increased although significant increase of split ERPF was not shown. In the patients with diabetic nephropathy, primary aldosteronism or essential hypertension, on the other hand, split GFR was not changed and split ERPF was slightly increased. These findings suggest that the Captopril induced alterations of split renal function may be of importance for the diagnosis of renovascular hypertension. For this purpose, split GFR determination is more useful than split ERPF determination. (author)

  16. A new barbed device for repair of flexor tendons.

    LENUS (Irish Health Repository)

    Hirpara, K M

    2012-02-01

    We split 100 porcine flexor tendons into five groups of 20 tendons for repair. Three groups were repaired using the Pennington modified Kessler technique, the cruciate or the Savage technique, one using one new device per tendon and the other with two new devices per tendon. Half of the tendons received supplemental circumferential Silfverskiold type B cross-stitch. The repairs were loaded to failure and a record made of their bulk, the force required to produce a 3 mm gap, the maximum force applied before failure and the stiffness. When only one device was used repairs were equivalent to the Pennington modified Kessler for all parameters except the force to produce a 3 mm gap when supplemented with a circumferential repair, which was equivalent to the cruciate. When two devices were used the repair strength was equivalent to the cruciate repair, and when the two-device repair was supplemented with a circumferential suture the force to produce a 3 mm gap was equivalent to that of the Savage six-strand technique.

  17. Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage

    International Nuclear Information System (INIS)

    Park, Jung Wook; Nickel, Kwangok P.; Torres, Alexandra D.; Lee, Denis; Lambert, Paul F.; Kimple, Randall J.

    2014-01-01

    Background and purpose: Patients with human papillomavirus related (HPV+) head and neck cancers (HNCs) demonstrate improved clinical outcomes compared to traditional HPV negative (HPV−) HNC patients. We have recently shown that HPV+ HNC cells are more sensitive to radiation than HPV− HNC cells. However, roles of HPV oncogenes in regulating the response of DNA damage repair remain unknown. Material and methods: Using immortalized normal oral epithelial cell lines, HPV+ HNC derived cell lines, and HPV16 E7-transgenic mice we assessed the repair of DNA damage using γ-H2AX foci, single and split dose clonogenic survival assays, and immunoblot. The ability of E7 to modulate expression of proteins associated with DNA repair pathways was assessed by immunoblot. Results: HPV16 E7 increased retention of γ-H2AX nuclear foci and significantly decreased sublethal DNA damage repair. While phospho-ATM, phospho-ATR, Ku70, and Ku80 expressions were not altered by E7, Rad51 was induced by E7. Correspondingly, HPV+ HNC cell lines showed retention of Rad51 after γ-radiation. Conclusions: Our findings provide further understanding as to how HPV16 E7 manipulates cellular DNA damage responses that may underlie its oncogenic potential and influence the altered sensitivity to radiation seen in HPV+ HNC as compared to HPV− HNC

  18. Phase I trial of split-dose induction docetaxel, cisplatin, and 5-fluorouracil (TPF chemotherapy followed by curative surgery combined with postoperative radiotherapy in patients with locally advanced oral and oropharyngeal squamous cell cancer (TISOC-1

    Directory of Open Access Journals (Sweden)

    Oertel Katrin

    2012-10-01

    Full Text Available Abstract Background Induction chemotherapy (ICT with docetaxel, cisplatin and fluorouracil (TPF followed by radiotherapy is an effective treatment option for unresectable locally advanced head and neck cancer. This phase I study was designed to investigate the safety and tolerability of a split-dose TPF ICT regimen prior to surgery for locally advanced resectable oral and oropharyngeal cancer. Methods Patients received TPF split on two dosages on day 1 and 8 per cycle for one or three 3-week cycles prior to surgery and postoperative radiotherapy or radiochemotherapy. Docetaxel was escalated in two dose levels, 40 mg/m2 (DL 0 and 30 mg/m2 (DL −1, plus 40 mg/m2 cisplatin and 2000 mg/m2 fluorouracil per week using a 3 +3 dose escalation algorithm. Results Eighteen patients were enrolled and were eligible for toxicity and response. A maximum tolerated dose of 30 mg/m2 docetaxel per week was reached. The most common grade 3+ adverse event was neutropenia during ICT in 10 patients. Surgery reached R0 resection in all cases. Nine patients (50% showed complete pathologic regression. Conclusions A split-dose regime of TPF prior to surgery is feasible, tolerated and merits additional investigation in a phase II study with a dose of 30 mg/m docetaxel per week. Trial registration number NCT01108042 (ClinicalTrials.gov Identifier

  19. Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L [Rochester Univ., N.Y. (USA). Dept. of Radiation Biology and Biophysics

    1975-01-01

    The repair of damage induced by ultraviolet light has been examined in both the nuclear and mitochondrial DNA of the yeast Saccharomyces cerevisiae. The sensitive assay used in this study is based on the capacity of the bacteriophage T4 u.v. endonuclease to produce single-strand breaks in DNA that contains pyrimidine dimers, thus permitting the use of low fluences (doses) of u.v. The results demonstrate that virtually all of the dimers induced in the nuclear DNA of a repair-proficient strain (RAD+) are removed following dark incubation for four hours in growth medium. In contrast, the dimers induced in mitochondrial DNA by the same u.v. fluence are retained under the same conditions. In the excision-deficient mutant, rad1-2, no evidence was obtained for removal of pyrimidine dimers from nuclear DNA. Photoreactivation of both RAD + and rad1-2 cultures resulted in decreases of dimers from both nuclear and mitochondrial DNA. It is concluded that an excision-repair mechanism operates on nuclear but not mitochondrial DNA in repair-proficient yeast, and that the rad1-2 mutant is defective in this process.

  20. Automatic feathering of split fields for step-and-shoot intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Dogan, Nesrin; Leybovich, Leonid B; Sethi, Anil; Emami, Bahman

    2003-01-01

    Due to leaf travel range limitations of the Varian Dynamic Multileaf Collimator (DMLC) system, an IMRT field width exceeding 14.5 cm is split into two or more adjacent abutting sub-fields. The abutting sub-fields are then delivered as separate treatment fields. The accuracy of the delivery is very sensitive to multileaf positioning accuracy. The uncertainties in leaf and carriage positions cause errors in the delivered dose (e.g., hot or cold spots) along the match line of abutting sub-fields. The dose errors are proportional to the penumbra slope at the edge of each sub-field. To alleviate this problem, we developed techniques that feather the split line of IMRT fields. Feathering of the split line was achieved by dividing IMRT fields into several sub-groups with different split line positions. A Varian 21EX accelerator with an 80-leaf DLMC was used for IMRT delivery. Cylindrical targets with varying widths (>14.5 cm) were created to study the split line positions. Seven coplanar 6 MV fields were selected for planning using the NOMOS-CORVUS TM system. The isocentre of the fields was positioned at the centre of the target volume. Verification was done in a 30 x 30 x 30 cm 3 polystyrene phantom using film dosimetry. We investigated two techniques to move the split line from its original position or cause feathering of them: (1) varying the isocentre position along the target width and (2) introduction of a 'pseudo target' outside of the patient (phantom). The position of the 'pseudo target' was determined by analysing the divergence of IMRT fields. For target widths of 14-28 cm, IMRT fields were automatically split into two sub-fields, and the split line was positioned along the centre of the target by CORVUS. Measured dose distributions demonstrated that the dose to the critical structure was 10% higher than planned when the split line crossed through the centre of the target. Both methods of modifying the split line positions resulted in maximum shifts of ∼1 cm

  1. Tablet splitting of narrow therapeutic index drugs: a nationwide survey in Taiwan.

    Science.gov (United States)

    Chou, Chia-Lin; Hsu, Chia-Chen; Chou, Chia-Yu; Chen, Tzeng-Ji; Chou, Li-Fang; Chou, Yueh-Ching

    2015-12-01

    Tablet splitting or pill splitting frequently occurs in daily medical practice. For drugs with special pharmacokinetic characters, such as drugs with narrow therapeutic index (NTI), unequal split tablets might lead to erroneous dose titration and it even cause toxicity. The aim of this study was to investigate the frequency of prescribing split NTI drugs at ambulatory setting in Taiwan. A population-based retrospective study was conducted using the National Health Insurance Research Database in Taiwan. All ambulatory visits were analyzed from the longitudinal cohort datasets of the National Health Insurance Research Database. The details of ambulatory prescriptions containing NTI drugs were extracted by using the claims datasets of one million beneficiaries from National Healthcare Insurance Research Database in 2010 in Taiwan. The analyses were stratified by dosage form, patient age and the number of prescribed tablets in a single dose for each NTI drugs. Main outcome measures Number and distinct dosage forms of available NTI drug items in Taiwan, number of prescriptions involved split NTI drugs, and number of patients received split NTI drugs. A total of 148,548 patients had received 512,398 prescriptions of NTI drugs and 41.8 % (n = 62,121) of patients had received 36.3 % (n = 185,936) of NTI drug prescriptions in form of split tablets. The percentage of splitting was highest in digoxin prescriptions (81.0 %), followed by warfarin (72.0 %). In the elderly patients, split tablets were very prevalent with digoxin (82.4 %) and warfarin (84.5 %). NTI drugs were frequently prescribed to be taken in split forms in Taiwan. Interventions may be needed to provide effective and convenient NTI drug use. Further studies are needed to evaluate the clinical outcome of inappropriate split NTI drugs.

  2. Split-Volume Treatment Planning of Multiple Consecutive Vertebral Body Metastases for Cyberknife Image-Guided Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Sahgal, Arjun; Chuang, Cynthia; Larson, David; Huang, Kim; Petti, Paula; Weinstein, Phil; Ma Lijun

    2008-01-01

    Cyberknife treatment planning of multiple consecutive vertebral body metastases is challenging due to large target volumes adjacent to critical normal tissues. A split-volume treatment planning technique was developed to improve the treatment plan quality of such lesions. Treatment plans were generated for 1 to 5 consecutive thoracic vertebral bodies (CVBM) prescribing a total dose of 24 Gy in 3 fractions. The planning target volume (PTV) consisted of the entire vertebral body(ies). Treatment plans were generated considering both the de novo clinical scenario (no prior radiation), imposing a dose limit of 8 Gy to 1 cc of spinal cord, and the retreatment scenario (prior radiation) with a dose limit of 3 Gy to 1 cc of spinal cord. The split-volume planning technique was compared with the standard full-volume technique only for targets ranging from 2 to 5 CVBM in length. The primary endpoint was to obtain best PTV coverage by the 24 Gy prescription isodose line. A total of 18 treatment plans were generated (10 standard and 8 split-volume). PTV coverage by the 24-Gy isodose line worsened consistently as the number of CVBM increased for both the de novo and retreatment scenario. Split-volume planning was achieved by introducing a 0.5-cm gap, splitting the standard full-volume PTV into 2 equal length PTVs. In every case, split-volume planning resulted in improved PTV coverage by the 24-Gy isodose line ranging from 4% to 12% for the de novo scenario and, 8% to 17% for the retreatment scenario. We did not observe a significant trend for increased monitor units required, or higher doses to spinal cord or esophagus, with split-volume planning. Split-volume treatment planning significantly improves Cyberknife treatment plan quality for CVBM, as compared to the standard technique. This technique may be of particular importance in clinical situations where stringent spinal cord dose limits are required

  3. Accuracy of tablet splitting and liquid measurements: an examination of who, what and how.

    Science.gov (United States)

    Abu-Geras, Dana; Hadziomerovic, Dunja; Leau, Andrew; Khan, Ramzan Nazim; Gudka, Sajni; Locher, Cornelia; Razaghikashani, Maryam; Lim, Lee Yong

    2017-05-01

    To examine factors that might affect the ability of patients to accurately halve tablets or measure a 5-ml liquid dose. Eighty-eight participants split four different placebo tablets by hand and using a tablet splitter, while 85 participants measured 5 ml of water, 0.5% methylcellulose (MC) and 1% MC using a syringe and dosing cup. Accuracy of manipulation was determined by mass measurements. The general population was less able than pharmacy students to break tablets into equal parts, although age, gender and prior experience were insignificant factors. Greater accuracy of tablet halving was observed with tablet splitter, with scored tablets split more equally than unscored tablets. Tablet size did not affect the accuracy of splitting. However, >25% of small scored tablets failed to be split by hand, and 41% of large unscored tablets were split into >2 portions in the tablet splitter. In liquid measurement, the syringe provided more accurate volume measurements than the dosing cup, with higher accuracy observed for the more viscous MC solutions than water. Formulation characteristics and manipulation technique have greater influences on the accuracy of medication modification and should be considered in off-label drug use in vulnerable populations. © 2016 Royal Pharmaceutical Society.

  4. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  5. Split-field vs extended-field intensity-modulated radiation therapy plans for oropharyngeal cancer: Which spares the larynx? Which spares the thyroid?

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yao; Chen, Josephine [Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA (United States); Leary, Celeste I. [Department of Radiation Medicine, Oregon Health Sciences University, Portland, OR (United States); Shugard, Erin [Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA (United States); Yom, Sue S., E-mail: yoms@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA (United States); Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA (United States)

    2016-07-01

    Radiation of the low neck can be accomplished using split-field intensity-modulated radiation therapy (sf-IMRT) or extended-field intensity-modulated radiation therapy (ef-IMRT). We evaluated the effect of these treatment choices on target coverage and thyroid and larynx doses. Using data from 14 patients with cancers of the oropharynx, we compared the following 3 strategies for radiating the low neck: (1) extended-field IMRT, (2) traditional split-field IMRT with an initial cord-junction block to 40 Gy, followed by a full-cord block to 50 Gy, and (3) split-field IMRT with a full-cord block to 50 Gy. Patients were planned using each of these 3 techniques. To facilitate comparison, extended-field plans were normalized to deliver 50 Gy to 95% of the neck volume. Target coverage was assessed using the dose to 95% of the neck volume (D{sub 95}). Mean thyroid and larynx doses were computed. Extended-field IMRT was used as the reference arm; the mean larynx dose was 25.7 ± 7.4 Gy, and the mean thyroid dose was 28.6 ± 2.4 Gy. Split-field IMRT with 2-step blocking reduced laryngeal dose (mean larynx dose 15.2 ± 5.1 Gy) at the cost of a moderate reduction in target coverage (D{sub 95} 41.4 ± 14 Gy) and much higher thyroid dose (mean thyroid dose 44.7 ± 3.7 Gy). Split-field IMRT with initial full-cord block resulted in greater laryngeal sparing (mean larynx dose 14.2 ± 5.1 Gy) and only a moderately higher thyroid dose (mean thyroid dose 31 ± 8 Gy) but resulted in a significant reduction in target coverage (D{sub 95} 34.4 ± 15 Gy). Extended-field IMRT comprehensively covers the low neck and achieves acceptable thyroid and laryngeal sparing. Split-field IMRT with a full-cord block reduces laryngeal doses to less than 20 Gy and spares the thyroid, at the cost of substantially reduced coverage of the low neck. Traditional 2-step split-field IMRT similarly reduces the laryngeal dose but also reduces low-neck coverage and delivers very high doses to the thyroid.

  6. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, H L [East Anglia Univ., Norwich (UK). School of Biological Sciences

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is.

  7. Effect of chronic low dose natural radiation in human peripheral blood mononuclear cells: Evaluation of DNA damage and repair using the alkaline comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.R. Vivek, E-mail: prvkumar06@gmail.com [Low Level Radiation Research Laboratory, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, IRE Campus, Beach Road, Kollam 691 001, Kerala (India); Seshadri, M. [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Jaikrishan, G. [Low Level Radiation Research Laboratory, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, IRE Campus, Beach Road, Kollam 691 001, Kerala (India); Das, Birajalaxmi [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-05-15

    Highlights: • Effect of chronic low dose natural radiation in radio adaptive response studied. • PBMCs of subjects from NLNRA and HLNRA were challenged with gamma radiation. • DNA damage and repair in PBMCs was compared using the alkaline comet assay. • Significant reduction in DNA damage in subjects of high dose group from HLNRA noted. • Probable induction of an in vivo radio adaptive response in subjects from HLNRA. - Abstract: This study investigates whether peripheral blood mononuclear cells (PBMCs) from inhabitants of Kerala in southwest India, exposed to chronic low dose natural radiation in vivo (>1 mSv year{sup −1}), respond with a radioadaptive response to a challenging dose of gamma radiation. Toward this goal, PBMCs isolated from 77 subjects from high-level natural radiation areas (HLNRA) and 37 subjects from a nearby normal level natural radiation area (NLNRA) were challenged with 2 Gy and 4 Gy gamma radiation. Subjects from HLNRA were classified based on the mean annual effective dose received, into low dose group (LDG) and high dose group (HDG) with mean annual effective doses of 2.69 mSv (N = 43, range 1.07 mSv year{sup −1} to 5.55 mSv year{sup −1}) and 9.62 mSv (N = 34, range 6.07 mSv year{sup −1} to17.41 mSv year{sup −1}), respectively. DNA strand breaks and repair kinetics (at 7 min, 15 min and 30 min after 4 Gy) were evaluated using the alkaline single cell gel electrophoresis (comet) assay. Initial levels of DNA strand breaks observed after either a 2 Gy or a 4 Gy challenging dose were significantly lower in subjects of the HDG from HLNRA compared to subjects of NLNRA (2 Gy, P = 0.01; 4 Gy, P = 0.02) and LDG (2 Gy P = 0.01; 4 Gy, P = 0.05). Subjects of HDG from HLNRA showed enhanced rejoining of DNA strand breaks (HDG/NLNRA, P = 0.06) during the early stage of repair (within 7 min). However at later times a similar rate of rejoining of strand breaks was observed across the groups (HDG, LDG and NLNRA). Preliminary results from

  8. Long term effects of ionizing radiation on mouse spermatogenesis

    International Nuclear Information System (INIS)

    Hacker-Klom, U.

    1985-01-01

    The effects of acute or split dose exposure to radiation on murine stem cell spermatogonia were analysed. Flow cytometry was applied to estimate the percentages of haploid germ cells (round and elongated spermatids) up to 12 months after irradiation. The recovery in the number of haploid germ cells continued gradually during the period under observation. The intervals between the two equal doses in split dose exposures were 0, 4, 8, 24 and 48 hours. Split doses that were 24 h or 48 h apart had more harmful effects on spermatogenesis than split doses with 4 or 8 hours intervals or acute exposures. The repair capacity of the stem cell spermatogonia was remarkably high. (orig.)

  9. Time series evaluation of an intervention to increase statin tablet splitting by general practitioners.

    Science.gov (United States)

    Polinski, Jennifer M; Schneeweiss, Sebastian; Maclure, Malcolm; Marshall, Blair; Ramsden, Samuel; Dormuth, Colin

    2011-02-01

    Tablet splitting, in which a higher-dose tablet is split to get 2 doses, reduces patients' drug costs. Statins can be split safely. General practitioners (GPs) may not direct their patients to split statins because of safety concerns or unawareness of costs. Medical chart inserts provide cost-effective education to physicians. The aim of this study was to assess whether providing GPs with statin-splitting chart inserts would increase splitting rates, and to identify predictors of splitting. In 2005 and 2006, we faxed a statin chart insert to British Columbia GPs with a request for a telephone interview. Consenting GPs were mailed 3 statin chart inserts and interviewed by phone (the intervention). In an interrupted time series, we compared monthly rates of statin-splitting prescriptions among intervention and nonintervention GPs before, during, and after the intervention. In multivariate logistic regressions accounting for patient clustering, predictors of splitting included physician and patient demographics and the specific statin prescribed. Of 5051 GPs reached, 282 (6%) agreed to the intervention. Before the intervention, GPs' splitting rate was 2.6%; after intervention, GPs' splitting rate was 7.5%. The rate for the nonintervention GPs was 4.4%. Intervention GPs were 1.68 (95% CI, 1.12-2.53) times more likely to prescribe splitting after the intervention than were nonintervention GPs. Other predictors were a patient's female sex (odds ratio [OR] = 1.26; 95% CI, 1.18-1.34), lower patient income (OR = 1.33; 95% CI, 1.18-1.34), and a lack of drug insurance (OR = 1.89; 95% CI, 1.69-2.04). An inexpensive intervention was effective in producing a sustained increase in GPs' splitting rate during 22 months of observed follow-up. Expanding statin-splitting education to all GPs might reduce prescription costs for many patients and payors. Copyright © 2011 Elsevier HS Journals, Inc. All rights reserved.

  10. Molecular concepts of water splitting. Nature's approach

    International Nuclear Information System (INIS)

    Cox, Nicholas; Lubitz, Wolfgang

    2013-01-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  11. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    International Nuclear Information System (INIS)

    Fletcher, H.L.

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is. (orig./AJ)

  12. The kinetics of repair in mouse lung after fractionated irradiation

    International Nuclear Information System (INIS)

    Travis, E.L.; Thames, H.D.; Watkins, T.L.; Kiss, I.

    1987-01-01

    The kinetics of repair of sublethal damage in mouse lung was studied after fractionated doses of 137 Cs γ-rays. A wide range of doses per fraction (1.7-12 Gy) was given with interfraction intervals ranging from 0.5 to 24 h. Data were analysed by a direct method of analysis using the incomplete repair model. The half-time of repair (Tsub(1/2)) was 0.76 h for the pneumonitis phase of damage (up to 8 months) and 0.65 h for the later phase of damage up to 12 months. Rate of repair was dependent on fraction size for both phases of lung damage and was faster after large dose fractions than after small fractions. Tsub(1/2) was 0.6 h (95% c.1. 0.53, 0.69) for doses per fraction greater than 5 Gy and 0.83 h (95% c.1. 0.76, 0.92) for doses per fraction of 2 Gy. Repair was nearly complete by 6 h at least for the pneumonitis phase of damage. If extrapolated to humans, these results imply that treatments with multiple fractions per day involving the lung will not be limited by the necessity for interfraction intervals much longer than 6 h. (author)

  13. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  14. Role of DNA damage repair capacity in radiation induced adaptive response

    International Nuclear Information System (INIS)

    Yuan Dexiao; Pan Yan; Zhao Meijia; Chen Honghong; Shao Cunlin

    2009-01-01

    This work was to explore γ-ray induced radioadaptive response (RAR) in Chinese hamster ovary(CHO) cell lines of different DNA damage repair capacities. CHO-9 cells and the two repair-deficient strains, EM-C11(DNA single strand break repair deficient) and XR-C1(DNA double strand break repair deficient), were irradiated with a priming dose of 0.08 Gy or 0.016 Gy. After 4 or 7 hours, they were irradiated again with a challenging dose of 1 Gy. The micronucleus induction and plating efficiency of the cells were assayed. Under 0.08 Gy priming dose and 4-h interval, just the CHO-9 cells showed RAR, while with the 7-h interval the CHO-9 and EM-C11 showed RAR, but XR-C1 did not. When the cells were pretreated with a lower priming dose of 0.016 Gy in a 4-h time interval, all the three cell lines showed RAR to subsequent 1 Gy irradiation. It can be concluded that RAR is not only related to the priming dose and time interval, but also has close dependence on the ability of DNA damage repair. (authors)

  15. Repair during multifraction exposures: spheroids versus monolayers

    International Nuclear Information System (INIS)

    Durand, R.E.

    1984-01-01

    Many type of mammalian cells, when grown in culture as multicell spheroids, display an increased ability to accumulate and repair sublethal radiation damage which has been called the ''contact effect''. Since this effect has the potential to markedly modify the multifraction radiation response of cells in V79 spheroids relative to cells in monolayer cultures, an investigation was made of regimens ranging from 1 to 100 fractions. Effective dose rates were chosen near 1 Gy h -1 to inhibit cell progression and thus simplify analysis of the results. As expected, larger doses per fraction produced more net cell killing in both systems than lower doses per fraction. Additionally, less killing of spheroid cells was observed in all regimens, in accord with their greater potential for repair. However, when the data were expressed as isoeffect curves, the spheroid and monolayer curves converged as the number of fractions increased. Thus, quite similar inherent sensitivity and repair capabilities would be predicted for ultra-low doses per fraction. High precision techniques for defining survival after doses of radiation from 0.2 to 1 Gy were, however, still able to demonstrate a survival advantage for cells grown as spheroids. (author)

  16. Pulse frequency in pulsed brachytherapy based on tissue repair kinetics

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Koedooder, Kees; Tienhoven, Geertjan van; Blank, Leo E.C.M.; Gonzalez Gonzalez, Dionisio

    1998-01-01

    Purpose: Investigation of normal tissue sparing in pulsed brachytherapy (PB) relative to continuous low-dose rate irradiation (CLDR) by adjusting pulse frequency based on tissue repair characteristics. Method: Using the linear quadratic model, the relative effectiveness (RE) of a 20 Gy boost was calculated for tissue with an α/β ratio ranging from 2 to 10 Gy and a half-time of sublethal damage repair between 0.1 and 3 h. The boost dose was considered to be delivered either in a number of pulses varying from 2 to 25, or continuously at a dose rate of 0.50, 0.80, or 1.20 Gy/h. Results: The RE of 20 Gy was found to be identical for PB in 25 pulses of 0.80 Gy each h and CLDR delivered at 0.80 Gy/h for any α/β value and for a repair half-time > 0.75 h. When normal tissue repair half-times are assumed to be longer than tumor repair half-times, normal tissue sparing can be obtained, within the restriction of a fixed overall treatment time, with higher dose per pulse and longer period time (time elapsed between start of pulse n and start of pulse n + 1). An optimum relative normal tissue sparing larger than 10% was found with 4 pulses of 5 Gy every 8 h. Hence, a therapeutic gain might be obtained when changing from CLDR to PB by adjusting the physical dose in such a way that the biological dose on the tumor is maintained. The normal tissue-sparing phenomenon can be explained by an increase in RE with longer period time for tissue with high α/β ratio and fast or intermediate repair half-time, and the RE for tissue with low α/β ratio and long repair half-time remains almost constant. Conclusion: Within the benchmark of the LQ model, advantage in normal tissue-sparing is expected when matching the pulse frequency to the repair kinetics of the normal tissue exposed. A period time longer than 1 h may lead to a reduction of late normal tissue complications. This theoretical advantage emphasizes the need for better knowledge of human tissue-repair kinetics

  17. Reduction of spontaneous somatic mutation frequency by a low-dose X irradiation of Drosophila larvae and possible involvement of DNA single-strand damage repair.

    Science.gov (United States)

    Koana, Takao; Takahashi, Takashi; Tsujimura, Hidenobu

    2012-03-01

    The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.

  18. Biological repair with time-dependent irradiation

    International Nuclear Information System (INIS)

    Broyles, A.A.; Shapiro, C.S.

    1985-01-01

    Recent experiments have provided new data that explore the effectiveness of biological repair in assessing damage due to exposures from ionizing radiation. These data are mainly from experiments conducted at constant dose rates, to study the effectiveness per unit dose of different dose rates. Here, we develop new formulae to estimate the effectiveness of an arbitrary time-dependent dose rate exposure

  19. Use of high-dose erythropoietin for repair after injury: A comparison of outcomes in heart and kidney.

    Science.gov (United States)

    Gobe, Glenda C; Morais, Christudas; Vesey, David A; Johnson, David W

    2013-07-01

    There is a need to define the exact benefits and contraindications of use of high-dose recombinant human erythropoietin (EPO) for its non-hematopoietic function as a cytokine that enhances tissue repair after injury. This review compares the outcomes from use of EPO in the injured heart and kidney, two organs that are thought, traditionally, to have intrinsically-different repair mechanisms. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Ongoing work by us on EPO protection of ischemia-reperfusion-injured kidneys indicated, first, that EPO acutely enhanced kidney repair via anti-apoptotic, pro-regenerative mechanisms, and second, that EPO may promote chronic fibrosis in the long term. Work by others on the ischaemia-injured heart has also indicated that EPO promotes repair. Although myocardial infarcts are made up mostly of necrotic tissue, many publications state EPO is anti-apoptotic in the heart, as well as promoting healing via cell differentiation and stimulation of granulation tissue. In the case of the heart, promotion of fibrosis may be advantageous where an infarct has destroyed a zone of cardiomyocytes, but if EPO stimulates progressive fibrosis in the heart, this may promote cardiac failure. A major concern in relation to the use of EPO in a cytoprotective role is its stimulation of long-term inflammation and fibrosis. EPO usage for cytoprotection is undoubtedly advantageous, but it may need to be offset with an anti-inflammatory agent in some organs, like kidney and heart, where progression to chronic fibrosis after acute injury is often recorded.

  20. Evaluating efficiency of split VMAT plan for prostate cancer radiotherapy involving pelvic lymph nodes

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Jun Ki; Son, Sang Jun; Kim, Dae Ho; Seo, Seok Jin [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-12-15

    The purpose of this study is to evaluate the efficiency of Split VMAT planning(Contouring rectum divided into an upper and a lower for reduce rectum dose) compare to Conventional VMAT planning(Contouring whole rectum) for prostate cancer radiotherapy involving pelvic lymph nodes. A total of 9 cases were enrolled. Each case received radiotherapy with Split VMAT planning to the prostate involving pelvic lymph nodes. Treatment was delivered using TrueBeam STX(Varian Medical Systems, USA) and planned on Eclipse(Ver. 10.0.42, Varian, USA), PRO3(Progressive Resolution Optimizer 10.0.28), AAA(Anisotropic Analytic Algorithm Ver. 10.0.28). Lower rectum contour was defined as starting 1 cm superior and ending 1 cm inferior to the prostate PTV, upper rectum is a part, except lower rectum from the whole rectum. Split VMAT plan parameters consisted of 10 MV coplanar 360° arcs. Each arc had 30° and 30° collimator angle, respectively. An SIB(Simultaneous Integrated Boost) treatment prescription was employed delivering 50.4 Gy to pelvic lymph nodes and 63- 70 Gy to the prostate in 28 fractions. D{sub mean} of whole rectum on Split VMAT plan was applied for DVC(Dose Volume Constraint) of the whole rectum for Conventional VMAT plan. In addition, all parameters were set to be the same of existing treatment plans. To minimize the dose difference that shows up randomly on optimizing, all plans were optimized and calculated twice respectively using a 0.2 cm grid. All plans were normalized to the prostate PTV{sub 100%} = 90% or 95%. A comparison of D{sub mean} of whole rectum, upperr ectum, lower rectum, and bladder, V{sub 50%} of upper rectum, total MU and H.I.(Homogeneity Index) and C.I.(Conformity Index) of the PTV was used for technique evaluation. All Split VMAT plans were verified by gamma test with portal dosimetry using EPID. Using DVH analysis, a difference between the Conventional and the Split VMAT plans was demonstrated. The Split VMAT plan demonstrated better in the D

  1. [Biomarkers of radiation-induced DNA repair processes].

    Science.gov (United States)

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  2. Repair models of cell survival and corresponding computer program for survival curve fitting

    International Nuclear Information System (INIS)

    Shen Xun; Hu Yiwei

    1992-01-01

    Some basic concepts and formulations of two repair models of survival, the incomplete repair (IR) model and the lethal-potentially lethal (LPL) model, are introduced. An IBM-PC computer program for survival curve fitting with these models was developed and applied to fit the survivals of human melanoma cells HX118 irradiated at different dose rates. Comparison was made between the repair models and two non-repair models, the multitar get-single hit model and the linear-quadratic model, in the fitting and analysis of the survival-dose curves. It was shown that either IR model or LPL model can fit a set of survival curves of different dose rates with same parameters and provide information on the repair capacity of cells. These two mathematical models could be very useful in quantitative study on the radiosensitivity and repair capacity of cells

  3. Late recovery of damage in rat spinal cord and bone marrow observed in split dose irradiation with long time intervals for 300 kV X-rays and 15 MeV neutrons

    International Nuclear Information System (INIS)

    Kogel, A.J. van der; Sissingh, H.A.

    The authors have performed an extended study on the capacity of the spinal cord for recovery of damage over long time intervals in split-dose experiments with 300 kV X-rays and 15 MeV neutrons, with time intervals of up to 30 weeks. The dose-response relationships for long term bone marrow depletion have been analysed and compared with those obtained for acute and late spinal cord damage. (Auth.)

  4. Linear-quadratic dose kinetics or dose-dependent repair/misrepair

    International Nuclear Information System (INIS)

    Braby, L.A.; Nelson, J.M.

    1992-01-01

    Models for the response of cells exposed to low (LET) linear energy transfer radiation can be grouped into three general types on the basis of assumptions about the nature of the interaction which results in the shoulder of the survival curve. The three forms of interaction are 1) sublethal damage becoming lethal, 2) potentially lethal damage becoming irreparable, and 3) potentially lethal damage ''saturating'' a repair system. The effects that these three forms of interaction would have on the results of specific types of experiments are investigated. Comparisons with experimental results indicate that only the second type is significant in determining the response of typical cultured mammalian cells. (author)

  5. Application of split field technique with 42 MeV betatron bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, V; Caha, A; Krystof, V; Ott, O [Vyzkumny Ustav Klinicke a Experimentalni Onkologie, Brno (Czechoslovakia)

    1977-03-01

    The split field technique of external irradiation in oncology is described. A 120x28x79 mm lead shielding block was manufactured for a bremsstrahlung radiation with 42 MeV maximum energy. The block was secured to a holder whose design corresponded to tube holders. The block shielding capacity was tested by phantom measurements at a focal depth of 130 mm and at a distance of the block from the phantom surface of 990 mm. For the 42 MeV bremsstrahlung the reduction was found to be 15% of the focal dose in the 20x20 cm/sup 2/ field in the focal depth at a distance of 1200 mm from the bremsstrahlung focus. Dose distribution was established by using two opposite fields in combination as well as by the courses of the maximum and the relative doses in variation with the female patient's antero-posterior diameter. The results show that the split field technique permits a short adjustment time, is simple and reproducible. As against cobalt application, the beam characteristics permit reducing the integral dose.

  6. A limitation of the split-dose method for evaluating rCBF changes using 99mTc-ECD and SPECT

    International Nuclear Information System (INIS)

    Odano, Ikuo; Takahashi, Makoto; Noguchi, Eikichi; Ohtaki, Hiro; Shibaki, Mitsurou; Kasahara, Tosifumi; Hatano, Masayoshi; Ohkubo, Masaki.

    1997-01-01

    The purpose of the study is to validate the split-dose method corrected with dose ratio of 99m Tc-ECD for brain perfusion scan. A dose of 600 MBq of 99m Tc-ECD was divided into two with various dose ratios from 1 : 1 to 1 : 4, and injected to eleven patients with various cerebral diseases. A lesser dose of 99m Tc-ECD was injected under a control state for the first SPECT scan, and 15 min SPECT scan was performed 10 min after injection with a triple-head high resolution gamma camera. After the scan, the other dose of 99m Tc-ECD was injected under the same control state and the second SPECT scan was performed as same as above. A ratio of the activity of the first scan to the net activity of the second scan corrected by dose ratio, defined as K, was measured in brain regions of each subject. Expected value of K was 1, but the value was distributed with large variations in each subject. The mean % error of the K value was 10.4±4.9%. Hence it is considered that activity changes by more than 20% from the control values should be required to detect a significant rCBF change in an activation SPECT study. Then, we proposed a new method in which the activity of both two SPECT scans was normalized by cerebellar or occipital activity and compared. The ratio obtained by the proposed method came closer to 1 with less variations and with less mean % error in comparison with those of K value obtained by the dose-correction method. Although the proposed method has a limitation in the use of an activation study loaded with Diamox, it may be useful to evaluate an alteration of rCBF in the study such as postural testing or finger-moving test. (author)

  7. X-ray repair replication in L1210 leukemia cells

    International Nuclear Information System (INIS)

    Lee, Y.C.; Byfield, J.E.; Bennett, L.R.; Chan, P.Y.M.

    1974-01-01

    Repair replication has been studied in detail in mouse L1210 leukemia cells. A method of identifying and quantitating repair replication using a pre- and postradiation block of normal replication with cytosine arabinoside is illustrated. The method derived does not require isolation of DNA per se and appears to be satisfactory for screening for inhibitors of repair replication. Repair replication can be demonstrated at doses in the 1000-rad range in bromouridine deoxyriboside-substituted cells and at slightly higher doses in nonsubstituted cells. Drugs that are known to bind to DNA inhibit this x-ray-induced repair replication. Drugs with these properties may be identified by the methods described and compared quantitatively in their ability to inhibit this type of x-ray damage. Since these phenomena can be demonstrated for low radiation doses and at drug concentrations attainable in vivo during human cancer chemotherapy this class of anticancer agent may be worthy of closer study. Application to the L1210 leukemia system should permit comparison of in vitro and in vivo drug effects in the context of the extensive in vivo pharmacological data already available for L1210 cells. (U.S.)

  8. Repair-dependent cell radiation survival and transformation: an integrated theory

    International Nuclear Information System (INIS)

    Sutherland, John C

    2014-01-01

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete

  9. Frequency of intrachromosomal homologous recombination induced by UV radiation in normally repairing and excision repair-deficient human cells

    International Nuclear Information System (INIS)

    Tsujimura, T.; Maher, V.M.; McCormick, J.J.; Godwin, A.R.; Liskay, R.M.

    1990-01-01

    To investigate the role of DNA damage and nucleotide excision repair in intrachromosomal homologous recombination, a plasmid containing duplicated copies of the gene coding for hygromycin resistance was introduced into the genome of a repair-proficient human cell line, KMST-6, and two repair-deficient lines, XP2OS(SV) from xeroderma pigmentosum complementation group A and XP2YO(SV) from complementation group F. Neither hygromycin-resistance gene codes for a functional enzyme because each contains an insertion/deletion mutation at a unique site, but recombination between the two defective genes can yield hygromycin-resistant cells. The rates of spontaneous recombination in normal and xeroderma pigmentosum cell strains containing the recombination substrate were found to be similar. The frequency of UV-induced recombination was determined for three of these cell strains. At low doses, the group A cell strain and the group F cell strain showed a significant increase in frequency of recombinants. The repair-proficient cell strain required 10-to 20-fold higher doses of UV to exhibit comparable increases in frequency of recombinants. These results suggest that unexcised DNA damage, rather than the excision repair process per se, stimulates such recombination

  10. Time-dependent Reliability of Dynamic Systems using Subset Simulation with Splitting over a Series of Correlated Time Intervals

    Science.gov (United States)

    2013-08-01

    cost due to potential warranty costs, repairs and loss of market share. Reliability is the probability that the system will perform its intended...MCMC and splitting sampling schemes. Our proposed SS/ STP method is presented in Section 4, including accuracy bounds and computational effort

  11. DNA repair related to radiation therapy

    International Nuclear Information System (INIS)

    Klein, W.

    1979-01-01

    The DNA excision repair capacity of peripheral human lymphocytes after radiation therapy has been analyzed. Different forms of application of the radiation during the therapy have been taken into account. No inhibition of repair was found if cells were allowed a certain amount of accomodation to radiation, either by using lower doses or longer application times. (G.G.)

  12. The time course of repair of ultraviolet-induced DNA damage; implications for the structural organization of repair

    International Nuclear Information System (INIS)

    Collins, A.; Squires, S.

    1986-01-01

    Alternative molecular mechanisms can be envisaged for the cellular repair of UV-damaged DNA. In the 'random collision' model, DNA damage distributed throughout the genome is recognised and repaired by a process of random collision between DNA damage and repair enzymes. The other model assumes a 'processive' mechanism, whereby DNA is scanned for damage by a repair complex moving steadily along its length. Random collision should result in a declining rate of repair with time as the concentration of lesions in the DNA falls; but the processive model predicts a constant rate until scanning is complete. The authors have examined the time course of DNA repair in human fibroblasts given low doses of UV light. Using 3 distinct assays, the authors find no sign of a constant repair rate after 4 J/m 2 or less, even when the first few hours after irradiation are examined. Thus DNA repair is likely to depend on random collision. (Auth.)

  13. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  14. Repair of single-strand breaks induced in the DNA of Proteus mirabilis by excision repair after UV-irradiation

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    Single-strand breaks have been produced in the DNA of P. mirabilis after UV-irradiation in dependence on the incident UV-doses. It has been found that there exists a discrepancy between the single-strand breaks estimated from sedimentation in alkaline sucrose gradients and the expected single-strand breaks approximated from measurements of dimer excision. The low number in incision breaks observed by sedimentation experiments is an indication that the cells are able to repair the excision-induced breaks as fast as they are formed. Toluenized cells have been used for investigation of the incision step independently of subsequent repair processes. In presence of NMN the appearance of more single-strand breaks in the DNA has been observed. Furthermore, the number of incision breaks in toluenized cells increased in presence of exogenous ATP. The completion of the excision repair process has been investigated by observing the rejoining of incision breaks. After irradiation with UV-doses higher than approximately 240 erg/mm 2 the number of single-strand breaks remaining unrepaired in the DNA increased. Studies of the influence of nutrition conditions on the repair process have shown approximately the same capacity for repair of single-strand breaks in growth medium as well as in buffer. Progress in the excision repair was also followed by investigation of the DNA synthesized at the template-DNA containing the pyrimidine dimers. In comparison with E. coli, P. mirabilis showed a somewhat lower efficiency for the repair of single-strand breaks during the excision repair. (author)

  15. SplitDist—Calculating Split-Distances for Sets of Trees

    DEFF Research Database (Denmark)

    Mailund, T

    2004-01-01

    We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....

  16. Repair promoted by plasmid pKM101 is different from SOS repair

    International Nuclear Information System (INIS)

    Goze, A.; Devoret, R.

    1979-01-01

    In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid PKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although Wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions. (Auth.)

  17. Molecular concepts of water splitting. Nature's approach

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Nicholas; Lubitz, Wolfgang [Max-Planck-Institut fuer Chemische Energiekonversion, Muelheim an der Ruhr (Germany)

    2013-07-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  18. A study on Sorghum bicolor (L. Moench response to split application of herbicides

    Directory of Open Access Journals (Sweden)

    Kaczmarek Sylwia

    2017-06-01

    Full Text Available Field experiments to evaluate the split application of mesotrione + s-metolachlor, mesotrione + terbuthylazine, dicamba + prosulfuron, terbuthylazine + mesotrione + s-metolachlor, and sulcotrione in the cultivation of sorghum var. Rona 1 were carried out in 2012 and 2013. The field tests were conducted at the field experimental station in Winna Góra, Poznań, Poland. Treatments with the herbicides were performed directly after sowing (PE and at leaf stage 1–2 (AE1 or at leaf stage 3–4 (AE2 of sorghum. The treatments were carried out in a laid randomized block design with 4 replications. The results showed that the tested herbicides applied at split doses were effective in weed control. After the herbicide application weed density and weed biomass were significantly reduced compared to the infested control. The best results were achieved after the application of mesotrione tank mixture with s-metolachlor and terbuthylazine. Application of split doses of herbicides was also correlated with the density, biomass, and height of sorghum.

  19. A limitation of the split-dose method for evaluating rCBF changes using {sup 99m}Tc-ECD and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Odano, Ikuo; Takahashi, Makoto; Noguchi, Eikichi; Ohtaki, Hiro; Shibaki, Mitsurou; Kasahara, Tosifumi; Hatano, Masayoshi [Niigata Univ. (Japan). School of Medicine; Ohkubo, Masaki

    1997-05-01

    The purpose of the study is to validate the split-dose method corrected with dose ratio of {sup 99m}Tc-ECD for brain perfusion scan. A dose of 600 MBq of {sup 99m}Tc-ECD was divided into two with various dose ratios from 1 : 1 to 1 : 4, and injected to eleven patients with various cerebral diseases. A lesser dose of {sup 99m}Tc-ECD was injected under a control state for the first SPECT scan, and 15 min SPECT scan was performed 10 min after injection with a triple-head high resolution gamma camera. After the scan, the other dose of {sup 99m}Tc-ECD was injected under the same control state and the second SPECT scan was performed as same as above. A ratio of the activity of the first scan to the net activity of the second scan corrected by dose ratio, defined as K, was measured in brain regions of each subject. Expected value of K was 1, but the value was distributed with large variations in each subject. The mean % error of the K value was 10.4{+-}4.9%. Hence it is considered that activity changes by more than 20% from the control values should be required to detect a significant rCBF change in an activation SPECT study. Then, we proposed a new method in which the activity of both two SPECT scans was normalized by cerebellar or occipital activity and compared. The ratio obtained by the proposed method came closer to 1 with less variations and with less mean % error in comparison with those of K value obtained by the dose-correction method. Although the proposed method has a limitation in the use of an activation study loaded with Diamox, it may be useful to evaluate an alteration of rCBF in the study such as postural testing or finger-moving test. (author)

  20. Mathematical simulation of biologically equivalent doses for LDR-HDR

    International Nuclear Information System (INIS)

    Slosarek, K.; Zajusz, A.

    1996-01-01

    Based on the LQ model examples of biologically equivalent doses LDR, HDR and external beams were calculated. The biologically equivalent doses for LDR were calculated by appending to the LQ model the corrector for the time of repair of radiation sublethal damages. For radiation continuously delivered at a low dose rate the influence of sublethal damage repair time changes on biologically equivalent doses were analysed. For fractionated treatment with high dose rate the biologically equivalent doses were calculated by adding to the LQ model the formula of accelerated repopulation. For total biologically equivalent dose calculation for combine LDR-HDR-Tele irradiation examples are presented with the use of different parameters of the time of repair of sublethal damages and accelerated repopulation. The calculations performed show, that the same biologically equivalent doses can be obtained for different parameters of cell kinetics changes during radiation treatment. It also shows, that during biologically equivalent dose calculations for different radiotherapy schedules, ignorance of cell kinetics parameters can lead to relevant errors

  1. DNA mismatch repair protein MSH2 dictates cellular survival in response to low dose radiation in endometrial carcinoma cells.

    LENUS (Irish Health Repository)

    Martin, Lynn M

    2013-07-10

    DNA repair and G2-phase cell cycle checkpoint responses are involved in the manifestation of hyper-radiosensitivity (HRS). The low-dose radioresponse of MSH2 isogenic endometrial carcinoma cell lines was examined. Defects in cell cycle checkpoint activation and the DNA damage response in irradiated cells (0.2 Gy) were evaluated. HRS was expressed solely in MSH2+ cells and was associated with efficient activation of the early G2-phase cell cycle checkpoint. Maintenance of the arrest was associated with persistent MRE11, γH2AX, RAD51 foci at 2 h after irradiation. Persistent MRE11 and RAD51 foci were also evident 24 h after 0.2 Gy. MSH2 significantly enhances cell radiosensitivity to low dose IR.

  2. Radiation repair models for clinical application.

    Science.gov (United States)

    Dale, Roger G

    2018-02-28

    A number of newly emerging clinical techniques involve non-conventional patterns of radiation delivery which require an appreciation of the role played by radiation repair phenomena. This review outlines the main models of radiation repair, focussing on those which are of greatest clinical usefulness and which may be incorporated into biologically effective dose assessments. The need to account for the apparent "slowing-down" of repair rates observed in some normal tissues is also examined, along with a comparison of the relative merits of the formulations which can be used to account for such phenomena. Jack Fowler brought valuable insight to the understanding of radiation repair processes and this article includes reference to his important contributions in this area.

  3. The effect of low radiation doses on DNA repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1978-08-01

    Error free DNA repair processes are an important preprequisite for the maintenance of genetic integrity of cells. They are of special importance for persons therapeutically or occupationally exposed to radiation. Therefore the effect of radiation therapy and elevated natural background radiation on unscheduled DNA synthesis was tested in peripheral lymphocytes of exposed persons. Both, autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine uptake into double stranded and single-strand containing DNA fractions revealed an increase of capacity for DNA repair. (author)

  4. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain

  5. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Richard P. [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  6. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  7. Effect of a high-dose target-controlled naloxone infusion on pain and hyperalgesia in patients following groin hernia repair: study protocol for a randomized controlled trial

    DEFF Research Database (Denmark)

    Pereira, Manuel Pedro; Utke Werner, Mads; Berg Dahl, Joergen

    2015-01-01

    no volunteer developed significant secondary hyperalgesia after the placebo infusion. In order to consistently demonstrate latent sensitization in humans, a pain model inducing deep tissue inflammation, as used in animal studies, might be necessary. The aim of the present study is to examine whether a high......-dose target-controlled naloxone infusion can reinstate pain and hyperalgesia following recovery from open groin hernia repair and thus consistently demonstrate opioid-mediated latent sensitization in humans. METHODS/DESIGN: Patients submitted to unilateral, primary, open groin hernia repair will be included...

  8. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1980-October 31, 1981

    International Nuclear Information System (INIS)

    Evans, H.H.

    1981-10-01

    The isolation of several radiation-sensitive BHK strains following a host-cell viral suicide enrichment procedure has been reported in which mutagenized cells were infected with heavily irradiated Herpes virus (HSV). Six surviving colonies were isolated from 38,000 infected cells. The survivors were not transformed by HSV, as indicated by a lack of reaction with fluorescent HSV antibody. At least two of the strains were shown to be sensitive to the lethal effects of ionizing radiation and methylmethane sulfonate, but not to ethylmethane sulfonate (EMS) or to uv radiation. These two strains showed a small decrease in the ability to repair sublethal damage following a split dose of ionizing radiation. The two strains differed from wild-type BHK cells in EMS-induced mutability; strain VI showed a higher mutation frequency and V2 a lower mutation frequency than did BHK cells following treatment with this agent. When either ionizing radiation or uv radiation was used as the mutagenic agent, however, the comparative mutability patterns were altered: the mutation frequency of both strains was somewhat less than the wild type following ionizing radiation, whereas following uv radiation, strain V1 showed a markedly lower mutation frequency than the wild type. It is possible that the strain V1 is deficient in the repair of an EMS-induced mutagenic lesion, while strain V2 is either efficient in such repair or deficient in an error-prone repair process

  9. Cortical splitting of the mandible after irradiation. Special reference to osteoradionecrosis

    International Nuclear Information System (INIS)

    Katsura, Kouji; Ito, Jusuke; Hayashi, Takafumi; Taira, Shuhzou; Nakajima, Syunichi

    2001-01-01

    The purpose of this study was to discuss the relationship between radiation bone injuries and a splitting of the cortical bone in the radiation field. Between January 1993 and September 1998, 53 patients with head and neck cancer received radiotherapy. The study cohort consisted of 23 patients who were followed with computed tomographic scans more than one year after radiotherapy. We evaluated clinical and computed tomographic features. Computed tomographic scanning was performed with a section thickness of 3 or 4 mm. Bone images were obtained with identical window width (4000 Haunsfield units) and window level (1000 Haunsfield units). Splitting of the cortical bone was defined as disappearance of bone density in the cortical bone, showing a linear shape running parallel to the surface of the cortex. Splitting appeared in 9 sites in 8 patients. All patients fulfilled UICC criteria for classifying oral cancer. Most of the patients received external irradiation with a total radiation dose of 50 or 60 Gy. In all cases, splitting was found in the mandibular cortex at the site of muscle attachment, that was included in the radiation field. Appearance of bone changes in chronological order were periosteal reaction, splitting and bone necrosis. We speculate that splitting results from injuries to bone structure cells caused by blood flow disturbance after surgery and radiotherapy. It is suggested that such splitting can be a predictor of osteoradionecrosis. (author)

  10. Genotoxic thresholds, DNA repair, and susceptibility in human populations

    International Nuclear Information System (INIS)

    Jenkins, Gareth J.S.; Zair, Zoulikha; Johnson, George E.; Doak, Shareen H.

    2010-01-01

    It has been long assumed that DNA damage is induced in a linear manner with respect to the dose of a direct acting genotoxin. Thus, it is implied that direct acting genotoxic agents induce DNA damage at even the lowest of concentrations and that no 'safe' dose range exists. The linear (non-threshold) paradigm has led to the one-hit model being developed. This 'one hit' scenario can be interpreted such that a single DNA damaging event in a cell has the capability to induce a single point mutation in that cell which could (if positioned in a key growth controlling gene) lead to increased proliferation, leading ultimately to the formation of a tumour. There are many groups (including our own) who, for a decade or more, have argued, that low dose exposures to direct acting genotoxins may be tolerated by cells through homeostatic mechanisms such as DNA repair. This argument stems from the existence of evolutionary adaptive mechanisms that allow organisms to adapt to low levels of exogenous sources of genotoxins. We have been particularly interested in the genotoxic effects of known mutagens at low dose exposures in human cells and have identified for the first time, in vitro genotoxic thresholds for several mutagenic alkylating agents (Doak et al., 2007). Our working hypothesis is that DNA repair is primarily responsible for these thresholded effects at low doses by removing low levels of DNA damage but becoming saturated at higher doses. We are currently assessing the roles of base excision repair (BER) and methylguanine-DNA methyltransferase (MGMT) for roles in the identified thresholds (Doak et al., 2008). This research area is currently important as it assesses whether 'safe' exposure levels to mutagenic chemicals can exist and allows risk assessment using appropriate safety factors to define such exposure levels. Given human variation, the mechanistic basis for genotoxic thresholds (e.g. DNA repair) has to be well defined in order that susceptible individuals are

  11. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  12. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  13. Models of mixed irradiation with a 'reciprocal-time' pattern of the repair function

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Shozo; Miura, Yuri; Mizuno, Shoichi [Tokyo Metropolitan Inst. of Gerontology (Japan); Furusawa, Yoshiya [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-09-01

    Suzuki presented models for mixed irradiation with two and multiple types of radiation by extending the Zaider and Rossi model, which is based on the theory of dual radiation action. In these models, the repair function was simply assumed to be semi-logarithmically linear (i.e., monoexponential), or a first-order process, which has been experimentally contradicted. Fowler, however, suggested that the repair of radiation damage might be largely a second-order process rather than a first-order one, and presented data in support of this hypothesis. In addition, a second-order repair function is preferred to an n-exponential repair function for the reason that only one parameter is used in the former instead of 2n-1 parameters for the latter, although both repair functions show a good fit to the experimental data. However, according to a second-order repair function, the repair rate depends on the dose, which is incompatible with the experimental data. We, therefore, revised the models for mixed irradiation by Zaider and Rossi and by Suzuki, by substituting a 'reciprocal-time' pattern of the repair function, which is derived from the assumption that the repair rate is independent of the dose in a second-order repair function, for a first-order one in reduction and interaction factors of the models, although the underlying mechanism for this assumption cannot be well-explained. The reduction factor, which reduces the contribution of the square of a dose to cell killing in the linear-quadratic model and its derivatives, and the interaction factor, which also reduces the contribution of the interaction of two or more doses of different types of radiation, were formulated by using a 'reciprocal-time' patterns of the repair function. Cell survivals calculated from the older and the newly modified models were compared in terms of the dose-rate by assuming various types of single and mixed irradiation. The result implies that the newly modified models for

  14. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair

    Energy Technology Data Exchange (ETDEWEB)

    Siede, W.; Eckardt, F.

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction (mutation kinetics) at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  15. Repair of double-strand breaks in Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Burrell, A.D.; Dean, C.J.

    1975-01-01

    Micrococcus radiodurans has been shown to sustain double-strand breaks in its DNA after exposure to x-radiation. Following sublethal doses of x-rays (200 krad in oxygen or less), the cells were able to repair these breaks, and an intermediate fast-sedimenting DNA component seemed to be involved in the repair process

  16. Immunocosmeceuticals: An emerging trend in repairing human hair damage

    Directory of Open Access Journals (Sweden)

    Karthika Selvan

    2013-01-01

    Full Text Available Hair is one of the most important portions for beauty care and in recent years grooming and cosmetic treatment of hair has drastically risen. Substantially, it may deteriorate and weaken the hair by modification of keratin protein. This makes the hair dry, brittle and split vend occurs due to loss of hair strength and the damage further increases with cosmetic treatments. The various poor ingredients are being used for repairing which have extremely poor compatibility with hair. Now the hair care products can be introduced with an active ingredient comprising a yolk derived anti-hair antibody immunoglobin obtained from egg of chickens immunized with damaged hair as antigen. This immuno-cosmeceuticals can repair the hair damage and imparts flexibility and smoothness to the hair. These effects are not lost by the ordinary shampooing. This article focuses on the characteristic of human hair, its damaging processes and the effects of immuno-cosmeceuticals for repairing the hair damage.

  17. ALARA review of the maintenance and repair jobs of repetitive high radiation dose at Kori Unit 3 and 4

    International Nuclear Information System (INIS)

    Cho, Y.H.; Moon, J.H.; Kang, C.S.; Lee, J.S.; Lee, D.H.

    2003-01-01

    The policy of maintaining occupational radiation dose (ORD) as low as reasonably achievable (ALARA) requires the effective reduction of ORD in the phases of design as well as operation of nuclear power plants. It has been identified that a predominant portion of ORD arises during maintenance and repair operations at nuclear power plants. The cost-effective reduction of ORD cannot be achieved without a comprehensive analysis of accumulated ORD data of existing nuclear power plants. To identify the jobs of repetitive high ORD, the ORD data of Kori Units 3 and 4 over 10-year period from 1986 to 1995 were compiled into the PC-based ORD database program. As the radiation job classification structure, 26 main jobs are considered, most of which are further subdivided into detailed jobs. According to the order of the collective dose values for 26 main jobs, 10 jobs of high collective dose are identified. As an ALARA review, then, top 10 jobs of high collective dose are statistically analyzed with regard to 1) dose rate, 2) crew number and 3) job frequency that are the factors determining the collective dose for the radiation job of interest. Through the ALARA review, main reasons causing to high collective dose values are identified as follows. The high collective dose of RCP maintenance job is mainly due to the large crew number and the high job frequency. The characteristics of refueling job are similar to those of RCP maintenance job. However, the high collective doses of SG-related jobs such as S/G nozzle dam job, S/G man-way job and S/G tube maintenance job are mainly due to high radiation dose rate. (author)

  18. The practice and clinical implications of tablet splitting in international health

    Science.gov (United States)

    Elliott, Ivo; Mayxay, Mayfong; Yeuichaixong, Sengchanh; Lee, Sue J; Newton, Paul N

    2014-01-01

    Objective Tablet splitting is frequently performed to facilitate correct dosing, but the practice and implications in low-income settings have rarely been discussed. Methods We selected eight drugs, with narrow therapeutic indices or critical dosages, frequently divided in the Lao PDR (Laos). These were split, by common techniques used in Laos, by four nurses and four laypersons. The mean percentage deviation from the theoretical expected weight and weight loss of divided tablets/capsules were recorded. Results Five of eight study drugs failed, on splitting, to meet European Pharmacopoeia recommendations for tablet weight deviation from the expected weight of tablet/capsule halves with 10% deviating by more than 25%. There was a significant difference in splitting accuracy between nurses and laypersons (P = 0.027). Coated and unscored tablets were less accurately split than uncoated (P = 0.03 and 0.0019 for each half) and scored (0.0001 for both halves) tablets. Conclusion These findings have potential clinical implications on treatment outcome and the development of antimicrobial resistance. Investment by drug companies in a wider range of dosage units, particularly for narrow therapeutic index and critical dosage medicines, is strongly recommended. PMID:24702766

  19. Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.

    1981-01-01

    The quantitation and repair of double-strand DNA breaks in human fibroblasts has been determined using a method involving the nondenaturing elution of DNA from a filter. DNA from cells from two human fibroblast lines exposed to γ-radiation from 0 to 10000 rad showed increasing retention on a filter with decreasing radiation dose, and the data suggest a linear relationship between double-strand breaks induced and radiation dose. The ability of normal human fibroblasts to repair double-strand breaks with various doses of radiation was demonstrated, with a tsub(1/2) of 10 min for repair of 5000 rad exposure and 39 min for repair of 10000 rad damage. The kinetics of the DNA rejoining were not linear and suggest that, as in the repair of single-strand breaks, both an initial fast and a later slow mechanism may be involved. (Auth.)

  20. Molecular dosimetry of chemical mutagens: measurement of molecular dose and DNA repair germ cells

    International Nuclear Information System (INIS)

    Sega, G.A.

    1975-01-01

    Molecular dosimetry in the germ cells of male mice is reviewed with regard to in vivo alkylation of sperm heads, in vivo alkylation of sperm DNA, and possible alkylation of sperm protamine. DNA repair in male germ cells is reviewed with regard to basic design of experiments, DNA repair in various stages of spermatogenesis, effect of protamine on DNA repair following treatment with EMS or x radiation, and induction of DNA repair by methyl methanesulfonate, propyl methanesulfonate, and isopropyl methanesulfonate

  1. Produtividade e qualidade de abacaxizeiro cv. Smooth Cayenne, cultivado comaplicação de doses e parcelamentos do nitrogênio, em Guaraçaí-SP Productivity and quality of pineapple cv. Smooth Cayenne, cultivated with nitrogen doses and splitting application in Guaraçaí-SP

    Directory of Open Access Journals (Sweden)

    Leandro Spegiorin Marques

    2011-09-01

    'Smooth Cayenne' subjected to nitrogen doses and splitting, grown in Guaraçai-SP. A randomized completely blocks design was carried out with four replications and sixteen treatments in a factorial scheme 4x4, with four doses of N: 7.5, 15, 22.5 and 30 g of N per plant, and four split doses: all the dose applied before floral induction, half the dose before floral induction and the other half after induction, 2 / 3 of the dose before induction and 1 / 3 of the dose after induction and the entire dose after floral induction. The total application of N after floral induction, regardless of the dose resulted in lower leaf N contents and leaf dimensions "D", featuring small fruit at the harvest, with lower maturation rates and higher acidity. To obtain pineapple fruits 'Smooth Cayenne', of bigger size and mass; higher TSS and lower acidity, the nitrogen fertilization can be applied in full dose before floral induction or split 2 / 3 before and 1 / 3 after this induction. Nitrogen fertilization has increased foliar concentrations of N, but had no effect on size, yield and fruit quality of pineapple cv. 'Smooth Cayenne'.

  2. Manipulating chromosome structure and metaphase status with ultraviolet light and repair synthesis inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Mullinger, A.M.; Johnson, R.T. (Cambridge Univ. (UK). Dept. of Zoology)

    1985-02-01

    DNA repair occurs in metaphase-arrested cells in response to ultraviolet irradiation. In the presence of the repair synthesis inhibitors, hydroxyurea and 1-..beta..-D-arabinofuranosylcytosine, the chromosomes of such cells are decondensed. The dose response of chromosome decondensation varies between different cell types. In human cells defective in excision repair there is much less chromosome decondensation in response to the same ultraviolet dose and time of repair inhibition. However, a simian virus 40-transformed muntjac cell displays pronounced chromosome decondensation but has limited incision ability. Both chromosome decondensation and single-strand break accumulation in the presence of inhibitors are reversed when DNA precursors are provided, but reversal after higher ultraviolet doses and longer period of incubation leads to recondensed chromosomes that are fragmented. Although the chromosomes of repair-inhibited metaphase cells are decondensed in fixed preparations, their morphology appears normal in intact cells. The cells also retain a capacity to induce prematurely condensed chromosomes (PCC) when fused with interphase cells: compared with control mitotic cells, the speed of induction is sometimes reduced but the final amount of PCC produced is similar.

  3. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    International Nuclear Information System (INIS)

    Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong

    2015-01-01

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics

  4. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  5. Effect of set up time on sublethal repair in multifield fractionated radiotherapy

    International Nuclear Information System (INIS)

    Kehwar, T.S.; Beriwal, Sushil; Sharma, S.C.

    1998-01-01

    The sublethal repair between two doses given with a variable time interval for mammalian cells in tissue culture was first demonstrated successfully by Elkind and Sutton. Subsequently on the basis of concept of sublethal damage repair between fractions, the radio therapists and radio biologists realized that dose can be increased by increasing the small size fractions. This concept is successfully being used in modern radiotherapy

  6. Inducible DNA-repair systems in yeast: competition for lesions.

    Science.gov (United States)

    Mitchel, R E; Morrison, D P

    1987-03-01

    DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate

  7. Enhancement of postreplication repair in Chinese hamster cells

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Setlow, R.B.

    1976-01-01

    Alkaline sedimentation profiles of pulse-labeled DNA from Chinese hamster cells showed that DNA from cells treated with N-acetoxy-acetylaminofluorene or ultraviolet radiation was made in segments smaller than those from untreated cells. Cells treated with a small dose (2.5 μM) of N-acetoxy-acetylaminofluorene or(2.5 J . m -2 ) 254-nm radiation, several hours before a larger dose (7 to 10 μM) of N-acetoxy-acetylaminofluorene or 5.0 J . m -2 of 254-nm radiation, also synthesized small DNA after the second dose. However, the rate at which this small DNA was joined together into parental size was appreciably greater than in absence of the small dose. This enhancement of postreplication repair (as a result of the initial small dose) was not observed when cells were incubated with cycloheximide between the two treatments. The results suggest that N-acetoxy-acetylaminofluorene and ultraviolet-damaged DNA from Chinese hamster cells are repaired by similar postreplicative mechanisms that require de novo protein synthesis for enhancement

  8. Linear dose response curves in fungi and tradescantia

    International Nuclear Information System (INIS)

    Unrau, P.

    1999-07-01

    Tradescantia Clone 02 data suggests that linear non-threshold dose responses are expected to the lowest doses and dose rates of low linear energy transfer (LET) radiation. This is likely to be true for other living organisms even though Clone 02 is radiation sensitive. It is concluded that Clone 02 is partially defective in the RAD 6 pathway for the repair of DNA interstrand cross-links (ISCL) and other loss of coding damage (LCD), based on its cross sensitivities to EMS and ionizing radiation. Tradescantia Clone 02 data showing linear non-threshold induction of somatic genetic events in part reflects the repair deficiency of this Clone. More DNA damage is repaired by recombinational mechanisms in Clone 02 than would occur in a wild-type strain. Two important classes of DNA lesions are induced by ionizing radiation in DNA - double strand breaks (DSB) which are repaired by recombination mechanisms, and loss of coding information damage (LCD), which is repaired by error prone mechanisms but may also be a substrate for recombinational repair. Based on data from yeast, there are two different repair pathways which deal with these differing lesions with different somatic genetic consequences. From yeast, yield cross sections can be derived and applied to DNA damage and repair in Tradescantia. For Clone 02, per lesion, more visible genetic events are scored than in wild-type strains. In a radiation-derived sub-clone, Clone 0106, which is more variable than Clone 02, even more events occur per lesion. This derivative clone, plus breeding experiments, indicate that Clone 02 is heterozygous, or a 'carrier' for a mutant version of a gene in the Tradescantia RAD 6 repair pathway. Clone 02 is, therefore, much like a Fanconi's anemia carrier in a human population, while the Clone 0106 derivative is much like a homozygous Fanconi's anemia patient, with respect to its response to ionizing radiation damage. Two anomalies in its dose response curves for 'pink' loss of

  9. Linear dose response curves in fungi and tradescantia

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)

    1999-07-15

    Tradescantia Clone 02 data suggests that linear non-threshold dose responses are expected to the lowest doses and dose rates of low linear energy transfer (LET) radiation. This is likely to be true for other living organisms even though Clone 02 is radiation sensitive. It is concluded that Clone 02 is partially defective in the RAD 6 pathway for the repair of DNA interstrand cross-links (ISCL) and other loss of coding damage (LCD), based on its cross sensitivities to EMS and ionizing radiation. Tradescantia Clone 02 data showing linear non-threshold induction of somatic genetic events in part reflects the repair deficiency of this Clone. More DNA damage is repaired by recombinational mechanisms in Clone 02 than would occur in a wild-type strain. Two important classes of DNA lesions are induced by ionizing radiation in DNA - double strand breaks (DSB) which are repaired by recombination mechanisms, and loss of coding information damage (LCD), which is repaired by error prone mechanisms but may also be a substrate for recombinational repair. Based on data from yeast, there are two different repair pathways which deal with these differing lesions with different somatic genetic consequences. From yeast, yield cross sections can be derived and applied to DNA damage and repair in Tradescantia. For Clone 02, per lesion, more visible genetic events are scored than in wild-type strains. In a radiation-derived sub-clone, Clone 0106, which is more variable than Clone 02, even more events occur per lesion. This derivative clone, plus breeding experiments, indicate that Clone 02 is heterozygous, or a 'carrier' for a mutant version of a gene in the Tradescantia RAD 6 repair pathway. Clone 02 is, therefore, much like a Fanconi's anemia carrier in a human population, while the Clone 0106 derivative is much like a homozygous Fanconi's anemia patient, with respect to its response to ionizing radiation damage. Two anomalies in its dose response curves for &apos

  10. Pyrimidine dimer formation and repair in human skin

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Harber, L.C.; Kochevar, I.E.

    1980-01-01

    Cyclobutyl pyrimidine dimers have been detected in the DNA of human skin following in vivo irradiation with suberythermal doses of ultraviolet (UV) radiation from FS-20 sun lamp fluorescent tubes. Dimers were assayed by treatment of extracted DNA with Micrococus luteus UV-specific endonuclease, alkaline agarose electrophoresis, and ethidum bromide staining. This technique, in contrast to conventional dimer assays, can be used with nonradioactive DNA and is optimal at low UV light doses. These data suggest that some dimer disappearance by excision repair occurs within 20 min of UV irradiation and that photoreactivation of dimers can make a contribution to the total repair process

  11. Hands-on repair of component with a lowered pool water level

    International Nuclear Information System (INIS)

    Perfect, J.F.

    1984-01-01

    The repair of a broken positioner mechanism on a TRIGA Reactor neutron collimator, with a lowered pool water level, presented a unique challenge. Radiation dose measurements were made which indicated the repair could be done safely with only 3 feet of water providing shielding over the reactor core. The entire repair project went quite well, due in large part to extensive preplanning. Repair was done safely and radiation exposures were kept well below allowable levels. Savings were significant using this method of repair compared to the alternative of dismantling the facility. (author)

  12. Hands-on repair of component with a lowered pool water level

    International Nuclear Information System (INIS)

    Perfect, J.F.

    1984-01-01

    The repair of a broken positioner mechanism on a TRIGA Reactor neutron collimator, with a lowered pool water level, presented a unique challenge. Radiation dose measurements were made which indicated the repair could be done safetly with only 3 feet of water providing shielding over the reactor core. The entire repair project went quite well, due in large part to extensive preplanning. Repair was done safely and radiation exposures were kept well below allowable levels. Savings were significant using this method of repair compared to the alternative of dismantling the facility

  13. The experience from operation of electronic personal dosimetry system at Dukovany, Temelin and Mochovce NPPs after repair of Siemens dosemeters eliminating false doses

    International Nuclear Information System (INIS)

    Malysak, J.; Kocvara, S.; Jurochova, B.; Zelenka, Z.; Schacherl, M.; Zrubec, M.; Kaiser, H.

    2003-01-01

    This presentation summarizes the operational experience of the Electronic Personal Dosimetry Systems installed at Dukovany, Temelin and Mochovce NPPs. The system consists of three basic parts: Electronic personal dosemeters (EPD); Physical layer (HW); Logical layer (SW). Number of false doses before and after correction is presented. This presentation has demonstrated the possibilities of SEOD system and the possibility of easy dose comparison between the individual NPPs after introducing this electronic dosimetry system. Basically, the results of film and electronic dosimetry systems are according to our findings nearly identical. Electronic dosemeter sensitivity to interfering electromagnetic fields is a problem which is easily re-movable. In addition, if we know this problem, these false doses in the SEOD system can be easily revealed (e.g. by investigation of histograms) and repaired

  14. Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators

    International Nuclear Information System (INIS)

    Wu Qian-Nan; Lan Feng; Tang Xiao-Pin; Yang Zi-Qiang

    2015-01-01

    A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators. (paper)

  15. DNA damage repair and radiosensitivity

    International Nuclear Information System (INIS)

    Suzuki, Norio

    2003-01-01

    Tailored treatment is not new in radiotherapy; it has been the major subject for the last 20-30 years. Radiation responses and RBE (relative biological effectiveness) depend on assay systems, endpoints, type of tissues and tumors, radiation quality, dose rate, dose fractionation, physiological and environmental factors etc, Latent times to develop damages also differ among tissues and endpoints depending on doses and radiation quality. Recent progress in clarification of radiation induced cell death, especially of apoptotic cell death, is quite important for understanding radiosensitivity of tumor cure process as well as of tumorigenesis. Apoptotic cell death as well as dormant cells had been unaccounted and missed into a part of reproductive cell death. Another area of major progress has been made in clarifying repair mechanisms of radiation damage, i.e., non-homologous end joining (NHEJ) and homologous recombinational repair (HRR). New approaches and developments such as cDNA or protein micro arrays and so called informatics in addition to basic molecular biological analysis are expected to aid identifying molecules and their roles in signal transduction pathways, which are multi-factorial and interactive each other being involved in radiation responses. (authors)

  16. Repair of potentially lethal and sublethal radiation damage in x-irradiated ascites tumor cells

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Okamoto, Mieko; Tsuchiya, Takehiko.

    1985-01-01

    The ability of cells to repair cellular radiation damage during the growth of TMT-3 ascites tumor and the effect of host reaction on the repair ability were examined by using an in vitro assay of cell clonogenicity after in situ irradiation of tumor cells. In single-dose experiments, the repair of potentially lethal radiation damage (PLD) was observed in stationary phase cells (12-day tumor) of the unirradiated host, but not in exponential phase cells (3-day tumor) of the unirradiated host animals. However, if previously irradiated host animals were used, even the exponentially growing tumor cells showed repair of PLD. In two-dose experiments, the ability to repair sublethal radiation damage (SLD) in exponential phase tumor cells was less than that of stationary phase cells in the unirradiated host. In the pre-irradiated host, the extent of the repair in exponential phase cells was somewhat enhanced. These results suggest that irradiation of host animals might suppress a factor that inhibits repair, resulting in enhancement of the repair capability of tumor cells. (author)

  17. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Science.gov (United States)

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  19. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  20. Repair of ultraviolet light damage to the DNA of cultured human epidermal keratinocytes and fibroblasts

    International Nuclear Information System (INIS)

    Taichman, L.B.; Setlow, R.B.

    1979-01-01

    Pure cultures of dermal fibroblasts and epidermal keroatinocytes have been obtained from a single biopsy of newborn foreskin. The cells were labeled, exposed to several doses of uv light, and allowed to repair in the dark for 16 h. The number of pyrimidine dimers before and after repair was assessed by measuring the numbers of sites in the DNA sensitive to a specific uv endonuclease. At all doses used, the extent of repair was similar in the cultured keratinocytes and cultured fibroblasts

  1. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  2. Repair of lesions provoked by X-rays in embryos of Drosophila (D. melanogaster Meig)

    International Nuclear Information System (INIS)

    Ghelelovitch, S.

    1975-01-01

    The sensitivity of Drosophila eggs to the lethal action of X-rays did not remain constant during embryogenesis. The X-ray doses used in the present investigation may have retarded the hatching of the larvae but did not block development immediately after irradiation. A fraction of the damage induced in young embryos was repaired during gastrulation. The amount of repair was independent of the X-ray dose but was influenced by the temperature. The damage could be repaired even after the cells of the embryo had undergone many mitotic cycles. (author)

  3. Oncogenic action of beta, proton, alpha and electron radiation on the rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.

    1980-01-01

    Rat skin is being utilized as an empirical model for testing dose and time related aspects of the oncogenic action of ionizing radiation, ultraviolet light, and polycyclic aromatic hydrocarbons. Molecular lesions in the skin DNA, including, strand breaks and thymine dimers, are being measured and compared to tumor induction. The induction and repair kinetics of molcular lesions are being compared to split dose repair. Modifiers and radiosensitizers are being utilized to test specific aspects of a chromosome breakage theory of radiation oncogenesis

  4. DNA excision repair in human cells treated with ultraviolet radiation and 7,12-dimethylbenz(a)anthracene 5,6-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.E.; Gentil, A.; Renstein, B.S.; Setlow, R.B.

    1980-01-01

    Excision repair was measured in normal human and xeroderma pigmentosum group C cells treated with 7,12-dimethylbenz(a)anthracene 5,6-oxide and with ultraviolet radiation by the techniques of unscheduled DNA synthesis, repair replication, a modification and bromodeoxyuridine photolysis and endonuclease-sensitive sites assay. Radiautography and repair replication showed that in normal cells the magnitude of repair after a saturation dose of the epoxide to be 0.1 to 0.2, that after a saturating ultraviolet dose, though survival data showed that both doses gave nearly similar killings. Repair was of the long-patch type and repair kinetics after the epoxide treatment were similar to ultraviolet. After a combined treatment with both agents, unscheduled synthesis in normal cells was more than additive. The data indicate that there are different rate-limiting steps in the removal of the ultraviolet and the epoxide damages, and that the residual repair activity in xeroderma pigmentosum cells is accomplished by different, not just fewer, enzymes than in normal cells.

  5. Market Structure and Stock Splits

    OpenAIRE

    David Michayluk; Paul Kofman

    2001-01-01

    Enhanced liquidity is one possible motivation for stock splits but empirical research frequently documents declines in liquidity following stock splits. Despite almost thirty years of inquiry, little is known about all the changes in a stock's trading activity following a stock split. We examine how liquidity measures change around more than 2,500 stock splits and find a pervasive decline in most measures. Large stock splits exhibit a more severe liquidity decline than small stock splits, esp...

  6. Energy efficiency investments in the context of split incentives among French households

    International Nuclear Information System (INIS)

    Charlier, Dorothée

    2015-01-01

    The residential sector offers considerable potential for reducing energy use and greenhouse gas (GHG) emissions, particularly through energy-efficient renovations. The objective of this study is twofold. First, I aim to provide initial empirical evidence of the extent to which split incentives between landlords and tenants may lead to underinvestment. Second, I investigate the influence of tax credits and energy burdens on energy efficiency expenditures. Given the complexity of studying the decision to invest in energy-saving renovations, I use a bivariate Tobit model to compare decisions about energy-efficient works and repair works, even when the renovation expenditures seem quite similar. The analysis shows that tenants are doubly penalized: they have high energy expenditures due to energy-inefficient building characteristics, and because they are poorer than homeowners, they are unable to invest in energy-saving systems. The results also confirm that tax credits are ineffective in the split incentives context. In terms of public policy, the government should focus on low-income tenants, and mandatory measures such as minimum standards seem appropriate. Financial support from a third-party financer also might be a solution. - Highlights: • I provide empirical evidence of underinvestment due to split incentives. • I investigate the influence of tax credit and energy burden on EE expenditures. • Results show that tax credits are ineffective in a context of split incentives. • Mandatory measures such as minimum standards seem to be appropriate. • Financial support from a third party financer can be also a solution.

  7. Reducing Radiation Doses in Female Breast and Lung during CT Examinations of Thorax: A new Technique in two Scanners

    Directory of Open Access Journals (Sweden)

    Mehnati P.

    2017-09-01

    Full Text Available Background: Chest CT is a commonly used examination for the diagnosis of lung diseases, but a breast within the scanned field is nearly never the organ of interest. Objective: The purpose of this study is to compare the female breast and lung doses using split and standard protocols in chest CT scanning. Materials and Methods: The sliced chest and breast female phantoms were used. CT exams were performed using a single-slice (SS- and a 16 multi-slice (MS- CT scanner at 100 kVp and 120 kVp. Two different protocols, including standard and split protocols, were selected for scanning. The breast and lung doses were measured using thermo-luminescence dosimeters which were inserted into different layers of the chest and breast phantoms. The differences in breast and lung radiation doses in two protocols were studied in two scanners, analyzed by SPSS software and compared by t-test. Results: Breast dose by split scanning technique reduced 11% and 31% in SS- and MS- CT. Also, the radiation dose of lung tissue in this method decreased 18% and 54% in SS- and MS- CT, respectively. Moreover, there was a significant difference (p< 0.0001 in the breast and lung radiation doses between standard and split scanning protocols. Conclusion: The application of a split scan technique instead of standard protocol has a considerable potential to reduce breast and lung doses in SS- and MS- CT scanners. If split scanning protocol is associated with an optimum kV and MSCT, the maximum dose decline will be provided.

  8. Clinical Radiation Sensitivity With DNA Repair Disorders: An Overview

    International Nuclear Information System (INIS)

    Pollard, Julianne M.; Gatti, Richard A.

    2009-01-01

    Adverse reactions to radiotherapy represent a confounding phenomenon in radiation oncology. These reactions are rare, and many have been associated with individuals with DNA repair disorders such as ataxia-telangiectasia and Nijmegen Breakage syndrome. A paucity of published data is available detailing such circumstances. This overview describes four exemplary situations, a comprehensive list of 32 additional cases, and some insights gleaned from this overall experience. Fanconi anemia was associated with more than one-half of the reports. The lowest dose given to a patient that resulted in a reaction was 3 Gy, given to an ataxia-telangiectasia patient. Most patients died within months of exposure. It is clear that the patients discussed in this report had complicated illnesses, in addition to cancer, and the radiotherapy administered was most likely their best option. However, the underlying DNA repair defects make conventional radiation doses dangerous. Our findings support previous wisdom that radiotherapy should either be avoided or the doses should be selected with great care in the case of these radiosensitive genotypes, which must be recognized by their characteristic phenotypes, until more rapid, reliable, and functional assays of DNA repair become available.

  9. Yield of radiation-induced DNA single-strand breaks in Escherichia coli and superinfecting phage lambda at different dose rates. Repair of strand breaks in different buffers

    International Nuclear Information System (INIS)

    Boye, E.; Johansen, I.; Brustad, T.

    1976-01-01

    Cells of E. coli K-12 strain AB 1886 were irradiated in oxygenated phosphate buffered saline at 2 0 C with electrons from a 4-MeV linear accelerator. The yield of DNA single-strand breaks was determined as a function of the dose rate between 2.5 and 21,000 krad/min. For dose rates over 100 krad/min the yield was found to be constant. Below 10 krad/min the yield of breaks decreases drastically. This is explained by rejoining of breaks during irradiation. Twenty percent of the breaks induced by acute exposure are repaired within 3 min at 2 0 C. Superinfecting phage lambda DNA is repaired at the same rate as chromosomal DNA. In contrast to the results obtained with phosphate-buffered saline, an increase in the number of breaks after irradiation is observed when the bacteria are suspended in tris buffer. It is suggested that buffers of low ionic strength facilitate the leakage through the membrane of a small-molecular-weight component(s) necessary for DNA strand rejoining

  10. Development of quantification analysis software for measuring regional cerebral blood flow by the modified split-dose method with 123I-IMP before and after acetazolamide loading

    International Nuclear Information System (INIS)

    Nagaki, Akio; Kobara, Kouichi; Matsutomo, Norikazu

    2003-01-01

    We developed a quantification analysis software program for measuring regional cerebral blood flow (rCBF) at rest and under acetazolamide (ACZ) stress by the modified split-dose (MSD) method with iodine-123 N-isopropyl-p-iodoamphetamine (IMP) and compared the rCBF values measured by the MSD method and by the split dose 123 I-IMP SPECT (SD) method requiring one continuous withdrawal of arterial blood. Since the MSD method allows the input of two arterial blood sampling parameter values, the background subtraction procedure for obtaining ACZ-induced images in the MSD method is not identical to the procedure in the SD method. With our software program for rCBF quantification, the resting rCBF values determined by the MSD method were closely correlated with the values measured by the SD method (r=0.94), and there was also a good correlation between the ACZ-induced rCBF values obtained by the MSD method and by the SD method (r=0.81). The increase in rCBF under ACZ stress was estimated to be approximately 26% by the SD method and 38% by the MSD method, suggesting that the MSD method tends to overestimate the increase in rCBF under ACZ stress in comparison with the SD method, but the variability of the rCBF values at rest and during ACZ stress analyzed by the MSD method was smaller than the variability with the SD method. Further clinical studies are required to validate our rCBF quantification analysis program for the MSD method. (author)

  11. A saturable repair model for radionuclide therapy using low LET radiation emitters

    International Nuclear Information System (INIS)

    Calderon, Carlos F.; Joaquin Gonzalez; Guido Martin

    2004-01-01

    Purpose: In conventional radiotherapy doses of about 60Gy are necessary to achieve the tumor control or eradication. For systemic applications in radionuclide radiotherapy (RT) 0.1-0.5cGy/min and total dose 15-20 Gy could be reached with effective irradiation times of few days. The dose rate in tumor change exponentially as a time function where an uptake phase well differentiated from an elimination phase-will- appear both determined by the effective uptake and elimination times respectively. The biological response in RT will be determined not only by the total dose, but also by initial dose rate, the length of irradiation time (effective half-life) and biological factors, like radiosensitivity, repair and doubling times. Most quantitative models of radiation action on cells make the assumption that cell repair mechanisms are relevant in the response and it proceed in a dose-dependent way. The cell proliferation will influence too the response when the overall irradiation is comparable or greater than cell population doubling time. Many proposal had been made to apply radiobiological model for the prediction of the treatment response in RN. Saturable repair models are able, in principle, to explain the usual data base of radiobiological phenomena including which where other biophysical model does not work good. It is presented here an analytical expression to calculate the survival fraction in a cell population after irradiation based on a saturable repair radiobiological model proposed by Sanchez-Reyes [Sanchez-Reyes A. Radiact. Res., 1992;130:139-147] as function of radiobiological and biokinetics parameters which could be used in RN. The original radiobiological model consider a cell population where the DNA repair mechanisms are saturable and it could be affected by radiation action. The contribution of cell proliferation were considered keeping in mind that cell population grow up exponentially at constant rate. The dose rate was considered uniformly

  12. Repair of radiation injury by transplantation of hemopoietic tissue

    International Nuclear Information System (INIS)

    Smith, L.H.

    1978-01-01

    The following topics are discussed: endogenous repair of tissue by surviving cells; exogenous repair by transplantation of tissue from unirradiated donor; repair of hematopoietic tissue following sublethal exposure or exposure in the LD 1 to LD 100 range; early studies on regeneration of hematopoietic tissue in x-irradiated dogs by giving bone marrow; hypotheses as to how bone marrow injections result in regeneration of blood-forming tissue; effects of rat bone marrow transplants on survival of lethally irradiated mice; and effect of tissue transplants on dose-response curve

  13. Types of repair in radiosensitive organs of mice subjected to continuous γ-irradiation

    International Nuclear Information System (INIS)

    Li Yuanmin; Hu Fenghua; Gao Yabin

    1990-01-01

    LACA mice were whole-body irradiated with 1 Gy continuous γ-irradiation for 22 hours daily. Animals were divided into groups according to different cumulative doses of 10, 15, 20, 25 and 30 Gy, and were sacrificed at different intervals after the termination of irradiation when the above doses were reached. Radiosensitive organs were stduied by determination of quantitative indices and microscopic examination of histopathological sections. Three types of repair of radiation damages were found in radiosensitive organs, i.e. (1) full repair during irradiation in small intestines, (2) repair only after cessation of irradiation in hemopoietic and lymphoid tissues, and (3) continuing damage even after cessation of irradiation in testes

  14. Kinetics and capacity of repair of sublethal damage in mouse lip mucosa during fractionated irradiations

    International Nuclear Information System (INIS)

    Ang, K.K.; Xu, F.X.; Landuyt, W.; van der Schueren, E.

    1985-01-01

    The kinetics and capacity of repair of sublethal damage in mouse lip mucosa have been investigated. To assess the rate of repair 2 and 5 irradiations have been given with intervals ranging from 1 to 24 hours. It was found that the sublethal damage induced by a dose of approximately 10 Gy was fully recovered in approximately 4 hr. After a dose of 5-6 Gy, cellular repair was completed within 3 hr. The half time of repair (T1/2) was estimated to be approximately 72 min for 10 Gy and approximately 54 min for 5-6 Gy. Although these results suggest that the rate of repair is dependent on the fraction size, the possible influence of the amount of repair of sublethal radiation damage with the various fraction sizes used can not be ruled out. To evaluate the capacity of repair, a single dose, 2, 4 and 10 fractions have been given in a maximal overall time of 3 days in order to minimize the influence of repopulation. The slope of the isoeffective curve was 0.32 and the alpha/beta ratio was 8.5 Gy. This indicates that the capacity of cellular repair of lip mucosa is similar to those of other rapidly proliferating tissues but smaller than those of late responding tissues. The results of the present and other studies demonstrate that there are considerable differences in the repair characteristics between acutely and late responding tissues. These features have to be dealt with when fractionation schedules are markedly altered

  15. Advanced repair methods for enhanced reactor safety

    International Nuclear Information System (INIS)

    Kornfeldt, H.

    1993-01-01

    A few innovative concepts are described of the ABB Atom Service Division for repair and mitigation techniques for primary systems in nuclear power plants. The concepts are based on Shape Memory Alloy (SMA) technology. A basic feature of all methods is that welding and component replacement is being avoided and the radiation dose imposed on maintenance personnel reduced. The SMA-based repair methods give plant operators new ways to meet increased safety standards and rising maintenance costs. (Z.S.) 4 figs

  16. Repair replication in cultured normal and transformed human fibroblasts

    International Nuclear Information System (INIS)

    Smith, C.A.; Hanawalt, P.C.

    1976-01-01

    Repair replication in response to ultraviolet irradiation has been studied in normal human diploid fibroblast cultures, W138, and an SV40 transformant, VA13. Quantitative comparisons have been made using the combined isotopic and density labelling method for assaying repair replication. No significant difference was found in the amount of repair replication performed, its dose response, or the time course between growing and confluent W138 cells, early passage and senescent cells, or normal W138 cells and the transformed VA13 cells. When [ 3 H]dThd was employed as the isotopic label in the presence of a 30-200 fold excess of unlabelled BrdUrd apparent differences in repair replication were seen between W138 cells shortly after subcultivation and cells which had been allowed to reach confluence. These differences were the same over a wide dose range and regardless of the passage number of the cells, but could be influenced by using different serum lots. The differences were not seen, however, when [ 3 H]BrdUrd provided the isotopic label; thus they reflect either impurities in the [ 3 H]dThd or a slight discrimination by some cellular process

  17. Investigation of DNA damage and repair mechanism using deinococcus radiodurans

    International Nuclear Information System (INIS)

    Lau How Mooi; Kikuchi, M.; Kobayashi, Y.; Narumi, I.; Watanabe, H.

    1997-01-01

    Deninococcus Radiodurans, formerly known as Micrococcus Radiodurans, is a popular bacterium because of its high resistance to damage by carcinogens such as ionizing radiation (Dean et. al. 1966; Kitayama and Matsuyama 1968) and UV radiation (Gasvon et. al., 1995; Arrange et. al. 1993). In this report, we investigated the high resistance to ionizing radiation by this bacterium. The bacteria had been exposed from I to 5 kGy of gamma radiation and then incubated in TGY medium to study their ability to repair the broken DNA. The repair time was measured by Pulse Field Gel Electrophoresis (PFGE) method. The repair time for each dose was determined. Also in order to ensure that the repair was perfect, the bacterium was subjected to a second exposure of ionizing radiation after it has fully repaired. It was found that the 'second' repair characteristic was similar to the first repair. This confirmed that the repair after the exposure to the ionizing radiation was perfect

  18. VARIATIONS IN RADIATION SENSITIVITY AND REPAIR AMONG DIFFERENT HEMATOPOIETIC STEM-CELL SUBSETS FOLLOWING FRACTIONATED-IRRADIATION

    NARCIS (Netherlands)

    DOWN, JD; BOUDEWIJN, A; VANOS, R; THAMES, HD; PLOEMACHER, RE

    1995-01-01

    The radiation dose-survival of various hematopoietic cell subsets in murine bone marrow (BM) was determined in the cobblestone area forming cell (CAFC) assay under conditions of single-, split-, and multiple-dose irradiation. A greater recovery in cell survival with decreasing dose per fraction, or

  19. Specificity of DNA repair in plants exposed at low dose-rate

    International Nuclear Information System (INIS)

    Semov, A.B.; Ptitsina, S.N.; Shevchenko, V.A.

    1997-01-01

    Intensity of gamma-ray induced unscheduled DNA synthesis (UDS) as well as yield and repair of single-strand DNA breaks (SSB) were investigated in control and exposed higher plant populations. Populations of V. cracca have been chronically irradiating by 90 Sr-beta-particles due to Kyshtym accident (South Ural) or have been growing on the uranium-miner tails (alpha-irradiation). In former case increased radioresistance was revealed (the phenomenon previously called radio-adaptation and that probably has something in common with adaptive response). This radioresistance correlates with higher intensity of UDS. On the basis of experiments with specific inhibitors of alpha- and beta- like DNA polymerases (aphidicolin, di-deoxy-thymidine) and protein synthesis (cycloheximide) it was assumed that the enhanced UDS in radioresistant population is an partially inducible process in which both DNA polymerases take part. In control population UDS is not inducible and totally inhibited by ddT. Differences in induction and repair of gamma-ray induced SSB between control and radioresistant populations were not registered. In case of chronic alpha-irradiation increased radiosensitivity and slightly decreased UDS were found. In this population and in some populations from Chernobyl vicinity, analyzed in 1986-1991, higher yield of SSB was registered but repair of SSB was not differ from control ones. (authors)

  20. Additivity versus repair inhibition in fractionated treatments combining drugs and X rays: a theoretical analysis

    International Nuclear Information System (INIS)

    Begg, A.C.

    1987-01-01

    Drugs which inhibit the repair of radiation damage could potentially be useful for enhancing the effects of radiotherapy. In pre-clinical combined modality studies, however, it is often difficult to state with certainty whether or not a drug has inhibited radiation damage repair. This paper shows that several commonly used parameters for assessing repair can give the wrong answer regarding the presence of drug-induced repair inhibition. These parameters are; the difference in radiation dose between 1 and n fractions to give the same effect, the fractional recovered dose per fraction interval, FR, and the related parameter FREC. A further parameter used for treatment comparisons is the enhancement ratio for the drug (D.E.R.; ratio of radiation doses, with and without drug, to cause a given effect). An increasing D.E.R. with increasing number of radiation fractions has been taken as an indication that the drug inhibited repair. The present report demonstrates that this, too, can be misleading. From an analysis based on a linear-quadratic survival curve for X rays, it is suggested that deriving and comparing alpha/beta ratios (ratio of the linea to quadratic coefficients) gives the best indication of drug-induced changes in survival curve shape which may reflect underlying changes in repair capacity

  1. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    International Nuclear Information System (INIS)

    Renis, M.; Malfa, G.; Tomasello, B.; Borghesi, M.; Schettino, G.; Favetta, M.; Romano, F.; Cirrone, G. A. P.; Manti, L.

    2013-01-01

    following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis

  2. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Renis, M.; Malfa, G.; Tomasello, B. [Drug Sciences Department, University of Catania, Catania (Italy); Borghesi, M.; Schettino, G. [Queen' s University Belfast, Northern Ireland (United Kingdom); Favetta, M.; Romano, F.; Cirrone, G. A. P. [National Institute for Nuclear Physics (INFN-LNS), Catania (Italy); Manti, L. [Physics Science Department, University of Naples Federico II, Naples, and National Institute for Nuclear Physics (INFN), Naples (Italy)

    2013-07-26

    following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis.

  3. Disrupted G1 to S phase clearance via cyclin signaling impairs liver tissue repair in thioacetamide-treated type 1 diabetic rats

    International Nuclear Information System (INIS)

    Devi, Sachin S.; Mehendale, Harihara M.

    2005-01-01

    Previously we reported that a nonlethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats because of irreversible acute liver injury owing to inhibited hepatic tissue repair, primarily due to blockage of G 0 to S phase progression of cell division cycle. On the other hand, DB rats receiving 30 mg TA/kg exhibited equal initial liver injury and delayed tissue repair compared to nondiabetic (NDB) rats receiving 300 mg TA/kg, resulting in a delay in recovery from liver injury and survival. The objective of the present study was to test the hypothesis that impaired cyclin-regulated progression of G 1 to S phase of the cell cycle may explain inhibited liver tissue repair, hepatic failure, and death, contrasted with delayed liver tissue repair but survival observed in the DB rats receiving 300 in contrast to 30 mg TA/kg. In the TA-treated NDB rats sustained MAPKs and cyclin expression resulted in higher phosphorylation of retinoblastoma (pRb), explaining prompt tissue repair and survival. In contrast, DB rats receiving the same dose of TA (300 mg/kg) exhibited suppressed MAPKs and cyclin expression that led to inhibition of pRb, inhibited tissue repair, and death. On the other hand, DB rats receiving 30 mg TA/kg exhibited delayed up regulation of MAPK signaling that delayed the expression of CD1 and pRb, explaining delayed stimulation of tissue repair observed in this group. In conclusion, the hepatotoxicant TA has a dose-dependent adverse effect on cyclin-regulated pRb signaling: the lower dose causes a recoverable delay, whereas the higher dose inhibits it with corresponding effect on the ultimate outcomes on hepatic tissue repair; this dose-dependent adverse effect is substantially shifted to the left of the dose response curve in diabetes

  4. Splitting methods for split feasibility problems with application to Dantzig selectors

    International Nuclear Information System (INIS)

    He, Hongjin; Xu, Hong-Kun

    2017-01-01

    The split feasibility problem (SFP), which refers to the task of finding a point that belongs to a given nonempty, closed and convex set, and whose image under a bounded linear operator belongs to another given nonempty, closed and convex set, has promising applicability in modeling a wide range of inverse problems. Motivated by the increasingly data-driven regularization in the areas of signal/image processing and statistical learning, in this paper, we study the regularized split feasibility problem (RSFP), which provides a unified model for treating many real-world problems. By exploiting the split nature of the RSFP, we shall gainfully employ several efficient splitting methods to solve the model under consideration. A remarkable advantage of our methods lies in their easier subproblems in the sense that the resulting subproblems have closed-form representations or can be efficiently solved up to a high precision. As an interesting application, we apply the proposed algorithms for finding Dantzig selectors, in addition to demonstrating the effectiveness of the splitting methods through some computational results on synthetic and real medical data sets. (paper)

  5. DNA-repair synthesis in ataxia telangiectasia lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Ford, M.D.; Houldsworth, J.; Lavin, M.F. (Queensland Univ., Brisbane (Australia). Dept. of Biochemistry)

    1981-12-01

    The ability of a number of Epstein-Barr virus-transformed lymphoblastoid cells from ataxia telangiectasia (AT) patients to repair ..gamma..-radiation damage to DNA was determined. All of these AT cells were previously shown to be hypersensitive to ..gamma..-radiation. Two methods were used to determine DNA-repair synthesis: isopycnic gradient analysis and a method employing hydroxyurea to inhibit semiconservative DNA synthesis. Control, AT heterozygote and AT homozygote cells were demonstrated to have similar capacities for repair of radiation damage to DNA. In addition at high radiation doses (10-40 krad) the extent of inhibition of DNA synthesis was similar in the different cell types.

  6. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  7. Dose rate effectiveness in radiation-induced teratogenesis in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Norimura, T.

    2000-01-01

    To investigate the role of p53 gene in tissue repair of teratogenic injury, we compared incidence of radiation-induced malformations in homozygous p53(-/-) mice, heterozygous p53(+/-) mice and wild-type p53(+/+) mice. After X-irradiation with 2 Gy at high dose rate on 9.5 days of gestation, p53(-/-) mice showed higher incidences of anomalies and higher resistance to prenatal deaths than p53(+/+) mice. This reciprocal relationship of radiosensitivity to anomalies and deaths supports the notion that embryos or fetuses have a p53-dependent 'guardian' that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of apoptotic cells was greatly increased in p53(+/+) fetuses but not in p53(-/-) fetuses. The same dose of γ-ray exposure at low dose rate on 9.5-10.5 day of gestation produced significant reduction of radiation-induced malformation in p53(+/+) and p53(+/-) mice, remained teratogenic for p53(-/-) mice. These results suggest that complete elimination of teratogenic damage from irradiated tissues requires the concerted cooperation of two mechanisms; proficient DNA repair and the p53-dependent apoptotic tissue repair. When concerted DNA repair and apoptosis functions efficiently, there is a threshold dose-rate for radiation-induced malformations. (author)

  8. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...

  9. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    International Nuclear Information System (INIS)

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-01-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within ±1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 ± 6.3%) and higher MU (13.7 ± 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  10. Repair of radiation damage in mammalian cells: its relevance to environmental effects

    International Nuclear Information System (INIS)

    Han, A.; Elkind, M.M.

    1979-01-01

    Assessment of the potential biological hazards associated with energy production technologies involves the quantitation of risk on the basis of dose-effect dependencies, from which, it is hoped, some safety guidelines can be developed. Our current knowledge of the biological importance of damage/repair processes stems by and large from radiation studies which clearly demonstrate that cellular response to radiation depends upon the ability of cells to repair the damage. Apparently, the same is true for cellular response to different chemical agents. Drawing upon our experiences from radiation studies, we demonstrate the relevance of ongoing repair processes, as evident in the studies of radiation induced cell killing and neoplastic transformation, to the type of risk estimates that might be associated with the hazards from energy production technologies. The effect of repair on cell survival is considered. It is evident from our studies that in the region of small doses, repair of damage relative to cell lethality is of importance in estimating the magnitude of effect. Aside from the cytotoxic effects in terms of cell killing, one of the greatest concerns associated with energy production is the potential of a given technology, or its effluents, to produce cancer. It is therefore of importance to quantify the risk in this context of damage registration and possible effect of repair on damage expression. It has been generally established that exposure of normal cells in culture to a variety of known carcinogens results in neoplastic transformation. Our observations with C3H/10T1/2 cells in culture lend direct evidence for the hypothesis that reduced tumor incidences at low dose rates of radiation could be due to the repair of induced damage

  11. Low radiation doses and antinuclear lobby

    International Nuclear Information System (INIS)

    Drobnik, J.

    1987-01-01

    The probability of mutations or diseases resulting from other than radiation causes is negatively dependent on radiation. Thus, for instance, the incidence of cancer, is demonstrably lower in areas with a higher radiation background. The hypothesis is expressed that there exist repair mechanisms for DNA damage which will repair the damage, and will give priority to those genes which are currently active. Survival and stochastic processes are not dependent on the overall repair of DNA but on the repair of critical function genes. New discoveries shed a different light on views of the linear dependence of radiation damage on the low level doses. (M.D.)

  12. Repair process and a repaired component

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    2018-02-20

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component, and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.

  13. Sos - response induction by gamma radiation in Escherichia coli strains with different repair capacities

    International Nuclear Information System (INIS)

    Serment Guerrero, J.H.

    1992-01-01

    The Sos - response in Escherichia coli is formed by several genes involved in mechanisms of tolerance and/or repair, and only activates when a DNA - damage appears. It is controlled by recA and lexA genes. In normal circumstances, LexA protein is linked in every Sos operators, blocking the transcription. When a DNA damage occurs, a Sos signal is generated, Rec A protein changes its normal functions, starts acting as a protease and cleaves Lex A, allowing the transcription of all Sos genes. This response can be quantified by means of Sos Chromo test, performed by Quillardet and Ofnung (1985). In using the Chromo test, it has been observed that the DNA damage made by gamma radiation in Escherichia coli depends on both the doses and the doses rate. It has been shown that the exposure of Escherichia coli PQ37 strain (uvrA) to low doses at low dose rate appears to retard the response, suggesting the action of a repair mechanism. (Brena 1990). In this work, we compare the response in Escherichia coli strains deficient in different mechanisms of repair and/or tolerance. It is observed the importance of rec N gene in the repair of DNA damage produced by gamma radiation. (Author)

  14. Dose Uniformity of Scored and Unscored Tablets: Application of the FDA Tablet Scoring Guidance for Industry.

    Science.gov (United States)

    Ciavarella, Anthony B; Khan, Mansoor A; Gupta, Abhay; Faustino, Patrick J

    This U.S. Food and Drug Administration (FDA) laboratory study examines the impact of tablet splitting, the effect of tablet splitters, and the presence of a tablet score on the dose uniformity of two model drugs. Whole tablets were purchased from five manufacturers for amlodipine and six for gabapentin. Two splitters were used for each drug product, and the gabapentin tablets were also split by hand. Whole and split amlodipine tablets were tested for content uniformity following the general chapter of the United States Pharmacopeia (USP) Uniformity of Dosage Units , which is a requirement of the new FDA Guidance for Industry on tablet scoring. The USP weight variation method was used for gabapentin split tablets based on the recommendation of the guidance. All whole tablets met the USP acceptance criteria for the Uniformity of Dosage Units. Variation in whole tablet content ranged from 0.5 to 2.1 standard deviation (SD) of the percent label claim. Splitting the unscored amlodipine tablets resulted in a significant increase in dose variability of 6.5-25.4 SD when compared to whole tablets. Split tablets from all amlodipine drug products did not meet the USP acceptance criteria for content uniformity. Variation in the weight for gabapentin split tablets was greater than the whole tablets, ranging from 1.3 to 9.3 SD. All fully scored gabapentin products met the USP acceptance criteria for weight variation. Size, shape, and the presence or absence of a tablet score can affect the content uniformity and weight variation of amlodipine and gabapentin tablets. Tablet splitting produced higher variability. Differences in dose variability and fragmentation were observed between tablet splitters and hand splitting. These results are consistent with the FDA's concerns that tablet splitting can have an effect on the amount of drug present in a split tablet and available for absorption. Tablet splitting has become a very common practice in the United States and throughout the

  15. Evaluation of Mandibular Anatomy Associated With Bad Splits in Sagittal Split Ramus Osteotomy of Mandible.

    Science.gov (United States)

    Wang, Tongyue; Han, Jeong Joon; Oh, Hee-Kyun; Park, Hong-Ju; Jung, Seunggon; Park, Yeong-Joon; Kook, Min-Suk

    2016-07-01

    This study aimed to identify risk factors associated with bad splits during sagittal split ramus osteotomy by using three-dimensional computed tomography. This study included 8 bad splits and 47 normal patients without bad splits. Mandibular anatomic parameters related to osteotomy line were measured. These included anteroposterior width of the ramus at level of lingula, distance between external oblique ridge and lingula, distance between sigmoid notch and inferior border of mandible, mandibular angle, distance between inferior outer surface of mandibular canal and inferior border of mandible under distal root of second molar (MCEM), buccolingual thickness of the ramus at level of lingula, and buccolingual thickness of the area just distal to first molar (BTM1) and second molar (BTM2). The incidence of bad splits in 625 sagittal split osteotomies was 1.28%. Compared with normal group, bad split group exhibited significantly thinner BTM2 and shorter sigmoid notch and inferior border of mandible (P bad splits. These anatomic data may help surgeons to choose the safest surgical techniques and best osteotomy sites.

  16. Analysis of DNA strand break induction and repair in plants from the vicinity of Chernobyl

    International Nuclear Information System (INIS)

    Syomov, A.B.; Ptitsyna, S.N.; Sergeeva, S.A.

    1992-01-01

    For 3 years following the Chernobyl accident DNA repair efficiency was studied in irradiated and control populations of various plan species. Compared with the control populations, some irradiated populations exhibited increases in the yield of DNA single-strand breaks per unit dose of challenge radiation. The effect was registered in low-dose-rate alpha-irradiated populations, but was absent in plant populations growing in conditions of low-dose-rate beta-irradiation. The efficiency of single-strand DNA repair was identical in control and irradiated populations and approximated 100%. (author). 12 refs.; 1 fig.; 2 tabs

  17. Recommendations to designers aimed at minimizing radiation dose incurred in operation, maintenance, inspection and repair of light-water reactors

    International Nuclear Information System (INIS)

    1978-01-01

    In the framework of the exchange of experience between nuclear power plant operators organized by the services of the Commission of the European Communities an ad-hoc working party elaborated recommendations particularly directed to those concerned with design of light water reactor plants. The necessary design measures which should be followed to minimize radiation dose incurred in operation, maintenance, inspection and repair of such reactors are listed. The recommendations are based on recent views expressed by operating utilities within the Community. It is intended to revise these recommendations at suitable intervals in order to make use of the most recent experience and to keep the report up to date with the actual state of art in nuclear technology

  18. DNA repair in human cells exposed to combinations of carcinogenic agents

    International Nuclear Information System (INIS)

    Setlow, R.B.; Ahmed, F.E.

    1980-01-01

    Normal human and XP 2 fibroblasts were treated with uv plus uv-mimetic chemicals. The uv dose used was sufficient to saturate the uv excision repair system. Excision repair after combined treatments was estimated by unscheduled DNA synthesis, BrdUrd photolysis, and the loss of sites sensitive to a uv specific endonuclease. Since the repair of damage from uv and its mimetics is coordinately controlled we expected that there would be similar rate-limiting steps in the repair of uv and chemical damage and that after a combined treatment the total amount of repair would be the same as from uv or the chemicals separately. The expectation was not fulfilled. In normal cells repair after a combined treatment was additive whereas in XP cells repair after a combined treatment was usually less than after either agent separately. The chemicals tested were AAAF, DMBA-epoxide, 4NQO, and ICR-170

  19. Effect of hyperthermia on radiation damage and its repair in Tribolium confusum

    International Nuclear Information System (INIS)

    Lai, P.K.

    1977-01-01

    A series of temperature tolerance curves from 43.5 0 C to 46.0 0 C in 0.5 0 C increment were determined. Two non-lethal hyperthermia schemes, i.e., 45.0 0 C for 2 hr and 43.0 0 C for 2 hr were chosen to examine the sensitizing effect of heat on lethality produced by radiation in flour beetles. When hyperthermia was applied either immediately before or after irradiation, the sensitizing effect of hyperthermia was indicated by the shifting of the regression line of survival in probits on dose to the left of that of the control. The sensitizing effect as measured by decreased LD 50 did not reveal any definite trend related to the order of application of the two modalities in immediate sequence. The effect of hyperthermia was more dramatic in dose-fractionation experiments. Flour beetles exhibited typical Elkind kinetics of split-dose repair and recovery, and the amount of the sparing effect of dose-fractionation (sdf) was influenced by interfraction temperature. Both interfraction hypothermia (i.e., less than or equal to 10 0 C) and interfraction hyperthermia (i.e., > 42.0 0 C) completely suppress sdf. However, the mechanism involved in the suppression of sdf by hypothermia was different than that by hyperthermia. In the former, the suppression of sdf was reversible immediately upon return to the normal incubation temperature of 30 0 C; in the latter, the suppression of sdf was protracted and the reversibility of sdf depended on the severity of the hyperthermia treatment. Hyperthermia of 43.0 0 C for 2 hr, applied either immediately before or after the first radiation dose, suppressed sdf for 6-10 hr, and then sdf reappeared slowly, so that the final level of survival was slightly less than that of the comparable groups maintained at 30 0 C. With the more severe hyperthermia treatment of 45.0 0 C for 2 hr, sdf was suppressed for almost 36 hr after return to 30 0 C although there were some slight surges in survival

  20. Comparative Study between topical applications liposomally entrapped DNA repair enzymes and thymidine dinucleotide as radioprotectors

    International Nuclear Information System (INIS)

    Shabon, M.H.; El-Bedewi, A.F.

    2005-01-01

    The delivery of active agents to the skin by liposome carriers received great interest during the last three decades. This is based on their potential to enclose various types of biological materials and to deliver them to diverse cell types. Recent work suggests that liposomes as vehicles for topical drug delivery may be superior to conventional preparations. Also, topical application of DNA repair enzymes to irradiated skin increases the rate of repair of DNA potentially damaged cells. Moreover, thymidine dinucleotide is a new skin photo-protective agent against non-ionizing radiation through induction of DNA repair. Gamma irradiation can produce DNA damage in human skin. DNA mutations have an important role in the development of skin cancer and precancerous skin lesions. Albino rats were irradiated with Cobalt-60 gamma radiation with different doses (0.5, 1.5, 3 Gy), and were treated by either thymidine dinucleotide or liposomally entrapped DNA repair enzymes topically 24 hours before irradiation. Evaluation was done histopathologically by H and E stain. Computerized image analyzer using Masson's trichrome stain was also done. Gamma radiation produced epidermal thinning and dermal inflammatory cells together with collagen fragmentation and clumping in a dose-dependent manner. Comparing between both thymidine dinucleotide and liposomally entrapped DNA repair enzymes pretreated and irradiated rats. Low dose irradiation (0.5 Gy) together with previous drugs showed preservation of epidermis with no inflammatory cells and also it maintained the normal architecture of collagen bundles. However, they were ineffective with higher doses. In conclusion our results may suggest that the effects of gamma radiation on the skin at low dose could be minimized by the use of these drugs before exposure

  1. Biological effect of Pulsed Dose Rate brachytherapy with stepping sources

    International Nuclear Information System (INIS)

    Limbergen, Erik F.M. van; Fowler, Jack F.

    1996-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR), for local tissue dose-rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. An earlier publication (Fowler and Mount 1992) had shown that, for dose rates (averaged for the duration of the pulse) up to 3 Gy/h, little change of isoeffect doses from continuous low dose rate (CLDR) are expected, unless larger doses per fraction than 1 Gy are used, and especially if components of very rapid repair are present with half-times of less than about 0.5 hours. However, local and transient dose rates close to stepping sources can be up to several Gy per minute. Methods: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to repair, at a constant exponential rate. The formula developed by Dale for fractionated low-dose-rate radiotherapy was used. A constant overall time of 140 hours and constant total dose of 70 Gy were assumed throughout, the continuous low dose-rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose-rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, and T (1(2)) from 4 minutes to 1.5 hours. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (> 1 Gy) at high instantaneous dose-rates if T (1(2)) in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in the tissue, and - when T (1(2)) is short - the instantaneous dose-rate. Maximum ratios of PDR/CLDR effect occur when the dose-rate is such that pulse duration is approximately equal to T (1(2)) of repair. Results are presented for late-responding tissues, the differences from CLDR

  2. The Split-Brain Phenomenon Revisited: A Single Conscious Agent with Split Perception.

    Science.gov (United States)

    Pinto, Yair; de Haan, Edward H F; Lamme, Victor A F

    2017-11-01

    The split-brain phenomenon is caused by the surgical severing of the corpus callosum, the main route of communication between the cerebral hemispheres. The classical view of this syndrome asserts that conscious unity is abolished. The left hemisphere consciously experiences and functions independently of the right hemisphere. This view is a cornerstone of current consciousness research. In this review, we first discuss the evidence for the classical view. We then propose an alternative, the 'conscious unity, split perception' model. This model asserts that a split brain produces one conscious agent who experiences two parallel, unintegrated streams of information. In addition to changing our view of the split-brain phenomenon, this new model also poses a serious challenge for current dominant theories of consciousness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Superfractionation as a potential hypoxic cell radiosensitizer: prediction of an optimum dose per fraction

    International Nuclear Information System (INIS)

    Dasu, Alexandru; Denekamp, Juliana

    1999-01-01

    Purpose: A dose 'window of opportunity' has been identified in an earlier modeling study if the inducible repair variant of the LQ model is adopted instead of the pure LQ model, and if all survival curve parameters are equally modified by the presence or absence of oxygen. In this paper we have extended the calculations to consider survival curve parameters from 15 sets of data obtained for cells tested at low doses using clonogenic assays. Methods and Materials: A simple computer model has been used to simulate the response of each cell line to various doses per fraction in multifraction schedules, with oxic and hypoxic cells receiving the same fractional dose. We have then used pairs of simulated survival curves to estimate the effective hypoxic protection (OER') as a function of the dose per fraction. Results: The resistance of hypoxic cells is reduced by using smaller doses per fraction than 2 Gy in all these fractionated clinical simulations, whether using a simple LQ model, or the more complex LQ/IR model. If there is no inducible repair, the optimum dose is infinitely low. If there is inducible repair, there is an optimum dose per fraction at which hypoxic protection is minimized. This is usually around 0.5 Gy. It depends on the dose needed to induce repair being higher in hypoxia than in oxygen. The OER' may even go below unity, i.e. hypoxic cells may be more sensitive than oxic cells. Conclusions: If oxic and hypoxic cells are repeatedly exposed to doses of the same magnitude, as occurs in clinical radiotherapy, the observed hypoxic protection varies with the fractional dose. The OER' is predicted to diminish at lower doses in all cell lines. The loss of hypoxic resistance with superfractionation is predicted to be proportional to the capacity of the cells to induce repair, i.e. their intrinsic radioresistance at a dose of 2 Gy

  4. Triadic split-merge sampler

    Science.gov (United States)

    van Rossum, Anne C.; Lin, Hai Xiang; Dubbeldam, Johan; van der Herik, H. Jaap

    2018-04-01

    In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.

  5. DIMETHYLARSINIC ACID ALTERS EXPRESSION OF OXIDATIVE STRESS AND DNA REPAIR GENES IN A DOSE DEPENDENT MANNER IN THE TRANSITIONAL EPITHELIUM OF THE URINARY BLADDER FROM FEMALE F344 RATS.

    Science.gov (United States)

    Dose-dependent alteration of oxidative stress and DNA repair gene expression by Dimethylarsinic acid [DMA(V)] in transitional epithelium of urinary bladder from female F344 rats.Arsenic (As) is a major concern as millions of people are at risk from drinking arsenic contaminat...

  6. Traumatic Tricuspid Insufficiency Requiring Valve Repair in an Acute Setting.

    Science.gov (United States)

    Enomoto, Yoshinori; Sudo, Yoshio; Sueta, Tomonori

    2015-01-01

    Tricuspid insufficiency due to penetrating cardiac trauma is rare. Patients with tricuspid insufficiency due to trauma can tolerate this abnormality for months or even years. We report a case of a 66-year-old female with penetrating cardiac trauma on the right side of her heart that required tricuspid valve repair in an acute setting. She sustained cut and stab wounds on her bilateral forearms and in the neck and epigastric region. She had cardiac tamponade and developed pulseless electrical activity, which required emergency surgery. The right ventricle and superior vena cava were dissected approximately 5 cm and 2 cm, respectively. After these wounds had been repaired, the patient's inability to wean from cardiopulmonary bypass suggested rightsided heart failure; transesophageal echocardiography revealed tricuspid insufficiency. Right atriotomy was performed, and a detailed examination revealed that the tricuspid valve septal leaflet was split in two. There was also an atrial septal injury that created a connection with the left atrium; these injuries were not detected from the right ventricular wound. After repair, weaning from cardiopulmonary bypass with mild tricuspid insufficiency was achieved, and she recovered uneventfully. This case emphasized the importance of thoroughly investigating intracardiac injury and transesophageal echocardiography.

  7. Reparative processes in spleen of rats irradiated with higher daily dose rates of continuous irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mackova, N; Praslicka, M; Misurova, E [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Histological and DNA content values were used in evaluating repair processes in the spleen of rats at various intervals following continuous irradiation with daily doses of 50 R, 100 R, 200 R and 500 R (a total dose of 1000 R), and following a single exposure to 1000 R. Histological changes found immediately after irradiation indicated the induction of significant injuries, this mainly as a result of daily doses of 200 R and 500 R. The complete repair of the DNA content and of a number of erythroid elements and also a 70 to 80% regeneration of the white pulp took place within 25 days. The same period was found to be insufficient for the complete repair of megakaryocytes. No signs of repair were observed in spleen in the histological picture or DNA content after a single irradiation with a dose of 1000 R.

  8. Reparative processes in spleen of rats irradiated with higher daily dose rates of continuous irradiation

    International Nuclear Information System (INIS)

    Mackova, N.; Praslicka, M.; Misurova, E.

    1975-01-01

    Histological and DNA content values were used in evaluating repair processes in the spleen of rats at various intervals following continuous irradiation with daily doses of 50 R, 100 R, 200 R and 500 R (a total dose of 1000 R), and following a single exposure to 1000 R. Histological changes found immediately after irradiation indicated the induction of significant injuries, this mainly as a result of daily doses of 200 R and 500 R. The complete repair of the DNA content and of a number of erythroid elements and also a 70 to 80% regeneration of the white pulp took place within 25 days. The same period was found to be insufficient for the complete repair of megakaryocytes. No signs of repair were observed in spleen in the histological picture or DNA content after a single irradiation with a dose of 1000 R. (author)

  9. Effect of fibrin glue derived from snake venom on the viability of autogenous split-thickness skin graft

    Directory of Open Access Journals (Sweden)

    S.C. Rahal

    2004-01-01

    Full Text Available The aim of this study was to analyze the effect of snake venom derived from fibrin glue on the viability of split-thickness skin graft. Nine crossbreed dogs were used. Full-thickness skin segments measuring 4 x 4 cm were bilaterally excised from the proximal radial area on each dog. A split-thickness skin graft was harvestedfrom left lateral thoracic area using a freehand graft knife, and was secured to the left recipient bed using several simple interrupted sutures of 3-0 nylon (sutured graft. A split-thickness skin graft was harvested from the right lateral thoracic area using a graft knife. Fibrin glue derived from snake venom was applied to the recipient bed, and 8 equidistant simple interrupted sutures of 3-0 nylon were used to secure the skin graft (glued graft. Viable and nonviable areas were traced on a transparent sheet and measured using a Nikon Photomicroscope connected to a KS-300 image analysis system. The skin graft and recipient bed were collected from three dogs at day 7, 15, and 30 postoperative. The glued grafts had statistically higher graft viability than sutured grafts. Histological examination showed that the tissue repair process in the glued grafts was more accentuated than sutured grafts. It was possible to conclude that fibrin glue derived from snake venom increased survival of autogenous split-thickness skin graft.

  10. Application of Laser Micro-irradiation for Examination of Single and Double Strand Break Repair in Mammalian Cells.

    Science.gov (United States)

    Holton, Nathaniel W; Andrews, Joel F; Gassman, Natalie R

    2017-09-05

    Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins. Induction of DNA damage by laser micro-irradiation can occur with a range of wavelengths, and users can reliably induce single strand breaks, base lesions and double strand breaks with a range of doses. Here, laser micro-irradiation is used to examine repair of single and double strand breaks induced by two common confocal laser wavelengths, 355 nm and 405 nm. Further, proper characterization of the applied laser dose for inducing specific damage mixtures is described, so users can reproducibly perform laser micro-irradiation data acquisition and analysis.

  11. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  12. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations.

    Science.gov (United States)

    Löbrich, Markus; Rief, Nicole; Kühne, Martin; Heckmann, Martina; Fleckenstein, Jochen; Rübe, Christian; Uder, Michael

    2005-06-21

    Ionizing radiation can lead to a variety of deleterious effects in humans, most importantly to the induction of cancer. DNA double-strand breaks (DSBs) are among the most significant genetic lesions introduced by ionizing radiation that can initiate carcinogenesis. We have enumerated gamma-H2AX foci as a measure for DSBs in lymphocytes from individuals undergoing computed tomography examination of the thorax and/or the abdomen. The number of DSBs induced by computed tomography examination was found to depend linearly on the dose-length product, a radiodiagnostic unit that is proportional to both the local dose delivered and the length of the body exposed. Analysis of lymphocytes sampled up to 1 day postirradiation provided kinetics for the in vivo loss of gamma-H2AX foci that correlated with DSB repair. Interestingly, in contrast to results obtained in vitro, normal individuals repair DSBs to background levels. A patient who had previously shown severe side effects after radiotherapy displayed levels of gamma-H2AX foci at various sampling times postirradiation that were several times higher than those of normal individuals. Gamma-H2AX and pulsed-field gel electrophoresis analysis of fibroblasts obtained from this patient confirmed a substantial DSB repair defect. Additionally, these fibroblasts showed significant in vitro radiosensitivity. These data show that the in vivo induction and repair of DSBs can be assessed in individuals exposed to low radiation doses, adding a further dimension to DSB repair studies and providing the opportunity to identify repair-compromised individuals after diagnostic irradiation procedures.

  13. DETECTION OF FLUX EMERGENCE, SPLITTING, MERGING, AND CANCELLATION OF NETWORK FIELD. I. SPLITTING AND MERGING

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Y.; Yokoyama, T. [Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hagenaar, H. J. [Lockheed Martin Advanced Technology Center, Org. ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2012-06-20

    Frequencies of magnetic patch processes on the supergranule boundary, namely, flux emergence, splitting, merging, and cancellation, are investigated through automatic detection. We use a set of line-of-sight magnetograms taken by the Solar Optical Telescope (SOT) on board the Hinode satellite. We found 1636 positive patches and 1637 negative patches in the data set, whose time duration is 3.5 hr and field of view is 112'' Multiplication-Sign 112''. The total numbers of magnetic processes are as follows: 493 positive and 482 negative splittings, 536 positive and 535 negative mergings, 86 cancellations, and 3 emergences. The total numbers of emergence and cancellation are significantly smaller than those of splitting and merging. Further, the frequency dependence of the merging and splitting processes on the flux content are investigated. Merging has a weak dependence on the flux content with a power-law index of only 0.28. The timescale for splitting is found to be independent of the parent flux content before splitting, which corresponds to {approx}33 minutes. It is also found that patches split into any flux contents with the same probability. This splitting has a power-law distribution of the flux content with an index of -2 as a time-independent solution. These results support that the frequency distribution of the flux content in the analyzed flux range is rapidly maintained by merging and splitting, namely, surface processes. We suggest a model for frequency distributions of cancellation and emergence based on this idea.

  14. Splitting: The Development of a Measure.

    Science.gov (United States)

    Gerson, Mary-Joan

    1984-01-01

    Described the development of a scale that measures splitting as a psychological structure. The construct validity of the splitting scale is suggested by the positive relationship between splitting scores and a diagnostic measure of the narcissistic personality disorder, as well as a negative relationship between splitting scores and levels of…

  15. Bad splits in bilateral sagittal split osteotomy: systematic review and meta-analysis of reported risk factors.

    Science.gov (United States)

    Steenen, S A; van Wijk, A J; Becking, A G

    2016-08-01

    An unfavourable and unanticipated pattern of the bilateral sagittal split osteotomy (BSSO) is generally referred to as a 'bad split'. Patient factors predictive of a bad split reported in the literature are controversial. Suggested risk factors are reviewed in this article. A systematic review was undertaken, yielding a total of 30 studies published between 1971 and 2015 reporting the incidence of bad split and patient age, and/or surgical technique employed, and/or the presence of third molars. These included 22 retrospective cohort studies, six prospective cohort studies, one matched-pair analysis, and one case series. Spearman's rank correlation showed a statistically significant but weak correlation between increasing average age and increasing occurrence of bad splits in 18 studies (ρ=0.229; Pbad split among the different splitting techniques. A meta-analysis pooling the effect sizes of seven cohort studies showed no significant difference in the incidence of bad split between cohorts of patients with third molars present and concomitantly removed during surgery, and patients in whom third molars were removed at least 6 months preoperatively (odds ratio 1.16, 95% confidence interval 0.73-1.85, Z=0.64, P=0.52). In summary, there is no robust evidence to date to show that any risk factor influences the incidence of bad split. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Comparison of the Rate and Extent of Deoxyribonucleic Acid Repair and Semi-Conservative Synthesis in Bacteria Exposed to Ultra-Violet Light

    Energy Technology Data Exchange (ETDEWEB)

    Billen, D. [Radiation Biology Laboratory and Departments of Microbiology and Radiology, College of Medicine, University of Florida, Gainesville, FL (United States)

    1968-08-15

    Many bacterial strains possess the ability to repair genetic damage resulting from ultra-violet light (u.v. ) exposure. Of major importance is the occurrence of a 'repair' type of deoxyribonucleic acid (DNA) replication during 'dark repair', which presumably results in the replacement of the damaged portion of the genome. With deuterium, {sup 15}N and {sup 13}C as a density label, and buoyant density centrifugation in CsCl as a means of separating pre and post-irradiation synthesized DNA strands, the rate and extent of DNA repair synthesis in exponential - phase Escherichia coli strain B/r were determined. After u.v. exposure, {sup 3}H-thymine incorporation into the 'heavy' parental DNA strands was used to measure repair synthesis, while {sup 3}H-thymine incorporation into 'light' and newly synthesized DNA strands measured semi-conservative replication. The rate of bases incorporated by repair synthesis in the initial 15 minures of post-irradiation incubation at 37 Degree-Sign C appears to be saturated at a dose of approximately 100 ergs/mm{sup 2}. At higher doses (up to 600 ergs/mm{sup 2}) the increase observed was not proportional to dose. During this initial 15 minutes, less than 1% of the chromosomal DNA was replaced. The amount of DNA synthesized by semi-conservative replication during the initial 15 minutes was reduced with increasing u.v. dose. After exposure to 600 ergs/mm{sup 2}, repair and semiconservative DNA synthesis were nearly equivalent in the irradiated cells after 15 minutes of incubation. Repair synthesis was observed to be terminated by 45 minutes in bacteria exposed to 160 or 500 ergs/mm{sup 2} (64% and 10% survivors, respectively). The amount of genome replaced by repair synthesis at several doses was determined. Starvation for a required amino acid (resulting in an inhibition of protein and ribonucleic acid synthesis) did not prevent the repair synthesis nor grossly alter its extent. The restoration of the semi-conservative mo d e of DNA

  17. Response of human fibroblasts to low dose rate gamma irradiation

    International Nuclear Information System (INIS)

    Dritschilo, A.; Brennan, T.; Weichselbaum, R.R.; Mossman, K.L.

    1984-01-01

    Cells from 11 human strains, including fibroblasts from patients with the genetic diseases of ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Fanconi's anemia (FA), were exposed to γ radiation at high (1.6-2.2 Gy/min) and at low (0.03-0.07 Gy/min) dose rates. Survival curves reveal an increase inthe terminal slope (D 0 ) when cells are irradiated at low dose rates compared to high dose rates. This was true for all cell lines tested, although the AT, FA, and XP cells are reported or postulated to have radiation repair deficiencies. From the response of these cells, it is apparent that radiation sensitivities differ; however, at low dose rate, all tested human cells are able to repair injury

  18. Biological evidence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Mirsch, Johanna

    2017-01-01

    assessed with sub-μm resolution by utilizing the unique morphology of the retina as a model tissue. The analysis revealed a 1/r 2 dependency of the dose deposition by δ-electrons, which was hitherto only determined with physical approaches in inorganic material. Moreover, the biological measurements indicate the presence of a background dose at larger distances from primary particles, which arises as a result of additive dose contributions from several independent particles. In conclusion, this interdisciplinary project put emphasis on the transition between the physical and the biological radiation effects and provided extensive data for the biological verification of physical measurements and models. Some of these models are used for the planning of tumor treatment with charged particles. The second project built upon previously obtained data and focused on the investigation of the DSB repair efficiency of cells irradiated with low doses. For this project, radiation doses were selected that are comparable to the doses, which are routinely used during diagnostic medical examinations. While a linear induction of DSBs with the applied dose was detected in human fibroblasts, these cells fail to repair DSBs efficiently after very low doses of X-rays. However, the repair efficiency was increased in cells pre-treated with low concentrations of hydrogen peroxide, suggesting that this induces a response, which is required for the repair of radiation-induced DSBs after exposure to low radiation doses (Grudzenski et al., 2010, PNAS 107:14205-10). One interpretation of this finding is that a certain cellular radical level is required to efficiently activate the repair machinery. To test this hypothesis, we asked if the DSB repair capacity at low doses can be further diminished when cells are treated with a radical scavenger prior to irradiation. Indeed, a decreased DSB repair capacity in cells pre-treated with the radical scavenger N-Acetylcystein was observed. Appropriate in vivo

  19. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  20. Two-Loop Splitting Amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  1. Two-loop splitting amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.J.; Kosower, D.A.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  2. A Novel Technique for Split-Thickness Skin Donor Site Pain Control: Subcutaneous Catheters for Continuous Local Anesthetic Infusion

    Science.gov (United States)

    2012-01-01

    the new: a novel approach to treating pain associated with rib fractures . World J Surg 2010;34:2359–62. 3. Wheatley GH III, Rosenbaum DH, Paul MC, et...has been described after laparotomy, tho- racotomy, inguinal hernia repair, and rib fractures .2–4 We describe our experience at the U.S. Army Insti...JAN 2012 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE A novel technique for split-thickness skin donor site pain control

  3. Yield and nutritional efficiency of corn in response to rates and splits of nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Telmo Jorge Carneiro Amado

    Full Text Available ABSTRACT Despite its relevance, nitrogen is poorly utilized by the plants when improperly applied. Thus, the objective of this study was to evaluate the yield and nitrogen use efficiency (NUE in corn in response to doses and split application of nitrogen fertilization. The experimental design was a randomized block design, with three replications. Doses of nitrogen of 0, 30, 60 and 180 kg ha-1 were applied at sowing in order to create different nutritional status of corn plants and to obtain different values of Normalized Difference Vegetation Index (NDVI measured with “Greenseeker®” optical sensor. The subplots with nitrogen doses in topdressing of 0, 30, 60 and 90 kg ha-1 at V8 and a dose of 60 kg ha-1 at V12 were placed in experimental plots with doses of 0, 30, 60 and 180 kg ha-1 of nitrogen at sowing. Moreover, NUE was calculated in the experiment using agronomic indexes determined by applications of nitrogen in late topdressing (V8 and V12 and contrasted to the possible combinations at doses of 60, 90 and 120 kg ha-1 of total N applied. The results showed the occurrence of a linear relationship between nitrogen fertilizer dose and NDVI at V8 as well as at V12 stages. Late topdressing fertilizations (V12 did not cause a decrease in grain yield when combined with nitrogen fertilization at sowing, moreover resulted in higher NUE. Split the nitrogen dose showed better NUE than the combinations where nitrogen was not applied at sowing or in topdressing. The delay of nitrogen topdressing can be an alternative for the planning of the moment of the N fertilization according to the climate forecast in each region.

  4. DNA repair by MGMT, but not AAG, causes a threshold in alkylation-induced colorectal carcinogenesis.

    Science.gov (United States)

    Fahrer, Jörg; Frisch, Janina; Nagel, Georg; Kraus, Alexander; Dörsam, Bastian; Thomas, Adam D; Reißig, Sonja; Waisman, Ari; Kaina, Bernd

    2015-10-01

    Epidemiological studies indicate that N-nitroso compounds (NOC) are causally linked to colorectal cancer (CRC). NOC induce DNA alkylations, including O (6)-methylguanine (O (6)-MeG) and N-methylated purines, which are repaired by O (6)-MeG-DNA methyltransferase (MGMT) and N-alkyladenine-DNA glycosylase (AAG)-initiated base excision repair, respectively. In view of recent evidence of nonlinear mutagenicity for NOC-like compounds, the question arises as to the existence of threshold doses in CRC formation. Here, we set out to determine the impact of DNA repair on the dose-response of alkylation-induced CRC. DNA repair proficient (WT) and deficient (Mgmt (-/-), Aag (-/-) and Mgmt (-/-)/Aag (-/-)) mice were treated with azoxymethane (AOM) and dextran sodium sulfate to trigger CRC. Tumors were quantified by non-invasive mini-endoscopy. A non-linear increase in CRC formation was observed in WT and Aag (-/-) mice. In contrast, a linear dose-dependent increase in tumor frequency was found in Mgmt (-/-) and Mgmt (-/-)/Aag (-/-) mice. The data were corroborated by hockey stick modeling, yielding similar carcinogenic thresholds for WT and Aag (-/-) and no threshold for MGMT lacking mice. O (6)-MeG levels and depletion of MGMT correlated well with the observed dose-response in CRC formation. AOM induced dose-dependently DNA double-strand breaks in colon crypts including Lgr5-positive colon stem cells, which coincided with ATR-Chk1-p53 signaling. Intriguingly, Mgmt (-/-) mice displayed significantly enhanced levels of γ-H2AX, suggesting the usefulness of γ-H2AX as an early genotoxicity marker in the colorectum. This study demonstrates for the first time a non-linear dose-response for alkylation-induced colorectal carcinogenesis and reveals DNA repair by MGMT, but not AAG, as a key node in determining a carcinogenic threshold. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Inhibition of DNA repair by Pentoxifylline and related methylxanthine derivatives

    International Nuclear Information System (INIS)

    Boehm, Lothar; Roos, Wynand Paul; Serafin, Antonio Mendes

    2003-01-01

    The methylxanthine drug Pentoxifylline is reviewed for new properties which have emerged only relatively recently and for which clinical applications can be expected. After a summary on the established systemic effects of Pentoxifylline on the microcirculation and reduction of tumour anoxia, the role of the drug in the treatment of vasoocclusive disorders, cerebral ischemia, infectious diseases, septic shock and acute respiratory distress, the review focuses on another level of drug action which is based on in vitro observations in a variety of cell lines. Pentoxifylline and the related drug Caffeine are known radiosensitizers especially in p53 mutant cells. The explanation that the drug abrogates the G2 block and shortens repair in G2 by promoting early entry into mitosis is not anymore tenable because enhancement of radiotoxicity requires presence of the drug during irradiation and fails when the drug is added after irradiation at the G2 maximum. Repair assays by measurement of recovery ratios and by delayed plating experiments indeed strongly suggested a role in repair which is now confirmed for Pentoxifylline by constant field gel electrophoresis (CFGE) measurements and for Pentoxifylline and for Caffeine by use of a variety of repair mutants. The picture now emerging shows that Caffeine and Pentoxifylline inhibit homologous recombination by targeting members of the PIK kinase family (ATM and ATR) which facilitate repair in G2. Pentoxifylline induced repair inhibition between irradiation dose fractions to counter interfraction repair has been successfully applied in a model for stereotactic surgery. Another realistic avenue of application of Pentoxifylline in tumour therapy comes from experiments which show that repair events in G2 can be targeted directly by addition of cytotoxic drugs and Pentoxifylline at the G2 maximum. Under these conditions massive dose enhancement factors of up to 80 have been observed suggesting that it may be possible to realise

  6. Split-dose recovery in epithelial and vascular-connective tissue of pig skin

    International Nuclear Information System (INIS)

    Peel, D.M.; Hopewell, J.W.; Simmonds, R.H.; Dodd, P.; Meistrich, M.L.

    1984-01-01

    In the first 16 weeks after irradiation, two distinct waves of reaction can be observed in pig skin; the first wave (3-9 weeks) represents the expression of damage to the epithelium while the second is indicative of primary damage to the dermis, mediated through vascular injury. Following β-irradiation with a strontium-90 applicator, a severe epithelial reaction was seen with little subsequent dermal effects. X-rays (250 kV) on the other hand, produced a minimal epithelial response at doses which led to the development of dermal necrosis after 10-16 weeks. Comparison of single doses with two equal doses separated by 24 h produced a D 2 -D 1 value of 7.0 Gy at the doses which produced moist desquamation in 50% of fields (ED 50 ) after strontium-90 irradiation. After X-irradiation comparison of ED 50 doses for the later dermal reaction suggested a D 2 -D 1 value of 4.5 Gy. Over this same dose range of X-rays the D 2 -D 1 value for the first wave epithelial reaction was 3.5 Gy. These values of D 2 -D 1 for epithelial and dermal reactions in pig skin were compared with published data and were examined in relation to the theoretical predictions of a linear quadratic model for tissue target cell survival. The results were broadly in keeping with the productions of such a model. (Auth.)

  7. Effects of low doses

    International Nuclear Information System (INIS)

    Le Guen, B.

    2001-01-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  8. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  9. Safety and immunogenicity of adjuvanted inactivated split-virion and whole-virion influenza A (H5N1) vaccines in children: a phase I-II randomized trial.

    Science.gov (United States)

    Wu, Jiang; Liu, Shu-Zhen; Dong, Shan-Shan; Dong, Xiao-Ping; Zhang, Wu-Li; Lu, Min; Li, Chang-Gui; Zhou, Ji-Chen; Fang, Han-Hua; Liu, Yan; Liu, Li-Ying; Qiu, Yuan-Zheng; Gao, Qiang; Zhang, Xiao-Mei; Chen, Jiang-Ting; Zhong, Xiang; Yin, Wei-Dong; Feng, Zi-Jian

    2010-08-31

    Highly pathogenic avian influenza A virus H5N1 has the potential to cause a pandemic. Many prototype pandemic influenza A (H5N1) vaccines had been developed and well evaluated in adults in recent years. However, data in children are limited. Herein we evaluate the safety and immunogenicity of adjuvanted split-virion and whole-virion H5N1 vaccines in children. An open-labelled phase I trial was conducted in children aged 3-11 years to receive aluminum-adjuvated, split-virion H5N1 vaccine (5-30 microg) and in children aged 12-17 years to receive aluminum-adjuvated, whole-virion H5N1 vaccine (5-15 microg). Safety of the two formulations was assessed. Then a randomized phase II trial was conducted, in which 141 children aged 3-11 years received the split-virion vaccine (10 or 15 microg) and 280 children aged 12-17 years received the split-virion vaccine (10-30 microg) or the whole-virion vaccine (5 microg). Serum samples were collected for hemagglutination-inhibition (HI) assays. 5-15 microg adjuvated split-virion vaccines were well tolerated in children aged 3-11 years and 5-30 microg adjuvated split-virion vaccines and 5 microg adjuvated whole-virion vaccine were well tolerated in children aged 12-17 years. Most local and systemic reactions were mild or moderate. Before vaccination, all participants were immunologically naïve to H5N1 virus. Immune responses were induced after the first dose and significantly boosted after the second dose. In 3-11 years children, the 10 and 15 microg split-virion vaccine induced similar responses with 55% seroconversion and seroprotection (HI titer >or=1:40) rates. In 12-17 years children, the 30 microg split-virion vaccine induced the highest immune response with 71% seroconversion and seroprotection rates. The 5 microg whole-virion vaccine induced higher response than the 10 microg split-virion vaccine did. The aluminum-adjuvanted, split-virion prototype pandemic influenza A (H5N1) vaccine showed good safety and immunogenicity in

  10. DNA repair and its coupling to DNA replication in eukaryotic cells. [UV, x ray

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1978-01-01

    This review article with 184 references presents the view that mammalian cells have one major repair system, excision repair, with many branches (nucleotide excision repair, base excision repair, crosslink repair, etc.) and a multiplicity of enzymes. Any particular carcinogen makes a spectrum of damaged sites and each kind of damage may be repaired by one or more branches of excision repair. Excision repair is rarely complete, except at very low doses, and eukaryotic cells survive and replicate DNA despite the presence of unrepaired damage. An alteration in a specific biochemical pathway seen in damaged or mutant cells will not always be the primary consequence of damage or of the biochemical defect of the cells. Detailed kinetic data are required to understand comprehensively the various facets of excision repair and replication. Correlation between molecular events of repair and cytological and cellular changes such as chromosomal damage, mutagenesis, transformation, and carcinogenesis are also rudimentary.

  11. Evidence that DNA excision-repair in xeroderma pigmentosum group A is limited but biologically significant

    International Nuclear Information System (INIS)

    Hull, D.R.; Kantor, G.J.

    1983-01-01

    The loss of pyrimidine dimers in nondividing populations of an excision-repair deficient xeroderma pigmentosum group. A strain (XP12BE) was measured throughout long periods (up to 5 months) following exposure to low doses of ultraviolet light (UV, 254 nm) using a UV endonuclease-alkaline sedimentation assay. Excision of about 90% of the dimers induced by 1 J/m 2 occurred during the first 50 days. The rate curve has some similarities with that of normal excision-repair proficient cultures that may not be coincidental. Rate curves for both XP12BE and normal cultures are characterized by a fast and slow component, with both rate constants for the XP12BE cultures (0.15 day -1 and 0.025 day -1 ) a factor of 10 smaller than those observed for the respective components of normal cell cultures. The slow components for both XP12BE and normal cultures extrapolate to about 30% of the initial number of dimers. No further excision was detected throughout an additional 90-day period even though the cultures were capable of excision-repair of other newly-introduced pyrimidine dimers. We conclude that nondividing XP12BE cells in addition to having a slower repair rate, cannot repair some of the UV-induced DNA damage. The repair in XP12BE is shown to have biological significance as detected by a cell-survival assay and dose-fractionation techniques. Nondividing XP12BE cells are more resistant to UV when irradiated chronically than when irradiated acutely with the same total dose. (orig.)

  12. Yield and nutritional efficiency of corn in response to rates and splits of nitrogen fertilization

    OpenAIRE

    Amado, Telmo Jorge Carneiro; Villalba, Enrique Oswin Hahn; Bortolotto, Rafael Pivotto; Nora, Douglas Dalla; Bragagnolo, Jardes; León, Enrique Asterio Benítez

    2017-01-01

    ABSTRACT Despite its relevance, nitrogen is poorly utilized by the plants when improperly applied. Thus, the objective of this study was to evaluate the yield and nitrogen use efficiency (NUE) in corn in response to doses and split application of nitrogen fertilization. The experimental design was a randomized block design, with three replications. Doses of nitrogen of 0, 30, 60 and 180 kg ha-1 were applied at sowing in order to create different nutritional status of corn plants and to obtain...

  13. The influence of overall treatment time on renal injury after multifraction irradiation

    International Nuclear Information System (INIS)

    Williams, M.V.; Stewart, F.A.; Soranson, J.A.; Denekamp, J.

    1985-01-01

    The influence of overall treatment time on the radiation response of the mouse kidney was studied in an experiment in which 16 fractions were administered either evenly distributed over 20, 40 or 80 days, or as a split course (8 F/3 days; 74 days rest; 8 F/3 days). Urine output and an isotope assay of glomerular filtration were used to test the mice sequentially. The data were used both to obtain dose-response curves and also to determine the latent period before a chosen level of injury was expressed functionally. When the radiation was given as a split course, at the rate of 2 fractions per day, with a large gap of 10.5 weeks between courses, there was no additional sparing compared with 16 fractions over 20 days. This indicates that any sparing that might have resulted from slow repair or stimulated repopulation in the gap has been counterbalanced by having less time for repair of sublethal injury when intervals of 6-12 h are used instead of 24-48 h. Clearly no great increase in the tolerance dose for mouse kidney resulted from the split course. (Auth.)

  14. Differential effect of ionizing radiation on transcription in repair-deficient and repair-proficient mice

    International Nuclear Information System (INIS)

    Munson, G.P.; Woloschak, G.E.

    1990-01-01

    Experiments were designed to examine in vivo changes in total transcription and in the expression of the c-fos gene following whole-body exposure of mice to JANUS fission-spectrum neutrons. Radiation repair-deficient (wst/wst) and -proficient (wst/., C57BL/6 x C3H F1) mice were exposed to JANUS fission-spectrum neutrons calibrated to deliver a gut dose of 50 cGy. Animals were sacrificed less than 10 or at 60 min postirradiation, and gut tissues were removed for study. Our results revealed that, in repair-proficient mice, an immediate depression (relative to untreated control) in total transcription was evident that continued through 1 h postirradiation. Conversely, radiation-sensitive wst/wst mice displayed doubled transcription levels postirradiation. Expression of c-fos was consistently depressed following radiation exposure in control and wst/wst mice. However, the depression of c-fos mRNA was delayed in wst/wst mice relative to controls. These results demonstrate abnormal regulation of transcription and of c-fos mRNA accumulation in repair-deficient wasted mice following exposure to ionizing radiation. In addition, this work documents rapid total transcriptional depression in normal mice following radiation exposure

  15. Design study on dose evaluation method for employees at severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoshitaka; Irie, Takashi; Kohriyama, Tamio [Institute of Nuclear Safety Systems Inc., Mihama, Fukui (Japan); Kudo, Seiichi [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Nishimura, Kazuya [Computer Software Development Co., Ltd., Tokyo (Japan)

    2001-09-01

    When we assume a severe accident in a nuclear power plant, it is required for rescue activity in the plant, accident management, repair work of failed parts and evaluation of employees to obtain radiation dose rate distribution or map in the plant and estimated dose value for the above works. However it might be difficult to obtain them accurately along the progress of the accident, because radiation monitors are not always installed in the areas where the accident management is planned or the repair work is thought for safety-related equipments. In this work, we analyzed diffusion of radioactive materials in case of a severe accident in a pressurized water reactor plant, investigated a method to obtain radiation dose rate in the plant from estimated radioactive sources, made up a prototype analyzing system by modeling a specific part of components and buildings in the plant from this design study on dose evaluation method for employees at severe accident, and then evaluated its availability. As a result, we obtained the followings: (1) A new dose evaluation method was established to predict the radiation dose rate in any point in the plant during a severe accident scenario. (2) This evaluation of total dose including moving route and time for the accident management and the repair work is useful for estimating radiation dose limit for these actions of the employees. (3) The radiation dose rate map is effective for identifying high radiation areas and for choosing a route with lower radiation dose rate. (author)

  16. Design study on dose evaluation method for employees at severe accident

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Irie, Takashi; Kohriyama, Tamio; Kudo, Seiichi; Nishimura, Kazuya

    2001-01-01

    When we assume a severe accident in a nuclear power plant, it is required for rescue activity in the plant, accident management, repair work of failed parts and evaluation of employees to obtain radiation dose rate distribution or map in the plant and estimated dose value for the above works. However it might be difficult to obtain them accurately along the progress of the accident, because radiation monitors are not always installed in the areas where the accident management is planned or the repair work is thought for safety-related equipments. In this work, we analyzed diffusion of radioactive materials in case of a severe accident in a pressurized water reactor plant, investigated a method to obtain radiation dose rate in the plant from estimated radioactive sources, made up a prototype analyzing system by modeling a specific part of components and buildings in the plant from this design study on dose evaluation method for employees at severe accident, and then evaluated its availability. As a result, we obtained the followings: (1) A new dose evaluation method was established to predict the radiation dose rate in any point in the plant during a severe accident scenario. (2) This evaluation of total dose including moving route and time for the accident management and the repair work is useful for estimating radiation dose limit for these actions of the employees. (3) The radiation dose rate map is effective for identifying high radiation areas and for choosing a route with lower radiation dose rate. (author)

  17. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    International Nuclear Information System (INIS)

    Huang, J; Szczykutowicz, T; Bayouth, J; Miller, J

    2016-01-01

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between the acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials

  18. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J; Szczykutowicz, T; Bayouth, J; Miller, J [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between the acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials

  19. Split-illumination electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Inada, Yoshikatsu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Taniyama, Akira [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo 660-0891 (Japan); Shindo, Daisuke [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-23

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  20. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  1. The split-sting trait in Apis mellifera induced by cobalt 60 gamma radiation

    International Nuclear Information System (INIS)

    Silva, Vera Lucia Maciel

    1993-01-01

    The Split-Sting (SS) trait in honey bees, induced by gamma radiation, was discovered by Soares (1975). Bees with this trait are unable to sting, because the parts that compose the sting are separated. Many studies have been done in order to understand this new mutation. We studied the effect of gamma radiation on induction of the SS trait in feral bee strains. The doses were applied to the phase of larvae of queens with 5 days old. The following results were obtained: all doses of radiation induced the SS trait. There was an increase in the percentage of queens with SS with an increase in radiation dose; the SS trait induced by radiation is probably phenocopy; SS bees were observed in nature; increase of the rate mortality and malformation with an increase in radiation dose. (author)

  2. The production and repair of double strand breaks in cells from normal humans and patients with ataxia telangiectasia

    International Nuclear Information System (INIS)

    Lehman, A.R.; Stevens, S.

    1977-01-01

    The production and repair of double strand breaks induced by γ-rays in the DNA of human fibroblasts have been measured by sedimentation in sucrose gradients under non-denaturing conditions. Unirradiated DNA formed a rapidly sedimenting gel. Low doses of radiation released freely sedimenting DNA molecules from this gel. Higher doses reduced the rate of sedimentation of the free DNA due to the introduction of double strand breaks. The breakage efficiency was 1 break/1.3x10 10 daltons of DNA/krad. Postirradiation incubation after a high dose of radiation resulted in an increase in molecular weight of the free DNA molecules, and after a low dose the rapidly-sedimenting gel was reformed. These data suggest that double strand breaks are repaired in human fibroblasts. No significant differences were found between fibroblasts from two normal donors and four patients with the radiosensitive disorder, ataxia telangiectasia, in either the production or repair of double strand breaks

  3. Investigation on Failures of Composite Beam and Substrate Concrete due to Drying Shrinkage Property of Repair Materials

    Science.gov (United States)

    Pattnaik, Rashmi Ranjan

    2017-06-01

    A Finite Element Analysis (FEA) and an experimental study was conducted on composite beam of repair material and substrate concrete to investigate the failures of the composite beam due to drying shrinkage property of the repair materials. In FEA, the stress distribution in the composite beam due to two concentrate load and shrinkage of repair materials were investigated in addition to the deflected shape of the composite beam. The stress distributions and load deflection shapes of the finite element model were investigated to aid in analysis of the experimental findings. In the experimental findings, the mechanical properties such as compressive strength, split tensile strength, flexural strength, and load-deflection curves were studied in addition to slant shear bond strength, drying shrinkage and failure patterns of the composite beam specimens. Flexure test was conducted to simulate tensile stress at the interface between the repair material and substrate concrete. The results of FEA were used to analyze the experimental results. It was observed that the repair materials with low drying shrinkage are showing compatible failure in the flexure test of the composite beam and deform adequately in the load deflection curves. Also, the flexural strength of the composite beam with low drying shrinkage repair materials showed higher flexural strength as compared to the composite beams with higher drying shrinkage value of the repair materials even though the strength of those materials were more.

  4. Repair of ultraviolet light-induced damage in Micrococcus radiophilus, and extremely resistant microorganism

    International Nuclear Information System (INIS)

    Lavin, M.F.; Jenkins, A.; Kidson, C.

    1976-01-01

    Repair of ultraviolet radiation damage was examined in an extremely radioresistant organism, Micrococcus radiophilus. Measurement of the number of thymine-containing dimers formed as a function of ultraviolet dose suggests that the ability of this organism to withstand high doses of ultraviolet radiation (20,000 ergs/mm 2 ) is not related to protective screening by pigments. M. radiophilus carries out a rapid excision of thymine dimers at doses of ultraviolet light up to 10,000 ergs/mm 2 . Synthesis of deoxyribonucleic acid is reduced after irradiation, but after removal of photodamage the rate approaches that in unirradiated cells. A comparison is drawn with Micrococcus luteus and M. radiodurans. We conclude that the extremely high resistance to ultraviolet irradiation in M. radiophilus is at least partly due to the presence of an efficient excision repair system

  5. Repair of UVC induced DNA lesions in erythrocytes from Carassius auratus gibelio

    International Nuclear Information System (INIS)

    Bagdonas, E.; Zukas, K.

    2004-01-01

    The kinetics of UVC (254 nm) irradiation induced DNA single-strand breaks generated during the excision repair of UV induced DNA damage in erythrocytes from Carassius auratus gibelio were studied using alkaline comet assay. Nucleotide excision repair recognised DNA lesions such as UVC induced cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidone photoproducts and produced DNA single-stranded breaks that were easily detected by comet assay. After irradiation of erythrocytes with 58 j/m 2 UVC dose, there was an increase in comet tail moment (CTM) at 2 hours post-radiation, whereas at 4 hours post-radiation CTM decreased and did not differ significantly from the control level (P=0,127). When erythrocytes were exposed to 173 J/m 2 UVC dose, the excision repair delayed in the beginning (0 hours), reached maximum level at 2 hours post-radiation (CTM-54,8) and showed slightly decreased level at 4 hours post-radiation (CTM=18,5). (author)

  6. Repair of single-strand breaks in normal and trisomic lymphocytes

    International Nuclear Information System (INIS)

    Leonard, J.C.; Merz, T.

    1982-01-01

    Recently, Athanasiou and colleagues (1981) reported a deficiency in the capacity of lymphocytes from persons with Down's syndrome to repair single-strand DNA breaks. They found that 1 h after exposure to 160 Gray, repair processes had restored the sedimentation profile of DNA from normal lymphocytes to control values, whereas the relative average molecular weight of DNA from irradiated lymphocytes from persons with Down's syndrome showed no increase during the repair interval. They have suggested that their data, in conjunction with the earlier data concerning the frequencies of induced chromosomal aberrations in lymphocytes from persons with Down's syndrome, reflect a decreased efficiency in some aspect of DNA repair in trisomic cells. However, for further studies of this hypothesis, it is more appropriate to study the rejoining of DNA single-strand breaks after doses comparable to those used in tests for chromosomal aberrations. (orig.)

  7. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Nobuyuki, E-mail: nkanemat@nirs.go.jp [Department of Accelerator and Medical Physics, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Quantum Science and Energy Engineering, School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan)

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  8. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy.

    Science.gov (United States)

    Kanematsu, Nobuyuki

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  9. The tissue injury and repair in cancer radiotherapy

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju

    1975-01-01

    One of the difficulties in cancer radiotherapy arises from the fact that the tissue tolerance dose is much smaller than the tumor lethal dose. In our opinion the former depends upon the tolerance of the endothelial cell of the blood vessel in the normal tissue. In this introduction, a new concept regarding the estimation of tissue radiosensitivity was described, and the possible significance of the mode of radiation injury and the repair capability of normal tissue in the cancer radiotheraphy was discussed. (author)

  10. Repair in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Wanna-Nakamura, S.S.

    1981-01-01

    Unscheduled DNA synthesis (UDS), an indicator of excision repair, was induced in freshly drawn Ehrlich ascites tumor cells (EAT), using ionizing radiation, far ultraviolet light (254 nm) or near uv light (365 nm) in combination with 8-methoxypsoralen. UDS was scored by grain counts in autoradiographs following the incorporation of tritium-labelled thymidine. The amount of UDS after each of these agents was expressed in terms of two parameters, viz. numer of cells showing repair and the mean number of grains per nucleus. The influence of radiation dose and of the duration of radioactive thymidine incubation were also examined. To test for a possible relationship between low mitotic index and repair capability, EAT cells were incubated in buffered salt media to lower the mitotic index. Cells kept in a buffered salt solution for 7 h show a marked drop in mitotic index compared to those incubated in minimal medium containing 15% fetal calf serum (MEM + FCS). This drop in mitotic index was reversible for up to 5 h, if cells were returned to MEM + FCS. Cells incubated in MEM + FCS also showed a decrease in mitotic activity compared to freshly drawn cells. This reduced mitotic index is approximately constant for up to 24 h. With the drop in mitotic index, EAT cells also show a drop in repair compared to freshly drawn cells. The repair capability of cells incubated in buffer can be restored by returning cells to MEM + FCS

  11. Constraints in the use of repair half times and mathematical modelling for the clinical application of HDR and PDR treatment schedules as an alternative for LDR brachytherapy

    International Nuclear Information System (INIS)

    Pop, L.A.M.; Broek, J.F.C.M. van den; Visser, A.G.; Kogel, A.J. van der

    1996-01-01

    Using theoretical models based on radiobiological principles for the design of new treatment schedules for HDR and PDR brachytherapy, it is important to realise the impact of assumptions regarding the kinetics of repair. Extrapolations based on longer repair half times in a continuous LDR reference scheme may lead to the calculation of dangerously high doses for alternative HDR and PDR treatment schedules. We used the clinical experience obtained with conventional ERT and LDR brachytherapy in head and neck cancer as a clinical guideline to check the impact of the radiobiological parameters used. Biologically equivalent dose (BED) values for the in clinical practice of LDR brachytherapy recommended dose of 65-70 Gy (prescribed at a dose rate between 30-50 cGy/h) are calculated as a function of the repair half time. These BED values are compared with the biological effect of a clinical reference dose of conventional ERT with 2 Gy/day and complete repair between the fractions. From this comparison of LDR and ERT treatment schedules, a range of values for the repair half times of acute or late responding tissues is demarcated with a reasonable fit to the clinical data. For the acute effects (or tumor control) the best fits are obtained for repair half times of about 0.5 h, while for late effects the repair half times are at least 1 h and can be as high as 3 h. Within these ranges of repair half times for acute and late effects, the outcome of 'alternative' HDR or PDR treatment schedules are discussed. It is predominantly the late reacting normal tissue with the longer repair half time for which problems will be encountered and no or only marginal gain is to be expected of decreasing the dose rate per pulse in PDR brachytherapy

  12. Cool covered sky-splitting spectrum-splitting FK

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politécnica de Madrid (UPM), Madrid (Spain)

    2014-09-26

    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

  13. Bad split during bilateral sagittal split osteotomy of the mandible with separators: a retrospective study of 427 patients.

    Science.gov (United States)

    Mensink, Gertjan; Verweij, Jop P; Frank, Michael D; Eelco Bergsma, J; Richard van Merkesteyn, J P

    2013-09-01

    An unfavourable fracture, known as a bad split, is a common operative complication in bilateral sagittal split osteotomy (BSSO). The reported incidence ranges from 0.5 to 5.5%/site. Since 1994 we have used sagittal splitters and separators instead of chisels for BSSO in our clinic in an attempt to prevent postoperative hypoaesthesia. Theoretically an increased percentage of bad splits could be expected with this technique. In this retrospective study we aimed to find out the incidence of bad splits associated with BSSO done with splitters and separators. We also assessed the risk factors for bad splits. The study group comprised 427 consecutive patients among whom the incidence of bad splits was 2.0%/site, which is well within the reported range. The only predictive factor for a bad split was the removal of third molars at the same time as BSSO. There was no significant association between bad splits and age, sex, class of occlusion, or the experience of the surgeon. We think that doing a BSSO with splitters and separators instead of chisels does not increase the risk of a bad split, and is therefore safe with predictable results. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. The influence of DNA repair inhibitors on the mutation rate

    International Nuclear Information System (INIS)

    Auzinger, Th.; Hruby, R.

    1980-12-01

    The simultaneous influence of gamma-radiation and DNA-repair inhibiting substances on the mutation frequency of mice was investigated in vivo with the micronucleus test. The detergens Tween 80, vitamin A, and the antiphlogisticum phenylbutazone were used as DNA-repair inhibiting substances. Using the same irradiation doses, a statistic significant increase of mutagenicity respectively micronucleus frequency was found in high concentrations of Tween 80 and in all used dosages of vitamin A, but not in phenylbutazone and in low concentrations of tween. (auth.)

  15. DNA strand breaks, repair, and survival in x-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Dugle, D.L.; Gillespie, C.J.; Chapman, J.D.

    1976-01-01

    The yields of unrepairable single- and double-strand breaks in the DNA of x-irradiated Chinese hamster cells were measured by low-speed neutral and alkaline sucrose density gradient sedimentation in order to investigate the relation between these lesions and reproductive death. After maximal single-strand rejoining, at all doses, the number of residual single-strand breaks was twice the number of residual double-strand breaks. Both double-strand and unrepairable single-strand breaks were proportional to the square of absorbed dose, in the range 10-50 krad. No rejoining of double-strand breaks was observed. These observations suggest that, in mammalian cells, most double-strand breaks are not repairable, while all single-strand breaks are repaired except those that are sufficiently close on complementary strands to constitute double-strand breaks. Comparison with cell survival measurements at much lower doses suggests that loss of reproductive capacity corresponds to induction of approximately one double-strand break

  16. Repair of potentially lethal damage in unfed plateau phase cultures of Ehrlich ascited tumour cells

    International Nuclear Information System (INIS)

    Illiakis, G.

    1980-01-01

    Plateau phase EAT-cells have been irradiated at different times in the plateau phase and their ability to repair PLD has been measured. A large capacity to repair PLD has been observed if the cultures were kept in the plateau phase for some hours after irradiation before diluting and plating to measure the survival. In combination with theoretical considerations it is concluded that almost all the PLD produced under these conditions can be repaired. The reaction rate of this repair was independent of the dose and the age of the culture. The results also indicate that PLD repair is independent of the intercellular contact of EAT-cells. (author)

  17. Poolside inspection, repair and reconstitution of LWR fuel elements

    International Nuclear Information System (INIS)

    1993-03-01

    The purpose of the meeting was to review the state of the art in the area of poolside inspection, repair and reconstitution of light water fuel elements. In the present publication it appears that techniques of inspection, repair and reconstitution of fuel elements have been developed by fuel suppliers and are now routinely and successfully applied in many countries. For the first time, the subject of control rod poolside examination was dealt with, poolside inspection and repair of a MOX assembly were reported and the inspection and repair of WWER assemblies were examined. Compared to the results of the previous meeting, present developments in the area aim now at reaching better economics, better reliability, reduction of personal doses and waste volume. Thirty-six participants representing twelve countries attended the meeting. Fifteen papers were presented in two sessions. An abstract was prepared for each of these papers. Refs, figs, tabs, diagrams, pictures and photos

  18. HDR- and LDR-interstitial irradiation (IRT) in rat spinal cord: the effect of decreasing the dose rate and the impact of a rapid dose fall off over the spinal cord

    International Nuclear Information System (INIS)

    Pop, L.A.M.; Plas, M. van der; Hanssen, A.E.J.; Kogel, A.J. van der

    1996-01-01

    Introduction: Detailed knowledge of radiobiological parameters of the different tissues involved are warranted before HDR- and recently PDR-brachytherapy can be successfully introduced in clinical practice as an alternative to LDR- brachytherapy. The purpose of this study is to determine the α/β ratio and half time of repair of rat spinal cord during continuous irradiation at different dose rates and to investigate the impact of a rapid dose fall off over the spinal cord thickness. Material and methods: Two parallel catheters are inserted on each side of the vertebral bodies from the level of Th 10 to L 4 . These catheters were afterloaded with two 192 Ir- wires of 4 cm length each (activity 1- 10 mCi/cm) or connected to the HDR-microSelectron. Serial experiments have been carried out to obtain complete dose response curves at 5 different dose rates, resp. 0.5, 0.9, 1.6, 2.6 and 120 Gy/h. Paralysis of the hindlegs after 5-6 months and histopathological examination of the spinal cord of each animal are used as experimental endpoints. Dose-volume histograms of each irradiated rat have been analysed to evaluate the correlation between dose distribution and biological response and the histopathological damage seen. Results: The distribution of the histological damage was a good reflection of the rapid dose fall-off over the spinal cord, with white matter necrosis or demyelination predominantly seen in the dorsal tracts of the spinal cord or dorsal roots. With each reduction of the dose rate, spinal cord tolerance was significantly increased, with a maximum dose rate factor of 4.3 if the dose rate was reduced from 120 Gy/h to 0.53 Gy/h. Estimates of the repair parameters using different types of analysis revealed an α/β ratio of 2.44 Gy and a (mono- exponential) half time of repair (=t (1(2)) ) of 1.43 hours; for the maximum of 150 % of the prescribed dose these values were 3.67 Gy and 1.43 hours respectively. Conclusions: Spinal cord radiation tolerance is

  19. Quantitative aspects of repair of potentially lethal damage in mammalian cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Pohlit, W.

    1979-01-01

    Stationary cultures of Ehrlich ascites tumour cells were irradiated with X-rays and then immediately or after a time interval tsub(rep) plated to measure the survival. The increase in survival observed after delayed plating was interpreted as repair of potentially lethal damage. A cybernetic model was used to analyse these data. Three states of damage were assumed for the cells. In state A the cells could grow to macrocolonies, in state B the cells suffered potentially lethal damage and could grow to macrocolonies only if they were allowed to repair the damage and in state C the cells were lethally damaged. A method of deriving the values of the parameters of the model from the experimental data was given. The dependence of the reaction rate constant of the repair potentially lethal damage on the dose D was used to derive a possible mechanism for the production of the shoulder in the dose effect curve. Finally this model was compared with other models of radiation action in living cells. (author)

  20. Response of rat spinal cord to single and fractionated doses of accelerated heavy ions

    International Nuclear Information System (INIS)

    Leith, J.L.; McDonald, M.; Powers-Risius, P.; Bliven, S.F.; Walton, R.E.; Woodruff, K.H.; Howard, J.

    1980-01-01

    The response of rat spinal cord to irradiation with accelerated heavy ions, in particular carbon and neon ions has been studied. Two different ionization regions in the modified Bragg curve for each ion have been studied for both single and fractionated exposures. We have defined the paralytic response as a function of dose and dose per fraction, and we have determined RBE and repair values. The response of rat spinal cord is both dose and LET dependent, which allows the derivation of RBE and repair values

  1. Occupational doses and ALARA - recent developments in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Godas, T.; Viktorsson, C. [Swedish Radiation Protection Institute, Stockholm (Sweden)

    1995-03-01

    Sweden has traditionally experienced very slow doses to workers in the nuclear industry. However, this trend has since last year been broken mainly due to significant maintenance and repair work. This paper will describe occupational dose trends in Sweden and discuss actions that are being implemented to control this new situation.

  2. Ultraviolet-induced DNA excision repair in human B and T lymphocytes. II

    International Nuclear Information System (INIS)

    Yew, F.F.-H.; Johnson, R.T.

    1979-01-01

    Despite their great sensitivity to ultraviolet light purified human B and T lymphocytes are capable of complete repair provided that the ultraviolet dose does not exceed 0.5 Jm -2 . Their capacity to repair, as measured by the restoration of DNA supercoiling in preparations of nucleoids, and their survival are significantly increased in the presence of deoxyribonucleosides. Certain agents which inhibit semi-conservative DNA synthesis (hydroxyurea, 1-β-D-arabino-furanosylcytosine (arafCyt) either stop or delay the repair process in lymphocytes. The effect of hydroxyurea is eventually overcome spontaneously, but changes in the sedimentation behaviour of ultraviolet-irradiated nucleoids caused by arafCyt can only be neutralized by addition of deoxycytidine. The effective inhibition of repair by arafCyt permits the detection of extremely small amounts of ultraviolet damage and also the estimation of when repair is complete. (Auth.)

  3. Dose-response relationship of induction kinetics of In vivo DNA damage and repair in mouse leukocytes exposed to gamma radiation; Relacion dosis-respuesta de la cinetica de induccion de dano y reparacion del ADN In vivo en leucocitos de raton expuestos a radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Mendiola C, M.T.; Morales, R.P. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Investigacion Basica, Departamento de Biologia, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The Unicellular electrophoresis in gel technique is a useful tool in the determination of simple ruptures and labile sites to the alkali in DNA of eucariontes cells. The determination of the induction kinetics of damage and repair of DNA can give more information. The objective of this work was to determine whether the analysis of the area under the damage/repair induction kinetics curve in comets percent or the comets frequency in the two peaks of maximum induction is adequate for determining the dose-response relationship. The mice were exposed at the doses of 0.5, 1.0, 2.0 Gy. (Author)

  4. DNA repair in mammalian cells exposed to combinations of carcinogenic agents

    International Nuclear Information System (INIS)

    Setlow, R.B.; Ahmed, F.E.

    1979-01-01

    Cells defective in one or more aspects of repair are killed and often mutagenized more readily than normal cells by DNA damaging agents, and humans whose cells are deficient in repair are at an increased carcinogenic risk compared to normal individuals. The excision repair of uv induced pyrimidine dimers is a well studied system, but the details of the steps in this repair system are far from being understood in human cells. We know that there are a number of chemicals that mimic uv in that normal human cells repair DNA damage from both these agents and from uv by a long patch excision repair system, and that xeroderma pigmentosum cells defective in repair of uv are also defective in the repair of damage from these chemicals. The chemicals we have investigated are AAAF, 4-NQO, DMBA-epoxide, and ICR-170. We describe experiments, using several techniques, in which DNA excision repair is measured after treatment of various human cell strains with combinations of uv and these agents. If two agents have a common rate limiting step then, at doses high enough to saturate the repair system, one would expect the observed repair after a treatment with a combination of agents to be equal to that from one agent alone. Such is not the case for normal human or excision-deficient XP cells. In the former repair is additive and in the latter repair is usually appreciably less than that observed with either agent alone. Models that attempt to explain these surprising results involve complexes of enzymes and cofactors

  5. Further experience with the operative management of asphyxiating thoracic dystrophy after pectus repair.

    Science.gov (United States)

    Weber, Thomas R

    2005-01-01

    Asphyxiating thoracic dystrophy (ATD) can occur years after a Ravitch-type repair of pectus excavatum, resulting in debilitating alteration in pulmonary function (PFT). An operation was devised to attempt repair of this deformity. After institutional review board approval, the records of 10 children (ages 9-18 years) with ATD that developed 4 to 12 years postpectus operation who underwent attempted repair of ATD were reviewed. Data obtained before ATD operation and at 6, 12, and 24 months afterward included chest computed tomography, pulmonary functions (PFT), and a quality of life questionnaire. The operation consisted of sternal split with rib graft placement to permanently hold the sternum apart. All children survived and the bone grafts healed solidly. Computed tomography showed a change from a flat to a round chest contour on cross section, with increased anteroposterior dimension. Two patients had no change in PFT at 24 months whereas the other 8 had 21% to 30% improvement in PFT parameters. All patients reported improved exercise tolerance, and 3 began sports activities who were previously unable to do so. Two patients on oxygen, essentially bedridden, are now active, breathing only room air. Seven of 10 patients continue to have cosmetic concerns. A small population of patients who had postoperative pectus repair developed severe, debilitating ATD. The repair described improves most patients, some dramatically, but does not significantly improve cosmetic appearance. The operation is undergoing further refinement to address these issues.

  6. DNA polymerase I-mediated ultraviolet repair synthesis in toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Dorson, J.W.; Moses, R.E.

    1978-01-01

    DNA synthesis after ultraviolet irradiation is low in wild type toluene-treated cells. The level of repair incorporation is greater in strains deficient in DNA polymerase I. The low level of repair synthesis is attributable to the concerted action of DNA polymerase I and polynucleotide ligase. Repair synthesis is stimulated by blocking ligase activity with the addition of nicotinamide mononucleotide (NMN) or the use of a ligase temperature-sensitive mutant. NMN stimulation is specific for DNA polymerase I-mediated repair synthesis, as it is absent in isogenic strains deficient in the polymerase function or the 5' yields 3' exonuclease function associated with DNA polymerase I. DNA synthesis that is stimulated by NMN is proportional to the ultraviolet exposure at low doses, nonconservative in nature, and is dependent on the uvrA gene product but is independent of the recA gene product. These criteria place this synthesis in the excision repair pathway. The NMN-stimulated repair synthesis requires ATP and is N-ethylmaleimide-resistant. The use of NMN provides a direct means for evaluating the involvement of DNA polymerase I in excision repair

  7. Geometrical splitting in Monte Carlo

    International Nuclear Information System (INIS)

    Dubi, A.; Elperin, T.; Dudziak, D.J.

    1982-01-01

    A statistical model is presented by which a direct statistical approach yielded an analytic expression for the second moment, the variance ratio, and the benefit function in a model of an n surface-splitting Monte Carlo game. In addition to the insight into the dependence of the second moment on the splitting parameters the main importance of the expressions developed lies in their potential to become a basis for in-code optimization of splitting through a general algorithm. Refs

  8. Split-dose administration of a dual-action, low-volume bowel cleanser for colonoscopy: the SEE CLEAR I study.

    Science.gov (United States)

    Rex, Douglas K; Katz, Philip O; Bertiger, Gerald; Vanner, Stephen; Hookey, Lawrence C; Alderfer, Vivian; Joseph, Raymond E

    2013-07-01

    New bowel cleansers for colonoscopy that lead to improved efficacy, safety, and tolerability are needed. This study evaluated a nonphosphate, dual-action, low-volume, orange-flavored preparation containing sodium picosulfate and magnesium citrate (P/MC). Multicenter, assessor-blinded, randomized, noninferiority study. University hospitals, academic medical centers, and private clinics across the United States. Adults preparing for colonoscopy. P/MC versus 2 L of polyethylene glycol solution (2L PEG-3350) and two 5-mg bisacodyl tablets. This phase 3 study investigated the efficacy, safety, and tolerability of split-dose administration of P/MC versus day-before dosing of 2L PEG-3350 and two 5-mg bisacodyl tablets (SEE CLEAR I study). Efficacy was evaluated by using the Aronchick and Ottawa scales; noninferiority and superiority analyses were performed. Safety was assessed by monitoring adverse events (AEs). Tolerability was measured via a patient questionnaire. The intent-to-treat population consisted of 601 patients who self-administered P/MC (n = 304) or 2L PEG-3350 and bisacodyl tablets (n = 297). P/MC was superior to 2L PEG-3350 and bisacodyl tablets in overall colon cleansing (84.2% vs 74.4%; 1-sided 97.5% confidence interval [CI], 3.4) (Aronchick scores of excellent or good) and in cleansing of the ascending (89.5% vs 78.8%; 1-sided 97.5% CI, 4.9), mid (transverse and descending) (92.4% vs 85.9%; 1-sided 97.5% CI, 1.6), and rectosigmoid (92.4% vs 87.2%; 1-sided 97.5% CI, 0.4) segments of the colon (Ottawa scores of excellent, good, or fair). Commonly reported AEs related to the bowel preparations were nausea, vomiting, headache, and chills. Patient-reported tolerability, including ease of consumption and taste, was significantly higher for P/MC than 2L PEG-3350 and bisacodyl tablets (P PEG-3350 and bisacodyl tablets. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  9. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.

    1998-01-01

    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  10. TMD splitting functions in kT factorization. The real contribution to the gluon-to-gluon splitting

    International Nuclear Information System (INIS)

    Hentschinski, M.; Kusina, A.; Kutak, K.; Serino, M.

    2018-01-01

    We calculate the transverse momentum dependent gluon-to-gluon splitting function within k T -factorization, generalizing the framework employed in the calculation of the quark splitting functions in Hautmann et al. (Nucl Phys B 865:54-66, arXiv:1205.1759, 2012), Gituliar et al. (JHEP 01:181, arXiv:1511.08439, 2016), Hentschinski et al. (Phys Rev D 94(11):114013, arXiv:1607.01507, 2016) and demonstrate at the same time the consistency of the extended formalism with previous results. While existing versions of k T factorized evolution equations contain already a gluon-to-gluon splitting function i.e. the leading order Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel or the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) kernel, the obtained splitting function has the important property that it reduces both to the leading order BFKL kernel in the high energy limit, to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) gluon-to-gluon splitting function in the collinear limit as well as to the CCFM kernel in the soft limit. At the same time we demonstrate that this splitting kernel can be obtained from a direct calculation of the QCD Feynman diagrams, based on a combined implementation of the Curci-Furmanski-Petronzio formalism for the calculation of the collinear splitting functions and the framework of high energy factorization. (orig.)

  11. Platelet growth factors from allogeneic platelet-rich plasma for clinical improvement in split-thickness skin graft.

    Science.gov (United States)

    Sonker, Atul; Dubey, Anju; Bhatnagar, Ankur; Chaudhary, Rajendra

    2015-01-01

    Platelets are a source of numerous growth factors which facilitate repair and healing. Thus platelet rich plasma has been increasingly used as a treatment modality in the field of reconstructive surgeries for wound healing. This preliminary study was carried out to explore whether platelet growth factors from platelet rich plasma could be used for enhancement of split thickness skin graft survival. Twenty patients (13 males and 7 females) requiring split thickness skin graft for various clinical reasons were enrolled in the study. Platelet rich plasma was collected by apheresis and frozen at -80° C. It was thawed at room temperature immediately before its intended application. PRP was applied only on one half of the wound, while another half served as control. Patient was followed for 6 weeks. The effect was assessed at first dressing in terms of graft uptake and subsequently as time taken for complete healing. There was 100% uptake of the graft in the area where platelet rich plasma was applied. In the control area, there was complete graft loss in 4 cases, partial loss in 7 cases and complete uptake in 9 cases. This study demonstrated promising results on application of PRP to split thickness skin grafts. Further randomized studies with greater sample size may be undertaken to establish platelet rich plasma as a validated treatment modality.

  12. Proliferation during early phases of bronchiolar repair in neonatal rabbits following lung injury by 4-ipomeanol

    International Nuclear Information System (INIS)

    Smiley-Jewell, Suzette M.; Plopper, Charles G.

    2003-01-01

    Nonciliated bronchiolar (Clara cells) are progenitor cells during development. During differentiation, they are more susceptible to injury by environmental toxicants metabolized by the cytochrome P450 monooxygenase system, and injury results in altered bronchiolar repair and development. Squamous cells and abnormal cuboidal epithelium persist into early adulthood. The hypothesis tested in this study was that the failure of bronchiolar epithelium to repair normally in neonates following injury is due to an inhibition of proliferation. A model of differential repair in rabbit kits was used. Proliferation was followed for 1 week post injury in rabbit kits treated with a single dose of the P450-mediated cytotoxicant 4-ipomeanol (IPO) at 7 days old (repair abnormal) and compared to rabbits treated with a single dose of IPO at 21 days old (repair normal). Proliferation was measured by the nuclear incorporation of 5-chloro-2'-deoxyuridine (CldU) within epithelium at the target site (terminal bronchiole). The repair pattern between the two age groups was histologically defined. There was no difference in the CdlU labeling index during the week of repair between the two age groups, even though the bronchiolar epithelium did not return to normal in the animals treated at 7 days old. In summary, proliferation (through S-phase) is not inhibited during repair in neonatal rabbits treated with IPO at 7 days old compared to animals treated at 21 days old, and we conclude that other factors may be responsible for the altered repair in the young neonates injured by a P450-mediated cytotoxicant

  13. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  14. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang; Wang, Jun; Vouga, Etienne; Wonka, Peter

    2013-01-01

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  15. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-06

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  16. Protracted radiation-induced alterations in hematopoietic repair and recovery

    International Nuclear Information System (INIS)

    Seed, T.M.; Fritz, T.E.

    1997-01-01

    Pathologic predisposition of beagle dogs under chronic, low daily dose (7.5 cGy day -1 ) whole-body gamma irradiation has been studied relative to molecular repair and hematopoietic competency. Molecular repair, assessed by a microscopy-based unscheduled DNA synthesis (UDS) response, was measured within proliferative and nonproliferative marrow myeloid elements of dogs with markedly different hematopoietic capacities (low capacity, aplasia-prone [AA + ] versus high capacity, myeloproliferative disease-prone [MPD + ]) under protracted radiation stress. Results indicated that protracted exposure elicited a net increase in UDS-repair capacity that was largely independent of exposure duration. This enhanced capacity resulted from the increased strength of the UDS signal together with an expanded number of positively responding cells. The combined response was strong in primitive blasts and weak in more differentiated myelocytic cells. The UDS repair response of the MPD + dogs was significantly greater than that of the AA + animals and was clearly modified relative to the controls. These results suggest that both resiliency and pathologic potential of the hematopoietic system under protracted radiation stress is, in part, associated with an augmentable DNA repair within the more primitive myeloid marrow elements. (author)

  17. The dependence of radiation response on the dose per fraction

    International Nuclear Information System (INIS)

    Joiner, M.C.

    1989-01-01

    The linear-quadratic (LQ) model explains the dependence of total dose in a fractionated course on the dose per fraction, in a very wide range of tumour and normal tissue studies, providing the dose per fraction remains above 2 Gy. In the range 2-1 Gy per fraction, some experimental studies show less increase in total dose than predicted by LQ; a probable explanation is incomplete repair between fractions given 2 seen between 1 and 0.1 Gy per fraction. This cannot be explained by incomplete repair; a modified LQ model where α decreases sharply with increasing dose per fraction in the range 0-1 Gy fits these data. The basic LQ model describes data from neutron fractionation studies, so the relationship between relative biological effectiveness (RBE) and X-ray dose per fraction can be expressed in terms of LQ parameters and fitted directly to RBE data. Results from different experiments, different assays and both top-up and full-course fractionation techniques, can all be included in one analysis. (author)

  18. The importance of triggering dose and conditions of split dose incubation to the development of thermotolerance

    International Nuclear Information System (INIS)

    Chang, P.Y.; Blakely, E.A.

    1987-01-01

    We have observed a lack of development of thermotolerance in CHO-TSH1, a protein synthetic mutant hamster cell line, under continuous heat stress treatments of 41.5 0 C, 42 0 C, and 42.5 0 C. The parental CHO-SC1 line develops thermotolerance under similar conditions. During the past year we have further examined this phenomenon in the mutant by studying the role of the level of the triggering heat dose and the time of administration to the ultimate development of thermotolerance. By increasing the temperature of the triggering dose for a brief interval, followed by the time at the permissive temperature, we were able to induce the development of thermotolerance in the protein-synthetic mutant cell. 4 refs., 2 figs

  19. Radioadaptive response. Efficient repair of radiation-induced DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji; Aritomi, Hisako; Morisita, Jun

    1996-01-01

    To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage

  20. Role of DNA repair in repair of cytogenetic damages. Slowly repaired DNA injuries involved in cytogenetic damages repair

    International Nuclear Information System (INIS)

    Zaichkina, S.I.; Rozanova, O.M.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification

  1. Tumorigenic action of beta, proton, alpha and electron radiation on the rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.

    1980-01-01

    Rat skin is utilized as a model system for studying dose and time related aspects of the oncogenic action of ionizing radiation, ultraviolet light and polycyclic aromatic hydrocarbons. Molecular lesions in the DNA of the epidermis, including strand breaks and thymine dimers, are measured and compared to the temporal and dose related aspects of tumor induction. The induction and repair kinetics of molecular lesions are compared to split dose recovery as modified by sensitizers and type of radition of oncogenic damage

  2. Relationship between mandibular anatomy and the occurrence of a bad split upon sagittal split osteotomy.

    Science.gov (United States)

    Aarabi, Mohammadali; Tabrizi, Reza; Hekmat, Mina; Shahidi, Shoaleh; Puzesh, Ayatollah

    2014-12-01

    A bad split is a troublesome complication of the sagittal split osteotomy (SSO). The aim of this study was to evaluate the relation between the occurrence of a bad split and mandibular anatomy in SSO using cone-beam computed tomography. The authors designed a cohort retrospective study. Forty-eight patients (96 SSO sites) were studied. The buccolingual thickness of the retromandibular area (BLR), the buccolingual thickness of the ramus at the level of the lingula (BLTR), the height of the mandible from the alveolar crest to the inferior border of the mandible, (ACIB), the distance between the sigmoid notch and the inferior border of the mandible (SIBM), and the anteroposterior width of the ramus (APWR) were measured. The independent t test was applied to compare anatomic measurements between the group with and the group without bad splits. The receiver operating characteristic (ROC) test was used to find a cutoff point in anatomic size for various parts of the mandible related to the occurrence of bad splits. The mean SIBM was 47.05±6.33 mm in group 1 (with bad splits) versus 40.66±2.44 mm in group 2 (without bad splits; P=.01). The mean BLTR was 5.74±1.11 mm in group 1 versus 3.19±0.55 mm in group 2 (P=.04). The mean BLR was 14.98±2.78 mm in group 1 versus 11.21±1.29 mm in group 2 (P=.001). No statistically significant difference was found for APWR and ACIB between the 2 groups. The ROC test showed cutoff points of 10.17 mm for BLR, 36.69 mm for SIBM, and 4.06 mm for BLTR. This study showed that certain mandibular anatomic differences can increase the risk of a bad split during SSO surgery. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting

    Science.gov (United States)

    Reiss, M. C.; Rumpker, G.

    2017-12-01

    We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by

  4. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  5. Evaluation of genome damage and transcription profile of DNA damage/repair response genes in peripheral blood mononuclear cells exposed to low dose radiation

    International Nuclear Information System (INIS)

    Soren, D.C.; Saini, Divyalakshmi; Das, Birajalaxmi

    2016-01-01

    Humans are exposed to various physical and chemical mutagens in their life time. Physical mutagens, like ionizing radiation (IR), may induce adverse effect at high acute dose exposures in human cells. However, there are inconsistent results on the effect of low dose radiation exposure in human cells. There are a variety of DNA damage endpoints to evaluate the effect of low dose radiation in human cells. DNA damage response (DDR) may lead to changes in expression profile of many genes. In the present study, an attempt has been made to evaluate genome damage at low dose IR exposure in human blood lymphocytes. Cytochalasin blocked micronuclei (CBMN) assay has been used to determine the frequency of micronuclei in binucleated cells in PBMCs exposed to IR. Transcription profile of ATM, P53, GADD45A, CDKN1A, TRF1 and TRF2 genes was studied using real time quantitative PCR. Venous blood samples collected from 10 random healthy donors were irradiated with different doses of γ-radiation ( 137 Cs) along with sham irradiated control. Whole blood culture was set up using microculture technique. Blood samples were stimulated with phytohemagglutinin, and CBMN assay was performed. An average of 2,500 binucleated cells was scored for each dose point. For gene expression analysis, total RNA was isolated, cDNA was prepared, and gene expression analysis for ATM, P53, CDKN1A, GADD45A, TRF1 and TRF2 was done using real time PCR. Our results revealed no significant increase in the frequency of MN up to 100 mGy as compared to control. However, no significant alteration in gene expression profile was observed. In conclusion, no significant dose response was observed at the frequency of MN as well as the expression profile of DDR/repair genes, suggesting low dose radiation did not induce significant DNA damage at these acute dose exposures. (author)

  6. Radiation Exposure in Endovascular Infra-Renal Aortic Aneurysm Repair and Factors that Influence It

    Directory of Open Access Journals (Sweden)

    Rui Machado

    Full Text Available Abstract Objective: The endovascular repair of aortic abdominal aneurysms exposes the patients and surgical team to ionizing radiation with risk of direct tissue damage and induction of gene mutation. This study aims to describe our standard of radiation exposure in endovascular aortic aneurysm repair and the factors that influence it. Methods: Retrospective analysis of a prospective database of patients with abdominal infra-renal aortic aneurysms submitted to endovascular repair. This study evaluated the radiation doses (dose area product (DAP, fluoroscopy durations and their relationships to the patients, aneurysms, and stent-graft characteristics. Results: This study included 127 patients with a mean age of 73 years. The mean DAP was 4.8 mGy.m2, and the fluoroscopy time was 21.8 minutes. Aortic bilateral iliac aneurysms, higher body mass index, aneurysms with diameters larger than 60 mm, necks with diameters larger than 28 mm, common iliac arteries with diameters larger than 20 mm, and neck angulations superior to 50 degrees were associated with an increased radiation dose. The number of anatomic risk factors present was associated with increased radiation exposure and fluoroscopy time, regardless of the anatomical risk factors. Conclusion: The radiation exposure during endovascular aortic aneurysm repair is significant (mean DAP 4.8 mGy.m2 with potential hazards to the surgical team and the patients. The anatomical characteristics of the aneurysm, patient characteristics, and the procedure's technical difficulty were all related to increased radiation exposure during endovascular aortic aneurysm repair procedures. Approximately 40% of radiation exposure can be explained by body mass index, neck angulation, aneurysm diameter, neck diameter, and aneurysm type.

  7. The effect of recovery from potentially lethal damage on the determination of repair and repopulation in a murine tumour

    International Nuclear Information System (INIS)

    Sheldon, P.W.; Fowler, J.F.

    1985-01-01

    Repair and repopulation following X irradiation of clamped-off murine anaplastic MT tumours was investigated using the established method of (Dsub(n)-D 1 )/(n-1). Repair was complete in 4 h, similar in extent to that reported in other tumours, and within the range of that reported for normal tissues. Subsequent repopulation commenced after 4 days and was equivalent to 1.8 Gy/day recovered dose, corresponding to a clonogenic cell number doubling time of 1.8 days. However, estimates of repair and repopulation may have been in error because the chronically hypoxic cells in this tumour alone have the ability to recover from potentially lethal damage (PLD) and so are more radioresistant than cells rendered acutely hypoxic by clamping. Because of this, even clamping off tumours at irradiation does not render all cell populations equally radioresistant, and so reoxygenation between fractions could result in an underestimate of repair and repopulation. Further, the differing sensitivity between acutely and chronically hypoxic cells renders the apparent OER a function of dose (i.e., oxygen not truly dose-modifying to chronically hypoxic cells). Consequently it is incorrect to assume a constant OER in order to compare repair in tumours irradiated under hypoxic conditions with that in normal tissues irradiated under aerobic conditions. (author)

  8. Dose rate effect models for biological reaction to ionizing radiation in human cell lines

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2008-01-01

    Full text: Because of biological responses to ionizing radiation are dependent on irradiation time or dose rate as well as dose, simultaneous inclusion of dose and dose rate is required to evaluate the risk of long term irradiation at low dose rates. We previously published a novel statistical model for dose rate effect, modified exponential (MOE) model, which predicts irradiation time-dependent biological response to low dose rate ionizing radiation, by analyzing micronucleus formation and growth inhibition in a human osteosarcoma cell line, exposed to wide range of doses and dose rates of gamma-rays. MOE model demonstrates that logarithm of median effective dose exponentially increases in low dose rates, and thus suggests that the risk approaches to zero at infinitely low dose rate. In this paper, we extend the analysis in various kinds of human cell lines exposed to ionizing radiation for more than a year. We measured micronucleus formation and [ 3 H]thymidine uptake in human cell lines including an osteosarcoma, a DNA-dependent protein kinase-deficient glioma, a SV40-transformed fibroblast derived from an ataxia telangiectasia patient, a normal fibroblast, and leukemia cell lines. Cells were exposed to gamma-rays in irradiation room bearing 50,000 Ci of cobalt-60. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide. The number of binuclear cells bearing a micronucleus was counted under a fluorescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [ 3 H] thymidine was pulsed for 4 h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk. While dose and dose rate relationship cultured within one month followed MOE model in cell lines holding wild-type DNA repair system, dose rate effect was greatly impaired in DNA repair-deficient cell lines

  9. DNA repair gene polymorphisms in relation to chromosome aberration frequencies in retired radiation workers

    International Nuclear Information System (INIS)

    Wilding, Craig S.; Relton, Caroline L.; Rees, Gwen S.; Tarone, Robert E.; Whitehouse, Caroline A.; Tawn, E. Janet

    2005-01-01

    Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC] n microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC] n microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele >=20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations

  10. A multidetector tomography protocol for follow-up of endovascular aortic aneurysm repair

    Directory of Open Access Journals (Sweden)

    Roberto Moraes Bastos

    2011-01-01

    Full Text Available OBJECTIVE: The purpose of this study was to improve the use of 64-channel multidetector computed tomography using lower doses of ionizing radiation during follow-up procedures in a series of patients with endovascular aortic aneurysm repair. METHODS: Thirty patients receiving 5 to 29 months of follow-up after endovascular aortic aneurysm repair were analyzed using a 64-channel multidetector computed tomography device by an exam that included pre-and postcontrast with both arterial and venous phases. Leak presence and type were classified based on the exam phase. RESULTS: Endoleaks were identified in 8/30 of cases; the endoleaks in 3/8 of these cases were not visible in the arterial phases of the exams. CONCLUSION: The authors conclude that multidetector computed tomography with pre-contrast and venous phases should be a part of the ongoing follow-up of patients undergoing endovascular aortic aneurysm repair. The arterial phase can be excluded when the aneurism is stable or regresses. These findings permit a lower radiation dose without jeopardizing the correct diagnosis of an endoleak.

  11. Inactivation of ultraviolet repair in normal and xeroderma pigmentosum cells by methyl methanesulfonate

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1982-01-01

    Excision repair of ultraviolet damage in the DNA of normal and xeroderma pigmentosum (Groups C, D, and variant) cells was inactivated by exposure of cells to methyl methanesulfonate immediately before irradiation independent of the presence of 0 to 10% fetal calf serum. The inactivation could be represented by a semilog relationship between the amount of repair and methyl methanesulfonate concentration up to approximately 5 mM. The inactivation can be considered to occur as the result of alkylation of a large (about 10(6) daltons) repair enzyme complex, and the dose required to reduce repair to 37% for most cells types was between 4 and 7 mM. No consistent, large difference in sensitivity to methyl methanesulfonate was found in any xeroderma pigmentosum complementation group compared to normal cells, implying that reduced repair in these groups may be caused by small inherited changes in the amino acid composition (i.e., point mutations or small deletions) rather than by losses of major components of the repair enzyme complex

  12. Impact of a warning CPOE system on the inappropriate pill splitting of prescribed medications in outpatients.

    Directory of Open Access Journals (Sweden)

    Chia-Chen Hsu

    Full Text Available Prescribing inappropriate pill splitting is not rare in clinical practice. To reduce inappropriate pill splitting, we developed an automatic warning system linked to a computerized physician order entry (CPOE system for special oral formulation drugs in outpatient settings. We examined the impact of the warning system on inappropriate prescribing of pill splitting and assess prescribers' responses to the warnings.Drugs with extended-release or enteric-coated formulations that were not originally intended to be split were recognized as "special oral formulations". A hard-stop system which could examine non-integer doses of drugs with special oral formulations, provide warnings to interrupt inappropriate prescriptions was integrated in CPOE in a medical center since June 2010. We designed an intervention study to compare the inappropriate splitting before and after the implementation of the warning system (baseline period 2010 January to May vs. intervention period 2010 June to 2011 August. During the intervention period, prescription changes in response to a warning were logged and analyzed.A total of 470,611 prescribed drug items with 34 different drugs with special oral formulations were prescribed in the study period. During the 15-month intervention period, 909 warnings for 26 different drugs were triggered among 354,523 prescribed drug items with special oral formulations. The warning rate of inappropriate splitting in the late intervention period was lower than those in baseline period (0.16% vs. 0.61%, incidence rate ratio 0.27, 95% CI 0.23-0.31, P<0.001. In respond to warnings, physicians had to make adjustments, of which the majority was changing to an unsplit pill (72.9%.The interruptive warning system could avoid the prescriptions with inappropriate pill splitting. Accordingly, physicians changed their behavior of prescribing special oral formulations regarding inappropriate pill splitting. We suggest the establishment of such system

  13. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory

    2018-02-01

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  14. Particulate photocatalysts for overall water splitting

    Science.gov (United States)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  15. Repair of skin damage during fractionated irradiation with gamma rays and low-LET carbon ions

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Uzawa, Akiko; Takai, Nobuhiko; Fukawa, Takeshi; Furusawa, Yoshiya; Aoki, Mizuho; Hirayama, Ryoichi

    2006-01-01

    In clinical use of carbon-ion beams, a deep-seated tumor is irradiated with a Spread-Out Bragg peak (SOBP) with a high-linear energy transfer (LET) feature, whereas surface skin is irradiated with an entrance plateau, the LET of which is lower than that of the peak. The repair kinetics of murine skin damage caused by an entrance plateau of carbon ions was compared with that caused by photons using a scheme of daily fractionated doses followed by a top-up dose. Right hind legs received local irradiations with either 20 keV/μm carbon ions or γ rays. The skin reaction of the irradiated legs was scored every other day up to Day 35 using a scoring scale that consisted of 10 steps, ranging from 0.5 to 5.0. An isoeffect dose to produce a skin reaction score of 3.0 was used to obtain a total dose and a top-up dose for each fractionation. Dependence on a preceding dose and on the time interval of a top-up dose was examined using γ rays. For fractionated γ rays, the total dose linearly increased while the top-up dose linearly decreased with an increase in the number of fractions. The magnitude of damage repair depended on the size of dose per fraction, and was larger for 5.2 Gy than 12.5 Gy. The total dose of carbon ions with 5.2 Gy per fraction did not change till 2 fractions, but abruptly increased at the 3rd fraction. Factors such as rapid repopulation, induced repair and cell cycle synchronization are possible explanations for the abrupt increase. As an abrupt increase/decrease of normal tissue damage could be caused by changing the number of fractions in carbon-ion radiotherapy, we conclude that, unlike photon therapy, skin damage should be carefully studied when the number of fractions is changed in new clinical trials. (author)

  16. Avaliação do efeito da partição de comprimidos de furosemida sobre a uniformidade da dose

    Directory of Open Access Journals (Sweden)

    AMANDA APARECIDA DE ANDRADE FERREIRA

    2011-06-01

    Full Text Available Buscando avaliar a uniformidade da dose unitária de comprimidos submetidos ao procedimento de partição, este trabalho avaliou a dureza, friabilidade, variação de peso e uniformidade de conteúdo em quatro amostras de comprimidos de furosemida de 40 mg, obtidas de diferentes fornecedores. Todas as amostras estudadas atendiam às especificações oficiais antes de serem submetidas ao procedimento de partição; porém, após serem partidas, o teor de fármaco nas metades apresentou excessiva variação, mostrando que esse procedimento pode ser terapeuticamente desaconselhável. Palavras-chave: Partição de comprimidos. Uniformidade de dose. Comprimidos. Terapia oral. ABSTRACT Influence of tablet splitting on dose uniformity In order to assess the uniformity of the dose of active ingredient in the halves of tablets subjected to splitting, the hardness, friability, weight variability and uniformity of content were studied in four samples of 40 mg tablets of furosemide obtained on the Brazilian market, both whole and split into two parts. All the tablets complied with the official specifications before splitting, but, after this procedure, the drug content in the halves showed excessive variation, indicating that this procedure is inadvisable. Keywords: Tablet fractioning. Uniformity of dose. Tablets. oral therapy.

  17. Increasing the Dose of Autologous Chondrocytes Improves Articular Cartilage Repair: Histological and Molecular Study in the Sheep Animal Model.

    Science.gov (United States)

    Guillén-García, Pedro; Rodríguez-Iñigo, Elena; Guillén-Vicente, Isabel; Caballero-Santos, Rosa; Guillén-Vicente, Marta; Abelow, Stephen; Giménez-Gallego, Guillermo; López-Alcorocho, Juan Manuel

    2014-04-01

    We hypothesized that implanting cells in a chondral defect at a density more similar to that of the intact cartilage could induce them to synthesize matrix with the features more similar to that of the uninjured one. We compared the implantation of different doses of chondrocytes: 1 million (n = 5), 5 million (n = 5), or 5 million mesenchymal cells (n = 5) in the femoral condyle of 15 sheep. Tissue generated by microfracture at the trochlea, and normal cartilage from a nearby region, processed as the tissues resulting from the implantation, were used as references. Histological and molecular (expression of type I and II collagens and aggrecan) studies were performed. The features of the cartilage generated by implantation of mesenchymal cells and elicited by microfractures were similar and typical of a poor repair of the articular cartilage (presence of fibrocartilage, high expression of type I collagen and a low mRNA levels of type II collagen and aggrecan). Nevertheless, in the samples obtained from tissues generated by implantation of chondrocytes, hyaline-like cartilage, cell organization, low expression rates of type I collagen and high levels of mRNA corresponding to type II collagen and aggrecan were observed. These histological features, show less variability and are more similar to those of the normal cartilage used as control in the case of 5 million cells implantation than when 1 million cells were used. The implantation of autologous chondrocytes in type I/III collagen membranes at high density could be a promising tool to repair articular cartilage.

  18. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  19. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A. (Queensland Univ., St. Lucia (Australia). Dept. of Biochemistry; Queensland Univ., St. Lucia (Australia). Dept. of Veterinary Pathology; Queensland Univ. St. Lucia (Australia). Dept. of Public Health)

    1982-05-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m/sup 2/. These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes.

  20. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    International Nuclear Information System (INIS)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A.; Queensland Univ., St. Lucia; Queensland Univ. St. Lucia

    1982-01-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m 2 . These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes. (author)

  1. (O)Mega split

    Energy Technology Data Exchange (ETDEWEB)

    Benakli, Karim; Darmé, Luc; Goodsell, Mark D. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589,LPTHE, F-75005, Paris (France); CNRS, UMR 7589,LPTHE, F-75005, Paris (France)

    2015-11-16

    We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale M{sub S}, as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on M{sub S}, which we derive. On the other hand, we show that renormalisation group running of soft masses aboveM{sub S} barely constrains the model — in stark contrast to Split Supersymmetry — and hence we can have a “Mega Split” spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, Fake Split Extended Supersymmetry, which enjoys similar properties.

  2. A threshold in the dose-response relationship for X-ray induced somatic mutation frequency in drosophila melanogaster

    International Nuclear Information System (INIS)

    Koana, Takao; Sakai, Kazuo; Okada, M.O.

    2004-01-01

    The dose-response relationship of ionizing radiation and its stochastic effects has been thought to be linear without any thresholds for a long time. The basic data for this model was obtained from mutational assays using germ cells of male fruit fly Drosophila melanogaster. However, cancer-causing activity should be examined more appropriately in somatic cells than in germ cells. In this paper, we examined the dose-response relationship of X-ray irradiation and somatic mutation in drosophila, and found a threshold at approximately 1 Gy in the DNA repair proficient flies. In the repair deficient siblings, the threshold was smaller and the inclination of the dose-response curve was five times steeper. These results suggest that the dose-response relationship between X-ray irradiation and somatic mutation has a threshold, and that the DNA repair function contributes to its formation. (author)

  3. Influence of postoperative low-level laser therapy on the osseointegration of self-tapping implants in the posterior maxilla: A 6-week split-mouth clinical study

    OpenAIRE

    Mandić Borka; Lazić Zoran; Marković Aleksa; Mandić Bojan; Mandić Miška; Đinić Ana; Miličić Biljana

    2015-01-01

    Background/Aim. Low-level laser therapy (LLLT) has been proven to stimulate bone repair, affecting cellular proliferation, differentiation and adhesion, and has shown a potential to reduce the healing time following implant placement. The aim of this clinical study was to investigate the influence of postoperative LLLT osseointegration and early success of self-tapping implants placed into low-density bone. Methods. Following the split-mouth design, self-ta...

  4. Effect of varying the exposure and 3H-thymidine labeling period upon the outcome of the primary hepatocyte DNA repair assay

    International Nuclear Information System (INIS)

    Barfknecht, T.R.; Mecca, D.J.; Naismith, R.W.

    1988-01-01

    The results presented in this report demonstrate that an 18-20 hour exposure/ 3 H-thymidine DNA labeling period is superior to a 4 hour incubation interval for general genotoxicity screening studies in the rat primary hepatocyte DNA repair assay. When DNA damaging agents which give rise to bulky-type DNA base adducts such as 2-acetylaminofluorene, aflatoxin B1 and benzidine were evaluated, little or no difference was observed between the 4 hour or an 18-20-hour exposure/labeling period. Similar results were also noted for the DNA ethylating agent diethylnitrosamine. However, when DNA damaging chemicals which produce a broader spectrum of DNA lesions were studied, differences in the amount of DNA repair as determined by autoradiographic analysis did occur. Methyl methanesulfonate and dimethylnitrosamine induced repairable DNA damage that was detected at lower dose levels with the 18-20 hour exposure/labeling period. Similar results were also observed for the DNA cross-linking agents, mitomycin C and nitrogen mustard. Ethyl methanesulfonate produced only a marginal amount of DNA repair in primary hepatocytes up to a dose level of 10(-3) M during the 4 hour incubation period, whereas a substantial amount of DNA repair was detectable at a dose level of 2.5 X 10(-4) M when the 18-20 hour exposure/labeling period was employed. The DNA alkylating agent 4-nitroquinoline-1-oxide, which creates DNA base adducts that are slowly removed from mammalian cell DNA, induced no detectable DNA repair in hepatocytes up to a toxic dose level of 2 X 10(-5) M with the 4 hour exposure period, whereas a marked DNA repair response was observed at 10(-5) M when the 18-20 hour exposure/labeling period was used

  5. An algorithm for the split-feasibility problems with application to the split-equality problem.

    Science.gov (United States)

    Chuang, Chih-Sheng; Chen, Chi-Ming

    2017-01-01

    In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.

  6. Mutagenic DNA repair in Escherichia coli. Pt. 2

    International Nuclear Information System (INIS)

    Doubleday, O.P.; Bridges, B.A.; Green, M.H.L.

    1975-01-01

    The photoreversibility of UV-induced mutations to Trp + in strain Escherichia coli WP2 uvr A trp (unable to excise pyrimidine dimers) was lost at different rates during incubation in different media. In Casamino acids medium after a short initial lag, photoreversibility was lost over about one generation time; in minimal medium with tryptophan, photoreversibility persisted for more than two generations; in Casamino acids medium with pantoyl lactone photoreversibility was lost extremely slowly. The rate of loss of photoreversibility was unaffected by UV dose in either Casamino acids medium or in minimal medium. The same eventual number of induced mutants was obtained when cells were incubated for two generations in any of the three media before being transferred to selective plates supplemented with Casamino acids. Thus in each the proportion of cells capable of giving rise to a mutant was the same and only the rate at which these cells did so during post-irradiation growth varied, suggesting that there might be a specific fraction of pyrimidine dimers at a given site capable of initiating a mutagenic repair event, and that the size of this fraction is dose dependent. Segregation experiments have shown that error-prone repair appears to occur once only and is not repeated in subsequent replication cycles, in contrast to (presumed error-free) recombination repair. The results are discussed in the light of current models of UV mutagenesis. (orig.) [de

  7. The influence of bromodeoxyuridine on the induction and repair of DNA double-strand breaks in glioblastoma cells

    International Nuclear Information System (INIS)

    Nusser, N.N.; Bartkowiak, D.; Roettinger, E.M.

    2002-01-01

    Aims: To examine the dose response of DNA damage and its modification by the radiosensitizer, 5-bromo-2'-deoxyuridine (BrdU). The sensitizing mechanism is analyzed with regard to its influence on the induction and repair of DNA double-strand breaks (DSBs). Material and Methods: Cells from three different human glioblastoma lines, A7, LH and U87MG, were X-irradiated with and without exposure to BrdU. DNA fragments were separated by field-inversion gel electrophoresis (FIGE) and quantified by fluorometry immediately and 24 h after irradiation. Results: In all cell lines, the dose response followed a linear-quadratic rather than a purely linear function. BrdU-treated cells exhibited a significantly higher amount of mobile DNA. In repair experiments with and without BrdU, the amount of mobile DNA fell close to control values within 24 h. Conclusions: The linear-quadratic model appropriately describes the X-ray induced fragmentation of DNA. BrdU sensitizing acts predominantly by increasing DNA fragility, and not by impairing damage repair. The amount of DSBs persistent after 24 h of repair is minimal, even after highly cytotoxic doses. However, it appears to depend on the extent of initial damage, causing sensitized cells to retain more DSBs than unsensitized cells. (orig.)

  8. Reduction in DNA repair capacity following differentiation of murine proadipocytes

    International Nuclear Information System (INIS)

    Tofilon, P.J.; Meyn, R.E.

    1988-01-01

    It has been suggested that terminally differentiated mammalian cells have a decreased DNA repair capacity, compared with proliferating stem cells. To investigate this hypothesis, we have examined γ-ray-induced DNA strand breaks and their repair in the murine proadipocyte stem cell line 3T3-T. By exposure to human plasma, 3T3-T cells can be induced to undergo nonterminal and then terminal differentiation. DNA strand breaks were evaluated using the technique of alkaline elution. No difference was detected among stem, nonterminally differentiated, and terminally differentiated cells in the initial levels of radiation-induced DNA strand breaks. Each of the strand break dose responses increased as a linear function of γ-ray dose. The strand breaks induced by 4 Gy rejoined following biphasic kinetics for each cell type. At each time point examined after irradiation, however, the percentage of strand breaks that had not rejoined in terminally differentiated cells was three to six times greater than in stem cells. The rate of strand break rejoining in nonterminally differentiated cells was of an intermediate value between that of the stem and of the terminally differentiated cells. These results indicate that, at least for 3T3-T cells, differentiated cells have a reduced capacity for DNA repair

  9. Dose rate considerations in brachytherapy: biological equivalence of LDR and HDR

    International Nuclear Information System (INIS)

    Orton, C.G.

    1994-01-01

    The linear-quadratic model for cell survival and bioeffect doses is discussed and equations for low dose rate (LDR), high dose rate (HDR) and intermediate situations are presented. The model, when used to define LDR and single fractions of HDR, shows, that these correspond to irradiations lasting longer than about 14 hours or shorter than about 0.7 hours, respectively. It is shown that, for HDR to be as safe and effective as LDR, the dose-rate effect of LDR has to be replaced by the fractionation-effect of HDR. This is necessary in order to take advantage of the differential repair characteristics between late-reacting normal tissue and tumor cells at low doses and low dose rates. Using the linear-quadratic model to simulate repair mathematically, it is shown that the number of fractions required is highly dependent upon what parameters are assumed for normal tissues and tumor, as well as whether or not there is any physical advantage gained by conversion from LDR to HDR. (author). 20 refs., 7 figs

  10. Stochastic split determinant algorithms

    International Nuclear Information System (INIS)

    Horvatha, Ivan

    2000-01-01

    I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed

  11. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  12. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    Science.gov (United States)

    Abgarmi, Bizhan; Ozacar, A. Arda

    2017-04-01

    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for

  13. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  14. Urease inhibitor (NBPT and efficiency of single or split application of urea in wheat crop

    Directory of Open Access Journals (Sweden)

    Marcelo Curitiba Espindula

    2014-04-01

    Full Text Available NBPT (N-(n-butyl thiophosphoric triamide, a urease inhibitor, has been reported as one of the most promising compounds to maximize urea nitrogen use in agricultural systems. The objective of this study was to evaluate the performance of irrigated wheat fertilized with urea or urea + NBPT as single or split application. The experiment was conducted from June to October 2006 in Viçosa, MG, Brazil. The experimental design followed a 2×2 factorial scheme, in which urea or urea + NBPT were combined with two modes of application: full dose at sowing (60kg ha-1 or split (20kg ha-1 at sowing + 40kg ha-1 as topdressing at tillering, in randomized blocks with ten replications. The split application of nitrogen fertilization does not improve the yield wheat under used conditions. The use of urease inhibitor improves the grain yield of wheat crop when urea is applied in topdressing at tillering, but its use does not promote difference when urea is applied in the furrow at planting.

  15. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  16. Inhibitors of poly (ADP-ribose) synthesis inhibit the two types of repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi; Elkind, M.M.

    1994-01-01

    The purpose of this study was to examine whether 3-amino-benzamide (3ABA), an inhibitor of poly (ADP-ribose) synthesis, inhibits the two types of potentially lethal damage (PLD) repair, termed slow and fast. The fast-type PLD repair was measured by the decrease in survival of V79 Chinese hamster cells by postirradiation treatment with 3ABA. The slow-type PLD repair was measured by the increase in survival by posttreatment with conditioned medium (CM), which became conditioned by growing a crowed culture of cells and supports the slow-type PLD repair. Up to 1 mM 3-ABA inhibited the slow type repair; at doses of 2 mM and above, it inhibited the fast type of PLD repair. There are quantitative differences in cellular effects of 3ABA dependent on concentration. Poly (ADP-ribose) appears to play an important role in the PLD repairs and has little effect on the repair of sublethal damage. 10 refs., 2 figs

  17. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure

    International Nuclear Information System (INIS)

    Revaud, D.

    2009-06-01

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  18. Dose response of rat retinal microvessels to proton dose schedules used clinically: a pilot study

    International Nuclear Information System (INIS)

    Archambeau, John O.; Mao, Xiao W.; McMillan, Paul J.; Gouloumet, Vanessa L.; Oeinck, Steven C.; Grove, Roger; Yonemoto, Leslie T.; Slater, Jerry D.; Slater, James M.

    2000-01-01

    Purpose: This preclinical rat pilot study quantifies retinal microvessel, endothelial, and pericyte population changes produced by proton irradiation Methods and Materials: The left eyes of rats were irradiated with single doses of 8, 14, 20, and 28 Gy protons; right eyes, with two fractions. Animals were euthanized, and eyes were removed; elastase digests were prepared, and cell populations were counted in sample fields. Results were compared with unirradiated controls. Results: Progressive time- and dose-dependent endothelial cell loss occurred following all schedules. Cell loss was significantly different from control values (p 0 phase of the mitotic cycle. 28 Gy produced photoreceptor cell loss. Conclusion: The retinal digest is an elegant bioassay to quantify the microvessel population response. Single- and split-dose schedules appear to yield similar outcomes, in terms of endothelial cell density

  19. Incomplete excision repair process after UV-irradiation in MUT-mutants of Proteus mirabillis

    International Nuclear Information System (INIS)

    Stoerl, K.

    1977-01-01

    MUT-mutants of P. mirabilis seem to be able to perform the incision step in the course of excision repair. In contrast to the corresponding wildtype strains with MUT-mutants the number of single-strand breaks formed after UV-irradiation is independent of the UV-dose up to about 720 erg/mm 2 . Incubation in minimal medium over a longer time does not result in completion of excision repair; about 3-6 single-strand breaks in the DNA of these mutants remain open. Likewise, the low molecular weight of the newly synthesized daughter DNA confirms an incompletely proceeding or delayed repair process. As a possible reason for the mutator phenotype an alteration of the DNA-polymerase playing a role in excision and resynthesis steps of excision repair is discussed. (author)

  20. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  1. Repair capacity of mouse lung after total body irradiation alone or combined with cyclophosphamide

    International Nuclear Information System (INIS)

    Safwat, Akmal; Bentzen, Soeren M.; Nielsen, Ole S.; Mahmoud, Hossam K.; Overgaard, Jens

    1996-01-01

    Purpose. Cyclophosphamide (CTX) combined with fractionated total body irradiation (TBI) is frequently used in the conditioning of patients prior to bone marrow transplantation (BMT). This study was performed to investigate the effect of CTX on the repair capacity of lung tissue after TBI in a mouse model for BMT. Materials and methods. TBI was given as a single fraction, 3 fractions in 3 days (Fx 3) or 9 fractions in 3 days (Fx 9) either alone or 24 h after a single dose of CTX. The single fraction TBI was given at either high dose rate (HDR) of 0.71 Gy/min or low dose rate (LDR) of 0.08 Gy/min. All mice were transplanted 4-6 h after the last TBI fraction. Lung damage was assessed using ventilation rate (VR) and lethality between 28 and 180 days. The repair capacity of lung tissue was estimated using the direct analysis method with the probability of reaching the end point described by a logistic formulation of the linear quadratic model. Results. The VR data confirmed the high repair capacity of lung tissue with an α/β ratio of 4.4 Gy though with a wide 95% confidence interval (CI = 0.03-10.5). Giving CTX before fractionated TBI marked reduced the doses needed to cause response in 50% of the animals. The sparing effect of using fractionated TBI was still evident in the combined CTX-TBI schedules. The estimated α/β ratio was 1.6 Gy (CI = 0.01-4.7) which is within the range of values reported after thoracic radiation only. On the other hand, the sparing effect seen in going from single fraction HDR to LDR was completely abolished when CTX was given 24 h before TBI. The same pattern was repeated when lethality between 28-180 days was used. Yet, the use of lethality to estimate lung damage in a TBI model, markedly underestimated the repair capacity. Conclusions. These results confirm the high repair capacity of lung tissue after TBI and emphasize the value of using a specific end point in testing lung damage after TBI. It also shows that there can be a negative

  2. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Determination of the adaptive response induced In vivo by gamma radiation and its relation with the sensibility to the damage induction in the DNA and with the repairing capacity

    International Nuclear Information System (INIS)

    Mendiola C, M.T.

    2002-01-01

    The kinetics of damage induction and repair at different doses as well as the adaptive response induced by gamma ray exposure were determined in murine leukocytes in vivo. The damage-repair kinetics were established after the exposure to 0.5, 1.0 or 2.0 Gy in a 137 Cs source. Peripheral blood samples were obtained from the tails of mice, the percentage of damaged cells and the DNA migration in each one were analyzed by the single cell gel electrophoresis (SCG) technique or comet assay. Results indicated that there was an induction of approximately 75% comets with the doses of 1.0 and 2.0 Gy, which was considerably reduced to 22% and 42% respectively during the first 15 minutes. This evidences the presence of a rapid repair process and suggests that leucocytes are genetically well prepared to repair this kind of damage. After 15 minutes, a second increase in the percentage of damaged cells that was proportional to dose occurred, which seems to represent the breaks produced during the repair of other kind of lesions. After that a second reduction was observed, reaching values near to the basal ones, except with the dose of 2.0 Gy. The kinetics obtained with the dose of 0.5 Gy was similar to that established with 1.0 Gy, but in this case the initial damage was 50 % lower. Besides, the adaptive response was observed after the exposure of the mice to an adaptive dose of 0.01 Gy and to a challenge dose of 1.0 Gy 60 minutes later. The pretreatment reduced the percentage of damaged cells caused by the challenge dose to one third approximately, and also diminished this parameter produced during the late repair process. This indicates that the early adaptive response is caused, instead of by an increment in repair, by the induction of a process that protects DNA from damage induction by radiation, i.e synthesis of substances that increase the scavenging of free radicals. (Author)

  4. XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Sundheim, Ottar

    2011-01-01

    . We demonstrate that the laser dose used for introducing DNA damage determines the repertoire of DNA repair proteins recruited. Furthermore, we demonstrate that recruitment of POLß and PNK to regions irradiated with low laser dose requires XRCC1 and that inhibition of PARylation by PARP......-inhibitors only slightly reduces the recruitment of XRCC1, PNK, or POLß to sites of DNA damage. Recruitment of PCNA and FEN-1 requires higher doses of irradiation and is enhanced by XRCC1, as well as by accumulation of PARP-1 at the site of DNA damage. These data improve our understanding of recruitment of BER......XRCC1 is a scaffold protein capable of interacting with several DNA repair proteins. Here we provide evidence for the presence of XRCC1 in different complexes of sizes from 200 to 1500 kDa, and we show that immunoprecipitates using XRCC1 as bait are capable of complete repair of AP sites via both...

  5. Splitting Ward identity

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Mahmoud [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  6. Splitting Ward identity

    International Nuclear Information System (INIS)

    Safari, Mahmoud

    2016-01-01

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  7. Dose-rate effects between 0.3 and 30 Gy/h in a normal and a malignant human cell line

    International Nuclear Information System (INIS)

    Amdur, R.J.; Bedford, J.S.

    1994-01-01

    This study used continuous open-quotes intermediateclose quotes dose rate irradiation (0.3-30 Gy/h) to compare the capacity for and repair of sublethal radiation damage in different cell lines growing in tissue culture. Two human cell lines were studied; one was derived from normal human fibroblasts (AG1522) and the other from a squamous cell carcinoma of the uterine cervix (HTB-35). Dose-response curves for clonogenic survival were determined following irradiation of plateau-phase cultures at five different dose rates: 22.6, 6.12, 3.65, 1.04, and 0.38 Gy/h. Subculture following irradiation was delayed for 8-24 h to allow for the full repair of open-quotes potentially lethal damage.close quotes A significant dose-rate effect was seen in both cell lines. For irradiation at the highest dose rate, survival at 2 Gy (SF2) and the α/β ratio were similar for the two cell lines (approximately 0.7 and 8.0 Gy, respectively) but the half-time of repair of sublethal damage was estimated to be approximately five times longer in the normal human fibroblast line (154 min) than in the carcinoma (31 min) cell line. These results indicate that measuring the dose-rate effect between 0.3 and 30 Gy/h is a useful way to identify and quantify differences in sublethal damage repair between cell lines. To the extent that in vitro and in vivo repair parameters are similar, and that representative tumor biopsy specimens can be examined in this way, this approach may provide a prospective way of determining the dose rate (brachytherapy) or fractionation schedule that will optimize the therapeutic ratio. 32 refs., 1 fig

  8. Repair in mouse lung of multifraction X rays and neutrons: extension to 40 fractions

    International Nuclear Information System (INIS)

    Parkins, C.S.; Fowler, J.F.

    1985-01-01

    Repair parameters were calculated from measurements of breathing rate and lethality at monthly intervals up to 17 months after irradiation with 1, 10, 20 or 40 equal fractions, down to 1.1 Gy of x-rays and 0.18 Gy of 3 MeV neutrons per fraction. Sparing of neutron damage was negligible when the neutron dose was divided into multiple fractions; progressively greater repair of lung damage was seen after increasing x-ray fractions. Significant increase in the iso-effect dose for 40 x-ray fractions was found compared with 20, even at two fractions per day at six hour intervals, as was the case in the 40 fraction experiment. Data were well fitted by the linear quadratic formula for response vs. dose per fraction and the ratio γ/β yielded values of approx. 3 Gy after x-rays and 30 to 40 Gy after neutron irradiation, not different from γ/β ratios found for up to 20 fractions. Single dose RBE was less than 2, increasing to about six at the lowest dose per fraction measured, agreeing with previous results. The ratio of the γ component for neutrons to that for x-rays was approx. 8, which is therefore the limiting RBE predicted for infinitely small fractional doses. (U.K.)

  9. Modified semitendinosus muscle transposition to repair ventral perineal hernia in 14 dogs.

    Science.gov (United States)

    Morello, E; Martano, M; Zabarino, S; Piras, L A; Nicoli, S; Bussadori, R; Buracco, P

    2015-06-01

    To describe a modified technique of semitendinosus muscle transposition for the repair of ventral perineal hernia. Retrospective review of case records of dogs with ventral perineal hernia that were treated by transposing the medial half of the longitudinally split semitendinosus muscle of one limb. The transposition of the internal obturator muscle was used when uni- or bilateral rectal sacculation was also present in addition to ventral perineal hernia; colopexy and vas deferens pexy were also performed. Fourteen dogs were included. In addition to ventral perineal hernia, unilateral and bilateral perineal hernia was also present in five and six of the dogs, respectively. The mean follow-up time was 890 days. Ventral perineal hernia was successfully managed by the modified semitendinosus muscle transposition with minor complications in all the dogs included in the study. Despite the small number of dogs included, the unilateral transposition of the medial half of the longitudinally split semitendinosus muscle consistently supported the ventral rectal enlargement in perineal hernia without obvious adverse effects. © 2015 British Small Animal Veterinary Association.

  10. Radiobiological study on DNA strand breaks and repair using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1994-01-01

    Single cell gel electrophoresis (SCGE) provides a novel method to measure DNA damage in individual cells and more importantly, to assess heterogeneity in response within a mixed population of cells. Cells embedded in agarose are lysed, subjected to electrophoresis, stained with a fluorescent DNA-specific dye, and viewed under a fluorescence microscope. Damaged cells display 'comets', broken DNA migrating farther to the anode in the electric field. We have previously used this technique to quantify DNA damage induced by moderate doses of low and high LET radiations in cultured Chinese hamster cells. The assay has been optimized in terms of lysing and electrophoresis conditions, and applied to analyse the DNA strand breaks, their repair kinetics and heterogeneity in response in individual Chinese hamster cells exposed to gamma-rays, and to KUR thermal neutrons with and without 10 B or to KEK PF monochromatic soft X-rays as well as to a radio-mimetic agent, neocarzinostatin. The DNA double-strand breaks induced by boron-neutron captured reactions were repaired at a slower rate, but a heterogeneity in response might not contribute to the difference. The neocarzinostatin-induced DNA damage were efficiently repaired in a dose-dependent fashion. The initial amount of gamma-ray induced DNA double-strand breaks was not significantly altered in cells pre-exposed to very low adapting dose. (author)

  11. CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method

    KAUST Repository

    Zhou, Jian

    2016-03-25

    Data repairing aims at discovering and correcting erroneous data in databases. Traditional methods relying on predefined quality rules to detect the conflict between data may fail to choose the right way to fix the detected conflict. Recent efforts turn to use the power of crowd in data repairing, but the crowd power has its own drawbacks such as high human intervention cost and inevitable low efficiency. In this paper, we propose a crowd-aided interactive data repairing method which takes the advantages of both rule-based method and crowd-based method. Particularly, we investigate the interaction between crowd-based repairing and rule-based repairing, and show that by doing crowd-based repairing to a small portion of values, we can greatly improve the repairing quality of the rule-based repairing method. Although we prove that the optimal interaction scheme using the least number of values for crowd-based repairing to maximize the imputation recall is not feasible to be achieved, still, our proposed solution identifies an efficient scheme through investigating the inconsistencies and the dependencies between values in the repairing process. Our empirical study on three data collections demonstrates the high repairing quality of CrowdAidRepair, as well as the efficiency of the generated interaction scheme over baselines.

  12. Pharmaceutical counselling about different types of tablet-splitting methods based on the results of weighing tests and mechanical development of splitting devices.

    Science.gov (United States)

    Somogyi, O; Meskó, A; Csorba, L; Szabó, P; Zelkó, R

    2017-08-30

    The division of tablets and adequate methods of splitting them are a complex problem in all sectors of health care. Although tablet-splitting is often required, this procedure can be difficult for patients. Four tablets were investigated with different external features (shape, score-line, film-coat and size). The influencing effect of these features and the splitting methods was investigated according to the precision and "weight loss" of splitting techniques. All four types of tablets were halved by four methods: by hand, with a kitchen knife, with an original manufactured splitting device and with a modified tablet splitter based on a self-developed mechanical model. The mechanical parameters (harness and friability) of the products were measured during the study. The "weight loss" and precision of splitting methods were determined and compared by statistical analysis. On the basis of the results, the external features (geometry), the mechanical parameters of tablets and the mechanical structure of splitting devices can influence the "weight loss" and precision of tablet-splitting. Accordingly, a new decision-making scheme was developed for the selection of splitting methods. In addition, the skills of patients and the specialties of therapy should be considered so that pharmaceutical counselling can be more effective regarding tablet-splitting. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  14. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  15. The shape of dose-effect curves for diploid yeast cells irradiated with ionizing particles

    International Nuclear Information System (INIS)

    Pohlit, W.

    1975-01-01

    In a cybernetic model for the radiation reactions in eukaryotic cells, after irradiation they are assumed to be in one of three states: (a) viable cells; (b) with repairable damage; and (c) with irreparable damage. Two biological counter reactions with certain time constants can be observed: (i) recovery from sublethal damage; and (ii) repair of potential lethal damage. The shape of the dose-effect curve is influenced in a characteristic way by the different occupation of these states of the cells and by the time constants of the biological counter reactions. The biochemical analysis of the biological counter reactions, recovery and repair, has shown that both are linked together by the energy pool in the cell. In this way changes in the slope of the dose-effect curve due to different metabolic states of the cells can be understood quantitatively. Also the complicated dependence of survival cells on the absorbed dose rate over a wide range can be explained quantitatively. (author)

  16. Adaptive response and split-dose effect of radiation on the survival ...

    Indian Academy of Sciences (India)

    Unknown

    In the present work, we report radioadaptive response in terms of survival of ... Group 4: mice pre-treated with conditioning dose of 0⋅5 Gy ... week in mice exposed to 8 Gy. For mice .... The adaptive response is known to remain for a few hours.

  17. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard

    2014-01-01

    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....

  18. DNA repair: As influenced by age, nutrition, and exposure to toxic substances

    International Nuclear Information System (INIS)

    Hart, R.; Chou, Ming; Feuers, R.; Leakey, J.; Duffy, P.; Lyn-Cook, B.; Lipman, J.; Makamura, Kenji; Turturro, A.; Allaben, W.

    1992-01-01

    In evaluating the risk associated with low levels of exposure to toxicants, it is clear that DNA repair, one of the main defenses against agent damage, is not a constant. It can be modified by age, time of day, and physiological state. Nutrition, especially caloric restriction (CR), can modify almost every step in the process of protecting genomic integrity. And history of exposure can modify DNA repair. Thus, the conditions of exposure are almost as important to toxicity as the exposure itself, even at the level of DNA repair. Extrapolation from high to low dose, to be consistent with what is known, should be less a mathematical exercise than an exercise in toxicological judgement, which puts the exposure in proper perspective. This appears to be true at almost every level in the process including a response with a toxic stimulus, even those thought to be very basic, such as DNA repair

  19. Repair of changes in peripheral blood count of rats after chronic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chlebovsky, O; Praslicka, M; Chlebovska, K [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Katedra Vseobecnej Biologie

    1980-01-01

    Changes are described in the peripheral blood count of rats irradiated during 120 days with doses of 95.7, 191.4, 258.4, 344.5 and 507.2 mGy/day; during 15 days with a dose of 1004.8 mGy and examined till the 180th day after termination of irradiation. The course of repair can be divided into two phases, namely: phase 1 till the 40th day after termination of irradiation when leukocyte and platelet counts reach approximately 50% of control values; this phase lasts until the 100th day after cessation of irradiation; phase 2 from the 100th till the 180th day when these peripheral blood element counts attain the level of control values. Thus in the stated conditions of irradiation, 150 to 180 days are required for radiation damage to the hemopoietic system to repair.

  20. A Threshold Exists in the Dose-response Relationship for Somatic Mutation Frequency Inducted by X-ray Irradiation of Drosophia

    International Nuclear Information System (INIS)

    Koana, T.; Takashima, Y.; Okada, M. O.; Ikehata, M.; Miyakoshi, J.; Sakai, K.

    2004-01-01

    The dose-response relationship of ionizing radiation and its stochastic effects has been thought to be linear without any thresholds. The basic data for this model was obtained from mutational assays in the male germ cells of fruits fly Drosophila melanogaster. However, carcinogenic activity should be examined more appropriately in somatic cells than in germ cells. Here, the dose-response relationship of X- ray irradiation and somatic mutation is examined in Drosophila. A threshold at approximately 1Gy was observed in the DNA repair proficient flies. In the repair deficient siblings, the threshold was smaller and the inclination of the dose-response curve was much steeper. These results suggest that the dose-response relationship between X-ray irradiation and somatic mutation has a threshold, and that the DNA repair function contributes to its formation. (Author) 35 refs

  1. Semi-strong split domination in graphs

    Directory of Open Access Journals (Sweden)

    Anwar Alwardi

    2014-06-01

    Full Text Available Given a graph $G = (V,E$, a dominating set $D subseteq V$ is called a semi-strong split dominating set of $G$ if $|V setminus D| geq 1$ and the maximum degree of the subgraph induced by $V setminus D$ is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted $gamma_{sss}(G$. In this work, we introduce the concept and prove several results regarding it.

  2. The role of prophylactic cefazolin in the prevention of infection after various types of abdominal wall hernia repair with mesh

    Directory of Open Access Journals (Sweden)

    Mostafa Mehrabi Bahar

    2015-07-01

    Conclusion: Preoperative administration of single-dose cefazolin for prosthetic hernia repairs did not markedly decrease the risk of wound infection. Our results do not support the use of cefazolin as a prophylactic antibiotic for various kinds of abdominal wall hernia repair with mesh.

  3. Radiation studies on sensitivity and repair of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Tracy Chuihsu Yang; Stampfer, M.R.; Tobias, C.A.

    1989-01-01

    The authors present results indicating that normal breast epithelial cells and fibroblasts respond to X-rays similarly, lacking significant repair of sublethal damage when 2 Gy was used as the conditioning dose. Epithelial cells from tumor and from parenchymal tissue peripheral to the tumor, however, did show an efficient repair of sublethal damage. The reasons for this difference is unknown. Heavy-ion studies suggest energetic carbon and neon particles can be more effective in killing normal and tumour cells. The RBE for normal cells, however, appeared to be slightly less than for tumor cells. The repair of sublethal damage in tumor cells was less for neon particles than for X-rays. These findings suggest that heavy ions might be more advantageous than X-rays in treating breast tumors. (author)

  4. Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization

    International Nuclear Information System (INIS)

    Park, Jungsoo; Song, Soonho; Lee, Kyo Seung

    2015-01-01

    Highlights: • Model-based control of dual-loop EGR system is performed. • EGR split index is developed to provide non-dimensional index for optimization. • EGR rates are calibrated using EGR split index at specific operating conditions. • Multi-objective Pareto optimization is performed to minimize NO X and BSFC. • Optimum split strategies are suggested with LP-rich dual-loop EGR at high load. - Abstract: A proposed dual-loop exhaust-gas recirculation (EGR) system that combines the features of high-pressure (HP) and low-pressure (LP) systems is considered a key technology for improving the combustion behavior of diesel engines. The fraction of HP and LP flows, known as the EGR split, for a given dual-loop EGR rate play an important role in determining the engine performance and emission characteristics. Therefore, identifying the proper EGR split is important for the engine optimization and calibration processes, which affect the EGR response and deNO X efficiencies. The objective of this research was to develop a dual-loop EGR split strategy using numerical analysis and one-dimensional (1D) cycle simulation. A control system was modeled by coupling the 1D cycle simulation and the control logic. An EGR split index was developed to investigate the HP/LP split effects on the engine performance and emissions. Using the model-based control system, a multi-objective Pareto (MOP) analysis was used to minimize the NO X formation and fuel consumption through optimized engine operating parameters. The MOP analysis was performed using a response surface model extracted from Latin hypercube sampling as a fractional factorial design of experiment. By using an LP rich dual-loop EGR, a high EGR rate was attained at low, medium, and high engine speeds, increasing the applicable load ranges compared to base conditions

  5. Response of rat spinal cord to single and fractionated doses of accelerated heavy ions

    International Nuclear Information System (INIS)

    Leith, J.T.; McDonald, M.; Powers-Risius, P.; Bliven, S.F.; Howard, J.

    1982-01-01

    The thoraco-lumbar (T12-L1) region of the spinal cord of rats was exposed to either single or fractionated (four daily exposures) doses of X rays (230 kVp) or heavy ions. The heavy ions used were carbon and neon, and the relative biological effectiveness (RBE) of both the plateau ionization region and the midpeak region of 4-cm spread-out Bragg peaks of each heavy ion were investigated. For single doses of carbon and neon ions in the plateau ionization region, RBE values of 1.45 +/- 0.25 (propagated 95% confidence limits) and 1.46 +/- 0.33, respectively, were obtained. In the spread peak regions for carbon and neon ions, the RBE values were 1.48 +/- 0.18 and 1.86 +/- 0.42, respectively. These values were obtained using the dose needed to produce 50% paralysis in a group of irradiated rats as the isoeffect comparison dose (ED 50 dose). Similarly, in groups of rats receiving four daily exposures, the RBE values for carbon and neon ions in the plateau ionization region were 1.31 +/- 0.27 and 1.80 +/- 0.24, respectively. In the spread peak regions of ionization for carbon and neon ions, the RBE values were 1.95 +/- 0.19 and 2.18 +/- 0.23, respectively. Similar values for RBE were obtained using changes in the activity of enzymes in spinal cord tissue (cyclic nucleotide phosphohydrolase and γ-glutamyl transpeptidase). Also, it was estimated that, for X irradiation, the fractional amount of dose repaired (at the ED 50 dose) was 0.64 +/- 0.10 (95% confidence limits). For carbon and neon ions in the plateau ionization region, the values for the fractional amount of dose repaired were 0.70 +/- 0.27 and 0.48 +/- 0.20, and for carbon and neon ions in the spread peak region of ionization, the fractional repair values were 0.40 +/- 0.10 and 0.52 +/- 0.17. Spinal cord tissue therefore shows a high capacity for subeffective damage repair

  6. The Effect of Phospholipids (Surfactant on Adhesion and Biomechanical Properties of Tendon: A Rat Achilles Tendon Repair Model

    Directory of Open Access Journals (Sweden)

    T. Kursat Dabak

    2015-01-01

    Full Text Available Adhesion of the tendon is a major challenge for the orthopedic surgeon during tendon repair. Manipulation of biological environment is one of the concepts to prevent adhesion. Lots of biochemicals have been studied for this purpose. We aimed to determine the effect of phospholipids on adhesion and biomechanical properties of tendon in an animal tendon repair model. Seventy-two Wistar rats were divided into 4 groups. Achilles tendons of rats were cut and repaired. Phospholipids were applied at two different dosages. Tendon adhesion was determined histopathologically and biomechanical test was performed. At macroscopic evaluation of adhesion, there are statistically significant differences between multiple-dose phospholipid injection group and Control group and also hyaluronic acid group and Control group (p0.008. Ultimate strength was highest at hyaluronic acid injection group and lowest at multiple-dose phospholipid injection group. Single-dose phospholipids (surfactant application may have a beneficial effect on the tendon adhesion. Although multiple applications of phospholipids seem the most effective regime to reduce the tendon adhesion among groups, it deteriorated the biomechanical properties of tendon.

  7. Response to challenging dose of x-rays as a predictive assay for molecular epidemiology

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    2003-01-01

    Human biomonitoring, as a tool to identify or quantify the potential risk from genotoxic exposures, has gained increasing interest especially in the areas of cancer risk assessment and diseases treatment. Chromosome aberrations resulting from direct DNA breakage or from inhibition of DNA repair or synthesis, measured in peripheral blood lymphocytes have been used in occupational health surveillance programs in order to assess risks from exposures. Many results in our human monitoring studies have shown influence of the environmental or occupational exposure on the cytogenetic damage detected in lymphocytes, confirming both, the association with adverse health outcome and the influence of life style related confounding factors. Susceptibility to the environmental agent actions was also evaluated in lymphocytes in the studies of variation between responses to the challenging dose of UV or X-rays followed by the evaluation of the repair capacity of the DNA damage induced by a challenging dose. The induced and residual DNA damage was analyzed with the use of SCGE assay. Susceptibility and repair capacities of healthy donors and cancer patients were compared. Studies have shown a good correlation between DNA damage induced in vivo or in vitro and cytogenetic measures. Results from studies on susceptibilities and repair competence performed in occupationally exposed and unexposed 475 healthy donors and patients with diagnosed cancer are discussed. Significantly lower efficiency of repair process was observed in cancer patients. The possible effects on repair competency of various occupational exposures and influence of the diet and other confounding factors is shown. Although in our preliminary studies comet assay failed to detect DNA damage repair disorders in a teratoma immature infant, though, prospective use of a challenging dose of radiation combined with the comet assay as a predictive assay is suggested and limitation discussed

  8. Influence of LET on repair of DNA damages in Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y; Tanaka, A; Kikuchi, M; Shimizu, T; Watanabe, H [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Cao, J P; Taucher-Scholz, G

    1997-03-01

    Inactivation caused by heavy ions was studied in dry cells of radioresistant bacterium Deinococcus radiodurans. All survival curves were characterized by a large shoulder of the curves. No final slopes of the exponential part of survival curves for heavy ion irradiation were steeper than that for 2.0 MeV electron irradiation. The plots of RBE versus LET showed no obvious peaks, suggesting that this bacterium can repair not only DNA double strand breaks (DSBs) but also clustered damage in DNA which may be induced by heavy ions. The genomic DNA of D. radiodurans was cleaved into large fragments with restriction enzyme Not I after post-irradiation incubation and the fragments were separated using pulsed-field gel electrophoresis (PFGE). DSBs induction and rejoining process were analyzed by detection of the reappearance of ladder pattern of DNA fragments. The required repair time after heavy ions irradiation was longer than the repair time for electrons at the same dose of irradiation, however, the rate of repair enzyme induction was almost similar to each other between electrons and heavy ions, suggesting that the same repair system is likely to be used after both low and high LET irradiations. (author)

  9. Repairing method and apparatus for weld portion of reactor core shroud

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroshi; Tamai, Yasukata; Kurosawa, Koichi (Hitachi Ltd., Tokyo (Japan)); Toyota, Seiichi; Kikuchi, Toshikazu.

    1993-12-07

    A method of repairing a weld portion in a cylindrical reactor core shroud comprises a first step of inspecting a weld portion by an ultrasonic flow testing device from the surface of the reactor core shroud, a second step of applying repairing fabrication for cracked portion if it is discovered by the test and a third step of applying a surface modification to the fabricated portion after the repairing fabrication. As a result, repairing fabrication for the crack caused by stress corrosion crack or the like is enabled and reoccurrence of the stress corrosion crack in the repair fabrication portion can be prevented. Operator's exposure dose is minimized by shielding with reactor water or shielding plate. In a case of using the shielding plate, welding and surface improvement can be practiced in atmospheric air instead of water-submerged welding. Water does not intrude from the outside of the shroud and occurrence of penetration crack can be coped with. Further, it is possible to reduce cost and save labors for parts exchange by using the parts in common, to improve the operation efficiency. (N.H.).

  10. Repairing method and apparatus for weld portion of reactor core shroud

    International Nuclear Information System (INIS)

    Tsujimura, Hiroshi; Tamai, Yasukata; Kurosawa, Koichi; Toyota, Seiichi; Kikuchi, Toshikazu.

    1993-01-01

    A method of repairing a weld portion in a cylindrical reactor core shroud comprises a first step of inspecting a weld portion by an ultrasonic flow testing device from the surface of the reactor core shroud, a second step of applying repairing fabrication for cracked portion if it is discovered by the test and a third step of applying a surface modification to the fabricated portion after the repairing fabrication. As a result, repairing fabrication for the crack caused by stress corrosion crack or the like is enabled and reoccurrence of the stress corrosion crack in the repair fabrication portion can be prevented. Operator's exposure dose is minimized by shielding with reactor water or shielding plate. In a case of using the shielding plate, welding and surface improvement can be practiced in atmospheric air instead of water-submerged welding. Water does not intrude from the outside of the shroud and occurrence of penetration crack can be coped with. Further, it is possible to reduce cost and save labors for parts exchange by using the parts in common, to improve the operation efficiency. (N.H.)

  11. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  12. Proposal of a probabilistic dose-response model

    International Nuclear Information System (INIS)

    Barrachina, M.

    1997-01-01

    A biologically updated dose-response model is presented as an alternative to the linear-quadratic model currently in use for cancer risk assessment. The new model is based on the probability functions for misrepair and/or unrepair of DNA lesions, in terms of the radiation damage production rate in the cell (supposedly, a stem cell) and its repair-rate constant. The model makes use, interpreting it on the basis of misrepair probabilities, of the ''dose and dose-rate effectiveness factor'' of ICRP, and provides the way for a continuous extrapolation between the high and low dose-rate regions, ratifying the ''linear non-threshold hypothesis'' as the main option. Anyhow, the model throws some doubts about the additive property of the dose. (author)

  13. SplitRacer - a semi-automatic tool for the analysis and interpretation of teleseismic shear-wave splitting

    Science.gov (United States)

    Reiss, Miriam Christina; Rümpker, Georg

    2017-04-01

    We present a semi-automatic, graphical user interface tool for the analysis and interpretation of teleseismic shear-wave splitting in MATLAB. Shear wave splitting analysis is a standard tool to infer seismic anisotropy, which is often interpreted as due to lattice-preferred orientation of e.g. mantle minerals or shape-preferred orientation caused by cracks or alternating layers in the lithosphere and hence provides a direct link to the earth's kinematic processes. The increasing number of permanent stations and temporary experiments result in comprehensive studies of seismic anisotropy world-wide. Their successive comparison with a growing number of global models of mantle flow further advances our understanding the earth's interior. However, increasingly large data sets pose the inevitable question as to how to process them. Well-established routines and programs are accurate but often slow and impractical for analyzing a large amount of data. Additionally, shear wave splitting results are seldom evaluated using the same quality criteria which complicates a straight-forward comparison. SplitRacer consists of several processing steps: i) download of data per FDSNWS, ii) direct reading of miniSEED-files and an initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold. iii) an analysis of the particle motion of selected phases and successive correction of the sensor miss-alignment based on the long-axis of the particle motion. iv) splitting analysis of selected events: seismograms are first rotated into radial and transverse components, then the energy-minimization method is applied, which provides the polarization and delay time of the phase. To estimate errors, the analysis is done for different randomly-chosen time windows. v) joint-splitting analysis for all events for one station, where the energy content of all phases is inverted simultaneously. This allows to decrease the influence of noise and to increase robustness of the measurement

  14. Biomechanical evaluation of arthroscopic rotator cuff repairs: double-row compared with single-row fixation.

    Science.gov (United States)

    Ma, C Benjamin; Comerford, Lyn; Wilson, Joseph; Puttlitz, Christian M

    2006-02-01

    Recent studies have shown that arthroscopic rotator cuff repairs can have higher rates of failure than do open repairs. Current methods of rotator cuff repair have been limited to single-row fixation of simple and horizontal stitches, which is very different from open repairs. The objective of this study was to compare the initial cyclic loading and load-to-failure properties of double-row fixation with those of three commonly used single-row techniques. Ten paired human supraspinatus tendons were split in half, yielding four tendons per cadaver. The bone mineral content at the greater tuberosity was assessed. Four stitch configurations (two-simple, massive cuff, arthroscopic Mason-Allen, and double-row fixation) were randomized and tested on each set of tendons. Specimens were cyclically loaded between 5 and 100 N at 0.25 Hz for fifty cycles and then loaded to failure under displacement control at 1 mm/sec. Conditioning elongation, peak-to-peak elongation, ultimate tensile load, and stiffness were measured with use of a three-dimensional tracking system and compared, and the failure type (suture or anchor pull-out) was recorded. No significant differences were found among the stitches with respect to conditioning elongation. The mean peak-to-peak elongation (and standard error of the mean) was significantly lower for the massive cuff (1.1 +/- 0.1 mm) and double-row stitches (1.1 +/- 0.1 mm) than for the arthroscopic Mason-Allen stitch (1.5 +/- 0.2 mm) (p row fixation (287 +/- 24 N) than for all of the single-row fixations (p row fixation had a significantly higher ultimate tensile load than the three types of single-row fixation stitches. Of the single-row fixations, the massive cuff stitch had cyclic and load-to-failure characteristics similar to the double-row fixation. Anterior repairs of the supraspinatus tendon had significantly stronger biomechanical behavior than posterior repairs.

  15. Repair of potentially lethal radiation damage: comparison of neutron and x-ray RBE and implications for radiation therapy

    International Nuclear Information System (INIS)

    Hall, E.J.; Kraljevic, U.

    1976-01-01

    Experiments with Chinese hamster cells have shown that neutron irradiation does not result in repair of potentially lethal damage (PLD), i.e., that which can be influenced by changes in environmental conditions following irradiation. Since PLD is presumed to be repaired in tumors but not in normal tissues, this absence of differential sparing of tumor cells relative to normal tissues--a feature characteristic of irradiation with x rays--represents an advantage of neutrons in addition to their reduced oxygen effect. At a given dose, the difference in relative biological effectiveness (RBE) between tumors and normal tissues corresponds to a 5 percent increase in tumor dose with no concomitant increase in dose to normal tissues, which could be significant in cancer therapy

  16. Decreased UV-induced DNA repair synthesis in peripheral leukocytes from patients with the nevoid basal cell carcinoma syndrome

    International Nuclear Information System (INIS)

    Ringborg, U.; Lambert, B.; Landergen, J.; Lewensohn, R.

    1981-01-01

    The uv-induced DNA repair synthesis in peripheral leukocytes from 7 patients with the nevoid basal cell carcinoma syndrome was compared to that in peripheral leukocytes from 5 patients with basal cell carcinomas and 39 healthy subjects. A dose response curve was established for each individual, and maximum DNA repair synthesis was used as a measure of the capacity for DNA repair. The patients with the nevoid basal cell carcinoma syndrome had about 25% lower level of maximum DNA repair synthesis as compared to the patients with basal cell carcinomas and control individuals. The possibility that DNA repair mechanisms may be involved in the etiology to the nevoid basal cell carcinoma syndrome is discussed

  17. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment

    International Nuclear Information System (INIS)

    Zhang Liyuan; Chen Liesong; Sun Rui; Ji Shengjun; Ding Yanyan; Wu Jia; Tian Ye

    2013-01-01

    Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5 and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0-10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, id est (i.e.) DNA damage caused by 0-10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body's maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body's own ability to repair DNA DSBs via the NHEJ pathway. (author)

  18. Three-part head-splitting proximal humerus fracture through a unicameral bone cyst.

    Science.gov (United States)

    Younghein, John A; Eskander, Mark S; DeAngelis, Nicola A; Wixted, John J

    2012-06-01

    Unicameral bone cysts are rare in adults and are most often found incidentally on radiographs. However, they can persist from the adolescent period and may be present in locations that predispose to or exacerbate fractures.This article describes a case of a healthy 40-year-old woman who sustained a proximal humerus trauma that involved a large unicameral bone cyst, resulting in a 3-part head-splitting fracture. The epiphyseal location of the cyst contributed to the severity and extent of the fracture that resulted from a simple fall. Given the age of the patient, open reduction and internal fixation with a locking plate and lag screws was performed. The patient chose open reduction and internal fixation to preserve a hemiarthroplasty procedure in case of future revision. Successful humeral head reconstruction was achieved, and the patient fully recovered. One year postoperatively, the patient underwent arthroscopic debridement to alleviate subjective stiffness and decreased range of motion.Multipart head-splitting fractures require complex repair strategies. The gold standard for the treatment of these injuries is hemiarthroplasty. However, the decision process is difficult in a young patient given the average survival of autoplastic prostheses and the added difficulty of later revision. The current case demonstrates the complexity of decision making resulting from a rare injury in a young, healthy patient and shows that open reduction and internal fixation can provide acceptable reconstruction in such situations. Copyright 2012, SLACK Incorporated.

  19. Estimated radiation dose from timepieces containing tritium

    International Nuclear Information System (INIS)

    McDowell-Boyer, L.M.

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 μSv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed

  20. [The usage of inferior turbinate mucosal flap for repairing cleft lip].

    Science.gov (United States)

    Gao, Pu; Zhao, Min; Qi, Ke-ming; Zhao, Zhen-min; Xiong, Bin

    2004-05-01

    To evaluate a technique for decreasing the tension of the nasal floor during the procedures of repairing complete clef lip. With the designation of an inferior turbinate mucosal flap combined with an oral mucosal flap in the splitting side, the tension was effectively decreased and the nasal floor was closed easily. Eighteen patients was selected for the treatment with this technique since 2000. The follow-ups were 10 to 24 months. All of the patients showed wound healing well with the significant improvement in the donor site. The above mentioned technique may effectively decrease the tension and be used to close the nasal floor safely. It could also reduce the incidence of the complications.

  1. An Estimation of Radiobiological Parameters for Head-and-Neck Cancer Cells and the Clinical Implications

    International Nuclear Information System (INIS)

    Qi, X. Sharon; Yang, Qiuhui; Lee, Steve P.; Li, X. Allen; Wang, Dian

    2012-01-01

    In vitro survival measurements using two human head-and-neck cancer (HNC) cell lines were performed. The specially designed split-dose surviving fraction was obtained and fitted to the linear-quadratic formalism. The repair halftime (Tr), the potential doubling time (T d ), α/β and radiosensitivity α, were estimated. Other radiobiological models: EUD, BED, TCP, etc., were used to examine the potential treatment effectiveness of different IMRT techniques. Our data indicated the repair halftime of ~17 min based on two HNC cell lines. The combined α/β, α and T d are α/β = 8.1 ± 4.1 Gy, α = 0.22 ± 0.08 Gy −1 , T d = 4.0 ± 1.8 day, respectively. The prolonged IMRT dose delivery for entire HNC treatment course could possibly result in the loss of biological effectiveness, i.e., the target EUDs decreased by 11% with fraction dose delivery time varying from 5 to 30 min. We determined the sublethal damage repair halftime and other radiobiological parameters for HNC cells, and to evaluate treatment effectiveness of the prolonged dose delivery times associated with different IMRT techniques. The estimated repair halftime for HNC is relatively short and may be comparable to the step-and-shoot IMRT fraction dose delivery time. The effectiveness of IMRT treatment may be improved by reducing the fraction delivery time for HNC treatment

  2. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  3. Peroneus Brevis Attrition & Longitudinal Split Tear without Subluxation and Associated Hypertrophy of Peronal Tubercle" - Treatment of an Uncommon Lesion.

    Science.gov (United States)

    Tiwari, Mukesh; Singh, Varun; Bhargava, Rakesh

    2015-01-01

    Peroneus brevis tendinitis with its attritional longitudinal split rupture without any subluxation from peroneal groove and associated enlarged peroneal tubercle is un common presentation. A 40 year old female presented with moderate swelling and tenderness over the lateral and dorso-lateral aspect of left ankle with history of old trauma to ankle with swelling, persistant pain and difficulty in walking. On physical examination during passive eversion and inversion the excursion of the peroneal tendons was painful. Most tender point was just posterior to the tip of the fibula. During surgery we found the intact superior peroneal ligament with both peroneal tendons placed at normal site without subluxation, tendon sheath was inflamed and swollen, on further dissection we could see the attrition of inner surface of the peroneus brevis and a 2 cm longitudinal split tear of the same. Although rare but peroneus brevis tendon attrition and tear can occur without subluxation from peronal groove. Refractory ankle pain on lateral aspect presenting with on and off swelling should arise suspicion of peroneal tendon tear. Correct diagnosis and proper surgical repair can produce excellent results.

  4. Modification of survival and hematopoiesis in mice by tocopherol injection following irradiation

    International Nuclear Information System (INIS)

    Bichay, T.J.E.; Roy, R.M.

    1986-01-01

    The LD 50/30 of CD-1-female mice increased from 6.6 Gy to 7.0 Gy when 2.5 mg of dl-α-tocopherol was injected immediately post irradiation. Increased survival was associated with increased numbers of hematopoietic colony forming units (CFU). Endogeneous spleen colonies were found in greater numbers in the tocopherol-treated mice after irradiation. The vitamin, however, must be injected within five hours following irradiation to have this effect. The increased numbers of CFU in tocopherol-treated mice may be due to a stimulation of recovery of repair processes. Split-dose studies suggest that most repair of sublethal damage in hematopoietic stem cells take place within seven and nine hours following irradiation. Tocopherol injection appears to enhance the recovery manifested in the split-dose assay. There is also evidence that tocopherol-treatment caused an earlier onset of mitotic activity in CFU after irradiation. The increased number of spleen colonies in tocopherol-injected mice is not due to an altered CFU seeding efficiency associated with an altered spleen microenvironment. Tocopherol injection did not affect the shoulder of the stem cell survival curve using exogenous spleen colony assays of bone marrow-derived or spleen-derived hematopoietic stem cells. There appears to be a decrease in D 0 in the higher dose region (4.3 Gy) of the bone marrow exogenous SCA survival curves for the vehicle-injected and the non-injected groups; however, the tocopherol-injected group showed no evidence of change in radiosensitivity up to the highest dose used (5.0 Gy). Data may be interpreted to suggest that the therapeutic effect of tocopherol may involve repair of hematopoietic stem cell damage in the higher dose range of bone marrow syndrome. (orig.) [de

  5. High doses of ionizing radiation on bone repair: is there effect outside the irradiated site?

    Science.gov (United States)

    Rocha, Flaviana Soares; Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Lara, Vitor Carvalho; Batista, Jonas Dantas; Dechichi, Paula

    2017-03-01

    Local ionizing radiation causes damage to bone metabolism, it reduces blood supply and cellularity over time. Recent studies indicate that radiation promotes biological response outside the treatment field. The aim of this study was to investigate the effects of ionizing radiation on bone repair outside the irradiated field. Ten healthy male Wistar rats were used; and five animals were submitted to radiotherapy on the left femur. After 4 weeks, in all animals were created bone defects in the right and left femurs. Seven days after surgery, animals were euthanized. The femurs were removed and randomly divided into 3 groups (n=5): Control (C) (right femur of the non-irradiated animals); Local ionizing radiation (IR) (left femur of the irradiated animals); Contralateral ionizing radiation (CIR) (right femur of the irradiated animals). The femurs were processed and embedded in paraffin; and bone histologic sections were evaluated to quantify the bone neoformation. Histomorphometric analysis showed that there was no significant difference between groups C (24.6±7.04) and CIR (25.3±4.31); and IR group not showed bone neoformation. The results suggest that ionizing radiation affects bone repair, but does not interfere in bone repair distant from the primary irradiated site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. 26 CFR 1.7872-15 - Split-dollar loans.

    Science.gov (United States)

    2010-04-01

    ...'s death benefit proceeds, the policy's cash surrender value, or both. (ii) Payments that are only... regarding certain split-dollar term loans payable on the death of an individual, certain split-dollar term... insurance arrangement make a representation—(i) Requirement. An otherwise noncontingent payment on a split...

  7. AREVA NP Liner Repair Strategy with Adhesive Technology

    International Nuclear Information System (INIS)

    Georg, Kraemer; Revoirard, Sebastien; McCann, James-E.

    2012-09-01

    inside the pools in nuclear power plants is pure water which contains no SCC promoting elements, such as Chloride. At the concrete side of the liner, all of those preconditions can be found in some areas. Therefore, the SCC starts from the concrete side and can be detected after penetrating through the liner sheet. When there are leakages known in a pool, there is either the need to locate those leaks or to carry out a prophylactic coating on all welding joints. The detection method can be carried out in 2 steps. First, a pre-detection made with cameras for the main parts of the liner (for big impacts) and ACFM sensors on each side of the welds to check for crossing cracks in the HAZ. Then, on the pre-detected areas, the leak detection equipment is placed to identify and also evaluate (if requested) the leaks. This can be achieved in air or underwater. The AREVA repair method can be roughly divided into two principles: Remote controlled application for use under water or in high radiation dose areas and manual application for use in dry and low radiation dose areas. Depending on the application area a suitable adhesive material is chosen. For dry applications and low dose areas mainly a silicone based material is applied, for underwater application, e.g. in a spent fuel pool (SFP) mainly an epoxy based material is applied. There are several advantages of this technology compared to repair by welding. The AREVA repair method is substantially faster and therefore more cost effective than a usual weld repair. Additionally the exact localization of the leakages is not necessary if all weld seams in a pool are getting covered. Neither is the base material negatively affected by the adhesive material nor is the liner exposed to additional heat stress, which may cause future leaks. Furthermore, this repair technique has been field proven for more than 20 years. (authors)

  8. The effect of anaesthesia on the radiosensitivity of rat intestine, foot skin and R-1 tumours

    International Nuclear Information System (INIS)

    Kal, H.B.; Gaiser, J.F.

    1980-01-01

    A comparison has been made of the effects of Nembutal (sodium pentobarbital) and Ethrane (2-chloro-1,1,2-trifluoroethyldifluoromethyl ether) anaesthesia on the radiation responses of rat intestine, foot skin and R-1 rhabdomyosarcoma. Single-dose experiments under Nembutal or short-lasting Ethrane anaesthesia resulted in equivalent radiosensitivities for the R-1 sarcoma and foot skin, whereas Ethrane induced radiosensitization in the intestine. In the Ethrane anaesthesia lasting 3 hours, and in the split-dose experiments, Ethrane inhibited repair of radiation-induced damage in the R-1 sarcoma and in the foot skin. It is therefore recommended that the use of Ethrane as an anaesthetic should be avoided in experiments designed to investigate repair of damage in fractionated studies or during protracted irradiation treatments. (UK)

  9. A guiding oblique osteotomy cut to prevent bad split in sagittal split ramus osteotomy: a technical note

    Directory of Open Access Journals (Sweden)

    Gururaj Arakeri

    2015-06-01

    Full Text Available Aim: To present a simple technical modification of a medial osteotomy cut which prevents its misdirection and overcomes various anatomical variations as well as technical problems. Methods: The medial osteotomy cut is modified in the posterior half at an angle of 15°-20° following novel landmarks. Results: The proposed cut exclusively directs the splitting forces downwards to create a favorable lingual fracture, preventing the possibility of an upwards split which would cause a coronoid or condylar fracture. Conclusion: This modification has proven to be successful to date without encountering the complications of a bad split or nerve damage.

  10. Splitting and non splitting are pollution models photochemical reactions in the urban areas of greater Tehran area

    International Nuclear Information System (INIS)

    Heidarinasab, A.; Dabir, B.; Sahimi, M.; Badii, Kh.

    2003-01-01

    During the past years, one of the most important problems has been air pollution in urban areas. In this regards, ozone, as one of the major products of photochemical reactions, has great importance. The term 'photochemical' is applied to a number of secondary pollutants that appear as a result of sun-related reactions, ozone being the most important one. So far various models have been suggested to predict these pollutants. In this paper, we developed the model that has been introduced by Dabir, et al. [4]. In this model more than 48 chemical species and 114 chemical reactions are involved. The result of this development, showed good to excellent agreement across the region for compounds such as O 3 , NO, NO 2 , CO, and SO 2 with regard to VOC and NMHC. The results of the simulation were compared with previous work [4] and the effects of increasing the number of components and reactions were evaluated. The results of the operator splitting method were compared with non splitting solving method. The result showed that splitting method with one-tenth time step collapsed with non splitting method (Crank-Nicolson, under-relaxation iteration method without splitting of the equation terms). Then we developed one dimensional model to 3-D and were compared with experimental data

  11. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells.

    Science.gov (United States)

    King, Harry O; Brend, Tim; Payne, Helen L; Wright, Alexander; Ward, Thomas A; Patel, Karan; Egnuni, Teklu; Stead, Lucy F; Patel, Anjana; Wurdak, Heiko; Short, Susan C

    2017-01-10

    Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Tune splitting in the presence of linear coupling

    International Nuclear Information System (INIS)

    Parzen, G.

    1991-01-01

    The presence of random skew quadrupole field errors will couple the x and y motions. The x and y motions are then each given by the sum of 2 normal modes with the tunes v 1 and v 2 , which may differ appreciably from v x and v y , the unperturbed tunes. This is often called tune splitting since |v 1 - v 2 | is usually larger than |v x - v y |. This tune splitting may be large in proton accelerators using superconducting magnets, because of the relatively large random skew quadrupole field errors that are expected in these magnets. This effect is also increased by the required insertions in proton colliders which generate large β-functions in the insertion region. This tune splitting has been studied in the RHIC accelerator. For RHIC, a tune splitting as large as 0.2 was found in one worse case. A correction system has been developed for correcting this large tune splitting which uses two families of skew quadrupole correctors. It has been found that this correction system corrects most of the large tune splitting, but a residual tune splitting remains that is still appreciable. This paper discusses the corrections to this residual time

  13. Differential repair of radiation-induced DNA damage in cells of human squamous cell carcinoma and the effect of caffeine and cysteamine on induction and repair of DNA double-strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Abdel-Wahab, A.H.A.; Begg, A.C. [Netherlands Cancer Institute, Amsterdam (Netherlands)

    1994-11-01

    The goal of these experiments was to investigate further the relationship between DNA double-strand breaks and cell killing in human tumor cells, first by comparing different cell lines, and second by radiomodification studies. Field-inversion gel electrophoresis was used to quantify double-strand breaks. Two subclones of the radioresistant human squamous cell carcinoma line SQ20B (SQD9 and SQG6) were compared. These subclones differed in DNA index by a factor of 1.7 but showed the same resistance to radiation as cells of the parental cell line. It was found that, although induction of DSBs was not significantly different in the two cell lines, the t{sub 1/2} of the fast component of repair was significantly shorter for SQD9 cells, leading to greater overall repair which was not reflected in increased survival. Caffeine and cysteamine were tested as modifiers of radiosensitivity, using the radioresistant SQ20B line and the radiosensitive SCC61 cell line. No effect of caffeine was seen when the drug was present only during irradiation. Postirradiation incubations with caffeine, however, resulted in a dose reduction factor greater than 2.0 in cell survival for both cell lines. In contrast, induction of DSBs was reduced by caffeine, and no effect on DSB repair was observed. Cysteamine led to a dose protection factor greater than 1.8 in cell survival in both cell lines. A reduction in induced DSBs was found at high doses corresponding approximately with the increase in cell survival. Over the same (low) dose range, however, the correlation between DSB induction and cell killing was poor. These data indicate that DSB induction does not correlate well with cell killing either for different cell lines, for radiochemical modification (cysteamine) or for some other types of modification (caffeine). 31 refs., 8 figs.

  14. Dose conversion factors for radiation doses at normal operation discharges. F. Methods report; Dosomraekningsfaktorer foer normaldriftutslaepp. F. Metodrapport

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Hallberg, Bengt; Karlsson, Sara

    2001-10-01

    A study has been performed in order to develop and extend existing models for dose estimations at emissions of radioactive substances from nuclear facilities in Sweden. This report gives a review of the different exposure pathways that have been considered in the study. Radioecological data that should be used in calculations of radiation doses are based on the actual situation at the nuclear sites. Dose factors for children have been split in different age groups. The exposure pathways have been carefully re-examined, like the radioecological data; leading to some new pathways (e.g. doses from consumption of forest berries, mushrooms and game) for cesium and strontium. Carbon 14 was given a special treatment by using a model for uptake of carbon by growing plants. For exposure from aquatic emissions, a simplification was done by focussing on the territory for fish species, since consumption of fish is the most important pathway.

  15. Split-plot designs for robotic serial dilution assays.

    Science.gov (United States)

    Buzas, Jeffrey S; Wager, Carrie G; Lansky, David M

    2011-12-01

    This article explores effective implementation of split-plot designs in serial dilution bioassay using robots. We show that the shortest path for a robot to fill plate wells for a split-plot design is equivalent to the shortest common supersequence problem in combinatorics. We develop an algorithm for finding the shortest common supersequence, provide an R implementation, and explore the distribution of the number of steps required to implement split-plot designs for bioassay through simulation. We also show how to construct collections of split plots that can be filled in a minimal number of steps, thereby demonstrating that split-plot designs can be implemented with nearly the same effort as strip-plot designs. Finally, we provide guidelines for modeling data that result from these designs. © 2011, The International Biometric Society.

  16. Age associated alteration in DNA damage and repair capacity in Turbatrix aceti exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Targovnik, H.S.; Locher, S.E.; Hariharan, P.V.

    1985-01-01

    Excision repair capacity was measured in young and old Turbatrix aceti (phylum Nematoda) following exposure to ionizing radiation. Both repair synthesis and removal of 5,6-dihydroxydihydrothymine type (glycol) base damage were quantitated. At least two-fold higher glycol levels were produced in the DNA of young than of old nematodes for the same radiation dose. Young worms also excised glycol damage more rapidly and completely than old worms. Both peak repair synthesis activity and completion of repair synthesis occurred at earlier times during post-irradiation incubation in young nematodes. The data indicate there is a significant age-associated difference in both the incidence and removal of ionizing radiation damage in T. aceti which is used as a model of the ageing process. (author)

  17. Placental Growth Factor Promotes Cardiac Muscle Repair via Enhanced Neovascularization

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2015-06-01

    Full Text Available Background/Aims: Transplantation of mesenchymal stem cells (MSCs improves post-injury cardiac muscle repair using ill-defined mechanisms. Recently, we have shown that production and secretion of placental growth factor (PLGF by MSCs play a critical role in the MSCs-mediated post-injury cardiac muscle repair. In this study, we addressed the underlying molecular mechanisms, focusing specifically on the interactions between MSCs, macrophages and endothelial cells. Methods: We isolated macrophages (BM-MΦ from mouse bone-marrow derived cells based on F4/80 expression by flow cytometry. BM-MΦ were treated with different doses of PLGF. Cell number was analyzed by a MTT assay. Macrophage polarization was examined based on CD206 expression by flow cytometry. PLGF levels in macrophage subpopulations were analyzed by RT-qPCR and ELISA. Effects of macrophages on vascularization were evaluated by a collagen gel assay using Human umbilical vein endothelial cells (HUVECs co-cultured with PLGF-treated macrophages. Results: PLGF did not increase macrophage number, but dose-dependently polarized macrophages into a M2 subpopulation. M2 macrophages expressed high levels of PLGF. PLGF-polarized M2 macrophages significantly increased tubular structures in the collagen gel assay. Conclusion: Our data suggest that MSCs-derived PLGF may induce macrophage polarization into a M2 subpopulation, which in turn releases more PLGF to promote local neovascularization for augmenting post-injury cardiac muscle repair. This study thus sheds novel light on the role of PLGF in cardiac muscle regeneration.

  18. Patient absorbed dose and radiation risk in nuclear medicine

    International Nuclear Information System (INIS)

    Hetherington, E.; Cochrane, P.

    1992-01-01

    Since the introduction of technetium-99m labelled radiopharmaceuticals used as imaging agents in the nuclear medicine departments of Australian hospitals, patients have voiced concern about the effect of having radioactive materials injected into their bodies. The danger of X-ray exposure is widely known and well accepted, as is exposure to ultrasound, computed tomography scans and other imaging techniques. However, radioactivity is an unknown, and fear of the unknown can occasionally lead to patients refusing to undergo a nuclear medicine procedure. The authors emphasised that the radiation dose to a patient from a typical procedure would depend on the patient's medical history and treatment; the average dose being approximately 50 times the exposure received from the natural environmental background radiation. Furthermore, over an extended period the body can repair most minor damage caused by radiation, just as the body can repair the damage caused by sunburn resulting from too much exposure to sunlight. The risk of genetic effects as a result of a medical radiation dose is than very small

  19. Investigations of the effect of exogenous gibberellin on the electrophoretic repair of plant DNA damaged by the gamma radiation

    International Nuclear Information System (INIS)

    Kryukova, L.M.; Medvedkova, V.V.

    1981-01-01

    Effect of the exogenous gibberellin on the DNA of plants irradiated with high doses of γ-radiation is studied. Repair of the molecular weight of DNA can be judged on according to electrophoretic mobility in 1% agar sludge of DNA samples denaturated in alkaline. Investigation results reaffirm that exogenous gibberellin promotes to the repair of the DNA of plants damaged with high doses of radiation. The mechanism of the effect of the hormone is not yet studied, but it is supposed that physiological action of the phytohormone is realized through the ferment systems of plants [ru

  20. Topical erythropoietin promotes wound repair in diabetic rats.

    Science.gov (United States)

    Hamed, Saher; Ullmann, Yehuda; Masoud, Muhannad; Hellou, Elias; Khamaysi, Ziad; Teot, Luc

    2010-01-01

    Wound healing in diabetic patients is slower than in healthy individuals. Erythropoietin (EPO) has non-hemopoietic targets in the skin, and systemically administered EPO promotes wound healing in experimental animals. This study investigated the effect of topical EPO treatment on defective wound repair in the skin of diabetic rats. Full-thickness excisional skin wounds were made in 38 rats, of which 30 had diabetes. The wounds were then treated topically with a cream that contained either vehicle, 600 IU ml(-1) EPO (low dose), or 3,000 IU ml(-1) (high dose) EPO. We assessed the rate of wound closure during the 12-day treatment period, and microvascular density (MVD), vascular endothelial growth factor (VEGF), and hydroxyproline (HP) contents, and the extent of apoptosis in wound tissues at the end of the 12-day treatment period. Topical EPO treatment significantly reduced the time to final wound closure. This increased rate of closure of the two EPO-treated wounds in diabetic rats was associated with increased MVD, VEGF, and HP contents, and a reduced extent of apoptosis. In light of our finding that topical EPO treatment promotes skin wound repair in diabetic rats, we propose that topical EPO treatment is a therapeutically beneficial method of treating chronic diabetic wounds.

  1. 7 CFR 51.2731 - U.S. Spanish Splits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or broken...

  2. Why shorter half-times of repair lead to greater damage in pulsed brachytherapy

    International Nuclear Information System (INIS)

    Fowler, J.F.

    1993-01-01

    Pulsed brachytherapy consists of replacing continuous irradiation at low dose-rate with a series of medium dose-rate fractions in the same overall time and to the same total dose. For example, pulses of 1 Gy given every 2 hr or 2 Gy given every 4 hr would deliver the same 70 Gy in 140 hr as continuous irradiation at 0.5 Gy/hr. If higher dose-rates are used, even with gaps between the pulses, the biological effects are always greater. Provided that dose rates in the pulse do not exceed 3 Gy/hr, and provided that pulses are given as often as every 2 hr, the inevitable increases of biological effect are no larger than a few percent (of biologically effective dose or extrapolated response dose). However, these increases are more likely to exceed 10% (and thus become clinically significant) if the half-time of repair of sublethal damage is short (less than 1 hr) rather than long. This somewhat unexpected finding is explained in detail here. The rise and fall of Biologically Effective Dose (and hence of Relative Effectiveness, for a constant dose in each pulse) is calculated during and after single pulses, assuming a range of values of T 1/2 , the half-time of sublethal damage repair. The area under each curve is proportional to Biologically Effective Dose and therefore to log cell kill. Pulses at 3 Gy/hr do yield greater biological effect (dose x integrated Relative Effectiveness) than lower dose-rate pulses or continuous irradiation at 0.5 Gy/hr. The contrast is greater for the short T 1/2 of 0.5 hr than for the longer T 1/2 of 1.5 hr. More biological damage will be done (compared with traditional low dose rate brachytherapy) in tissues with short T 1/2 (0.1-1 hr) than in tissues with longer T 1/2 values. 8 refs., 3 figs

  3. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  4. Dose-rate evidence for two kinds of radiation damage in stationary-phase mammalian cells

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Roesch, W.C.; Nelson, J.M.

    1985-01-01

    Survival based on colony formation was measured for starved plateau-phase Chinese hamster ovary (CHO) cells exposed to 250 kVp X rays at dose rates of 0.0031, 0.025, 0.18, 0.31, and 1.00 Gy/min. A large dose-rate effect was demonstrated. Delayed plating experiments and dose response experiments following a conditioning dose, both using a dose rate of 1.00 Gy/min and plating delays of up to 48 hr, were also used to investigate the alternative repair hypotheses. There is clearly a greater change in survival in dose-rate experiments than in the other experiments. Thus the authors believe that a process which depends on the square of the concentration of initial damage, and which alters the effect of initial damage on cell survival is being observed. They have applied the damage accumulation model to separate the single-event damage from this concentration-dependent form and estimate the repair rate for the latter type to be 70 min for their CHO cells

  5. Studies on the relationship between the cancer chemotherapeutic agent, hydroxyurea, and DNA repair in mammalian cells

    International Nuclear Information System (INIS)

    Katz, E.J.

    1988-01-01

    To examine the possibility that manipulating DNA repair might lessen drug resistance, we investigated whether depletion of the thymidine triphosphate (TTP) pool or administration of hydroxyurea could interfere with the ability of confluent normal human skin fibroblasts to repair ultraviolet irradiation-induced DNA damage. A method was developed for the quantitation of cellular TTP pools by labeling them with [ 3 H]thymidine. The addition of hydroxyurea, either simultaneously with [ 3 H]thymidine or two hours later, resulted in a dose- and time-dependent increase in the [ 3 H]TTP pool. The capacity of these cells to carry out DNA repair was quantitated by their ability to perform repair replication synthesis of DNA after exposure to ultraviolet irradiation. This radiation produces thymine dimers in DNA, which are repaired by the nucleotide excision repair pathway. The experimental protocol resulted in an 8-10-fold reduction in the [ 3 H]TTP pool. Saturating levels of DNA repair synthesis were observed under these conditions, with no further diminution of the already reduced [ 3 H]TTP pool. Repair replication and [ 3 H]TTP pool measurements were identical in cultures treated with 10 mM hydroxyurea and in those not exposed to the drug

  6. Numerical simulation and experiment on multilayer stagger-split die.

    Science.gov (United States)

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  7. Tensor products of higher almost split sequences

    OpenAIRE

    Pasquali, Andrea

    2015-01-01

    We investigate how the higher almost split sequences over a tensor product of algebras are related to those over each factor. Herschend and Iyama gave a precise criterion for when the tensor product of an $n$-representation finite algebra and an $m$-representation finite algebra is $(n+m)$-representation finite. In this case we give a complete description of the higher almost split sequences over the tensor product by expressing every higher almost split sequence as the mapping cone of a suit...

  8. Comparing Biomechanical Properties, Repair Times, and Value of Common Core Flexor Tendon Repairs.

    Science.gov (United States)

    Chauhan, Aakash; Schimoler, Patrick; Miller, Mark C; Kharlamov, Alexander; Merrell, Gregory A; Palmer, Bradley A

    2018-05-01

    The aim of the study was to compare biomechanical strength, repair times, and repair values for zone II core flexor tendon repairs. A total of 75 fresh-frozen human cadaveric flexor tendons were harvested from the index through small finger and randomized into one of 5 repair groups: 4-stranded cross-stitch cruciate (4-0 polyester and 4-0 braided suture), 4-stranded double Pennington (2-0 knotless barbed suture), 4-stranded Pennington (4-0 double-stranded braided suture), and 6-stranded modified Lim-Tsai (4-0 looped braided suture). Repairs were measured in situ and their repair times were measured. Tendons were linearly loaded to failure and multiple biomechanical values were measured. The repair value was calculated based on operating room costs, repair times, and suture costs. Analysis of variance (ANOVA) and Tukey post hoc statistical analysis were used to compare repair data. The braided cruciate was the strongest repair ( P > .05) but the slowest ( P > .05), and the 4-stranded Pennington using double-stranded suture was the fastest ( P > .05) to perform. The total repair value was the highest for braided cruciate ( P > .05) compared with all other repairs. Barbed suture did not outperform any repairs in any categories. The braided cruciate was the strongest of the tested flexor tendon repairs. The 2-mm gapping and maximum load to failure for this repair approached similar historical strength of other 6- and 8-stranded repairs. In this study, suture cost was negligible in the overall repair cost and should be not a determining factor in choosing a repair.

  9. Mismatch repair proficiency is not required for radioenhancement by gemcitabine

    International Nuclear Information System (INIS)

    Bree, Chris van; Rodermond, Hans M.; Vos, Judith de; Haveman, Jaap; Franken, Nicolaas

    2005-01-01

    Purpose: Mismatch repair (MMR) proficiency has been reported to either increase or decrease radioenhancement by 24-h incubations with gemcitabine. This study aimed to establish the importance of MMR for radioenhancement by gemcitabine after short-exposure, high-dose treatment and long-exposure, low-dose treatment. Methods and Materials: Survival of MMR-deficient HCT116 and MMR-proficient HCT116 + 3 cells was analyzed by clonogenic assays. Mild, equitoxic gemcitabine treatments (4 h, 0.1 μM vs. 24 h, 6 nM) were combined with γ-irradiation to determine the radioenhancement with or without recovery. Gemcitabine metabolism and cell-cycle effects were evaluated by high-performance liquid chromatography analysis and bivariate flow cytometry. Results: Radioenhancement after 4 h of 0.1 μM of gemcitabine was similar in both cell lines, but the radioenhancement after 24 h of 6 nM of gemcitabine was reduced in MMR-proficient cells. No significant differences between both cell lines were observed in the gemcitabine metabolism or cell-cycle effects after these treatments. Gemcitabine radioenhancement after recovery was also lower in MMR-proficient cells than in MMR-deficient cells. Conclusion: Mismatch repair proficiency decreases radioenhancement by long incubations of gemcitabine but does not affect radioenhancement by short exposures to a clinically relevant gemcitabine dose. Our data suggest that MMR contributes to the recovery from gemcitabine treatment

  10. Repair-induced DNA double strand breaks after ultraviolet-light and either aphidocolin or 1-β-D-arabinofuranosylcytosine/hydroxyurea

    International Nuclear Information System (INIS)

    Bradley, M.O.; Taylor, V.I.

    1983-01-01

    A study was performed to determine whether 'repair-induced double strand breaks' (RDSBs) occur in IMR-90 cells at low u.v. doses and whether the RDSBs are themselves repairable by holding open the excision-repair induced gaps by inhibiting nucleotide polymerization after u.v. light with hydroxyurea/ara C or aphidocolin. The results show as little as 2.5 J.m -2 of u.v. light induces RDSBs during repair incubation when repair inhibitors are present. This suggests that 'hot spots' of high lesion frequency occur and the overlapping excision in these areas will produce RDSBs. Removing aphidocolin showed that RDSBs are only partially repairable with between 15 and 40% of the breaks unrepaired at 24 h. Because the lesions are partially repairable they should not always cause toxicity and may be involved in processes such as mutation, transformation, and chromosome or chromatid type aberrations of the sort associated with human tumors. (author)

  11. DNA replication in ultraviolet light irradiated Chinese hamster cells: the nature of replicon inhibition and post-replication repair

    International Nuclear Information System (INIS)

    Doniger, J.

    1978-01-01

    DNA replication in ultraviolet light irradiated Chinese hamster cells was studied using techniques of DNA fiber autoradiography and alkaline sucrose sedimentation. Bidirectionally growing replicons were observed in the autoradiograms independent of the irradiation conditions. After a dose of 5 J/m 2 at 254 nm the rate of fork progression was the same as in unirradiated cells, while the rate of replication was reduced by 50%. After a dose of 10J/m 2 the rate of fork progression was reduced 40%, while the replication rate was only 25% of normal. Therefore, at low doses of ultraviolet light irradiation, the inhibition of DNA replication is due to reduction in the number of functioning replicons, while at higher doses the rate of fork progression is also slowed. Those replicons which no longer function after irradiation are blocked in fork movement rather than replicon initiation. After irradiation, pulse label was first incorporated into short nascent strands, the average size of which was approximately equal to the distance between pyrimidine dimers. Under conditions where post-replication repair occurs these short strands were eventually joined into larger pieces. Finally, the data show that slowing post-replication repair with caffeine does not slow fork movement. The results presented here support the post-replication repair model of 'gapped synthesis' and rule out a major role for 'replicative bypass'. (author)

  12. Effects of split fast neutron doses on the liver cells of albino Swiss mice

    International Nuclear Information System (INIS)

    Abdelmeguid, N.; Ramadan, A.A.; El-Khatib, A.M.

    1990-01-01

    The effect of neutron doses from a compact D-T neutron generator on the liver cells of adult male and female albino Swiss mice was investigated. Fast neutrons (14.5 MeV) were delivered to the whole body in a single dose or in two, four, six or eight equal doses separated by 3-day intervals. The lowest dose, 100 rem, was given over an exposure time of 6 hours and was then steadily raised to 912 rem over an exposure time of 48 hours. During exposure the neutron flux was controlled by the activation foil technique. The animals were killed for testing after each irradiation. Histological examination of the hepatocytes with a light microscope showed marked degenerative changes only after the longer irradiation periods (24, 36 and 48 h). Electron microscopy showed cytological (cytoplasmic and nuclear) changes in the hepatocytes after only 12 hours' irradiation. Densitometric scans of electron micrographs of control and 12 h-irradiated livers indicated that the control hepatocyte interphase nucleus contains approximately 72% heterochromatin, while the irradiated nucleus contains only 64% heterochromatin. (author). 13 figs., 1 tab., 18 refs

  13. Conditional Toxin Splicing Using a Split Intein System.

    Science.gov (United States)

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  14. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.

    2015-01-01

    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  15. The Seed Repair Response during Germination: Disclosing Correlations between DNA Repair, Antioxidant Response, and Chromatin Remodeling in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Andrea Pagano

    2017-11-01

    THE MYST FAMILY and MtADA2A (TRANSCRIPTIONAL ADAPTOR showed tissue- and dose-dependent fluctuations in transcript levels. PCA (Principal Component Analysis and correlation analyses suggest for a new putative link between DNA repair and chromatin remodeling that involves MtOGG1 and MtTRRAP genes, in the context of seed germination. Interesting correlations also connect DNA repair and chromatin remodeling with antioxidant players and proliferation markers.

  16. A model for inverse dose-rate effects - low dose-rate hyper-sensibility in response to targeted radionuclide therapy

    International Nuclear Information System (INIS)

    Murray, I.; Mather, S.J.

    2015-01-01

    Full text of publication follows. The aim of this work was to test the hypothesis that the Linear-Quadratic (LQ) model of cell survival, developed for external beam radiotherapy (EBRT), could be extended to targeted radionuclide therapy (TRT) in order to predict dose-response relationships in a cell line exhibiting low dose hypersensitivity (LDH). Methods: aliquots of the PC-3 cancer cell line were treated with either EBRT or an in-vitro model of TRT (Irradiation of cell culture with Y-90 EDTA over 24, 48, 72 or 96 hours). Dosimetry for the TRT was calculated using radiation transport simulations with the Monte Carlo PENELOPE code. Clonogenic as well as functional biological assays were used to assess cell response. An extension of the LQ model was developed which incorporated a dose-rate threshold for activation of repair mechanisms. Results: accurate dosimetry for in-vitro exposures of cell cultures to radioactivity was established. LQ parameters of cell survival were established for the PC-3 cell line in response to EBRT. The standard LQ model did not predict survival in PC-3 cells exposed to Y 90 irradiation over periods of up to 96 hours. In fact cells were more sensitive to the same dose when irradiation was carried out over 96 hours than 24 hours. I.e. at a lower dose-rate. Deviations from the LQ predictions were most pronounced below a threshold dose-rate of 0.5 Gy/hr. These results led to an extension of the LQ model based upon a dose-rate dependent sigmoid model of single strand DNA repair. This extension to the model resulted in predicted cell survival curves that closely matched the experimental data. Conclusion: the LQ model of cell survival to radiation has been shown to be largely predictive of response to low dose-rate irradiation. However, in cells displaying LDH, further adaptation of the model was required. (authors)

  17. Low-dose effect on blood chromosomes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Linear dose response relationships of biological effects at low doses are experimentally and theoretically disputed. Structural chromosome aberration rates at doses ranging from normal background exposures up to about 30 mGy/yr in vivo and up to 50 mGy in vitro were investigated by the author and other scientists. Results are comparable and dose effect curves reveal following shapes; within the normal burden and up to 2-10 mGy/yr in vivo rates they increase sharply to about 3-6 times the lowest values; subsequent doses either from natural, occupational or accidental exposures up to about 30 mGy/yr yield either constant aberration rates, assuming a plateau, or perhaps even a decrease. In vitro experiments show comparable results up to 50 mGy. Other biological effects seem to have similar dose dependencies. The non-linearity of low-dose effects can be explained by induction of repair enzymes at certain damage to the DNA. This hypothesis is sustained experimentally and theoretically by several papers in literature. (author). 14 refs., 5 figs

  18. NNLO time-like splitting functions in QCD

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2008-07-01

    We review the status of the calculation of the time-like splitting functions for the evolution of fragmentation functions to the next-to-next-to-leading order in perturbative QCD. By employing relations between space-like and time-like deep-inelastic processes, all quark-quark and the gluon-gluon time-like splitting functions have been obtained to three loops. The corresponding quantities for the quark-gluon and gluon-quark splitting at this order are presently still unknown except for their second Mellin moments. (orig.)

  19. Micronuclei induced by fast neutrons versus 60Co gamma-rays in human peripheral blood lymphocytes.

    Science.gov (United States)

    Vral, A; Verhaegen, F; Thierens, H; De Ridder, L

    1994-03-01

    Here we compared the effectiveness of neutrons ( = 5.5 MeV) versus 60Co gamma-rays in producing micronuclei (MN) in human lymphocytes. To obtain dose-response data, blood samples of six donors were irradiated with doses ranging from 0.1 to 5 Gy for gamma-rays and 0.1-3 Gy for neutrons. A linear dependence of MN yield with dose was found for fast neutrons while for gamma-rays a nonlinear dependence existed. For both radiation qualities no significant interindividual differences were found. Derived relative biological effectiveness values decreased with increasing dose. The MN frequency distributions were overdispersed with respect to the Poisson distribution, with neutrons showing higher dispersion values than with gamma-rays. To compare the repair kinetics of both radiation qualities split-dose experiments were performed. A dose of 4 Gy gamma-rays (3 Gy neutrons) was delivered either as a single exposure or in two equal fractions separated by time intervals ranging from 30 min to 10 h (30 min to 7 h for neutrons). The data showed for gamma-rays a significant decline (30% +/- 10%) in MN yield with interfraction time due to repair of DNA damage. This repair is a continuous process starting almost immediately after the first of the two doses and lasting 3-5 h. For fast neutrons no decline was observed indicating irreparable damage.

  20. Effect of different doses of urea on the uptake of cadmium from soil ...

    African Journals Online (AJOL)

    Yomi

    2012-01-19

    Jan 19, 2012 ... uptake by canola (Brassica napus L.) applied in full and split doses. Nine different ... production of ruminants being reared on the pasture. Key words: ... combined nitrogen fertilizer used in today's agricultural practices ...

  1. Real-Time Patient and Staff Radiation Dose Monitoring in IR Practice

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Anna M., E-mail: karmanna@stanford.edu; Paulis, Leonie, E-mail: leonie.paulis@mumc.nl; Vergoossen, Laura; Kovac, Axel O., E-mail: axel.kovac@mumc.nl; Wijnhoven, Geert, E-mail: g.wijnhoven@mumc.nl [Maastricht University Medical Centre, Department of Radiology (Netherlands); Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl; Mees, Barend, E-mail: barend.mees@mumc.nl [Maastricht University Medical Centre, Department of Vascular Surgery (Netherlands); Das, Marco, E-mail: m.das@mumc.nl; Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Jeukens, Cécile R. L. P. N., E-mail: cecile.jeukens@mumc.nl [Maastricht University Medical Centre, Department of Radiology (Netherlands)

    2017-03-15

    PurposeKnowledge of medical radiation exposure permits application of radiation protection principles. In our center, the first dedicated real-time, automated patient and staff dose monitoring system (DoseWise Portal, Philips Healthcare) was installed. Aim of this study was to obtain insight in the procedural and occupational doses.Materials and MethodsAll interventional radiologists, vascular surgeons, and technicians wore personal dose meters (PDMs, DoseAware, Philips Healthcare). The dose monitoring system simultaneously registered for each procedure dose-related data as the dose area product (DAP) and effective staff dose (E) from PDMs. Use and type of shielding were recorded separately. All procedures were analyzed according to procedure type; these included among others cerebral interventions (n = 112), iliac and/or caval venous recanalization procedures (n = 68), endovascular aortic repair procedures (n = 63), biliary duct interventions (n = 58), and percutaneous gastrostomy procedure (n = 28).ResultsMedian (±IQR) DAP doses ranged from 2.0 (0.8–3.1) (percutaneous gastrostomy) to 84 (53–147) Gy cm{sup 2} (aortic repair procedures). Median (±IQR) first operator doses ranged from 1.6 (1.1–5.0) μSv to 33.4 (12.1–125.0) for these procedures, respectively. The relative exposure, determined as first operator dose normalized to procedural DAP, ranged from 1.9 in biliary interventions to 0.1 μSv/Gy cm{sup 2} in cerebral interventions, indicating large variation in staff dose per unit DAP among the procedure types.ConclusionReal-time dose monitoring was able to identify the types of interventions with either an absolute or relatively high staff dose, and may allow for specific optimization of radiation protection.

  2. Induction and repair of DNA base damage studied in X-irradiated CHO cells using the M. luteus extract

    International Nuclear Information System (INIS)

    Foehe, C.; Dikomey, E.

    1994-01-01

    DNA base damage was measured in Chinese hamster ovary cells X-irradiated under aerobic conditions using an extract of the bacterium Micrococcus luteus. The glycosylases and endonucleases present in this extract recognize damaged bases and convert them into strand breaks (termed endonuclease-sensitive sites, enss). Strand breaks were detected by the alkaline unwinding technique. The induction of enss was measured for X-ray doses ranging up to 45 Gy. The relative frequency of all enss related to all radiation induced strand breaks was 1.7 ± 0.4. Repair of enss was studied for a radiation dose of 45 Gy. The number of enss was found to decrease exponentially with time after irradiation with a half-time of τ enss = 37 ± 8 min. The repair kinetics that were also measured for all X-ray-induced DNA strand breaks were found to consist of three phases: fast, intermediate and slow. The intermediate phase was fitted under the assumption that this phase results from the information and repair of secondary single-strand breaks generated by enzymatic incision at the sites of base damage repair. (author)

  3. Recent Progress in Energy-Driven Water Splitting.

    Science.gov (United States)

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong

    2017-05-01

    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  4. Dose received during work in the active zone of the BIBLIS power plant, instalment A, 1977

    International Nuclear Information System (INIS)

    Kallmeyer, D.; Ambros, R.; Schroeder, H.J.; Kausch, S.

    1978-01-01

    In the Biblis station, instalment A, of the Rheinisch-Wesfaelisches-Elektrizitaetswerk, a study was conducted in 1977 to determine the doses received as a function of work carried out. The aim was to establish in a general study the dose which appears in each case during work on systems (or components of systems) in the active zone. An attempt was made as far as possible to relate the doses to specific occupations. This correlation is governed in two ways by conditions inherent in the organisation of the Biblis station a) maintenance and repair work are carried out under work contracts; the dose can be related to this work by the order number of the contract in question. b) Some activities, apart from maintenance and repair may be carried out without a contract. The dose which then appears is related to the type of activity concerned

  5. Measurement of DNA breakage and breakage repair in mice spleen cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Wang Qin; Xue Jingying; Li Jin; Mu Chuanjie; Fan Feiyue

    2007-01-01

    Objective: To investigate the radioresistance mechanism of IBM-2 mice through measuring DNA single-strand break(SSB) and double-strands break (DSB) as well as their repair. Methods: Pulsed-field gel electrophoresis was used to measure DSB and SSB in IRM-2 mice and their parental mice ICR/JCL and 615 mice after exposure to different doses of γ-ray at different postirradiation time. Results: The initial DNA damages, ie the quantities of DSB and SSB in unirradiation IRM-2 mice were less serious than that of their parental mice ICR/JCL and 615 alice(P<0.01). The percent- age of DSB and SSB in IBM -2 mice was significantly lower than that of ICB/JCL and 615 mice after exposure to various doses of γ-ray(P<0.01 and P<0.05). There were not statistic differences in DSB and SSB repair between IRM-2 mice and their parental mice after exposure to 2Gy radiation. The DNA damage repair rate induced by 4Gy and 8Gy radiation in IRM - 2 mice was rapid, ie the repair rate of SSB and DSB after 0.5h and 1h postirradiation in IRM-2 mice was higher than that of their' parental mice (P<0.01 and P<0.05). And remaining damages after repair in IRM-2 mice were lower than that of ICR/JCL and 615 mice. Conclusion: The DNA damages in IBM-2 mice were lower than that of their parental mice after exposure to ionizing radiation. Moreover, the repair rate of SSB and DSB was higher than that of their parental mice, which perhaps were the radioresistance causes of IBM-2 mice. Therefore IRM-2 mice are naturally resistant to DNA damages induced by ionizing radiation. (authors)

  6. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States); Varshney, Kapil [ARIES Collaborative, New York, NY (United States)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  7. Communication: Tunnelling splitting in the phosphine molecule

    Science.gov (United States)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  8. On the additive splitting procedures and their computer realization

    DEFF Research Database (Denmark)

    Farago, I.; Thomsen, Per Grove; Zlatev, Z.

    2008-01-01

    Two additive splitting procedures are defined and studied in this paper. It is shown that these splitting procedures have good stability properties. Some other splitting procedures, which are traditionally used in mathematical models used in many scientific and engineering fields, are sketched. All...

  9. The impact of gap duration on local control in anal canal carcinoma treated by split-course radiotherapy and concomitant chemotherapy

    International Nuclear Information System (INIS)

    Weber, Damien C.; Kurtz, John M.; Allal, Abdelkarim S.

    2001-01-01

    Purpose: To investigate the potential benefit of reducing the intersequence gap in patients with anal cancer treated with split-course chemoradiotherapy. Methods: The study group consisted of 90 patients with anal squamous carcinoma treated between 1981 and 1998, using concomitant chemotherapy (CT) and radiation (RT). Median age was 65 years (range 41-87). RT was delivered in a split course, with a median gap of 37.5 days (range 4-97) between sequences. First (pelvic) sequence delivered a median dose of 40 Gy (range 36-50.4), using AP/PA megavoltage photon beams. Boost treatment (median dose 20 Gy, range 13-26) consisted of either Iridium-192 implantation (49 patients) or external beam RT (41 patients). CT consisted of 1-2 cycles of a 5-day continuous infusion of 5-fluorouracil and bolus mitomycin C, usually administered during the first week of each RT course. Median follow-up was 76.2 months. Univariate and multivariate analyses were performed to determine the factors associated with locoregional control (LRC). Results: Five-year actuarial LRC was 72.5%. Factors associated with poorer LRC (univariate) were: age ≤65, male gender, and gap >37.5 days. Number of CT cycles (1 vs. 2 or more), boost technique (brachytherapy vs. external), and T-stage were not significantly associated with LRC. In multivariate analysis, only age (p=0.01), and gap (p=0.02) retained their significance. In patients older than 65 years, LRC was 92.3% and 75% for shorter and longer gaps, respectively. In younger patients, the corresponding values for LRC were 73.7% and 50%. Conclusion: In anal cancers, split-course RT with >50 Gy dose delivery is difficult to avoid because of acute toxicity. The present analysis suggests that shortening the gap contributes to optimizing LRC. Gaps longer than 5 weeks correlated with poorer LRC, with especially unsatisfactory results observed in younger patients

  10. The effect of sub-lethal damage repair and exchange on the final slope of cell survival curves

    International Nuclear Information System (INIS)

    Carlone, M.C.; Wilkins, D.E.; Raaphorst, G.P.

    2003-01-01

    Full text: The Lea-Catcheside dose rate protraction factor, G, is the most widely used model to describe the effects of dose rate on cell survival. In the linear quadratic formalism, this factor modifies the beta component of cell killing; G is greatest for acute irradiations while vanishing at low dose rates. We have found a simple compartmental model that can derive the Lea-Catcheside function. This compartmental model clearly shows that the G function can only be derived using a little known assumption: the diminution of sub-lethal damage due to exchange of repairable lesions is negligible compared to that due to repair. This assumption was explicitly stated by Lea, but it does not appear to have been restated or verified since very early work on cell survival. The implication of this assumption is that sub-lethal damage can be modeled without considering exchange, which is evidenced by the fact that the G function does not contain parameters relating to exchange. By using a new model that fully accounts for repair and exchange of sublethal lesions, a cell survival expression that has a modified G function, but that retains the linear quadratic formalism, can be obtained. At low doses, this new model predicts linear-quadratic behavior, but the behavior gradually changes to mono-exponential at high doses, which is consistent with experimental observations. Modeling cell survival of well-known survival curves using the modified linear quadratic model shows statistically significant improvement in the fits to the cell survival data as compared to best fits obtained with the linear quadratic model. It is shown that these improvements in fits are due to a superior representation of the high dose region of the survival curve

  11. Splitting methods in communication, imaging, science, and engineering

    CERN Document Server

    Osher, Stanley; Yin, Wotao

    2016-01-01

    This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. .

  12. Repair of damaged DNA in-vivo. Comprehensive progress report, August 1980-August 1983

    International Nuclear Information System (INIS)

    Hanawalt, P.C.

    1983-07-01

    We have extended our characterization of long patch excision repair (LPER) and have demonstrated that LPER is not mutagenic (or error-prone); that the recA function is required for LPER, at least for its regulation; that the substrate for LPER is produced as a linear (not an exponential) function of uv (254 nm) dose; and that LPER can occur in uvr - cells treated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG). We have developed 3 methods for measuring the frequency of interstrand crosslinks in DNA and are now applying these methods to the study of the formation and repair of DNA crosslinks in E.Coli. We have developed a monoclonal antibody specific for thymine glycol in DNA, and are using it to study the repair of thymine glycol in E. coli

  13. Nitrogen dose and plant density effects on popcorn grain yield ...

    African Journals Online (AJOL)

    and plant densities on grain yield and yield-related plant characteristics of popcorn in Hatay, located at Southern Mediterranean region of Turkey, during 2002 and 2003. The experiment was designed in a randomized complete block design with a split-plot arrangement with three replications. Nitrogen doses of 0, 120, 180 ...

  14. Intrinsic radiosensitivity and PLD repair in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Sugimoto, M.; Toguchida, J.; Kotoura, Y.; Yamamuro, T.; Utsumi, H.

    1992-01-01

    The response to radiation of seven osteosarcoma cell lines was analysed by in vitro colony-forming assay and compared with that of eight human fibroblast strains. The values of D 0 , the surviving fraction after 2 Gy (S2Gy), and the mean inactivation dose (D-bar) of osteosarcoma cells in log-phase culture were significantly higher than those of fibroblast strains (p<0.01). PLD (potentially lethal damage) repair of osteosarcoma cells evaluated in the plateau phase of growth showed great variation for enhancement of survival, although all of the values were maximised within 12 h after irradiation. In the osteosarcoma, intrinsic radiosensitivity in vitro reflected the clinical response to radiation. However, the capacity for PLD repair might not be a good indicator for predicting the results of radiation therapy. (author)

  15. Irradiation-induced amorphization in split-dislocation cores

    International Nuclear Information System (INIS)

    Ovid'ko, I.A.; Rejzis, A.B.

    1999-01-01

    The model describing special splitting of lattice and grain-boundary dislocations as one of the micromechanisms of solid-phase amorphization in irradiated crystals is proposed. Calculation of energy characteristics of the process of dislocations special splitting is carried out [ru

  16. Biological evidence of low ionizing radiation doses; Biologischer Nachweis niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mirsch, Johanna

    2017-03-17

    assessed with sub-μm resolution by utilizing the unique morphology of the retina as a model tissue. The analysis revealed a 1/r{sup 2} dependency of the dose deposition by δ-electrons, which was hitherto only determined with physical approaches in inorganic material. Moreover, the biological measurements indicate the presence of a background dose at larger distances from primary particles, which arises as a result of additive dose contributions from several independent particles. In conclusion, this interdisciplinary project put emphasis on the transition between the physical and the biological radiation effects and provided extensive data for the biological verification of physical measurements and models. Some of these models are used for the planning of tumor treatment with charged particles. The second project built upon previously obtained data and focused on the investigation of the DSB repair efficiency of cells irradiated with low doses. For this project, radiation doses were selected that are comparable to the doses, which are routinely used during diagnostic medical examinations. While a linear induction of DSBs with the applied dose was detected in human fibroblasts, these cells fail to repair DSBs efficiently after very low doses of X-rays. However, the repair efficiency was increased in cells pre-treated with low concentrations of hydrogen peroxide, suggesting that this induces a response, which is required for the repair of radiation-induced DSBs after exposure to low radiation doses (Grudzenski et al., 2010, PNAS 107:14205-10). One interpretation of this finding is that a certain cellular radical level is required to efficiently activate the repair machinery. To test this hypothesis, we asked if the DSB repair capacity at low doses can be further diminished when cells are treated with a radical scavenger prior to irradiation. Indeed, a decreased DSB repair capacity in cells pre-treated with the radical scavenger N-Acetylcystein was observed. Appropriate in

  17. The denoising of Monte Carlo dose distributions using convolution superposition calculations

    International Nuclear Information System (INIS)

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-01-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)

  18. Induction and repair of damages of chromatine supercoiled subunits after γ-irradiation

    International Nuclear Information System (INIS)

    Erzgraeber, G.; Lapidus, I.L.; Abel, H.

    1983-01-01

    The induction and repair of the DNA single-strand breaks during γ-irradiation of the Chinese hamster cells (V79-4) have been investigated using the method of the DNA-membrane complex sedimentation. For the first time this method has been employed for the case of high-dose γ-irradiation of cells; the curve is presented, which characterises the sedimentation behaviour of DNA-membrane complexes from cells irradiated with doses from 0 to 300O Gy. An assumption is put forward concerning the role of DNA double-strand breaks in changing the relative sedimentation velocity of complexes during the irradiation of cells with doses over 50 Gy

  19. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  20. DNA repair and U.V.-light sensitivity of the lymphocytes in discoid lupus erythematosus

    International Nuclear Information System (INIS)

    Horkay, I.; Nagy, E.; Tamasi, P.; Szabo, M.; Csongor, J.

    1975-01-01

    Excision repair and cell damage induced by U.V.-light were studied in peripheral lymphocyte cultures derived from patients with discoid lupus erythematosus. Radioactivity was measured by means of a Packard liquid-scintillation counter, cell damage after U.V.-irradiation was estimated by vital staining with trypan-blue and by decrease of the cell-count. Repair incorporation of mostly normal rate could be demonstrated in the lymphocyte cultures of all the 22 patients with discoid lupus erythematosus. The cell damaging effect of U.V.-light was more increased in these cultures than in those of the normal controls. The repair inhibiting effect of chloroquine administered orally in therapeutic doses to the patients was generally slight and incidental. The possible correlation of the findings is discussed

  1. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  2. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  3. High dose rate (HDR) and low dose rate (LDR) interstitial irradiation (IRT) of the rat spinal cord

    International Nuclear Information System (INIS)

    Pop, Lucas A.M.; Plas, Mirjam van der; Skwarchuk, Mark W.; Hanssen, Alex E.J.; Kogel, Albert J. van der

    1997-01-01

    /β ratio varies between 1.46 (0.06-3.08 CL) and 2.17 Gy (0.08-4.61). The half time of repair during continuous irradiation is 1.76 h (1.33-2.64), while no indication is found for a biphasic pattern of the kinetics of repair. Conclusion: The implantation technique in our study has shown to be a reliable model to compare the effectiveness of HDR- and LDR-interstitial continuous irradiation at different dose rates

  4. Inhibition of DNA replication, DNA repair synthesis, and DNA polymerases α and δ by butylphenyl deoxyguanosine triphosphate

    International Nuclear Information System (INIS)

    Dreslor, S.L.; Frattini, M.G.

    1987-01-01

    Semiconservative DNA replication in growing mammalian cells and ultraviolet (UV)-induced DNA repair synthesis in nongrowing mammalian cells are mediated by one or both of the aphidicolin-sensitive DNA polymerases, α and/or δ. They have studied the inhibition of replication and repair synthesis in permeable human cells by N 2 (p-n-butylphenyl)-2'-deoxyguanosine-5'-triphosphate (BuPh dGTP), an agent which inhibits polymerase α strongly and polymerase δ weakly. Both processes are inhibited by BuPh-dGTP in competition with dGTP. The K/sub i/'s are, for replication, 2-3 μM and, for repair synthesis, 3-4 μM, consistent with the involvement of the same DNA polymerase in both processes. Inhibition of isolated human polymerase α by BuPh-dGTP is also competitive with dGTP, but the K/sub i/ is approximately 10 nM, several hundred-fold lower than the K/sub i/'s of replication and repair synthesis. Isolated polymerase δ is inhibited by BuPh-dGTP at doses similar to those which inhibit replication and repair synthesis, however, attempts to determine the K/sub i/ of polymerase δ were hampered by the finding that the dependence of δ activity on deoxyribunucleotide concentration is parabolic at low doses. This behavior differs from the behavior of polymerase α and of cellular DNA replication and repair synthesis, all of which show a simple, hyperbolic relationship between activity and deoxyribonucleotide concentration. Thus, inhibition of DNA replication and UV induced DNA repair synthesis by BuPh dGTP is quantitatively similar to DNA polymerase δ, but some other characteristics of the cellular processes are more similar to those of polymerase α

  5. Dose-rate effects in plateau-phase cultures of S3 HeLa and V79 cells

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.; Bailey, S.M.

    1979-01-01

    Dose-rate effects on cell survival were studied for log-, fed plateau-, and unfed plateau-phase cultures of V79 and S3 HeLa cells. For log-phase cultures, repair, cell-cycle redistribution, and cell division during exposure can contribute to the overall dose-rate effect, but their relative contributions are difficult to determine. With plateau-phase cultures, the cell-cycle times are greatly lengthened, for those cells that are in cycle. Hence, the contribution to the overall dose-rate effect of cell-cycle redistribution and cell division during the exposure could be minimized using plateau-phase cultures. With respect to the acute dose-survival curves, there was a clear loss in effectiveness when the dose rate was lowered to 154 rad/hr for both fed and unfed plateau-phase HeLa and V79 cells. There was no further reduction in effectiveness per unit dose, however, when the dose rate was reduced to 55 rad/hr. Since there was virtually no cell division or cell-cycle redistribution, it may be that a limit to the repair-dependent dose-rate effect at 37 0 C has been reached at a dose rate of 154 rad/hr

  6. Optimizing pressurized contact area in rotator cuff repair: the diamondback repair.

    Science.gov (United States)

    Burkhart, Stephen S; Denard, Patrick J; Obopilwe, Elifho; Mazzocca, Augustus D

    2012-02-01

    The purpose of this study was to compare tendon-bone footprint contact area over time under physiologic loads for 4 different rotator cuff repair techniques: single row (SR), triangle double row (DR), chain-link double row (CL), and diamondback double row (DBK). A supraspinatus tear was created in 28 human cadavers. Tears were fixed with 1 of 4 constructs: SR, DR, CL, or DBK. Immediate post-repair measurements of pressurized contact area were taken in neutral rotation and 0° of abduction. After a static tensile load, pressurized contact area was observed over a 160-minute period after repair. Cyclic loading was then performed. The DBK repair had the highest pressurized contact area initially, as well as the highest pressurized contact area and lowest percentage decrease in pressurized contact area after 160 minutes of testing. The DBK repair had significantly larger initial pressurized contact than CL (P = .003) and SR (P = .004) but not DR (P = .06). The DBK technique was the only technique that produced a pressurized contact area that exceeded the native footprint both at initial repair (P = .01) and after 160 minutes of testing (P = .01). DBK had a significantly larger mean pressurized contact area than all the repairs after 160 minutes of testing (P = .01). DBK had a significantly larger post-cyclic loading pressurized contact area than CL (P = .01) and SR (P = .004) but not DR (P = .07). This study showed that a diamondback repair (a modification of the transosseous repair) can significantly increase the rotator cuff pressurized contact area in comparison with other standard rotator cuff repair constructs when there is sufficient tendon mobility to perform a double-row repair without excessive tension on the repair site. The persistent pressurized contact area of a DBK repair may be desirable to enhance healing potential when there is sufficient tendon mobility to perform a double-row repair, particularly for large or massive rotator cuff tears where it is

  7. The Splitting Loope

    Science.gov (United States)

    Wilkins, Jesse L. M.; Norton, Anderson

    2011-01-01

    Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…

  8. Efficiency of repair of pyrimidine dimers and psoralen monoadducts in normal and xeroderma pigmentosum human cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Charles, W.C.; Kong, S.H.

    1984-01-01

    Repair of DNA damage produced by ultraviolet light or 5-methylisopsoralen in normal and xeroderma pigmentosum human cells involves many similar steps. Aphidicolin and cytosine arabinoside block repair of both kinds of damage with similar efficiency, indicating that DNA polymerase α has a major role in repair for these lesions. In xeroderma pigmentosum cells of various complementation groups, the relative efficiency of excision repair for both ultraviolet- and 5-methylisopsoralen-induced damage was group A< C< D, indicating a close resemblance between both kinds of lesions in relation to the repair deficiencies in these groups. At high doses, the maximum rate of repair of damage by ultraviolet light was about twice that for methylisopsoralen damage, possibly because ultraviolet-induced damage forms a substrate that is more readily recognized and excised than that of the psoralen adducts. Differences in the structural distortions to DNA caused by these kinds of damage could be detected using single strand specific nucleases which excised dimers but not 5-MIP adducts from double strand DNA. (author)

  9. Splitting Strip Detector Clusters in Dense Environments

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2018-01-01

    Tracking in high density environments, particularly in high energy jets, plays an important role in many physics analyses at the LHC. In such environments, there is significant degradation of track reconstruction performance. Between runs 1 and 2, ATLAS implemented an algorithm that splits pixel clusters originating from multiple charged particles, using charge information, resulting in the recovery of much of the lost efficiency. However, no attempt was made in prior work to split merged clusters in the Semi Conductor Tracker (SCT), which does not measure charge information. In spite of the lack of charge information in SCT, a cluster-splitting algorithm has been developed in this work. It is based primarily on the difference between the observed cluster width and the expected cluster width, which is derived from track incidence angle. The performance of this algorithm is found to be competitive with the existing pixel cluster splitting based on track information.

  10. Clinical symptoms and DNA repair characteristics of xeroderma pigmentosum patients from Germany

    International Nuclear Information System (INIS)

    Thielmann, H.W.; Popanda, O.; Edler, L.; Jung, E.G.

    1991-01-01

    Sixty-one xeroderma pigmentosum (XP) patients living in the Federal Republic of Germany were investigated. Clinical symptoms were correlated with DNA repair parameters measured in fibroblasts grown from skin biopsies. Classification according to the international complementation groups revealed that of the 61 patients 3 belonged to group A, 26 to group C, 16 to group D, 3 to group E, and 2 to group F; 11 were of the XP variant type. A striking clinical aspect was the frequency of histogenetically different skin tumors varying from one XP complementation group to the other: squamous and basal cell carcinomas predominated in XP group C; lentigo maligna melanomas were most frequent in group D; basal cell carcinomas occurred preferentially in group E and XP variants. Three DNA repair parameters were determined for 46 fibroblast strains: colony-forming ability (D0); DNA repair synthesis (G0); and DNA-incising capacity (E0). Dose-response experiments with up to 13 dose levels were performed throughout to achieve sufficient experimental accuracy. DNA-damaging treatments included UV light, the 'UV-like' carcinogen N-acetoxy-2-acetylaminofluorene, and the alkylating carcinogens methyl methanesulfonate and N-methyl-N-nitrosourea. Comparison of clinical signs and repair data was made on the basis of D0, G0, and E0 values of both individual cell strains and weighted means of XP complementation groups. Despite considerable clinical and biochemical heterogeneity within complementation groups distinctive features emerged. In general, D0, G0, and E0 values of all XP strains investigated, including XP variants, were found to be reduced upon treatment with UV light or N-acetoxy-2-acetylaminofluorene

  11. Fee Splitting among General Practitioners: A Cross-Sectional Study in Iran.

    Science.gov (United States)

    Parsa, Mojtaba; Larijani, Bagher; Aramesh, Kiarash; Nedjat, Saharnaz; Fotouhi, Akbar; Yekaninejad, Mir Saeed; Ebrahimian, Nejatollah; Kandi, Mohamad Jafar

    2016-12-01

    Fee splitting is a process whereby a physician refers a patient to another physician or a healthcare facility and receives a portion of the charge in return. This survey was conducted to study general practitioners' (GPs) attitudes toward fee splitting as well as the prevalence, causes, and consequences of this process. This is a cross-sectional study on 223 general practitioners in 2013. Concerning the causes and consequences of fee splitting, an unpublished qualitative study was conducted by interviewing a number of GPs and specialists and the questionnaire options were the results of the information obtained from this study. Of the total 320 GPs, 247 returned the questionnaires. The response rate was 77.18%. Of the 247 returned questionnaires, 223 fulfilled the inclusion criteria. Among the participants, 69.1% considered fee splitting completely wrong and 23.2% (frequently or rarely) practiced fee splitting. The present study showed that the prevalence of fee splitting among physicians who had positive attitudes toward fee splitting was 4.63 times higher than those who had negative attitudes. In addition, this study showed that, compared to private hospitals, fee splitting is less practiced in public hospitals. The major cause of fee splitting was found to be unrealistic/unfair tariffs and the main consequence of fee splitting was thought to be an increase in the number of unnecessary patient referrals. Fee splitting is an unethical act, contradicts the goals of the medical profession, and undermines patient's best interest. In Iran, there is no code of ethics on fee splitting, but in this study, it was found that the majority of GPs considered it unethical. However, among those who had negative attitudes toward fee splitting, there were physicians who did practice fee splitting. The results of the study showed that physicians who had a positive attitude toward fee splitting practiced it more than others. Therefore, if physicians consider fee splitting unethical

  12. The evolution of acute burn care - retiring the split skin graft.

    Science.gov (United States)

    Greenwood, J E

    2017-07-01

    The skin graft was born in 1869 and since then, surgeons have been using split skin grafts for wound repair. Nevertheless, this asset fails the big burn patient, who deserves an elastic, mobile and robust outcome but who receives the poorest possible outcome based on donor site paucity. Negating the need for the skin graft requires an autologous composite cultured skin and a material capable of temporising the burn wound for four weeks until the composite is produced. A novel, biodegradable polyurethane chemistry has been used to create two such products. This paper describes the design, production, optimisation and evaluation of several iterations of these products. The evaluation has occurred in a variety of models, both in vitro and in vivo, employing Hunterian scientific principles, and embracing Hunter's love and appreciation of comparative anatomy. The process has culminated in significant human experience in complex wounds and extensive burn injury. Used serially, the products offer robust and elastic healing in deep burns of any size within 6 weeks of injury.

  13. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E

    2003-07-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  14. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2003-01-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  15. The Split sudâmja

    Directory of Open Access Journals (Sweden)

    Petar Šimunović

    1991-12-01

    Full Text Available The name of the Split feast Sudamja!Sudajma ("festa sancti Domnii" has not yet been adequately explained. The author believes that the name originated from the Old Dalmatian adjective san(ctu + Domnĭu. In the adjective santu the cluster /an/ in front of·a consonant gave in Croatian the back nasal /q/ pronounced until the end of the 10th century and giving /u/ after that. In this way the forms *Sudumja and similar originated. The short stressed /u/ in the closed syllable was percieved by the Croatian folk as their semivowel which later gave /a/ = Sudamja. The author connects this feature with that in the toponimes Makar ( /jm/ is well known in Croatian dialectology (sumja > sujma, and it resembles the metatheses which occurs in the Split toponimes: Sukošjân > Sukojšãn ( < *santu Cassianu, Pojišân/Pojšiin (< *pasianu < Pansianu. The author finds the same feature in the toponime Dumjača (: *Dumi- + -ača. He considers these features as Croatian popular adaptations which have not occured in the personal name Dujam, the toponime Dujmovača "terrae s. Domnii" and in the adjective sandujamski, because of the link with the saint's name Domnio!Duymo etc., which has been well liked and is frequent as name of Split Romas as well as Croats from the foundation of Split, has never been broken.

  16. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-09-07

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  17. Platelet-rich plasma-containing fragmin-protamine micro-nanoparticles promote epithelialization and angiogenesis in split-thickness skin graft donor sites.

    Science.gov (United States)

    Takabayashi, Yuki; Ishihara, Masayuki; Sumi, Yuki; Takikawa, Makoto; Nakamura, Shingo; Kiyosawa, Tomoharu

    2015-01-01

    Platelet-rich plasma (PRP) contains multiple growth factors, and fragmin-protamine micro-nanoparticles (F-P M-NPs) significantly enhance and stabilize growth factors. The purpose of this study was to evaluate the effects of PRP-containing F-P M-NPs (PRP&F-P M-NPs) on wound repair in split-thickness skin graft (STSG-) donor sites (DS). A total of 56 inbred male rats were anesthetized and split-thickness skin graft donor site (STSG-DS) were created with a Padgett dermatome. PRP&F-P M-NPs, F-P M-NPs, PRP, and saline (control) were then intradermally injected evenly into the STSG-DSs. On 3, 4, 5, 7, and 10 d after creation of STSG-DS, skin sample sections were stained with hematoxylin and eosin to evaluate reepithelialization and angiogenesis. Treatment of STSG-DS with PRP&F-P M-NPs effectively promoted epithelialization and new vessel formation compared with those treated with PRP, F-P M-NPs, and control (saline). The intradermal injection of PRP&F-P M-NPs promotes epithelialization and angiogenesis in STSG-DS wounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  19. The Splitting Group

    Science.gov (United States)

    Norton, Anderson; Wilkins, Jesse L. M.

    2012-01-01

    Piagetian theory describes mathematical development as the construction and organization of mental operations within psychological structures. Research on student learning has identified the vital roles of two particular operations--splitting and units coordination--play in students' development of advanced fractions knowledge. Whereas Steffe and…

  20. Lack of a differential radiation response for proliferative and non-proliferative rat thyroid cells (FRTL-5) in vitro

    International Nuclear Information System (INIS)

    Brosing, J.W.; Giese, W.L.; Mulcahy, R.T.

    1989-01-01

    FRTL-5 rat thyroid epithelial cells maintain normal thyroid function and morphology in vitro, exhibit an absolute requirement for thyroid stimulating hormone (TSH) for proliferation and display radiation dose response characteristics indistinguishable from those of rat thyroid epithelial cells in vivo. In TSH-free medium cells remain in a non-proliferative, yet viable, state for prolonged periods of time and respond to TSH re-stimulation by a return to exponential growth. Flow cytometric analysis using two-step acridine orange (AO) staining revealed an accumulation of cells in the G1 phase of the cell cycle accompanied by a pronounced reduction in red fluorescence (indicative of RNA content) in FRTL-5 cells cultured in the absence of TSH. The response of proliferative and non-proliferative FRTL-5 cells to single dose, split dose and fractionated radiation was compared to determine whether proliferative status was an important response determinant. The response of FRTL-5 cells was not influenced by proliferative status at the time of irradiation. Additionally, dose response was not altered by variable (12 hr-8 days) non-proliferative intervals before or after irradiation. As revealed by split dose experiments, the rate and extent of sublethal damage repair was likewise similar for proliferative and non-proliferative cells. Multifraction experiments employing three fractions separated by 6 hr intervals indicate that non-proliferative FRTL-5 cells completely repair sublethal damage between fractions. These results indicate that the radiation response of FRTL-5 cells is not influenced by the proliferative status of the cells prior to or post-irradiation

  1. Genetic effects of ionizing radiation and repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1986-11-01

    Since DNA (=desoxyribonucleic acid) is the largest molecule within the cell it is the most important target for direct and indirect radiation effects. Within DNA the total genetic information is stored, thus damage to DNA in germ cells causes genetic disorders and damage in somatic cells is implicated in cancer and immunodeficiences. Alterations of DNA structure are not only due to ionizing radiation effects, but also to spontaneous DNA modifications and damage from interactions with environmental ultraviolet light and chemical agents. To maintain its genetic integrity, each organism had to develop different repair systems able to recognize and remove DNA damage. Repeated exposure to a DNA damaging agent can even lead to adaptation processes and increased resistance to the same agent. At normal function of repair systems it can be assumed that the capacity of those systems is adequate to scope with the effects of low radiation doses. (Author)

  2. One-loop triple collinear splitting amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon; Buciuni, Francesco; Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)

    2015-09-28

    We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.

  3. Application of the linear-quadratic model with incomplete repair to radionuclide directed therapy

    International Nuclear Information System (INIS)

    Millar, W.T.; Glasgow Univ.

    1991-01-01

    The LQ model has now been extended to include a general time varying dose rate profile, and the equations can be readily evaluated if an exponential radiation damage repair process is assumed. These equations are applicable to radionuclide directed therapy, including brachytherapy. Kinetic uptake data obtained during radionuclide directed therapy may therefore be used to determine the radiobiological dosimetry of the target and non-target tissues. Also, preliminary tracer studies may be used to pre-plan the radionuclide directed therapy, provided that tracer and therapeutic amounts of the radionuclide carrier are identically processed by the tissues. It is also shown that continuous radionuclide therapy will induce less damage in late-responding tissues than 2 Gy/fraction external beam therapy if the ratio of the maximum dose rate and the sublethal damage repair half-life in the tissue is less than 1.0 Gy. Similar inequalities may be derived for β-particle radionuclide directed therapy. (author)

  4. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  5. Split ring containment attachment device

    International Nuclear Information System (INIS)

    Sammel, A.G.

    1996-01-01

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs

  6. Split NMSSM with electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Gorbunov, D.S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutsky per. 9, Dolgoprudny 141700 (Russian Federation); Kirpichnikov, D.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2016-11-24

    In light of the Higgs boson discovery and other results of the LHC we reconsider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  7. Mass splitting induced by gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.

    1982-08-01

    The exact combination of internal and geometrical symmetries and the associated mass splitting problem is discussed. A 10-parameter geometrical symmetry is defined in a curved space-time in such a way that it is a combination of de Sitter groups. In the flat limit it reproduces the Poincare-group and its Lie algebra has a nilpotent action on the combined symmetry only in that limit. An explicit mass splitting expression is derived and an estimation of the order of magnitude for spin-zero mesons is made. (author)

  8. Alteration of cellular radiation response as a consequence of defective DNA mismatch repair

    International Nuclear Information System (INIS)

    Weese, Theodore L. de; Bucci, Jennifer M.; Larrier, Nicole A.; Cutler, Richard G.; Riele, Hein te; Nelson, William G.

    1997-01-01

    Purpose/Objective: A number of genes have been implicated in the response of mammalian cells to ionizing radiation. Among these include the genes P53 and P21. Disruption of these genes can alter the predicted cellular behavior following radiation-induced DNA damage. Similarly, cells defective in mismatch repair are known to be tolerant to the lethal effects of alkylating agents. We hypothesized that mammalian cells which are defective in mismatch repair and tolerant to alkylating DNA damage might also be tolerant to the effects of oxidative DNA damage inflicted by ionizing radiation. Materials and Methods: Mouse embryonic stem cells homozygous for disrupted Msh2 alleles (Msh2-/-), heterozygous for a disrupted Msh2 allele (Msh2+/-) or intact cells (Msh2+/+) were exposed to both acute dose (1 Gy/min) and low dose rate (LDR) radiation (0.004 Gy/min) and cell survival was determined by clonogenic assay. Apoptosis induced by LDR was assessed by a terminal transferase assay. Immunoblot analysis was performed in order to evaluate induction of the polypeptides p53 and p21. Another measure of radiation damage tolerance may be accumulation of oxidative DNA species. Therefore, we monitored levels of 8-hydroxyguanine (8-OHG) and 8-hydroxyadenine (8-OHA) by gas chromatography - mass spectrometry with selected ion monitoring (GC-MS/SIM). Results: Cells containing either one or two disrupted Msh2 alleles (Msh2+/-, Msh2-/-) were found to be less sensitive to LDR than cells containing a complete complement of Msh2 alleles (Msh2+/+). Interestingly, all three cell lines had a nearly identical radiosensitivity to acute dose ionizing radiation despite differences in mismatch repair capacity. Apoptosis after LDR also varied between cells, with the Msh2+/+ cells exhibiting higher levels of apoptosis as compared to either the Msh2+/- or Msh2-/- cell lines. In addition, GC-MS/SIM revealed the Msh2+/- and Msh2-/- cell lines to have an approximately ten fold greater accumulation of the

  9. Splitting of turbulent spot in transitional pipe flow

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.

  10. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  11. Occupational dose reduction developments and data collected at nuclear power plants

    International Nuclear Information System (INIS)

    Dionne, B.J.; Baum, J.W.

    1984-01-01

    Occupational dose reduction developments and data collected at nuclear power plants have been described. Written descriptions of repetitive high dose jobs, their collective dose equivalent ranges and list of dose reduction techniques will aid in reducing collective dose equivalents from these dose-reduction targets. Knowing which components contribute to high maintenance or repair dose will aid in reducing routine maintenance collective dose equivalents. The radwaste dose reduction improvements will aid in reducing radwaste operations collective dose equivalent and reduce the number of radwaste workers who exceed their administrative dose limits. The identification and rating of managers' and workers' ALARA incentives will provide the basis for recommendations to improve dose reduction incentives. Lastly, the identification and rating of the key components of an ALARA program will aid in the development and coordination of the nuclear station ALARA programs

  12. Effects of low X-ray doses in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Jordan, A.; Laskowski, W.

    1987-01-01

    Three strains of Saccharomyces cerevisiae with different capacities for repair of radiation damage (RAD, rad18, and rad52) have been tested for their colony forming ability (CFA) and growth rates after application of small X-ray doses from 3.8 mGy to 40 Gy. There was no reproducible increase in CFA observable after application of doses between 3.8 mGy and 4.7 Gy.X-ray doses of 40 Gy causing an inactivation of CFA from 90% to 50%, depending on the repair capacity of the strains used, caused a reduced increase in optical density during 2 h buffer treatment in comparison to unirradiated cells. This reduction however, is reversible as soon as the cells are transferred into nutrient medium. One hour after transfer into growh medium the portions of cells with large buds (Gs and M phase) and cells with small buds (S phase) are drastically different in irradiated cells from those obtained in unirradiated cells. The time necessary for separation of mother and daughter cells is prolonged by X-ray irradiation and the formation of new buds is retarded. (orig.)

  13. Inhibition of X-ray induced DNA strand break repair in polyamine-depleted HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D.

    1989-05-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO+MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal. (author).

  14. Inhibition of X-ray induced DNA strand break repair in polyamine-depleted HeLa cells

    International Nuclear Information System (INIS)

    Snyder, R.D.

    1989-01-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO+MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal. (author)

  15. Guidelines to Develop Efficient Photocatalysts for Water Splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2016-01-01

    Photocatalytic overall water splitting is the only viable solar-to-fuel conversion technology. The research discloses an investigation process wherein by dissecting the photocatalytic water splitting device, electrocatalysts, and semiconductor

  16. Exposing the QCD Splitting Function with CMS Open Data.

    Science.gov (United States)

    Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei

    2017-09-29

    The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.

  17. Early discharge after external anal sphincter repair

    DEFF Research Database (Denmark)

    Rosenberg, J; Kehlet, H

    1999-01-01

    and complications within 30 days after the operation. Surgery was performed during the period of March 1993 to May 1997. The accelerated-stay program included preoperative information, no premedication, a surgical procedure without colostomy, single-dose prophylactic antibiotics, paracetamol for analgesia, free...... surgery and 5 patients stayed for 48 hours after the operation. There was no 30-day morbidity, and no patient received a colostomy in conjunction with the sphincter repair. Fourteen of 19 patients available for follow-up reported a significantly improved functional result compared with preoperative state...

  18. Accelerated split course regimen in the treatment of brain metastases

    International Nuclear Information System (INIS)

    Franchin, G.; Minatel, E.; Roncadin, M.; Trovo, M.G.; De Paoli, A.; Bortolus, R.; Arcicasa, M.; Boz, G.; Gobitti, C.; Grigoletto, E.; Bassignano, G.

    1988-01-01

    63 patients, with brain metastases were treated with an accelerated split course regimen; irradiation was given to the whole brain in 3 daily fractions of 160 cGy each for 5 days a week. The cycle was repeated after 2 weeks to a total dose of 4800 cGy. Male-female ratio was 3:1. Median age was 58 years. The most frequent site of primary tumor was lung (41 patients), breast in 6 patients, melanoma in 3 patients, other sites in 8 patients and unknown cancer in 5 patients. Thirty-five patients had multiple brain metastases localizations. Two patients failed to complete the scheduled treatment: one because of early death and the other by refusal of therapy during treatment. Complete remission was obtained in 4 patients and partial remission in 24 patients. The median survival time was 21 weeks. The overall response rate was 42.5%. Toxicity was not considerable. The treatment results were not influenced by the site of primary tumor or by disease spreading; only the neurologic status before radiotherapy and the response to treatment influenced survival. The results obtained are similar to those reported by others; however, with the accelerated split course regimen the treatment time was reduced and a shorter period of hospitalization was required. 36 refs.; 2 figs.; 3 tabs

  19. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  20. Maximum likelihood estimation for cytogenetic dose-response curves

    International Nuclear Information System (INIS)

    Frome, E.L.; DuFrain, R.J.

    1986-01-01

    In vitro dose-response curves are used to describe the relation between chromosome aberrations and radiation dose for human lymphocytes. The lymphocytes are exposed to low-LET radiation, and the resulting dicentric chromosome aberrations follow the Poisson distribution. The expected yield depends on both the magnitude and the temporal distribution of the dose. A general dose-response model that describes this relation has been presented by Kellerer and Rossi (1972, Current Topics on Radiation Research Quarterly 8, 85-158; 1978, Radiation Research 75, 471-488) using the theory of dual radiation action. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting dose-time-response models are intrinsically nonlinear in the parameters. A general-purpose maximum likelihood estimation procedure is described, and estimation for the nonlinear models is illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure