WorldWideScience

Sample records for split cavity tm

  1. TM01 mode accelerating cavity optimization

    International Nuclear Information System (INIS)

    Manca, J.J.; Knapp, E.A.

    1978-08-01

    The cost of an accelerator depends greatly upon the effective use of rf power for particle acceleration. Before completing an accelerator design, an optimization of the accelerating cells relative to the effective shunt impedance should be made to measure the structure's efficiency in providing a high and effective acceleration of particles for a given rf power. Optimization of the accelerating cell resonant at f/sub r/ = 1350 MHz (TM 01 mode) relative to the maximum effective shunt impedance ZT 2 was performed at the Los Alamos Scientific Laboratory using the computer program SUPERFISH. The study was parametric; one parameter was changed while the others were held constant. Frequency adjustments were made by changing the cavity radius. Results presented in this report can be used to design similar cavities at different resonant frequencies or to design a more complicated cavity (TM 02 mode) for the disk and washer structure

  2. Wakefield calculation for superconducting TM110 cavity without azimuthal symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bellantoni, Leo; /Fermilab; Burt, Graeme; /Lancaster U.

    2006-08-01

    The 3.9GHz TM{sub 110} mode deflecting cavity developed at FNAL has many applications, including use as a longitudinal bunch profile diagnostic, and as a crab cavity candidate for the ILC. These applications involve beams with substantial time structure. For the 13-cell version intended for the bunch profile application, long-range wakes have been evaluated in the frequency domain and short-range wakes have been evaluated in the time domain. Higher-order interactions of the main field in the cavity with the beam have also been parameterized. Pedagogic derivations are included as appendices.

  3. A copper 3.9 GHz TM110 cavity for emittance exchange

    Energy Technology Data Exchange (ETDEWEB)

    Koeth, T.W.; /Rutgers U., Piscataway; Fliller, R.P., III; Bellantoni, L.; Edwards, D.A.; Edwards, H.T.; /Fermilab

    2007-06-01

    An experiment is being developed at the FNAL Photoinjector Lab to demonstrate the exchange of longitudinal emittance with a transverse horizontal emittance. The longitudinal electric field of a TM{sub 110} cavity vanishes on axis and increases linearly with transverse displacement. This 'shearing' electric field is pivotal to the exchange. The design of this TM{sub 110} cavity is a variant of the Fermilab 3.9 GHz superconducting deflecting mode cavity; however, the cavity was constructed of OFHC copper. The authors report on the construction, field flatness, polarization and high power testing of a TM{sub 110} cavity.

  4. Scaling relations for a beam-deflecting TM110 mode in an asymmetric cavity

    International Nuclear Information System (INIS)

    Takeda, H.

    1989-01-01

    A deflecting mode in an rf cavity caused by an aperture of the coupling hole from a waveguide is studied. If the coupling hole was a finite size, the rf modes in the cavity can be distorted. We consider the distorted mode as a sum of the accelerating mode, and the deflecting mode. The finite-size coupling hole can be considered as radiating dipole sources in a closed cavity. Following the prescription given by H. Bethe, the relative strength of the deflecting mode TM 110 to the accelerating TM 010 mode is calculated by decomposing the dipole source field into cavity eigenmodes. Scaling relations are obtained as a function of the coupling hole radius. 2 refs., 6 figs

  5. Cavity cutting efficiency of a Bioglass TM and alumina powder ...

    Indian Academy of Sciences (India)

    Thirty human enamel blocks and microscope glass slides of 0.5mm thickness were randomly divided into these three groups. The time taken to cut a hole through the glass slide and for the cutting of human enamel blocks was recorded, the cutting time was fixed at 15 s. The depths of the cavities were measured using a ...

  6. New developed cylindrical TM010 mode EPR cavity for X-band in vivo tooth dosimetry.

    Directory of Open Access Journals (Sweden)

    Guo Junwang

    Full Text Available EPR tooth in vivo dosimetry is an attractive approach for initial triage after unexpected nuclear events. An X-band cylindrical TM010 mode resonant cavity was developed for in vivo tooth dosimetry and used in EPR applications for the first time. The cavity had a trapezoidal measuring aperture at the exact position of the cavity's cylindrical wall where strong microwave magnetic field H1 concentrated and weak microwave electric field E1 distributed. Theoretical calculations and simulations were used to design and optimize the cavity parameters. The cavity features were evaluated by measuring DPPH sample, intact incisor samples embed in a gum model and the rhesus monkey teeth. The results showed that the cavity worked at designed frequency and had the ability to make EPR spectroscopy in relative high sensitivity. Sufficient modulation amplitude and microwave power could be applied into the aperture. Radiation induced EPR signal could be observed remarkably from 1 Gy irradiated intact incisor within only 30 seconds, which was among the best in scan time and detection limit. The in vivo spectroscopy was also realized by acquiring the radiation induced EPR signal from teeth of rhesus monkey whose teeth was irradiated by dose of 2 Gy. The results suggested that the cavity was sensitive to meet the demand to assess doses of significant level in short time. This cavity provided a very potential option for the development of X-band in vivo dosimetry.

  7. Rabi splitting in an acoustic cavity embedded plate

    International Nuclear Information System (INIS)

    Ni, Xu; Liu, Xiao-Ping; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We design a structure to realize Rabi splitting and Rabi oscillation in acoustics. We develop rigorous analytical models to analyze the splitting effect from the aspect of phase matching, and from the aspect of mode coupling using a coupled mode model. In this model, we discover that the splitting effect is caused by the coupling of the Fabry–Perot fundamental mode with the resonant mode of an artificial acoustic ‘atom’. We then extract the coupling strength and analyze the impact of structural parameters on it. In addition, we demonstrate Rabi oscillation in the time domain. Such quantum phenomena in the classical regime may have potential applications in the design of novel ultrasonic devices.

  8. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    Science.gov (United States)

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  9. Large and well-defined Rabi splitting in a semiconductor nanogap cavity.

    Science.gov (United States)

    Uemoto, Mitsuharu; Ajiki, Hiroshi

    2014-09-22

    We propose a nanogap structure composed of semiconductor nanoparticles forming an optical cavity. The resonant excitation of excitons in the nanoparticles can generate a localized strong light field in the gap region, also called "hot spot". The spectral width of the hot spot is significantly narrow because of the small exciton damping and the dephasing at low temperature, so the semiconductor nanogap structure acts as a high-Q cavity. In addition, the interaction between light and matter at the nanogap is significantly larger than that in a conventional microcavity, because the former has a small cavity-mode volume beyond the diffraction limit. We theoretically demonstrate the large and well-defined vacuum-Rabi splitting of a two-level emitter placed inside the semiconductor nanogap cavity: the Rabi splitting energy of 1.7 meV for the transition dipole moment of the emitter (25 Debye) is about 6.3 times larger than the spectral width. An optical cavity providing such a large and well-defined Rabi splitting is highly suited for studying characteristic features of the cavity quantum electrodynamics and for the development of new applications.

  10. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities

    Directory of Open Access Journals (Sweden)

    W. Verhoeven

    2016-09-01

    Full Text Available We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers.

  11. Analysis of AP1000TM reactor vessel cavity and support cooling

    International Nuclear Information System (INIS)

    Craig, K.J.; Harkness, A.W.; Kritzinger, H.P.; Hoffmann, J.E.

    2010-01-01

    The paper investigates a Computational Fluid Dynamic (CFD) analysis of the air cooling of the Reactor Vessel (RV) cavity and RV supports. All the Heating, Ventilation and Air Conditioning (HVAC) flow of the RV cavity has to pass through the four RV supports supporting the four cold legs (cold inlets from the two steam generators) of the AP1000 TM reactor. The RV support has a complex flow path leading to significant pressure drops to provide the necessary cooling. The insulation surrounding the RV has a specification on the amount of heat that may be transferred (lost) from the RV in order to maximize the heat transfer to the coolant driving the steam generators. This heat loss is applied as a boundary condition to the solution domain. Another heat source that is considered is that due to nuclear heating. Due to the fact that the heat source is nuclear in nature, gamma and neutron heating have to be considered for the surrounding structures. These include the carbon steel structural module that encapsulates the RV cavity, as well as the concrete poured around this module. The space in the gap between the RV insulation and the structural module steel shell is not only obstructed by the insulation supports, but also by wells or tubes within which power and intermediate ex-core detectors are located. Source-range ex-core detectors are embedded in the concrete surrounding the structural module. All these detectors have a limited operating temperature range, and together with limits on concrete temperatures for safety considerations, necessitate the need for CFD simulations to determine the range of operational temperatures seen by these components. The CFD simulations also provide an estimate of the pressure drop through the cavity between the RV insulation and structural module, as well as that through the four RV supports. Results presented include ANSYS R FLUENT R simulations describing the modelling procedure that was followed, namely to combine detail and system

  12. Stress distribution and pressure-bearing capacity of a high-pressure split-cylinder die with prism cavity

    Science.gov (United States)

    Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo

    2018-03-01

    A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.

  13. Ions confined in spherical dielectric cavities modeled by a splitting field-theory.

    Science.gov (United States)

    Lue, Leo; Linse, Per

    2015-04-14

    The properties of ions confined within spherical dielectric cavities are examined by a splitting field-theory and Monte Carlo simulations. Three types of cavities are considered: one possessing a uniform surface charge density, one with a uniform volume charge density, and one containing mobile ions. In all cases, mobile counterions are present within the dielectric sphere. The splitting theory is based on dividing the electrostatic interaction into long- and short-wavelength contributions and applying different approximations on the two contributions. The splitting theory works well for the case where the dielectric constant of the confining sphere is equal to or less than that of the medium external to the sphere. Nevertheless, by extending the theory with a virial expansion, the predictions are improved. However, when the dielectric constant of the confining sphere is greater than that of the medium outside the sphere, the splitting theory performs poorly, only qualitatively agreeing with the simulation data. In this case, the strong-coupling expansion does not seem to work well, and a modified mean-field theory where the counterions interact directly with only their own image charge gives improved predictions. The splitting theory works best for the system with a uniform surface charge density and worst for the system with a uniform volume charge density. Increasing the number of ions within the sphere, at a fixed radius, tends to increase the ion density near the surface of the sphere and leads to a depletion region in the sphere interior; however, varying the ion number does not lead to any qualitative changes in the performance of the splitting theory.

  14. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit.

    Science.gov (United States)

    Santhosh, Kotni; Bitton, Ora; Chuntonov, Lev; Haran, Gilad

    2016-06-13

    The strong interaction of individual quantum emitters with resonant cavities is of fundamental interest for understanding light-matter interactions. Plasmonic cavities hold the promise of attaining the strong coupling regime even under ambient conditions and within subdiffraction volumes. Recent experiments revealed strong coupling between individual plasmonic structures and multiple organic molecules; however, strong coupling at the limit of a single quantum emitter has not been reported so far. Here we demonstrate vacuum Rabi splitting, a manifestation of strong coupling, using silver bowtie plasmonic cavities loaded with semiconductor quantum dots (QDs). A transparency dip is observed in the scattering spectra of individual bowties with one to a few QDs, which are directly counted in their gaps. A coupling rate as high as 120 meV is registered even with a single QD, placing the bowtie-QD constructs close to the strong coupling regime. These observations are verified by polarization-dependent experiments and validated by electromagnetic calculations.

  15. Measurement of the high-field Q drop in the TM010 and TE011 modes in a niobium cavity

    Energy Technology Data Exchange (ETDEWEB)

    Gianluigi Ciovati; Peter Kneisel

    2006-04-01

    In the last few years superconducting radio-frequency (rf) cavities made of high-purity (residual resistivity ratio>200) niobium achieved accelerating gradients close to the theoretical limits. An obstacle towards achieving reproducibly higher fields is represented by ''anomalous'' losses causing a sharp degradation of the cavity quality factor when the peak surface magnetic field (Bp) is above about 90 mT, in the absence of field emission. This effect, called ''Q drop'' has been measured in many laboratories with single- and multicell cavities mainly in the gigahertz range. In addition, a low-temperature (100-140 C) ''in situ'' baking of the cavity was found to be beneficial in reducing the Q drop. In order to gain some understanding of the nature of these losses, a single-cell cavity has been tested in the TM010 and TE011 modes at 2 K. The feature of the TE011 mode is to have zero electric field on the cavity surface, so that electric field effects can be excluded as a source for the Q drop. This article will present some of the experimental results for different cavity treatments and will compare them with existing models.

  16. A split-cavity design for the incorporation of a DC bias in a 3D microwave cavity

    NARCIS (Netherlands)

    Cohen, M.A.; Yuan, M.; de Jong, B.W.A.; Beukers, Ewout; Bosman, S.J.; Steele, G.A.

    2017-01-01

    We report on a technique for applying a DC bias in a 3D microwave cavity. We achieve this by isolating the two halves of the cavity with a dielectric and directly using them as DC electrodes. As a proof of concept, we embed a variable capacitance diode in the cavity and tune the resonant

  17. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    Science.gov (United States)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  18. Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges

    DEFF Research Database (Denmark)

    Mahmoodian, Sahand; Sukhorukov, Andrey A.; Ha, Sangwoo

    2010-01-01

    We investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized...... cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate. For apodized cavities no such resonances exist and the modes are always non-degenerate....

  19. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.

    Science.gov (United States)

    Chen, Shumei; Li, Guixin; Lei, Dangyuan; Cheah, Kok Wai

    2013-10-07

    Plasmonic analogues of Rabi-splitting have been extensively studied in various metallic nanosystems hybridized with semiconductor quantum dots, nanocrystals and organic molecules, with a focus on the splitting energy gap where surface plasmon polaritons (SPPs) strongly couple with excitons. Similar strong coupling also occurs for individual metallic nanoparticles locating inside a photonic microcavity or nearby a waveguide due to the strong interaction between localized surface plasmons and photonic modes in the near-infrared wavelength range. In this work we study experimentally and theoretically the strong coupling between propagating SPPs and the Fabry-Perot (F-P) cavity mode in a metallic nanoparticle array-nanocavity hybrid system in the visible spectral range. The strong modal hybridization created giant modal anti-crossing which can be considered as the classical phenomenon of Rabi splitting i.e. a Rabi-analogue. In addition to the observation of a giant Rabi-analogue splitting energy of 148 meV at the strong coupling regime, we also reveal highly-efficient energy exchange between SPP and F-P modes at the low frequency dispersion branch through detailed numerical near-field studies and experimental phase delay analysis. The observed efficient mode conversion in the investigated plasmonic nanocavity is useful for designing novel nanophotonic devices, in which conventional photonic components need to be integrated with miniaturized plasmonic devices or vice versa.

  20. Cavities

    Science.gov (United States)

    ... mother's bacteria from being passed to the child. Treatment of Cavities Fluoride Fillings Root canal or tooth extraction If ... to help the world be well. From developing new therapies that treat and prevent disease to helping people ...

  1. Cavities

    Science.gov (United States)

    ... Additional Content Medical News Cavities ˈkav-ət-ē (Dental Caries) By James T. Ubertalli, DMD, Private Practice, Hingham, ... access to dental care, and better treatment for tooth decay and periodontal disease. When teeth are lost, chewing is greatly hindered, and speaking ...

  2. Start-up flow in a three-dimensional lid-driven cavity by means of a massively parallel direction splitting algorithm

    KAUST Repository

    Guermond, J. L.

    2011-05-04

    The purpose of this paper is to validate a new highly parallelizable direction splitting algorithm. The parallelization capabilities of this algorithm are illustrated by providing a highly accurate solution for the start-up flow in a three-dimensional impulsively started lid-driven cavity of aspect ratio 1×1×2 at Reynolds numbers 1000 and 5000. The computations are done in parallel (up to 1024 processors) on adapted grids of up to 2 billion nodes in three space dimensions. Velocity profiles are given at dimensionless times t=4, 8, and 12; at least four digits are expected to be correct at Re=1000. © 2011 John Wiley & Sons, Ltd.

  3. Crystal electric field splitting of R{sup 3+}-ions in pure and Co- and Cu-doped RNi{sub 2}B{sub 2}C (R=Ho, Er, Tm)

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, U.; Allenspach, P.; Henggeler, W.; Zolliker, M.; Furrer, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    From the crystal-electric-field (CEF) splitting of the R{sup 3+}-ions, the CEF parameters of RNi{sub 2}B{sub 2}C (R=Ho, Er, Tm) were deduced. In order to get information about the influence of the variation of the density of states (DOS) at the Fermi level (E{sub F}), CEF spectroscopy measurements with Co- and Cu-doped ErNi{sub 2}B{sub 2}C-samples were performed. (author) 1 fig., 1 tab., 1 ref.

  4. Mechanical characteristics of hybrid multilayer Green Tape[sup TM] ceramics sintered in a 2. 45 GHz single mode microwave cavity. [A commercial alumina-based product

    Energy Technology Data Exchange (ETDEWEB)

    Bansky, J.; Engemann, J. (Univ. of Wuppertal (Germany)); Bartley, D.; Asmussen, J.; Case, E.; Connery, S. (Michigan State Univ., East Lansing (United States))

    1993-04-01

    Research indicates that microwave energy offers many advantages over conventional heating methods. These advantages generally can be divided into two categories. One of them is the reduction in processing time and temperature, and the second one is the fabrication of materials with unique and/or superior properties. Microwave energy appears to be especially advantageous for the processing of many types of ceramics requiring high thermal process temperatures. This is connected with the increased coupling efficiency of ceramics at high temperatures with the microwave energy, the more uniform volumetric heating, and increased densification rates at lower processing temperatures. This paper describes microwave sintering of a commercial alumina-based product, Green Tape[sup TM] Dielectric 851AT (DuPont), that is designed for use as a material for hybrid integrated multilayer structures in the production of hybrid integrated circuits, as well as for some unconventional applications (ion optics, sensors, etc) (4,5). This study compares mechanical properties of conventionally and microwave sintered Green Tape[sup TM] 851AT hybrid multilayer structures.

  5. tmRDB (tmRNA database)

    DEFF Research Database (Denmark)

    Zwieb, Christian; Gorodkin, Jan; Knudsen, Bjarne

    2003-01-01

    manually, assisted by computational tools, to determine base pairs supported by comparative sequence analysis. The tmRNA alignment, available in a variety of formats, provides the basis for the secondary and tertiary structure of each tmRNA molecule. Three-dimensional models of the tm......Maintained at the University of Texas Health Science Center at Tyler, Texas, the tmRNA database (tmRDB) is accessible at the URL http://psyche.uthct.edu/dbs/tmRDB/tmRDB.html with mirror sites located at Auburn University, Auburn, Alabama (http://www.ag.auburn.edu/mirror/tm......RDB/) and the Bioinformatics Research Center, Aarhus, Denmark (http://www.bioinf.au.dk/tmRDB/). The tmRDB collects and distributes information relevant to the study of tmRNA. In trans-translation, this molecule combines properties of tRNA and mRNA and binds several proteins to form the tmRNP. Related RNPs are likely...

  6. Embryo splitting

    OpenAIRE

    Karl Illmensee; Mike Levanduski

    2010-01-01

    Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board appr...

  7. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  8. ALDUO(TM) Algae Cultivation Technology for Delivering Sustainable Omega-3s, Feed, and Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xuemei [Cellana LLC

    2012-09-24

    * ALDUO(TM) Algae Production Technology Cellana?s Proprietary, Photosynthetic, & Proven * ALDUO(TM) Enables Economic Algae Production Unencumbered by Contamination by Balancing Higher-Cost PBRs with Lower-Cost Open Ponds * ALDUO(TM) Advantages * ALDUO(TM) Today o Large collection of strains for high value co-products o Powerful Mid-scale Screening & Optimization System o Solution to a Conflicting Interest o Split Pond Yield Enhancement o Heterotrophy & mixotrophy as a "finishing step" o CO2 Mitigation-flue Gas Operation o Worldwide Feed Trials with Livestock & Aquatic Species * ALDUO(TM) Technology Summarized

  9. Investigation of superconducting niobium 1170 MHz cavities

    International Nuclear Information System (INIS)

    Anashin, V.V.; Bibko, S.I.; Fadeyev, E.I.

    1988-01-01

    The design, fabrication and experiments with superconducting L-band single cell cavities are described. These cavities model a cell of an accelerating RF structure. The cavities have been fabricated from technical grade and higher purity grade sheet niobium using deep-drawing, electron beam welding and chemical polishing. They have spherical geometry and are excited in the TM 010 mode. A computerized set-up was used for cavity tests. Qo=1.5 x 10 9 and E acc = 4.3 MV/m were obtained in the cavity made of higher purity grade niobium. 6 references, 8 figures, 3 tables

  10. The Finite Elements Method (FEM versus traditional Methods (TM, in the estimation of settlement and modulus of soil reaction for foundation slabs design on soils with natural or man-made cavities

    Directory of Open Access Journals (Sweden)

    Escolano-Sánchez, F.

    2015-03-01

    Full Text Available Direct foundations with continuous elements, such as slabs, provide more advantages than direct foundations with isolated elements, such as footings, and deep foundations, such as piles, in the case of soil with natural or man-made cavities. The slabs are usually designed by two-dimensional models which show their shape on the plant, on a lineal elastic support, represented by a modulus of soil reaction. Regarding the settlement estimation, the following article compares the Finite Elements Method (FEM versus the classical Method (CM to select the modulus of soil reaction used to design foundations slabs in sensitive soils and sites with possible cavities or collapses. This analysis includes one of these cavities in the design to evaluate the risk of fail.Las cimentaciones directas con elementos continuos «losas», tienen ventajas sobre las cimentaciones directas con elementos aislados «zapatas» y sobre las cimentaciones profundas «pilotes», frente a la presencia de terrenos problemáticos. Las losas se diseñan de forma habitual con modelos bidimensionales que representan su forma en planta, apoyada en un medio elástico y lineal, representado por un módulo de balasto. En el presente artículo se realiza un análisis comparativo, para la estimación de asientos, entre el Método de Elementos Finitos (FEM y el Método Clásico (MC, para la elección de los módulos de balasto que se utilizan en el diseño de losas de cimentación en terrenos con blandones y cavidades naturales o antrópicas. Este análisis considera el peligro de la presencia de una de estas cavidades dentro de su diseño, de esta forma, el riesgo de fallo puede ser valorado por ambos métodos.

  11. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  12. Dental cavities

    Science.gov (United States)

    ... acids in plaque damage the enamel covering your teeth. It also creates holes in the tooth called cavities. Cavities usually do not hurt, unless they grow very large and affect nerves or cause a tooth fracture. An untreated cavity can lead to an infection ...

  13. Cavity-cavity conditional logic

    Science.gov (United States)

    Rosenblum, Serge; Gao, Yvonne Y.; Reinhold, Philip; Wang, Chen; Axline, Christopher; Frunzio, Luigi; Girvin, Steven M.; Jiang, Liang; Mirrahimi, Mazyar; Devoret, Michel H.; Schoelkopf, Robert J.

    In a superconducting circuit architecture, the highest coherence times are typically offered by 3D cavities. Moreover, these cavities offer a hardware-efficient way of redundantly encoding quantum information. While single-qubit control on a cavity has already been demonstrated, there is a need for a universal two-qubit gate between such cavities. In this talk, we demonstrate a cavity-cavity gate by parametric pumping on a fixed-frequency transmon interacting with the two cavities. Every gate application lowers the state fidelity by only 1%, while maintaining an entangling rate on-off ratio of 29dB. Additionally, we show that the gate is applicable not only to qubits consisting of single photons, but also to more complex encodings. These results illustrate the usefulness of cavities beyond the mere storage of quantum information, and pave the way towards gates between error-corrected logical qubits.

  14. Superconducting niobium cavity with cooling fins

    International Nuclear Information System (INIS)

    Isagawa, Shigeru.

    1978-04-01

    Cooling efficiency of a superconducting cavity is shown to be improved by applying a fin structure. Internal heating can be suppressed in a certain degree and the higher rf field is expected to be reached on surfaces of the cavity which is immersed in superfluid He 4 liquid. The rf measurements were made on a C-band niobium cavity with cylindrical and circular fins around the wall. Fields of 39 mT and 25 MV/m were attained for TM 010 mode cavity after surface treatments including high temperature annealing in a UHV furnace. (auth.)

  15. Effect of Rabi splitting on the low-temperature electron paramagnetic resonance signal of anthracite.

    Science.gov (United States)

    Fedaruk, Ryhor; Strzelczyk, Roman; Tadyszak, Krzysztof; Markevich, Siarhei A; Augustyniak-Jabłokow, Maria Aldona

    2017-01-01

    Specific distortions of the EPR signal of bulk anthracite are observed at low temperatures. They are accompanied by variations in the microwave oscillator frequency and are explained by the manifestation of the Rabi splitting due to the strong coupling between electron spins and the cavity, combined with the use of an automatic frequency-control (AFC) system. EPR signals are recorded at negligible saturation in the temperature range of 4-300K with use of the AFC system to keep the oscillator frequency locked to the resonant frequency of the TM110 cylinder cavity loaded with the sample. For the sample with a mass of 3.6mg the line distortions are observed below 50K and increase with temperature lowering. The oscillator frequency variations are used to estimate the coupling strength as well as the number of spins in the sample. It is shown that the spin-cavity coupling strength is inversely proportional to temperature and can be used for the absolute determination of the number of spins in a sample. Our results indicate that at low temperatures even 10 16 spins of the anthracite sample, with a mass of about 0.5mg, can distort the EPR line. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Hybrid III-V/SOI Resonant Cavity Photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    A hybrid III-V/SOI resonant cavity photo detector has been demonstrated, which comprises an InP grating reflectorand a Si grating reflector. It can selectively detects an incident light with 1.54-µm wavelength and TM polarization.......A hybrid III-V/SOI resonant cavity photo detector has been demonstrated, which comprises an InP grating reflectorand a Si grating reflector. It can selectively detects an incident light with 1.54-µm wavelength and TM polarization....

  17. Cavity types

    CERN Document Server

    Gerigk, Frank

    2011-01-01

    In the field of particle accelerators the most common use of RF cavities is to increase the particle velocity of traversing particles. This feature makes them one of the core ingredients of every accelerator, and in the case of linear accelerators they are even the dominant machine component. Since there are many different types of accelerator, RF cavities have been optimized for different purposes and with different abilities, e.g., cavities with fixed or variable RF frequency, cavities for short or long pulses/CW operation, superconducting and normal-conducting cavities. This lecture starts with a brief historical introduction and an explanation on how to get from Maxwell's equations to a simple cavity. Then, cavities will be classified by the type of mode that is employed for acceleration, and an explanation is given as to why certain modes are used in particular cavity types. The lecture will close with a comparison of normal versus superconducting cavities and a few words on the actual power consumption ...

  18. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  19. Extremely large magnetoresistance and electronic structure of TmSb

    Science.gov (United States)

    Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long

    2018-02-01

    We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.

  20. Design and Performance of the LCLS Cavity BPM System

    Energy Technology Data Exchange (ETDEWEB)

    Lill, R.M.; Morrison, L.H.; Norum, W.E.; Sereno, N.; Waldschmidt, G.J.; Walters, D.R.; /Argonne; Smith, S.; Straumann, T.; /SLAC

    2008-01-23

    In this paper we present the design of the beam position monitor (BPM) system for the LCLS undulator, which features a high-resolution X-band cavity BPM. Each BPM has a TM{sub 010} monopole reference cavity and a TM{sub 110} dipole cavity designed to operate at a center frequency of 11.384 GHz. The signal processing electronics features a low noise single-stage three-channel heterodyne receiver that has selectable gain and a phase locking local oscillator. We will discuss the system specifications, design, and prototype test results.

  1. Design and performance of the LCLS cavity BPM system.

    Energy Technology Data Exchange (ETDEWEB)

    Lill, R.; Norum, E.; Morrison, L.; Sereno, N.; Waldschmidt, G.; Walters, D.; Smith, S.; Straumann, T.; SLAC

    2008-01-01

    In this paper we present the design of the beam position monitor (BPM) system for the LCLS undulator, which features a high-resolution X-band cavity BPM. Each BPM has a TM{sub 010} monopole reference cavity and a TM{sub 110} dipole cavity designed to operate at a center frequency of 11.384 GHz. The signal processing electronics features a low- noise single-stage three-channel heterodyne receiver that has selectable gain and a phase locking local oscillator. We will discuss the system specifications, design, and prototype test results.

  2. Design and Performance of the LCLS Cavity BPM System

    International Nuclear Information System (INIS)

    Lill, R.M.; Morrison, L.H.; Norum, W.E.; Sereno, N.; Waldschmidt, G.J.; Walters, D.R.; Argonne; Smith, S.; Straumann, T.

    2008-01-01

    In this paper we present the design of the beam position monitor (BPM) system for the LCLS undulator, which features a high-resolution X-band cavity BPM. Each BPM has a TM 010 monopole reference cavity and a TM 110 dipole cavity designed to operate at a center frequency of 11.384 GHz. The signal processing electronics features a low noise single-stage three-channel heterodyne receiver that has selectable gain and a phase locking local oscillator. We will discuss the system specifications, design, and prototype test results

  3. Design and performance of the LCLS cavity BPM system

    International Nuclear Information System (INIS)

    Lill, R.; Norum, E.; Morrison, L.; Sereno, N.; Waldschmidt, G.; Walters, D.; Smith, S.; Straumann, T.

    2008-01-01

    In this paper we present the design of the beam position monitor (BPM) system for the LCLS undulator, which features a high-resolution X-band cavity BPM. Each BPM has a TM 010 monopole reference cavity and a TM 110 dipole cavity designed to operate at a center frequency of 11.384 GHz. The signal processing electronics features a low- noise single-stage three-channel heterodyne receiver that has selectable gain and a phase locking local oscillator. We will discuss the system specifications, design, and prototype test results.

  4. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  5. Split-Doa10: a naturally split polytopic eukaryotic membrane protein generated by fission of a nuclear gene.

    Directory of Open Access Journals (Sweden)

    Elisabeth Stuerner

    Full Text Available Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12-16 transmembrane helices (TMs, but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS. A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.

  6. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    International Nuclear Information System (INIS)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-01-01

    A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback

  7. CONTINUOUS-WAVE MICROCHIP LASER GENERATION OF Tm:KLu(WO42 AND Tm:KY(WO42 CRYSTALS

    Directory of Open Access Journals (Sweden)

    O. P. Dernovich

    2016-01-01

    Full Text Available Diode-pumped solid-state lasers are attractive for a variety of practical applications in many fields of human activity due to their high efficiency, compactness, and long durability. For applications in remote sensing lasers emitting in the spectral range of about 2 microns are required. Materials doped with trivalent thulium ions are promising active media emitting in this spectral range. Potassium rare-earth tungstates are attractive materials among Tm-doped crystals due to their suitable characteristics, such as high values of absorption and stimulated emission cross sections, incignificant concentration quenching of luminescence, well-proven technology of the high quality crystals growth. The purpose of this paper was to compare lasing properties of lasers based on potassium lutetium and potassium yttrium tungstate crystals doped with thulium ions in continuous-wave regime. Experiments were carried out with a diode pumping in microchip cavity configuration. The maximum power of laser radiation at 1947 nm of 1010 mW was obtained with Tm:KY(WO42 crystal with the slope efficiency with respect to the absorbed pump power of 51 %. When Tm:KLu(WO42 crystal was utilized an output power of 910 mW at 1968 nm wavelength with the slope efficiency of 38 % was obtained. With Tm:KLu(WO42 laser a tuning range over 160 nm range was realized with a prism inserted into the laser cavity

  8. Translation-Memory (TM) Research

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Christensen, Tina Paulsen

    2010-01-01

    to be representative of the research field as a whole. Our analysis suggests that, while considerable knowledge is available about the technical side of TMs, more research is needed to understand how translators interact with TM technology and how TMs influence translators' cognitive translation processes.......  It is no exaggeration to say that the advent of translation-memory (TM) systems in the translation profession has led to drastic changes in translators' processes and workflow, and yet, though many professional translators nowadays depend on some form of TM system, this has not been the object...... of much research. Our paper attempts to find out what we know about the nature, applications and influences of TM technology, including translators' interaction with TMs, and also how we know it. An essential part of the analysis is based on a selection of empirical TM studies, which we assume...

  9. Indirect coupling of magnons by cavity photons

    Science.gov (United States)

    Zare Rameshti, Babak; Bauer, Gerrit E. W.

    2018-01-01

    The interaction between two magnetic spheres in microwave cavities is studied by Mie scattering theory beyond the magnetostatic and rotating wave approximations. We demonstrate that two spatially separated dielectric and magnetic spheres can be strongly coupled over a long distance by the electric field component of standing microwave cavity modes. The interactions split acoustical (dark) and optical (bright) modes in a way that can be mapped on a molecular orbital theory of the hydrogen molecule. Breaking the symmetry by assigning different radii to the two spheres introduces "ionic" character to the magnonic bonds. These results illustrate the coherent and controlled energy exchange between objects in microwave cavities.

  10. Cavity Optomechanics

    OpenAIRE

    Kippenberg, T. J.; Vahala, K. J.

    2007-01-01

    The coupling of mechanical and optical degrees of freedom via radiation pressure has been a subject of early research in the context of gravitational wave detection. Recent experimental advances have allowed studying for the first time the modifications of mechanical dynamics provided by radiation pressure. This paper reviews the consequences of back-action of light confined in whispering-gallery dielectric micro-cavities, and presents a unified treatment of its two manifestations: notably th...

  11. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  12. Emittance compensation in split photoinjectors

    Directory of Open Access Journals (Sweden)

    Klaus Floettmann

    2017-01-01

    Full Text Available The compensation of correlated emittance contributions is of primary importance to optimize the performance of high brightness photoinjectors. While only extended numerical simulations can capture the complex beam dynamics of space-charge-dominated beams in sufficient detail to optimize a specific injector layout, simplified models are required to gain a deeper understanding of the involved dynamics, to guide the optimization procedure, and to interpret experimental results. In this paper, a slice envelope model for the emittance compensation process in a split photoinjector is presented. The emittance term is included in the analytical solution of the beam envelope in a drift, which is essential to take the emittance contribution due to a beam size mismatch into account. The appearance of two emittance minima in the drift is explained, and the matching into the booster cavity is discussed. A comparison with simulation results points out effects which are not treated in the envelope model, such as overfocusing and field nonlinearities.

  13. In search of an uncultured human-associated TM7 bacterium in the environment.

    Science.gov (United States)

    Dinis, Jorge M; Barton, David E; Ghadiri, Jamsheed; Surendar, Deepa; Reddy, Kavitha; Velasquez, Fernando; Chaffee, Carol L; Lee, Mei-Chong Wendy; Gavrilova, Helen; Ozuna, Hazel; Smits, Samuel A; Ouverney, Cleber C

    2011-01-01

    We have identified an environmental bacterium in the Candidate Division TM7 with ≥98.5% 16S rDNA gene homology to a group of TM7 bacteria associated with the human oral cavity and skin. The environmental TM7 bacterium (referred to as TM7a-like) was readily detectable in wastewater with molecular techniques over two years of sampling. We present the first images of TM7a-like cells through FISH technique and the first images of any TM7 as viable cells through the STARFISH technique. In situ quantification showed TM7 concentration in wastewater up to five times greater than in human oral sites. We speculate that upon further characterization of the physiology and genetics of the TM7a-like bacterium from environmental sources and confirmation of its genomic identity to human-associated counterparts it will serve as model organisms to better understand its role in human health. The approach proposed circumvents difficulties imposed by sampling humans, provides an alternative strategy to characterizing some diseases of unknown etiology, and renders a much needed understanding of the ecophysiological role hundreds of unique Bacteria and Archaea strains play in mixed microbial communities.

  14. In search of an uncultured human-associated TM7 bacterium in the environment.

    Directory of Open Access Journals (Sweden)

    Jorge M Dinis

    Full Text Available We have identified an environmental bacterium in the Candidate Division TM7 with ≥98.5% 16S rDNA gene homology to a group of TM7 bacteria associated with the human oral cavity and skin. The environmental TM7 bacterium (referred to as TM7a-like was readily detectable in wastewater with molecular techniques over two years of sampling. We present the first images of TM7a-like cells through FISH technique and the first images of any TM7 as viable cells through the STARFISH technique. In situ quantification showed TM7 concentration in wastewater up to five times greater than in human oral sites. We speculate that upon further characterization of the physiology and genetics of the TM7a-like bacterium from environmental sources and confirmation of its genomic identity to human-associated counterparts it will serve as model organisms to better understand its role in human health. The approach proposed circumvents difficulties imposed by sampling humans, provides an alternative strategy to characterizing some diseases of unknown etiology, and renders a much needed understanding of the ecophysiological role hundreds of unique Bacteria and Archaea strains play in mixed microbial communities.

  15. Empty 4f states in TmS

    International Nuclear Information System (INIS)

    Wachter, P.; Grioni, M.

    1998-01-01

    The reflectivity of TmS single crystals has been measured between 2 meV and 12 eV at room temperature and at 6 K. Besides 3p 6 -5d interband transitions a plasma edge due to free carriers is observed. In the middle infrared (near 50 meV) two sharp lines are found which are interpreted as transitions from the Fermi level into empty crystal field split 4f 13 states. A Bremsstrahlen isochromat spectroscopy (BIS) measurement supports the assumption that the empty 4f 13 state is close to the Fermi energy. (orig.)

  16. LALAGE - a computer program to calculate the TM01 modes of cylindrically symmetrical multicell resonant structures

    International Nuclear Information System (INIS)

    Fernandes, P.

    1982-01-01

    An improvement has been made to the LALA program to compute resonant frequencies and fields for all the modes of the lowest TM 01 band-pass of multicell structures. The results are compared with those calculated by another popular rf cavity code and with experimentally measured quantities. (author)

  17. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  18. Split Cord Malformations

    Directory of Open Access Journals (Sweden)

    Yurdal Gezercan

    2015-06-01

    Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207

  19. 17 GHz photonic band gap cavity with improved input coupling

    Directory of Open Access Journals (Sweden)

    M. A. Shapiro

    2001-04-01

    Full Text Available We present the theoretical design and cold test of a 17 GHz photonic band gap (PBG cavity with improved coupling from an external rectangular waveguide. The PBG cavity is made of a triangular lattice of metal rods with a defect (missing rod in the center. The TM_{010}-like defect mode was chosen as the operating mode. Experimental results are presented demonstrating that critical coupling into the cavity can be achieved by partial withdrawal or removal of some rods from the lattice, a result that agrees with simulations. A detailed design of the PBG accelerator structure is compared with a conventional (pillbox cavity. One advantage of the PBG cavity is that its resonance frequency is much less perturbed by the input/output coupling structure than in a comparable pillbox cavity. The PBG structure is attractive for future accelerator applications.

  20. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets....

  1. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  2. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  3. GS2000{sup TM} software

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, A. [Caneta Research Inc., Mississauga, ON (Canada)

    2000-12-01

    Ground heat exchangers that are not adequately sized lead to additional capital costs and increased circulation pump energy consumption, which in turn reduce the cost effectiveness of ground-source technology. The GS2000{sup TM}, Version 2.0 software program was developed to let the designer input important information such as monthly heat pump loads for the building, ground properties, heat exchanger configuration, geographic location and others that have an influence on the length of ground heat exchanger. The modelling of horizontal, slinky and vertical heat exchangers is possible using the GS2000{sup TM} Version 2.0 software, which is based on the cylindrical source heat transfer equation. The determination of the heat exchanger length needed to ensure the water/anti-freeze fluid temperature that enters the heat pumps remains within the minimum and maximum specified by the user is made by the software. Peak load analysis allowing for extreme conditions, and supplemental heat rejection allowing the modelling of cooling tower/heat exchanger hybrid systems are two of the other features offered by the software. The process followed for the design, using the GS2000{sup TM}, of a ground-source heat pump heat exchanger for an office building in Ottawa, Ontario is described in this paper. DOE 2.1E was used to determine the monthly space loads for the building. Grout selection and borehole spacing on the heat exchanger design was done using the GS2000{sup TM} software. It resulted in the drilling of shorter boreholes or fewer boreholes of equal depth. The information obtained allowed for a cost comparison with other alternatives. 2 refs., 2 tabs., 7 figs.

  4. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  5. Aspects of Split Supersymmetry

    CERN Document Server

    Arkani-Hamed, N; Giudice, Gian Francesco; Romanino, A

    2005-01-01

    We explore some fundamental differences in the phenomenology, cosmology and model building of Split Supersymmetry compared with traditional low-scale supersymmetry. We show how the mass spectrum of Split Supersymmetry naturally emerges from theories where the dominant source of supersymmetry breaking preserves an $R$ symmetry, characterize the class of theories where the unavoidable $R$-breaking by gravity can be neglected, and point out a new possibility, where supersymmetry breaking is directly communicated at tree level to the visible sector via renormalizable interactions. Next, we discuss possible low-energy signals for Split Supersymmetry. The absence of new light scalars removes all the phenomenological difficulties of low-energy supersymmetry, associated with one-loop flavor and CP violating effects. However, the electric dipole moments of leptons and quarks do arise at two loops, and are automatically at the level of present limits with no need for small phases, making them accessible to several ongo...

  6. Impacts of doping concentration on the saturable characteristics of Tm-Ho codoped fiber saturable absorber

    Science.gov (United States)

    Tao, Mengmeng; Feng, Guobin; Yu, Ting; Ye, Xisheng; Wang, Zhenbao; Shen, Yanlong; Zhao, Jun

    2018-03-01

    Impacts of Tm ion concentration and Ho ion concentration on the saturable behaviors of Tm-Ho codoped fiber saturable absorbers and the output characteristics of the passively Q-switched laser systems are investigated and analyzed both at the initial lasing state and the stable passive Q-switching state. Simulations show that, varying concentrations of Tm and Ho ions have different impacts on the temporal evolution processes but similar effects on the macroscopic characteristics of the laser system. The root for the impacts of dopant concentrations is the population of the 3H6 energy level and the cavity loss it induces. For Tm ions, the rise of the Tm concentration improves the population of the 3H6 energy level directly, while, for Ho ions, higher Ho concentration leads to larger recovery rate of the 3H6 energy level, thus increasing the population of the 3H6 energy level indirectly. As for limited total dopant concentration, the Tm:Ho concentration ratio can be optimized for different applications.

  7. CCD TV camera, TM1300

    International Nuclear Information System (INIS)

    Takano, Mitsuo; Endou, Yukio; Nakayama, Hideo

    1982-01-01

    Development has been made of a black-and-white TV camera TM 1300 using an interline-transfer CCD, which excels in performance frame-transfer CCDs marketed since 1980: it has a greater number of horizontal picture elements and far smaller input power (less than 2 W at 9 V), uses hybrid ICs for the CCD driver unit to reduce the size of the camera, has no picture distortion, no burn-in; in addition, it has peripheral equipment, such as the camera housing and the pan and till head miniaturized as well. It is also expected to be widened in application to industrial TV. (author)

  8. Split Malcev algebras

    Indian Academy of Sciences (India)

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form M = U + ∑ j I j with U a subspace of the abelian Malcev subalgebra and any I j a well described ideal of satisfying [ I j , I k ] = 0 if ≠ .

  9. Splitting of Comets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Splitting of Comets. Utpal Mukhopadhyay. General Article Volume 7 Issue 1 January 2002 pp 11-22. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/01/0011-0022. Keywords. Cometary ...

  10. An equivalent circuit model and power calculations for the APS SPX crab cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Berenc, T. (Accelerator Systems Division (APS))

    2012-03-21

    An equivalent parallel resistor-inductor-capacitor (RLC) circuit with beam loading for a polarized TM110 dipole-mode cavity is developed and minimum radio-frequency (rf) generator requirements are calculated for the Advanced Photon Source (APS) short-pulse x-ray (SPX) superconducting rf (SRF) crab cavities. A beam-loaded circuit model for polarized TM110 mode crab cavities was derived. The single-cavity minimum steady-state required generator power has been determined for the APS SPX crab cavities for a storage ring current of 200mA DC current as a function of external Q for various vertical offsets including beam tilt and uncontrollable detuning. Calculations to aid machine protection considerations were given.

  11. Formation of Cavities at and Away from Grain Boundaries during 600 MeV Proton Irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Green, W. V.

    1982-01-01

    ) regions beyond the CCZ containing a very low density of cavities. At the dose level of 2 dpa, a dense population of very small cavities is resolved on the grain boundaries and also in their immediate vicinity (in the CDZ). Furthermore, at the dose levels of 0.6 and 2 dpa, a well defined dual size...... were carried out at 120 degree C (0,42*Tm where Tm is the melting temperature in K). Transmission electron microscopy on specimens irradiated to 0.2 and 0.6 dpa has shown the presence of (a) cavity-denuded zones (CDZ) along grain boundaries, (b) cavity-containing zones (CCZ) adjacent to the CDZ and (c...... distribution of cavities is observed in the CCZ. The results are discussed in terms of agglomeration of helium atoms which are considered, during irradiation, to diffuse mainly via vacancies....

  12. Equilibration in Transcendental Meditation (TM

    Directory of Open Access Journals (Sweden)

    Hossein Bagheri

    2013-06-01

    Full Text Available Today in the realm of theoretical and applied humanities, the main concern is the ways to attain inner equilibrium than prosperity and the ways to discover it. Equilibrium, in some way, evokes the development of tolerance and a peaceful life which is mostly, a controversial issue in Christianity and with a few differences, in sophism controversies. The present meaning seeking human or modern and post-modern human is testing different anti-progress and prophetic theories for peace and inner equilibrium to end his adversary and outer contradictions. By the massive advertisement on meditation and Transcendental Meditation (TM and its effects on health and equanimity which has been started since 1960s in Europe and continued to spread everywhere with the help of global networks, it seems necessary to study the roots, vitality, necessity, levels and related techniques and compare it with Islamic religious and cultural concepts and investigate the positive and negative aspects of these practices. The present study aims at discovering whether the equilibrium or peace attained through TM is genuine and beatific.

  13. BIRADS{sup TM} mammography: Exercises

    Energy Technology Data Exchange (ETDEWEB)

    Balleyguier, Corinne [Radiology Department, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France)]. E-mail: balleyguier@igr.fr; Bidault, Francois [Radiology Department, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France); Mathieu, Marie Christine [Biopathology Department, Institut de Cancerologie Gustave-Roussy, 94805 Villejuif (France); Ayadi, Salma [Radiology Department, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France); Couanet, Dominique [Radiology Department, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France); Sigal, Robert [Radiology Department, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France)

    2007-02-15

    Some radiological cases are presented in this article to train the reader to the BIRADS{sup TM} classification in mammography. Each case is described according to Fourth American version of the BIRADS{sup TM} lexicon. Some classifications difficulties will also be presented, in order to show the complexity and the observer variability, commonly encountered in BIRADS{sup TM} 3 and 4 categories.

  14. Internal split field generator

    Science.gov (United States)

    Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  15. Rabi-like splitting from large area plasmonic microcavity

    Directory of Open Access Journals (Sweden)

    Fatemeh Hosseini Alast

    2017-08-01

    Full Text Available Rabi-like splitting was observed from a hybrid plasmonic microcavity. The splitting comes from the coupling of cavity mode with the surface plasmon polariton mode; anti-crossing was observed alongside the modal conversional channel on the reflection light measurement. The hybrid device consists of a 10x10 mm2 ruled metal grating integrated onto the Fabry-Perot microcavity. The 10x10 mm2 ruled metal grating fabricated from laser interference and the area is sufficiently large to be used in the practical optical device. The larger area hybrid plasmonic microcavity can be employed in polariton lasers and biosensors.

  16. Simple countermeasures against the TM110-beam-blowup-mode in biperiodic structures

    International Nuclear Information System (INIS)

    Euteneuer, H.; Herminghaus, H.; Schoeler, H.

    1984-01-01

    The two fundamental methods of fighting beam blow-up in rf-accelerating-structures are staggered detuning and selective Q-spoiling of their higher order modes. Biperiodic structures offer a very simple way of applying the latter technique of the most dangerous TM 110 -like blowup mode at 1.7 times the accelerating frequency: letting this mode propagate but giving a large gap to the TM 110 -passband. This gap must be positive for electric coupling (f(phi=0) =1.7c. With asymmetric coupling elements between the cavities of a structure, one has a simple tool for staggered detuning: a change of the relative orientation of these elements spreads the resonance frequencies not only of the TM 110 -mode, but of at least all dipole modes. (orig.)

  17. Monte Carlo simulation of the Leksell Gamma KnifeTM: II. Effects of heterogeneous versus homogeneous media for stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Moskvin, Vadim; Timmerman, Robert; DesRosiers, Colleen; Randall, Marcus; DesRosiers, Paul; Dittmer, Phil; Papiez, Lech

    2004-01-01

    The absence of electronic equilibrium in the vicinity of bone-tissue or air-tissue heterogeneity in the head can misrepresent deposited dose with treatment planning algorithms that assume all treatment volume as homogeneous media. In this paper, Monte Carlo simulation (PENELOPE) and measurements with a specially designed heterogeneous phantom were applied to investigate the effect of air-tissue and bone-tissue heterogeneity on dose perturbation with the Leksell Gamma Knife TM . The dose fall-off near the air-tissue interface caused by secondary electron disequilibrium leads to overestimation of dose by the vendor supplied treatment planning software (GammaPlan TM ) at up to 4 mm from an interface. The dose delivered to the target area away from an air-tissue interface may be underestimated by up to 7% by GammaPlan TM due to overestimation of attenuation of photon beams passing through air cavities. While the underdosing near the air-tissue interface cannot be eliminated with any plug pattern, the overdosage due to under-attenuation of the photon beams in air cavities can be eliminated by plugging the sources whose beams intersect the air cavity. Little perturbation was observed next to bone-tissue interfaces. Monte Carlo results were confirmed by measurements. This study shows that the employed Monte Carlo treatment planning is more accurate for precise dosimetry of stereotactic radiosurgery with the Leksell Gamma Knife TM for targets in the vicinity of air-filled cavities

  18. Split warhead simultaneous impact

    Directory of Open Access Journals (Sweden)

    Rahul Singh Dhari

    2017-12-01

    Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.

  19. Cavity enhanced interference of orthogonal modes in a birefringent medium

    Science.gov (United States)

    Kolluru, Kiran; Saha, Sudipta; Gupta, S. Dutta

    2018-03-01

    Interference of orthogonal modes in a birefringent crystal mediated by a rotator is known to lead to interesting physical effects (Solli et al., 2003). In this paper we show that additional feedback offered by a Fabry-Perot cavity (containing the birefringent crystal and the rotator) can lead to a novel strong interaction regime. Usual signatures of the strong interaction regime like the normal mode splitting and avoided crossings, sensitive to the rotator orientation, are reported. A high finesse cavity is shown to offer an optical setup for measuring small angles. The results are based on direct calculations of the cavity transmissions along with an analysis of its dispersion relation.

  20. Explicit TE/TM scheme for particle beam simulations

    International Nuclear Information System (INIS)

    Dohlus, M.; Zagorodnov, I.

    2008-10-01

    In this paper we propose an explicit two-level conservative scheme based on a TE/TM like splitting of the field components in time. Its dispersion properties are adjusted to accelerator problems. It is simpler and faster than the implicit version. It does not have dispersion in the longitudinal direction and the dispersion properties in the transversal plane are improved. The explicit character of the new scheme allows a uniformly stable conformal method without iterations and the scheme can be parallelized easily. It assures energy and charge conservation. A version of this explicit scheme for rotationally symmetric structures is free from the progressive time step reducing for higher order azimuthal modes as it takes place for Yee's explicit method used in the most popular electrodynamics codes. (orig.)

  1. On split Lie triple systems

    Indian Academy of Sciences (India)

    We also introduced in [1] techniques of connection of roots in the framework of split Lie algebras. In the present paper we extend these techniques to the framework of split Lie triple systems so as to obtain a generalization of the results in [1]. We consider the wide class of split Lie triple systems (which contains the class of.

  2. Sharp phase variations from the plasmon mode causing the Rabi-analogue splitting

    Directory of Open Access Journals (Sweden)

    Wang Yujia

    2017-06-01

    Full Text Available The Rabi-analogue splitting in nanostructures resulting from the strong coupling of different resonant modes is of importance for lasing, sensing, switching, modulating, and quantum information processes. To give a clearer physical picture, the phase analysis instead of the strong coupling is provided to explain the Rabi-analogue splitting in the Fabry-Pérot (FP cavity, of which one end mirror is a metallic nanohole array and the other is a thin metal film. The phase analysis is based on an analytic model of the FP cavity, in which the reflectance and the reflection phase of the end mirrors are dependent on the wavelength. It is found that the Rabi-analogue splitting originates from the sharp phase variation brought by the plasmon mode in the FP cavity. In the experiment, the Rabi-analogue splitting is realized in the plasmonic-photonic coupling system, and this splitting can be continually tuned by changing the length of the FP cavity. These experimental results agree well with the analytic and simulation data, strongly verifying the phase analysis based on the analytic model. The phase analysis presents a clear picture to understand the working mechanism of the Rabi-analogue splitting; thus, it may facilitate the design of the plasmonic-photonic and plasmonic-plasmonic coupling systems.

  3. The TM3270 Media-processor

    NARCIS (Netherlands)

    van de Waerdt, J.W.

    2006-01-01

    I n this thesis, we present the TM3270 VLIW media-processor, the latest of TriMedia processors, and describe the innovations with respect to its prede- cessor: the TM3260. We describe enhancements to the load/store unit design, such as a new data prefetching technique, and architectural

  4. Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Lodahl, Peter

    2013-01-01

    -resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral measurements and that the quantum dot is rather weakly coupled to the cavity. We suggest that the observed Rabi splitting is due to cavity feeding by other quantum dots and/or multi...

  5. Magnetic ordering in TmGa

    DEFF Research Database (Denmark)

    Cadogan, J.M.; Stewart, G.A.; Muños Pérez, S.

    2014-01-01

    We have determined the magnetic structure of the intermetallic compound TmGa by high-resolution neutron powder diffraction and 169Tm Mössbauer spectroscopy. This compound crystallizes in the orthorhombic (Cmcm) CrB-type structure and its magnetic structure is characterized by magnetic order...... to be a first-order transition. At 3 K the magnetic structure of TmGa is predominantly ferromagnetic but a weakened incommensurate component remains. The ferromagnetic Tm moment reaches 6.7(2) μB at 3 K and the amplitude of the remaining incommensurate component is 2.7(4) μB. The 169Tm hyperfine magnetic field...

  6. Novel High Cooperativity Photon-Magnon Cavity QED

    Science.gov (United States)

    Tobar, Michael; Bourhill, Jeremy; Kostylev, Nikita; G, Maxim; Creedon, Daniel

    Novel microwave cavities are presented, which couple photons and magnons in YIG spheres in a super- and ultra-strong way at around 20 mK in temperature. Few/Single photon couplings (or normal mode splitting, 2g) of more than 6 GHz at microwave frequencies are obtained. Types of cavities include multiple post reentrant cavities, which co-couple photons at different frequencies with a coupling greater that the free spectral range, as well as spherical loaded dielectric cavity resonators. In such cavities we show that the bare dielectric properties can be obtained by polarizing all magnon modes to high energy using a 7 Tesla magnet. We also show that at zero-field, collective effects of the spins significantly perturb the photon modes. Other effects like time-reversal symmetry breaking are observed.

  7. Investigation of IR absorption spectra of oral cavity bacteria

    Science.gov (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1996-12-01

    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  8. Geometric inductance effects in the spectrum of split transmon qubits

    Science.gov (United States)

    Brierley, R. T.; Blumoff, J.; Chou, K.; Schoelkopf, R. J.; Girvin, S. M.

    2014-03-01

    The low-energy spectra of transmon superconducting qubits in a cavity can be accurately calculated using the black-box quantization approach. This method involves finding the normal modes of the circuit with a linearized Josephson junction and using these as the basis in which to express the non-linear terms. A split transmon qubit consists of two Josephson junctions in a SQUID loop. This configuration allows the Josephson energy to be tuned by applying external flux. Ideally, the system otherwise behaves as a conventional transmon with a single effective Josephson junction. However, the finite geometric inductance of the SQUID loop causes deviations from the simplest ideal description of a split transmon. This alters both the linearized and non-linear behaviour of the Josephson junctions in the superconducting circuit. We study how these changes can be incorporated into the black-box quantization approach and their effects on the low-energy spectrum of the split transmon.

  9. Image segmentation by iterative parallel region growing and splitting

    Science.gov (United States)

    Tilton, James C.

    1989-01-01

    The spatially constrained clustering (SCC) iterative parallel region-growing technique is applied to image analysis. The SCC algorithm is implemented on the massively parallel processor at NASA Goddard. Most previous region-growing approaches have the drawback that the segmentation produced depends on the order in which portions of the image are processed. The ideal solution to this problem (merging only the single most similar pair of spatially adjacent regions in the image in each iteration) becomes impractical except for very small images, even on a massively parallel computer. The SCC algorithm overcomes these problems by performing, in parallel, the best merge within each of a set of local, possibly overlapping, subimages. A region-splitting stage is also incorporated into the algorithm, but experiments show that region splitting generally does not improve segmentation results. The SCC algorithm has been tested on various imagery data, and test results for a Landsat TM image are summarized.

  10. Luminescence of YAG:Tm, Tb

    International Nuclear Information System (INIS)

    Scholl, M.S.; Trimmier, J.R.

    1986-01-01

    Two rare earth cations, thulium (Tm) and terbium (Tb) have been incorporated into a yttrium aluminum garnet (YAG) host material to obtain a blue phosphor. Thulium concentrations of up to 5% yield a saturated dark blue phosphor which exhibits a low efficiency. The highest efficiency for YAG:Tm occurs at a Tm concentration of 2%. A 0.5% concentration of terbium yields an unsaturated blue phosphor with an efficiency of approximately a factor of 15 times greater than that of Tm. The cathodoluminescence spectrum of YAG:Tm, Tb depicts features identifiable with YAG:Tb even at low Tb concentrations (0.5%). The light emitted by a Tb, Tm coactivated phosphor exhibits a clear shift toward the green region of the spectrum. There appears to be a resonant energy transfer from the 1 D 2 Tm 3+ state to the 5 D 4 Tb 3+ state. In the case of small concentrations of Tb in YAG, thulium behaves as a sensitizer for Tb cathodoluminescence

  11. Magnetic ordering in TmGa.

    Science.gov (United States)

    Cadogan, J M; Stewart, G A; Muñoz Pérez, S; Cobas, R; Hansen, B R; Avdeev, M; Hutchison, W D

    2014-03-19

    We have determined the magnetic structure of the intermetallic compound TmGa by high-resolution neutron powder diffraction and (169)Tm Mössbauer spectroscopy. This compound crystallizes in the orthorhombic (Cmcm) CrB-type structure and its magnetic structure is characterized by magnetic order of the Tm sublattice along the a-axis. The initial magnetic ordering occurs at 15(1) K and yields an incommensurate antiferromagnetic structure described by the propagation vector k1 = [0 0.275(2) 0]. At 12 K the dominant ferromagnetic ordering of the Tm sublattice along the a-axis develops in what appears to be a first-order transition. At 3 K the magnetic structure of TmGa is predominantly ferromagnetic but a weakened incommensurate component remains. The ferromagnetic Tm moment reaches 6.7(2) μB at 3 K and the amplitude of the remaining incommensurate component is 2.7(4) μB. The (169)Tm hyperfine magnetic field at 5 K is 631(1) T.

  12. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  13. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  14. ScoutTM, a portable MCA system

    International Nuclear Information System (INIS)

    Cheng, A.Y.; Ziemba, F.P.; Browning, J.E.; Szluk, N.

    1998-01-01

    Quantrad Sensor's hand-held multichannel analyzer (MCA), the Scout TM , has evolved considerably from the initial licensing from Pacific Northwest Laboratories (operated by Battelle Memorial Institute for the U.S. DOE). The Scout TM has grown into a flexible MCA system with alpha-, gamma-, X-ray and neutron detection capabilities with wide ranging applications. The development philosophy is discussed along with specific examples of design choices in areas such as manufacturability, upgradability, probe interchangability and software user interface. Recently introduced products include: software enhancements, additional probes, customized software and a second generation instrument, the Scout512 TM , that boasts increased capabilities. Future developments are also discussed. (author)

  15. The tmRDB and SRPDB resources

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Rosenblad, Magnus Alm; Larsen, Niels

    2006-01-01

    in investigations of the tmRNP (a ribonucleoprotein complex which liberates stalled bacterial ribosomes) and the SRP (a particle which recognizes signal sequences and directs secretory proteins to cell membranes). The curated tmRNA and SRP RNA alignments consider base pairs supported by comparative sequence...... analysis. Also shown are alignments of the tmRNA-associated proteins SmpB, ribosomal protein S1, alanyl-tRNA synthetase and Elongation Factor Tu, as well as the SRP proteins SRP9, SRP14, SRP19, SRP21, SRP54 (Ffh), SRP68, SRP72, cpSRP43, Flhf, SRP receptor (alpha) and SRP receptor (beta). All alignments can...

  16. Eigenmodes of a microwave cavity partially filled with an anisotropic hot plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1978-01-01

    The eigenmodes of a microwave cavity, which contains a uniform hot plasma with anisotropic temperature, are determined using the linearized fluid equations together with Maxwell's equations. Conditions are discussed under which hot plasma mode and the cold plasma mode are decoupled. The frequency shift of the microwave cavity is calculated and the theoretical results are shown to be in very good qualitative agreement with published experimental results obtained for the TM 010 mode. (author)

  17. On Sagnac frequency splitting in a solid-state ring Raman laser.

    Science.gov (United States)

    Liang, Wei; Savchenkov, Anatoliy; Ilchenko, Vladimir; Griffith, Robert; De Cuir, Edwin; Kim, Steven; Matsko, Andrey; Maleki, Lute

    2017-11-15

    We report on an accurate measurement of the frequency splitting of an optical rotating ring microcavity made out of calcium fluoride. By measuring the frequencies of the clockwise and counter-clockwise coherent Raman emissions confined in the cavity modes, we show that the frequency splitting is inversely proportional to the refractive index of the cavity host material. The measurement has an accuracy of 1% and unambiguously confirms the classical theoretical prediction based on special theory of relativity. This Letter also demonstrates the usefulness of the ring Raman microlaser for rotation measurements.

  18. The GEMnet (TM) global data communication

    Science.gov (United States)

    Yi, Byung K.; Chitty, Richard; Walters, Dave; Howard, Regan

    1995-01-01

    The GEMnet(TM) (Global Electronics Message network) will provide global digital data communications anywhere in the world at any time for minimum cost. GEMnet(TM) is an end-to-end Non-Voice Non-Geostationary Mobile Satellite (NVNG) (sometimes dubbed 'Little LEO') System which consists of a constellation of 38 low Earth orbiting small satellites and a ground segment. The GEMnet(TM) ground segment will consist of subscriber user terminals, gateway stations, a Network Operational Center(NOC), and a backbone network interconnecting the NOC and gateways. This paper will describe the GEMnet(TM) system concept including ground and space segments, system heritage, data communication services, and protocols.

  19. Normative data for TM electrocochleography measures

    Directory of Open Access Journals (Sweden)

    Signe Schuster Grasel

    2017-06-01

    Conclusion: Normative data for TM ECochG parameters were established in 100 normal hearing subjects without MD. These data can be used to distinguish normal from pathological findings and in follow-up of MD patients.

  20. AP1000TM plant modularization

    International Nuclear Information System (INIS)

    Cantarero L, C.; Demetri, K. J.; Quintero C, F. P.

    2016-09-01

    The AP1000 TM plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  1. Superconducting cavities for LEP

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  2. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light......-matter interaction in the micropiller caivty is so strong that we measure non-Markovian dynamics of the quantum dot, and we compare to the Jaynes-Cummings model with all parameters independently determined. We find an excellent agreement when comparing the dynamics, but the emission spectra show significant...... deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  3. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage

    Science.gov (United States)

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T

    2014-01-01

    Objective Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. Description We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. Methods After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at −20 cm H2O for 30 min. Results When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, P<0.001). By 30 min, the split drain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. Conclusion The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications. PMID:25478289

  4. Vertical-cavity laser with a novel grating mirror

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol

    Hybrid III-V on silicon (Si) ‘vertical cavity lasers’ (hybrid VCLs), which can emit light laterally into a Si waveguide, are fabricated and investigated. The Si-integrated hybrid VCL consists of a top dielectric Bragg reflector (DBR), a III-V active layer, and a bottom high contrast grating (HCG...... VCLs have been fabricated. The first version of hybrid VCL is designed for demonstrating in-plane emission into a Si waveguide. The in-plane emission is enabled by the bottom HCG abutting the Si waveguide, which not only functions as a highly reflective mirror but also routes the light from...... dispersion has been observed and discussed, which is unique for HCG-based vertical cavities. The second version proves the potential for high-speed operation of hybrid VCL structure. In the hybrid VCL structure, the effective cavity length is substantially reduced by using a dielectric DBR and a TM-HCG...

  5. Concept and theory of clustered-cavity gyroklystrons

    International Nuclear Information System (INIS)

    Nusinovich, G.S.; Guo, H.; Antonsen, T.M. Jr.; Granatstein, V.L.

    2002-01-01

    The concept of clustered cavities was originally proposed by R. Symons for use in linear-beam klystrons operating in TM-modes. It was proven experimentally that the use of this concept allows developers to double the instantaneous bandwidth of klystrons without changing their overall dimensions or sacrificing gain and bandwidth. Recently, H. Guo suggested applying this concept to gyroklystrons operating in TE-modes. In the present paper this concept is formulated and a simple analytical theory describing qualitatively the performance of clustered-cavity gyroklystrons is developed. Results of the analysis of a simple two-stage gyroklystron indicate that the clustered-cavity concept has potential for improving the performance of gyroklystrons

  6. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1993-07-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed.

  7. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.; Potukuchi, P.N.

    1993-01-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed

  8. Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System

    International Nuclear Information System (INIS)

    Zhang Peng-Fei; Zhang Yu-Chi; Li Gang; Du Jin-Jin; Zhang Yan-Feng; Guo Yan-Qiang; Wang Jun-Min; Zhang Tian-Cai; Li Wei-Dong

    2011-01-01

    We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (fundamental areas of phenomenology(including applications))

  9. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  10. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  11. Split SUSY Radiates Flavor

    CERN Document Server

    Baumgart, Matthew; Zorawski, Thomas

    2014-01-01

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  12. How rivers split

    Science.gov (United States)

    Seybold, H. F.; Yi, R.; Devauchelle, O.; Petroff, A.; Rothman, D.

    2012-12-01

    River networks have fascinated mankind for centuries. They exhibit a striking geometry with similar shapes repeating on all scales. Yet, how these networks form and create these geometries remains elusive. Recently we have shown that channels fed by subsurface flow split at a characteristic angle of 2π/5 unambiguously consistent with our field measurements in a seepage network on the Florida Panhandle (Fig.1). Our theory is based only on the simple hypothesis that the channels grow in the direction at which the ground water enters the spring and classical solutions of subsurface hydrology. Here we apply our analysis to the ramification of large drainage basins and extend our theory to include slope effects. Using high resolution stream networks from the National Hydrography Dataset (NHD), we scrutinize our hypothesis in arbitrary channel networks and investigate the branching angle dependence on Horton-Strahler order and the maturity of the streams.; High-resolution topographic map of valley networks incised by groundwater flow, located on the Florida Panhandle near Bristol, FL.

  13. Split supersymmetry radiates flavor

    Science.gov (United States)

    Baumgart, Matthew; Stolarski, Daniel; Zorawski, Thomas

    2014-09-01

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of mini-split supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and dark matter as a weakly interacting massive particle. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY-breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  14. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  15. Hydroforming of elliptical cavities

    Directory of Open Access Journals (Sweden)

    W. Singer

    2015-02-01

    Full Text Available Activities of the past several years in developing the technique of forming seamless (weldless cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E_{acc} up to 35  MV/m after buffered chemical polishing (BCP and up to 42  MV/m after electropolishing (EP. More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E_{acc} of 30–35  MV/m were measured after BCP and E_{acc} up to 40  MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E_{acc}=30–35  MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and

  16. Multicolor cavity soliton.

    Science.gov (United States)

    Luo, Rui; Liang, Hanxiao; Lin, Qiang

    2016-07-25

    We show a new class of complex solitary wave that exists in a nonlinear optical cavity with appropriate dispersion characteristics. The cavity soliton consists of multiple soliton-like spectro-temporal components that exhibit distinctive colors but coincide in time and share a common phase, formed together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor cavity soliton shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which would be very useful for versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy.

  17. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  18. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  19. Cavity plasmon polaritons in monolayer graphene

    International Nuclear Information System (INIS)

    Kotov, O.V.; Lozovik, Yu.E.

    2011-01-01

    Plasmon polaritons in a new system, a monolayer doped graphene embedded in optical microcavity, are studied here. The dispersion law for lower and upper cavity plasmon polaritons is obtained. Peculiarities of Rabi splitting for the system are analyzed; particularly, role of Dirac-like spinor (envelope) wave functions in graphene and corresponding angle factors are considered. Typical Rabi frequencies for maximal (acceptable for Dirac-like electron spectra) Fermi energy and frequencies of polaritons near polariton gap are estimated. The plasmon polaritons in considered system can be used for high-speed information transfer in the THz region. -- Highlights: → Plasmon polaritons in a monolayer doped graphene embedded in optical microcavity, are studied here. → The dispersion law for lower and upper cavity plasmon polaritons is obtained. → Peculiarities of Rabi splitting for the system are analyzed. → Role of Dirac-like wave functions in graphene and corresponding angle factors are considered. → Typical Rabi frequencies and frequencies of polaritons near polariton gap are estimated.

  20. [Expression optimization and characterization of Tenebrio molitor antimicrobiol peptides TmAMP1m in Escherichia coli].

    Science.gov (United States)

    Alimu, Reyihanguli; Mao, Xinfang; Liu, Zhongyuan

    2013-06-01

    To improve the expression level of tmAMP1m gene from Tenebrio molitor in Escherichia coli, we studied the effects of expression level and activity of the fusion protein HIS-TmAMP1m by conditions, such as culture temperature, inducing time and the final concentration of inductor Isopropyl beta-D-thiogalactopyranoside (IPTG). We analyzed the optimum expression conditions by Tricine-SDS-PAGE electrophoresis, meanwhile, detected its antibacterial activity by using agarose cavity diffusion method. The results suggest that when inducing the recombinant plasmid with a final IPTG concentration of 0.1 mmol/L at 37 degrees C for 4 h, there was the highest expression level of fusion protein HIS-TmAMP1m in Escherichia coli. Under these conditions, the expression of fusion protein accounted for 40% of the total cell lysate with the best antibacterial activity. We purified the fusion protein HIS-TmAMPlm with nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography matrices. Western blotting analysis indicates that the His monoclonal antibody could be specifically bound to fusion protein HIS-TmAMPlm. After expression by inducing, the fusion protein could inhibit the growth of host cell transformed by pET30a-tmAMP1m. The fusion protein HIS-TmAMP1m had better stability and remained higher antibacterial activities when incubated at 100 degrees C for 10 h, repeated freeze thawing at -20 degrees C, dissolved in strong acid and alkali, or treated by organic solvents and protease. Moreover, the minimum inhibitory concentration results demonstrated that the fusion protein HIS-TmAMP1m has a good antibacterial activity against Staphylococcus aureus, Staphylococcus sp., Corynebacterium glutamicum, Bacillus thuringiensis, Corynebacterium sp. This study laid the foundation to promote the application of insect antimicrobial peptides and further research.

  1. Global Locator, Local Locator, and Identifier Split (GLI-Split

    Directory of Open Access Journals (Sweden)

    Michael Menth

    2013-03-01

    Full Text Available The locator/identifier split is an approach for a new addressing and routing architecture to make routing in the core of the Internet more scalable. Based on this principle, we developed the GLI-Split framework, which separates the functionality of current IP addresses into a stable identifier and two independent locators, one for routing in the Internet core and one for edge networks. This makes routing in the Internet more stable and provides more flexibility for edge networks. GLI-Split can be incrementally deployed and it is backward-compatible with the IPv6 Internet. We describe its architecture, compare it to other approaches, present its benefits, and finally present a proof-of-concept implementation of GLI-Split.

  2. A study on the radiopacity of cavity lining materials for posterior composite resin restoration

    International Nuclear Information System (INIS)

    Moon, Joo Hoon; Choi, Eui Hwan

    2000-01-01

    The aim of this study was to determine the relative radiopacities of cavity lining materials (Resin-modified Glass Ionomer cement, Compomer and Flowable resin) for posterior composite resin restoration. Resin-modified glass ionomer cement (Fuji II LC, Vitrebond (TM)), Compomers (Dyract , Compoglass, F2000, Dyract(R) flow Compoglass Flow) and Flowable resins (Tetric (R) flow, Aeliteflo (TM) Revolution (TM)) were used. Five specimens of 5 mm in diameter and 2 mm thick were fabricated with each material. Human molars were horizontally sectioned 2 mm thick to include both enamel and dentin. The radiopacities of enamel, dentin, cavity lining materials, aluminum step wedge were obtained from conventional radiograph and NIH image program. All the tested lining materials showed levels of radiopacity the same as or greater than that of dentin. All compomer tested (Dyract (R), Compoglass, F2000, Dyract (R) flow, Compoglass Flow) and Vitrebond (TM), Tetric (R) flow were more radiopaque than enamel. The radiopacities of Fuji II LC and Revolution (TM) were between enamel and dentin and resin-modified glass ionomer cement, Compomer and Tetric (R) flow were greater than those of Revolution (TM), Aeliteflo (TM) or dentin. The level of radiopacity of the tested materials was variable; those with low radiopacity should be avoided in class II restorations, where a clear determination of recurrent caries by the examining clinician could be compromised. Clinician should be able to distinguish these cavity lining materials radiographically from recurrent decay, voids, gaps, or other defects that lead to clinical failure. Utilization of materials ranked more radiopaque than enamel would enable clinicians to distinguish the lining material from tooth structure.

  3. A study on the radiopacity of cavity lining materials for posterior composite resin restoration

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hoon [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Chosun University, Kwangju (Korea, Republic of); Choi, Eui Hwan [Dept. of Conservative Dentistry, College of Dentistry, Chosun University, Kwangju (Korea, Republic of)

    2000-12-15

    The aim of this study was to determine the relative radiopacities of cavity lining materials (Resin-modified Glass Ionomer cement, Compomer and Flowable resin) for posterior composite resin restoration. Resin-modified glass ionomer cement (Fuji II LC, Vitrebond (TM)), Compomers (Dyract , Compoglass, F2000, Dyract(R) flow Compoglass Flow) and Flowable resins (Tetric (R) flow, Aeliteflo (TM) Revolution (TM)) were used. Five specimens of 5 mm in diameter and 2 mm thick were fabricated with each material. Human molars were horizontally sectioned 2 mm thick to include both enamel and dentin. The radiopacities of enamel, dentin, cavity lining materials, aluminum step wedge were obtained from conventional radiograph and NIH image program. All the tested lining materials showed levels of radiopacity the same as or greater than that of dentin. All compomer tested (Dyract (R), Compoglass, F2000, Dyract (R) flow, Compoglass Flow) and Vitrebond (TM), Tetric (R) flow were more radiopaque than enamel. The radiopacities of Fuji II LC and Revolution (TM) were between enamel and dentin and resin-modified glass ionomer cement, Compomer and Tetric (R) flow were greater than those of Revolution (TM), Aeliteflo (TM) or dentin. The level of radiopacity of the tested materials was variable; those with low radiopacity should be avoided in class II restorations, where a clear determination of recurrent caries by the examining clinician could be compromised. Clinician should be able to distinguish these cavity lining materials radiographically from recurrent decay, voids, gaps, or other defects that lead to clinical failure. Utilization of materials ranked more radiopaque than enamel would enable clinicians to distinguish the lining material from tooth structure.

  4. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  5. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  6. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  7. Wave-Vector Dependence of the Jahn-Teller Interactions in TmVO4

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Hayes, W.; Smith, S. H.

    1975-01-01

    The resonant Jahn-Teller coupling of the B2g acoustic phonon and the Zeeman-split ground doublet in TmVO4 has been studied by inelastic neutron scattering. Tuning of the magnetic field provides a means for investigating the wave-vector dependence of the interactions. We find that the coupling...... is constant in the region where the phonon dispersion is linear, up to 0.4 of the distance to the zone boundary. This agrees with the predictions of a Debye model....

  8. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  9. Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal

    Science.gov (United States)

    Wang, Yi; Lan, Jinglong; Zhou, Zhiyong; Guan, Xiaofeng; Xu, Bin; Xu, Huiying; Cai, Zhiping; Wang, Yan; Tu, Chaoyang

    2017-04-01

    We report on a diode-pumped Tm:Gd3Ga5O12 (GGG) laser at 2004 nm operated in continuous-wave mode with two-mirror linear cavity configuration. The maximum output power reaches 0.58 W with laser threshold absorbed pump power of about 0.39 W and overall slope efficiency of about 18.4%, which is believed to be the highest output power for Tm:GGG laser up to now. The Tm:GGG laser shows obvious thermally induced saturation of the output power, which indicated that power and efficiency scaling could be furtherly realized by more efficient thermal removal of the laser crystal.

  10. MRI tracheomalacia (TM) assessment in pediatric patients

    DEFF Research Database (Denmark)

    Ciet, P.; Wielopolski, P.; Lever, S.

    Purpose: TM is an excessive narrowing of the intrathoracic part of the trachea. TM is a common congenital pediatric anomaly, but it’s often not recognized due to its unspecific clinical presentation. The aims of our study are: 1) to develop cine-MRI sequences to visualize central airways in static...... 3mm3 voxels. “Dynamic” scans were performed with the same parameters but covering only the central thorax (1/3 volume), temporal resolution was 500 ms per volume using the TRICKS. In-house developed software for segmentation and analysis was used. Results: All subjects managed to follow the required...... breathing maneuvers. Images of central airways during static and dynamic conditions were acquired and could be analyzed. Three out of the 8 children had a TM just above the carina during forced expiration, confirmed by bronchoscopy. Conclusion: This pilot study shows that Dynamic-MRI is feasible...

  11. PC server ULTRASAVER{sub TM} MAGNIA{sub TM} 7010FR; PC server ULTRASAVER{sub TM} MAGNIA{sub TM} 7010FR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A PC server ULTRASAVER{sub TM} MAGNIA{sub TM} 7010FR has been commercialized, with its reliability enhanced thanks to a newly installed failure-remedy function. In this field of business, it is the first high-performance CPU Pentium(reg sign) III Xeon-loaded server equipped with the quick rollback mechanism which is a failure remedy function. The design enables the system to return to the previous step for re-execution in case of a transient failure, and this in turn realizes a 50% reduction (according to Toshiba's survey) in server stoppage for the enhancement of reliability. The server is shipped with a MAGNIA{sub TM} RESCUE service (valid for one year) incorporated thereinto. This program has a log tracing function which collects information on failure and then automatically forwards the information to a maintenance center for log analysis for the assurance of prompt maintenance. (translated by NEDO)

  12. Monte Carlo simulation of the Leksell Gamma Knife{sup TM}: II. Effects of heterogeneous versus homogeneous media for stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim; Timmerman, Robert; DesRosiers, Colleen; Randall, Marcus; DesRosiers, Paul; Dittmer, Phil; Papiez, Lech [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, 535 Barnhill Dr, RT041, IN 46202-5289 (United States)

    2004-11-07

    The absence of electronic equilibrium in the vicinity of bone-tissue or air-tissue heterogeneity in the head can misrepresent deposited dose with treatment planning algorithms that assume all treatment volume as homogeneous media. In this paper, Monte Carlo simulation (PENELOPE) and measurements with a specially designed heterogeneous phantom were applied to investigate the effect of air-tissue and bone-tissue heterogeneity on dose perturbation with the Leksell Gamma Knife{sup TM}. The dose fall-off near the air-tissue interface caused by secondary electron disequilibrium leads to overestimation of dose by the vendor supplied treatment planning software (GammaPlan{sup TM}) at up to 4 mm from an interface. The dose delivered to the target area away from an air-tissue interface may be underestimated by up to 7% by GammaPlan{sup TM} due to overestimation of attenuation of photon beams passing through air cavities. While the underdosing near the air-tissue interface cannot be eliminated with any plug pattern, the overdosage due to under-attenuation of the photon beams in air cavities can be eliminated by plugging the sources whose beams intersect the air cavity. Little perturbation was observed next to bone-tissue interfaces. Monte Carlo results were confirmed by measurements. This study shows that the employed Monte Carlo treatment planning is more accurate for precise dosimetry of stereotactic radiosurgery with the Leksell Gamma Knife{sup TM} for targets in the vicinity of air-filled cavities.

  13. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  14. Concentration effect of Tm3+ on cathodoluminescence properties of SiO2: Tm3+ and SiO2:Ho3+, Tm3+ systems

    CSIR Research Space (South Africa)

    Dhlamini, MS

    2012-05-01

    Full Text Available .physb.2011.09.091 Concentration effect of Tm3+ on cathodoluminescence properties of SiO2: Tm 3+ and SiO2:Ho 3+, Tm3+ systems M.S. Dhlamini, G.H. Mhlongo, H.C. Swart, O.M. Ntwaeaborwa, K.T. Hillie ABSTRACT: Cathodoluminescence (CL) properties of SiO...

  15. Design and test of SX-FEL cavity BPM

    International Nuclear Information System (INIS)

    Yuan Renxian; Zhou Weimin; Chen Zhichu; Yu Luyang; Wang Baopen; Leng Yongbin

    2013-01-01

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM 010 mode in the output signal. The isolation of TM 010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM 110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test. (authors)

  16. EEM{sup TM} wireless supervision

    Energy Technology Data Exchange (ETDEWEB)

    Bilic, H. [Ericsson-Nikola Tesla d.d. Zagreb (Croatia)

    2000-07-01

    By adding the GSM network to the communication level of Energy Management systems, energy operating centres (EOC) can offer wireless access to the supervised equipment. Furthermore EOC can profit from rapid service development in the GSM networks. With implementation of GPRS to the GSM network EOC can instantly offer wireless access to external IP based networks such as Internet and corporate Intranets. The author describes architecture and key characteristic of Ericsson EnergyMaster{sup TM} (EEM{sup TM}) system for Energy Management, how and where to implement wireless supervision, wireless access to IP addresses and also how to implement new services provided by the GSM network. (orig.)

  17. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  18. Reactivation of methionine synthase from Thermotoga maritima (TM0268) requires the downstream gene product TM0269.

    Science.gov (United States)

    Huang, Sha; Romanchuk, Gail; Pattridge, Katherine; Lesley, Scott A; Wilson, Ian A; Matthews, Rowena G; Ludwig, Martha

    2007-08-01

    The crystal structure of the Thermotoga maritima gene product TM0269, determined as part of genome-wide structural coverage of T. maritima by the Joint Center for Structural Genomics, revealed structural homology with the fourth module of the cobalamin-dependent methionine synthase (MetH) from Escherichia coli, despite the lack of significant sequence homology. The gene specifying TM0269 lies in close proximity to another gene, TM0268, which shows sequence homology with the first three modules of E. coli MetH. The fourth module of E. coli MetH is required for reductive remethylation of the cob(II)alamin form of the cofactor and binds the methyl donor for this reactivation, S-adenosylmethionine (AdoMet). Measurements of the rates of methionine formation in the presence and absence of TM0269 and AdoMet demonstrate that both TM0269 and AdoMet are required for reactivation of the inactive cob(II)alamin form of TM0268. These activity measurements confirm the structure-based assignment of the function of the TM0269 gene product. In the presence of TM0269, AdoMet, and reductants, the measured activity of T. maritima MetH is maximal near 80 degrees C, where the specific activity of the purified protein is approximately 15% of that of E. coli methionine synthase (MetH) at 37 degrees C. Comparisons of the structures and sequences of TM0269 and the reactivation domain of E. coli MetH suggest that AdoMet may be bound somewhat differently by the homologous proteins. However, the conformation of a hairpin that is critical for cobalamin binding in E. coli MetH, which constitutes an essential structural element, is retained in the T. maritima reactivation protein despite striking divergence of the sequences.

  19. Design of Super Narrowband DWDM Filters Based on the Effect of Spectral Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C Q; Chen, M [College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006 (China); Liu, J; Wan, Z M; Luo, Z M [College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Tian, P, E-mail: namecqh@yahoo.com.cn [College of Optoelectronic Science and Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2011-02-01

    A novel approach is proposed to design super narrowband DWDM Filters consisting of multiple quantum wells (MQWs) by employing photonic crystals. Numerical investigations prove that the closed-cavity MQWs are more suitable for DWDM systems compared with the open-cavity MQWs. It is shown that different confined states could emerge from photonic band gap, which can be used as high-frequency carriers one-to-one. It is also found that these proposed MQWs could split the single spectral lines into multiples based on the effect of spectral splitting, and the number of the splitting is just equal to the number of the wells. In this way, the density of carriers can be increased multiplicatively in the same wave band, and thus the spectral efficiency can be improved multiplicatively. These results provide the prospects of channel density maximization and effective bandwidth optimization for optical communication.

  20. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    Science.gov (United States)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  1. Associations with Minspeak[TM] Icons

    Science.gov (United States)

    van der Merwe, Elmarie; Alant, Erna

    2004-01-01

    Although the Minspeak[TM] approach is used on communication devices worldwide, little research has been conducted on its applicability within specific cultural contexts. The impact that users' familiarity of symbols and associations can have on learnability necessitates more systematic research. This study was an investigation into the…

  2. The split coaxial linac structure and its RF modes

    International Nuclear Information System (INIS)

    Mueller, R.W.

    1989-01-01

    The Split Coaxial Cavity structure has been invented and applied for the first time in the heavy-ion RFQ linac MAXILAC of GSI. It has an ideally flat RF voltage distribution and a good power economy. From another standpoint, it is a member of the small family of linac structures where the two modes, the wanted one and the unflatness mode, are clearly and strictly separable. The unflatness or ''Q Line'' mode is analyzed in more detail in this paper. It is necessary for the understanding of the interaction of the beam with the cavity, possible beam instabilities resulting from it, and for curing these instabilities with the chance of obtaining improved beams. (orig.)

  3. Cavity polaritons in one-dimensional photonic crystals containing dye molecule-titanate nanosheet hybrids

    Science.gov (United States)

    Ishii, Kenta; Suzuki, Makoto; Chen, Changdong; Feng, Qi; Nakanishi, Shunsuke; Tsurumachi, Noriaki

    2014-02-01

    We investigated the optical properties of one dimensional photonic crystal (1D-PC) microcavity with a wedge-shaped cavity layer containing fluorescent pseudoisocyanine (PIC)-gelatin and nonfluorescent PIC-H1.07Ti1.73O4•nH2O (HTO) nanohybrids. In the case of the PIC-gelatin, the formation of cavity polaritons with a Rabi splitting energy of 49.2 meV was clearly observed. Contrary to our expectations, the formation of cavity polaritons in the case of the PIC-HTO nanohybrids was also observed, even though their splitting energy of 5.8 meV was small. Although different possible explanations were considered, at present, there is insufficient information to completely explain the phenomena. The formation of cavity polaritons with nonfluorescent excitons is indeed very rare and therefore interesting.

  4. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  5. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  6. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.

    1992-01-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  7. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  8. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  9. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  10. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  11. What's a Cavity?

    Science.gov (United States)

    ... and deeper over time. Cavities are also called dental caries (say: KARE-eez), and if you have a ... made up mostly of the germs that cause tooth decay. The bacteria in your mouth make acids and when plaque clings to your teeth, the acids can eat away at the outermost ...

  12. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  13. Splitting strings on integrable backgrounds

    International Nuclear Information System (INIS)

    Vicedo, Benoit

    2011-05-01

    We use integrability to construct the general classical splitting string solution on R x S 3 . Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet σ-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL 2 (C). (orig.)

  14. BIRADS{sup TM} classification in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Balleyguier, Corinne [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France)]. E-mail: balleyguier@igr.fr; Ayadi, Salma [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Van Nguyen, Kim [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Vanel, Daniel [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Dromain, Clarisse [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Sigal, Robert [Department of Radiology, Institut de Cancerologie Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France)

    2007-02-15

    The Breast Imaging Report and Data System (BIRADS) of the American College of Radiology (ACR) is today largely used in most of the countries where breast cancer screening is implemented. It is a tool defined to reduce variability between radiologists when creating the reports in mammography, ultrasonography or MRI. Some changes in the last version of the BIRADS{sup TM} have been included to reduce the inaccuracy of some categories, especially for category 4. The BIRADS{sup TM} includes a lexicon and descriptive diagrams of the anomalies, recommendations for the mammographic report as well as councils and examples of mammographic cases. This review describes the mammographic items of the BIRADS classification with its more recent developments, while detailing the advantages and limits of this classification.

  15. PRIze{sup TM} 1.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    PRIze{sup TM} 1.2 is a computer program that evaluates the improved oil recovery (IOR) potential of petroleum reservoirs including the use of horizontal wells. It was created in 1992 and has since been used in over 800 reservoir evaluations. The tool provides information on the feasibility of IOR processes based on reservoir parameters. PRIze{sup TM} makes predictions for chemical, gas injection and thermal IOR processes based on both vertical and horizontal wells. The program provides a uniform data entry screen that allows the user to input 42 average values of geological parameters, fluid properties and oil production mechanism information into a data file. The data can be used to provide a production forecast, and enable the user to establish, to a first order approximation, the economic viability of a given process.

  16. Regenerative BBU starting currents in standing wave cavities

    International Nuclear Information System (INIS)

    Vetter, A.M.; Buller, T.L.

    1992-01-01

    An analytical method for determining regenerative beam breakup (BBU) starting current, in which the contributions of single-cell field configuration and multi-cell structure mode are separated, is described. The field configuration within each cell is determined to close approximation through the use of mesh codes, which also relate the wall losses to the voltage drop along the beam path. The cell-to-cell amplitude variation may be determined by bead pull measurements on model cavities, or by assuming idealized structure modes. As an example, the I S Q L product for TM 110 -like modes of a 433-MHz, 5-cell, slot-coupled cavity is obtained. (author). 3 figs

  17. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W ...

  18. VBSCan Split 2017 Workshop Summary

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Christoph Falk; et al.

    2018-01-12

    This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.

  19. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    journal of. November 2006 physics pp. 793–802. Split supersymmetry in brane models. IGNATIOS ANTONIADIS∗. Department of Physics, CERN-Theory Division, 1211 Geneva 23, Switzerland. E-mail: Ignatios. ... that LEP data favor the unification of the three SM gauge couplings are smoking guns for the presence of new ...

  20. Water splitting by cooperative catalysis

    NARCIS (Netherlands)

    Hetterscheid, D.G.H.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.

    2009-01-01

    A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced

  1. On split Lie triple systems

    Indian Academy of Sciences (India)

    Lie triple system; system of roots; root space; split Lie algebra; structure theory. 1. Introduction and previous definitions. Throughout this paper, Lie triple systems T are considered of arbitrary dimension and over an arbitrary field K. It is worth to mention that, unless otherwise stated, there is not any restriction on dim Tα or {k ...

  2. On split Lie triple systems

    Indian Academy of Sciences (India)

    The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems. Author Affiliations. Antonio J Calderón Martín1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 25 January 2008. Proceedings – Mathematical Sciences.

  3. Changeability of Oral Cavity Environment

    OpenAIRE

    Surdacka, Anna; Strzyka?a, Krystyna; Rydzewska, Anna

    2007-01-01

    Objectives In dentistry, the results of in vivo studies on drugs, dental fillings or prostheses are routinely evaluated based on selected oral cavity environment parameters at specific time points. Such evaluation may be confounded by ongoing changes in the oral cavity environment induced by diet, drug use, stress and other factors. The study aimed to confirm oral cavity environment changeability. Methods 24 healthy individuals aged 20?30 had their oral cavity environment prepared by having p...

  4. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  5. Single-cavity SLED device

    International Nuclear Information System (INIS)

    Lippmann, B.A.

    1984-09-01

    The conventional SLED device used at SLAC requires two cavities. However, the same effect can be obtained with a single cavity; the theory and operation of the device is the same, only the hardware is changed. The single-cavity device is described here

  6. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  7. Colloquium: cavity optomechanics

    CERN Multimedia

    2011-01-01

    Monday 14 November 2011, 17:00 Ecole de Physique, Auditoire Stueckelberg Université de Genève Cavity optomechanics: controlling micro mechanical oscillators with laser light Prof. Tobias Kippenberg EPFL, Lausanne Laser light can be used to cool and to control trapped ions, atoms and molecules at the quantum level. This has lead to spectacular advances such as the most precise atomic clocks. An outstanding frontier is the control with lasers of nano- and micro-mechancial systems. Recent advances in cavity optomechanics have allowed such elementary control for the first time, enabling mechanical systems to be ground state cooled leading to readout with quantum limited sensitivity and permitting to explore new device concepts resulting from radiation pressure.  

  8. Digital Cavity Resonance Monitor, alternative method of measuring cavity microphonics

    International Nuclear Information System (INIS)

    Tomasz Plawski; G. Davis; Hai Dong; J. Hovater; John Musson; Thomas Powers

    2005-01-01

    As is well known, mechanical vibration or microphonics in a cryomodule causes the cavity resonance frequency to change at the vibration frequency. One way to measure the cavity microphonics is to drive the cavity with a Phase Locked Loop. Measurement of the instantaneous frequency or PLL error signal provides information about the cavity microphonic frequencies. Although the PLL error signal is available directly, precision frequency measurements require additional instrumentation, a Cavity Resonance Monitor (CRM). The analog version of such a device has been successfully used for several cavity tests [1]. In this paper we present a prototype of a Digital Cavity Resonance Monitor designed and built in the last year. The hardware of this instrument consists of an RF downconverter, digital quadrature demodulator and digital processor motherboard (Altera FPGA). The motherboard processes received data and computes frequency changes with a resolution of 0.2 Hz, with a 3 kHz output bandwidth

  9. Broadband Comb-Resolved Cavity Enhanced Spectrometer with Graphene Modulator

    Science.gov (United States)

    Lee, Kevin; Mohr, Christian; Jiang, Jie; Fermann, Martin; Lee, Chien-Chung; Schibli, Thomas R.; Kowzan, Grzegorz; Maslowski, Piotr

    2015-06-01

    Optical cavities enhance sensitivity in absorption spectroscopy. While this is commonly done with single wavelengths, broad bandwidths can be coupled into the cavity using frequency combs. The combination of cavity enhancement and broad bandwidth allows simultaneous measurement of tens of transitions with high signal-to-noise for even weak near-infrared transitions. This removes the need for time-consuming sequencing acquisition or long-term averaging, so any systematic errors from long-term drifts of the experimental setup or slow changes of sample composition are minimized. Resolving comb lines provides a high accuracy, absolute frequency axis. This is of great importance for gas metrology and data acquisition for future molecular lines databases, and can be applied to simultaneous trace-gas detection of gas mixtures. Coupling of a frequency comb into a cavity can be complex, so we introduce and demonstrate a simplification. The Pound-Drever-Hall method for locking a cavity and a frequency comb together requires a phase modulation of the laser output. We use the graphene modulator that is already in the Tm fiber laser cavity for controlling the carrier envelope offset of the frequency comb, rather than adding a lossy external modulator. The graphene modulator can operate at frequencies of over 1~ MHz, which is sufficient for controlling the laser cavity length actuator which operates below 100~kHz. We match the laser cavity length to fast variations of the enhancement cavity length. Slow variations are stabilized by comparison of the pulse repetition rate to a GPS reference. The carrier envelope offset is locked to a constant value chosen to optimize the transmitted spectrum. The transmitted pulse train is a stable frequency comb suitable for long measurements, including the acquisition of comb-resolved Fourier transform spectra with a minimum absorption coefficient of about 2×10-7 wn. For our 38 cm long enhancement cavity, the comb spacing is 394~MHz. With our

  10. Ab initio structures and stabilities of HeTM3+ (TM=Sc-Cu)

    International Nuclear Information System (INIS)

    Wilson, David J.D.; Marsden, Colin J.; Nagy-Felsobuki, Ellak I. von

    2002-01-01

    The electronic structure and molecular properties of triply charged transition metal helides, HeTM 3+ (where TM = Sc-Cu), have been investigated employing CCSD(T), MCSCF and MRCI methods. Dissociation energies and harmonic vibrational frequencies have also been determined. For all the triply charged helides, the ground state is dominated by the 3d n electronic configuration. In addition, states with configurations that have holes in the metal 3d σ orbital exhibit greater binding energies. The suitability of single-reference methods and diagnostics for this series has been investigated, with the MCSCF wave function being the most reliable diagnostic tool for the applicability of SCF methods

  11. Nanohybrid vs. fine hybrid composite in extended Class II cavities after six years

    NARCIS (Netherlands)

    Krämer, N.; García-Godoy, F.; Reinelt, C.; Feilzer, A.J.; Frankenberger, R.

    2011-01-01

    Objectives In a controlled prospective split-mouth study, clinical behavior of two different resin composites in extended Class II cavities was observed over six years. Methods Thirty patients received 68 direct resin composite restorations (Solobond M + Grandio: n = 36; Syntac + Tetric Ceram: n =

  12. Stability of split Stirling refrigerators

    International Nuclear Information System (INIS)

    Waele, A T A M de; Liang, W

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold finger are connected by a flexible tube. The displacer in the cold head is suspended by a spring. Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility of spontaneous mechanical oscillations if a large temperature gradient develops in the cold finger, e.g. during or after cool down. These oscillations would be superimposed on the pressure oscillations of the compressor and could ruin the cooler performance.

  13. Controlled Synthesis of a Three-Segment Heterostructure for High-Performance Overall Water Splitting.

    Science.gov (United States)

    Hui, Lan; Xue, Yurui; Jia, Dianzeng; Zuo, Zicheng; Li, Yongjun; Liu, Huibiao; Zhao, Yingjie; Li, Yuliang

    2018-01-17

    Developing earth-abundant, highly active, and robust electrocatalysts capable of both oxygen and hydrogen evolution reactions is crucial for the commercial success of renewable energy technologies. Here we demonstrate a facile and universal strategy for fabricating transition metal (TM) sulfides by controlling the atomic ratio of TM precursors for water splitting in basic media. Density functional theory calculations reveal that the incorporation of Fe/Co can significantly improve the catalytic performance. The optimal material exhibits extremely small overpotentials of 208 mV for oxygen evolution and 68 mV for hydrogen evolution at 10 mA cm -2 with robust long-term stability. The optimized material was used as bifunctional electrodes for overall water splitting, which delivers 10 mA cm -2 at a very low cell voltage of 1.44 V with robust stability over 80 h at 100 mA cm -2 without degradation, much better than the combination of Pt and RuO 2 as benchmark catalysts. The excellent water-splitting performance sheds light on the promising potential of such sulfides as high activity and robust stable electrodes.

  14. Vertical cold test of the crab cavity with a co-axial beam pipe

    International Nuclear Information System (INIS)

    Morita, Y.; Hara, K.; Hosoyama, K.; Kabe, A.; Kojima, Y.; Nakai, H.; Inoue, M.; Ohkubo, K.

    2003-01-01

    A crab cavity was designed for the KEKB electron-positron collider-accelerator. The aim of this cavity is to deflect the beam bunch and realize the crab-crossing scheme. The cavity, operating in the TM110 mode, has a squashed cell with a co-axial beam pipe coupling scheme to extract the lowest order mode (TM010). Operating voltage should be high enough to deflect a beam bunch for a finite beam-crossing angle. For the R and D of this complicated structure, we have fabricated a prototype cavity and a simplified inner conductor for the co-axial beam pipe structure. We tested the RF performance of the cavity with the inner conductor in a vertical cryostat. During the tests, a serious Q-degradation was observed, which is so called Hydrogen Q-disease'. A calorimetric RF loss measurement showed that the loss at the inner conductor is a cause of the Q-degradation. We applied a quick cool-down procedure to the inner conductor and achieved a required deflecting voltage. (author)

  15. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2015-01-01

    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  16. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...

  17. Endodontic treatment of dens evaginatus by performing a splint guided access cavity.

    Science.gov (United States)

    Mena-Álvarez, Jesús; Rico-Romano, Cristina; Lobo-Galindo, Ana Belén; Zubizarreta-Macho, Álvaro

    2017-11-12

    Dens evaginatus (DE) is described as an unusual dental malformation. Tooth structure variations attached to this anatomical disturbance complicates the performance of a conservative access cavity for a conventional root canal treatment. Author's purpose is to describe the treatment of a type V DE by using splits as guides to perform access cavity. This clinical case shows a root canal treatment of a type V DE diagnosed by using a cone beam computed tomography (CBCT). Access cavity was planned through an osseointegrated implant planning software and guided by a stereolithographied split. After endodontic treatment, tooth was sculpted for placing a veneer, processed by a chair-side system in a single session. CBCT is an effective method for obtaining internal anatomical information of teeth with anatomical malformations. The osseointegrated implant planning software is an effective method for planning root canal treatment and designing stereolithograped splits (for performing minimally invasive access cavities). Stereolithographed splints allow performing a guided and conservative access cavity of teeth affected by dental malformations whereas digital technology allows us to esthetically reconstruct a tooth in a single session. © 2017 Wiley Periodicals, Inc.

  18. Displacement sensor based on intra-cavity tuning of dual-frequency gas laser

    Science.gov (United States)

    Niu, Haisha; Niu, Yanxiong; Liu, Ning; Li, Jiyang

    2018-01-01

    A nanometer-resolution displacement measurement instrument based on tunable cavity frequency-splitting method is presented. One beam is split into two orthogonally polarized beams when anisotropic element inserted in the cavity. The two beams with fixed frequency difference are modulated by the movement of the reflection mirror. The changing law of the power tuning curves between the total output and the two orthogonally polarized beams is researched, and a method splitting one tuning cycle to four equal parts is proposed based on the changing law, each part corresponds to one-eighth wavelength of displacement. A laser feedback interferometer (LFI) and piezoelectric ceramic are series connected to the sensor head to calibrate the displacement that less than one-eighth wavelength. The displacement sensor achieves to afford measurement range of 20mm with resolution of 6.93nm.

  19. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  20. Powernext Day-AheadTM. Powernext futuresTM. Activity report - 2004

    International Nuclear Information System (INIS)

    2004-01-01

    The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing the French power exchange through an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document is the 2004 activity report of Powernext SA, it presents the key figures of the power market and of Powernext in 2004: - Increasing volumes: Powernext Day-Ahead TM 's traded volumes increased by 89%, from 7.48 to 14.18 TWh. Powernext Futures TM kicks off to a promising debut with 12.86 TWh traded in less than 7 months. - Less volatile prices: During 2004, the base price averaged 28.13 euro/MWh, and the peak prices averaged 33.71 euro/MWh. Compared to 2003, these prices decreased by an average of 3.7% on base-load and 10.9% on peak-load. In comparison to the two previous years, the daily volatility has noticeably settled down with 27% on base-load and 37% on peak-load. - Increasing liquidity: 10 new members joined Powernext Day-Ahead TM in 2004. The activity level of the members remains very high as 89% of them trade on an actual daily basis during 2004. The market resiliency stays strong. In December, an additional market 50 MW order on each hour resulted in a balance price variation of only 0.16 euro/MWh, or 0.53% of this balance price. For a 100 MW order, the resiliency is 0.32 euro/MWh, or 1.07% of the balance price. Thus, in 2004, Powernext Day-Ahead TM consolidates its role as a short term reference price. Moreover, in 2004, Powernext launched a futures market, Powernext Futures TM . This new market segment proposes contracts tradable up to 2 years ahead of delivery

  1. First-principles study of spin-polarized electronic band structures in ferromagnetic Zn1-xTMxS (TM = Fe, Co and Ni)

    KAUST Repository

    Saeed, Yasir

    2010-10-01

    We report a first-principles study of structural, electronic and magnetic properties of crystalline alloys Zn1-xTMxS (TM = Fe, Co and Ni) at x = 0.25. Structural properties are computed from the total ground state energy convergence and it is found that the cohesive energies of Zn 1-xTMxS are greater than that of zincblende ZnS. We also study the spin-polarized electronic band structures, total and partial density of states and the effect of TM 3d states. Our results exhibit that Zn 0.75Fe0.25S, Zn0.75Co0.25S and Zn0.75Ni0.25S are half-metallic ferromagnetic with a magnetic moment of 4μB, 3μB and 2μB, respectively. Furthermore, we calculate the TM 3d spin-exchange-splitting energies Δx (d), Δx (x-d), exchange constants N0α and N0β, crystal field splitting (ΔEcrystEt2g-Eeg), and find that p-d hybridization reduces the local magnetic moment of TM from its free space charge value. Moreover, robustness of Zn1-xTMxS with respect to the variation of lattice constants is also discussed. © 2010 Elsevier B.V. All rights reserved.

  2. Optical Properties of Tm(3+) Ions in Alkali Germanate Glass

    Science.gov (United States)

    Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin

    2006-01-01

    Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.

  3. Structural and functional importance of transmembrane domain 3 (TM3) in the aspartate:alanine antiporter AspT: topology and function of the residues of TM3 and oligomerization of AspT.

    Science.gov (United States)

    Nanatani, Kei; Maloney, Peter C; Abe, Keietsu

    2009-04-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a

  4. Structural and Functional Importance of Transmembrane Domain 3 (TM3) in the Aspartate:Alanine Antiporter AspT: Topology and Function of the Residues of TM3 and Oligomerization of AspT▿

    Science.gov (United States)

    Nanatani, Kei; Maloney, Peter C.; Abe, Keietsu

    2009-01-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a

  5. Oral cavity eumycetoma

    Directory of Open Access Journals (Sweden)

    Gisele Alborghetti Nai

    2011-06-01

    Full Text Available Mycetoma is a pathological process in which eumycotic (fungal or actinomycotic causative agents from exogenous source produce grains. It is a localized chronic and deforming infectious disease of subcutaneous tissue, skin and bones. We report the first case of eumycetoma of the oral cavity in world literature. CASE REPORT: A 43-year-old male patient, complaining of swelling and fistula in the hard palate. On examination, swelling of the anterior and middle hard palate, with fistula draining a dark liquid was observed. The panoramic radiograph showed extensive radiolucent area involving the region of teeth 21-26 and the computerized tomography showed communication with the nasal cavity, suggesting the diagnosis of periapical cyst. Surgery was performed to remove the lesion. Histopathological examination revealed purulent material with characteristic grain. Gram staining for bacteria was negative and Grocott-Gomori staining for the detection of fungi was positive, concluding the diagnosis of eumycetoma. The patient was treated with ketoconazole for nine months, and was considered cured at the end of treatment. CONCLUSION: Histopathological examination, using histochemical staining, and direct microscopic grains examination can provide the distinction between eumycetoma and actinomycetoma accurately.

  6. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.

    1998-01-01

    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  7. Development of large grain cavities

    Directory of Open Access Journals (Sweden)

    W. Singer

    2013-01-01

    Full Text Available DESY activities on 1.3 GHz tesla shape single cell and nine-cell large grain (LG resonators are presented; results of the past five years are covered. The R&D program explores the potential for production of elliptical superconducting cavities. The main efforts have been devoted to material investigation, development of LG disk production, cavity fabrication from this material, and a search for appropriate treatment. More than 250 LG disks are manufactured; several single cell and 11 nine-cell resonators are produced and rf tested after buffered chemical polishing and after additional electropolishing. A maximum accelerating gradient of approximately 45  MV/m for this type of cavity was achieved in two resonators. Two of the LG cavities have been installed and are currently being used in the FLASH accelerator operation. Assembly of a cryomodule, consisting of LG cavities only, is in the works. Perspectives of the LG cavity application are discussed.

  8. Parallel BLAST on split databases.

    Science.gov (United States)

    Mathog, David R

    2003-09-22

    BLAST programs often run on large SMP machines where multiple threads can work simultaneously and there is enough memory to cache the databases between program runs. A group of programs is described which allows comparable performance to be achieved with a Beowulf configuration in which no node has enough memory to cache a database but the cluster as an aggregate does. To achieve this result, databases are split into equal sized pieces and stored locally on each node. Each query is run on all nodes in parallel and the resultant BLAST output files from all nodes merged to yield the final output. Source code is available from ftp://saf.bio.caltech.edu/

  9. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  10. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.

    Science.gov (United States)

    He, Yong; Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2012-07-15

    We propose a theoretical scheme to determine the vacuum Rabi splitting in a single semiconductor quantum dot (SQD) induced by a metal nanoparticle (MNP). Based on cavity quantum electrodynamics, the exciton-plasmon interaction between the SQD and the MNP is considered while a strong pump laser and a weak probe laser are simultaneously presented. By decreasing the distance between them, we can increase the coupling strength. At resonance, thanks to the strong coupling, a vacuum Rabi splitting can be observed clearly in the probe absorption spectrum. The coupling strength can be obtained by measuring the vacuum Rabi splitting. This strong coupling is significant for the investigation of surface-plasmon-based quantum information processing.

  11. MEDICI reactor cavity model

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Trebilcock, W.

    1983-01-01

    The MEDICI reactor cavity model is currently under development with the goal of providing a flexible, relatively realistic treatment of ex-vessel severe accident phenomena suitable for large-system codes like CONTAIN and MELCOR. The code is being developed with an emphasis on top-down design, to facilitate adaptability and multiple applications. A brief description of the overall code structure is provided. One of the key new models is then described in more detail. This is a dynamic quench model for debris beds. An example calculation using this model is presented. The question of whether it is necessary to consider the simultaneous motion of the quench front and ablation of the concrete is addressed with some scoping models

  12. MRI tracheomalacia (TM) assessment in pediatric patients

    DEFF Research Database (Denmark)

    Ciet, P.; Wielopolski, P.; Lever, S.

    and dynamic conditions in patients that were able to follow specific breathing manoeuvres;2) to develop post-processing tools for image analysis. Methods and Materials: To date 10 subjects (7 males; 2 adults) were enrolled in the pilot study: mean age 15, (range 6 to 30yrs). Volunteers were trained to perform...... spirometry controlled breathing maneuvers (peak flow and coughing) using a MRI compatible spirometer. “Static” 13-second breath-hold scans covering the entire thoracic region were acquired at end-inspiration and end-expiration using a 3D GRE with TR/TE=1.2/0.5 ms, alpha = 2, sagittal isotropic volume (2.8) x...... breathing maneuvers. Images of central airways during static and dynamic conditions were acquired and could be analyzed. Three out of the 8 children had a TM just above the carina during forced expiration, confirmed by bronchoscopy. Conclusion: This pilot study shows that Dynamic-MRI is feasible...

  13. Physical mechanism of beam splitting based on reflective embedded double-layer grating

    Science.gov (United States)

    Wang, Bo; Li, Hongtao; Shu, Wenhao; Li, Wenhua; Chen, Li; Lei, Liang; Zhou, Jinyun

    2016-12-01

    It is not easy to achieve high performance for conventional beam splitters, such as high efficiency, good uniformity, polarization-independence, and wide bandwidth. A reflective embedded double-layer grating is described for beam splitting. With optimized grating profiles, the novel beam splitter can diffract both TE and TM polarizations into two orders with high performance. For the easy production, the fabrication tolerance is investigated and given. Most importantly, efficiencies more than 45% can be split into two orders within the wide bandwidth of 1412-1647 nm for TE polarization. The beam splitter based on multilayer coatings is sensitive to the incident angle and wavelength. And the bandwidth needs to be improved for the beam splitter based on simple grating. The design is of benefit for the performance improvement of the beam splitter by new grating configuration compared with the conventional simple grating.

  14. Cavity solitons in a microring dimer with gain and loss

    Science.gov (United States)

    Milián, Carles; Kartashov, Yaroslav V.; Skryabin, Dmitry V.; Torner, Lluis

    2018-03-01

    We address a pair of vertically coupled microring resonators with gain and loss pumped by a single-frequency field. Coupling between microrings results in a twofold splitting of the single microring resonance that increases when gain and losses decrease and that gives rise to two different cavity soliton (CS) families. We show that the existence regions of CSs are tunable and that both CS families can be stable in the presence of an imbalance between gain and losses in the two microrings. These findings enable experimental realization of frequency combs in configurations with active microrings and contribute towards the realization of compact multisoliton comb sources.

  15. Spectroscopic analysis of LiTmF4

    DEFF Research Database (Denmark)

    Christensen, H.P.

    1979-01-01

    The absorption spectra of Tm3+ in LiTmF4 have been measured at 2, 10, 30, and 50 K in the spectral interval 4000-25 000 cm-1. The energy levels of the ground-state configuration were calculated by diagonalizing the Hamiltonian of the electron-electron interaction, the spin-orbit coupling, and the...

  16. Accelerated Math[TM]. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2011

    2011-01-01

    "Accelerated Math"[TM], published by Renaissance Learning, is a software tool used to customize assignments and monitor progress in math for students in grades 1-12. The "Accelerated Math"[TM] software creates individualized assignments aligned with state standards and national guidelines, scores student work, and generates…

  17. SpellRead[TM]. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2013

    2013-01-01

    "SpellRead"[TM], formerly known as "SpellRead Phonological Auditory Training"[R], is a small-group literacy program for struggling readers in grades 2-12. "SpellRead"[TM] integrates the auditory and visual aspects of the reading process and emphasizes specific skill mastery through systematic and explicit instruction.…

  18. Efficacy of porcine dermal collagen (Permacol TM ) injection for ...

    African Journals Online (AJOL)

    Efficacy of porcine dermal collagen (Permacol TM ) injection for passive faecal incontinence in a dedicated Colorectal Unit at the Wits Donald Gordon Medical ... Conclusion: Trans-anal submucosal PermacolTM injections produced a significant improvement in both faecal continence and quality of life scores in patients with ...

  19. Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.

    Science.gov (United States)

    Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua

    2012-05-01

    We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.

  20. Dissolution kinetics and morphological changes of γ′ in AD730TM superalloy

    Directory of Open Access Journals (Sweden)

    Masoumi F.

    2014-01-01

    Full Text Available Alloy AD730TM is a recently developed Nickel base superalloy for application as turbine disk in modern gas turbines with improved thermal efficiency. Ingot casting followed by open die-forging and then heat treatments are the main manufacturing steps for the production of parts made of this alloy. Solution heat treatment operations are applied at different stages of the manufacturing in order to ease the deformation processing and/or prepare the microstructure for final heat treatment. In this research, the influence of various solution heat treatment schedules on morphology and distribution of the γ′ phase are investigated and documented. The obtained results will contribute to a better understanding of microstructure evolution of AD730TM during solution heat treatments. Differential Thermal Analysis (DTA is used for the purposes of measurement of temperatures of phase transformations of the alloy. Based on DTA results, three solutionizing temperatures and three holding times were selected for performing and assessing the solution heat treatment process. Optical and electron microscopy were used to study the morphological evolution as well as the coarsening and dissolution of secondary phases at solvus and subsolvus temperatures. The results indicated that precipitate agglomeration and Ostwald ripening are the governing mechanisms during the initial stages and splitting and partial dissolution of γ′ precipitates takes place during subsolvus solution treatments.

  1. The first direct measurement of the hyperfine splitting in positronium

    Energy Technology Data Exchange (ETDEWEB)

    Suehara, T; Ishida, A; Namba, T; Asai, S; Kobayashi, T [Department of Physics and ICEPP, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 33-0033 (Japan); Saitot, H [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 (Japan); Yoshida, M [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Idehara, T; Ogawa, I; Kobayashi, S [FIR Center, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507 (Japan); Sabchevski, S, E-mail: suehara@icepp.s.u-tokyo.ac.j [Bulgarian Academy of Science, 1, 15 Noemvri Str., 1040 Sofia (Bulgaria)

    2009-03-01

    Positronium is an ideal system for the research of the QED. The hyperfine splitting of positronium (Ps-HFS) is sensitive to the new physics beyond the Standard Model via a vacuum oscillation. Previous experimental results of the Ps-HFS show 3.5 {sigma} discrepancy from the QED calculation, and it might be caused by uncertainties of the indirect method with static magnetic field and a few GHz RF. We developed a new direct measurement system of the Ps-HFS without static magnetic field, using a sub-THz gyrotron and a quasi-optical Fabry-Perot cavity. Status (hopefully the first result) of the direct positronium hyperfine transition observation will be presented.

  2. Analysis of a multi-module split coaxial RFQ

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1986-11-01

    A split coaxial RFQ linac with modulated vanes is under development for acceleration of very heavy ions. As a first step, a 1/4 scaled model with flat vanes has been constructed. Easy assembling of vanes and good mechanical stability of the structure have been achieved by employing a multi-module cavity arrangement. In this paper, theoretical treatments for the estimation of rf parameters and the interpretation of resonance characteristics are described in detail and their results are compared with the experimental data. The resonant frequency predicted by using the estimated inductance and the measured capacitance agrees with the experimental value within 2 % accuracy. Dispersion characteristics and longitudinal voltage distribution at each resonance mode are qualitatively well explained by an equivalent circuit analysis. (author)

  3. Sealing ability of grar MTA AngelusTM, CPM TM and MBPc used as apical plugs

    Directory of Open Access Journals (Sweden)

    Fernando Accorsi Orosco

    2008-02-01

    Full Text Available This study evaluated the sealing ability of apical plugs fabricated with gray MTA AngelusTM sealer, CPM TM sealer and MBPc sealer. The root canals of 98 extracted single-rooted human teeth were instrumented with #5 to #1 Gates Glidden drills according to the crown-down technique until the #1 drill could pass through the apical foramen. The specimens were then prepared with K-files, starting with an ISO 50 until an ISO 90 could be visualized 1 mm beyond the apex. After root canal preparation, the external surface of each root was rendered impermeable and roots were assigned to 3 experimental groups (n = 30, which received a 5-mm thick apical plug of gray MTA AngelusTM, CPM TM and MBPc, and two control groups (n=4. The remaining portion of the canal in the experimental groups was filled by the lateral condensation technique. The teeth of each group, properly identified, were fixed on utility wax by their crowns and were placed in plastic flasks, leaving the apex free and facing upward. The flasks were filled with 0.2% Rhodamine B solution, pH 7.0, so as to completely cover the root apex of all teeth. The sealing ability was analyzed by measuring 0.2% Rhodamine B leakage after all groups had been maintained in this solution for 48 hours. Data were analyzed statistically by Kruskal-Wallis test and Dunn test with a=5%. The results showed that, among the tested materials used for fabrication of apical plugs, MBPc sealer had the least amount of leakage with statistically significant difference (p<0.05.

  4. Superconducting cavity model for LEP

    CERN Document Server

    CERN PhotoLab

    1979-01-01

    A superconducting cavity model is being prepared for testing in a vertical cryostat.At the top of the assembly jig is H.Preis while A.Scharding adjusts some diagnostic equipment to the cavity. See also photo 7912501X.

  5. A High Current Proton Linac with 352 MHz SC Cavities

    CERN Document Server

    Pagani, C; Pierini, P

    1996-01-01

    A proposal for a 10-120 mA proton linac employing superconducting beta-graded, CERN type, four cell cavities at 352 MHz is presented. The high energy part (100 MeV-1 GeV) of the machine is split in three beta-graded sections, and transverse focusing is provided via a periodic doublet array. All the parameters, like power in the couplers and accelerating fields in the cavities, are within the state of the art, achieved in operating machines. A first stage of operation at 30 mA beam current is proposed, while the upgrade of the machine to 120 mA operation can be obtained increasing the number of klystrons and couplers per cavity. The additional coupler ports, up to four, will be integrated in the cavity design. Preliminary calculations indicate that beam transport is feasible, given the wide aperture of the 352 MHz structures. A capital cost of less than 100 M$ at 10 mA, reaching up to 280 M$ for the 120 mA extension, has been estimated for the superconducting high energy section (100 MeV-1 GeV). The high effic...

  6. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)

    2015-08-15

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  7. Superconducting Storage Cavity for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi,I.

    2009-01-02

    This document provides a top-level description of a superconducting cavity designed to store hadron beams in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It refers to more detailed documents covering the various issues in designing, constructing and operating this cavity. The superconducting storage cavity is designed to operate at a harmonic of the bunch frequency of RHIC at a relatively low frequency of 56 MHz. The current storage cavities of RHIC operate at 197 MHz and are normal-conducting. The use of a superconducting cavity allows for a high gap voltage, over 2 MV. The combination of a high voltage and low frequency provides various advantages stemming from the resulting large longitudinal acceptance bucket.

  8. Mechanical Properties of Niobium Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Matalevich, Joseph R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Myneni, Ganapati Rao [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The mechanical stability of bulk Nb cavity is an important aspect to be considered in relation to cavity material, geometry and treatments. Mechanical properties of Nb are typically obtained from uniaxial tensile tests of small samples. In this contribution we report the results of measurements of the resonant frequency and local strain along the contour of single-cell cavities made of ingot and fine-grain Nb of different purity subjected to increasing uniform differential pressure, up to 6 atm. Measurements have been done on cavities subjected to different heat treatments. Good agreement between finite element analysis simulations and experimental data in the elastic regime was obtained with a single set of values of Young’s modulus and Poisson’s ratio. The experimental results indicate that the yield strength of medium-purity ingot Nb cavities is higher than that of fine-grain, high-purity Nb.

  9. Transverse impedance of a periodic array of cavities

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    1999-06-01

    Full Text Available We examine the transverse impedance of a periodic array of cavities in a beam pipe at high frequency. The calculation is an extension of a previous one for the longitudinal impedance of a periodic array of azimuthally symmetric pillboxes, for which only TM modes were needed. In the present case, we must include TE modes as well. In addition, we extend the applicability of the previous calculation by including an extra term in the coupling kernel so that the results are valid for all values of the ratio of the cavity length to the period of the structure (all values of the ratio of iris thickness to structure period. In spite of the presence of TE modes, we find that the high frequency limit of the transverse impedance is simply (2/ka^{2} times the corresponding limit of the longitudinal impedance, just as it is for the resistive wall impedances, a relation which occurs frequently for azimuthally symmetric structures. Finally, we present numerical results as well as approximate expressions for the impedance per period, valid for all ratios of cavity length to structure period.

  10. Voids in Sonic Fill(TM) restorations compared to traditional incrementally-filled composite restorations

    Science.gov (United States)

    Abourezq, Ibraheem A.

    SonicFill(TM) is a new composite resin and delivery system designed to provide rapid filling of cavity preparations by decreasing viscosity through application of sonic energy. However, it may produce unwanted air voids in the final restoration due to the short filling time. Air voids compromise long-term performance by providing weak foci, discontinuity at cavosurface margins and at internal cavity walls, and potential crack propagation. This study assessed the locations, sizes, and numbers of voids in SonicFill restorations compared with traditional composite resin restorations in a set of extracted molars with mesio-occlusal-distal (MOD) cavity preparations. Fifty noncarious intact extracted third molars were collected randomly from a large collection of discarded anonymous tooth specimens. Standardized MOD cavity preparations were cut, and teeth were assigned randomly to one of two groups ( n = 25). The first group was restored with SonicFill composite in two steps. The second group was restored with Herculite Ultra(TM) using an multiple increment layering technique (1-2 mm per layer). Cross-sectional images of the filling were taken by digital microscope. A total of 196 voids were found in the 50 specimens: 97 in SonicFill restorations and 99 in conventional restorations. Mean number of voids in SonicFill restorations was 3.88 versus 3.96 for conventional restorations. Mean percentage of void area in SonicFill restorations was 0.588% versus 0.508% for conventional restorations. Unpaired t tests for these differences indicated no statistically significant differences (p =.931 and p =.629, respectively). One-way ANOVA tests for mean void count and mean void area percentage differences by three location zones for conventional and SonicFill restorations also indicated no significant differences among the groups. The bulk-fill SonicFill system does not result in increased or decreased numbers or ii area of voids within Class II MOD restorations compared with a

  11. Changeability of oral cavity environment.

    Science.gov (United States)

    Surdacka, Anna; Strzyka A, Krystyna; Rydzewska, Anna

    2007-01-01

    In dentistry, the results of in vivo studies on drugs, dental fillings or prostheses are routinely evaluated based on selected oral cavity environment parameters at specific time points. Such evaluation may be confounded by ongoing changes in the oral cavity environment induced by diet, drug use, stress and other factors. The study aimed to confirm oral cavity environment changeability. 24 healthy individuals aged 20-30 had their oral cavity environment prepared by having professional hygiene procedures performed and caries lesions filled. Baseline examination and the examination two years afterwards, evaluated clinical and laboratory parameters of oral cavity environment. Caries incidence was determined based on DMFT and DMFS values, oral cavity hygiene on Plaque Index (acc. Silness & Loe) and Hygiene Index (acc. O'Leary), and the gingival status on Gingival Index (acc. Loe & Silness) and Gingival Bleeding Index (acc. Ainamo & Bay). Saliva osmolarity, pH and concentrations of Ca(2+), Pi, Na(+), Cl(-), total protein, albumins, F(-) and Sr(2+) were determined. The results confirmed ongoing changeability of the oral cavity environment. After 2 years of the study reduction in oral cavity hygiene parameters PLI and HI (P<0.1), and gingival indices as well as lower saliva concentration of Ca(2+) (P<.001), Pi (P<.06), K(+) (P<.04), Sr(2+) (P<.03), Na(+) (P<.1), against the baseline values, were observed. Total protein and albumin saliva concentrations were also significantly lower. Physiological oral cavity environment is subject to constant, individually different, changes which should be considered when analysing studies that employ oral cavity environment parameters.

  12. Testing PVLAS axions with resonant photon splitting

    CERN Document Server

    Gabrielli, E; Gabrielli, Emidio; Giovannini, Massimo

    2007-01-01

    The photon splitting gamma -> gamma gamma in a time-independent and inhomogeneous magnetized background is considered when neutral and ultralight spin-0 particles are coupled to two-photons. Depending on the inhomogeneity scale of the external field, resonant photon splitting can occur. If an optical laser crosses a magnetic field of few Tesla with typical inhomogeneity scale of the order of the meter, a potentially observable rate of photon splittings is expected for the PVLAS range of couplings and masses.

  13. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  14. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  15. Comparative study of Tm-doped and Tm-Sc co-doped Lu3Al5O12 scintillator

    International Nuclear Information System (INIS)

    Sugiyama, Makoto; Yanagida, Takayuki; Fujimoto, Yutaka

    2014-01-01

    The crystals of Tm doped and Tm-Sc co-doped Lu 3 Al 5 O 12 (LuAG) grown by the floating zone (FZ) method were examined for their optical and scintillation properties. In transmittance spectra, strong absorption lines due to Tm 3+ 4f–4f transitions were observed. X-ray excited radioluminescence spectra were measured and broad and sharp emission peaks were detected. The former one was attributed to Sc 3+ and the latter one was due to Tm 3+ 4f–4f transitions. Scintillation yield enhancement due to Sc co-doping was observed by means of 137 Cs pulse height spectra. Scintillation decay times were several tens of μs under pulse X-ray excitation. - Highlights: • LuAG:Tm and LuAG:Tm, Sc single crystals have been grown by the FZ method. • Tm 3+ 4f–4f absorption has been observed in transmittance spectra. • Scintillation yield of Tm-doped LuAG has been enhanced by Sc co-doping

  16. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Dark matter from split seesaw

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-01-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  18. Gauge mediated mini-split

    Science.gov (United States)

    Cohen, Timothy; Craig, Nathaniel; Knapen, Simon

    2016-03-01

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ- b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 105 to 108 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  19. Minimal Doubling and Point Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.

    2010-06-14

    Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.

  20. Gauge mediated mini-split

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-03-15

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  1. Elemental composition and structural characteristics of as-received TriTaniumTM orthodontic archwire

    Science.gov (United States)

    Ilievska, I.; Petrov, V.; Mihailov, V.; Karatodorov, S.; Andreeva, L.; Zaleski, A.; Mikli, V.; Gueorgieva, M.; Petrova, V.; Stoyanova-Ivanova, A.

    2018-03-01

    Orthodontic archwires are among the most important devices of fixed orthodontic therapy. Many types of archwires are made available on the market by various manufacturers with different elemental composition and structural characteristics. Knowing this information is important when choosing a suitable archwire for a particular stage of orthodontic treatment. The aim of our study is to characterize a new type orthodontic archwires (TriTaniumTM, American Orthodontics) before their placement in the oral cavity. To achieve the aim, we used modern methods for determining their elemental composition and structural characteristics: laser-induced plasma spectroscopy (LIBS), X-ray diffraction analysis (XRD), scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and differential scanning calorimetry (DSC). The results obtained from the qualitative elemental analysis by LIBS and the quantitative elemental analysis by EDX showed that Ni and Ti are the main elements in the archwire studied. The room-temperature XRD patterns showed peaks typical for a Ni-Ti alloy with an austenite-type structure. Monitoring the phase transitions by means of DSC measurements in the temperature range from –50 °C to +50 °C, we showed that in TriTaniumTM archwires, besides the austenite to martensite transition, there exists a rhombohedral intermediate phase (R phase). This study will be useful in assisting orthodontists in applying appropriate nickel-titanium orthodontic archwires in the clinical practice.

  2. Magnetically Induced Optical Transparency on a Forbidden Transition in Strontium for Cavity-Enhanced Spectroscopy

    Science.gov (United States)

    Winchester, Matthew N.; Norcia, Matthew A.; Cline, Julia R. K.; Thompson, James K.

    2017-06-01

    In this Letter we realize a narrow spectroscopic feature using a technique that we refer to as magnetically induced optical transparency. A cold ensemble of 88Sr atoms interacts with a single mode of a high-finesse optical cavity via the 7.5 kHz linewidth, spin forbidden 1S0 to 3P1 transition. By applying a magnetic field that shifts two excited state Zeeman levels, we open a transmission window through the cavity where the collective vacuum Rabi splitting due to a single level would create destructive interference for probe transmission. The spectroscopic feature approaches the atomic transition linewidth, which is much narrower than the cavity linewidth, and is highly immune to the reference cavity length fluctuations that limit current state-of-the-art laser frequency stability.

  3. Nonlocal Intracranial Cavity Extraction

    Science.gov (United States)

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  4. Nonlocal Intracranial Cavity Extraction

    Directory of Open Access Journals (Sweden)

    José V. Manjón

    2014-01-01

    Full Text Available Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.

  5. Intracellular distribution of TM4SF1 and internalization of TM4SF1-antibody complex in vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sciuto, Tracey E.; Merley, Anne; Lin, Chi-Iou [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States); Richardson, Douglas [Department of Molecular and Cellular Biology, Harvard University (United States); Liu, Yu [Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Shanxi Province, Taiyuan 030001 (China); Li, Dan; Dvorak, Ann M. [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States); Dvorak, Harold F., E-mail: hdvorak@bidmc.harvard.edu [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States); Jaminet, Shou-Ching S., E-mail: sjaminet@bidmc.harvard.edu [Center for Vascular Biology Research and Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School (United States)

    2015-09-25

    Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane-associated glycoprotein that is highly and selectively expressed on the plasma membranes of tumor cells, cultured endothelial cells, and, in vivo, on tumor-associated endothelium. Immunofluorescence microscopy also demonstrated TM4SF1 in cytoplasm and, tentatively, within nuclei. With monoclonal antibody 8G4, and the finer resolution afforded by immuno-nanogold transmission electron microscopy, we now demonstrate TM4SF1 in uncoated cytoplasmic vesicles, nuclear pores and nucleoplasm. Because of its prominent surface location on tumor cells and tumor-associated endothelium, TM4SF1 has potential as a dual therapeutic target using an antibody drug conjugate (ADC) approach. For ADC to be successful, antibodies reacting with cell surface antigens must be internalized for delivery of associated toxins to intracellular targets. We now report that 8G4 is efficiently taken up into cultured endothelial cells by uncoated vesicles in a dynamin-dependent, clathrin-independent manner. It is then transported along microtubules through the cytoplasm and passes through nuclear pores into the nucleus. These findings validate TM4SF1 as an attractive candidate for cancer therapy with antibody-bound toxins that have the capacity to react with either cytoplasmic or nuclear targets in tumor cells or tumor-associated vascular endothelium. - Highlights: • Anti-TM4SF1 antibody 8G4 was efficiently taken up by cultured endothelial cells. • TM4SF1–8G4 internalization is dynamin-dependent but clathrin-independent. • TM4SF1–8G4 complexes internalize along microtubules to reach the perinuclear region. • Internalized TM4SF1–8G4 complexes pass through nuclear pores into the nucleus. • TM4SF1 is an attractive candidate for ADC cancer therapy.

  6. Frequency-feedback cavity enhanced spectrometer

    Science.gov (United States)

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  7. SplitDist—Calculating Split-Distances for Sets of Trees

    DEFF Research Database (Denmark)

    Mailund, T

    2004-01-01

    We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....

  8. Randomized controlled clinical trial of long-term chemo-mechanical caries removal using PapacarieTM gel

    Directory of Open Access Journals (Sweden)

    Lara Jansiski MOTTA

    2014-07-01

    Full Text Available Objectives: Compare the effectiveness of PapacarieTM gel for the chemo-mechanical removal of carious lesions on primary teeth to conventional caries removal with a low-speed bur with regard to execution time, clinical aspects and radiographic findings. Material and Methods: A randomized controlled clinical trial with a split-mouth design was carried out. The sample was composed of 20 children aged four to seven years, in whom 40 deciduous teeth were randomly divided into two groups: chemo-mechanical caries removal with PapacarieTM and removal of carious dentin with a low-speed bur. Each child underwent both procedures and served as his/her own control. Restorations were performed with glass ionomer cement. The time required to perform the procedure was also analyzed. The patients underwent longitudinal clinical and radiographic follow-up of the restorations. Results: No statistically significant difference between groups was found regarding the time required to perform the procedures and the radiographic follow up. Statistically significant differences between groups were found in the clinical evaluation at 6 and 18 months after treatment. Conclusion: PapacarieTM is as effective as the traditional method for the removal of carious dentin on deciduous teeth, but offers the advantages of the preservation of sound dental tissue as well as the avoidance of sharp rotary instruments and local anesthesia.

  9. Improvement of the HANA{sup TM}-4 Tubing Workability

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-HO; Park, Min-Young; Kim, In-Kyu; Mok, Yong-Kyoon [KEPCO NF, Daejeon (Korea, Republic of); Kim, Hyun-Gil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    HANA{sup TM} cladding has been developed for high burn-up fuel cladding exceeding 70,000 MWD/MTU. HIPER fuels using HANA{sup TM}-6 material are currently being conducted in-reactor test in commercial nuclear reactors. HANA{sup TM}-6 was produced successfully for the fuel tubing by KEPCO NF. However, the production of fuel tubing of HANA{sup TM}-4 has not reached to target yield due to cracking during tube pilgering. The purpose of this study has been carried out to improve workability of HANA{sup TM}-4 tubing. An improvement on the manufacturing parameters and the alloy compositions adjustments in order to improve workability HANA{sup TM}-4 tubing was performed in the producing HANA{sup TM}-4 cladding successfully without cracking. However, it is necessary to minor change the design of Mandrel and Die to improve the surface quality. The effects on corrosion properties and microstructure by an adjustment in manufacturing parameters and alloy compositions are currently being evaluated.

  10. Call for Papers: Cavity QED

    Science.gov (United States)

    Lange, W.; Gerard, J.-M.

    2003-06-01

    Cavity QED interactions of light and matter have been investigated in a wide range of systems covering the spectrum from microwaves to optical frequencies, using media as diverse as single atoms and semiconductors. Impressive progress has been achieved technologically as well as conceptually. This topical issue of Journal of Optics B: Quantum and Semiclassical Optics is intended to provide a comprehensive account of the current state of the art of cavity QED by uniting contributions from researchers active across this field. As Guest Editors of this topical issue, we invite manuscripts on current theoretical and experimental work on any aspects of cavity QED. The topics to be covered will include, but are not limited to: bulletCavity QED in optical microcavities bulletSemiconductor cavity QED bulletQuantum dot cavity QED bulletRydberg atoms in microwave cavities bulletPhotonic crystal cavity QED bulletMicrosphere resonators bulletMicrolasers and micromasers bulletMicrodroplets bulletDielectric cavity QED bulletCavity QED-based quantum information processing bulletQuantum state engineering in cavities The DEADLINE for submission of contributions is 31 July 2003 to allow the topical issue to appear in about February 2004. All papers will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. Submissions should ideally be in either standard LaTeX form or Microsoft Word. There are no page charges for publication. In addition to the usual 50 free reprints, the corresponding author of each paper published will receive a complimentary copy of the topical issue. Contributions to the topical issue should if possible be submitted electronically at www.iop.org/journals/jopb. or by e-mail to jopb@iop.org. Authors unable to submit online or by e-mail may send hard copy contributions (enclosing the

  11. ASTROCULTURE (TM) root metabolism and cytochemical analysis

    Science.gov (United States)

    Porterfield, D. M.; Barta, D. J.; Ming, D. W.; Morrow, R. C.; Musgrave, M. E.

    2000-01-01

    Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure.

  12. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Mammosser, John D.

    2015-01-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O 2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM 010 -mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper

  13. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shahid, E-mail: shahid.ahmed@ieee.org [BML Munjal University, Gurgaon, Haryana 123413 (India); Mammosser, John D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  14. Split Questionnaire Design for Massive Surveys

    NARCIS (Netherlands)

    Adiguzel, F.; Wedel, M.

    2008-01-01

    Companies are conducting more and longer surveys than ever before. Massive questionnaires are pervasive in marketing practice. As an alternative to the heuristic methods that are currently used to split questionnaires, this study develops a methodology to design the split questionnaire in a way that

  15. Cheating More when the Spoils Are Split

    Science.gov (United States)

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  16. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  17. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.

    2015-01-01

    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  18. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  19. On split Lie triple systems II

    Indian Academy of Sciences (India)

    Lie triple system with a coherent 0-root space is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of T is characterized. In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces. Keywords.

  20. Stimulated Raman adiabatic passage in Tm3+:YAG

    International Nuclear Information System (INIS)

    Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.

    2008-01-01

    We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm 3+ :YAG crystal. Tm 3+ :YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm 3+ :YAG system are presented along with the corresponding experimental results

  1. Construction of covalently coupled, concatameric dimers of 7TM receptors

    DEFF Research Database (Denmark)

    Terpager, Marie; Scholl, D Jason; Kubale, Valentina

    2009-01-01

    -Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the beta(2)-adrenergic and the NK(1) receptors, which...... for either of the protomers, which was not observed upon simple coexpression of the two receptors. It is concluded that covalently joined 7TM receptor dimers with surprisingly normal receptor properties can be constructed with use of an artificial transmembrane connector, which perhaps can be used to fuse...

  2. Review of Tm and Ho Materials; Spectroscopy and Lasers

    Science.gov (United States)

    Walsh, Brian M.

    2008-01-01

    A review of Tm and Ho materials is presented, covering some fundamental aspects on the spectroscopy and laser dynamics in both single and co-doped systems. Following an introduction to 2- m lasers, applications and historical development, the physics of quasi-four level lasers, energy transfer and modeling are discussed in some detail. Recent developments in using Tm lasers to pump Ho lasers are discussed, and seen to offer some advantages over conventional Tm:Ho lasers. This article is not intended as a complete review, but as a primer for introducing concepts and a resource for further study.

  3. Particulate photocatalysts for overall water splitting

    Science.gov (United States)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  4. Bistability of Cavity Magnon Polaritons

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.

    2018-01-01

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  5. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  6. Loggerhead oral cavity morphometry study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard external morphometrics and internal oral cavity morphometrics data were collected on wild and captive reared loggerhead sea turtles in size classes ranging...

  7. SRF Cavity Fabrication and Materials

    CERN Document Server

    Singer, W

    2014-07-17

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate...

  8. Bistability of Cavity Magnon Polaritons.

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C-M; You, J Q

    2018-02-02

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  9. Optimal design of radial Bragg cavities and lasers.

    Science.gov (United States)

    Ben-Bassat, Eyal; Scheuer, Jacob

    2015-07-01

    We present a new and optimal design approach for obtaining maximal confinement of the field in radial Bragg cavities and lasers for TM polarization. The presented approach outperforms substantially the previously employed periodic and semi-periodic design schemes of such lasers. We show that in order to obtain maximal confinement, it is essential to consider the complete reflection properties (amplitude and phase) of the propagating radial waves at the interfaces between Bragg layers. When these properties are taken into account, we find that it is necessary to introduce a wider ("half-wavelength") layer at a specific radius in the "quarter-wavelength" radial Bragg stack. It is shown that this radius corresponds to the cylindrical equivalent of Brewster's angle. The confinement and field profile are calculated numerically by means of transfer matrix method.

  10. Sterility of the uterine cavity

    DEFF Research Database (Denmark)

    Møller, Birger R.; Kristiansen, Frank V.; Thorsen, Poul

    1995-01-01

    In a prospective open study the sterility of the uterine cavity was evaluated in 99 women admitted for hysterectomy. The indications for hysterectomy were in most cases persistent irregular vaginal bleeding and fibromyomas of the uterus. Samples for both aerobic and anaerobic bacteria, Chlamydia ...... which may play a causative role in endometritis. The results indicate that inflammation of the uterine cavity should be evaluated by hysteroscopic examination before hysterectomy is undertaken in patients with persistent irregular vaginal bleeding. Udgivelsesdato: 1995-Mar...

  11. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  12. Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Reitzenstein, Stephan

    2013-01-01

    The semiconductor micropillar is attractive for cavity QED experiments. For strong coupling, the figure of merit is proportional to Q/√V, and a design combining a high Q and a low mode volume V is thus desired. However, for the standard submicron diameter design, poor mode matching between the ca...... the cavity and the DBR Bloch mode limits the Q. We present a novel adiabatic design where Bloch-wave engineering is employed to improve the mode matching, allowing the demonstration of a record-high vacuum Rabi splitting of 85 μeV and a Q of 13600 for a 850 nm diameter micropillar....

  13. BOREAS TE-18, 30-m, Radiometrically Rectified Landsat TM Imagery

    Data.gov (United States)

    National Aeronautics and Space Administration — The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order...

  14. Lightweight Metal RubberTM Sensors and Interconnects Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Phase II program is to develop and increase the Technology Readiness Level of multifunctional Metal RubberTM (MRTM) materials that can be...

  15. BOREAS TE-18, 60-m, Radiometrically Rectified Landsat TM Imagery

    Data.gov (United States)

    National Aeronautics and Space Administration — The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order...

  16. BOREAS TE-18, 60-m, Radiometrically Rectified Landsat TM Imagery

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and...

  17. Field applications of the ScoutTM portable MCA

    International Nuclear Information System (INIS)

    Cheng, A.Y.; Ziemba, F.P.; Browning, J.E.

    1998-01-01

    The use of Quantrad Sensor's Scout TM in field type applications is described. The portability of the Scout TM enables the user to obtain more accurate information in the field versus a survey meter. Isotopic identification is possible when ancillary information is combined with built-in software libraries. Data from the Scout TM in remediation at Stanford Linear Accelerator (SLAC), NORM (Naturally Occurring Radioactive Material) measurements in California's Central Valley oil fields, medical isotope identification at nuclear pharmaceutical company and emergency response applications are presented. Additionally, custom software enabled the use of the Scout TM in identification, qualification and detection of Special Nuclear Materials (SNM) in illicit trafficking and portal monitoring applications. (author)

  18. Ultrabroadband TM reflection from high contrast grating: why?

    NARCIS (Netherlands)

    Gushchin, I.; Tishchenko, A.V.; Parriaux, O.; Hoekstra, Hugo

    2009-01-01

    A grating mode analysis of the unusually broadband TM reflection from a high contrast binary grating sheds light on the origin of this effect. This interpretation will be submitted to the workshop attendance.

  19. Lightweight Metal RubberTM Sensors and Interconnects, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Phase II program is to develop and increase the Technology Readiness Level of multifunctional Metal RubberTM (MRTM) materials that can be...

  20. Spaceflight 2 um Tm Fiber MOPA Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to design, develop, and test a spaceflight prototype 2051 nm thulium (Tm)-doped fiber amplifier (TDFA) optical master oscillator power amplifier...

  1. Selectfluor TM: A novel and efficient reagent for the rapid ...

    Indian Academy of Sciences (India)

    Abstract. The direct α-thiocyanation of ketones with ammonium thiocyanate has been achieved using SelectfluorTM under mild and neutral conditions to produce -ketothiocyanates, in excellent yields and with high selectivity.

  2. Landsat TM and ETM+ Kansas Satellite Image Database (KSID)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2000-2001 consists of terrain-corrected, precision rectified spring, summer, and fall Landsat 5 Thematic Mapper (TM) and...

  3. SynLam(TM) Primary Mirror Evaluation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG), has developed sandwich core composite material (SynLam(TM)) and related fabrication technology to address the drawbacks of...

  4. Tri-Decadal Global Landsat Orthorectified TM Scene V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: The Landsat Orthorectified data collection consists of a global set of high-quality, relatively cloud-free orthorectified MSS, TM and ETM+ imagery from...

  5. Tri-Decadal Global Landsat Orthorectified TM Mosaic V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: The Landsat Orthorectified data collection consists of a global set of high-quality, relatively cloud-free orthorectified MSS, TM and ETM+ imagery from...

  6. Family C 7TM receptor dimerization and activation

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    The family C seven transmembrane (7TM) receptors constitutes a small and especially well characterized subfamily of the large 7TM receptor superfamily. Approximately 50% of current prescription drugs target 7TM receptors, this biologically important family represents the largest class of drug......-targets today. It is well established that family C 7TM receptors form homo- or hetero-dimers on the cell surface of living cells. The large extra-cellular domains (ECD) have been crystallized as a dimer in the presence and absence of agonist. Upon agonist binding, the dimeric ECD undergoes large conformational...... changes that lead to receptor activation. Despite extensive studies of the receptor transmembrane domain, several key features, including the exact organization of the complete receptor dimer, the sequence of events leading to receptor activation, and the functional significance of dimerization, have yet...

  7. AP1000{sup TM} plant modularization

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero L, C.; Demetri, K. J. [Westinghouse Electric Co., 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Quintero C, F. P., E-mail: cantarc@westinghouse.com [Westinghouse Electric Spain, Padilla 17, 28006 Madrid (Spain)

    2016-09-15

    The AP1000{sup TM} plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  8. The KiteShip (TM) project

    Energy Technology Data Exchange (ETDEWEB)

    De winter, Francis; Swenson, Ronald B; Culp, David [Santa Cruz, CA (United States)

    2000-07-01

    Foreseeable crude oil shortages provide an incentive to use wind power in the merchant marine again, to save fuel by providing propulsion power. Out prototype KiteShip (TM), a lightweight fiberglass proa 7 m long, has been sailed with 2 different sizes of kites in fresh water. The kites are shaped like parafoil wings, with areas of 4 sq m and 9 sq m. Steering is accomplished with two coupled rudders, one fore and one aft. We have been encouraged by the boat speed and the handling, although we have encountered only light winds up to now, of no more than about 20 km/ht. In the next phase we will employ a custom-built kite of 2 sq m. and will also start sailing in the ocean with heavier winds, of 40 km/hr and above. [Spanish] La escasez previsible de petroleo motiva volver a utilizar la fuerza del viento en la marina mercante, para ahorrar combustible al suministrar la potencia de propulsion. Nuestro prototipo KiteShip (MR), con una proa ligera de fibra de vidrio con 7 m de longitud, ha navegado con dos diferentes tipos de vela ({sup k}ite{sup )} en agua dulce. Los kites tienen forma de alas de parafol, con areas de 4 m{sup 2} y 9 m{sup 2}. La direccion se logra con dos timones acoplados, uno en la proa y otro en la popa. Nos entusiasmo la velocidad del bote y su manejo, aunque hemos encontrado hasta ahora solo vientos ligeros de no mas de alrededor de 20 km/hr. En la siguiente fase emplearemos un kite hecho a la medida, de 28 m{sup 2} y tambien comenzaremos a navegar en el oceano con vientos mas fuertes de 40 km/hr o mas.

  9. Probing the fundamental limit of niobium in high radiofrequency fields by dual mode excitation in superconducting radiofrequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari

    2011-07-01

    We have studied thermal breakdown in several multicell superconducting radiofrequency cavity by simultaneous excitation of two TM{sub 010} passband modes. Unlike measurements done in the past, which indicated a clear thermal nature of the breakdown, our measurements present a more complex picture with interplay of both thermal and magnetic effects. JLab LG-1 that we studied was limited at 40.5 MV/m, corresponding to B{sub peak} = 173 mT, in 8{pi}/9 mode. Dual mode measurements on this quench indicate that this quench is not purely magnetic, and so we conclude that this field is not the fundamental limit in SRF cavities.

  10. Cryogenic-cooled Tm:SBN tunable laser

    Science.gov (United States)

    Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Papashvili, Alexander G.; Batygov, Sergei H.; Osiko, Vyacheslav V.

    2017-12-01

    In this work the temperature dependence of spectroscopic and laser properties of new ac- tive medium Tm:SBN (Strontium-Barium Niobate, SrxBa1-xNb2O6, x = 0.61). The tested sample of Tm:SBN (2 wt. % of Tm2O3) appropriate for generation of laser radiation at 1.88 μm had plan-parallel polished faces without anti-reflection (thickness 6.65 mm). During spectroscopy and laser experiments the Tm:SBN was at- tached to temperature-controlled copper holder and was placed in a vacuum chamber. The transmission and emission spectra of Tm:SBN and the fluorescence decay time were measured depending on temperature range 80 - 350 K. The fluorescence decay time was measured to be 3.5 ms and 2.8 ms at 80 and 350 K, respectively. Longitudinal excitation of Tm:SBN was carried out by a fibre-coupled laser diode (pulse duration 10 ms, rep- etition rate 10 Hz, pump wavelength 793 nm). The laser resonator was hemispherical, 146 mm long, with flat pumping mirror (HR @1.8 - 2.1 μm) and spherical output coupler (r = 150 mm, R = 97.5 % @1.8 - 2.1 μm). The Tm:SBN laser properties were investigated at temperature range 80 - 300 K. The highest slope efficiency with respect to absorbed pumped power was 3 % at 80 K. The maximum output peak amplitude power was 0.12 W at 80 K, i.e. 3.2 times higher than it was measured at 200 K. Tunability of laser wavelength at 80 K in the range of 1827 - 1962 nm was obtained by using SiO2 birefringent filter. At 300 K, wavelength tunability reached 1859 - 1970 nm. Thus, the new Tm:SBN crystal can be an useful laser material in the region of 2 μm.

  11. Spectroscopic and lasing properties of Ho:Tm:LuAG

    Science.gov (United States)

    Barnes, Norman P.; Filer, Elizabeth D.; Naranjo, Felipe L.; Rodriguez, Waldo J.; Kokta, Milan R.

    1993-01-01

    Ho:Tm:LuAG has been grown, examined spectroscopically, and lased at 2.1 microns. Ho:Tm:LuAG was selected for this experimental investigation when quantum-mechanical modeling predicted that it would be a good laser material for Ho laser operation on one of the 5I7 to 5I8 transitions. Lasing was achieved at 2.100 microns, one of the three wavelengths predicted to be most probable for laser action.

  12. Relativistic Stern-Gerlach Interaction in an RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Conte,M.; Luccio, A. U.; Pusterla, M.

    2009-05-01

    The general expression of the Stern-Gerlach (SG) force is deduced for a relativistic charged spin-1/2 particle which travels inside a time varying magnetic field. This result was obtained either by means of two Lorentz boosts or starting from Dirac's equation. Then, the utilization of this interaction for attaining the spin states separation is reconsidered in a new example using a new radio-frequency arrangement. On the basis of the previous estimates, we feel ready to propose the time varying SG interaction as a method for attaining a spin state separation of an unpolarized beam of, say (anti)protons, since the energy of particles with opposite spin orientations will differ and beams in the two states can be separated. In a first stage of the study of a sensible practical design, we intend to proceed with numerical simulations. As a first step, we intend to verify the correctness of Eqs.(42) and (43) setting once {beta}{sub ph} = 2 and then {beta}{sub ph} = 3, in a cavity where the field line pattern can be realistically controlled. Beyond the verification of the present theory, there is also the aim of studying the effects generated by the spin precession inside the cavity, that we did not yet address in this note. Next, we shall consider a spin splitter scheme based on the lattice of an existing or planned (anti)proton ring endowed with an array of splitting cavities. The principal aim of the latter implementations is to check the mixing effect of the longitudinal phase-plane filamentation, i.e. the actual foe which could frustrate the entire spin splitting process.

  13. Powernext Day-AheadTM statistics - June 30, 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents in a series of tables and graphics the June 30, 2006 update of Powernext Day-Ahead TM statistics: daily traded volumes and base-load prices from November 2001 to June 2006, monthly overview from June 2005 to June 2006 (volumes and prices), weekly overview from March to June 2006 (volumes and prices), daily and hourly overview and market resilience for June 2006, power consumption in May and June 2006 (average consumption, average forecasted consumption and average price on Powernext Day-Ahead TM ), power consumption on the French hub from July 2005 to May 2006 and Powernext Day-Ahead TM prices, transfer capacities in June 2006 (auction results for France-Germany, France-Belgium, France-UK, France-Spain and France-Italy, and daily capacity allocation for France-Switzerland), temperature variations in France from January 2005 to June 2006 and base-load Powernext Day-Ahead TM prices, and balancing mechanism for April, May and June 2006 (half-hourly imbalance settlement prices). (J.S.)

  14. 21 CFR 872.3260 - Cavity varnish.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a device that consists of a compound intended to coat a prepared cavity of a tooth before insertion of...

  15. Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom.

    Science.gov (United States)

    Sohail, Amjad; Zhang, Yang; Zhang, Jun; Yu, Chang-Shui

    2016-06-28

    We analytically study the optomechanically induced transparency (OMIT) in the N-cavity system with the Nth cavity driven by pump, probing laser fields and the 1st cavity coupled to mechanical oscillator. We also consider that one atom could be trapped in the ith cavity. Instead of only illustrating the OMIT in such a system, we are interested in how the number of OMIT windows is influenced by the cavities and the atom and what roles the atom could play in different cavities. In the resolved sideband regime, we find that, the number of cavities precisely determines the maximal number of OMIT windows. It is interesting that, when the two-level atom is trapped in the even-labeled cavity, the central absorptive peak (odd N) or dip (even N) is split and forms an extra OMIT window, but if the atom is trapped in the odd-labeled cavity, the central absorptive peak (odd N) or dip (even N) is only broadened and thus changes the width of the OMIT windows rather than induces an extra window.

  16. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  17. Formation and characterization of ZnO : Tm+ optical waveguides fabricated by Tm+ and O+ ion implantation

    International Nuclear Information System (INIS)

    Ming Xianbing; Lu Fei; Liu Hanping; Chen Ming; Wang Lei

    2009-01-01

    Planar optical waveguides were formed in ZnO crystal by Tm + and O + ion implantation. The distributions of Tm + in as-implanted and annealed ZnO samples were investigated by the RBS technique. A shift of the Tm + peak towards the sample surface and out diffusion were observed after thermal treatment and subsequent O + ion implantation. Waveguide formation was determined after O + implantation in Tm + -implanted ZnO crystal. By using the prism-coupling method two guided modes were detected. The refractive index profile in the implanted waveguide was reconstructed according to the SRIM and RCM simulation. The RBS/channelling measurements show that the lattice structure of ZnO did not suffer detectable damage after O + implantation.

  18. Measurements of the 169Tm(n ,2 n )168Tm cross section from threshold to 15 MeV

    Science.gov (United States)

    Soter, J.; Bhike, M.; Finch, S. W.; Krishichayan, Tornow, W.

    2017-12-01

    Measurements of the 169Tm(n ,2 n )168Tm cross section have been performed via the activation technique at 13 energies between 8.5 and 15.0 MeV. The purpose of this comprehensive data set is to provide an alternative diagnostic tool for obtaining subtle information on the neutron energy distribution produced in inertial confinement deuterium-tritium fusion experiments at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. The 169Tm(n ,2 n )168Tm reaction not only provides the primary 14-MeV neutron fluence, but also the important down-scattered neutron fluence, the latter providing information on the density achieved in the deuterium-tritium plasma during a laser shot.

  19. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard

    2014-01-01

    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... absorption, this is the more difficult side to optimize. Nevertheless, by using TiO2 as a transparent cathode protection layer in conjunction with known H-2 evolution catalysts, protection is clearly feasible for a large bandgap photocathode. This suggests that there may be promising strategies...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....

  20. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-09-07

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  1. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  2. Engineering interactions between long-lived cavities

    Science.gov (United States)

    Gao, Yvonne; Rosenblum, Serge; Reinhold, Philip; Wang, Chen; Axline, Christopher; Frunzio, Luigi; Girvin, Steven M.; Jiang, Liang; Mirrahimi, Mazyar; Devoret, Michel H.; Schoelkopf, Robert J.

    The availability of large Hilbert dimensions and outstanding coherence properties make superconducting cavities promising systems for storing quantum information. Recent experiments in cQED has demonstrated that redundantly encoding logical qubits in such cavities is a hardware-efficient approach toward error-correctable quantum memories. In order to tap into the power of these protected memories for quantum information processing, robust inter-cavity operations are required. A simple way to realise such operations between two cavities is using the non-linearity of the Josephson junction. To do so, we adopt a multi-cavity architecture where a fixed-frequency, single junction transmon simultaneously couples to two highly coherent 3D cavities. Using only external RF drives, we demonstrate transmon-cavity as well as cavity-cavity SWAP operations and show that such interactions are essential building blocks for implementing multi-cavity conditional logics.

  3. Laser desorption/ionization mass spectrometry on nanostructured semiconductor substrates: DIOS(TM) and QuickMass(TM)

    Science.gov (United States)

    Law, K. P.

    2010-02-01

    In the era of systems biology, new analytical platforms are under demand. Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a promising high throughput laser mass spectrometry approach that has attracted a lot of attention, and has been commercialized. Another substrate material manufactured by physical method has also been made commercially available under the trade name of QuickMass(TM). These two commercial substrates, DIOS(TM) and QuickMass(TM), were investigated independently from the manufacturers and were characterized by a number of advanced surface techniques. This work determined (1) the correlation between the substrate physicochemical properties and their LDI activity, (2) the feasibility of metabolic profiling from complex biological matrices and (3) the laser desorption/ionization mechanism. The DIOS(TM) substrate was characterized with a thick nano-sized porous layer, a high surface concentration of fluorocarbon and silicon oxides and super-hydrophobicity. In contrast, the QuickMass(TM) substrate consisted of a non-porous germanium thin-film. The relatively high ionization efficiency obtained from the DIOS(TM) substrate was contributed to the fluorosilane manufacturing processes and its porous morphology. Despite the QuickMass(TM) substrate being less effective, it was noted that the use of germanium affords a self-cleaning mechanism and suppresses background interference of mass spectra. The suitability of DIOS(TM) substrates for metabolic profiling of complex biological matrices was demonstrated. DIOS mass spectra of human blood plasma, human urine and animal liver tissue extracts were produced. Suitable extraction methods were found to be important, but relatively simplified approaches were sufficient. Further investigations of the DIOS desorption/ionization mechanism were carried out. The previously proposed sub-surface state reaction could be a molten-solid interfacial state reaction of the substrate and this had a significant

  4. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    Science.gov (United States)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  5. Ends of the line for tmRNA-SmpB.

    Science.gov (United States)

    Hudson, Corey M; Lau, Britney Y; Williams, Kelly P

    2014-01-01

    Genes for the RNA tmRNA and protein SmpB, partners in the trans-translation process that rescues stalled ribosomes, have previously been found in all bacteria and some organelles. During a major update of The tmRNA Website (relocated to http://bioinformatics.sandia.gov/tmrna), including addition of an SmpB sequence database, we found some bacteria that lack functionally significant regions of SmpB. Three groups with reduced genomes have lost the central loop of SmpB, which is thought to improve alanylation and EF-Tu activation: Carsonella, Hodgkinia, and the hemoplasmas (hemotropic Mycoplasma). Carsonella has also lost the SmpB C-terminal tail, thought to stimulate the decoding center of the ribosome. We validate recent identification of tmRNA homologs in oomycete mitochondria by finding partner genes from oomycete nuclei that target SmpB to the mitochondrion. We have moreover identified through exhaustive search a small number of complete, but often highly derived, bacterial genomes that appear to lack a functional copy of either the tmRNA or SmpB gene (but not both). One Carsonella isolate exhibits complete degradation of the tmRNA gene sequence yet its smpB shows no evidence for relaxed selective constraint, relative to other genes in the genome. After loss of the SmpB central loop in the hemoplasmas, one subclade apparently lost tmRNA. Carsonella also exhibits gene overlap such that tmRNA maturation should produce a non-stop smpB mRNA. At least some of the tmRNA/SmpB-deficient strains appear to further lack the ArfA and ArfB backup systems for ribosome rescue. The most frequent neighbors of smpB are the tmRNA gene, a ratA/rnfH unit, and the gene for RNaseR, a known physical and functional partner of tmRNA-SmpB.

  6. Ends of the line for tmRNA-SmpB

    Directory of Open Access Journals (Sweden)

    Corey M. Hudson

    2014-08-01

    Full Text Available Genes for the RNA tmRNA and protein SmpB, partners in the trans-translation process that rescues stalled ribosomes, have previously been found in all bacteria and some organelles. During a major update of The tmRNA Website (relocated to http://bioinformatics.sandia.gov/tmrna, including addition of an SmpB sequence database, we found some bacteria that lack functionally significant regions of SmpB. Three groups with reduced genomes have lost the central loop of SmpB, which is thought to improve alanylation and EF-Tu activation: Carsonella, Hodgkinia and the hemoplasmas (hemotropic Mycoplasma. Carsonella has also lost the SmpB C-terminal tail, thought to stimulate the decoding center of the ribosome. We validate recent identification of tmRNA homologs in oomycete mitochondria by finding partner genes from oomycete nuclei that target SmpB to the mitochondrion. We have moreover identified through exhaustive search a small number of complete, but often highly derived, bacterial genomes that appear to lack a functional copy of either the tmRNA or SmpB gene (but not both. One Carsonella isolate exhibits complete degradation of the tmRNA gene sequence yet its smpB shows no evidence for relaxed selective constraint, relative to other genes in the genome. After loss of the SmpB central loop in the hemoplasmas, one subclade apparently lost tmRNA. Carsonella also exhibits gene overlap such that tmRNA maturation should produce a non-stop smpB mRNA. At least some of the tmRNA/SmpB-deficient strains appear to further lack the ArfA and ArfB backup systems for ribosome rescue. The most frequent neighbors of smpB are the tmRNA gene, a ratA/rnfH unit, and the gene for RNaseR, a known physical and functional partner of tmRNA-SmpB.

  7. Splitting Strip Detector Clusters in Dense Environments

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2018-01-01

    Tracking in high density environments, particularly in high energy jets, plays an important role in many physics analyses at the LHC. In such environments, there is significant degradation of track reconstruction performance. Between runs 1 and 2, ATLAS implemented an algorithm that splits pixel clusters originating from multiple charged particles, using charge information, resulting in the recovery of much of the lost efficiency. However, no attempt was made in prior work to split merged clusters in the Semi Conductor Tracker (SCT), which does not measure charge information. In spite of the lack of charge information in SCT, a cluster-splitting algorithm has been developed in this work. It is based primarily on the difference between the observed cluster width and the expected cluster width, which is derived from track incidence angle. The performance of this algorithm is found to be competitive with the existing pixel cluster splitting based on track information.

  8. Structural basis of photosynthetic water-splitting

    International Nuclear Information System (INIS)

    Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 Å resolution, from which, the detailed structure of the Mn 4 CaO 5 -cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed

  9. Irrational beliefs, attitudes about competition, and splitting.

    Science.gov (United States)

    Watson, P J; Morris, R J; Miller, L

    2001-03-01

    Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization. Copyright 2001 John Wiley & Sons, Inc.

  10. Mort Rainey's Split Personality in Secret Window

    OpenAIRE

    Sandjaya, Cynthya; Limanta, Liem Satya

    2013-01-01

    Psychological issue is the main issue discussed in David Koepp's Secret Window through its main character, Mort Rainey. Rainey's psychological struggle will be the main theme in this research. This thesis examines Rainey's split personality. Furthermore, in this study, we want to analyze the process of how Mort Rainey's personality splits into two different personalities. To meet the answer of this study, we will use the theory of Dissociative Identity Disorder with a support from Sigmund Fre...

  11. A split SUSY model from SUSY GUT

    OpenAIRE

    Wang, FeiDepartment of Physics and Engineering, Zhengzhou University, Zhengzhou, 450000, P.R. China; Wang, Wenyu(Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology, Beijing, 100124, P.R. China); Yang, Jin(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China)

    2015-01-01

    We propose to split the sparticle spectrum from the hierarchy between the GUT scale and the Planck scale. A split supersymmetric model, which gives non-universal gaugino masses, is built with proper high dimensional operators in the framework of SO(10) GUT. Based on a calculation of two-loop beta functions for gauge couplings (taking into account all weak scale threshold corrections), we check the gauge coupling unification and dark matter constraints (relic density and direct detections). We...

  12. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  13. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory

    2018-02-01

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  14. Antenna Splitting Functions for Massive Particles

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2011-06-22

    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  15. Cavity QED with atomic mirrors

    Science.gov (United States)

    Chang, D. E.; Jiang, L.; Gorshkov, A. V.; Kimble, H. J.

    2012-06-01

    A promising approach to merge atomic systems with scalable photonics has emerged recently, which consists of trapping cold atoms near tapered nanofibers. Here, we describe a novel technique to achieve strong, coherent coupling between a single atom and photon in such a system. Our approach makes use of collective enhancement effects, which allow a lattice of atoms to form a high-finesse cavity within the fiber. We show that a specially designated ‘impurity’ atom within the cavity can experience strongly enhanced interactions with single photons in the fiber. Under realistic conditions, a ‘strong coupling’ regime can be reached, wherein it becomes feasible to observe vacuum Rabi oscillations between the excited impurity atom and a single cavity quantum. This technique can form the basis for a scalable quantum information network using atom-nanofiber systems.

  16. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  17. Comparative assessment of the performance of two generations of Tewameter: TM210 and TM300.

    Science.gov (United States)

    Rosado, C; Pinto, P; Rodrigues, L M

    2005-08-01

    The measurement of transepidermal water loss (TEWL) has been established as one of the main parameters in the assessment of skin barrier function. One of the most widely employed devices to measure TEWL is the Tewameter. Courage and Khazaka launched the TM300 in 2003 and successfully eliminated some of the limitations of the previous model. In the more recent device, the sensors inside the probe head can be pre-heated to a temperature close to that of the skin, which considerably decreases sampling time. Additionally, the new technology of the probe does not require frequent and time-consuming recalibration with different solutions. The main objective of this work was to perform a comparative assessment of the performance of the two different Tewameter models. Fifteen volunteers were used in this study, which was conducted in the mid-portion of the volar forearm. The standard measurements assessed differences in the basal values, time necessary for a stable value and coefficient of variability under normal and extreme conditions. The dynamic measurements performed were based on a plastic occlusion stress test (POST), involving the application of an occlusive patch for 24 h, after which the TEWL desorption curves were recorded. A mathematical model was adjusted to the data points using a specially modified simplex routine. Calculated parameters considered relevant to the study were t(1/2evap) (evaporation half-life) and dynamic water mass (DWM). Results show slight differences in the performance the two models, which are nevertheless statistically significant. The TM300 seems to be more sensitive to differences in TEWL and presents a much quicker measurement capacity. These results confirm a marked improvement in the more recent Tewameter model, when compared with its predecessor. The main conclusion of this work is that caution is advised when comparing results obtained with the two different models and that studies should be carried out entirely with the same

  18. High-Q submicron-diameter quantum-dot microcavity pillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Dunzer, Florian

    As/AlAs micropillar design where Bloch-wave engineering is employed to significally enhance the cavity mode confinement in the submicron diameter regime. We demonstrate a record-high vacuum Rabi splitting of 85 µeV of the strong coupling for pillars incorporating quantum dots with modest oscillator strength f ≈ 10....... It is well-known that light-matter interaction depends on the photonic environment, and thus proper engineering of the optical mode in microcavity systems is central to obtaining the desired functionality. In the strong coupling regime, the visibility of the Rabi splitting is described by the light...... coupling in micropillars relied on quantum dots with high oscillator strengths f > 50, our advanced design allows for the observation of strong coupling for submicron diameter quantum dot-pillars with standard f ≈ 10 oscillator strength. A quality factor of 13600 and a vacuum Rabi splitting of 85 µe...

  19. High-power Microwave Pulse Compression of Klystrons by Phase-Modulation of High-Q Storage Cavities

    CERN Document Server

    Bossart, Rudolf; Mourier, J; Syratchev, I V; Tanner, L

    2004-01-01

    At the CERN linear electron accelerators LIL and CTF, the peak RF power from the 3GHz-klystrons was doubled by means of LIPS microwave pulse compressors. To produce constant RF power from the cavity-based pulse compressors, the klystrons were driven by a fast RF-phase modulation program. For the CLIC Test Facility CTF3, a new type of a Barrel Open Cavity (BOC) with a high quality factor Q0 has been developed. Contrary to LIPS with two resonant cavities, BOC operates with a single cavity supporting two orthogonal resonant modes TM 10,1,1 in the same cavity. For both LIPS and BOC storage cavities, it is important that the RF power reflected back to the klystron is minimal. This implies that the resonant frequencies, Q-factors and coupling factors of the two resonant modes of a pulse compressor are closely matched, and that the resonant frequencies are accurate to within a few KHz. The effects of small differences between the two orthogonal modes of the BOC cavity have been investigated. The dynamic pulse respon...

  20. Coeliac cavity ultrasonic diagnosis apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Ando, O.; Suwaki, T.

    1983-07-05

    A coeliac cavity ultrasonic diagnosis apparatus is disclosed which includes an ultrasonic transducer or scanner portion adapted to be inserted into a coeliac cavity to effect a sector scan of an ultrasonic beam to produce an ultrasonic image of internal tissues and in which the ultrasonic oscillator on the one hand and an ultrasonic reflecting mirror and rotary disc on the other hand are relatively rotated so as to effect the sector scan of the ultrasonic beam and the rotary angle of the rotary disc is detected so as to obtain a deflecting angle of the ultrasonic beam and a display on a cathode ray tube of a precise ultrasonic picture image.

  1. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    Heremans K.

    2005-01-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  2. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-15

    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  3. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-07-05

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature ( Tm ) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10 -2 -10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm . The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.

  4. The Castor 120 (TM) motor: Development and qualification testing results

    Science.gov (United States)

    Hilden, Jack G.; Poirer, Beverly M.

    1993-01-01

    This paper discusses Thiokol Corporation's static test results for the development and qualification program of the Castor 120(TM) motor. The demonstration program began with a 25,000-pound motor to demonstrate the new technologies and processes that would be used on the larger Castor 120(TM) motor. The Castor 120(TM) motor was designed to be applicable as a first stage, second stage, or strap-on motor. Static test results from the Castor 25 and two Castor 120(TM) motors are discussed in this paper. The results verified the feasibility of tailoring the propellant grain configuration and nozzle throat diameter to meet various customer requirements. The first and second motors were conditioned successfully at ambient temperature and 28 F, respectively, to demonstrate that the design could handle a wide range of environmental launch conditions. Furthermore, the second Castor 120(TM) motor demonstrated a systems tunnel and forward skirt extension to verify flight-ready stage hardware. It is anticipated that the first flight motor will be ready by the fall of 1994.

  5. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity

    International Nuclear Information System (INIS)

    Genes, Claudiu; Vitali, David; Tombesi, Paolo

    2008-01-01

    Laser cooling of a mechanical mode of a resonator by the radiation pressure of a detuned optical cavity mode has been recently demonstrated by various groups in different experimental configurations. Here, we consider the effect of a second mechanical mode with a close but different resonance frequency. We show that the nearby mechanical resonance is simultaneously cooled by the cavity field, provided that the difference between the two mechanical frequencies is not too small. When this frequency difference becomes smaller than the effective mechanical damping of the secondary mode, the two cooling processes interfere destructively similarly to what happens in electromagnetically induced transparency, and cavity cooling is suppressed in the limit of identical mechanical frequencies. We show that also the entanglement properties of the steady state of the tripartite system crucially depend upon the difference between the two mechanical frequencies. If the latter is larger than the effective damping of the second mechanical mode, the state shows fully tripartite entanglement and each mechanical mode is entangled with the cavity mode. If instead, the frequency difference is smaller, the steady state is a two-mode biseparable state, inseparable only when one splits the cavity mode from the two mechanical modes. In this latter case, the entanglement of each mechanical mode with the cavity mode is extremely fragile with respect to temperature.

  6. High quality ultrafast transmission electron microscopy using resonant microwave cavities.

    Science.gov (United States)

    Verhoeven, W; van Rens, J F M; Kieft, E R; Mutsaers, P H A; Luiten, O J

    2018-03-10

    Ultrashort, low-emittance electron pulses can be created at a high repetition rate by using a TM 110 deflection cavity to sweep a continuous beam across an aperture. These pulses can be used for time-resolved electron microscopy with atomic spatial and temporal resolution at relatively large average currents. In order to demonstrate this, a cavity has been inserted in a transmission electron microscope, and picosecond pulses have been created. No significant increase of either emittance or energy spread has been measured for these pulses. At a peak current of 814 ± 2 pA, the root-mean-square transverse normalized emittance of the electron pulses is ɛ n,x =(2.7±0.1)·10 -12  m rad in the direction parallel to the streak of the cavity, and ɛ n,y =(2.5±0.1)·10 -12  m rad in the perpendicular direction for pulses with a pulse length of 1.1-1.3 ps. Under the same conditions, the emittance of the continuous beam is ɛ n,x =ɛ n,y =(2.5±0.1)·10 -12  m rad. Furthermore, for both the pulsed and the continuous beam a full width at half maximum energy spread of 0.95 ± 0.05 eV has been measured. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Search for inversion splitting in the 3ν2 band of phosphine

    Science.gov (United States)

    Okuda, Shoko; Sasada, Hiroyuki

    2018-04-01

    Sub-Doppler resolution spectroscopy of the 3ν2 band of phosphine has been carried out using a difference-frequency-generation source referenced to an optical frequency comb and a cavity-enhanced absorption cell. Three Q-branch transitions are recorded with a linewidth of 150 kHz, but no inversion splitting is observed even though it was predicted 300 kHz in Journal of Chemical Physics, vol. 145, art. No. 091102 (2016). Transition frequencies of six Q-branch transitions have been determined with an uncertainty of 6-16 kHz.

  8. Rabi splitting in a quantum well system with Rashba spin-orbital coupling

    Science.gov (United States)

    Ma, Wenjie; Wang, Zhihai; Zhu, Hongbo

    2017-01-01

    We study the Rabi splitting phenomenon in a quantum well system with Rashba spin-orbital coupling where the spin degree of freedom is driven weakly by an external field. The dynamics of the system can be described by the Jaynes-Cummings model. As we increase the strength of spin-orbital coupling, the system undergoes an energy-level crossing which does not occure in the traditional cavity and circuit QED setups. We find that the intuitive rotating wave approximation in the driving Hamiltonian is ineffective when the energy-level crossing occurs. We also give a physical understanding based on the dressed-state representation.

  9. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  10. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide ...

  11. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  12. On the collapse of cavities

    Science.gov (United States)

    Bourne, N. K.

    The collapse of a single cavity, or a cloud of bubbles has several physical consequences when in proximity to a structure or resident within a material during deformation. The earliest recognized of these was cavitation erosion of the propellers of steam ships. However, other processes include the rapid collapse of cavities leading to hot spots in explosives from which reaction ensues, or the more recent phenomenon of light generation by oscillating single bubbles or clouds. In the collapse of a cavity, the least considered but the most important mechanism is asymmetric closure. One of the consequences of this is the formation of jets leading to local high pressures and shears that result in the damage or reaction mechanisms observed. The challenge for the future remains in understanding the effects of cloud cavitation since it is likely that only one bubble in perhaps millions in a cloud catalyses an event. The review follows the author's work in the understanding of shock-induced cavity collapse and highlights several results which indicate the importance of this problem in a variety of fields.

  13. A 200 MHz prebunching cavity

    CERN Multimedia

    1977-01-01

    This cavity was installed in the PS ring and proved very efficient in providing a modulation on the PS beam before it is injected into the SPS machine. Moreover it allowed longitudinal instabilities studies at high intensities. Roberto Cappi stands on the left.

  14. Improving cooling of cavity blackbodies

    Science.gov (United States)

    Barrat, Catherine; Chauvel, Gildas

    2013-10-01

    A cavity blackbody is the appropriate IR reference source for IR sensors which require high radiance levels. It combines high emissivity independent from wavelength and high speed warm up and high stability thanks to its light trap structure. However, the inconvenient of this structure is that it leads to a prohibitive cooling time. HGH developed a method to speed up the cooling time.

  15. Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser

    Science.gov (United States)

    Tang, Guowu; Wen, Xin; Huang, Kaimin; Qian, Guoquan; Lin, Wei; Cheng, Huihui; Jiang, Licheng; Qian, Qi; Yang, Zhongmin

    2018-03-01

    Heavily Tm3+-doped barium gallo-germanate glass single-mode (SM) fibers were successfully drawn. A gain per unit length of 3.6 dB/cm at 1.95 µm was obtained. To the best of our knowledge, this is the highest gain per unit length reported for Tm3+-doped germanate glass SM fibers. A single-frequency fiber laser operating at 1.95 µm has been built using a 1.5-cm-long active fiber pumped by a 1568 nm fiber laser. The direct output power from the ultracompact laser cavity is 227 mW. The results show that the fibers are highly promising for high-power and ultracompact single-frequency laser applications.

  16. Seismic resonances of acoustic cavities

    Science.gov (United States)

    Schneider, F. M.; Esterhazy, S.; Perugia, I.; Bokelmann, G.

    2016-12-01

    The goal of an On-Site Inspection (OSI) is to clarify at a possible testsite whether a member state of the Comprehensive nuclear Test Ban Treaty (CTBT)has violated its rules by conducting a underground nuclear test. Compared toatmospheric and underwater tests underground nuclear explosions are the mostdifficult to detect.One primary structural target for the field team during an OSI is the detectionof an underground cavity, created by underground nuclear explosions. Theapplication of seismic-resonances of the cavity for its detection has beenproposed in the CTBT by mentioning "resonance seismometry" as possibletechnique during OSIs. We modeled the interaction of a seismic wave-field withan underground cavity by a sphere filled with an acoustic medium surrounded byan elastic full space. For this setting the solution of the seismic wave-fieldcan be computed analytically. Using this approach the appearance of acousticresonances can be predicted in the theoretical calculations. Resonance peaksappear in the spectrum derived for the elastic domain surrounding the acousticcavity, which scale in width with the density of the acoustic medium. For lowdensities in the acoustic medium as for an gas-filled cavity, the spectralpeaks become very narrow and therefore hard to resolve. The resonancefrequencies, however can be correlated to the discrete set of eigenmodes of theacoustic cavity and can thus be predicted if the dimension of the cavity isknown. Origin of the resonance peaks are internal reverberations of wavescoupling in the acoustic domain and causing an echoing signal that couples outto the elastic domain again. In the gas-filled case the amplitudes in timedomain are very low.Beside theoretical considerations we seek to find real data examples fromsimilar settings. As example we analyze a 3D active seismic data set fromFelsőpetény, Hungary that has been conducted between 2012 and 2014 on behalf ofthe CTBTO. In the subsurface of this area a former clay mine is

  17. Powernext FuturesTM statistics. April 30, 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents in a series of tables and graphics the April 30, 2006 update of Powernext Futures TM statistics: year, quarter and month contracts for April 2006, base-load and peak-load contracts overview from November 2005 to April 2006 (monthly volume in MW, open interest by delivery year in MWh, daily settlement price of the upcoming delivery period), and market liquidity in April 2006 (average bid ask spread and availability for base-load and peak-load contracts). (J.S.)

  18. Powernext FuturesTM statistics. Jun 30, 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents in a series of tables and graphics the June 30, 2006 update of Powernext Futures TM statistics: year, quarter and month contracts for June 2006, base-load and peak-load contracts overview from January 2006 to June 2006 (monthly volume in MW, open interest by delivery year in MWh, daily settlement price of the upcoming delivery period), and market liquidity in June 2006 (average bid ask spread and availability for base-load and peak-load contracts). (J.S.)

  19. Powernext futuresTM statistics November 30, 2004

    International Nuclear Information System (INIS)

    2004-11-01

    The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents in a series of tables and graphics the November 30, 2004 update of Powernext Futures TM statistics: year, quarter and month contracts for November 2004, base-load and peak-load contracts overview from June 2004 to November 2004 (daily volume in lots, open interest by delivery year in MWh, daily settlement price of the upcoming delivery period, base-load and peak-load price spreads), and market liquidity in November 2004 (average bid ask spread and availability). (J.S.)

  20. DC Stark addressing for quantum memory in Tm:YAG

    Directory of Open Access Journals (Sweden)

    Gerasimov Konstantin

    2017-01-01

    Full Text Available We observed a linear DC Stark effect for 3H6 – 3H4 optical transition of Tm3+ ions in Y3Al5O12. We observed that application of electric field pulse suppresses the two-pulse photon echo signal. If we then apply a second electric pulse of opposite polarity the echo signal is restored again, which indicates the linear nature of the observed effect. The effect is present despite the D2 symmetry of the Tm3+ sites that prohibits a linear Stark effect. Experimental data analysis shows that the observed electric field influence can be attributed to defects that break the local crystal field symmetry near Tm3+ ions. Using this effect we demonstrate selective retrieval of light pulses in two-pulse photon echo.

  1. Assembly Bow Characteristics of the HIPER16TM Fuel Design

    International Nuclear Information System (INIS)

    Jeon, Sang-Youn; Kwon, O-Cheol; Ha, Dong-Geun; Kim, Jae-Ik

    2015-01-01

    The out-of-pile tests were performed either in air or in a hydraulic loop and at room temperature or operating temperature conditions. The test results include the required physical and thermal-hydraulic data needed to verify the HIPER16 TM fuel design. The mechanical integrity and safety of HIPER16 TM fuel design has been verified based on the final verification tests and evaluations. The visual examinations and dimensional measurements were performed on the LTAs using poolside examination equipment. The in-reactor verification test results showed that the HIPER16 TM fuel design met the irradiation related design requirement. The poolside examinations after 3rd irradiation cycle of LTA will be performed in the end of 2015.

  2. Hydrological planning studies using Landsat-4 Thematic Mapper (TM)

    Science.gov (United States)

    Gervin, J. C.; Mulligan, P. J.; Lu, Y. C.; Marcell, R. F.

    1984-01-01

    NASA, in cooperation with the U.S. Army Corps of Engineers, is evaluating the capabilities of Landsat 4 Thematic Mapper (TM) data for environmental and hydrological applications. Attention is given to the results of studies conducted at the Clinton River Basin in Michigan and the eastern shore of the Chesapeake Bay in Maryland. In the former, the evaluation conducted was for the band combinations: (1) 2, 3, and 4; (2) 3, 4, and 5; (3) 3, 4, 5, and 6; and (4) all seven bands. In the latter case, Multispectral Scanner (MSS) and TM data were classified for combinations (1), (3) and (4). Wetland classification accuracy for the 7-band TM data in this study was found to be 9 percent higher than with MSS data, allowing more reliable and accurate monitoring.

  3. Powernext Day-AheadTM products and market organization

    International Nuclear Information System (INIS)

    2004-06-01

    The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing the French power exchange through an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents the principle of the trading of hourly contracts on Powernext Day-Ahead TM , the accessibility of the market, the SAPRI trading platform operated by Nord Pool, the Scandinavian power exchange, the validation of the auction results, the collaboration with LCH.Clearnet SA to secure and facilitate the transactions, and the delivery guarantee implemented by RTE (the French energy transport network). (J.S.)

  4. PLUS7TM In-Reactor Operating Performance and Economics

    International Nuclear Information System (INIS)

    Kim, Kyutae; Jang, Youngki; Choi, Joonhyung; Lee, Jinseok; Kim, Yoonho; Suh, Jungmin

    2006-01-01

    KNFC has developed an advanced fuel, PLUS7 TM , for the Korean Standard Nuclear Power Plants(KSNPs) through the joint development program with Westinghouse. With the help of various out-of-pile tests, it is found that the PLUS7 TM shows much better performance than the current fuel, GUARDIAN TM from the safety and economy points of view. Now four Lead Test Assembles(LTAs) of the PLUS7 TM are being irradiated for the 3 rd cycle after the successful completion of the 1 st and 2 nd irradiation cycles. During the 1 st and 2 nd irradiation cycles, no fuel failure was observed at LTAs and their nuclear-related parameters matched their design values well. During the overhaul period, on the other hand, pool side examinations were performed for four LTAs to generate key in-reactor fuel performance data such as fuel rod and assembly growths, fuel rod-to-top nozzle gap, fuel assembly bow and twist, fuel rod bow, spacer grid width, fuel rod diameter and fuel rod oxide layer thickness. It is found that all measured values are bounded by upper and lower predicted ones. The detailed economic analyses have shown that significant fuel cycle cost can be reduced by more than one million dollars per cycle of one KSNP with the introduction of the PLUS7 TM assembly. Furthermore, more than one hundred million dollars with power up-rating of 5% can be saved annually for currently operating eight KSNPs, which is easily and safety achievable with the PLUS7 TM assembly

  5. 12 CFR 7.2023 - Reverse stock splits.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Reverse stock splits. 7.2023 Section 7.2023... Corporate Practices § 7.2023 Reverse stock splits. (a) Authority to engage in reverse stock splits. A national bank may engage in a reverse stock split if the transaction serves a legitimate corporate purpose...

  6. Comparative evaluation of two methods for 172Tm production in nuclear reactors

    International Nuclear Information System (INIS)

    Cohen, I.M.; Hayes, Alejandro; Melcer, Elsa

    2016-01-01

    A comparative evaluation of two methods for the production of 172 Tm in nuclear reactors is carried out. They are respectively based on two chains of double neutron capture reactions, 170 Er(n,γ) 171 Er(n,γ) 172 Er(β - ) 172 Tm and 170 Er(n,γ) 171 Er(β - ) 171 Tm(n,γ) 172 Tm, and a chain of triple neutron capture: 169 Tm(n,γ) 170 Tm(n,γ) 71 Tm(n,γ) 172 Tm. Theoretical considerations with respect to both ways of production are formulated and the mathematical equation are solved. Experiments of irradiation of Er 2 O 3 and Tm 2 O 3 were performed. Advantages and drawbacks of both methods are discussed. (author)

  7. Magnetic anomaly in superconducting TmRh4B4

    International Nuclear Information System (INIS)

    Smith, J.L.; Huang, C.Y.; Tsou, J.J.; Ho, J.C.

    1978-01-01

    The magnetic and superconducting properties of TmRh 4 B 4 (which becomes superconducting at 9.6 K) by means of ac and dc magnetic susceptibility and specific heat measurements are investigated. At 10.7 K, an ac susceptibility peak similar to those found in spin glasses has been observed. In addition, a pronounced specific heat peak has been observed at 11.4 K. The susceptibility peak is essentially unaffected by substitution of 1% Lu or Er for the Tm, but it diminishes when much larger amounts of Er are substituted. The physical origin of this anomalous peak will be discussed

  8. Family C 7TM receptor dimerization and activation

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    changes that lead to receptor activation. Despite extensive studies of the receptor transmembrane domain, several key features, including the exact organization of the complete receptor dimer, the sequence of events leading to receptor activation, and the functional significance of dimerization, have yet...... to be fully defined. This review presents the biochemical support for family C 7TM receptor dimerization and discusses its importance for receptor biosynthesis, surface expression, ligand binding and activation, since lessons learnt here may well be applicable to the whole superfamily of 7TM receptors....

  9. Fano resonance Rabi splitting of surface plasmons.

    Science.gov (United States)

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2017-08-14

    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  10. Photochemical Water-Splitting with Organomanganese Complexes.

    Science.gov (United States)

    Kadassery, Karthika J; Dey, Suman Kr; Cannella, Anthony F; Surendhran, Roshaan; Lacy, David C

    2017-08-21

    Certain organometallic chromophores with water-derived ligands, such as the known [Mn(CO) 3 (μ 3 -OH)] 4 (1) tetramer, drew our attention as possible platforms to study water-splitting reactions. Herein, we investigate the UV irradiation of various tricarbonyl organomanganese complexes, including 1, and demonstrate that dihydrogen, CO, and hydrogen peroxide form as products in a photochemical water-splitting decomposition reaction. The organic and manganese-containing side products are also characterized. Labeling studies with 18 O-1 suggest that the source of oxygen atoms in H 2 O 2 originates from free water that interacts with 1 after photochemical dissociation of CO (1-CO) constituting the oxidative half-reaction of water splitting mediated by 1. Hydrogen production from 1 is the result of several different processes, one of which involves the protons derived from the hydroxido ligands in 1 constituting the reductive half-reaction of water splitting mediated by 1. Other processes that generate H 2 are also operative and are described. Collectively the results from the photochemical decomposition of 1 provide an opportunity to propose a mechanism, and it is discussed within the context of developing new strategies for water-splitting reactions with organomanganese complexes.

  11. Split-hand/split-foot malformation with paternal mutation in the p63 gene.

    NARCIS (Netherlands)

    Witters, I.; Bokhoven, J.H.L.M. van; Goossens, A.; Assche, F.A. van; Fryns, J.P.

    2001-01-01

    We report the prenatal diagnosis at 16 weeks' gestation of bilateral split-hand/split-foot malformation (SHSFM) with severe lobster claw deformity of hands and feet in a male fetus without associated malformations. A minor manifestation of SHSFM was present in the father with only mild bilateral

  12. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-06

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  13. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  14. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  15. Conserved water-mediated hydrogen bond network between TM-I, -II, -VI, and -VII in 7TM receptor activation

    DEFF Research Database (Denmark)

    Nygaard, Rie; Hansen, Louise Valentin; Mokrosinski, Jacek

    2010-01-01

    Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics...... simulations showed that, although the fewer water molecules in rhodopsin were relatively movable, the hydrogen bond network of the beta2-adrenergic receptor was fully loaded with water molecules that were surprisingly immobilized between the two rotamer switches, both apparently being in their closed...... (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended...

  16. Assessment of simulated internal resorption cavities using digital and digital subtraction radiography: a comparative study.

    Science.gov (United States)

    Stephanopoulos, Georgios; Mikrogeorgis, Georgios; Lyroudia, Kleoniki

    2011-10-01

    To compare the diagnostic accuracy of digital radiography with that of digital subtraction radiography in the detection of simulated internal resorption cavities. Simulated internal resorption cavities of varying sizes were created using round burs in 18 single-rooted teeth with visible pulp chamber, which had been extracted from dentate dry mandibles and split into two halves in a mesio-distal direction. Resorption cavities were created in the buccal half of the root in the cervical, middle, and apical third. Digital radiographs were taken from three different horizontal view angles before and after the creation of the cavities. This process was followed by digital subtraction radiography to evaluate their detection. Seven experienced observers and all specialists in endodontics were asked to examine the digital and digital subtraction images for the presence of the cavities. The data were analyzed using SPSS 14. The overall sensitivity of digital subtraction radiography was superior to digital radiography and with statistically better results for all cavities regardless of their location (cervical, middle, apical third) (P < 0.05). The detection of the cavities was affected by the root third in which they were located. Cavities in the apical third were more easily detected compared with those in the middle or cervical third of the root. Small-sized lesions (0.5 mm, 0.6 mm) in the middle and apical third were more frequent and more easily detected using subtraction imaging. Digital subtraction radiography is superior to digital radiography for the detection and monitoring of the progress of internal root resorption. © 2011 John Wiley & Sons A/S.

  17. An economical wireless cavity-nest viewer

    Science.gov (United States)

    Daniel P. Huebner; Sarah R. Hurteau

    2007-01-01

    Inspection of cavity nests and nest boxes is often required during studies of cavity-nesting birds, and fiberscopes and pole-mounted video cameras are sometimes used for such inspection. However, the cost of these systems may be prohibitive for some potential users. We describe a user-built, wireless cavity viewer that can be used to access cavities as high as 15 m and...

  18. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  19. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    Photoelectrochemical water splitting represents an eco-friendly technology that could enable the production of hydrogen using water as reactant and solar energy as primary energy source. The exploitation of solar energy for the production of hydrogen would help modern society to reduce the reliance...... (bismuth vanadate) was investigated in view of combining this 2.4 eV large bandgap semiconductor with a Si back-illuminated photocathode. A device obtained by mechanical stacking of BiVO4 photoanode and standard Si photocathode performs non-assisted water splitting under illumination with Solar......-to-Hydrogen efficiency lower than 0.5%. In addition, BiVO4 was synthesized on the back-side of a Si back-illuminated photocathode to produce a preliminary monolithic solar water splitting device.The Faradaic efficiency of different types of catalysts for the electrochemical production of hydrogen or oxygen was evaluated...

  20. Multiple spectral splits of supernova neutrinos.

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol; Raffelt, Georg G; Smirnov, Alexei Yu

    2009-07-31

    Collective oscillations of supernova neutrinos swap the spectra f(nu(e))(E) and f(nu[over ](e))(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu[over ] channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f(nu(e))=f(nu(x)), f(nu[over ](e))=f(nu[over ](x)) as well as E-->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.

  1. Split Notochord Syndrome: A Rare Variant

    Science.gov (United States)

    Dhawan, Vidhu; Kapoor, Kanchan; Singh, Balbir; Kochhar, Suman; Sehgal, Alka; Dada, Rima

    2017-01-01

    Split notochord syndrome represents an extremely rare and pleomorphic form of spinal dysraphism characterized by a persistent communication between the endoderm and the ectoderm, resulting in splitting or deviation of the notochord. It manifests as a cleft in the dorsal midline of the body through which intestinal loops are exteriorized and even myelomeningoceles or teratomas may occur at the site. A rare variant was diagnosed on autopsy of a 23+4-week-old fetus showing a similar dorsal enteric fistula and midline protruding intestinal loops in thoracolumbar region. The anteroposterior radiograph showed a complete midline cleft in the vertebral bodies from T11 to L5 region, and a split in the spinal cord was further confirmed by ultrasonography. Myelomeningocele was erroneously reported on antenatal ultrasound. Thus, awareness of this rare anomaly is necessary to thoroughly evaluate the cases of such spinal defects or suspected myelomeningoceles. PMID:28904581

  2. Fuzzy split and merge for shadow detection

    Directory of Open Access Journals (Sweden)

    Remya K. Sasi

    2015-03-01

    Full Text Available Presence of shadow in an image often causes problems in computer vision applications such as object recognition and image segmentation. This paper proposes a method to detect the shadow from a single image using fuzzy split and merge approach. Split and merge is a classical algorithm used in image segmentation. Predicate function in the classical approach is replaced by a Fuzzy predicate in the proposed approach. The method follows a top down approach of recursively splitting an image into homogeneous quadtree blocks, followed by a bottom up approach by merging adjacent unique regions. The method has been compared with previous approaches and found to be better in performance in terms of accuracy.

  3. Modeling the electromagnetic cavity mode contributions to the THz emission from triangular Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} mesas

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Richard A., E-mail: klemm@physics.ucf.edu [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Delfanazari, Kaveh; Tsujimoto, Manabu; Kashiwagi, Takanari; Kitamura, Takeo; Yamamoto, Takashi; Sawamura, Masashi; Ishida, Kazuya [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); WPI-MANA, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Hattori, Toshiaki [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Kadowaki, Kazuo [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); WPI-MANA, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2013-08-15

    Highlights: ► New wave functions for the equilateral triangular patch antenna found. ► Most general wave functions for the equilateral patch antenna found. ► Accurate eigenvalues and wave functions for highly acute isosceles triangular patch antennas found. -- Abstract: In order to understand the radiation observed from the intrinsic Josephson junctions in triangular Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} mesas, we calculate the transverse magnetic (TM) electromagnetic modes for thin equilateral cavities. A new set of distinct but degenerate TM modes coexists with the known modes of Helszajn and James, but are expected to lead to distinct radiation angular distribution patterns. Although we have been unable to solve for the exact TM modes of a thin cavity of general acute isosceles triangular shape, we solved exactly the closely related problems of the TM cavity modes of two thin circumscribing “pie-shaped” wedges, which provide highly accurate approximations to very acute isosceles triangular cavities.

  4. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  5. Ionic vibration induced transparency and Autler-Townes splitting

    Science.gov (United States)

    Shao, Wenjun; Wang, Fei; Feng, Xun-Li; Oh, C. H.

    2017-04-01

    In this work, the absorption spectrum of a two-level ion in a linear Paul trap is investigated, the ion is supposed to be driven by two orthogonal laser beams, the one along the axial of the trap acts as the control light beam, the other as probe beam. When the frequency of the control laser is tuned to the first red sideband of the ionic transition, the coupling between the internal states of the ion and vibrational mode turns out to be a Jaynes-Cummings (JC) Hamiltonian, which together with the coupling between the probe beam and the two-level ion constructs a Λ -type three-level structure. In this case the transparency window may appear in the absorption spectrum of the probe light, which is induced by the ionic vibration and is very similar to the cavity induced transparency (Rice and Brecha 1996 Opt. Commun. 126 230-5). On the other hand, when the frequency of the control laser is tuned to the first blue sideband of the ionic transition, the two-level ion and vibrational mode are governed by an anti-Jaynes-Cummings (anti-JC) Hamiltonian, the total system including the probe beam forms a V-type three-level structure. And the Autler-Townes splitting in the absorption spectrum is found.

  6. Faster multiple emulsification with drop splitting.

    Science.gov (United States)

    Abate, Adam R; Weitz, David A

    2011-06-07

    Microfluidic devices can form emulsions in which the drops have an intricate, controlled structure; however, a challenge is that the droplets are produced slowly, typically only a few millilitres per hour. Here, we present a simple technique to increase the production rate. Using a large drop maker, we produce large drops at a fast volumetric rate; by splitting these drops several times in a splitting array, we create drops of the desired small size. The advantage of this over forming the small drops directly using a small drop maker is that the drops can be formed at much faster rates. This can be applied to the production of single and multiple emulsions.

  7. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You

    2014-01-01

    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  8. Hyperfine splitting in lithium-like bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)

    2013-07-01

    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  9. Countercurrent reactor design and flowsheet for iodine-sulfur thermochemical water splitting process

    International Nuclear Information System (INIS)

    Leybros, J.; Carles, Ph.; Borgard, J.M.

    2009-01-01

    A conceptual design is presented for the I/S process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process includes a countercurrent reactor being developed by CEA within them framework of an international collaboration (I-NERI project) with DOE at General Atomics (San Diego, CA). A ProsimPlus (TM) model of the flowsheet indicates 600 kJ high-temperature heat and 69 kJ electric power are consumed per mole of H 2 product (with an assumed pressure of 120 bars). The net thermal efficiency would be 38% (HHV basis) if electric power is available at a conversion efficiency of 45%. (authors)

  10. Effect of controlled-release PeriochipTM on clinical and microbiological parameters in patients of chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Komal Puri

    2013-01-01

    Full Text Available Background: The aim of the present study was to evaluate and compare the clinical and microbiological effectiveness of Periochip TM as an adjunct to scaling and root planing (SRP with SRP alone in patients with chronic periodontitis. Materials and Methods: This randomized, split mouth, 3-month clinical and microbiological trial included 30 sites in 15 patients aged 30-50 years diagnosed with chronic periodontitis. In each patient, two bilateral pockets probing 5-7 mm were randomly assigned to test and control groups. The test group received SRP plus Periochip TM , whereas the control group received SRP alone. Clinical indices and anaerobic culture analysis was done at baseline, 1 month, and 3 months interval. Total bacterial count and analysis of four major periodontopathogenic bacteria Porphyromonas gingivalis (Pg, Prevotella intermedia (Pi, Aggregatibacter actinomycetemcomitans (Aa, and Fusobacterium nucleatum (Fn was done. Results: Significant improvement was obtained in all clinical variables in the test group as compared to the control group over the study period. Total colony counts were significantly reduced in the test group as compared to control over the period of time. At baseline Aa was recovered from 4 test group sites and 5 control group sites, Pg from 15 test group and 14 control group sites, Pi from 5 test group and 2 control group sites, Fn from 7 test and 7 control group sites. At 3 months, Aa was recovered from 1 test group and 4 control group sites, Pg from 4 test group and 8 control group sites, Pi from 1 test group and 1 control group site, Fn from 3 test and 4 control group sites. Conclusion: Periochip TM placement as an adjunct to SRP, showed promising results, when compared to SRP alone. Healthy microflora can be maintained for a longer period of time and delay in the repopulation by periodontopathic microorganisms was observed.

  11. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems

    Science.gov (United States)

    Zhu, Yuan-Yan; Zhang, Jian-Min

    2018-05-01

    We report the structural, magnetic and electronic properties of the pristine and single TM atoms X (X = Fe, Ru or Os) doped monolayer WS2 systems based on first-principle calculations. The results show that the W-S bond shows a stronger covalent bond, but the covalency is obviously weakened after the substitution of W atom with single X atoms, especially for Ru (4d75s1) with the easily lost electronic configuration. The smaller total energies of the doped systems reveal that the spin-polarized states are energetically favorable than the non-spin-polarized states, and the smallest total energy of -373.918 eV shows the spin-polarized state of the Os doped monolayer WS2 system is most stable among three doped systems. In addition, although the pristine monolayer WS2 system is a nonmagnetic-semiconductor with a direct band gap of 1.813 eV, single TM atoms Fe and Ru doped monolayer WS2 systems transfer to magnetic-HM with the total moments Mtot of 1.993 and 1.962 μB , while single TM atom Os doped monolayer WS2 systems changes to magnetic-metal with the total moments Mtot of 1.569 μB . Moreover, the impurity states with a positive spin splitting energies of 0.543, 0.276 and 0.1999 eV near the Fermi level EF are mainly contributed by X-dxy and X-dx2-y2 states hybridized with its nearest-neighbor atom W-dz2 states for Fe, Ru and Os doped monolayer WS2 system, respectively. Finally, we hope that the present study on monolayer WS2 will provide a useful theoretical guideline for exploring low-dimensional spintronic materials in future experiments.

  12. Spin-disorder resistivity of heavy rare-earth metals from Gd to Tm: An ab-initio study

    Science.gov (United States)

    Glasbrenner, James; Belashchenko, Kirill

    2010-03-01

    Electrical resistivity of heavy rare-earth metals has a dominant contribution from thermal spin disorder scattering. In the paramagnetic state, this spin-disorder resistivity (SDR) decreases through the Gd-Tm series. Models based on the assumption of fully localized 4f states treated as S or J multiplets predict that SDR is proportional to S^2 (S is the 4f shell spin) times a quantum correction (S+1)/S or (J+1)/J. The interpretation of this correction using experimental results is ambiguous. Since the 4f bandwidth is not small compared to the multiplet splitting, it is not clear whether the 4f shells in rare-earth metals behave as if they were fully localized and have a good quantum number S or J. To address this issue, in this work we calculate the paramagnetic SDR of the rare-earth metal Gd-Tm series using a non-collinear implementation of the tight-binding linear muffin-tin orbital method. The conductance is found using the Landauer-B"uttiker approach applied to the active region of a varying size, averaging the conductance over random spin-disorder configurations and fitting its size dependence to Ohm's law. The results are compared with experiment and discussed. The sensitivity to basis set and the treatment of the 4f electrons, as well as the role of exchange enhancement in the conduction band is considered. The issue of the quantum correction is examined in light of the new results.

  13. Gastrophysics of the Oral Cavity.

    Science.gov (United States)

    Mouritsen, Ole G

    2016-01-01

    Gastrophysics is the science that pertains to the physical and physico-chemical description of the empirical world of gastronomy, with focus on sensory perception in the oral cavity and how it is related to the materials properties of food and cooking processes. Flavor (taste and smell), mouthfeel, chemesthesis, and astringency are all related to the chemical properties and the texture of the food and how the food is transformed in the oral cavity. The present topical review will primarily focus attention on the somatosensory perception of food (mouthfeel or texture) and how it interacts with basic tastes (sour, bitter, sweet, salty, and umami) and chemesthetic action. Issues regarding diet, nutrition, and health will be put into an evolutionary perspective, and some mention will be made of umami and its importance for (oral) health.

  14. A micropillar for cavity optomechanics

    Science.gov (United States)

    Kuhn, Aurélien; Neuhaus, Leonhard; Van Brackel, Emmanuel; Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier; Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine

    2014-12-01

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  15. BACTEC MGIT 960 TM system for screening of Mycobacterium ...

    African Journals Online (AJOL)

    This study was aimed to evaluate the recent technique (BACTEC MGIT 960 TM system) for screening of Mycobacterium tuberculosis complex among cattle in Egypt. From the 1180 cattle examined in three different Governorates (El-Sharkia, El-Gharbia and El-Monefeia) by single intradermal tuberculin test, 29 animals ...

  16. Evaluation of NGAL TestTM on Cobas 6000

    DEFF Research Database (Denmark)

    Hansen, Young B L; Damgaard, Anette; Poulsen, Jørgen H

    2014-01-01

    BACKGROUND: Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a promising biomarker for acute kidney injury (AKI). Our objectives were to evaluate the NGAL Test(TM) from Bioporto for both urine NGAL and plasma NGAL on the Cobas 6000 c501 (Roche Diagnostics, Rotkreuz, Switzerland) with matched...

  17. Modeling woody vegetation resources using Landsat TM imagery in ...

    African Journals Online (AJOL)

    Modeling woody vegetation resources using Landsat TM imagery in northern Namibia. Alex Verlinden, Risto Laamanen. Abstract. In 1995 a forest inventory covering northern Namibia was initiated, based on stratified systematic field sampling of plots with a radius of up to 30 m. In these plots detailed tree parameters were ...

  18. Tm2+ luminescent materials for solar radiation conversion devices

    NARCIS (Netherlands)

    Van der Kolk, E.

    2015-01-01

    A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength

  19. Teaching Engineering Design through Lego[R] Mindstorms[TM

    Science.gov (United States)

    Ringwood, J. V.; Monaghan, K.; Maloco, J.

    2005-01-01

    This paper examines a particular methodology of teaching engineering design to undergraduate engineering students, which relies on Lego[R] Mindstorms[TM]. A number of important issues are addressed, including the timing of the design module within the programme, prior knowledge required and assessment components. The module, which has been running…

  20. Unmixing-based Landsat TM and MERIS FR data fusion

    NARCIS (Netherlands)

    Zurita Milla, R.; Clevers, J.G.P.W.; Schaepman, M.E.

    2008-01-01

    An unmixing-based data fusion technique is used to generate images that have the spatial resolution of Landsat Thematic Mapper (TM) and the spectral resolution provided by the Medium Resolution Imaging Spectrometer (MERIS) sensor. The method requires the optimization of the following two parameters:

  1. Supporting Moral Development: The Virtues Project[TM

    Science.gov (United States)

    de Moor, Gerrit

    2011-01-01

    The Virtues Project[TM] was founded in Canada in 1991 by Linda Kavelin Popov, Dan Popov, and John Kavelin who were concerned about the level of violence among families and youth. In studying sacred traditions and cultures around the world, they identified a set of common virtues. These were used to develop a pedagogical model that has applications…

  2. Words Their Way[TM]. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2013

    2013-01-01

    "Words Their Way"[TM] is an approach to phonics, vocabulary, and spelling instruction for students in kindergarten through high school. The program can be implemented as a core or supplemental curriculum and aims to provide a practical way to study words with students. The purpose of word study (which involves examining, manipulating,…

  3. Doors to Discovery[TM]. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2013

    2013-01-01

    "Doors to Discovery"]TM] is a preschool literacy curriculum that uses eight thematic units of activities to help children build fundamental early literacy skills in oral language, phonological awareness, concepts of print, alphabet knowledge, writing, and comprehension. The eight thematic units cover topics such as nature, friendship,…

  4. Caelyx (TM) in malignant mesothelioma : A phase II EORTC study

    NARCIS (Netherlands)

    Baas, P; van Meerbeeck, J; Groen, H; Schouwink, H; Burgers, S; Daamen, S; Giaccone, G

    Background: The use of doxorubicin has shown some activity in malignant mesothelioma but prolonged administration is hampered by cardiotoxicity. Caelyx(TM), a new liposomal and pegylated form of doxorubicin has shown a better pharmacokinetic and toxic profile then doxorubicin. In a phase II study,

  5. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also...... described, and their implications for microdroplet resonator technology are discussed. Optofluidic implementations of microdroplet resonators are reviewed with emphasis on the basic optomechanical properties....

  6. Optomechanic interactions in phoxonic cavities

    Directory of Open Access Journals (Sweden)

    Bahram Djafari-Rouhani

    2014-12-01

    Full Text Available Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  7. Optomechanic interactions in phoxonic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Djafari-Rouhani, Bahram; Oudich, Mourad; Pennec, Yan [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France); El-Jallal, Said [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France); Physique du Rayonnement et de l’Interaction Laser Matière, Faculté des sciences, Université de Moulay Ismail, Meknès (Morocco)

    2014-12-15

    Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  8. Status of the ILC Crab Cavity Development

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Dexter, A.; /Cockcroft Inst. Accel. Sci. Tech.; Beard, C.; Goudket, P.; McIntosh, P.; /Daresbury; Bellantoni, L.; /Fermilab; Grimm, T.; Li, Z.; Xiao, L.; /SLAC

    2011-10-20

    The International Linear Collider (ILC) will require two dipole cavities to 'crab' the electron and positron bunches prior to their collision. It is proposed to use two 9 cell SCRF dipole cavities operating at a frequency of 3.9 GHz, with a transverse gradient of 3.8MV/m in order to provide the required transverse kick. Extensive numerical modelling of this cavity and its couplers has been performed. Aluminium prototypes have been manufactured and tested to measure the RF properties of the cavity and couplers. In addition single cell niobium prototypes have been manufactured and tested in a vertical cryostat. The International Collider (ILC) [1] collides bunches of electrons and positrons at a crossing angle of 14 mrad. The angle between these bunches causes a loss in luminosity due to geometric effects [2]. The luminosity lost from this geometric effect can be recovered by rotating the bunches into alignment prior to collision. One possible method of rotating the bunches is to use a crab cavity [3]. A crab cavity is a transverse defecting cavity, where the phase of the cavity is such that the head and tail of the bunch receive equal and opposite kicks. As the bunches are only 500 nm wide in the horizontal plane, the cavity phase must be strictly controlled to avoid the bunch centre being deflected too much. In order to keep the phase stability within the required limits it is required that the cavity be superconducting to avoid thermal effects in both the cavity and its RF source. At the location of the crab cavity in the ILC there is only 23 cm separation between the centre of the cavity and the extraction line, hence the cavity must be small enough to fit in this space. This, along with the difficulty of making high frequency SRF components, set the frequency of the cavity to 3.9 GHz.

  9. Minehound TM trials in Cambodia, Bosnia, and Angola

    Science.gov (United States)

    Daniels, David J.; Curtis, Paul

    2006-05-01

    This paper describes the trials of the MINEHOUND TM dual sensor, land mine detector carried out in Cambodia, Bosnia and Angola. MINEHOUND TM has been developed for use in humanitarian demining as a means of improving the efficiency of clearance operations. The trials were sponsored by the UK Department for International Development (DFID). ERA Technology Ltd conducted the trials, which were monitored by staff drawn from the countries participating in the International Test and Evaluation Programme (ITEP) for humanitarian de-mining. Experienced deminers from the Mines Advisory Group (MAG) and Norwegian Peoples Aid (NPA) used the pre-production units in live minefields. The objectives of the trial were: 1. To record information on the performance of MINEHOUND TM when used in a live minefield. 2. To determine the reduction in False Alarm Rate (FAR) that could be achieved using a dual sensor mine detector. The trials were conducted in three mine-affected countries for a period of eight weeks per country; the programme of trials ran from July 2005 to December 2005, with an additional smaller trial in late February 2006. The results of the trials showed that MINEHOUND TM achieved 100% detection of the mines encountered and an improvement in FAR of better than 5:1 compared with a basic metal detector. The trials enabled optimisation of the production design and clearly demonstrated that new technology can be brought to humanitarian clearance operations in a safe and controlled manner. As a result of the highly successful trials, Vallon and ERA will produce the MINEHOUND TM (Type number VMR1) starting in Q3 of 2006.

  10. Forest Attributes Estimation Using Aerial Laser Scanner and TM Data

    Directory of Open Access Journals (Sweden)

    S. Shataee Joibary

    2013-12-01

    Full Text Available Aim of study: The aim of this study was performance of four non-parametric algorithms including the k-NN, SVR, RF and ANN to estimate forest volume and basal area attributes using combination of Aerial Laser Scanner and Landsat-TM data.Area of study: Data in small part of a mixed managed forest in the Waldkirch region, Germany.Material and methods: The volume/ha and basal area/ha in the 411 circular plots were estimated based on DBH and height of trees using volume functions of study area. The low density ALS raw data as first and last pulses were prepared and automatically classified into vegetation and ground returns to generate two fine resolution digital terrain and surface models after noise removing. Plot-based height and density metrics were extracted from ALS data and used both separated and combined with orthorectified and processed TM bands. The algorithms implemented with different options including k-NN with different distance measures, SVR with the best regularized parameters for four kernel types, RF with regularized decision tree parameters and ANN with different types of networks. The algorithm performances were validated using computing absolute and percentage RMSe and bias on unused test samples.Main results: Results showed that among four methods, SVR using the RBF kernel could better estimate volume/ha with lower RMSe and bias (156.02 m3 ha–1 and 0.48, respectively compared to others. In basal area/ha, k-NN could generate results with similar RMSe (11.79 m3 ha–1 but unbiased (0.03 compared to SVR with RMSe of 11.55 m3 ha–1 but slightly biased (–1.04.Research highlights: Results exposed that combining Lidar with TM data could improve estimations compared to using only Lidar or TM data.Key words: forest attributes estimation; ALS; TM; non-parametric algorithms.

  11. Polarization splitting phenomenon of photonic crystals constructed by two-fold rotationally symmetric unit-cells

    Science.gov (United States)

    Yasa, U. G.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-09-01

    We present an intrinsic polarization splitting characteristic of low-symmetric photonic crystals (PCs) formed by unit-cells with C 2 rotational symmetry. This behavior emerges from the polarization sensitive self-collimation effect for both transverse-magnetic (TM) and transverse-electric (TE) modes depending on the rotational orientations of the unit-cell elements. Numerical analyzes are performed in both frequency and time domains for different types of square lattice two-fold rotational symmetric PC structures. At incident wavelength of λ = 1550 nm, high polarization extinction ratios with ˜26 dB (for TE polarization) and ˜22 dB (for TM polarization) are obtained with an operating bandwidth of 59 nm. Moreover, fabrication feasibilities of the designed structure are analyzed to evaluate their robustness in terms of the unit-cell orientation: for the selected PC unit-cell composition, corresponding extinction ratios for both polarizations still remain to be over 18 dB for the unit-cell rotation interval of θ = [40°-55°]. Taking all these advantages, two-fold rotationally symmetric PCs could be considered as an essential component in photonic integrated circuits for polarization control of light.

  12. Split-increment technique: an alternative approach for large cervical composite resin restorations.

    Science.gov (United States)

    Hassan, Khamis A; Khier, Salwa E

    2007-02-01

    This article proposes and describes the split-increment technique as an alternative for placement of composite resin in large cervical carious lesions which extend onto the root surface. Two flat 1.5 mm thick composite resin increments were used to restore these cervical carious lesions. Prior to light-curing, two diagonal cuts were made in each increment in order to split it into four triangular-shaped flat portions. The first increment was applied to cover the entire axial wall and portions of the four surrounding walls. The second increment was applied to fill the cavity completely covering the first one and the rest of the four surrounding walls as well as sealing all cavity margins. This technique results in the reduction of the C-factor and the generated shrinkage stresses by directing the shrinking composite resin during curing towards the free, unbonded areas created by the two diagonal cuts. The proposed technique would also produce a more naturally looking restoration by inserting flat dentin and enamel increments of composite resin of a uniform thickness which closely resembles the arrangement of natural tooth structure.

  13. Discrete objects, splitting closure and connectedness | Castellini ...

    African Journals Online (AJOL)

    Notions of discrete and indiscrete classes with respect to a closure operator are introduced and studied. These notions are strongly related to splitting and cosplitting closure operators. By linking the above concepts, two Galois connections arise whose composition provides a third Galois connection that can be used as a ...

  14. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...

  15. Split Coil Forms for Rotary Transformers

    Science.gov (United States)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  16. Split Beta-Lactamase Complementation Assay

    Indian Academy of Sciences (India)

    IAS Admin

    Concept of split beta. -lactamase protein fragment complementation assay. (A) and (B) are vector systems involved in the assay. As an example, a vector system for bacterial host is described here. (C) Co-transformation of complementation vectors in appropriate bacterial host. (D) and (E) are types of inter- actions expected ...

  17. Molecular catalytic system for efficient water splitting

    NARCIS (Netherlands)

    Joya, Khurram Saleem

    2011-01-01

    The aim of this dissertation is to construct and explore artificial oxygen evolving complexes that are synthetically accessible, stable, functionally robust and efficient. To achieve this, a class of mono metal water splitting catalysts is introduced in this manuscript and exploitation of these

  18. Splitting up Beta’s change

    OpenAIRE

    Suarez, Ronny

    2014-01-01

    In this paper we estimated IBM beta from 2000 to 2013, then using differential equation mathematical formula we split up the annual beta’s change attributed to the volatility market effect, the stock volatility effect, the correlation effect and the jointly effect of these variables.

  19. Shear-wave splitting and moonquakes

    Science.gov (United States)

    Dimech, J. L.; Weber, R. C.; Savage, M. K.

    2017-12-01

    Shear-wave splitting is a powerful tool for measuring anisotropy in the Earth's crust and mantle, and is sensitive to geological features such as fluid filled cracks, thin alternating layers of rock with different elastic properties, and preferred mineral orientations caused by strain. Since a shear wave splitting measurement requires only a single 3-component seismic station, it has potential applications for future single-station planetary seismic missions, such as the InSight geophysical mission to Mars, as well as possible future missions to Europa and the Moon. Here we present a preliminary shear-wave splitting analysis of moonquakes detected by the Apollo Passive Seismic Experiment. Lunar seismic data suffers from several drawbacks compared to modern terrestrial data, including severe seismic scattering, low intrinsic attenuation, 10-bit data resolution, thermal spikes, and timing errors. Despite these drawbacks, we show that it is in principle possible to make a shear wave splitting measurement using the S-phase arrival of a relatively high-quality moonquake, as determined by several agreeing measurement criteria. Encouraged by this finding, we further extend our analysis to clusters of "deep moonquake" events by stacking multiple events from the same cluster together to further enhance the quality of the S-phase arrivals that the measurement is based on.

  20. Split brain: divided perception but undivided consciousness.

    Science.gov (United States)

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara

    2017-05-01

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change signi- ficantly with rising phase of the solar cycle. We also find temporal varia- tions in the rotation rate near the solar ...

  2. Czech, Slovak science ten years after split

    CERN Multimedia

    2003-01-01

    Ten years after the split of Czechoslovakia Czech and Slovak science are facing the same difficulties: shortage of money for research, poor salaries, obsolete equipment and brain drain, especially of the young, according to a feature in the Daily Lidove Noviny (1 page).

  3. Comparing Electrochemical and Biological Water Splitting

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Dimitrievski, Kristian; Siegbahn, P.

    2007-01-01

    On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system...

  4. Molecule-binding dependent assembly of split aptamer and γ-cyclodextrin: A sensitive excimer signaling approach for aptamer biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Fen [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Environmental Science and Engineering College, Hubei Polytechnic University, Huangshi 435003 (China); Lian, Yan; Li, Jishan; Zheng, Jing; Hu, Yaping; Liu, Jinhua; Huang, Jin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Yang, Ronghua, E-mail: Yangrh@pku.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-10-17

    Graphical abstract: Adenosine-binding aptamer was splitted into two fragments P2 and P3 which labeled pyrene molecules, mainly produce monomer signal. γ-CD cavity brings P2 and P3 in close proximity, allowing for weak excimer emission. In the presence of target, P2 and P3 are expected to bind ATP and form an aptamer/target complex, leads to large increase of the pyrene excimer fluorescence. -- Highlights: •We assembled split aptamer and γ-cyclodextrin fluorescence biosensors for ATP detection. •The biosensor increased quantum yield and emission lifetime of the excimer. •Time-resolved fluorescence is effective for ATP assay in complicated environment. -- Abstract: A highly sensitive and selective fluorescence aptamer biosensors for the determination of adenosine triphosphate (ATP) was developed. Binding of a target with splitting aptamers labeled with pyrene molecules form stable pyrene dimer in the γ-cyclodextrin (γ-CD) cavity, yielding a strong excimer emission. We have found that inclusion of pyrene dimer in γ-cyclodextrin cavity not only exhibits additive increases in quantum yield and emission lifetime of the excimer, but also facilitates target-induced fusion of the splitting aptamers to form the aptamer/target complex. As proof-of-principle, the approach was applied to fluorescence detection of adenosine triphosphate. With an anti-ATP aptamer, the approach exhibits excimer fluorescence response toward ATP with a maximum signal-to-background ratio of 32.1 and remarkably low detection limit of 80 nM ATP in buffer solution. Moreover, due to the additive fluorescence lifetime of excimer induced by γ-cyclodextrin, time-resolved measurements could be conveniently used to detect as low as 0.5 μM ATP in blood serum quantitatively.

  5. Cavity Optomechanics at Millikelvin Temperatures

    Science.gov (United States)

    Meenehan, Sean Michael

    The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high

  6. STRUCTURAL ANALYSIS OF SUPERCONDUCTING ACCELERATOR CAVITIES

    International Nuclear Information System (INIS)

    Schrage, D.

    2000-01-01

    The static and dynamic structural behavior of superconducting cavities for various projects was determined by finite element structural analysis. The β = 0.61 cavity shape for the Neutron Science Project was studied in detail and found to meet all design requirements if fabricated from five millimeter thick material with a single annular stiffener. This 600 MHz cavity will have a Lorentz coefficient of minus1.8 Hz/(Mv/meter) 2 and a lowest structural resonance of more than 100 Hz. Cavities at β = 0.48, 0.61, and 0.77 were analyzed for a Neutron Science Project concept which would incorporate 7-cell cavities. The medium and high beta cavities were found to meet all criteria but it was not possible to generate a β = 0.48 cavity with a Lorentz coefficient of less than minus3 Hz/(Mv/meter) 2

  7. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  8. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    B. Hall,G. Burt,C. Lingwood,Robert Rimmer,Haipeng Wang; Hall, B. [CI Lancaster University (Great Britain); Burt, G. [CI Lancaster University (Great Britain); Lingwood, C. [CI Lancaster University (Great Britain); Rimmer, Robert [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2010-05-01

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  9. Infrared nano-sensor based on doubly splited optomechanical cavity

    Science.gov (United States)

    Zhang, Yeping; Ai, Jie; Xiang, Yanjun; Ma, Liehua; Li, Tao; Ma, Jingfang

    2017-10-01

    Optomechanical crystal (OMC) cavities are simultaneous have photonic and phononic bandgaps. The strong interaction between high co-localized optical mode and mechanical mode are excellent candidates for precision measurements due to their simplicity, sensitivity and all optical operation. Here, we investigate OMC nanobeam cavities in silicon operating at the near-infrared wavelengths to achieve high optomechanical coupling rate and ultra-small motion mass. Numerical simulation results show that the optical Q-factor reached to 1.2×105 , which possesses an optical mode resonating at the wavelength of 1181 nm and the extremely localized mechanical mode vibrating at 9.2GHz. Moreover, a novel type of doubly splited nanocavity tailored to sensitively measure torques and mass. In the nanomechanical resonator central hollow area suspended low-mass elements (<100fg) are sensitive to environmental stimulate. By changing the split width, an ultra-small effective motion mass of only 4fg with a mechanical frequency as high as 11.9GHz can be achieved, while the coupling rate up to 1.58MHz. Potential applications on these devices include sensing mass, acceleration, displacement, and magnetic probing the quantum properties of nanoscale systems.

  10. Veritex(TM) Patches for Structural Repair and Re-Use, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG) proposes to develop a bonded composite patch repair and re-use system based on CRG's VeritexTM materials. VeritexTM is a...

  11. Efficacy of XP-endo Finisher File in Removing Calcium Hydroxide from Simulated Internal Resorption Cavity.

    Science.gov (United States)

    Keskin, Cangül; Sariyilmaz, Evren; Sariyilmaz, Öznur

    2017-01-01

    The aim of this study was to evaluate the effect of supplementary use of XP-endo Finisher file, passive ultrasonic activation (PUI), EndoActivator (EA), and CanalBrush (CB) on the removal of calcium hydroxide (CH) paste from simulated internal resorption cavities. The root canals of 110 extracted single-rooted teeth with straight canals were prepared up to size 50. The specimens were split longitudinally, and standardized internal resorption cavities were prepared with burs. The cavities and root canals were filled with CH paste. The specimens were divided into 5 groups as follows: XP-endo Finisher, EA, PUI, CB, and syringe irrigation (SI). The root canals were irrigated with 5.25% NaOCl and 17% EDTA for 2 minutes, respectively. Apart from the SI group, both solutions were activated by using tested techniques for 1 minute. The quantity of CH remnants on resorption cavities was scored. Data were analyzed by using Kruskal-Wallis H and Mann-Whitney U tests. XP-endo Finisher and PUI removed significantly more CH than SI, EA, and CB (P  .05). Differences among SI, EA, and CB were also non-significant (P > .05). None of the tested techniques render the simulated internal resorption cavities free of CH debris. XP-endo Finisher and PUI were superior to SI, CB, and EA. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Dynamics of an atomic wave packet in a standing-wave cavity field: A cavity-assisted single-atom detection

    International Nuclear Information System (INIS)

    Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun

    2002-01-01

    We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field

  13. Chemomechanical Caries Removal: A Review & Study of an Indigen-ously Developed Agent (Carie Care TM Gel) In Children

    Science.gov (United States)

    Venkataraghavan, Karthik; Kush, Anil; Lakshminarayana, CS; Diwakar, Latha; Ravikumar, Puja; Patil, Shankargouda; Karthik, Sandhya

    2013-01-01

    The invention and application of engine driven or rotary instruments in operative treatment of carious lesions has resulted in removal of considerable toothe structure. However, with the introduction of adhesive materials for restorations, and the advent of minimal cavity design this principle has been challenged and is now considered to be too destructive to the tooth structure during caries removal. A number of techniques are available for cutting tooth tissue. The chemo mechanical method of caries removal/treatment is considered to be less painful when compared to the traditional treatment method (use of drill). The present study was carried to study the effect of an indigenously developed caries removal agent viz. Carie Care TM & its effectiveness as a chemo mechanical caries removal agent. How to cite this article: Venkataraghavan K, Kush A, Lakshminarayana CS, Diwakar L, Ravikumar P, Patil S, Karthik S. Chemomechanical Caries Removal: A Review & Study of an Indigenously Developed Agent (Carie Care TM Gel) In Children. J Int Oral Health 2013; 5(4):84-90. PMID:24155626

  14. Chemomechanical Caries Removal: A Review & Study of an Indigen-ously Developed Agent (Carie Care (TM) Gel) In Children.

    Science.gov (United States)

    Venkataraghavan, Karthik; Kush, Anil; Lakshminarayana, Cs; Diwakar, Latha; Ravikumar, Puja; Patil, Shankargouda; Karthik, Sandhya

    2013-08-01

    The invention and application of engine driven or rotary instruments in operative treatment of carious lesions has resulted in removal of considerable toothe structure. However, with the introduction of adhesive materials for restorations, and the advent of minimal cavity design this principle has been challenged and is now considered to be too destructive to the tooth structure during caries removal. A number of techniques are available for cutting tooth tissue. The chemo mechanical method of caries removal/treatment is considered to be less painful when compared to the traditional treatment method (use of drill). The present study was carried to study the effect of an indigenously developed caries removal agent viz. Carie Care (TM) & its effectiveness as a chemo mechanical caries removal agent. How to cite this article: Venkataraghavan K, Kush A, Lakshminarayana CS, Diwakar L, Ravikumar P, Patil S, Karthik S. Chemomechanical Caries Removal: A Review & Study of an Indigenously Developed Agent (Carie Care (TM) Gel) In Children. J Int Oral Health 2013; 5(4):84-90.

  15. Spectroscopy and microchip laser operation of Tm, Ho:KYW crystals with different Ho concentrations

    Science.gov (United States)

    Gusakova, N. V.; Kurilchik, S. V.; Yasukevich, A. S.; Kisel, V. E.; Dashkevich, V. I.; Orlovich, V. A.; Pavlyuk, A. A.; Vatnik, S. M.; Bagaev, S. N.; Kuleshov, N. V.

    2018-02-01

    The spectroscopic properties of Tm, Ho:KYW crystals with different Ho concentrations were investigated. The diode-pumped microchip laser operation of Tm (5 at.%), Ho (0.5 at.%):KYW and Tm (5 at.%), Ho (1 at.%):KYW was demonstrated. The highest, to our knowledge, output power of 480 mW with slope efficiency of 31% for CW Tm (5 at.%), Ho (0.5 at.%):KYW microchip laser was obtained.

  16. Understanding cavity QED effects from cavity classical electrodynamics

    International Nuclear Information System (INIS)

    Taddei, M.M.; Kort-Kamp, W.J.M.; Farina, C.

    2011-01-01

    Full text: Our work intends to show how cavity classical electrodynamics can be used for achieving results with direct quantum analogues. It is shown how the classical interaction between a real radiating electric dipole and a perfectly-conducting surface can be used to obtain information about some cavity quantum electrodynamics effects related to radiative properties of atomic systems. Based on the case of an oscillating electric dipole (a classical representation of an excited atom) in front of a perfectly-conducting sphere, two main physical quantities can be computed, the classical dipole frequency shift and the change in the rate of energy loss from radiation reaction, both due to the presence of the sphere. The link from classical to quantum can be made via interpreting, for example, the dipole frequency as the atom's dominant transition frequency. The frequency shift due to the sphere can be related through E = (h/2π) to the energy shift of the system, i.e., the dispersive interaction between the atom and the sphere; while the change in energy loss can be related to the alteration of the atom's spontaneous emission due to the sphere. The amazing result is that this classical method, once corresponded classical quantities to quantum ones such as exemplified above with frequency, can predict the two above-mentioned quantum effects analytically with the correct functional dependencies on all geometric and atomic parameters, being off only by a constant pre factor. (author)

  17. Non-Mendelian transmission in a human developmental disorder: split hand/split foot.

    OpenAIRE

    Jarvik, G. P.; Patton, M. A.; Homfray, T.; Evans, J. P.

    1994-01-01

    The study of Mendelian disorders that do not meet some Mendelian expectations has led to an increased understanding of such previously obscure genetic phenomena as anticipation. Split hand/split foot (SHSF), a human developmental malformation, demonstrates such distinctive genetic features as reduced penetrance and variable expressivity. In this study, new pedigrees with defined ascertainment confirm the existence of non-Mendelian transmission characterized by the overtransmission of SHSF fro...

  18. Splitting, splitting and splitting again: A brief history of the development of regional government in Indonesia since independence

    Directory of Open Access Journals (Sweden)

    Anne Booth

    2011-04-01

    Full Text Available The paper reviews the changes in the structure and role of provincial and sub-provincial governments in Indonesia since independence. Particular attention is paid to the process of splitting both provinces and districts (kabupaten and kota into smaller units. The paper points out that this process has been going on since the 1950s, but has accelerated in the post-Soeharto era. The paper examines why the splitting of government units has occurred in some parts of the Outer Islands to a much greater extent than in Java, and also examines the implications of developments since 1999 for the capacity of local government units to deliver basic services such as health and education.

  19. Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states

    Science.gov (United States)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN.; Kay, Christopher W. M.

    2017-09-01

    The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin-photon coupling can be enhanced by √{N } through collective spin excitations known as Dicke states. For sufficiently large N the collective spin-photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T2* 3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm 0.25 cm3, Q 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin-photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.

  20. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  1. Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations

    Energy Technology Data Exchange (ETDEWEB)

    Colak, Evrim [Electrical Engineering Department, Ankara University, Golbasi, 06830 Ankara (Turkey); Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań (Poland); Usik, P. V. [Institute of Radio Astronomy, National Academy of Sciences of Ukraine, 61002 Kharkiv (Ukraine); Ozbay, Ekmel [Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey)

    2016-05-21

    It is shown that strong diffractions and related dual-beam splitting can be obtained at transmission through the nonsymmetric structures that represent two slabs of photonic crystal (PhC) separated by a single coupled-cavity type defect layer, while there are no grating-like corrugations at the interfaces. The basic operation regimes include unidirectional and bidirectional splitting that occur due to the dominant contribution of the first positive and first negative diffraction orders to the transmission, which is typically connected with different manifestations of the asymmetric transmission phenomenon. Being the main component of the resulting transmission mechanism, diffractions appear owing to the effect exerted by the defect layer that works like an embedded diffractive element. Two mechanisms can co-exist in one structure, which differ, among others, in that whether dispersion allows coupling of zero order to a wave propagating in the regular, i.e., defect-free PhC segments or not. The possibility of strong diffractions and efficient splitting related to it strongly depend on the dispersion properties of the Floquet-Bloch modes of the PhC. Existence of one of the studied transmission scenarios is not affected by location of the defect layer.

  2. Temperature Structure of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  3. Split mandrel versus split sleeve coldworking: Dual methods for extending the fatigue life of metal structures

    Science.gov (United States)

    Rodman, Geoffrey A.; Creager, Matthew

    1994-01-01

    It is common practice to use split sleeve coldworking of fastener holes as a means of extending the fatigue life of metal structures. In search of lower manufacturing costs, the aerospace industry is examining the split mandrel (sleeveless) coldworking process as an alternative method of coldworking fastener holes in metal structures. The split mandrel process (SpM) significantly extends the fatigue life of metal structures through the introduction of a residual compressive stress in a manner that is very similar to the split sleeve system (SpSl). Since the split mandrel process is significantly less expensive than the split sleeve process and more adaptable to robotic automation, it will have a notable influence upon other new manufacture of metal structures which require coldworking a significant number of holes, provided the aerospace community recognizes that the resulting residual stress distributions and fatigue life improvement are the same for both processes. Considerable testing has validated the correctness of that conclusion. The findings presented in this paper represent the results of an extensive research and development program, comprising data collected from over 400 specimens fabricated from 2024-T3 and 7075-T651 aluminum alloys in varied configurations, which quantify the benefits (fatigue enhancement and cost savings) of automating a sleeveless coldworking system.

  4. Cancer of the oral cavity.

    Science.gov (United States)

    Montero, Pablo H; Patel, Snehal G

    2015-07-01

    Cancer of the oral cavity is one of the most common malignancies worldwide. Although early diagnosis is relatively easy, presentation with advanced disease is not uncommon. The standard of care is primary surgical resection with or without postoperative adjuvant therapy. Improvements in surgical techniques combined with the routine use of postoperative radiation or chemoradiation therapy have resulted in improved survival. Successful treatment is predicated on multidisciplinary treatment strategies to maximize oncologic control and minimize impact of therapy on form and function. Prevention of oral cancer requires better education about lifestyle-related risk factors, and improved awareness and tools for early diagnosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. First observation of o-Ps to p-Ps transition and first direct measurement of positronium hyperfine splitting with sub-THz light

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Takayuki, E-mail: yamazaki@icepp.s.u-tokyo.ac.jp; Miyazaki, Akira; Suehara, Taikan; Namba, Toshio; Asai, Shoji; Kobayashi, Tomio [University of Tokyo, Department of Physics, Graduate School of Science, and International Center for Elementary Particle Physics (Japan); Saito, Haruo [University of Tokyo, Graduate School of Arts and Sciences (Japan); Urushizaki, Yuichi; Ogawa, Isamu; Idehara, Toshitaka [University of Fukui, Research Center for Development of Far-Infrared Region (Japan); Sabchevski, Svilen [Bulgarian Academy of Sciences (Bulgaria)

    2012-12-15

    Positronium is an ideal system for the research of the bound state QED. The hyperfine splitting of positronium (Ps-HFS, about 203 GHz) is an important observable but all previous measurements of Ps-HFS had been measured indirectly using Zeeman splitting. There might be the unknown systematic errors on the uniformity of magnetic field. We are trying to measure Ps-HFS directly using sub-THz radiation. We developed an optical system to accumulate high power (about 10 kW) radiation in a Fabry-Perot resonant cavity and observed the positronium hyperfine transition for the first time.

  6. Proton Radioactivity Measurements at HRIBF: Ho, Lu, and Tm Isotopes

    International Nuclear Information System (INIS)

    Akovali, Y.; Batchelder, J.C.; Bingham, C.R.; Davinson, T.; Ginter, T.N.; Gross, C.J.; Grzywacz, R.; Hamilton, J.H.; Janas, Z.; Karny, M.; Kim, S.H.; MacDonald, B.D.; Mas, J.F.; McConnell, J.W.; Piechaczek, A.; Ressler, J.J.; Rykaczewski, K.; Slinger, R.C.; Szerypo, J.; Toth, K.S.; Weintraub, W.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    1998-01-01

    Two new isotopes, 145 Tm and 140 Ho and three isomers in previously known isotopes, 141m Ho, 150m Lu and 151m Lu have been discovered and studied via their decay by proton emission. These proton emitters were produced at the Holifield Radioactive Ion Beam Facility (HRIBF) by heavy-ion fusion-evaporation reactions, separated in A/Q with a recoil mass spectrometer (RMS), and detected in a double-sided silicon strip detector (DSSD). The decay energy and half-life was measured for each new emitter. An analysis in terms of a spherical shell model is applied to the Tm and Lu nuclei, but Ho is considerably deformed and requires a collective model interpretation

  7. Powernext futuresTM front office user's guide

    International Nuclear Information System (INIS)

    2004-07-01

    The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing the French power exchange through an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document is the front office user's guide, it presents: the market model (characteristics, regulation, contractual framework), the members (traders, clearers, quotation providers, fees structure), the products (specifications, use, liquidity and market efficiency), the trading system (architecture, hardware and software requirements, installation process and connecting to server), the trading (session, screen, sending an order, order execution). Contracts codifications and a glossary are given in the appendix. (J.S.)

  8. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  9. A Regularized Algorithm for the Proximal Split Feasibility Problem

    Directory of Open Access Journals (Sweden)

    Zhangsong Yao

    2014-01-01

    Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.

  10. Measurement of the ground-state hyperfine splitting of antihydrogen

    International Nuclear Information System (INIS)

    Juhasz, B.; Widmann, E.

    2006-01-01

    Full text: The hydrogen atom is one of the most extensively studied atomic systems, and its ground state hyperfine splitting (GS-HFS) of ν HFS = 1.42 GHz has been measured with an extremely high precision of δν HFS /ν HFS ∼ 10 -12 . Therefore, the antimatter counterpart of hydrogen, the antihydrogen atom, consisting of an antiproton and a positron, is an ideal laboratory for studying the CPT symmetry. As a test of the CPT invariance, measuring ν HFS of antihydrogen can surpass in accuracy a measurement of the 1S-2S transition frequency proposed by other groups. In fact, it has several advantages over a 1S-2S measurement. Firstly, it does not require the (neutral) antihydrogen atoms to be trapped. Secondly, the only existing consistent extension of the standard model, which is based on a microscopic theory of CPT and Lorentz violation, predicts that νHFS should be more sensitive to CPT violations. In addition, the parameters introduced by Kostelecky et al. have the dimension of energy (or frequency). Therefore, by measuring a relatively small quantity on an energy scale (like the 1.42 GHz GS-HFS splitting), a smaller relative accuracy is needed to reach the same absolute precision for a CPT test. This makes a determination of νHFS with a relative accuracy of 10 -4 competitive to the measured relative mass difference of K 0 and -- K 0 of 10 -18 , which is often quoted as the most precise CPT test so far. The ASACUSA collaboration at CERN's Antiproton Decelerator (AD) has recently submitted a proposal to measure νHFS of antihydrogen in an atomic beam apparatus similar to the ones which were used in the early days of hydrogen HFS spectroscopy. The apparatus consists of two sextupole magnets for the selection and analysis of the spin of the antihydrogen atoms, and a microwave cavity to flip the spin. This method has the advantage that antihydrogen atoms of temperatures up to 150 K, 'evaporating' from a formation region, can be used. Numerical simulations show

  11. Κ-electron capture probability in 167Tm

    International Nuclear Information System (INIS)

    Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.; Radha Krishna, K.; Bhuloka Reddy, S.; Satyanarayana, G.; Ramana Rao, P.V.; Sastry, D.L.

    1990-01-01

    The Κ-electron capture probability in the decay of 167 Tm for the first-forbidden transition 1/2 + →3/2 - was measured using the sum-coincidence method and employing a hyper-pure Ge system. The P Κ value is found to be 0.835±0.029, in agreement with the theoretical value of 0.829. (author)

  12. Kappa. -electron capture probability in sup 167 Tm

    Energy Technology Data Exchange (ETDEWEB)

    Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.; Radha Krishna, K.; Bhuloka Reddy, S.; Satyanarayana, G.; Ramana Rao, P.V.; Sastry, D.L. (Andhra Univ., Visakhapatnam (India). Labs. for Nuclear Research); Chintalapudi, S.N. (Variable Energy Cyclotron Centre, Calcutta (India))

    1990-07-01

    The {Kappa}-electron capture probability in the decay of {sup 167}Tm for the first-forbidden transition 1/2{sup +}{yields}3/2{sup -} was measured using the sum-coincidence method and employing a hyper-pure Ge system. The P{sub {Kappa}} value is found to be 0.835{plus minus}0.029, in agreement with the theoretical value of 0.829. (author).

  13. Experiences with OpenMP in tmLQCD

    International Nuclear Information System (INIS)

    Deuzeman, A.

    2013-11-01

    An overview is given of the lessons learned from the introduction of multi-threading using OpenMP in tmLQCD. In particular, programming style, performance measurements, cache misses, scaling, thread distribution for hybrid codes, race conditions, the overlapping of communication and computation and the measurement and reduction of certain overheads are discussed. Performance measurements and sampling profiles are given for different implementations of the hopping matrix computational kernel.

  14. CHROMITITE PROSPECTING USING LANDSAT TM AND ASTER REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available Studying the ophiolite complexes using multispectral remote sensing satellite data are interesting because of high diversity of minerals and the source of podiform chromitites. This research developed an approach to discriminate lithological units and detecting host rock of chromitite bodies within ophiolitic complexes using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER and Landsat Thematic Mapper (TM satellite data. Three main ophiolite complexes located in south of Iran have been selected for the study. Spectral transform techniques, including minimum noise fraction (MNF and specialized band ratio were employed to detect different rock units and the identification of high-potential areas of chromite ore deposits within ophiolitic complexes. A specialized band ratio (4/1, 4/5, 4/7 of ASTER, MNF components and Spectral Angle Mapper (SAM on ASTER and Landsat TM data were used to distinguish ophiolitic rock units. Results show that the specialized band ratio was able to identify different rock units and serpentinized dunite as host rock of chromitites within ophiolitic complexes, appropriately. MNF components of ASTER and Landsat TM data were suitable to distinguish ophiolitic rock complexes at a regional scale. The integration of SAM and Feature Level Fusion (FLF used in this investigation discriminated the ophiolitic rock units and prepared detailed geological map for the study area. Accordingly, high potential areas (serpentinite dunite were identified in the study area for chromite exploration targets.The approach used in this research offers the image processing techniques as a robust, reliable, fast and cost-effective method for detecting serpentinized dunite as host rock of chromitite bodies within vast ophiolite complexes using ASTER and Landsat TM satellite data.

  15. An evaluation of the Human Capital BRidgeTM framework

    Directory of Open Access Journals (Sweden)

    Mpho D. Magau

    2010-03-01

    Full Text Available Orientation: The methodologies employed for achieving two important goals of human resource (HR measurement, namely to enhance decisions about human capital and to connect HR and business strategy, are rarely empirically investigated.Research purpose: The aim of the present study was therefore to use the Human Capital (HC BRidgeTM framework to compare the views of HR practitioners with those of line management on HC solutions towards achieving strategic business objectives.Motivation for the study: The motivation for this study was to determine whether the HC BRidgeTM framework can create a useful platform for leveraging human capital solutions and for demonstrating HR value-add.Research design: A census-based survey was conducted on a target population of 787 supervisors and managers in specific categories in a mining company, which yielded 202 responses. The measuring instrument used was based on the HC BRidgeTM framework and on the company’s strategic objectives. Item intercorrelations on the subscales were followed by factor analyses and iterative item analyses.Main findings/results: The self-developed measuring instrument yielded an overall Cronbach alpha coefficient of 0.97. Statistically significant differences were found between line management’s and HR practitioners’ views in respect of the three strategic business objectives.Practical/managerial implications: The results suggested that HR management was not yet fully aligned in respect of strategic business objectives and of becoming a strategic business partner.Contribution/value-add: The study therefore suggested that the HC BRidgeTM framework can be used as a method to connect human capital processes with business strategy to leverage business results and to demonstrate value-add.

  16. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  17. Meshed split skin graft for extensive vitiligo

    Directory of Open Access Journals (Sweden)

    Srinivas C

    2004-05-01

    Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.

  18. Timelike single-logarithm-resummed splitting functions

    International Nuclear Information System (INIS)

    Albino, S.; Bolzoni, P.; Kniehl, B.A.; Kotikov, A.V.; Joint Inst. of Nuclear Research, Moscow

    2011-08-01

    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e + e - annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  19. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-01

    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  20. Rebuild of Capture Cavity 1 at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Harms, E. [Fermilab; Arkan, T. [Fermilab; Borissov, E. [Fermilab; Dhanaraj, N. [Fermilab; Hocker, A. [Fermilab; Orlov, Y. [Fermilab; Peterson, T. [Fermilab; Premo, K. [Fermilab

    2014-01-01

    The front end of the proposed Advanced Superconducting Test Accelerator at Fermilab employs two single cavity cryomodules, known as 'Capture Cavity 1' and 'Capture Cavity 2', for the first stage of acceleration. Capture Cavity 1 was previously used as the accelerating structure for the A0 Photoinjector to a peak energy of ~14 MeV. In its new location a gradient of ~25 MV/m is required. This has necessitated a major rebuild of the cryomodule including replacement of the cavity with a higher gradient one. Retrofitting the cavity and making upgrades to the module required significant redesign. The design choices and their rationale, summary of the rebuild, and early test results are presented.

  1. Cantilever piezoelectric energy harvester with multiple cavities

    International Nuclear Information System (INIS)

    S Srinivasulu Raju; M Umapathy; G Uma

    2015-01-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity. (paper)

  2. Unique space saving accelerator cavity design

    International Nuclear Information System (INIS)

    Kim, H.; Fugitt, J.; Crosby, F.; Johnson, R.

    1981-03-01

    A cavity with 3 series gaps was designed and modeled to operate at 70 MHz as a SuperHILAC post acceleration buncher (8.5 MeV/A). Because of a cross-coupling scheme, the 3 cells operate in the 1/2 β lambda mode instead of the β lambda mode of an Alvarez cavity. This coupling results in a cavity with diameter reduced from 3 to less than one meter and a length half that of an Alvarez cavity for the same energy gain. The 3 gaps are electrically in parallel but mechanically in series. The cavity has high Q and shunt impedance. This type of cavity appears to be useful for low velocity beams with β less than or equal to 0.2

  3. Very high coupling of TM polarised light in photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Thorhauge, Morten; Frandsen, Lars Hagedorn

    2003-01-01

    The experimental and simulated spectra for TE and TM polarised light for the transmission through photonic crystal directional couplers are presented. The 3D FDTD simulations successfully explain all the major features of the experimental spectra as well as the actual transmission level. Especially...... noteworthy is the transmission level, experimentally found to be above -3 dB in the wavelength range 1520-1690 nm, for TM polarised light in the coupled channel. It is noted that even though band calculations show that the propagation of the TM polarisation takes place below the TM valence band, very high...... and spectrally smooth coupling is observed for the TM polarisation in this wavelength range....

  4. A new comprehensive index for drought monitoring with TM data

    Science.gov (United States)

    Wang, Yuanyuan

    2017-10-01

    Drought is one of the most important and frequent natural hazards to agriculture production in North China Plain. To improve agriculture water management, accurate drought monitoring information is needed. This study proposed a method for comprehensive drought monitoring by combining a meteorological index and three satellite drought indices of TM data together. SPI (Standard Precipitation Index), the meteorological drought index, is used to measure precipitation deficiency. Three satellite drought indices (Temperature Vegetation Drought Index, Land Surface Water Index, Modified Perpendicular Drought Index) are used to evaluate agricultural drought risk by exploring data from various channels (VIS, NIR, SWIR, TIR). Considering disparities in data ranges of different drought indices, normalization is implemented before combination. First, SPI is normalized to 0 — 100 given that its normal range is -4 - +4. Then, the three satellite drought indices are normalized to 0 - 100 according to the maximum and minimum values in the image, and aggregated using weighted average method (the result is denoted as ADI, Aggregated drought index). Finally, weighed geometric mean of SPI and ADI are calculated (the result is denoted as DIcombined). A case study in North China plain using three TM images acquired during April-May 2007 show that the method proposed in this study is effective. In spatial domain, DIcombined demonstrates dramatically more details than SPI; in temporal domain, DIcombined shows more reasonable drought development trajectory than satellite indices that are derived from independent TM images.

  5. Pool boiling performance of NovecTM 649 engineered fluid

    International Nuclear Information System (INIS)

    Forrest, Eric; Buongiorno, Jacopo; McKrell, Thomas; Hu, Lin-Wen

    2009-01-01

    A new fluorinated ketone, C 2 F 5 C(O)CF(CF 3 ) 2 , is currently being considered as an environmentally friendly alternative for power electronics cooling applications due to its high dielectric strength and low global warming potential (GWP). Sold commercially by the 3M Company as Novec TM 649 Engineered Fluid, C 2 F 5 C(O)CF(CF 3 ) 2 exhibits very low acute toxicity while maintaining long-term stability. To assess the general two-phase heat transfer performance of Novec TM 649, pool boiling tests were conducted by resistively heating a 0.01 in. diameter nickel wire at the fluid's atmospheric saturation temperature of 49 deg C. The nucleate boiling heat transfer coefficient and critical heat flux (CHF) obtained for the fluorinated ketone compare favorably with results obtained for FC-72, a fluorocarbon widely used for the direct cooling of electronic devices. Initial results indicate that Novec TM 649 may prove to be a viable alternative to FC-72 and other halo alkanes for the cooling of high power density electronic devices. (author)

  6. Electromagnetic cloaking devices for TE and TM polarizations

    International Nuclear Information System (INIS)

    Bilotti, Filiberto; Tricarico, Simone; Vegni, Lucio

    2008-01-01

    In this paper, we present the design of an electromagnetic cloaking device working for both transverse electric (TE) and transverse magnetic (TM) polarizations. The theoretical approach to cloaking used here is inspired by the one presented by Alu and Engheta (2005 Phys. Rev. E 72 016623) for TM polarization. The case of TE polarization is firstly considered and, then, an actual inclusion-based cloak for TE polarization is also designed. In such a case, the cloak is made of a mu-near-zero (MNZ) metamaterial, as the dual counterpart of the epsilon-near-zero (ENZ) material that can be used for purely dielectric objects. The operation and the robustness of the cloaking device for the TE polarization is deeply investigated through a complete set of full-wave numerical simulations. Finally, the design and an application of a cloak operating for both TE and TM polarizations employing both magnetic inclusions and the parallel plate medium already used by Silveirinha et al (Phys. Rev. E 75 036603) are presented.

  7. Powernext futuresTM statistics 31st, July 2004

    International Nuclear Information System (INIS)

    2004-07-01

    The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document presents in a series of tables and graphics the July 31, 2004 update of Powernext Futures TM statistics: year, quarter and month contracts for July 2004, base-load and peak-load contracts overview from June 2004 to July 2004 (daily volume in lots, open interest by delivery year in MWh, daily settlement price of the upcoming delivery period, base-load and peak-load price spreads), and market liquidity from mid-June to end of July 2004 (average bid ask spread and availability). (J.S.)

  8. Assessing UiTM TESL Students’ Knowledge of Vocabulary

    Directory of Open Access Journals (Sweden)

    Leele Susana Jamian

    2008-12-01

    Full Text Available Learning the vocabulary of a language is vital in the process of acquiring the language because it serves several functions which assist learners to be good at the language, even though learning can be complicated and burdening for learners (Jiang, 2004; Cobb & Horst, 2004. The aim of the study was to investigate the English vocabulary levels of the TESL mainstream students in Universiti Teknologi MARA (UiTM. This research study also examined the differences in vocabulary levels between the male and female students. The study involved 90 respondents that were enrolled in the TESL programme at the Faculty of Education in UiTM, Shah Alam. The findings revealed that most of the UiTM TESL students scored an average of 15 correct answers in the 2,000 word-level, 12 for the 3,000 word-level, 8 for the 5,000 word-level, 10 for the University Word Level and 6 for the 10,000 word-level. The study also revealed that even though the students were highly engaged with listening, reading, speaking and writing activities, these involvements did not correlate with the mastery of vocabulary knowledge.

  9. TmCd quadrupolar ordering and magnetic interactions

    International Nuclear Information System (INIS)

    Aleonard, R.; Morin, P.

    1979-01-01

    The paramagnetic compound TmCd crystallizes with the CsCl-type structure. Its Jahn-Teller behavior was first observed by Luethi and coworkers. We analyze here various physical properties with a pure-harmonic-elasticity model. The structural transition between cubic and tetragonal phases is now fully described (first-order character and temperature of occurrence) as well as the magnetic susceptibility, magnetization process, specific-heat, elastic-constant, and strain data. The relevant Hamiltonian takes into account the second-order magnetoelastic coupling and the quadrupolar exchange in addition to the cubic crystal field and the Heisenberg bilinear interactions. TmCd appears to be closely related to isomorphous TmZn and completes the illustration of the competition between bilinear and quadrupolar interactions occurring in some rare-earth intermetallics. In these two compounds, the quadrupolar exchange is many times stronger than the magnetoelastic coupling and the quadrupolar ordering then drives the structural transition. This situation is opposite to that occurring in (actual) Jahn-Teller compounds

  10. Atom beams split by gentle persuasion

    International Nuclear Information System (INIS)

    Pool, R.

    1994-01-01

    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state

  11. On split Lie triple systems II

    Indian Academy of Sciences (India)

    In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces. Author Affiliations. Antonio J Calderón Martín1 M Forero Piulestán1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 24 June 2009 ...

  12. Design of 325 MHz spoke cavity

    International Nuclear Information System (INIS)

    Sha Peng; Huang Hong; Dai Jianping; Zu Guoquan; Li Han

    2012-01-01

    Spoke cavity can be used in the low-energy section of the proton accelerator. It has many significant advantages: compact structure, high value of R/Q, etc. The ADS (Accelerator Driven System) project will adopt many spoke cavities with different β values. Therefore, IHEP has began the research of β=0.14, 325 MHz spoke cavity. In this pa per, the dimensions, RF performances and mechanical properties of it are studied. (authors)

  13. Induced Cavities for Photonic Quantum Gates

    Science.gov (United States)

    Lahad, Ohr; Firstenberg, Ofer

    2017-09-01

    Effective cavities can be optically induced in atomic media and employed to strengthen optical nonlinearities. Here we study the integration of induced cavities with a photonic quantum gate based on Rydberg blockade. Accounting for loss in the atomic medium, we calculate the corresponding finesse and gate infidelity. Our analysis shows that the conventional limits imposed by the blockade optical depth are mitigated by the induced cavity in long media, thus establishing the total optical depth of the medium as a complementary resource.

  14. Transonymization as Revitalization: Old Toponyms of Split

    Directory of Open Access Journals (Sweden)

    Katarina Lozić Knezović

    2017-07-01

    Full Text Available The paper deals with ancient toponyms of Split, a city in the centre of the Croatian region of Dalmatia. Along with numerous monuments of spiritual and material culture, toponyms are part of the two-thousand-year-old city’s historical heritage. Split in particular abounds with sources that provide valuable information concerning ancient toponyms. In terms of the study and preservation of toponymy, three basic sources are crucial: the living oral tradition, written records, and old charts — mostly cadastral plans. In addition to researching, recording, documenting, and publishing Split’s ancient place names through toponomastic, geographical, and town planning studies, toponymic heritage preservation is also implemented through the direct use of the names in everyday life. One of the ways of such revitalization of Split’s ancient place names is their transonymization into the category of chrematonyms, i.e. their secondary use as names of institutions, shops, restaurants, schools, sports associations and facilities, bars and coffee shops, cemeteries, and so on. The present paper provides a classification and etymological analysis of detoponymic chrematonyms of Split. The authors propose measures to raise public awareness of the historical information conveyed by the names and raise some issues for consideration regarding further study of transonymization as a means of revitalizing local toponymic tradition.

  15. 26 CFR 1.7872-15 - Split-dollar loans.

    Science.gov (United States)

    2010-04-01

    ...) INCOME TAXES General Actuarial Valuations § 1.7872-15 Split-dollar loans. (a) General rules—(1... split-dollar loan depend upon the relationship between the parties and upon whether the loan is a demand...-dollar demand loan is any split-dollar loan that is payable in full at any time on the demand of the...

  16. 7 CFR 51.2731 - U.S. Spanish Splits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or broken...

  17. Novel Geometries for the LHC CRAB Cavity

    CERN Document Server

    Hall, Ben

    2010-01-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme b...

  18. Mechanical Properties of Ingot Nb Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  19. Design of the ILC Crab Cavity System

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, C.; Beard, C.; Bellantoni, L.; Burt, G.; Carter, R.; Chase, B.; Church, M.; Dexter, A.; Dykes, M.; Edwards, H.; Goudket, P; Jenkins, R.; Jones, R.M.; Kalinin,; Khabiboulline, T.; Ko, K.; Latina, A.; Li, Z.; Ma, L.; McIntosh, P.; Ng, C.; /SLAC /Daresbury /Fermilab /Cockcroft Inst. Accel. Sci. Tech. /CERN

    2007-08-15

    The International Linear Collider (ILC) has a 14 mrad crossing angle in order to aid extraction of spent bunches. As a result of the bunch shape at the interaction point, this crossing angle at the collision causes a large luminosity loss which can be recovered by rotating the bunches prior to collision using a crab cavity. The ILC baseline crab cavity is a 9-cell superconducting dipole cavity operating at a frequency of 3.9 GHz. In this paper the design of the ILC crab cavity and its phase control system, as selected for the RDR in February 2007 is described in fuller detail.

  20. Amino Acids in the TM4-TM5 loop of Na,K-ATPase Are Important for Biosynthesis

    DEFF Research Database (Denmark)

    Jørgensen, Jesper Roland; Houghton-Larsen, Jens; Jacobsen, Mette Dorph

    2003-01-01

    -sensitive folding mutants, as they induce the unfolded protein response at 30°C but not at 15°C. We used an algorithm to predict that residues 868ENGFLIPIHLL878 in the L78 loop exposed to the endoplasmic reticulum lumen constitute the most likely BiP binding site. Correct folding of this sequence may be important...... in the endoplasmic reticulum quality control, as the same loop is responsible for the a-ß-associations required to leave this compartment. On the basis of the Ca-ATPase crystal structure and the presented data, we propose a model to account for the role of the TM4-TM5 loop in Na,K-ATPase biosynthesis....

  1. Amino Acids in the TM4-TM5 loop of Na,K-ATPase Are Important for Biosynthesis

    DEFF Research Database (Denmark)

    Jørgensen, Jesper Roland; Houghton-Larsen, Jens; Jacobsen, Mette Dorph

    2003-01-01

    in the endoplasmic reticulum quality control, as the same loop is responsible for the a-ß-associations required to leave this compartment. On the basis of the Ca-ATPase crystal structure and the presented data, we propose a model to account for the role of the TM4-TM5 loop in Na,K-ATPase biosynthesis.......The ten-transmembrane Na,K-ATPase a-subunit exposes very few amino acids to the extra membrane space except for an approximately 408 residue-long loop between transmembrane segments four and five. The present paper focuses on the role of this loop in biosynthesis of functional Na,K-ATPase...

  2. Modeling a Hypothetical 170Tm Source for Brachytherapy Applications

    International Nuclear Information System (INIS)

    Enger, Shirin A.; D'Amours, Michel; Beaulieu, Luc

    2011-01-01

    Purpose: To perform absorbed dose calculations based on Monte Carlo simulations for a hypothetical 170 Tm source and to investigate the influence of encapsulating material on the energy spectrum of the emitted electrons and photons. Methods: GEANT4 Monte Carlo code version 9.2 patch 2 was used to simulate the decay process of 170 Tm and to calculate the absorbed dose distribution using the GEANT4 Penelope physics models. A hypothetical 170 Tm source based on the Flexisource brachytherapy design with the active core set as a pure thulium cylinder (length 3.5 mm and diameter 0.6 mm) and different cylindrical source encapsulations (length 5 mm and thickness 0.125 mm) constructed of titanium, stainless-steel, gold, or platinum were simulated. The radial dose function for the line source approximation was calculated following the TG-43U1 formalism for the stainless-steel encapsulation. Results: For the titanium and stainless-steel encapsulation, 94% of the total bremsstrahlung is produced inside the core, 4.8 and 5.5% in titanium and stainless-steel capsules, respectively, and less than 1% in water. For the gold capsule, 85% is produced inside the core, 14.2% inside the gold capsule, and a negligible amount ( 170 Tm source is primarily a bremsstrahlung source, with the majority of bremsstrahlung photons being generated in the source core and experiencing little attenuation in the source encapsulation. Electrons are efficiently absorbed by the gold and platinum encapsulations. However, for the stainless-steel capsule (or other lower Z encapsulations) electrons will escape. The dose from these electrons is dominant over the photon dose in the first few millimeter but is not taken into account by current standard treatment planning systems. The total energy spectrum of photons emerging from the source depends on the encapsulation composition and results in mean photon energies well above 100 keV. This is higher than the main gamma-ray energy peak at 84 keV. Based on our

  3. Split thickness skin graft for cervicovaginal reconstruction in congenital atresia of cervix.

    Science.gov (United States)

    Zhang, Xuyin; Han, Tiantian; Ding, Jingxin; Hua, Keqin

    2015-10-01

    To introduce a new technique that combines laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in patients with congenital atresia of the cervix. Video article introducing a new surgical technique. University hospital. A 16-year-old patient with congenital cervical atresia, vaginal dysgenesis, and ovarian endometrial cyst. An original technique of combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft for cervicovaginal reconstruction. A midline incision at the vaginal introitus was made, and a 9-cm canal was made between the bladder and the rectum using sharp and blunt dissection along the anatomic vaginal route, with the aid of laparoscopy to ensure correct orientation. A 14 × 12 cm split thickness skin graft was harvested from the right lateral thigh. By laparoscopy, the level of the lowest pole of the uterine cavity was exposed and the cervix was incised by shape dissection. The proximal segment of the harvested skin to the lower uterine segment was secured, and the distal segment was sutured with the upper margin of vulva vaginally. Surgical technique reports in anonymous patients are exempted from ethical approval by the Institutional Review Board. The patient gave consent to use the video in the article. The procedure was successfully completed. Since February 2013, our experiences of combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in 10 patients with congenital atresia of cervix were positive, with successful results and without complications or cervical, or vaginal stenosis. Our technique is feasible and safe for congenital atresia of cervix, with successful results and without complications or cervical or vaginal stenosis. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Somatic 'soluble' adenylyl cyclase isoforms are unaffected in Sacy tm1Lex/Sacy tm1Lex 'knockout' mice.

    Directory of Open Access Journals (Sweden)

    Jeanne Farrell

    Full Text Available BACKGROUND: Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacy(tm1Lex/Sacy(tm1Lex knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. PRINCIPAL FINDINGS: We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which 'escapes' the design of the Sacy(tm1Lex knockout allele. CONCLUSIONS/SIGNIFICANCE: These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells.

  5. Semiconductor Nanowires for Photoelectrochemical Water Splitting

    Science.gov (United States)

    Hwang, Yun Jeong

    Photolysis of water with semiconductor materials has been investigated intensely as a clean and renewable energy resource by storing solar energy in chemical bonds such as hydrogen. One-dimensional (1D) nanostructures such as nanowires can provide several advantages for photoelectrochemical (PEC) water splitting due to their high surface areas and excellent charge transport and collection efficiency. This dissertation discusses various nanowire photoelectrodes for single or dual semiconductor systems, and their linked PEC cells for self-driven water splitting. After an introduction of solar water splitting in the first chapter, the second chapter demonstrates water oxidative activities of hydrothermally grown TiO2 nanowire arrays depending on their length and surface properties. The photocurrents with TiO2 nanowire arrays approach saturation due to their poor charge collection efficiency with longer nanowires despite increased photon absorption efficiency. Epitaxial grains of rutile atomic layer deposition (ALD) shell on TiO2 nanowire increase the photocurrent density by 1.5 times due to improved charge collection efficiency especially in the short wavelength region. Chapter three compares the photocurrent density of the planar Si and Si nanowire arrays coated by anatase ALD TiO 2 thin film as a model system of a dual bandgap system. The electroless etched Si nanowire coated by ALD TiO2 (Si EENW/TiO2) shows 2.5 times higher photocurrent density due to lower reflectance and higher surface area. Also, this chapter illustrates that n-Si/n-TiO2 heterojunction is a promising structure for the photoanode application of a dual semiconductor system, since it can enhance the photocurrent density compared to p-Si/n-TiO 2 junction with the assistance of bend banding at the interface. Chapter four demonstrates the charge separation and transport of photogenerated electrons and holes within a single asymmetric Si/TiO2 nanowire. Kelvin probe force microscopy measurements show

  6. Splitting methods for split feasibility problems with application to Dantzig selectors

    Science.gov (United States)

    He, Hongjin; Xu, Hong-Kun

    2017-05-01

    The split feasibility problem (SFP), which refers to the task of finding a point that belongs to a given nonempty, closed and convex set, and whose image under a bounded linear operator belongs to another given nonempty, closed and convex set, has promising applicability in modeling a wide range of inverse problems. Motivated by the increasingly data-driven regularization in the areas of signal/image processing and statistical learning, in this paper, we study the regularized split feasibility problem (RSFP), which provides a unified model for treating many real-world problems. By exploiting the split nature of the RSFP, we shall gainfully employ several efficient splitting methods to solve the model under consideration. A remarkable advantage of our methods lies in their easier subproblems in the sense that the resulting subproblems have closed-form representations or can be efficiently solved up to a high precision. As an interesting application, we apply the proposed algorithms for finding Dantzig selectors, in addition to demonstrating the effectiveness of the splitting methods through some computational results on synthetic and real medical data sets.

  7. Primary leiomyosarcoma of peritoneal cavity

    Directory of Open Access Journals (Sweden)

    Jyotsna Naresh Bharti

    2014-03-01

    Full Text Available Leiomyosarcomas of soft tissue are the rare tumors and the retroperitoneum is the most common site involved. We report a case of primary leiomyosarcoma of the peritoneal cavity which clinically presented with suprapubic, freely mobile, nontender mass which measured 10×10 cm in size. Contrast enhanced computed tomography revealed well defined heterogenous hypodense solid cystic mass. The mass was surgically excised out in its entirety. The histopathological examination revealed spindle cells arranged in alternating fascicles having pleomorphic nuclei, indistinct margin and eosinophilic cytoplasm with foci of haemorrhage, necrosis and 5-6 mitosis/HPF. The spindle cells were immunoreactive for smooth muscle actin, desmin and negative for S-100, CD-34 and c-kit. Histopathology and immunohistochemistry were helpful in making the final confirmatory diagnosis. Leiomyosarcomas are aggressive tumors, with poor prognosis and often difficult to treat. The survival rates are lowest among all soft tissue sarcomas.

  8. Epithelial Dysplasia in Oral Cavity

    Directory of Open Access Journals (Sweden)

    Samaneh Shirani

    2014-09-01

    Full Text Available Among oral lesions, we encounter a series of malignant epithelial lesions that go through clinical and histopathologic processes in order to be diagnosed. Identifying these processes along with the etiology knowledge of these lesions is very important in prevention and early treatments. Dysplasia is the step preceding the formation of squamous cell carcinoma in lesions which have the potential to undergo dysplasia. Identification of etiological factors, clinical and histopathologic methods has been the topic of many articles. This article, reviews various articles presenting oral cavity dysplasia, new clinical methods of identifying lesions, and the immunohistochemical research which proposes various markers for providing more precise identification of such lesions. This article also briefly analyzes new treatment methods such as tissue engineering.

  9. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  10. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  11. Flow Cytometric Bead Sandwich Assay Based on a Split Aptamer.

    Science.gov (United States)

    Shen, Luyao; Bing, Tao; Liu, Xiangjun; Wang, Junyan; Wang, Linlin; Zhang, Nan; Shangguan, Dihua

    2018-01-24

    A few aptamers still bind their targets after being split into two moieties. Split aptamers have shown great potential in the development of aptameric sensors. However, only a few split aptamers have been generated because of lack of knowledge on the binding structure of their parent aptamers. Here, we report the design of a new split aptamer and a flow cytometric bead sandwich assay using a split aptamer instead of double antibodies. Through DMS footprinting and mutation assay, we figured out the target-binding moiety and the structure-stabilizing moiety of the l-selectin aptamer, Sgc-3b. By separating the duplex strand in the structure-stabilizing moiety, we obtained a split aptamer that bound l-selectin. After optimization of one part of the split sequence to eliminate the nonspecific binding of the split sequence pair, we developed a split-aptamer-based cytometric bead assay (SACBA) for the detection of soluble l-selectin. SACBA showed good sensitivity and selectivity to l-selectin and was successfully applied for the detection of spiked l-selectin in the human serum. The strategies for generating split aptamers and designing the split-aptamer-based sandwich assay are simple and efficient and show good practicability in aptamer engineering.

  12. SplitRFLab: A MATLAB GUI toolbox for receiver function analysis based on SplitLab

    Science.gov (United States)

    Xu, Mijian; Huang, Hui; Huang, Zhouchuan; Wang, Liangshu

    2016-02-01

    We add new modules for receiver function (RF) analysis in SplitLab toolbox, which includes the manual RF analysis module, automatic RF analysis and related quality control modules, and H- k stacking module. The updated toolbox (named SplitRFLab toolbox), especially its automatic RF analysis module, could calculate the RFs quickly and efficiently, which is very useful in RF analysis with huge amount of seismic data. China is now conducting the ChinArray project that plans to deploy thousands of portable stations across Chinese mainland. Our SplitRFLab toolbox may obtain reliable RF results quickly at the first time, which provide essentially new constraint to the crustal and mantle structures.

  13. Nanohybrid composite vs. fine hybrid composite in extended class II cavities: clinical and microscopic results after 2 years.

    Science.gov (United States)

    Krämer, Norbert; Reinelt, Christian; García-Godoy, Franklin; Taschner, Michael; Petschelt, Anselm; Frankenberger, Roland

    2009-08-01

    To evaluate the clinical behavior of two different resin composites in Class II cavities over a period of 2 years in a controlled prospective split-mouth study. 30 subjects received 68 direct resin composite restorations (Grandio bonded with Solobond M: n=36, Tetric Ceram bonded with Syntac: n=32) by one dentist in a private practice. All restorations were replacement restorations, 24 cavities (35%) revealed no enamel at the bottom of the proximal box, in 33 cavities (48%) the proximal enamel width was 0.05; Mann-Whitney U-test). A significant deterioration was found over time for marginal integrity, tooth integrity, restoration integrity and proximal contact (P < 0.05; Friedman test). SLM and SEM analysis of restoration margins only revealed differences in the amount of detectable perfect margins, in favor of Tetric Ceram (P < 0.05). Both materials performed satisfactorily over the 2-year observation period.

  14. Electrically tunable strong light-matter coupling in a transition metal dichalcogenide monolayer embedded in a plasmonic crystal cavity

    Science.gov (United States)

    Scuri, Giovanni; Zhou, You; High, Alexander; Dibos, Alan; de Greve, Kristiaan; Polking, Mark; Juaregui, Luis; Wild, Dominik; Joe, Andrew; Pistunova, Kateryna; Lukin, Mikhail; Kim, Philip; Park, Hongkun

    Two-dimensional transition-metal dichalcogenide (TMDC) monolayers exhibit direct bandgap excitons with large binding energy. The optical response of TMDCs is electrically tunable over a broad wavelength range, making these 2D materials promising candidates for optoelectronic devices. In this work, we enhance exciton-plasmon coupling by embedding a single layer of tungsten diselenide (WSe2) into a plasmonic crystal cavity, which confines surface plasmon polaritons in an analogous manner to photonic crystal cavities. We observe strong light-matter interactions and the formation of microcavity polaritons when the cavity mode is on resonance with the exciton absorption in WSe2. Using the electrostatically controllable response of such excitons, we also demonstrate tunable vacuum Rabi splitting in such a system.

  15. Temperature stabilization of optofluidic photonic crystal cavities

    DEFF Research Database (Denmark)

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra

    2009-01-01

    demonstrate a PhC cavity with a quality factor of Q15 000 that exhibits a temperature-independent resonance. Temperature-stable cavities constitute a major building block in the development of a large suite of applications from high-sensitivity sensor systems for chemical and biomedical applications...

  16. Tooth structure and fracture strength of cavities

    DEFF Research Database (Denmark)

    Mondelli, José; Sene, Fábio; Ramos, Renata Pereira

    2007-01-01

    This study evaluated, in vitro, the loss of tooth substance after cavity preparation for direct and indirect restorations and its relationship with fracture strength of the prepared teeth. Sixty sound human maxillary first premolars were assigned to 6 groups (n=10). MOD direct composite cavities...

  17. Superconducting rf cavities for accelerator application

    International Nuclear Information System (INIS)

    Proch, D.

    1988-01-01

    The subject of this paper is a review of superconducting cavities for accelerator application (β = 1). The layout of a typical accelerating unit is described and important parameters are discussed. Recent cavity measurements and storage ring beam tests are reported and the present state of the art is summarized

  18. Telescopic Examination of the mastoid Cavity

    OpenAIRE

    Bhandari, Anita; Sharma, Man Prakash; Bapna, A. S.

    1998-01-01

    Otoendoscopy enables viewing of different angles of the tympanomastoid area and approach to them for better prognosis. A comparative study of post-operative mastoid cavities has been done using the Hopkin’s rod telescope, Otoscope and microscope. Various procedures have also been done successfully on the mastoid cavity using the telescope on an outdoor basis.

  19. Toroidal 12 cavity klystron : a novel approach

    International Nuclear Information System (INIS)

    Hazarika, A.B.R.

    2013-01-01

    A toroidal 12 cavity klystron is designed to provide with high energy power with the high frequency microwave RF- plasma generated from it. The cavities are positioned in clock hour positions. The theoretical modeling and designing is done to study the novel approach. (author)

  20. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. The final storage cavities were larger, to suit the LEP accelerating frequency of 352.2 MHz. Cu-tubes for watercooling are brazed onto the upper half, the lower half is to follow. See also 8006061, 8109346, 8407619X, and Annual Report 1980, p.115.

  1. The gastro-oesophageal common cavity revisited

    NARCIS (Netherlands)

    Aanen, M. C.; Bredenoord, A. J.; Samsom, M.; Smout, A. J. P. M.

    2006-01-01

    The manometric common cavity phenomenon has been used as indicator of gastro-oesophageal reflux of liquid or gaseous substances. Using combined pH and impedance recording as reference standard the value of a common cavity as indicator of gastro-oesophageal reflux was tested. Ten healthy male

  2. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  3. Dissipative preparation of entanglement in optical cavities

    DEFF Research Database (Denmark)

    Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg

    2011-01-01

    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...

  4. Inertial confinement fusion reactor cavity phenomena

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.; Hafer, J.F.; Devaney, J.J.; Pendergrass, J.H.

    1978-01-01

    Cavity phenomena in Inertial Confinement Fusion (ICF) are created by the interaction of energy released by the fuel pellet microexplosion with the medium inside the reactor cavity. The ambient state of the medium in ICF reactor cavities is restricted primarily by its effects on laser beam propagation and on the fuel pellet trajectory. Therefore, a relatively wide choice of ambient conditions can be exploited to gain first-wall protection and advantages in energy extraction. Depending on the choice of ambient cavity conditions and on fuel pellet design, a variety of physical phenomena may develop and dominate the ICF reactor cavity design. Because of the cavity phenomena, the forms of energy released by the fuel-pellet microexplosion are modified before reaching the first wall, thus giving rise to different cavity design problems. The types of cavity phenomena encountered in the conceptual design of ICF reactors are examined, the approaches available for their modeling and analysis are discussed, and some results are presented. Most phenomena are sufficiently well understood to permit valid engineering assessments of the proposed ICF reactor concepts

  5. Effects of cross-Kerr coupling and parametric nonlinearity on normal mode splitting, cooling, and entanglement in optomechanical systems

    Science.gov (United States)

    Zhang, Jian-Song; Zeng, Wei; Chen, Ai-Xi

    2017-06-01

    We study the influence of cross-Kerr (CK) coupling and optical parametric amplifier (OPA) on the effective frequency, damping, normal mode splitting, ground state cooling, and steady state entanglement of an optomechanical system formed by one fixed mirror and one movable mirror. The CK coupling could increase the damping of the movable mirror. The normal mode splitting of the output field is observed due to the CK coupling. The combination of the CK coupling and OPA decreases the minimum attainable phonon number and the effective temperature of the movable mirror. The amount of stationary entanglement between the mechanical and cavity modes can be enhanced by the weak CK coupling. In particular, we find the stationary entanglement becomes more robust against thermal fluctuations of the movable mirror in the presence of the weak CK coupling.

  6. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  7. Tooth structure and fracture strength of cavities

    DEFF Research Database (Denmark)

    Mondelli, José; Sene, Fábio; Ramos, Renata Pereira

    2007-01-01

    This study evaluated, in vitro, the loss of tooth substance after cavity preparation for direct and indirect restorations and its relationship with fracture strength of the prepared teeth. Sixty sound human maxillary first premolars were assigned to 6 groups (n=10). MOD direct composite cavities......) or 1/2 (Groups III and VI) of the intercuspal distance. Teeth were weighed (digital balance accurate to 0.001 g) before and after preparation to record tooth substance mass lost during cavity preparation. The prepared teeth were submitted to occlusal loading to determine their fracture strength using...... a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed by two-way ANOVA and Tukey test (alpha= 0.05). 1/4-inlay cavities had higher percent mean mass loss (9.71%) than composite resin cavities with the same width (7.07%). 1/3-inlay preparations also produced higher percent mean...

  8. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  9. Statistics of magnetoconductance in ballistic cavities

    International Nuclear Information System (INIS)

    Yang, X.; Ishio, H.; Burgdoerfer, J.

    1995-01-01

    The statistical properties of magnetoconductance in ballistic microcavities are investigated numerically. The distribution of conductance for chaotic cavities is found to follow the renormalized Porter-Thomas distribution suggested by random-matrix theory for the Gaussian ensemble while the conductance distribution of regular cavities in magnetic fields is nonuniversal and shifted towards the maximum value for a given number of open channels. The renormalized Porter-Thomas distribution implies a universal dependence of fluctuation amplitude on the mean conductance for chaotic cavities in the absence of time-reversal symmetry. The fluctuation amplitude for regular cavities is found to be larger than the saturation value of the fluctuation amplitude of chaotic cavities predicted by random-matrix theory. The change of the mean conductance as a function of the external magnetic field is consistent with semiclassical predictions

  10. New achievements in RF cavity manufacturing

    International Nuclear Information System (INIS)

    Lippmann, G.; Pimiskern, K.; Kaiser, H.

    1993-01-01

    Dornier has been engaged in development, manufacturing and testing of Cu-, Cu/Nb- and Nb-cavities for many years. Recently, several different types of RF cavities were manufactured. A prototype superconducting (s.c.) B-Factory accelerating cavity (1-cell, 500 MHz) was delivered to Cornell University, Laboratory of Nuclear Studies. A second lot of 6 s.c. cavities (20-cell, 3000 MHz) was fabricated on contract from Technical University of Darmstadt for the S-DALINAC facility. Finally, the first copper RF structures (9-cell, 1300 MHz) for TESLA were finished and delivered to DESY, two s.c. niobium structures of the same design are in production. Highlights from the manufacturing processes of these cavities are described and first performance results will be reported

  11. Injuries caused by firewood splitting machines.

    Science.gov (United States)

    Hellstrand, P H

    1989-01-01

    The aim of this paper is to present the types of injury caused by firewood splitting machines and also to elucidate the accident mechanism. The study is based on 15 cases. The machine has a rotating spiral cone, and usually the victims' gloved fingertips were caught by the point of the cone. This led to either amputations, usually of radial fingers and/or penetrating wounds through the middle of the hand. In most cases the accidents could not be blamed on bad working techniques. The study of the mechanisms of injury points to insufficient protective devices in a machine construction which has a potentially dangerous working principle.

  12. Image reconstruction for the ClearPET{sup TM} Neuro

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Simone [Central Institute for Electronics, Forschungszentrum Juelich, 52425 Juelich (Germany)]. E-mail: s.weber@fz-juelich.de; Morel, Christian [Universite de la Mediterranee, Centre de Physique des Particules de Marseille (France); Simon, Luc [Institut Curie, Paris (France); Krieguer, Magalie [Vrije Universiteit Brussels (Belgium); Rey, Martin [Universite de Lausanne (Switzerland); Gundlich, Brigitte [Central Institute for Electronics, Forschungszentrum Juelich, 52425 Juelich (Germany); Khodaverdi, Maryam [Central Institute for Electronics, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2006-12-20

    ClearPET{sup TM} is a family of small-animal PET scanners which are currently under development within the Crystal Clear Collaboration (CERN). All scanners are based on the same detector block design using individual LSO and LuYAP crystals in phoswich configuration, coupled to multi-anode photomultiplier tubes. One of the scanners, the ClearPET{sup TM} Neuro is designed for applications in neuroscience. Four detector blocks with 64 2x2x10 mm LSO and LuYAP crystals, arranged in line, build a module. Twenty modules are arranged in a ring with a ring diameter of 13.8 cm and an axial size of 11.2 cm. An insensitive region at the border of the detector heads results in gaps between the detectors axially and tangentially. The detectors are rotating by 360{sup o} in step and shoot mode during data acquisition. Every second module is shifted axially to compensate partly for the gaps between the detector blocks in a module. This unconventional scanner geometry requires dedicated image reconstruction procedures. Data acquisition acquires single events that are stored with a time mark in a dedicated list mode format. Coincidences are associated off line by software. After sorting the data into 3D sinograms, image reconstruction is performed using the Ordered Subset Maximum A Posteriori One-Step Late (OSMAPOSL) iterative algorithm implemented in the Software for Tomographic Image Reconstruction (STIR) library. Due to the non-conventional scanner design, careful estimation of the sensitivity matrix is needed to obtain artifact-free images from the ClearPET{sup TM} Neuro.

  13. Compton polarimetry detection of small circularly and linearly polarized impurities in Mössbauer 8.4 keV (3/2-1/2) M1 γ-transition of {sup 169}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Tsinoev, V.; Cherepanov, V.; Shuvalov, V.; Balysh, A.; Gabbasov, R., E-mail: graul@list.ru [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-12-15

    The arrangement of an experiment to detect the P−odd and P, T−odd polarized part of the Mössbauer ({sup +}3/2– {sup +}1/2) gamma transition of a deformed {sup 169}Tm nucleus with an energy of 8.4 keV by Compton polarimetry is discussed. Tm {sub 2}O{sub 3} single crystal with a quadrupolarly split Mössbauer spectrum is proposed as a resonance polarizer. A Be-scatterer-based Compton polarimeter and a synchronously detecting system will be used to measure the P-odd circular polarization P{sub C}and P, T-odd linear polarization P{sub L}.The expected accuracy of measuring the relative magnitude of the P, T-odd contribution is about 1% of the magnitude of usual weak nucleon–nucleon interaction.

  14. TracWorksTM-global fuel assembly data management

    International Nuclear Information System (INIS)

    Cooney, B.F.

    1997-01-01

    The TracWorks TM Data Management System is a workstation-based software product that provides a utility with a single, broadly available, regularly updated source for virtually every data item available for a fuel assembly or core component. TracWorks is designed to collect, maintain and provide information about assembly and component locations and movements during the refueling process and operation, assembly burnup and isotopic inventory (both in-core and out-of-core), pin burnup and isotopics for pins that have been removed from their original assemblies, assembly and component inspection results (including video) and manufacturing data provided by the fabrication plant

  15. Ho:YLF Laser Pumped by TM:Fiber Laser

    Directory of Open Access Journals (Sweden)

    Mizutani Kohei

    2016-01-01

    Full Text Available A 2-micron Ho:YLF laser end-pumped by 1.94-micron Tm:fiber laser is described. A ring resonator of 3m length is adopted for the oscillator. The laser is a master oscillator and an amplifier system. It is operated at high repetition rate of 200-5000 Hz in room temperature. The laser outputs were about 9W in CW and more than 6W in Q-switched operation. This laser was developed to be used for wind and CO2 measurements.

  16. ADAPT(tm trocar use for laparoscopic procedures in equidea

    Directory of Open Access Journals (Sweden)

    P.P.M. Teixeira

    2016-02-01

    Full Text Available O objetivo deste trabalho é descrever o uso do trocater modelo Adapt(tm no acesso laparoscópico em animais da família dos equídeos. O procedimento cirúrgico foi realizado em 15 equídeos (quatro jumentas, seis cavalos e cinco éguas, com peso médio de 320kg (290kg e 450kg, pesos máximo e mínimo, respectivamente. Os pacientes foram mantidos em posição quadrupedal, sob sedação e bloqueio local. Primeiramente, realizou-se o preparo asséptico, e o acesso foi feito pelo flanco direito ou pelo esquerdo, dependendo da estrutura a ser visualizada. Em todos os procedimentos, foi utilizado o trocater modelo Seal AdaptTM Ports (Teleflex Medical Introduces TautTM, USA, com diâmetro de 12mm. Inicialmente se fez uma incisão de pele de aproximadamente 15mm para inserção da ponta do trocater. Este foi inserido na ferida cirúrgica, realizando-se movimentos de 180º em sentido horário e anti-horário, até atingir a cavidade abdominal. Após esta etapa, o obturador do trocater foi retirado, e a ótica inserida para confirmar o acesso à cavidade abdominal. A síntese das camadas superficiais da muscular foi realizada com fio nylon nº 0, em um padrão Sultan, e posteriormente a dermorrafia, também com nylon nº 0, no padrão de Wolf. O equipamento apresentou eficiência nos procedimentos de dissecação das camadas subcutânea, musculares e peritônio, não ocorrendo significativa hemorragia nessas camadas. Em um paciente muar, ocorreu afastamento do peritônio parietal, e em alguns casos (40% ocorreu pequeno enfisema subcutâneo no pós-cirúrgico. Todos os pacientes apresentaram boa cicatrização da ferida cirúrgica. O trocater modelo AdaptTM mostrou-se eficiente na abordagem laparoscópica em equinos, apresentando segurança em se estabelecer o acesso e versatilidade no emprego de diversos instrumentais.

  17. Luminescent photonic crystal cavities for fiber-optic sensors, coupled dissimilar cavities and optofluidics

    Science.gov (United States)

    Dündar, Mehmet A.; Wang, Bowen; Siahaan, Timothy; Voorbraak, Joost A. M.; Speijcken, Noud W. L.; Nötzel, Richard; van der Hoek, Marinus J.; He, Sailing; Fiore, Andrea; Van der Heijden, Rob W.

    2012-06-01

    Photonic crystal (PhC) cavities made in broadband luminescent material offer attractive possibilities for flexible active devices. The luminescence enables the cavity to operate as an autonomous entity. New applications of this property are demonstrated for cavities made in the InGaAsP underetched semiconductor membrane with embedded InAs Quantum Dots that emit in the range of 1400-1600 nm. Planar photonic crystal membrane nanocavities were released from the parent chip by mechanical nanomanipulation. The released cavity particle could be bonded on an arbitrary surface, which was exploited to make a novel fiber-optic tip sensor with a PhC cavity attached to the tip. A single mode from a short cavity is shown to couple simultaneously to at least three cavity modes of a long cavity, as concluded from level anticrossing data when the small cavity was photothermally tuned. Reconfigurable and movable cavities were created by locally varying the infiltration status by liquid oil near a PhC waveguide or defect cavity. Liquid was displaced locally on a micron scale using capillary force effects or laser-induced evaporation and condensation phenomena.

  18. Cavity solitons and localized patterns in a finite-size optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kozyreff, G. [Optique Nonlineaire Theorique, Universite Libre de Bruxelles (U.L.B.), CP 231 (Belgium); Gelens, L. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel (Belgium)

    2011-08-15

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  19. Randomized clinical trial comparing fixed-time split dosing and split dosing of oral Picosulfate regimen for bowel preparation.

    Science.gov (United States)

    Jun, Jae Hyuck; Han, Koon Hee; Park, Jong Kyu; Seo, Hyun Il; Kim, Young Don; Lee, Sang Jin; Jun, Baek Gyu; Hwang, Min Sik; Park, Yoon Kyoo; Kim, Myeong Jong; Cheon, Gab Jin

    2017-08-28

    To compare the efficacy of fixed-time split dose and split dose of an oral sodium picosulfate for bowel preparation. This is study was prospective, randomized controlled study performed at a single Institution (2013-058). A total of 204 subjects were assigned to receive one of two sodium picosulfate regimens ( i.e ., fixed-time split or split) prior to colonoscopy. Main outcome measurements were bowel preparation quality and subject tolerability. There was no statistical difference between the fixed-time split dose regimen group and the split dose regimen group (Ottawa score mean 2.57 ± 1.91 vs 2.80 ± 2.51, P = 0.457). Cecal intubation time and physician's satisfaction of inspection were not significantly different between the two groups ( P = 0.428, P = 0.489). On subgroup analysis, for afternoon procedures, the fixed-time split dose regimen was equally effective as compared with the split dose regimen (Ottawa score mean 2.56 ± 1.78 vs 2.59 ± 2.27, P = 0.932). There was no difference in tolerability or compliance between the two groups. Nausea was 21.2% in the fixed-time split dose group and 14.3% in the split dose group ( P = 0.136). Vomiting was 7.1% and 2.9% ( P = 0.164), abdominal discomfort 7.1% and 4.8% ( P = 0.484), dizziness 1% and 4.8% ( P = 0.113), cold sweating 1% and 0% ( P = 0.302) and palpitation 0% and 1% ( P = 0.330), respectively. Sleep disturbance was two (2%) patients in the fixed-time split dose group and zero (0%) patient in the split dose preparation ( P = 0.143) group. A fixed-time split dose regimen with sodium picosulfate is not inferior to a split dose regimen for bowel preparation and equally effective for afternoon colonoscopy.

  20. The Regularity of Functions on Dual Split Quaternions in Clifford Analysis

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim

    2014-01-01

    Full Text Available This paper shows some properties of dual split quaternion numbers and expressions of power series in dual split quaternions and provides differential operators in dual split quaternions and a dual split regular function on Ω⊂ℂ2×ℂ2 that has a dual split Cauchy-Riemann system in dual split quaternions.

  1. Splitting of the weak hypercharge quantum

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1990-12-01

    The ratio between the weak hypercharge quantum for particles having no coupling to the gauge bosons corresponding to the semisimple component of the gauge group and the smallest hypercharge quantum for particles that do have such couplings is exceptionally large for the standard model, considering its rank. To compare groups with respect to this property we propose a quantity χ which depends on the rank of the group and the splitting ratio of the hypercharge(s) to be found in the group. The quantity χ has maximal value for the gauge group of the standard model. This suggest that the hypercharge splitting may play an important role either in the origin of the gauge symmetry at a fundamental scale or in some kind of selection mechanism at a scale perhaps nearer to the experimental scale. Such selection mechanism might be what we have called confusion which removes groups with many (so called generalized) automorphisms. The quantity χ tends to be large for groups with few generalized automorphisms. (orig.)

  2. Strong CP, flavor, and twisted split fermions

    International Nuclear Information System (INIS)

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri

    2005-01-01

    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)

  3. An Iterative Algorithm for the Split Equality and Multiple-Sets Split Equality Problem

    Directory of Open Access Journals (Sweden)

    Luoyi Shi

    2014-01-01

    Full Text Available The multiple-sets split equality problem (MSSEP requires finding a point x∈∩i=1NCi, y∈∩j=1MQj such that Ax=By, where N and M are positive integers, {C1,C2,…,CN} and {Q1,Q2,…,QM} are closed convex subsets of Hilbert spaces H1, H2, respectively, and A:H1→H3, B:H2→H3 are two bounded linear operators. When N=M=1, the MSSEP is called the split equality problem (SEP. If  B=I, then the MSSEP and SEP reduce to the well-known multiple-sets split feasibility problem (MSSFP and split feasibility problem (SFP, respectively. One of the purposes of this paper is to introduce an iterative algorithm to solve the SEP and MSSEP in the framework of infinite-dimensional Hilbert spaces under some more mild conditions for the iterative coefficient.

  4. Functional properties of Virus-Encoded and Virus-Regulated 7TM Receptors

    DEFF Research Database (Denmark)

    Spiess, Katja; Rosenkilde, Mette Marie

    2014-01-01

    During co-evolution with their hosts, viruses have developed several survival strategies that involve exploitation of 7TM receptors. These include virus-encoded 7TM receptors and ligands and viral regulation of endogenous receptors. Many functional properties have been ascribed to virus-exploited 7......TM receptors, and although the list of putative functions is steadily growing, the presence and/or utilization of 7TM receptors are still poorly understood for many of these. This review focuses on three well described functional properties: 1) the immune evasion strategies, exemplified by γ1...... by the human herpesvirus 8 (HHV8)-encoded ORF74, HCMV-US28 and EBV-BILF1. Given the general high “druggability” of 7TM receptors, and the recent progress in the understanding of in particular immune evasive functions of the virus-exploited 7TM receptors, we put a special emphasis on the progress of novel anti...

  5. Cancer of the oral cavity

    International Nuclear Information System (INIS)

    Wang, C.C.

    1987-01-01

    Squamous cell carcinomas of the oral cavity are curable. When early tumor (T1 and T2) is diagnosed and treated, cure rates by surgery or irradiation are high. The choice of therapeutic modalities for these lesions is complex and depends on the site of origin and size of the tumor, the presence or absence of nodal metastases, and the age, physical, medical, and socioeconomic status of the patient. Other factors include the willingness of the patient to return for a protracted course of radiation therapy, the skill of the physician, and the relative morbidity and cosmesis of the two forms of treatment. In general, surgery may be considered for early (T1) lesions if the deformity resulting from surgery is minimal. If resection involves major morbidity, such as a deformity that alters cosmesis or the function of the speech and swallowing mechanisms, then radiation therapy is preferred. For medium-sized (T2) tumors, superficial radiation therapy is the treatment of choice, for it controls the disease and preserves normal function and anatomy. Surgery is reserved for radiation failures. Extensive disease (T3 and T4) often associated with bone and muscle involvement and cervical lymph node metastases is rarely curable by radiation therapy or surgery alone; a combined approach using radiation therapy and surgery is therefore the procedure of choice

  6. LEP superconducting accelerating cavity module

    CERN Multimedia

    1995-01-01

    With its 27-kilometre circumference, the Large Electron-Positron (LEP) collider was the largest electron-positron accelerator ever built. The excavation of the LEP tunnel was Europe’s largest civil-engineering project prior to the Channel Tunnel. Three tunnel-boring machines started excavating the tunnel in February 1985 and the ring was completed three years later. In its first phase of operation, LEP consisted of 5176 magnets and 128 accelerating cavities. CERN’s accelerator complex provided the particles and four enormous detectors, ALEPH, DELPHI, L3 and OPAL, observed the collisions. LEP was commissioned in July 1989 and the first beam circulated in the collider on 14 July. The collider's initial energy was chosen to be around 91 GeV, so that Z bosons could be produced. The Z boson and its charged partner the W boson, both discovered at CERN in 1983, are responsible for the weak force, which drives the Sun, for example. Observing the creation and decay of the short-lived Z boson was a critical test of...

  7. The MEDICI reactor cavity model

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Trebikock, W.

    1983-01-01

    The MEDICI reactor cavity model is currently under development with the goal of providing a flexible, relatively realistic treatment of ex-vessel severe accident phenomena suitable for large system codes like CONTAIN and MELCOR. The code is being developed with an emphasis on top-down design, to facilitate adaptability and multiple applications. A brief description of the overall code structure is provided. One of the key new models is then described in more detail. This is a dynamic quench model for debris beds. An example calculation using this model is presented. The question of whether it is necessary to consider the simultaneous motion of the quench front and ablation of the concrete is addressed with some scoping models. It is found that for realistic parameters and coolable beds, concrete ablation is too slow a process to be important on the quenching time scale. Remelt in the dry zone, however, is found to be potentially important on this time scale, so quench and remelt are considered simultaneously

  8. Hydroforming of Tesla Cavities at Desy

    International Nuclear Information System (INIS)

    Singer, W.; Kaiser, H.; Singer, X.; Gonin, I.; Zhelezov, I.; Khabibullin, T.; Kneisel, P.; Saito, K.

    2000-01-01

    Since several years the development of seamless niobium cavity fabrication by hydro forming is being pursued at DESY. This technique offers the possibility of lower cost of fabrication and perhaps better rf performance of the cavities because of the elimination of electron-beam welds, which in the standard fabrication technique have sometimes lead to inferior cavity performance due to defects. Several single cell 1300 MHz cavities have been formed from high purity seamless niobium tubes, which are under computer control expanded with internal pressure while simultaneously being swaged axially. The seamless tubes have been made by either back extrusion and flow forming or by spinning or deep drawing. Standard surface treatment techniques such as high temperature post purification, buffered chemical polishing (BCP), electropolishing (EP) and high pressure ultra pure water rinsing (HPR) have been applied to these cavities. The cavities exhibited high Q - values of 2 x 10 10 at 2K and residual resistances as low as 3 n(Omega) after the removal of a surface layer of app. 100 (micro)m by BCP. Surprisingly, even at high gradients up to the maximum measured values of E acc ∼ 33 MV/m the Q-value did not decrease in the absence of field emission as often observed. After electropolishing of additional 100 (micro)m one of the cavities reached an accelerating gradient of E acc (ge) 42 MV/m

  9. Preparation and handling of superconducting RF cavities

    International Nuclear Information System (INIS)

    Furuya, Takaaki

    1990-01-01

    The present paper outlines the recent preparation methods for superconducting cavities used in various laboratories and universities, and reports the problems of the cavity fabrication at KEK as an example of mass production. Preparation and handling are first addressed, focusing on material, fabrication, surface treatment, rinsing, clean environment, and heat treatment. Cavity production at KEK is then described, centering on defects on the surface and clean environments. Field gradients of more than 20 MV/m have been obtained by 1.5-3 GHz single cavities, for multi-cell cavities Eacc of 10 MV/m are available at any frequency range. The successful construction of thirty-two cavities for TRISTAN at KEK is due to the careful checking of the surface and quality control of all processes against the surface defects and contaminations. Eacc of 5 MV/m has been achieved by 94 % of the TRISTAN cavities at the first cold test, but 6 % of them had to be reworked because of the surface defects. These defects could not be detected by an X-ray photograph or visual inspections during the fabrication processes. (N.K.)

  10. Passive control of supersonic cavity flowfields

    Science.gov (United States)

    Chokani, N.; Kim, I.

    1991-01-01

    A computational investigation has been conducted to study the effect and mechanisms of the passive control of a supersonic flow over a rectangular two-dimensional cavity. The passive control was included through the use of a porous surface over a vent chamber in the floor of the cavity. The passive control effectively suppressed the low-frequency pressure oscillations for the open type cavity, (length-to-depth ratio = 6.0). The mechanism for the suppression was observed to be the stabilization of the motion of the free shear layer. For the closed type cavity flow, (length-to-depth ratio = 17.5), the passive control modified the flowfield to nearly that of an open type cavity flow; further the cavity drag was reduced by a factor of four. The computational results of both cases showed good agreement with the available experimental data and the predictions of a semiempirical formula. This study demonstrates that the passive control concept can be used to improve the aerodynamic characteristics of open and closed cavity flowfields.

  11. The CEBAF separator cavity resonance control system

    International Nuclear Information System (INIS)

    M. Wissmann; C. Hovater; A. Guerra; T. Plawski

    2005-01-01

    The CEBAF energy upgrade will increase the maximum beam energy from 6 GeV to 12 GeV available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three halls. The resulting increase in RF separator cavity gradient and subsequent increase in RF power needed for these higher energies will require the cavities to have active resonance control. Currently, at the present 4 to 6 GeV energies, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW) which is maintained at a constant temperature of 95 Fahrenheit. This approach is no longer feasible and an active resonance control system that controls both water temperature and flow has been designed and built. The system uses a commercial PLC with embedded PID controls to regulate water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately, closed loop control will be maintained by monitoring each cavity's reflected power. This paper describes this system

  12. Forward Modeling of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  13. Superconducting cavity driving with FPGA controller

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland); Simrock, S.; Brand, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chase, B.; Carcagno, R.; Cancelo, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Koeth, T.W. [Rutgers - the State Univ. of New Jersey, NJ (United States)

    2006-07-01

    The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)

  14. Optical Behavior of III-TM-N Materials and Devices

    Science.gov (United States)

    2008-09-26

    resistance (TMR). For example, EuS was used as a spin filter and showed evidence of magnetoresistance (MR) exceeding 130% at temperatures below the...injector’s inherent magnetoresistance . The origin of the splitting of resistances between 3000 Oe to -500 Oe and on the up sweep between -500 Oe to 3000 Oe is...Unfortunately, due to the limits of the PPMS, no MR measurements could be made at low temperature. Through TEM imaging, high amounts of strain were observed in

  15. Casing drilling TM : a viable technology for coal bed methane?

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Muqeem, M. [Tesco Corp., Calgary, AB (Canada)

    2001-07-01

    This paper highlighted the experience that Tesco has gained by drilling more than 30 wells using only casings as the drill stem, suggesting that such technology could be advantageous for Coal Bed Methane (CBM) exploration and development. Tesco has manufactured a mobile and compact hydraulic drilling rig that is ideal to meet the great demand for CBM development in Canada. The Casing Drilling TM system, when used in conjunction with the drilling rig, could be very effective and efficient for exploration and development of CBM reserves which typically require extensive coring. Continuous coring while drilling ahead and wire line retrieval can offer time savings and quick core recovery of large diameter core required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or coal beds under balanced with air or foam. This would reduce drilling fluid damage while finding gas at the same time. Compared to conventional drill pipes, Casing Drilling TM could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 8 refs., 3 tabs., 9 figs.

  16. Micro-Fuel Cells{sup TM} for portable electronics

    Energy Technology Data Exchange (ETDEWEB)

    Hockaday, R.G.; DeJohn, M.; Navas, C.; Turner, P.S.; Vaz, H.L.; Vazul, L.L. [Energy Related Devices Inc., Los Alamos, NM (United States)

    2000-05-01

    The Micro-Fuel Cell{sup TM} is a new power supply which provides a superior alternative compared to rechargeable batteries. A prototype has been developed by Manhattan Scientifics Inc. in collaboration with Energy Related Devices Inc. This mass-producible high-energy power supply can be used for cellular telephones, portable computers and other portable devices. Instead of being recharged, it can be easily refueled with methanol. The approach taken in designing this product was to develop a competitive product with definite advantages over existing products. The Micro-Fuel Cell{sup TM} is based on the idea that a fuel cell can be built onto an engineered microplastic substrate. In this case, the integrated design makes use of thin film vacuum deposition techniques to coat patterned, etched-nuclear-particle-track plastic membranes. This process forms catalytically active surface area electrodes on either side of a single structured proton-exchange-membrane electrolyte. Methanol was the choice fuel for this system because compared to hydrogen and metal hydrides, it was considered to be safer and more compact. In addition, the theoretical specific energy of methanol is significantly higher than for lithium-ion batteries. The problem of crossover, whereby methanol fuel diffuses across the fuel cell from the anode to the cathode, has also been solved by using a selectively permeable membrane. 5 refs., 4 figs.

  17. Powernext futuresTM back office user's guide

    International Nuclear Information System (INIS)

    2005-05-01

    The introduction of a power exchange in France is a direct response to the opening up of the European electricity markets. Powernext SA is a Multilateral Trading Facility in charge of managing the French power exchange through an optional and anonymous organised exchange offering: - Day-ahead contracts for the management of volume risk on Powernext Day-Ahead TM since 21 November 2001, - Medium term contracts for the management of price risk on Powernext Futures TM since 18 June 2004. This document is the back office user's guide, it presents: the market model (specifications, regulation, legal framework), the members (traders, clearers, quotation providers, fees structure), the products (specifications, use, liquidity and market efficiency), the clearing (recording transactions, risk management before delivery period, last settlement of contracts, risk management during delivery, additional margin, examples, default management), the LCH.Clearnet Ltd clearing system (hardware and software requirements, setup of the VPN client software, functionalities, market information disclosure), the delivery (nomination, file characteristics and transmission), the payment (financial flows, eligible assets provided to cover margin requirements). ECS reports, treasury documents, contracts codification, FTP server arborescence, latent and carried-out margins and a glossary are given in the appendix. (J.S.)

  18. Comparative Spectroscopic Investigation of Tm3+:Tellurite Glasses for 2-μm Lasing Applications

    Directory of Open Access Journals (Sweden)

    Huseyin Cankaya

    2018-02-01

    Full Text Available We performed a comparative spectroscopic analysis on three novel Tm3+:tellurite-based glasses with the following compositions Tm2O3:TeO2-ZnO (TeZnTm, Tm2O3:TeO2-Nb2O5 (TeNbTm, and Tm3+:TeO2-K2O-Nb2O5 (TeNbKTm, primarily for 2-μm laser applications. Tellurite glasses were prepared at different doping concentrations in order to investigate the effect of Tm3+ ion concentration as well as host composition on the stimulated emission cross sections and the luminescence quantum efficiencies. By performing Judd–Ofelt analysis, we determined the average radiative lifetimes of the 3H4 level to be 2.55 ± 0.07 ms, 2.76 ± 0.03 ms and 2.57 ± 0.20 ms for the TeZnTm, TeNbTm and TeNbKTm samples, respectively. We clearly observed the effect of the cross-relaxation, which becomes significant at higher Tm2O3 concentrations, leading to the quenching of 1460-nm emission and enhancement of 1860-nm emission. Furthermore, with increasing Tm2O3 concentrations, we observed a decrease in the fluorescence lifetimes as a result of the onset of non-radiative decay. For the 3H4 level, the highest obtained quantum efficiency was 32% for the samples with the lowest Tm2O3 ion concentration. For the 1860-nm emission band, the average emission cross section was determined to measure around 6.33 ± 0.34 × 10−21 cm2, revealing the potential of thulium-doped tellurite gain media for 2-μm laser applications in bulk and fiber configurations.

  19. Design of the Advanced LIGO recycling cavities.

    Science.gov (United States)

    Arain, Muzammil A; Mueller, Guido

    2008-07-07

    The current LIGO detectors will undergo an upgrade which is expected to improve their sensitivity and bandwidth significantly. These advanced gravitational-wave detectors will employ stable recycling cavities to better confine their spatial eigenmodes instead of the currently installed marginally stable power recycling cavity. In this letter we describe the general layout of the recycling cavities and give specific values for a first possible design. We also address the issue of mode mismatch due to manufacturing tolerance of optical elements and present a passive compensation scheme based upon optimizing the distances between optical elements.

  20. Interaction of IREB with a cavity

    International Nuclear Information System (INIS)

    Sawhney, R.; Mishra, Mamta; Purkayastha, A.D.; Rambabu, P.; Maheshwari, K.P.

    1991-01-01

    The propagation of an intense pulsed relativistic electron beam (IREB) through a cavity resonator is considered. The cavity gets shock excited. The electromagnetic fields so generated interact with the beam in such a way that the energy is transferred from the front of the beam to the back. As a result the beams gets energized but shortened in time. Analysis for the chosen dominant mode of the cavity viz. TMsub(010) is carried out. The induced electric field excited is calculated and the accelerating potential is estimated. The results are compared with the recent-experiments. (author). 5 refs., 1 fig