Flexible regression models with cubic splines.
Durrleman, S; Simon, R
1989-05-01
We describe the use of cubic splines in regression models to represent the relationship between the response variable and a vector of covariates. This simple method can help prevent the problems that result from inappropriate linearity assumptions. We compare restricted cubic spline regression to non-parametric procedures for characterizing the relationship between age and survival in the Stanford Heart Transplant data. We also provide an illustrative example in cancer therapeutics.
Spline interpolations besides wood model widely used in lactation
Korkmaz, Mehmet
2017-04-01
In this study, for lactation curve, spline interpolations, alternative modeling passing through exactly all data points with respect to widely used Wood model applied to lactation data were be discussed. These models are linear spline, quadratic spline and cubic spline. The observed and estimated values according to spline interpolations and Wood model were given with their Error Sum of Squares and also the lactation curves of spline interpolations and widely used Wood model were shown on the same graph. Thus, the differences have been observed. The estimates for some intermediate values were done by using spline interpolations and Wood model. By using spline interpolations, the estimates of intermediate values could be made more precise. Furthermore, by using spline interpolations, the predicted values for missing or incorrect observation were very successful according to the values of Wood model. By using spline interpolations, new ideas and interpretations in addition to the information of the well-known classical analysis were shown to the investigators.
Preference learning with evolutionary Multivariate Adaptive Regression Spline model
DEFF Research Database (Denmark)
Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll
2015-01-01
This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for function approximation as well as being relatively easy to interpret. MARS models are evolved based on their efficiency in learning pairwise data. The method is tested on two datasets that collectively provide pairwise preference data of five cognitive states expressed by users. The method is analysed...
LIMIT STRESS SPLINE MODELS FOR GRP COMPOSITES
African Journals Online (AJOL)
ES OBE
Department of Mechanical Engineering, Anambra State. University of Science and Technology, Uli ... 12 were established. The optimization of quadratic and cubic models by gradient search optimization gave the critical strain as 0.024, .... 2.2.1 Derivation of Cubic Spline Equation. The basic assumptions to be used are: 1.
Limit Stress Spline Models for GRP Composites | Ihueze | Nigerian ...
African Journals Online (AJOL)
Spline functions were established on the assumption of three intervals and fitting of quadratic and cubic splines to critical stress-strain responses data. Quadratic ... of data points. Spline model is therefore recommended as it evaluates the function at subintervals, eliminating the error associated with wide range interpolation.
Directory of Open Access Journals (Sweden)
I Nyoman Budiantara
2006-01-01
Full Text Available Regression analysis is constructed for capturing the influences of independent variables to dependent ones. It can be done by looking at the relationship between those variables. This task of approximating the mean function can be done essentially in two ways. The quiet often use parametric approach is to assume that the mean curve has some prespecified functional forms. Alternatively, nonparametric approach, .i.e., without reference to a specific form, is used when there is no information of the regression function form (Haerdle, 1990. Therefore nonparametric approach has more flexibilities than the parametric one. The aim of this research is to find the best fit model that captures relationship between admission test score to the GPA. This particular data was taken from the Department of Design Communication and Visual, Petra Christian University, Surabaya for year 1999. Those two approaches were used here. In the parametric approach, we use simple linear, quadric cubic regression, and in the nonparametric ones, we use B-Spline and Multivariate Adaptive Regression Splines (MARS. Overall, the best model was chosen based on the maximum determinant coefficient. However, for MARS, the best model was chosen based on the GCV, minimum MSE, maximum determinant coefficient. Abstract in Bahasa Indonesia : Analisa regresi digunakan untuk melihat pengaruh variabel independen terhadap variabel dependent dengan terlebih dulu melihat pola hubungan variabel tersebut. Hal ini dapat dilakukan dengan melalui dua pendekatan. Pendekatan yang paling umum dan seringkali digunakan adalah pendekatan parametrik. Pendekatan parametrik mengasumsikan bentuk model sudah ditentukan. Apabila tidak ada informasi apapun tentang bentuk dari fungsi regresi, maka pendekatan yang digunakan adalah pendekatan nonparametrik. (Haerdle, 1990. Karena pendekatan tidak tergantung pada asumsi bentuk kurva tertentu, sehingga memberikan fleksibelitas yang lebih besar. Tujuan penelitian ini
Input point distribution for regular stem form spline modeling
Directory of Open Access Journals (Sweden)
Karel Kuželka
2015-04-01
Full Text Available Aim of study: To optimize an interpolation method and distribution of measured diameters to represent regular stem form of coniferous trees using a set of discrete points. Area of study: Central-Bohemian highlands, Czech Republic; a region that represents average stand conditions of production forests of Norway spruce (Picea abies [L.] Karst. in central Europe Material and methods: The accuracy of stem curves modeled using natural cubic splines from a set of measured diameters was evaluated for 85 closely measured stems of Norway spruce using five statistical indicators and compared to the accuracy of three additional models based on different spline types selected for their ability to represent stem curves. The optimal positions to measure diameters were identified using an aggregate objective function approach. Main results: The optimal positions of the input points vary depending on the properties of each spline type. If the optimal input points for each spline are used, then all spline types are able to give reasonable results with higher numbers of input points. The commonly used natural cubic spline was outperformed by other spline types. The lowest errors occur by interpolating the points using the Catmull-Rom spline, which gives accurate and unbiased volume estimates, even with only five input points. Research highlights: The study contributes to more accurate representation of stem form and therefore more accurate estimation of stem volume using data obtained from terrestrial imagery or other close-range remote sensing methods.
Identification of Hammerstein models with cubic spline nonlinearities.
Dempsey, Erika J; Westwick, David T
2004-02-01
This paper considers the use of cubic splines, instead of polynomials, to represent the static nonlinearities in block structured models. It introduces a system identification algorithm for the Hammerstein structure, a static nonlinearity followed by a linear filter, where cubic splines represent the static nonlinearity and the linear dynamics are modeled using a finite impulse response filter. The algorithm uses a separable least squares Levenberg-Marquardt optimization to identify Hammerstein cascades whose nonlinearities are modeled by either cubic splines or polynomials. These algorithms are compared in simulation, where the effects of variations in the input spectrum and distribution, and those of the measurement noise are examined. The two algorithms are used to fit Hammerstein models to stretch reflex electromyogram (EMG) data recorded from a spinal cord injured patient. The model with the cubic spline nonlinearity provides more accurate predictions of the reflex EMG than the polynomial based model, even in novel data.
Modelling Childhood Growth Using Fractional Polynomials and Linear Splines
Tilling, Kate; Macdonald-Wallis, Corrie; Lawlor, Debbie A.; Hughes, Rachael A.; Howe, Laura D.
2014-01-01
Background There is increasing emphasis in medical research on modelling growth across the life course and identifying factors associated with growth. Here, we demonstrate multilevel models for childhood growth either as a smooth function (using fractional polynomials) or a set of connected linear phases (using linear splines). Methods We related parental social class to height from birth to 10 years of age in 5,588 girls from the Avon Longitudinal Study of Parents and Children (ALSPAC). Multilevel fractional polynomial modelling identified the best-fitting model as being of degree 2 with powers of the square root of age, and the square root of age multiplied by the log of age. The multilevel linear spline model identified knot points at 3, 12 and 36 months of age. Results Both the fractional polynomial and linear spline models show an initially fast rate of growth, which slowed over time. Both models also showed that there was a disparity in length between manual and non-manual social class infants at birth, which decreased in magnitude until approximately 1 year of age and then increased. Conclusions Multilevel fractional polynomials give a more realistic smooth function, and linear spline models are easily interpretable. Each can be used to summarise individual growth trajectories and their relationships with individual-level exposures. PMID:25413651
Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza
2014-10-01
The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of
Global Nonlinear Model Identification with Multivariate Splines
De Visser, C.C.
2011-01-01
At present, model based control systems play an essential role in many aspects of modern society. Application areas of model based control systems range from food processing to medical imaging, and from process control in oil refineries to the flight control systems of modern aircraft. Central to a
Nieto, P J García; Antón, J C Álvarez; Vilán, J A Vilán; García-Gonzalo, E
2015-05-01
The aim of this research work is to build a regression model of air quality by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (northern Spain) at a local scale. To accomplish the objective of this study, the experimental data set made up of nitrogen oxides (NO x ), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), and dust (PM10) was collected over 3 years (2006-2008). The US National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of these numerical calculations, using the MARS technique, conclusions of this research work are exposed.
Modeling and testing treated tumor growth using cubic smoothing splines.
Kong, Maiying; Yan, Jun
2011-07-01
Human tumor xenograft models are often used in preclinical study to evaluate the therapeutic efficacy of a certain compound or a combination of certain compounds. In a typical human tumor xenograft model, human carcinoma cells are implanted to subjects such as severe combined immunodeficient (SCID) mice. Treatment with test compounds is initiated after tumor nodule has appeared, and continued for a certain time period. Tumor volumes are measured over the duration of the experiment. It is well known that untreated tumor growth may follow certain patterns, which can be described by certain mathematical models. However, the growth patterns of the treated tumors with multiple treatment episodes are quite complex, and the usage of parametric models is limited. We propose using cubic smoothing splines to describe tumor growth for each treatment group and for each subject, respectively. The proposed smoothing splines are quite flexible in modeling different growth patterns. In addition, using this procedure, we can obtain tumor growth and growth rate over time for each treatment group and for each subject, and examine whether tumor growth follows certain growth pattern. To examine the overall treatment effect and group differences, the scaled chi-squared test statistics based on the fitted group-level growth curves are proposed. A case study is provided to illustrate the application of this method, and simulations are carried out to examine the performances of the scaled chi-squared tests. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint
Energy Technology Data Exchange (ETDEWEB)
Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.
2015-02-01
Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.
Directory of Open Access Journals (Sweden)
Wei Zeng
2015-04-01
Full Text Available Conventional splines offer powerful means for modeling surfaces and volumes in three-dimensional Euclidean space. A one-dimensional quaternion spline has been applied for animation purpose, where the splines are defined to model a one-dimensional submanifold in the three-dimensional Lie group. Given two surfaces, all of the diffeomorphisms between them form an infinite dimensional manifold, the so-called diffeomorphism space. In this work, we propose a novel scheme to model finite dimensional submanifolds in the diffeomorphism space by generalizing conventional splines. According to quasiconformal geometry theorem, each diffeomorphism determines a Beltrami differential on the source surface. Inversely, the diffeomorphism is determined by its Beltrami differential with normalization conditions. Therefore, the diffeomorphism space has one-to-one correspondence to the space of a special differential form. The convex combination of Beltrami differentials is still a Beltrami differential. Therefore, the conventional spline scheme can be generalized to the Beltrami differential space and, consequently, to the diffeomorphism space. Our experiments demonstrate the efficiency and efficacy of diffeomorphism splines. The diffeomorphism spline has many potential applications, such as surface registration, tracking and animation.
Forghani, Ali; Peralta, Richard C.
2017-10-01
The study presents a procedure using solute transport and statistical models to evaluate the performance of aquifer storage and recovery (ASR) systems designed to earn additional water rights in freshwater aquifers. The recovery effectiveness (REN) index quantifies the performance of these ASR systems. REN is the proportion of the injected water that the same ASR well can recapture during subsequent extraction periods. To estimate REN for individual ASR wells, the presented procedure uses finely discretized groundwater flow and contaminant transport modeling. Then, the procedure uses multivariate adaptive regression splines (MARS) analysis to identify the significant variables affecting REN, and to identify the most recovery-effective wells. Achieving REN values close to 100% is the desire of the studied 14-well ASR system operator. This recovery is feasible for most of the ASR wells by extracting three times the injectate volume during the same year as injection. Most of the wells would achieve RENs below 75% if extracting merely the same volume as they injected. In other words, recovering almost all the same water molecules that are injected requires having a pre-existing water right to extract groundwater annually. MARS shows that REN most significantly correlates with groundwater flow velocity, or hydraulic conductivity and hydraulic gradient. MARS results also demonstrate that maximizing REN requires utilizing the wells located in areas with background Darcian groundwater velocities less than 0.03 m/d. The study also highlights the superiority of MARS over regular multiple linear regressions to identify the wells that can provide the maximum REN. This is the first reported application of MARS for evaluating performance of an ASR system in fresh water aquifers.
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2017-07-01
Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.
Momentum analysis by using a quintic spline model for the track
Wind, H
1974-01-01
A method is described to determine the momentum of a particle when the (inhomogeneous) analysing magnetic field and the position of at least three points on the track are known. The model of the field is essentially a cubic spline and that of the track a quintic spline. (8 refs).
A Multidimensional Spline Based Global Nonlinear Aerodynamic Model for the Cessna Citation II
De Visser, C.C.; Mulder, J.A.
2010-01-01
A new method is proposed for the identification of global nonlinear models of aircraft non-dimensional force and moment coefficients. The method is based on a recent type of multivariate spline, the multivariate simplex spline, which can accurately approximate very large, scattered nonlinear
Michael S. Balshi; A. David McGuire; Paul Duffy; Mike Flannigan; John Walsh; Jerry Melillo
2009-01-01
We developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5o (latitude x longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was...
Kirkpatrick, J. C.
1976-01-01
A tabulation of selected altitude-correlated values of pressure, density, speed of sound, and coefficient of viscosity for each of six models of the atmosphere is presented in block data format. Interpolation for the desired atmospheric parameters is performed by using cubic spline functions. The recursive relations necessary to compute the cubic spline function coefficients are derived and implemented in subroutine form. Three companion subprograms, which form the preprocessor and processor, are also presented. These subprograms, together with the data element, compose the spline fit atmosphere package. Detailed FLOWGM flow charts and FORTRAN listings of the atmosphere package are presented in the appendix.
Directory of Open Access Journals (Sweden)
Wengang Zhang
2016-01-01
Full Text Available Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved. In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system's predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS, as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network (BPNN and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses (MCS, Maximum tensile stresses (MTS, and Blow per foot (BPF. A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather
Bhadra, Anindya; Carroll, Raymond J
2016-07-01
In truncated polynomial spline or B-spline models where the covariates are measured with error, a fully Bayesian approach to model fitting requires the covariates and model parameters to be sampled at every Markov chain Monte Carlo iteration. Sampling the unobserved covariates poses a major computational problem and usually Gibbs sampling is not possible. This forces the practitioner to use a Metropolis-Hastings step which might suffer from unacceptable performance due to poor mixing and might require careful tuning. In this article we show for the cases of truncated polynomial spline or B-spline models of degree equal to one, the complete conditional distribution of the covariates measured with error is available explicitly as a mixture of double-truncated normals, thereby enabling a Gibbs sampling scheme. We demonstrate via a simulation study that our technique performs favorably in terms of computational efficiency and statistical performance. Our results indicate up to 62 and 54 % increase in mean integrated squared error efficiency when compared to existing alternatives while using truncated polynomial splines and B-splines respectively. Furthermore, there is evidence that the gain in efficiency increases with the measurement error variance, indicating the proposed method is a particularly valuable tool for challenging applications that present high measurement error. We conclude with a demonstration on a nutritional epidemiology data set from the NIH-AARP study and by pointing out some possible extensions of the current work.
Random regression analyses using B-splines to model growth of Australian Angus cattle
Directory of Open Access Journals (Sweden)
Meyer Karin
2005-09-01
Full Text Available Abstract Regression on the basis function of B-splines has been advocated as an alternative to orthogonal polynomials in random regression analyses. Basic theory of splines in mixed model analyses is reviewed, and estimates from analyses of weights of Australian Angus cattle from birth to 820 days of age are presented. Data comprised 84 533 records on 20 731 animals in 43 herds, with a high proportion of animals with 4 or more weights recorded. Changes in weights with age were modelled through B-splines of age at recording. A total of thirteen analyses, considering different combinations of linear, quadratic and cubic B-splines and up to six knots, were carried out. Results showed good agreement for all ages with many records, but fluctuated where data were sparse. On the whole, analyses using B-splines appeared more robust against "end-of-range" problems and yielded more consistent and accurate estimates of the first eigenfunctions than previous, polynomial analyses. A model fitting quadratic B-splines, with knots at 0, 200, 400, 600 and 821 days and a total of 91 covariance components, appeared to be a good compromise between detailedness of the model, number of parameters to be estimated, plausibility of results, and fit, measured as residual mean square error.
Directory of Open Access Journals (Sweden)
Soyoung Park
2017-07-01
Full Text Available This study mapped and analyzed groundwater potential using two different models, logistic regression (LR and multivariate adaptive regression splines (MARS, and compared the results. A spatial database was constructed for groundwater well data and groundwater influence factors. Groundwater well data with a high potential yield of ≥70 m3/d were extracted, and 859 locations (70% were used for model training, whereas the other 365 locations (30% were used for model validation. We analyzed 16 groundwater influence factors including altitude, slope degree, slope aspect, plan curvature, profile curvature, topographic wetness index, stream power index, sediment transport index, distance from drainage, drainage density, lithology, distance from fault, fault density, distance from lineament, lineament density, and land cover. Groundwater potential maps (GPMs were constructed using LR and MARS models and tested using a receiver operating characteristics curve. Based on this analysis, the area under the curve (AUC for the success rate curve of GPMs created using the MARS and LR models was 0.867 and 0.838, and the AUC for the prediction rate curve was 0.836 and 0.801, respectively. This implies that the MARS model is useful and effective for groundwater potential analysis in the study area.
Heddam, Salim; Kisi, Ozgur
2018-04-01
In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.
SPLINE, Spline Interpolation Function
International Nuclear Information System (INIS)
Allouard, Y.
1977-01-01
1 - Nature of physical problem solved: The problem is to obtain an interpolated function, as smooth as possible, that passes through given points. The derivatives of these functions are continuous up to the (2Q-1) order. The program consists of the following two subprograms: ASPLERQ. Transport of relations method for the spline functions of interpolation. SPLQ. Spline interpolation. 2 - Method of solution: The methods are described in the reference under item 10
Avsec, Žiga; Barekatain, Mohammadamin; Cheng, Jun; Gagneur, Julien
2017-11-16
Regulatory sequences are not solely defined by their nucleic acid sequence but also by their relative distances to genomic landmarks such as transcription start site, exon boundaries, or polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequences because of its strength to learn complex sequence features. However, modeling relative distances to genomic landmarks in deep neural networks has not been addressed. Here we developed spline transformation, a neural network module based on splines to flexibly and robustly model distances. Modeling distances to various genomic landmarks with spline transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-binding protein binding sites for 120 out of 123 proteins. We also developed a deep neural network for human splice branchpoint based on spline transformations that outperformed the current best, already distance-based, machine learning model. Compared to piecewise linear transformation, as obtained by composition of rectified linear units, spline transformation yields higher prediction accuracy as well as faster and more robust training. As spline transformation can be applied to further quantities beyond distances, such as methylation or conservation, we foresee it as a versatile component in the genomics deep learning toolbox. Spline transformation is implemented as a Keras layer in the CONCISE python package: https://github.com/gagneurlab/concise. Analysis code is available at goo.gl/3yMY5w. avsec@in.tum.de; gagneur@in.tum.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Directory of Open Access Journals (Sweden)
Jairo Vanegas
2017-05-01
Full Text Available Multivariate Adaptative Regression Splines (MARS es un método de modelación no paramétrico que extiende el modelo lineal incorporando no linealidades e interacciones de variables. Es una herramienta flexible que automatiza la construcción de modelos de predicción, seleccionando variables relevantes, transformando las variables predictoras, tratando valores perdidos y previniendo sobreajustes mediante un autotest. También permite predecir tomando en cuenta factores estructurales que pudieran tener influencia sobre la variable respuesta, generando modelos hipotéticos. El resultado final serviría para identificar puntos de corte relevantes en series de datos. En el área de la salud es poco utilizado, por lo que se propone como una herramienta más para la evaluación de indicadores relevantes en salud pública. Para efectos demostrativos se utilizaron series de datos de mortalidad de menores de 5 años de Costa Rica en el periodo 1978-2008.
Modeling Seismic Wave Propagation Using Time-Dependent Cauchy-Navier Splines
Kammann, P.
2005-12-01
Our intention is the modeling of seismic wave propagation from displacement measurements by seismographs at the Earth's surface. The elastic behaviour of the Earth is usually described by the Cauchy-Navier equation. A system of fundamental solutions for the Fourier transformed Cauchy-Navier equation are the Hansen vectors L, M and N. We apply an inverse Fourier transform to obtain an orthonormal function system depending on time and space. By means of this system we construct certain splines, which are then used for interpolating the given data. Compared to polynomial interpolation, splines have the advantage that they minimize some curvature measure and are, therefore, smoother. First, we test this method on a synthetic wave function. Afterwards, we apply it to realistic earthquake data. (P. Kammann, Modelling Seismic Wave Propagation Using Time-Dependent Cauchy-Navier Splines, Diploma Thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, 2005)
Directory of Open Access Journals (Sweden)
Laura M. Grajeda
2016-01-01
Full Text Available Abstract Background Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. Methods We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Results Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001 when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001 and slopes (p < 0.001 of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001, which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and
Validating the Multidimensional Spline Based Global Aerodynamic Model for the Cessna Citation II
De Visser, C.C.; Mulder, J.A.
2011-01-01
The validation of aerodynamic models created using flight test data is a time consuming and often costly process. In this paper a new method for the validation of global nonlinear aerodynamic models based on multivariate simplex splines is presented. This new method uses the unique properties of the
Deo, Ravinesh C.; Kisi, Ozgur; Singh, Vijay P.
2017-02-01
Drought forecasting using standardized metrics of rainfall is a core task in hydrology and water resources management. Standardized Precipitation Index (SPI) is a rainfall-based metric that caters for different time-scales at which the drought occurs, and due to its standardization, is well-suited for forecasting drought at different periods in climatically diverse regions. This study advances drought modelling using multivariate adaptive regression splines (MARS), least square support vector machine (LSSVM), and M5Tree models by forecasting SPI in eastern Australia. MARS model incorporated rainfall as mandatory predictor with month (periodicity), Southern Oscillation Index, Pacific Decadal Oscillation Index and Indian Ocean Dipole, ENSO Modoki and Nino 3.0, 3.4 and 4.0 data added gradually. The performance was evaluated with root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (r2). Best MARS model required different input combinations, where rainfall, sea surface temperature and periodicity were used for all stations, but ENSO Modoki and Pacific Decadal Oscillation indices were not required for Bathurst, Collarenebri and Yamba, and the Southern Oscillation Index was not required for Collarenebri. Inclusion of periodicity increased the r2 value by 0.5-8.1% and reduced RMSE by 3.0-178.5%. Comparisons showed that MARS superseded the performance of the other counterparts for three out of five stations with lower MAE by 15.0-73.9% and 7.3-42.2%, respectively. For the other stations, M5Tree was better than MARS/LSSVM with lower MAE by 13.8-13.4% and 25.7-52.2%, respectively, and for Bathurst, LSSVM yielded more accurate result. For droughts identified by SPI ≤ - 0.5, accurate forecasts were attained by MARS/M5Tree for Bathurst, Yamba and Peak Hill, whereas for Collarenebri and Barraba, M5Tree was better than LSSVM/MARS. Seasonal analysis revealed disparate results where MARS/M5Tree was better than LSSVM. The results highlight the
Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines
Tan, Yunhao; Hua, Jing; Qin, Hong
2009-01-01
In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636
Laksâ, Arne
2015-11-01
B-splines are the de facto industrial standard for surface modelling in Computer Aided design. It is comparable to bend flexible rods of wood or metal. A flexible rod minimize the energy when bending, a third degree polynomial spline curve minimize the second derivatives. B-spline is a nice way of representing polynomial splines, it connect polynomial splines to corner cutting techniques, which induces many nice and useful properties. However, the B-spline representation can be expanded to something we can call general B-splines, i.e. both polynomial and non-polynomial splines. We will show how this expansion can be done, and the properties it induces, and examples of non-polynomial B-spline.
Decomposition of LiDAR waveforms by B-spline-based modeling
Shen, Xiang; Li, Qing-Quan; Wu, Guofeng; Zhu, Jiasong
2017-06-01
Waveform decomposition is a widely used technique for extracting echoes from full-waveform LiDAR data. Most previous studies recommended the Gaussian decomposition approach, which employs the Gaussian function in laser pulse modeling. As the Gaussian-shape assumption is not always satisfied for real LiDAR waveforms, some other probability distributions (e.g., the lognormal distribution, the generalized normal distribution, and the Burr distribution) have also been introduced by researchers to fit sharply-peaked and/or heavy-tailed pulses. However, these models cannot be universally used, because they are only suitable for processing the LiDAR waveforms in particular shapes. In this paper, we present a new waveform decomposition algorithm based on the B-spline modeling technique. LiDAR waveforms are not assumed to have a priori shapes but rather are modeled by B-splines, and the shape of a received waveform is treated as the mixture of finite transmitted pulses after translation and scaling transformation. The performance of the new model was tested using two full-waveform data sets acquired by a Riegl LMS-Q680i laser scanner and an Optech Aquarius laser bathymeter, comparing with three classical waveform decomposition approaches: the Gaussian, generalized normal, and lognormal distribution-based models. The experimental results show that the B-spline model performed the best in terms of waveform fitting accuracy, while the generalized normal model yielded the worst performance in the two test data sets. Riegl waveforms have nearly Gaussian pulse shapes and were well fitted by the Gaussian mixture model, while the B-spline-based modeling algorithm produced a slightly better result by further reducing 6.4% of fitting residuals, largely benefiting from alleviating the adverse impact of the ringing effect. The pulse shapes of Optech waveforms, on the other hand, are noticeably right-skewed. The Gaussian modeling results deviated significantly from original signals, and
A fourth order spline collocation approach for a business cycle model
Sayfy, A.; Khoury, S.; Ibdah, H.
2013-10-01
A collocation approach, based on a fourth order cubic B-splines is presented for the numerical solution of a Kaleckian business cycle model formulated by a nonlinear delay differential equation. The equation is approximated and the nonlinearity is handled by employing an iterative scheme arising from Newton's method. It is shown that the model exhibits a conditionally dynamical stable cycle. The fourth-order rate of convergence of the scheme is verified numerically for different special cases.
Directory of Open Access Journals (Sweden)
Paulino José García Nieto
2016-05-01
Full Text Available Remaining useful life (RUL estimation is considered as one of the most central points in the prognostics and health management (PHM. The present paper describes a nonlinear hybrid ABC–MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed, it is well-known that an accurate RUL estimation allows failure prevention in a more controllable way so that the effective maintenance can be carried out in appropriate time to correct impending faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS, which have been successfully adopted for regression problems, with the artificial bee colony (ABC technique. This optimization technique involves parameter setting in the MARS training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid ABC–MARS-based model from the remaining measured parameters (input variables for aircraft engines with success. A correlation coefficient equal to 0.92 was obtained when this hybrid ABC–MARS-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. The main advantage of this predictive model is that it does not require information about the previous operation states of the aircraft engine.
Modeling of type-2 fuzzy cubic B-spline surface for flood data problem in Malaysia
Bidin, Mohd Syafiq; Wahab, Abd. Fatah
2017-08-01
Malaysia possesses a low and sloping land areas which may cause flood. The flood phenomenon can be analyzed if the surface data of the study area can be modeled by geometric modeling. Type-2 fuzzy data for the flood data is defined using type-2 fuzzy set theory in order to solve the uncertainty of complex data. Then, cubic B-spline surface function is used to produce a smooth surface. Three main processes are carried out to find a solution to crisp type-2 fuzzy data which is fuzzification (α-cut operation), type-reduction and defuzzification. Upon conducting these processes, Type-2 Fuzzy Cubic B-Spline Surface Model is applied to visualize the surface data of the flood areas that are complex uncertainty.
Spline- and wavelet-based models of neural activity in response to natural visual stimulation.
Gerhard, Felipe; Szegletes, Luca
2012-01-01
We present a comparative study of the performance of different basis functions for the nonparametric modeling of neural activity in response to natural stimuli. Based on naturalistic video sequences, a generative model of neural activity was created using a stochastic linear-nonlinear-spiking cascade. The temporal dynamics of the spiking response is well captured with cubic splines with equidistant knot spacings. Whereas a sym4-wavelet decomposition performs competitively or only slightly worse than the spline basis, Haar wavelets (or histogram-based models) seem unsuitable for faithfully describing the temporal dynamics of the sensory neurons. This tendency was confirmed with an application to a real data set of spike trains recorded from visual cortex of the awake monkey.
Bolard, P; Quantin, C; Abrahamowicz, M; Esteve, J; Giorgi, R; Chadha-Boreham, H; Binquet, C; Faivre, J
2002-01-01
The Cox model is widely used in the evaluation of prognostic factors in clinical research. However, in population-based studies, which assess long-term survival of unselected populations, relative-survival models are often considered more appropriate. In both approaches, the validity of proportional hazards hypothesis should be evaluated. We propose a new method in which restricted cubic spline functions are employed to model time-by-covariate interactions in relative survival analyses. The method allows investigation of the shape of possible dependence of the covariate effect on time without having to specify a particular functional form. Restricted cubic spline functions allow graphing of such time-by-covariate interactions, to test formally the proportional hazards assumption, and also to test the linearity of the time-by-covariate interaction. Application of our new method to assess mortality in colon cancer provides strong evidence against the proportional hazards hypothesis, which is rejected for all prognostic factors. The results corroborate previous analyses of similar data-sets, suggesting the importance of both modelling of non-proportional hazards and relative survival approach. We also demonstrate the advantages of using restricted cubic spline functions for modelling non-proportional hazards in relative-survival analysis. The results provide new insights in the estimated impact of older age and of period of diagnosis. Using restricted cubic splines in a relative survival model allows the representation of both simple and complex patterns of changes in relative risks over time, with a single parsimonious model without a priori assumptions about the functional form of these changes.
Kisi, Ozgur; Parmar, Kulwinder Singh
2016-03-01
This study investigates the accuracy of least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5Tree) in modeling river water pollution. Various combinations of water quality parameters, Free Ammonia (AMM), Total Kjeldahl Nitrogen (TKN), Water Temperature (WT), Total Coliform (TC), Fecal Coliform (FC) and Potential of Hydrogen (pH) monitored at Nizamuddin, Delhi Yamuna River in India were used as inputs to the applied models. Results indicated that the LSSVM and MARS models had almost same accuracy and they performed better than the M5Tree model in modeling monthly chemical oxygen demand (COD). The average root mean square error (RMSE) of the LSSVM and M5Tree models was decreased by 1.47% and 19.1% using MARS model, respectively. Adding TC input to the models did not increase their accuracy in modeling COD while adding FC and pH inputs to the models generally decreased the accuracy. The overall results indicated that the MARS and LSSVM models could be successfully used in estimating monthly river water pollution level by using AMM, TKN and WT parameters as inputs.
APLIKASI SPLINE ESTIMATOR TERBOBOT
Directory of Open Access Journals (Sweden)
I Nyoman Budiantara
2001-01-01
Full Text Available We considered the nonparametric regression model : Zj = X(tj + ej, j = 1,2, ,n, where X(tj is the regression curve. The random error ej are independently distributed normal with a zero mean and a variance s2/bj, bj > 0. The estimation of X obtained by minimizing a Weighted Least Square. The solution of this optimation is a Weighted Spline Polynomial. Further, we give an application of weigted spline estimator in nonparametric regression. Abstract in Bahasa Indonesia : Diberikan model regresi nonparametrik : Zj = X(tj + ej, j = 1,2, ,n, dengan X (tj kurva regresi dan ej sesatan random yang diasumsikan berdistribusi normal dengan mean nol dan variansi s2/bj, bj > 0. Estimasi kurva regresi X yang meminimumkan suatu Penalized Least Square Terbobot, merupakan estimator Polinomial Spline Natural Terbobot. Selanjutnya diberikan suatu aplikasi estimator spline terbobot dalam regresi nonparametrik. Kata kunci: Spline terbobot, Regresi nonparametrik, Penalized Least Square.
Atmospheric Models for Mars Aerocapture
Justus, C. G.; Duvall, Aleta; Keller, Vernon W.
2005-01-01
level Mars atmospheric model. Applications include systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Typical Mars aerocapture periapsis altitudes (for systems with rigid- aeroshell heat shields) are about 50 km. This altitude is above the 0-40 km height range covered by Mars Global Surveyor Thermal Emission Spectrometer (TES) nadir observations. Recently, TES limb sounding data have been made available, spanning more than two Mars years (more than 200,000 data profiles) with altitude coverage up to about 60 km, well within the height range of interest for aerocapture. Results are presented comparing Mars-GRAM atmospheric density with densities from TES nadir and limb sounding observations. A new Mars-GRAM feature is described which allows individual TES nadir or limb profiles to be extracted from the large TES databases, and to be used as an optional replacement for standard Mars-GRAM background (climatology) conditions. For Monte-Carlo applications such as aerocapture guidance and control studies, Mars-GRAM perturbations are available using these TES profile background conditions.
Nagel-Alne, G E; Krontveit, R; Bohlin, J; Valle, P S; Skjerve, E; Sølverød, L S
2014-07-01
In 2001, the Norwegian Goat Health Service initiated the Healthier Goats program (HG), with the aim of eradicating caprine arthritis encephalitis, caseous lymphadenitis, and Johne's disease (caprine paratuberculosis) in Norwegian goat herds. The aim of the present study was to explore how control and eradication of the above-mentioned diseases by enrolling in HG affected milk yield by comparison with herds not enrolled in HG. Lactation curves were modeled using a multilevel cubic spline regression model where farm, goat, and lactation were included as random effect parameters. The data material contained 135,446 registrations of daily milk yield from 28,829 lactations in 43 herds. The multilevel cubic spline regression model was applied to 4 categories of data: enrolled early, control early, enrolled late, and control late. For enrolled herds, the early and late notations refer to the situation before and after enrolling in HG; for nonenrolled herds (controls), they refer to development over time, independent of HG. Total milk yield increased in the enrolled herds after eradication: the total milk yields in the fourth lactation were 634.2 and 873.3 kg in enrolled early and enrolled late herds, respectively, and 613.2 and 701.4 kg in the control early and control late herds, respectively. Day of peak yield differed between enrolled and control herds. The day of peak yield came on d 6 of lactation for the control early category for parities 2, 3, and 4, indicating an inability of the goats to further increase their milk yield from the initial level. For enrolled herds, on the other hand, peak yield came between d 49 and 56, indicating a gradual increase in milk yield after kidding. Our results indicate that enrollment in the HG disease eradication program improved the milk yield of dairy goats considerably, and that the multilevel cubic spline regression was a suitable model for exploring effects of disease control and eradication on milk yield. Copyright © 2014
Golkarian, Ali; Naghibi, Seyed Amir; Kalantar, Bahareh; Pradhan, Biswajeet
2018-02-17
Ever increasing demand for water resources for different purposes makes it essential to have better understanding and knowledge about water resources. As known, groundwater resources are one of the main water resources especially in countries with arid climatic condition. Thus, this study seeks to provide groundwater potential maps (GPMs) employing new algorithms. Accordingly, this study aims to validate the performance of C5.0, random forest (RF), and multivariate adaptive regression splines (MARS) algorithms for generating GPMs in the eastern part of Mashhad Plain, Iran. For this purpose, a dataset was produced consisting of spring locations as indicator and groundwater-conditioning factors (GCFs) as input. In this research, 13 GCFs were selected including altitude, slope aspect, slope angle, plan curvature, profile curvature, topographic wetness index (TWI), slope length, distance from rivers and faults, rivers and faults density, land use, and lithology. The mentioned dataset was divided into two classes of training and validation with 70 and 30% of the springs, respectively. Then, C5.0, RF, and MARS algorithms were employed using R statistical software, and the final values were transformed into GPMs. Finally, two evaluation criteria including Kappa and area under receiver operating characteristics curve (AUC-ROC) were calculated. According to the findings of this research, MARS had the best performance with AUC-ROC of 84.2%, followed by RF and C5.0 algorithms with AUC-ROC values of 79.7 and 77.3%, respectively. The results indicated that AUC-ROC values for the employed models are more than 70% which shows their acceptable performance. As a conclusion, the produced methodology could be used in other geographical areas. GPMs could be used by water resource managers and related organizations to accelerate and facilitate water resource exploitation.
Balshi, M. S.; McGuire, A.D.; Duffy, P.; Flannigan, M.; Walsh, J.; Melillo, J.
2009-01-01
Fire is a common disturbance in the North American boreal forest that influences ecosystem structure and function. The temporal and spatial dynamics of fire are likely to be altered as climate continues to change. In this study, we ask the question: how will area burned in boreal North America by wildfire respond to future changes in climate? To evaluate this question, we developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5?? (latitude ?? longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was substantially more predictable in the western portion of boreal North America than in eastern Canada. Burned area was also not very predictable in areas of substantial topographic relief and in areas along the transition between boreal forest and tundra. At the scale of Alaska and western Canada, the empirical fire models explain on the order of 82% of the variation in annual area burned for the period 1960-2002. July temperature was the most frequently occurring predictor across all models, but the fuel moisture codes for the months June through August (as a group) entered the models as the most important predictors of annual area burned. To predict changes in the temporal and spatial dynamics of fire under future climate, the empirical fire models used output from the Canadian Climate Center CGCM2 global climate model to predict annual area burned through the year 2100 across Alaska and western Canada. Relative to 1991-2000, the results suggest that average area burned per decade will double by 2041-2050 and will increase on the order of 3.5-5.5 times by the last decade of the 21st century. To improve the ability to better predict wildfire across Alaska and Canada, future research should focus on incorporating additional effects of long-term and successional
Interpolating Spline Curve-Based Perceptual Encryption for 3D Printing Models
Directory of Open Access Journals (Sweden)
Giao N. Pham
2018-02-01
Full Text Available With the development of 3D printing technology, 3D printing has recently been applied to many areas of life including healthcare and the automotive industry. Due to the benefit of 3D printing, 3D printing models are often attacked by hackers and distributed without agreement from the original providers. Furthermore, certain special models and anti-weapon models in 3D printing must be protected against unauthorized users. Therefore, in order to prevent attacks and illegal copying and to ensure that all access is authorized, 3D printing models should be encrypted before being transmitted and stored. A novel perceptual encryption algorithm for 3D printing models for secure storage and transmission is presented in this paper. A facet of 3D printing model is extracted to interpolate a spline curve of degree 2 in three-dimensional space that is determined by three control points, the curvature coefficients of degree 2, and an interpolating vector. Three control points, the curvature coefficients, and interpolating vector of the spline curve of degree 2 are encrypted by a secret key. The encrypted features of the spline curve are then used to obtain the encrypted 3D printing model by inverse interpolation and geometric distortion. The results of experiments and evaluations prove that the entire 3D triangle model is altered and deformed after the perceptual encryption process. The proposed algorithm is responsive to the various formats of 3D printing models. The results of the perceptual encryption process is superior to those of previous methods. The proposed algorithm also provides a better method and more security than previous methods.
The estimation of time-varying risks in asset pricing modelling using B-Spline method
Nurjannah; Solimun; Rinaldo, Adji
2017-12-01
Asset pricing modelling has been extensively studied in the past few decades to explore the risk-return relationship. The asset pricing literature typically assumed a static risk-return relationship. However, several studies found few anomalies in the asset pricing modelling which captured the presence of the risk instability. The dynamic model is proposed to offer a better model. The main problem highlighted in the dynamic model literature is that the set of conditioning information is unobservable and therefore some assumptions have to be made. Hence, the estimation requires additional assumptions about the dynamics of risk. To overcome this problem, the nonparametric estimators can also be used as an alternative for estimating risk. The flexibility of the nonparametric setting avoids the problem of misspecification derived from selecting a functional form. This paper investigates the estimation of time-varying asset pricing model using B-Spline, as one of nonparametric approach. The advantages of spline method is its computational speed and simplicity, as well as the clarity of controlling curvature directly. The three popular asset pricing models will be investigated namely CAPM (Capital Asset Pricing Model), Fama-French 3-factors model and Carhart 4-factors model. The results suggest that the estimated risks are time-varying and not stable overtime which confirms the risk instability anomaly. The results is more pronounced in Carhart’s 4-factors model.
Microscopic Model of Automobile Lane-changing Virtual Desire Trajectory by Spline Curves
Directory of Open Access Journals (Sweden)
Yulong Pei
2010-05-01
Full Text Available With the development of microscopic traffic simulation models, they have increasingly become an important tool for transport system analysis and management, which assist the traffic engineer to investigate and evaluate the performance of transport network systems. Lane-changing model is a vital component in any traffic simulation model, which could improve road capacity and reduce vehicles delay so as to reduce the likelihood of congestion occurrence. Therefore, this paper addresses the virtual desire trajectory, a vital part to investigate the behaviour divided into four phases. Based on the boundary conditions, β-spline curves and the corresponding reverse algorithm are introduced firstly. Thus, the relation between the velocity and length of lane-changing is constructed, restricted by the curvature, steering velocity and driving behaviour. Then the virtual desire trajectory curves are presented by Matlab and the error analysis results prove that this proposed description model has higher precision in automobile lane-changing process reconstruction, compared with the surveyed result. KEY WORDS: traffic simulation, lane-changing model, virtual desire trajectory, β-spline curves, driving behaviour
A Mathematical Spline-Based Model of Cardiac Left Ventricle Anatomy and Morphology
Directory of Open Access Journals (Sweden)
Sergei Pravdin
2016-10-01
Full Text Available Computer simulation of normal and diseased human heart activity requires a 3D anatomical model of the myocardium, including myofibers. For clinical applications, such a model has to be constructed based on routine methods of cardiac visualization, such as sonography. Symmetrical models are shown to be too rigid, so an analytical non-symmetrical model with enough flexibility is necessary. Based on previously-made anatomical models of the left ventricle, we propose a new, much more flexible spline-based analytical model. The model is fully described and verified against DT-MRI data. We show a way to construct it on the basis of sonography data. To use this model in further physiological simulations, we propose a numerical method to utilize finite differences in solving the reaction-diffusion problem together with an example of scroll wave dynamics simulation.
ESTIMATION OF GENETIC PARAMETERS IN TROPICARNE CATTLE WITH RANDOM REGRESSION MODELS USING B-SPLINES
Directory of Open Access Journals (Sweden)
Joel DomÃnguez Viveros
2015-04-01
Full Text Available The objectives were to estimate variance components, and direct (h2 and maternal (m2 heritability in the growth of Tropicarne cattle based on a random regression model using B-Splines for random effects modeling. Information from 12 890 monthly weightings of 1787 calves, from birth to 24 months old, was analyzed. The pedigree included 2504 animals. The random effects model included genetic and permanent environmental (direct and maternal of cubic order, and residuals. The fixed effects included contemporaneous groups (year â€“ season of weighed, sex and the covariate age of the cow (linear and quadratic. The B-Splines were defined in four knots through the growth period analyzed. Analyses were performed with the software Wombat. The variances (phenotypic and residual presented a similar behavior; of 7 to 12 months of age had a negative trend; from birth to 6 months and 13 to 18 months had positive trend; after 19 months were maintained constant. The m2 were low and near to zero, with an average of 0.06 in an interval of 0.04 to 0.11; the h2 also were close to zero, with an average of 0.10 in an interval of 0.03 to 0.23.
Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood
Li, Zhiguo; Owzar, Kouros
2015-01-01
In some applications, the failure time of interest is the time from an originating event to a failure event, while both event times are interval censored. We propose fitting Cox proportional hazards models to this type of data using a spline-based sieve maximum marginal likelihood, where the time to the originating event is integrated out in the empirical likelihood function of the failure time of interest. This greatly reduces the complexity of the objective function compared with the fully semiparametric likelihood. The dependence of the time of interest on time to the originating event is induced by including the latter as a covariate in the proportional hazards model for the failure time of interest. The use of splines results in a higher rate of convergence of the estimator of the baseline hazard function compared with the usual nonparametric estimator. The computation of the estimator is facilitated by a multiple imputation approach. Asymptotic theory is established and a simulation study is conducted to assess its finite sample performance. It is also applied to analyzing a real data set on AIDS incubation time. PMID:27239090
Jiang, Fei; Ma, Yanyuan; Wang, Yuanjia
We propose a generalized partially linear functional single index risk score model for repeatedly measured outcomes where the index itself is a function of time. We fuse the nonparametric kernel method and regression spline method, and modify the generalized estimating equation to facilitate estimation and inference. We use local smoothing kernel to estimate the unspecified coefficient functions of time, and use B-splines to estimate the unspecified function of the single index component. The covariance structure is taken into account via a working model, which provides valid estimation and inference procedure whether or not it captures the true covariance. The estimation method is applicable to both continuous and discrete outcomes. We derive large sample properties of the estimation procedure and show different convergence rate of each component of the model. The asymptotic properties when the kernel and regression spline methods are combined in a nested fashion has not been studied prior to this work even in the independent data case.
Sumantari, Y. D.; Slamet, I.; Sugiyanto
2017-06-01
Semiparametric regression is a statistical analysis method that consists of parametric and nonparametric regression. There are various approach techniques in nonparametric regression. One of the approach techniques is spline. Central Java is one of the most densely populated province in Indonesia. Population density in this province can be modeled by semiparametric regression because it consists of parametric and nonparametric component. Therefore, the purpose of this paper is to determine the factors that in uence population density in Central Java using the semiparametric spline regression model. The result shows that the factors which in uence population density in Central Java is Family Planning (FP) active participants and district minimum wage.
International Nuclear Information System (INIS)
Pohjola, J.; Turunen, J.; Lipping, T.
2009-07-01
In this report creation of the digital elevation model of Olkiluoto area incorporating a large area of seabed is described. The modeled area covers 960 square kilometers and the apparent resolution of the created elevation model was specified to be 2.5 x 2.5 meters. Various elevation data like contour lines and irregular elevation measurements were used as source data in the process. The precision and reliability of the available source data varied largely. Digital elevation model (DEM) comprises a representation of the elevation of the surface of the earth in particular area in digital format. DEM is an essential component of geographic information systems designed for the analysis and visualization of the location-related data. DEM is most often represented either in raster or Triangulated Irregular Network (TIN) format. After testing several methods the thin plate spline interpolation was found to be best suited for the creation of the elevation model. The thin plate spline method gave the smallest error in the test where certain amount of points was removed from the data and the resulting model looked most natural. In addition to the elevation data the confidence interval at each point of the new model was required. The Monte Carlo simulation method was selected for this purpose. The source data points were assigned probability distributions according to what was known about their measurement procedure and from these distributions 1 000 (20 000 in the first version) values were drawn for each data point. Each point of the newly created DEM had thus as many realizations. The resulting high resolution DEM will be used in modeling the effects of land uplift and evolution of the landscape in the time range of 10 000 years from the present. This time range comes from the requirements set for the spent nuclear fuel repository site. (orig.)
Regional Densification of a Global VTEC Model Based on B-Spline Representations
Erdogan, Eren; Schmidt, Michael; Dettmering, Denise; Goss, Andreas; Seitz, Florian; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.; Bothmer, Volker; Hinrichs, Johannes; Mrotzek, Niclas
2017-04-01
The project OPTIMAP is a joint initiative of the Bundeswehr GeoInformation Centre (BGIC), the German Space Situational Awareness Centre (GSSAC), the German Geodetic Research Institute of the Technical University Munich (DGFI-TUM) and the Institute for Astrophysics at the University of Göttingen (IAG). The main goal of the project is the development of an operational tool for ionospheric mapping and prediction (OPTIMAP). Two key features of the project are the combination of different satellite observation techniques (GNSS, satellite altimetry, radio occultations and DORIS) and the regional densification as a remedy against problems encountered with the inhomogeneous data distribution. Since the data from space-geoscientific mission which can be used for modeling ionospheric parameters, such as the Vertical Total Electron Content (VTEC) or the electron density, are distributed rather unevenly over the globe at different altitudes, appropriate modeling approaches have to be developed to handle this inhomogeneity. Our approach is based on a two-level strategy. To be more specific, in the first level we compute a global VTEC model with a moderate regional and spectral resolution which will be complemented in the second level by a regional model in a densification area. The latter is a region characterized by a dense data distribution to obtain a high spatial and spectral resolution VTEC product. Additionally, the global representation means a background model for the regional one to avoid edge effects at the boundaries of the densification area. The presented approach based on a global and a regional model part, i.e. the consideration of a regional densification is called the Two-Level VTEC Model (TLVM). The global VTEC model part is based on a series expansion in terms of polynomial B-Splines in latitude direction and trigonometric B-Splines in longitude direction. The additional regional model part is set up by a series expansion in terms of polynomial B-splines for
Dynamical Modeling of Mars' Paleoclimate
Richardson, Mark I.
2004-01-01
This report summarizes work undertaken under a one-year grant from the NASA Mars Fundamental Research Program. The goal of the project was to initiate studies of the response of the Martian climate to changes in planetary obliquity and orbital elements. This work was undertaken with a three-dimensional numerical climate model based on the Geophysical Fluid Dynamics Laboratory (GFDL) Skyhi General Circulation Model (GCM). The Mars GCM code was adapted to simulate various obliquity and orbital parameter states. Using a version of the model with a basic water cycle (ice caps, vapor, and clouds), we examined changes in atmospheric water abundances and in the distribution of water ice sheets on the surface. This work resulted in a paper published in the Journal of Geophysical Research - Planets. In addition, the project saw the initial incorporation of a regolith water transport and storage scheme into the model. This scheme allows for interaction between water in the pores of the near subsurface (Mars Fundamental Research Program in late 2003.
Energy Technology Data Exchange (ETDEWEB)
Araujo, Carlos Eduardo S. [Universidade Federal de Campina Grande, PB (Brazil). Programa de Recursos Humanos 25 da ANP]. E-mail: carlos@dme.ufcg.edu.br; Silva, Rosana M. da [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Matematica e Estatistica]. E-mail: rosana@dme.ufcg.edu.br
2004-07-01
This work presents an implementation of a synthetic model of a channel found in oil reservoir. The generation these models is one of the steps to the characterization and simulation of the equal probable three-dimensional geological scenery. O implemented model was obtained from fitting techniques of geometric modeling of curves and surfaces to the geological parameters (width, thickness, sinuosity and preferential direction) that defines the form to be modeled. The parameter sinuosity is related with the parameter wave length and the local amplitude of the channel, the parameter preferential direction indicates the way of the flow and the declivity of the channel. The modeling technique used to represent the surface of the channel is the sweeping technique, the consist in effectuate a translation operation from a curve along a guide curve. The guide curve, in our implementation, was generated by the interpolation of points obtained form sampled values or simulated of the parameter sinuosity, using the cubic splines of Bezier technique. A semi-ellipse, determinate by the parameter width and thickness, representing a transversal section of the channel, is the transferred curve through the guide curve, generating the channel surface. (author)
A Bézier-Spline-based Model for the Simulation of Hysteresis in Variably Saturated Soil
Cremer, Clemens; Peche, Aaron; Thiele, Luisa-Bianca; Graf, Thomas; Neuweiler, Insa
2017-04-01
Most transient variably saturated flow models neglect hysteresis in the p_c-S-relationship (Beven, 2012). Such models tend to inadequately represent matrix potential and saturation distribution. Thereby, when simulating flow and transport processes, fluid and solute fluxes might be overestimated (Russo et al., 1989). In this study, we present a simple, computationally efficient and easily applicable model that enables to adequately describe hysteresis in the p_c-S-relationship for variably saturated flow. This model can be seen as an extension to the existing play-type model (Beliaev and Hassanizadeh, 2001), where scanning curves are simplified as vertical lines between main imbibition and main drainage curve. In our model, we use continuous linear and Bézier-Spline-based functions. We show the successful validation of the model by numerically reproducing a physical experiment by Gillham, Klute and Heermann (1976) describing primary drainage and imbibition in a vertical soil column. With a deviation of 3%, the simple Bézier-Spline-based model performs significantly better that the play-type approach, which deviates by 30% from the experimental results. Finally, we discuss the realization of physical experiments in order to extend the model to secondary scanning curves and in order to determine scanning curve steepness. {Literature} Beven, K.J. (2012). Rainfall-Runoff-Modelling: The Primer. John Wiley and Sons. Russo, D., Jury, W. A., & Butters, G. L. (1989). Numerical analysis of solute transport during transient irrigation: 1. The effect of hysteresis and profile heterogeneity. Water Resources Research, 25(10), 2109-2118. https://doi.org/10.1029/WR025i010p02109. Beliaev, A.Y. & Hassanizadeh, S.M. (2001). A Theoretical Model of Hysteresis and Dynamic Effects in the Capillary Relation for Two-phase Flow in Porous Media. Transport in Porous Media 43: 487. doi:10.1023/A:1010736108256. Gillham, R., Klute, A., & Heermann, D. (1976). Hydraulic properties of a porous
Modeling Martian Dust Using Mars-GRAM
Justh, Hilary L.; Justus, C. G.
2010-01-01
Engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: TES Mapping Years 1 and 2, with Mars-GRAM data coming from MGCM model results driven by observed TES dust optical depth TES Mapping Year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES).
International Nuclear Information System (INIS)
Soycan, Arzu; Soycan, Metin
2009-01-01
GIS (Geographical Information System) is one of the most striking innovation for mapping applications supplied by the developing computer and software technology to users. GIS is a very effective tool which can show visually combination of the geographical and non-geographical data by recording these to allow interpretations and analysis. DEM (Digital Elevation Model) is an inalienable component of the GIS. The existing TM (Topographic Map) can be used as the main data source for generating DEM by amanual digitizing or vectorization process for the contours polylines. The aim of this study is to examine the DEM accuracies, which were obtained by TMs, as depending on the number of sampling points and grid size. For these purposes, the contours of the several 1/1000 scaled scanned topographical maps were vectorized. The different DEMs of relevant area have been created by using several datasets with different numbers of sampling points. We focused on the DEM creation from contour lines using gridding with RBF (Radial Basis Function) interpolation techniques, namely TPS as the surface fitting model. The solution algorithm and a short review of the mathematical model of TPS (Thin Plate Spline) interpolation techniques are given. In the test study, results of the application and the obtained accuracies are drawn and discussed. The initial object of this research is to discuss the requirement of DEM in GIS, urban planning, surveying engineering and the other applications with high accuracy (a few deci meters). (author)
Projecting cancer incidence using age-period-cohort models incorporating restricted cubic splines.
Rutherford, Mark J; Thompson, John R; Lambert, Paul C
2012-11-05
Age-period-cohort models provide a useful method for modeling incidence and mortality rates. There is great interest in estimating the rates of disease at given future time-points in order that plans can be made for the provision of the required future services. In the setting of using age-period-cohort models incorporating restricted cubic splines, a new technique for projecting incidence is proposed. The new technique projects the period and cohort terms linearly from 10 years within the range of the available data in order to give projections that are based on recent trends. The method is validated via a comparison with existing methods in the setting of Finnish cancer registry data. The reasons for the improvements seen for the newly proposed method are twofold. Firstly, improvements are seen due to the finer splitting of the timescale to give a more continuous estimate of the incidence rate. Secondly, the new method uses more recent trends to dictate the future projections than previously proposed methods.
Berhane, Kiros; Hauptmann, Michael; Langholz, Bryan
2008-01-01
An adequate depiction of exposure–time–response relationships is important in assessing public health implications of an occupational or environmental exposure. Recent advances have focused on flexible modeling of the overall shape of latency. Methods are needed to allow for varying shapes of latency under different exposure profiles. A tensor product spline model is proposed for describing exposure–response relationships for protracted time-dependent occupational exposure histories in epidem...
Directory of Open Access Journals (Sweden)
Mario Menéndez Álvarez
2017-06-01
Full Text Available Modeling of a cylindrical heavy media separator has been conducted in order to predict its optimum operating parameters. As far as it is known by the authors, this is the first application in the literature. The aim of the present research is to predict the separation efficiency based on the adjustment of the device’s dimensions and media flow rates. A variety of heavy media separators exist that are extensively used to separate particles by density. There is a growing importance in their application in the recycling sector. The cylindrical variety is reported to be the most suited for processing a large range of particle sizes, but optimizing its operating parameters remains to be documented. The multivariate adaptive regression splines methodology has been applied in order to predict the separation efficiencies using, as inputs, the device dimension and media flow rate variables. The results obtained show that it is possible to predict the device separation efficiency according to laboratory experiments performed and, therefore, forecast results obtainable with different operating conditions.
DeGroot, B J; Keown, J F; Van Vleck, L D; Kachman, S D
2007-06-30
Genetic parameters were estimated with restricted maximum likelihood for individual test-day milk, fat, and protein yields and somatic cell scores with a random regression cubic spline model. Test-day records of Holstein cows that calved from 1994 through early 1999 were obtained from Dairy Records Management Systems in Raleigh, North Carolina, for the analysis. Estimates of heritability for individual test-days and estimates of genetic and phenotypic correlations between test-days were obtained from estimates of variances and covariances from the cubic spline analysis. Estimates were calculated of genetic parameters for the averages of the test days within each of the ten 30-day test intervals. The model included herd test-day, age at first calving, and bovine somatropin treatment as fixed factors. Cubic splines were fitted for the overall lactation curve and for random additive genetic and permanent environmental effects, with five predetermined knots or four intervals between days 0, 50, 135, 220, and 305. Estimates of heritability for lactation one ranged from 0.10 to 0.15, 0.06 to 0.10, 0.09 to 0.15, and 0.02 to 0.06 for test-day one to test-day 10 for milk, fat, and protein yields and somatic cell scores, respectively. Estimates of heritability were greater in lactations two and three. Estimates of heritability increased over the course of the lactation. Estimates of genetic and phenotypic correlations were smaller for test-days further apart.
Approximation and geomatric modeling with simplex B-splines associates with irregular triangular
Auerbach, S.; Gmelig Meyling, R.H.J.; Neamtu, M.; Neamtu, M.; Schaeben, H.
1991-01-01
Bivariate quadratic simplical B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a C1-smooth surface. The generation of triangle vertices is adjusted to the areal distribution of the data in the
Directory of Open Access Journals (Sweden)
Corrado Dimauro
2010-11-01
Full Text Available Test day records for milk yield of 57,390 first lactation Canadian Holsteins were analyzed with a linear model that included the fixed effects of herd-test date and days in milk (DIM interval nested within age and calving season. Residuals from this model were analyzed as a new variable and fitted with a five parameter model, fourth-order Legendre polynomials, with linear, quadratic and cubic spline models with three knots. The fit of the models was rather poor, with about 30-40% of the curves showing an adjusted R-square lower than 0.20 across all models. Results underline a great difficulty in modelling individual deviations around the mean curve for milk yield. However, the Ali and Schaeffer (5 parameter model and the fourth-order Legendre polynomials were able to detect two basic shapes of individual deviations among the mean curve. Quadratic and, especially, cubic spline functions had better fitting performances but a poor predictive ability due to their great flexibility that results in an abrupt change of the estimated curve when data are missing. Parametric and orthogonal polynomials seem to be robust and affordable under this standpoint.
Justh, Hilary L.; Justus, Carl G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
Modeling the hydrological cycle on Mars
Directory of Open Access Journals (Sweden)
Ghada Machtoub
2012-03-01
Full Text Available The study provides a detailed analysis of the hydrological cycle on Mars simulated with a newly developed microphysical model, incorporated in a spectral Mars General Circulation Model. The modeled hydrological cycle is compared well with simulations of other global climate models. The simulated seasonal migration ofwater vapor, circulation instability, and the high degree of temporal variability of localized water vapor outbursts are shown closely consistent with recent observations. The microphysical parameterization provides a significant improvement in the modeling of ice clouds evolved over the tropics and major ancient volcanoes on Mars. The most significant difference between the simulations presented here and other GCM results is the level at which the water ice clouds are found. The model findings also support interpretation of observed thermal anomalies in the Martian tropics during northern spring and summer seasons.
Directory of Open Access Journals (Sweden)
Lorenčič Eva
2016-06-01
Full Text Available Understanding the relationship between interest rates and term to maturity of securities is a prerequisite for developing financial theory and evaluating whether it holds up in the real world; therefore, such an understanding lies at the heart of monetary and financial economics. Accurately fitting the term structure of interest rates is the backbone of a smoothly functioning financial market, which is why the testing of various models for estimating and predicting the term structure of interest rates is an important topic in finance that has received considerable attention for many decades. In this paper, we empirically contrast the performance of cubic splines and the Nelson-Siegel model by estimating the zero-coupon yields of Austrian government bonds. The main conclusion that can be drawn from the results of the calculations is that the Nelson-Siegel model outperforms cubic splines at the short end of the yield curve (up to 2 years, whereas for medium-term maturities (2 to 10 years the fitting performance of both models is comparable.
Data assimilation using Bayesian filters and B-spline geological models
Duan, Lian
2011-04-01
This paper proposes a new approach to problems of data assimilation, also known as history matching, of oilfield production data by adjustment of the location and sharpness of patterns of geological facies. Traditionally, this problem has been addressed using gradient based approaches with a level set parameterization of the geology. Gradient-based methods are robust, but computationally demanding with real-world reservoir problems and insufficient for reservoir management uncertainty assessment. Recently, the ensemble filter approach has been used to tackle this problem because of its high efficiency from the standpoint of implementation, computational cost, and performance. Incorporation of level set parameterization in this approach could further deal with the lack of differentiability with respect to facies type, but its practical implementation is based on some assumptions that are not easily satisfied in real problems. In this work, we propose to describe the geometry of the permeability field using B-spline curves. This transforms history matching of the discrete facies type to the estimation of continuous B-spline control points. As filtering scheme, we use the ensemble square-root filter (EnSRF). The efficacy of the EnSRF with the B-spline parameterization is investigated through three numerical experiments, in which the reservoir contains a curved channel, a disconnected channel or a 2-dimensional closed feature. It is found that the application of the proposed method to the problem of adjusting facies edges to match production data is relatively straightforward and provides statistical estimates of the distribution of geological facies and of the state of the reservoir.
Justh, Hilary L.; Justus, C. G.
2009-01-01
A recent study (Desai, 2008) has shown that the actual landing sites of Mars Pathfinder, the Mars Exploration Rovers (Spirit and Opportunity) and the Phoenix Mars Lander have been further downrange than predicted by models prior to landing Desai's reconstruction of their entries into the Martian atmosphere showed that the models consistently predicted higher densities than those found upon entry, descent and landing. Desai's results have raised a question as to whether there is a systemic problem within Mars atmospheric models. Proposal is to compare Mars atmospheric density estimates from Mars atmospheric models to measurements made by Mars Global Surveyor (MGS). Comparison study requires the completion of several tasks that would result in a greater understanding of reasons behind the discrepancy found during recent landings on Mars and possible solutions to this problem.
International Nuclear Information System (INIS)
Vasconcelos, Geovane Vitor; Dantas, Carlos Costa; Melo, Silvio de Barros; Pires, Renan Ferraz
2009-01-01
The 3D tomography reconstruction has been a profitable alternative in the analysis of the FCC-type- riser (Fluid Catalytic Cracking), for appropriately keeping track of the sectional catalyst concentration distribution in the process of oil refining. The method of tomography reconstruction proposed by M. Azzi and colleagues (1991) uses a relatively small amount of trajectories (from 3 to 5) and projections (from 5 to 7) of gamma rays, a desirable feature in the industrial process tomography. Compared to more popular methods, such as the FBP (Filtered Back Projection), which demands a much higher amount of gamma rays projections, the method by Azzi et al. is more appropriate for the industrial process, where the physical limitations and the cost of the process require more economical arrangements. The use of few projections and trajectories facilitates the diagnosis in the flow dynamical process. This article proposes an improvement in the basis functions introduced by Azzi et al., through the use of quadratic B-splines functions. The use of B-splines functions makes possible a smoother surface reconstruction of the density distribution, since the functions are continuous and smooth. This work describes how the modeling can be done. (author)
Improvement of MARS code reflood model
International Nuclear Information System (INIS)
Hwang, Moonkyu; Chung, Bub-Dong
2011-01-01
A specifically designed heat transfer model for the reflood process which normally occurs at low flow and low pressure was originally incorporated in the MARS code. The model is essentially identical to that of the RELAP5/MOD3.3 code. The model, however, is known to have under-estimated the peak cladding temperature (PCT) with earlier turn-over. In this study, the original MARS code reflood model is improved. Based on the extensive sensitivity studies for both hydraulic and wall heat transfer models, it is found that the dispersed flow film boiling (DFFB) wall heat transfer is the most influential process determining the PCT, whereas the interfacial drag model most affects the quenching time through the liquid carryover phenomenon. The model proposed by Bajorek and Young is incorporated for the DFFB wall heat transfer. Both space grid and droplet enhancement models are incorporated. Inverted annular film boiling (IAFB) is modeled by using the original PSI model of the code. The flow transition between the DFFB and IABF, is modeled using the TRACE code interpolation. A gas velocity threshold is also added to limit the top-down quenching effect. Assessment calculations are performed for the original and modified MARS codes for the Flecht-Seaset test and RBHT test. Improvements are observed in terms of the PCT and quenching time predictions in the Flecht-Seaset assessment. In case of the RBHT assessment, the improvement over the original MARS code is found marginal. A space grid effect, however, is clearly seen from the modified version of the MARS code. (author)
Mars Global Reference Atmospheric Model 2010 Version: Users Guide
Justh, H. L.
2014-01-01
This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.
Cuauhtemoc Saenz-Romero; Gerald E. Rehfeldt; Nicholas L. Crookston; Pierre Duval; Remi St-Amant; Jean Beaulieu; Bryce A. Richardson
2010-01-01
Spatial climate models were developed for Mexico and its periphery (southern USA, Cuba, Belize and Guatemala) for monthly normals (1961-1990) of average, maximum and minimum temperature and precipitation using thin plate smoothing splines of ANUSPLIN software on ca. 3,800 observations. The fit of the model was generally good: the signal was considerably less than one-...
A Blossoming Development of Splines
Mann, Stephen
2006-01-01
In this lecture, we study Bezier and B-spline curves and surfaces, mathematical representations for free-form curves and surfaces that are common in CAD systems and are used to design aircraft and automobiles, as well as in modeling packages used by the computer animation industry. Bezier/B-splines represent polynomials and piecewise polynomials in a geometric manner using sets of control points that define the shape of the surface. The primary analysis tool used in this lecture is blossoming, which gives an elegant labeling of the control points that allows us to analyze their properties geom
Justh, Hilary L.; Justus, Carl G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
Mars Propellant Liquefaction Modeling in Thermal Desktop
Desai, Pooja; Hauser, Dan; Sutherlin, Steven
2017-01-01
NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
Correlation studies for B-spline modeled F2 Chapman parameters obtained from FORMOSAT-3/COSMIC data
Directory of Open Access Journals (Sweden)
M. Limberger
2014-12-01
Full Text Available The determination of ionospheric key quantities such as the maximum electron density of the F2 layer NmF2, the corresponding F2 peak height hmF2 and the F2 scale height HF2 are of high relevance in 4-D ionosphere modeling to provide information on the vertical structure of the electron density (Ne. The Ne distribution with respect to height can, for instance, be modeled by the commonly accepted F2 Chapman layer. An adequate and observation driven description of the vertical Ne variation can be obtained from electron density profiles (EDPs derived by ionospheric radio occultation measurements between GPS and low Earth orbiter (LEO satellites. For these purposes, the six FORMOSAT-3/COSMIC (F3/C satellites provide an excellent opportunity to collect EDPs that cover most of the ionospheric region, in particular the F2 layer. For the contents of this paper, F3/C EDPs have been exploited to determine NmF2, hmF2 and HF2 within a regional modeling approach. As mathematical base functions, endpoint-interpolating polynomial B-splines are considered to model the key parameters with respect to longitude, latitude and time. The description of deterministic processes and the verification of this modeling approach have been published previously in Limberger et al. (2013, whereas this paper should be considered as an extension dealing with related correlation studies, a topic to which less attention has been paid in the literature. Relations between the B-spline series coefficients regarding specific key parameters as well as dependencies between the three F2 Chapman key parameters are in the main focus. Dependencies are interpreted from the post-derived correlation matrices as a result of (1 a simulated scenario without data gaps by taking dense, homogenously distributed profiles into account and (2 two real data scenarios on 1 July 2008 and 1 July 2012 including sparsely, inhomogeneously distributed F3/C EDPs. Moderate correlations between hmF2 and HF2 as
Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): Users Guide
Justus, C. G.; Johnson, D. L.
2001-01-01
This document presents Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001) and its new features. As with the previous version (mars-2000), all parameterizations fro temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and season (Ls) use input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 70 km. Mars-GRAM 2001 is based on topography from the Mars Orbiter Laser Altimeter (MOLA) and includes new MGCM data at the topographic surface. A new auxiliary program allows Mars-GRAM output to be used to compute shortwave (solar) and longwave (thermal) radiation at the surface and top of atmosphere. This memorandum includes instructions on obtaining Mars-GRAN source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.
Knott, Gary D
2000-01-01
A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline func...
Mota, L F M; Martins, P G M A; Littiere, T O; Abreu, L R A; Silva, M A; Bonafé, C M
2018-04-01
The objective was to estimate (co)variance functions using random regression models (RRM) with Legendre polynomials, B-spline function and multi-trait models aimed at evaluating genetic parameters of growth traits in meat-type quail. A database containing the complete pedigree information of 7000 meat-type quail was utilized. The models included the fixed effects of contemporary group and generation. Direct additive genetic and permanent environmental effects, considered as random, were modeled using B-spline functions considering quadratic and cubic polynomials for each individual segment, and Legendre polynomials for age. Residual variances were grouped in four age classes. Direct additive genetic and permanent environmental effects were modeled using 2 to 4 segments and were modeled by Legendre polynomial with orders of fit ranging from 2 to 4. The model with quadratic B-spline adjustment, using four segments for direct additive genetic and permanent environmental effects, was the most appropriate and parsimonious to describe the covariance structure of the data. The RRM using Legendre polynomials presented an underestimation of the residual variance. Lesser heritability estimates were observed for multi-trait models in comparison with RRM for the evaluated ages. In general, the genetic correlations between measures of BW from hatching to 35 days of age decreased as the range between the evaluated ages increased. Genetic trend for BW was positive and significant along the selection generations. The genetic response to selection for BW in the evaluated ages presented greater values for RRM compared with multi-trait models. In summary, RRM using B-spline functions with four residual variance classes and segments were the best fit for genetic evaluation of growth traits in meat-type quail. In conclusion, RRM should be considered in genetic evaluation of breeding programs.
The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...
Mars 2020 Model Based Systems Engineering Pilot
Dukes, Alexandra Marie
2017-01-01
The pilot study is led by the Integration Engineering group in NASA's Launch Services Program (LSP). The Integration Engineering (IE) group is responsible for managing the interfaces between the spacecraft and launch vehicle. This pilot investigates the utility of Model-Based Systems Engineering (MBSE) with respect to managing and verifying interface requirements. The main objectives of the pilot are to model several key aspects of the Mars 2020 integrated operations and interface requirements based on the design and verification artifacts from Mars Science Laboratory (MSL) and to demonstrate how MBSE could be used by LSP to gain further insight on the interface between the spacecraft and launch vehicle as well as to enhance how LSP manages the launch service. The method used to accomplish this pilot started through familiarization of SysML, MagicDraw, and the Mars 2020 and MSL systems through books, tutorials, and NASA documentation. MSL was chosen as the focus of the model since its processes and verifications translate easily to the Mars 2020 mission. The study was further focused by modeling specialized systems and processes within MSL in order to demonstrate the utility of MBSE for the rest of the mission. The systems chosen were the In-Flight Disconnect (IFD) system and the Mass Properties process. The IFD was chosen as a system of focus since it is an interface between the spacecraft and launch vehicle which can demonstrate the usefulness of MBSE from a system perspective. The Mass Properties process was chosen as a process of focus since the verifications for mass properties occur throughout the lifecycle and can demonstrate the usefulness of MBSE from a multi-discipline perspective. Several iterations of both perspectives have been modeled and evaluated. While the pilot study will continue for another 2 weeks, pros and cons of using MBSE for LSP IE have been identified. A pro of using MBSE includes an integrated view of the disciplines, requirements, and
Straight-sided Spline Optimization
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard
2011-01-01
Spline connection of shaft and hub is commonly applied when large torque capacity is needed together with the possibility of disassembly. The designs of these splines are generally controlled by different standards. In view of the common use of splines, it seems that few papers deal with splines ...
Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide
Justus, C. G.; James, B. F.
1999-01-01
Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.
Fuel behavior modeling using the MARS computer code
International Nuclear Information System (INIS)
Faya, S.C.S.; Faya, A.J.G.
1983-01-01
The fuel behaviour modeling code MARS against experimental data, was evaluated. Two cases were selected: an early comercial PWR rod (Maine Yankee rod) and an experimental rod from the Canadian BWR program (Canadian rod). The MARS predictions are compared with experimental data and predictions made by other fuel modeling codes. Improvements are suggested for some fuel behaviour models. Mars results are satisfactory based on the data available. (Author) [pt
Designing interactively with elastic splines
DEFF Research Database (Denmark)
Brander, David; Bærentzen, Jakob Andreas; Fisker, Ann-Sofie
2018-01-01
We present an algorithm for designing interactively with C1 elastic splines. The idea is to design the elastic spline using a C1 cubic polynomial spline where each polynomial segment is so close to satisfying the Euler-Lagrange equation for elastic curves that the visual difference becomes neglig...... negligible. Using a database of cubic Bézier curves we are able to interactively modify the cubic spline such that it remains visually close to an elastic spline....
Wu, Hulin; Xue, Hongqi; Kumar, Arun
2012-06-01
Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.
Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide
Justus, C. G.; James, B. F.
2000-01-01
This report presents Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000) and its new features. All parameterizations for temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and L(sub s) have been replaced by input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 170 km. A modified Stewart thermospheric model is still used for higher altitudes and for dependence on solar activity. "Climate factors" to tune for agreement with GCM data are no longer needed. Adjustment of exospheric temperature is still an option. Consistent with observations from Mars Global Surveyor, a new longitude-dependent wave model is included with user input to specify waves having 1 to 3 wavelengths around the planet. A simplified perturbation model has been substituted for the earlier one. An input switch allows users to select either East or West longitude positive. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.
Directory of Open Access Journals (Sweden)
Qing He
2018-01-01
Full Text Available In this paper, the particle size distribution is reconstructed using finite moments based on a converted spline-based method, in which the number of linear system of equations to be solved reduced from 4m × 4m to (m + 3 × (m + 3 for (m + 1 nodes by using cubic spline compared to the original method. The results are verified by comparing with the reference firstly. Then coupling with the Taylor-series expansion moment method, the evolution of particle size distribution undergoing Brownian coagulation and its asymptotic behavior are investigated.
Anacleto, Osvaldo; Queen, Catriona; Albers, Casper J.
Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for
Understanding Mars meteorology using a "new generation" Mars Global Climate Model.
Forget, F.; Madeleine, J.-B.; Millour, E.; Colaitis, A.; Spiga, A.; Montabone, L.; Chaufray, J.-Y.; Lefèvre, F.; Montmessin, F.; Määttänen, A.; Gonzalez-Galindo, F.; Lopez-Valverde, M.-A.
2011-10-01
For more than 20 years, several teams around the world have developed GCMs (Mars General Circulation Model or Mars Global Climate) to simulate the environment on Mars. The GCM developed at the Laboratoire de Météorologie Dynamique in collaboration with several teams in Europe (LATMOS, France, University of Oxford, The Open University, the Instituto de Astrofisica de Andalucia), and with the support of ESA and CNES. is currently used for many kind of applications. It has become a "Mars System Model" which, for instance, includes the water cycle, the dust cycle, several photochemistry cycles, the release and transport of Radon, water isotopes cycles, a therrmosphere and a Ionosphere. It can also be used to explore Mars past climates. Moreover the outputs of the GCM are available to the community and to engineers through the Mars Climate Database, a tool available on a DVD-Rom and used by more than 150 teams around the world. For all these applications, it is more important than ever that the model accurately simulates the "fundamentals" of the Martian meteorology: pressure, temperature, winds. However, several recent studies have revealed that to simulate the details of Mars meteorology one must take into account several processes previously neglected like the radiative effect of water ice clouds, complex variations in the vertical distribution of dust including the formation of detached layers of dust, complex coupling in the CO2 cycle which control the pressure cycle and the temperatures at high latitude, etc.
Identification of a Hammerstein Model of the Stretch Reflex EMG using Cubic Splines
National Research Council Canada - National Science Library
Dempsey, Erika
2001-01-01
.... The identification algorithm based on a separable least squares Levenberg-Marquardt optimization is used to identify a Hammerstein model of the stretch reflex EMG recorded from a spinal cord injured patient...
Mars Global Reference Atmospheric Model (Mars-GRAM 3.34): Programmer's Guide
Justus, C. G.; James, Bonnie F.; Johnson, Dale L.
1996-01-01
This is a programmer's guide for the Mars Global Reference Atmospheric Model (Mars-GRAM 3.34). Included are a brief history and review of the model since its origin in 1988 and a technical discussion of recent additions and modifications. Examples of how to run both the interactive and batch (subroutine) forms are presented. Instructions are provided on how to customize output of the model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and 'map' of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through common lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.
Model systems for life processes on Mars
Mitz, M. A.
1974-01-01
In the evolution of life forms nonphotosynthetic mechanisms are developed. The question remains whether a total life system could evolve which is not dependent upon photosynthesis. In trying to visualize life on other planets, the photosynthetic process has problems. On Mars, the high intensity of light at the surface is a concern and alternative mechanisms need to be defined and analyzed. In the UV search for alternate mechanisms, several different areas may be identified. These involve activated inorganic compounds in the atmosphere, such as the products of photodissociation of carbon dioxide and the organic material which may be created by natural phenomena. In addition, a life system based on the pressure of the atmospheric constituents, such as carbon dioxide, is a possibility. These considerations may be important for the understanding of evolutionary processes of life on another planet. Model systems which depend on these alternative mechanisms are defined and related to presently planned and future planetary missions.
Two-component mixture cure rate model with spline estimated nonparametric components.
Wang, Lu; Du, Pang; Liang, Hua
2012-09-01
In some survival analysis of medical studies, there are often long-term survivors who can be considered as permanently cured. The goals in these studies are to estimate the noncured probability of the whole population and the hazard rate of the susceptible subpopulation. When covariates are present as often happens in practice, to understand covariate effects on the noncured probability and hazard rate is of equal importance. The existing methods are limited to parametric and semiparametric models. We propose a two-component mixture cure rate model with nonparametric forms for both the cure probability and the hazard rate function. Identifiability of the model is guaranteed by an additive assumption that allows no time-covariate interactions in the logarithm of hazard rate. Estimation is carried out by an expectation-maximization algorithm on maximizing a penalized likelihood. For inferential purpose, we apply the Louis formula to obtain point-wise confidence intervals for noncured probability and hazard rate. Asymptotic convergence rates of our function estimates are established. We then evaluate the proposed method by extensive simulations. We analyze the survival data from a melanoma study and find interesting patterns for this study. © 2011, The International Biometric Society.
Pereira, R J; Bignardi, A B; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G
2013-01-01
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Comparative Modeling of a Parabolic Trough Collectors Solar Power Plant with MARS Models
Directory of Open Access Journals (Sweden)
Jose Ramón Rogada
2017-12-01
regression splines (MARS model.
Higher-order numerical solutions using cubic splines
Rubin, S. G.; Khosla, P. K.
1976-01-01
A cubic spline collocation procedure was developed for the numerical solution of partial differential equations. This spline procedure is reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy of a nonuniform mesh. Solutions using both spline procedures, as well as three-point finite difference methods, are presented for several model problems.
International Nuclear Information System (INIS)
Li, Yanting; He, Yong; Su, Yan; Shu, Lianjie
2016-01-01
Highlights: • Suggests a nonparametric model based on MARS for output power prediction. • Compare the MARS model with a wide variety of prediction models. • Show that the MARS model is able to provide an overall good performance in both the training and testing stages. - Abstract: Both linear and nonlinear models have been proposed for forecasting the power output of photovoltaic systems. Linear models are simple to implement but less flexible. Due to the stochastic nature of the power output of PV systems, nonlinear models tend to provide better forecast than linear models. Motivated by this, this paper suggests a fairly simple nonlinear regression model known as multivariate adaptive regression splines (MARS), as an alternative to forecasting of solar power output. The MARS model is a data-driven modeling approach without any assumption about the relationship between the power output and predictors. It maintains simplicity of the classical multiple linear regression (MLR) model while possessing the capability of handling nonlinearity. It is simpler in format than other nonlinear models such as ANN, k-nearest neighbors (KNN), classification and regression tree (CART), and support vector machine (SVM). The MARS model was applied on the daily output of a grid-connected 2.1 kW PV system to provide the 1-day-ahead mean daily forecast of the power output. The comparisons with a wide variety of forecast models show that the MARS model is able to provide reliable forecast performance.
Day, Trevor
2006-01-01
Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.
Improved choked flow model for MARS code
International Nuclear Information System (INIS)
Chung, Moon Sun; Lee, Won Jae; Ha, Kwi Seok; Hwang, Moon Kyu
2002-01-01
Choked flow calculation is improved by using a new sound speed criterion for bubbly flow that is derived by the characteristic analysis of hyperbolic two-fluid model. This model was based on the notion of surface tension for the interfacial pressure jump terms in the momentum equations. Real eigenvalues obtained as the closed-form solution of characteristic polynomial represent the sound speed in the bubbly flow regime that agrees well with the existing experimental data. The present sound speed shows more reasonable result in the extreme case than the Nguyens did. The present choked flow criterion derived by the present sound speed is employed in the MARS code and assessed by using the Marviken choked flow tests. The assessment results without any adjustment made by some discharge coefficients demonstrate more accurate predictions of choked flow rate in the bubbly flow regime than those of the earlier choked flow calculations. By calculating the Typical PWR (SBLOCA) problem, we make sure that the present model can reproduce the reasonable transients of integral reactor system
Blanco, M; Casasús, I; Villalba, D
2010-04-01
The statistical analysis of hormones sampled throughout the production cycle is complicated because factors such as age and weight at the measuring date interfere. Spline curves constructed from pieces of low-degree, random-effects polynomials could be used for a more accurate analysis of data. Concentration of insulin-like growth factor-1 (IGF-1), weight gain, and concentrate intake of Parda de Montaña (PM) (n=27) and Pirenaica calves (n=14) were modeled with a spline model according to age at weaning, pre-weaning concentrate feeding, and breed. At birth, calves were randomly assigned to early weaning (EW) at 90 d or traditional weaning (TW) at 150 d. During lactation, half of PM calves received concentrates (S), whereas the remainder received no concentrates (NS). After weaning, calves received concentrates on an ad libitum basis until they reached a weight of 450 kg. The spline model had better likelihood than a polynomial of 6 degrees or a split-plot model. Serum IGF-1 concentration was greatly affected by age at weaning and pre-weaning concentrate feeding, but not by breed. In NS calves, IGF-1 concentration was greater in EW than in TW calves from 120 to 300 d, irrespective of breed. During lactation, S calves had greater IGF-1 concentration than NS calves. After weaning, EWNS calves reached the IGF-1 concentration of EWS calves after 4 mo on concentrates, whereas TWNS calves attained IGF-1 concentration of TWS calves after only 2 mo, because of their increased concentrate intake relative to TWS calves. Concentration of IGF-1 was positively correlated with the immediate weight gains and intake, but it was not a good predictor of performance in the long term. Copyright 2009 Elsevier Inc. All rights reserved.
Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.
1997-01-01
We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this
Model Based Autonomy for Robust Mars Operations
Kurien, James A.; Nayak, P. Pandurang; Williams, Brian C.; Lau, Sonie (Technical Monitor)
1998-01-01
Space missions have historically relied upon a large ground staff, numbering in the hundreds for complex missions, to maintain routine operations. When an anomaly occurs, this small army of engineers attempts to identify and work around the problem. A piloted Mars mission, with its multiyear duration, cost pressures, half-hour communication delays and two-week blackouts cannot be closely controlled by a battalion of engineers on Earth. Flight crew involvement in routine system operations must also be minimized to maximize science return. It also may be unrealistic to require the crew have the expertise in each mission subsystem needed to diagnose a system failure and effect a timely repair, as engineers did for Apollo 13. Enter model-based autonomy, which allows complex systems to autonomously maintain operation despite failures or anomalous conditions, contributing to safe, robust, and minimally supervised operation of spacecraft, life support, In Situ Resource Utilization (ISRU) and power systems. Autonomous reasoning is central to the approach. A reasoning algorithm uses a logical or mathematical model of a system to infer how to operate the system, diagnose failures and generate appropriate behavior to repair or reconfigure the system in response. The 'plug and play' nature of the models enables low cost development of autonomy for multiple platforms. Declarative, reusable models capture relevant aspects of the behavior of simple devices (e.g. valves or thrusters). Reasoning algorithms combine device models to create a model of the system-wide interactions and behavior of a complex, unique artifact such as a spacecraft. Rather than requiring engineers to all possible interactions and failures at design time or perform analysis during the mission, the reasoning engine generates the appropriate response to the current situation, taking into account its system-wide knowledge, the current state, and even sensor failures or unexpected behavior.
Genetic and environmental smoothing of lactation curves with cubic splines.
White, I M; Thompson, R; Brotherstone, S
1999-03-01
Most approaches to modeling lactation curves involve parametric curves with fixed or random coefficients. In either case, the resulting models require the specification on an underlying parametric curve. The fitting of splines represents a semiparametric approach to the problem. In the context of animal breeding, cubic smoothing splines are particularly convenient because they can be incorporated into a suitably constructed mixed model. The potential for the use of splines in modeling lactation curves is explored with a simple example, and the results are compared with those using a random regression model. The spline model provides greater flexibility at the cost of additional computation. Splines are shown to be capable of picking up features of the lactation curve that are missed by the random regression model.
Interpolation of natural cubic spline
Directory of Open Access Journals (Sweden)
Arun Kumar
1992-01-01
Full Text Available From the result in [1] it follows that there is a unique quadratic spline which bounds the same area as that of the function. The matching of the area for the cubic spline does not follow from the corresponding result proved in [2]. We obtain cubic splines which preserve the area of the function.
The GEM-Mars general circulation model for Mars: Description and evaluation
Neary, L.; Daerden, F.
2018-01-01
GEM-Mars is a gridpoint-based three-dimensional general circulation model (GCM) of the Mars atmosphere extending from the surface to approximately 150 km based on the GEM (Global Environmental Multiscale) model, part of the operational weather forecasting and data assimilation system for Canada. After the initial modification for Mars, the model has undergone considerable changes. GEM-Mars is now based on GEM 4.2.0 and many physical parameterizations have been added for Mars-specific atmospheric processes and surface-atmosphere exchange. The model simulates interactive carbon dioxide-, dust-, water- and atmospheric chemistry cycles. Dust and water ice clouds are radiatively active. Size distributed dust is lifted by saltation and dust devils. The model includes 16 chemical species (CO2, Argon, N2, O2, CO, H2O, CH4, O3, O(1D), O, H, H2, OH, HO2, H2O2 and O2(a1Δg)) and has fully interactive photochemistry (15 reactions) and gas-phase chemistry (31 reactions). GEM-Mars provides a good simulation of the water and ozone cycles. A variety of other passive tracers can be included for dedicated studies, such as the emission of methane. The model has both a hydrostatic and non-hydrostatic formulation, and together with a flexible grid definition provides a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. Model results are evaluated by comparison to a selection of observations from instruments on the surface and in orbit, relating to atmosphere and surface temperature and pressure, dust and ice content, polar ice mass, polar argon, and global water and ozone vertical columns. GEM-Mars will play an integral part in the analysis and interpretation of data that is received by the NOMAD spectrometer on the ESA-Roskosmos ExoMars Trace Gas Orbiter. The present paper provides an overview of the current status and capabilities of the GEM-Mars model and lays the foundations for more in-depth studies in support
Payment, Simone
2017-01-01
This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi
Color management with a hammer: the B-spline fitter
Bell, Ian E.; Liu, Bonny H. P.
2003-01-01
To paraphrase Abraham Maslow: If the only tool you have is a hammer, every problem looks like a nail. We have a B-spline fitter customized for 3D color data, and many problems in color management can be solved with this tool. Whereas color devices were once modeled with extensive measurement, look-up tables and trilinear interpolation, recent improvements in hardware have made B-spline models an affordable alternative. Such device characterizations require fewer color measurements than piecewise linear models, and have uses beyond simple interpolation. A B-spline fitter, for example, can act as a filter to remove noise from measurements, leaving a model with guaranteed smoothness. Inversion of the device model can then be carried out consistently and efficiently, as the spline model is well behaved and its derivatives easily computed. Spline-based algorithms also exist for gamut mapping, the composition of maps, and the extrapolation of a gamut. Trilinear interpolation---a degree-one spline---can still be used after nonlinear spline smoothing for high-speed evaluation with robust convergence. Using data from several color devices, this paper examines the use of B-splines as a generic tool for modeling devices and mapping one gamut to another, and concludes with applications to high-dimensional and spectral data.
Methanogens as Models for Life on Mars
Mickol, R. L.; Waddell, W. H.; Kral, T. A.
2014-07-01
Four methanogen species have been subjected to various martian conditions in order to test their suitability as candidates for life on Mars. These conditions include low pressure, low temperature and analog regoliths.
Optimal Approximation of Biquartic Polynomials by Bicubic Splines
Kačala, Viliam; Török, Csaba
2018-02-01
Recently an unexpected approximation property between polynomials of degree three and four was revealed within the framework of two-part approximation models in 2-norm, Chebyshev norm and Holladay seminorm. Namely, it was proved that if a two-component cubic Hermite spline's first derivative at the shared knot is computed from the first derivative of a quartic polynomial, then the spline is a clamped spline of class C2 and also the best approximant to the polynomial. Although it was known that a 2 × 2 component uniform bicubic Hermite spline is a clamped spline of class C2 if the derivatives at the shared knots are given by the first derivatives of a biquartic polynomial, the optimality of such approximation remained an open question. The goal of this paper is to resolve this problem. Unlike the spline curves, in the case of spline surfaces it is insufficient to suppose that the grid should be uniform and the spline derivatives computed from a biquartic polynomial. We show that the biquartic polynomial coefficients have to satisfy some additional constraints to achieve optimal approximation by bicubic splines.
On Characterization of Quadratic Splines
DEFF Research Database (Denmark)
Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong
2005-01-01
A quadratic spline is a differentiable piecewise quadratic function. Many problems in numerical analysis and optimization literature can be reformulated as unconstrained minimizations of quadratic splines. However, only special cases of quadratic splines are studied in the existing literature...... between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general......., and algorithms are developed on a case by case basis. There lacks an analytical representation of a general or even a convex quadratic spline. The current paper fills this gap by providing an analytical representation of a general quadratic spline. Furthermore, for convex quadratic spline, it is shown...
Theoretical models for Mars and their seismic properties
Okal, E. A.; Anderson, D. L.
1978-01-01
Theoretical seismic properties of the planet Mars are investigated on the basis of the various models which have been proposed for the internal composition of the planet. The latest interpretation of gravity-field data, assuming a lower value of the moment of inertia, would require a less dense mantle and a larger core than previous models. If Mars is chondritic in composition, the most reasonable models are an incompletely differentiated H-chondrite or a mixture of H-chondrites and carbonaceous chondrites. Seismic profiles, travel times, and free oscillation periods are computed for various models, with the aim of establishing which seismic data is crucial for deciding among the alternatives. A detailed discussion is given of the seismic properties which could - in principle - help answer the questions of whether Mars' core is liquid or solid and whether Mars has a partially molten asthenosphere in its upper mantle.
Seismic model of Mars: Effects of hydration
Zharkov, V. N.; Gudkova, T. V.
2014-12-01
The arguments according to which the Martian minerals are assumed to contain large amount of water in the mantle minerals are given. As for the Earth, these minerals may constitute about 60 wt% of the Martian mantle, and can be considered as main components in their zones. In the mantle of the Earth the molecular concentration of Fe is about 10%, and for the mantle of Mars - about 20%. Taking into account twofold increase of Fe in Martian silicates in comparison with the terrestrial minerals, we have extrapolated the available partial experimental data of the hydration effect on the compressional and shear velocities of seismic waves in forsterite (olivine) and its high pressure phases - wadsleyite and ringwoodite for Martian conditions. The presence of water in the mantle of Mars may lead to the noticeable widening of the olivine-wadsleite phase transition zone, thus the determination of the olivine-wadsleite phase transition width by seismological methods could get a direct indication on the presence of water in the mantle of Mars. To find out real estimates of water content in the mantle of Mars is a task for the future seismic missions. The results of this article are important for InSight mission that will land a geophysical station on Mars in 2016.
Directory of Open Access Journals (Sweden)
Said Nawar
2014-11-01
Full Text Available The monitoring of soil salinity levels is necessary for the prevention and mitigation of land degradation in arid environments. To assess the potential of remote sensing in estimating and mapping soil salinity in the El-Tina Plain, Sinai, Egypt, two predictive models were constructed based on the measured soil electrical conductivity (ECe and laboratory soil reflectance spectra resampled to Landsat sensor’s resolution. The models used were partial least squares regression (PLSR and multivariate adaptive regression splines (MARS. The results indicated that a good prediction of the soil salinity can be made based on the MARS model (R2 = 0.73, RMSE = 6.53, and ratio of performance to deviation (RPD = 1.96, which performed better than the PLSR model (R2 = 0.70, RMSE = 6.95, and RPD = 1.82. The models were subsequently applied on a pixel-by-pixel basis to the reflectance values derived from two Landsat images (2006 and 2012 to generate quantitative maps of the soil salinity. The resulting maps were validated successfully for 37 and 26 sampling points for 2006 and 2012, respectively, with R2 = 0.72 and 0.74 for 2006 and 2012, respectively, for the MARS model, and R2 = 0.71 and 0.73 for 2006 and 2012, respectively, for the PLSR model. The results indicated that MARS is a more suitable technique than PLSR for the estimation and mapping of soil salinity, especially in areas with high levels of salinity. The method developed in this paper can be used for other satellite data, like those provided by Landsat 8, and can be applied in other arid and semi-arid environments.
Seismic velocity models for an internally asymmetric Mars
Franck, S.; Kowalle, G.
1994-01-01
The well-known dichotomy in topography, surface age, and crustal structure between the northern lowlands and the southern uplands of Mars has been explained by both endogenic and exogenic processes. According to the used model this asymmetry might be a result of a certain mechanism of core formation influencing the following planetary evolution. Therefore it has been assumed that the present internal structure of Mars is characterized by different velocity-depth distributions of the mantle for the northern and southern hemisphere, respectively. For both regions significant differences in travel times of seismic waves were calculated. These results may be important for the future seismic exploration of Mars.
Yin, Youbing; Hoffman, Eric A; Ding, Kai; Reinhardt, Joseph M; Lin, Ching-Long
2011-01-07
The goal of this study is to develop a matching algorithm that can handle large geometric changes in x-ray computed tomography (CT)-derived lung geometry occurring during deep breath maneuvers. These geometric relationships are further utilized to build a dynamic lung airway model for computational fluid dynamics (CFD) studies of pulmonary air flow. The proposed algorithm is based on a cubic B-spline-based hybrid registration framework that incorporates anatomic landmark information with intensity patterns. A sequence of invertible B-splines is composed in a multiresolution framework to ensure local invertibility of the large deformation transformation and a physiologically meaningful similarity measure is adopted to compensate for changes in voxel intensity due to inflation. Registrations are performed using the proposed approach to match six pairs of 3D CT human lung datasets. Results show that the proposed approach has the ability to match the intensity pattern and the anatomical landmarks, and ensure local invertibility for large deformation transformations. Statistical results also show that the proposed hybrid approach yields significantly improved results as compared with approaches using either landmarks or intensity alone.
Mars Environment and Magnetic Orbiter model payload
DEFF Research Database (Denmark)
Langlais, B.; Leblanc, F.; Fouchet, T.
2009-01-01
Mars Environment and Magnetic Orbiter was proposed as an answer to the Cosmic Vision Call of Opportunity as a M-class mission. The MEMO mission is designed to study the strong interconnections between the planetary interior, atmosphere and solar conditions essential to understand planetary...
Lambert, P C; Abrams, K R; Jones, D R; Halligan, A W; Shennan, A
2001-12-30
Hypertensive disorders of pregnancy are associated with significant maternal and foetal morbidity. Measurement of blood pressure remains the standard way of identifying individuals at risk. There is growing interest in the use of ambulatory blood pressure monitors (ABPM), which can record an individual's blood pressure many times over a 24-hour period. From a clinical perspective interest lies in the shape of the blood pressure profile over a 24-hour period and any differences in the profile between groups. We propose a two-level hierarchical linear model incorporating all ABPM data into a single model. We contrast a classical approach with a Bayesian approach using the results of a study of 206 pregnant women who were asked to wear an ABPM for 24 hours after referral to an obstetric day unit with high blood pressure. As the main interest lies in the shape of the profile, we use restricted cubic splines to model the mean profiles. The use of restricted cubic splines provides a flexible way to model the mean profiles and to make comparisons between groups. From examining the data and the fit of the model it is apparent that there were heterogeneous within-subject variances in that some women tend to have more variable blood pressure than others. Within the Bayesian framework it is relatively easy to incorporate a random effect to model the between-subject variation in the within-subject variances. Although there is substantial heterogeneity in the within-subject variances, allowing for this in the model has surprisingly little impact on the estimates of the mean profiles or their confidence/credible intervals. We thus demonstrate a powerful method for analysis of ABPM data and also demonstrate how heterogeneous within-subject variances can be modelled from a Bayesian perspective. Copyright 2001 John Wiley & Sons, Ltd.
LOCALLY REFINED SPLINES REPRESENTATION FOR GEOSPATIAL BIG DATA
Directory of Open Access Journals (Sweden)
T. Dokken
2015-08-01
Full Text Available When viewed from distance, large parts of the topography of landmasses and the bathymetry of the sea and ocean floor can be regarded as a smooth background with local features. Consequently a digital elevation model combining a compact smooth representation of the background with locally added features has the potential of providing a compact and accurate representation for topography and bathymetry. The recent introduction of Locally Refined B-Splines (LR B-splines allows the granularity of spline representations to be locally adapted to the complexity of the smooth shape approximated. This allows few degrees of freedom to be used in areas with little variation, while adding extra degrees of freedom in areas in need of more modelling flexibility. In the EU fp7 Integrating Project IQmulus we exploit LR B-splines for approximating large point clouds representing bathymetry of the smooth sea and ocean floor. A drastic reduction is demonstrated in the bulk of the data representation compared to the size of input point clouds. The representation is very well suited for exploiting the power of GPUs for visualization as the spline format is transferred to the GPU and the triangulation needed for the visualization is generated on the GPU according to the viewing parameters. The LR B-splines are interoperable with other elevation model representations such as LIDAR data, raster representations and triangulated irregular networks as these can be used as input to the LR B-spline approximation algorithms. Output to these formats can be generated from the LR B-spline applications according to the resolution criteria required. The spline models are well suited for change detection as new sensor data can efficiently be compared to the compact LR B-spline representation.
Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O
2018-02-10
Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are employed. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multi-body simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered due to their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using three-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a two-muscle system, it can easily be extended to musculoskeletal systems with three or more muscles. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
International Nuclear Information System (INIS)
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-01-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m 2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R 2 ), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested
Energy Technology Data Exchange (ETDEWEB)
M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my; Wong, J., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my [Unit Penyelidikan Rumpai Laut (UPRL), Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia); Sulaiman, J., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my; Yasir, S. Md., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my [Program Matematik dengan Ekonomi, Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia)
2014-06-19
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-06-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1999-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.
Smoothing quadratic and cubic splines
Oukropcová, Kateřina
2014-01-01
Title: Smoothing quadratic and cubic splines Author: Kateřina Oukropcová Department: Department of Numerical Mathematics Supervisor: RNDr. Václav Kučera, Ph.D., Department of Numerical Mathematics Abstract: The aim of this bachelor thesis is to study the topic of smoothing quadratic and cubic splines on uniform partitions. First, we define the basic con- cepts in the field of splines, next we introduce interpolating splines with a focus on their minimizing properties for odd degree and quadra...
Hilbertian kernels and spline functions
Atteia, M
1992-01-01
In this monograph, which is an extensive study of Hilbertian approximation, the emphasis is placed on spline functions theory. The origin of the book was an effort to show that spline theory parallels Hilbertian Kernel theory, not only for splines derived from minimization of a quadratic functional but more generally for splines considered as piecewise functions type. Being as far as possible self-contained, the book may be used as a reference, with information about developments in linear approximation, convex optimization, mechanics and partial differential equations.
Splines and variational methods
Prenter, P M
2008-01-01
One of the clearest available introductions to variational methods, this text requires only a minimal background in calculus and linear algebra. Its self-contained treatment explains the application of theoretic notions to the kinds of physical problems that engineers regularly encounter. The text's first half concerns approximation theoretic notions, exploring the theory and computation of one- and two-dimensional polynomial and other spline functions. Later chapters examine variational methods in the solution of operator equations, focusing on boundary value problems in one and two dimension
Forget, F.; Levrard, B.; Montmessin, F.; Schmitt, B.; Doute, S.; Langevin, Y.; Bibring, J. P.
2005-01-01
To better understand the behavior of the Mars CO2 ice seasonal polar caps, and in particular interpret the the Mars Express Omega observations of the recession of the northern seasonal cap, we present some simulations of the Martian Climate/CO2 cycle/ water cycle as modeled by the Laboratoire de Meteorologie Dynamique (LMD) global climate model.
Michna, Agata; Braselmann, Herbert; Selmansberger, Martin; Dietz, Anne; Hess, Julia; Gomolka, Maria; Hornhardt, Sabine; Blüthgen, Nils; Zitzelsberger, Horst; Unger, Kristian
2016-01-01
Gene expression time-course experiments allow to study the dynamics of transcriptomic changes in cells exposed to different stimuli. However, most approaches for the reconstruction of gene association networks (GANs) do not propose prior-selection approaches tailored to time-course transcriptome data. Here, we present a workflow for the identification of GANs from time-course data using prior selection of genes differentially expressed over time identified by natural cubic spline regression modeling (NCSRM). The workflow comprises three major steps: 1) the identification of differentially expressed genes from time-course expression data by employing NCSRM, 2) the use of regularized dynamic partial correlation as implemented in GeneNet to infer GANs from differentially expressed genes and 3) the identification and functional characterization of the key nodes in the reconstructed networks. The approach was applied on a time-resolved transcriptome data set of radiation-perturbed cell culture models of non-tumor cells with normal and increased radiation sensitivity. NCSRM detected significantly more genes than another commonly used method for time-course transcriptome analysis (BETR). While most genes detected with BETR were also detected with NCSRM the false-detection rate of NCSRM was low (3%). The GANs reconstructed from genes detected with NCSRM showed a better overlap with the interactome network Reactome compared to GANs derived from BETR detected genes. After exposure to 1 Gy the normal sensitive cells showed only sparse response compared to cells with increased sensitivity, which exhibited a strong response mainly of genes related to the senescence pathway. After exposure to 10 Gy the response of the normal sensitive cells was mainly associated with senescence and that of cells with increased sensitivity with apoptosis. We discuss these results in a clinical context and underline the impact of senescence-associated pathways in acute radiation response of normal
MARS CODE MANUAL VOLUME V: Models and Correlations
International Nuclear Information System (INIS)
Chung, Bub Dong; Bae, Sung Won; Lee, Seung Wook; Yoon, Churl; Hwang, Moon Kyu; Kim, Kyung Doo; Jeong, Jae Jun
2010-02-01
Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This models and correlations manual provides a complete list of detailed information of the thermal-hydraulic models used in MARS, so that this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible
The EH Interpolation Spline and Its Approximation
Directory of Open Access Journals (Sweden)
Jin Xie
2014-01-01
Full Text Available A new interpolation spline with two parameters, called EH interpolation spline, is presented in this paper, which is the extension of the standard cubic Hermite interpolation spline, and inherits the same properties of the standard cubic Hermite interpolation spline. Given the fixed interpolation conditions, the shape of the proposed splines can be adjusted by changing the values of the parameters. Also, the introduced spline could approximate to the interpolated function better than the standard cubic Hermite interpolation spline and the quartic Hermite interpolation splines with single parameter by a new algorithm.
Present-day heat flow model of Mars
Parro, Laura M.; Jim?nez-D?az, Alberto; Mansilla, Federico; Ruiz, Javier
2017-01-01
Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thicknes...
Mohapatra, R. K.; Murty, S. V. S.
2002-01-01
Chemical and (oxygen) isotopic compositions of SNC meteorites have been used by a number of workers to infer the nature of precursor materials for the accretion of Mars. The idea that chondritic materials played a key role in the formation of Mars has been the central assumption in these works. Wanke and Dreibus have proposed a mixture of two types of chondritic materials, differing in oxygen fugacity but having CI type bulk chemical composition for the nonvolatile elements, for Mars' precursor. But a number of studies based on high pressure and temperature melting experiments do not favor a CI type bulk planet composition for Mars, as it predicts a bulk planet Fe/Si ratio much higher than that reported from the recent Pathfinder data. Oxygen forms the bulk of Mars (approximately 40% by wt.) and might provide clues to the type of materials that formed Mars. But models based on the oxygen isotopic compositions of SNC meteorites predict three different mixtures of precursor materials for Mars: 90% H + 10% CM, 85% H + 11% CV + 4% CI and 45% EH + 55% H. As each of these models has been shown to be consistent with the bulk geophysical properties (such as mean density, and moment of inertia factor) of Mars, the nature of the material that accreted to form Mars remains ambiguous.
Directory of Open Access Journals (Sweden)
Rachel Jewkes
2018-02-01
Full Text Available The aim of this study is to assess the additive manufacture of morphometric models of healthy and diseased coronary arteries. Using a dissected porcine coronary artery, a model was developed with the use of computer aided engineering, with splines used to design arteries in health and disease. The model was altered to demonstrate four cases of stenosis displaying varying severity, based on published morphometric data available. Both an Objet Eden 250 printer and a Solidscape 3Z Pro printer were used in this analysis. A wax printed model was set into a flexible thermoplastic and was valuable for experimental testing with helical flow patterns observed in healthy models, dominating the distal LAD (left anterior descending and left circumflex arteries. Recirculation zones were detected in all models, but were visibly larger in the stenosed cases. Resin models provide useful analytical tools for understanding the spatial relationships of blood vessels, and could be applied to preoperative planning techniques, but were not suitable for physical testing. In conclusion, it is feasible to develop blood vessel models enabling experimental work; further, through additive manufacture of bio-compatible materials, there is the possibility of manufacturing customized replacement arteries.
Preliminary Modeling of Global Seismic Wave Propagation in the Whole Mars
Toyokuni, G.; Ishihara, Y.; Takenaka, H.
2011-03-01
Global seismic wave propagation in the whole Mars is simulated by an accurate and efficient numerical scheme which has been developed for the Earth. Simple Mars models are used to obtain preliminary results of martian seismic waveform modeling.
Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR
Singh, D.; Flanner, M.; Millour, E.
2017-12-01
The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) albedo values from the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 ice cap albedos interactively in the model. Over snow-covered regions mean SNICAR-MGCM albedo is higher by about 0.034 than original-MGCM. Changes in albedo and surface dust content also impact the shortwave energy flux at the surface. SNICAR-MGCM model simulates a change of -1.26 W/m2 shortwave flux on a global scale. Globally, net CO2 ice deposition increases by about 4% over one Martian annual cycle as compared to original-MGCM simulations. SNICAR integration reduces the net mean global surface temperature, and the global surface pressure of Mars by about 0.87% and 2.5% respectively. Changes in albedo also show a similar distribution as dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to original-MGCM. Using new diagnostic capabilities with this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. The cryospheric effect is severely muted by dust in snow, however, which acts to decrease the planet-mean surface albedo by 0.06.
Optimization of straight-sided spline design
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard
2011-01-01
Spline connection of shaft and hub is commonly applied when large torque capacity is needed together with the possibility of disassembly. The designs of these splines are generally controlled by different standards. In view of the common use of splines, it seems that few papers deal with splines ...
Testing and Modeling of the Mars Atmospheric Processing Module
Muscatello, Anthony; Hintze, Paul; Meier, Anne; Petersen, Elspeth M.; Bayliss, Jon; Gomez Cano, Ricardo; Formoso, Rene; Shah, Malay; Berg, Jared; Vu, Bruce;
2017-01-01
Here we report further progress in the development of the MARCO POLO-Mars Pathfinder Atmospheric Processing Module (APM). The APM is designed to demonstrate in situ resource utilization (ISRU) of the Martian atmosphere, which primarily consists of carbon dioxide (CO2). The APM is part of a larger project with the overall goal of collecting and utilizing CO2 found in the atmosphere and water in the regolith of Mars to produce methane and oxygen to be used as rocket propellant, eliminating the need to import those to Mars for human missions, thus significantly reducing costs. The initial focus of NASA's new ISRU Project is modeling of key ISRU components, such as the CO2 Freezers and the Sabatier reactor of the APM. We have designed models of those components and verified the models with the APM by gathering additional data for the Sabatier reactor. Future efforts will be focused on simultaneous operations of the APM and other MARCO POLO-Mars Pathfinder modules.
Marginal longitudinal semiparametric regression via penalized splines
Al Kadiri, M.
2010-08-01
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.
A Revised Thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM Version 3.4)
Justus, C. G.; Johnson, D. L.; James, B. F.
1996-01-01
This report describes the newly-revised model thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM, Version 3.4). It also provides descriptions of other changes made to the program since publication of the programmer's guide for Mars-GRAM Version 3.34. The original Mars-GRAM model thermosphere was based on the global-mean model of Stewart. The revised thermosphere is based largely on parameterizations derived from output data from the three-dimensional Mars Thermospheric Global Circulation Model (MTGCM). The new thermospheric model includes revised dependence on the 10.7 cm solar flux for the global means of exospheric temperature, temperature of the base of the thermosphere, and scale height for the thermospheric temperature variations, as well as revised dependence on orbital position for global mean height of the base of the thermosphere. Other features of the new thermospheric model are: (1) realistic variations of temperature and density with latitude and time of day, (2) more realistic wind magnitudes, based on improved estimates of horizontal pressure gradients, and (3) allowance for user-input adjustments to the model values for mean exospheric temperature and for height and temperature at the base of the thermosphere. Other new features of Mars-GRAM 3.4 include: (1) allowance for user-input values of climatic adjustment factors for temperature profiles from the surface to 75 km, and (2) a revised method for computing the sub-solar longitude position in the 'ORBIT' subroutine.
Hernandez, Andrew M; Boone, John M
2014-04-01
Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervals from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Using pairedt-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R(2)) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, "Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector," Phys. Med. Biol. 24, 505-517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9 keV at 20 kV and 169 keV at 640 k
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Andrew M. [Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817 (United States); Boone, John M., E-mail: john.boone@ucdmc.ucdavis.edu [Departments of Radiology and Biomedical Engineering, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817 (United States)
2014-04-15
Purpose: Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. Methods: X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervals from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Results: Using pairedt-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R{sup 2}) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, “Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector,” Phys. Med. Biol. 24, 505–517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9
Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis
Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.
2014-01-01
The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.
Directory of Open Access Journals (Sweden)
Kuczyński Paweł
2014-06-01
Full Text Available The paper deals with a solution of radiation heat transfer problems in enclosures filled with nonparticipating medium using ray tracing on hierarchical ortho-Cartesian meshes. The idea behind the approach is that radiative heat transfer problems can be solved on much coarser grids than their counterparts from computational fluid dynamics (CFD. The resulting code is designed as an add-on to OpenFOAM, an open-source CFD program. Ortho-Cartesian mesh involving boundary elements is created based upon CFD mesh. Parametric non-uniform rational basis spline (NURBS surfaces are used to define boundaries of the enclosure, allowing for dealing with domains of complex shapes. Algorithm for determining random, uniformly distributed locations of rays leaving NURBS surfaces is described. The paper presents results of test cases assuming gray diffusive walls. In the current version of the model the radiation is not absorbed within gases. However, the ultimate aim of the work is to upgrade the functionality of the model, to problems in absorbing, emitting and scattering medium projecting iteratively the results of radiative analysis on CFD mesh and CFD solution on radiative mesh.
Eckhard, Timo; Eckhard, Jia; Valero, Eva M; Nieves, Juan Luis
2014-06-10
In spectral imaging, spatial and spectral information of an image scene are combined. There exist several technologies that allow the acquisition of this kind of data. Depending on the optical components used in the spectral imaging systems, misalignment between image channels can occur. Further, the projection of some systems deviates from that of a perfect optical lens system enough that a distortion of scene content in the images becomes apparent to the observer. Correcting distortion and misalignment can be complicated for spectral image data if they are different at each image channel. In this work, we propose an image registration and distortion correction scheme for spectral image cubes that is based on a free-form deformation model of uniform cubic B-splines with multilevel grid refinement. This scheme is adaptive with respect to image size, degree of misalignment, and degree of distortion, and in that sense is superior to previous approaches. We support our proposed scheme with empirical data from a Bragg-grating-based hyperspectral imager, for which a registration accuracy of approximately one pixel was achieved.
Hudoyo, Luhur Partomo; Andriyana, Yudhie; Handoko, Budhi
2017-03-01
Quantile regression illustrates the distribution of conditional variable responses to various quantile desired values. Each quantile characterizes a certain point (center or tail) of a conditional distribution. This analysis is very useful for asymmetric conditional distribution, e.g. solid at the tail of the distribution, the truncated distribution and existence of outliers. One approach nonparametric method of predicting the conditional quantile objective function is Constrained B-Splines (COBS). COBS is a smoothing technique to accommodate the addition of constraints such as monotonicity, convexity and periodicity. In this study, we will change the minimum conditional quantile objective function in COBS into a linear programming problem. Linear programming problem is defined as the problem of minimizing and maximizing a linear function subject to linear constraints. The constraints may be equalities or inequalities. This research will discuss the relationship between education (mean years of schooling) and economic (household expenditure) levels at Central Sulawesi Province in 2014 which household level data provide more systematic evidence on positive relationship. So monotonicity (increasing) constraints will be used in COBS quantile regression model.
Working models for spatial distribution and level of Mars' seismicity
Knapmeyer, M.; Oberst, J.; Hauber, E.; Wählisch, M.; Deuchler, C.; Wagner, R.
2006-11-01
We present synthetic catalogs of Mars quakes, intended to be used for performance assessments of future seismic networks on the planet. We have compiled a new inventory of compressional and extensional tectonic faults for the planet Mars, comprising 8500 faults with a total length of 680,000 km. The faults were mapped on the basis of Mars Orbiting Laser Altimeter (MOLA) shaded relief. Hence we expect to have assembled a homogeneous data set, not biased by illumination and viewing conditions of image data. Updated models of Martian crater statistics and geological maps were used to assign new maximum ages to all faults. On the basis of the fault catalog, spatial distributions of seismicity were simulated, using assumptions on the available annual seismic moment budget, the moment-frequency relationship, and a relation between rupture length and released moment. We have constructed five different models of Martian seismicity, predicting an annual moment release between 3.42 × 1016 Nm and 4.78 × 1018 Nm and up to 572 events with magnitudes greater than 4 per year as upper limit end-member case. Most events are expected on the Tharsis shield, but minor seismic centers are expected south of Hellas and north of Utopia Planitia.
Photometry and shape modeling of Mars crosser asteroid (1011 Laodamia
Directory of Open Access Journals (Sweden)
Apostolovska G.
2014-01-01
Full Text Available An analysis of photometric observations of Mars crosser asteroid 1011 Laodamia conducted at Bulgarian National Astronomical Observatory Rozhen over a twelve year interval (2002, 2003, 2004, 2006, 2007, 2008, 2011, 2012 and 2013 is made. Based on the obtained lightcurves the spin vector, sense of rotation, and preliminary shape model of (1011 Laodamia have been determined using the lightcurve inversion method. The aim of this investigation is to increase the set of asteroids with known spin and shape parameters and to contribute in improving the model in combination with other techniques and sparse data produced by photometric asteroid surveys such as Pan-STARRS or GAIA.
Weighted cubic and biharmonic splines
Kvasov, Boris; Kim, Tae-Wan
2017-01-01
In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.
Three-field modeling for MARS 1-D code
International Nuclear Information System (INIS)
Hwang, Moonkyu; Lim, Ho-Gon; Jeong, Jae-Jun; Chung, Bub-Dong
2006-01-01
In this study, the three-field modeling of the two-phase mixture is developed. The finite difference equations for the three-field equations thereafter are devised. The solution scheme has been implemented into the MARS 1-D code. The three-field formulations adopted are similar to those for MARS 3-D module, in a sense that the mass and momentum are treated separately for the entrained liquid and continuous liquid. As in the MARS-3D module, the entrained liquid and continuous liquid are combined into one for the energy equation, assuming thermal equilibrium between the two. All the non-linear terms are linearized to arrange the finite difference equation set into a linear matrix form with respect to the unknown arguments. The problems chosen for the assessment of the newly added entrained field consist of basic conceptual tests. Among the tests are gas-only test, liquid-only test, gas-only with supplied entrained liquid test, Edwards pipe problem, and GE level swell problem. The conceptual tests performed confirm the sound integrity of the three-field solver
Directory of Open Access Journals (Sweden)
Francesca Galassi
Full Text Available Assessment of coronary stenosis severity is crucial in clinical practice. This study proposes a novel method to generate 3D models of stenotic coronary arteries, directly from 2D coronary images, and suitable for immediate assessment of the stenosis severity.From multiple 2D X-ray coronary arteriogram projections, 2D vessels were extracted. A 3D centreline was reconstructed as intersection of surfaces from corresponding branches. Next, 3D luminal contours were generated in a two-step process: first, a Non-Uniform Rational B-Spline (NURBS circular contour was designed and, second, its control points were adjusted to interpolate computed 3D boundary points. Finally, a 3D surface was generated as an interpolation across the control points of the contours and used in the analysis of the severity of a lesion. To evaluate the method, we compared 3D reconstructed lesions with Optical Coherence Tomography (OCT, an invasive imaging modality that enables high-resolution endoluminal visualization of lesion anatomy.Validation was performed on routine clinical data. Analysis of paired cross-sectional area discrepancies indicated that the proposed method more closely represented OCT contours than conventional approaches in luminal surface reconstruction, with overall root-mean-square errors ranging from 0.213mm2 to 1.013mm2, and maximum error of 1.837mm2. Comparison of volume reduction due to a lesion with corresponding FFR measurement suggests that the method may help in estimating the physiological significance of a lesion.The algorithm accurately reconstructed 3D models of lesioned arteries and enabled quantitative assessment of stenoses. The proposed method has the potential to allow immediate analysis of the stenoses in clinical practice, thereby providing incremental diagnostic and prognostic information to guide treatments in real time and without the need for invasive techniques.
Symmetric, discrete fractional splines and Gabor systems
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2006-01-01
In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....
Directory of Open Access Journals (Sweden)
M. Ahmadlou
2015-12-01
Full Text Available Land use change (LUC models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS, and a global parametric model called artificial neural network (ANN to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM and 2010 (ETM+ were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.
Ahmadlou, M.; Delavar, M. R.; Tayyebi, A.; Shafizadeh-Moghadam, H.
2015-12-01
Land use change (LUC) models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS), and a global parametric model called artificial neural network (ANN) to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC) to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM) and 2010 (ETM+) were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.
Numerical Methods Using B-Splines
Shariff, Karim; Merriam, Marshal (Technical Monitor)
1997-01-01
The seminar will discuss (1) The current range of applications for which B-spline schemes may be appropriate (2) The property of high-resolution and the relationship between B-spline and compact schemes (3) Comparison between finite-element, Hermite finite element and B-spline schemes (4) Mesh embedding using B-splines (5) A method for the incompressible Navier-Stokes equations in curvilinear coordinates using divergence-free expansions.
Isogeometric analysis using T-splines
Bazilevs, Yuri
2010-01-01
We explore T-splines, a generalization of NURBS enabling local refinement, as a basis for isogeometric analysis. We review T-splines as a surface design methodology and then develop it for engineering analysis applications. We test T-splines on some elementary two-dimensional and three-dimensional fluid and structural analysis problems and attain good results in all cases. We summarize the current status of T-splines, their limitations, and future possibilities. © 2009 Elsevier B.V.
Cubic spline functions for curve fitting
Young, J. D.
1972-01-01
FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.
Subpixel Snow Cover Mapping from MODIS Data by Nonparametric Regression Splines
Akyurek, Z.; Kuter, S.; Weber, G. W.
2016-12-01
Spatial extent of snow cover is often considered as one of the key parameters in climatological, hydrological and ecological modeling due to its energy storage, high reflectance in the visible and NIR regions of the electromagnetic spectrum, significant heat capacity and insulating properties. A significant challenge in snow mapping by remote sensing (RS) is the trade-off between the temporal and spatial resolution of satellite imageries. In order to tackle this issue, machine learning-based subpixel snow mapping methods, like Artificial Neural Networks (ANNs), from low or moderate resolution images have been proposed. Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression tool that can build flexible models for high dimensional and complex nonlinear data. Although MARS is not often employed in RS, it has various successful implementations such as estimation of vertical total electron content in ionosphere, atmospheric correction and classification of satellite images. This study is the first attempt in RS to evaluate the applicability of MARS for subpixel snow cover mapping from MODIS data. Total 16 MODIS-Landsat ETM+ image pairs taken over European Alps between March 2000 and April 2003 were used in the study. MODIS top-of-atmospheric reflectance, NDSI, NDVI and land cover classes were used as predictor variables. Cloud-covered, cloud shadow, water and bad-quality pixels were excluded from further analysis by a spatial mask. MARS models were trained and validated by using reference fractional snow cover (FSC) maps generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also developed. The mutual comparison of obtained MARS and ANN models was accomplished on independent test areas. The MARS model performed better than the ANN model with an average RMSE of 0.1288 over the independent test areas; whereas the average RMSE of the ANN model
A theoretical microbial contamination model for a human Mars mission
Lupisella, Mark Lewis
Contamination from a human presence on Mars could significantly compromise the search for extraterrestrial life. In particular, the difficulties in controlling microbial contamination, the potential for terrestrial microbes to grow, evolve, compete, and modify the Martian environment, and the likely microbial nature of putative Martian life, make microbial contamination worthy of focus as we begin to plan for a human mission to Mars. This dissertation describes a relatively simple theoretical model that can be used to explore how microbial contamination from a human Mars mission might survive and grow in the Martian soil environment surrounding a habitat. A user interface has been developed to allow a general practitioner to choose values and functions for almost all parameters ranging from the number of astronauts to the half-saturation constants for microbial growth. Systematic deviations from a baseline set of parameter values are explored as potential plausible scenarios for the first human Mars missions. The total viable population and population density are the primary state variables of interest, but other variables such as the total number of births and total dead and viable microbes are also tracked. The general approach was to find the most plausible parameter value combinations that produced a population density of 1 microbe/cm3 or greater, a threshold that was used to categorize the more noteworthy populations for subsequent analysis. Preliminary assessments indicate that terrestrial microbial contamination resulting from leakage from a limited human mission (perhaps lasting up to 5 months) will not likely become a problematic population in the near-term as long as reasonable contamination control measures are implemented (for example, a habitat leak rate no greater than 1% per hour). However, there appear to be plausible, albeit unlikely, scenarios that could cause problematic populations, depending in part on (a) the initial survival fraction and
Density Deconvolution With EPI Splines
2015-09-01
Comparison of Deconvolution Methods . . . . . . . . . . . . . . . 28 5 High-Fidelity and Low-Fidelity Simulation Output 31 5.1 Hydrofoil Concept...46 A.3 Hydrofoil Concept . . . . . . . . . . . . . . . . . . . . . . . . 47 A.4 Notes on Computation Time...Epi-Spline Estimates . . . . . . . . . . . 28 Figure 4.3 Deconvolution Method Comparison . . . . . . . . . . . . . . . . 29 Figure 5.1 Hydrofoil
Intercomparison of radiation codes for Mars Models: SW and LW
Savijarvi, H. I.; Crisp, D.; Harri, A.-M.
2002-09-01
We have enlarged our radiation scheme intercomparison for Mars models into the SW region. A reference mean case is introduced by having a T(z) -profile based on Mariner 9 IRIS observations at 35 fixed- altitude points for a 95.3 per cent CO2-atmosphere plus optional trace gases and well-mixed dust at visible optical depths of 0, 0.3, 0.6, 1.0 and 5.0. A Spectrum Resolving (line-by-line) multiple scattering multi-stream Model (SRM, by Crisp) is used as the first-principles reference calculation. The University of Helsinki (UH) old and new (improved) Mars model schemes are also included. The intercomparisons have pointed out the importance of dust and water vapour in the LW, while the CO2 spectral line data difference effects were minimal but nonzero. In the shortwave, the results show that the CO2 absorption of solar radiation by the line-by-line scheme is relatively intense, especially so at low solar height angles. This is attributed to the (often neglected) very weak lines and bands in the near-infrared. The other trace gases are not important but dust, of course, scatters and absorbs strongly in the shortwave. The old, very simple, UH SW scheme was surprisingly good at low dust concentrations, compared to SRM. It was however considerably improved for both low and high dust amounts by using the SRM results as benchmark. Other groups are welcome to join.
Modeling spacecraft oscillations in HRSC images of Mars Express
Directory of Open Access Journals (Sweden)
J. Bostelmann
2012-09-01
Full Text Available Since January 2004 the High Resolution Stereo Camera (HRSC is mapping planet Mars. The multi-line sensor on board the ESA Mission Mars Express images the Martian surface with a resolution of up to 12m per pixel in three dimensions and in color. As part of the Photogrammetric/Cartographic Working Group of the HRSC Science Team the Institute of Photogrammetry and GeoInformation (IPI of the Leibniz Universit¨at Hannover is involved in photogrammetrically processing the HRSC image data. To derive high quality 3D surface models, color orthoimages or other products, the accuracy of the observed position and attitude information in many cases should be improved. This is carried out via a bundle adjustment. In a considerable number of orbits the results of the bundle adjustment are disturbed by high frequency oscillations. This paper describes the impact of the high frequency angular spacecraft movement to the processing results of the last seven years of image acquisition and how the quality of the HRSC data products is significantly improved by modeling these oscillations.
Formation of Reflecting Surfaces Based on Spline Methods
Zamyatin, A. V.; Zamyatina, E. A.
2017-11-01
The article deals with problem of reflecting barriers surfaces generation by spline methods. The cases of reflection when a geometric model is applied are considered. The surfaces of reflecting barriers are formed in such a way that they contain given points and the rays reflected at these points and hit at the defined points of specified surface. The reflecting barrier surface is formed by cubic splines. It enables a comparatively simple implementation of proposed algorithms in the form of software applications. The algorithms developed in the article can be applied in architecture and construction design for reflecting surface generation in optics and acoustics providing the geometrical model of reflex processes is used correctly.
Spline and spline wavelet methods with applications to signal and image processing
Averbuch, Amir Z; Zheludev, Valery A
This volume provides universal methodologies accompanied by Matlab software to manipulate numerous signal and image processing applications. It is done with discrete and polynomial periodic splines. Various contributions of splines to signal and image processing from a unified perspective are presented. This presentation is based on Zak transform and on Spline Harmonic Analysis (SHA) methodology. SHA combines approximation capabilities of splines with the computational efficiency of the Fast Fourier transform. SHA reduces the design of different spline types such as splines, spline wavelets (SW), wavelet frames (SWF) and wavelet packets (SWP) and their manipulations by simple operations. Digital filters, produced by wavelets design process, give birth to subdivision schemes. Subdivision schemes enable to perform fast explicit computation of splines' values at dyadic and triadic rational points. This is used for signals and images upsampling. In addition to the design of a diverse library of splines, SW, SWP a...
Global seismic waveform modeling in the whole Mars - a preliminary study -
Toyokuni, G.; Ishihara, Y.; Takenaka, H.
2011-10-01
We construct a numerical scheme (spherical 2.5-D FDM) to calculate probable global seismic wave propagation for the whole Mars models. Using our modeling sheme, we have done preliminary study of Martian seismic waveform modeling in the whole Mars with probable 3-D Martian interior structure.
Woods, Carol M.; Thissen, David
2006-01-01
The purpose of this paper is to introduce a new method for fitting item response theory models with the latent population distribution estimated from the data using splines. A spline-based density estimation system provides a flexible alternative to existing procedures that use a normal distribution, or a different functional form, for the…
Hamidi, Omid; Tapak, Leili; Abbasi, Hamed; Maryanaji, Zohreh
2017-10-01
We have conducted a case study to investigate the performance of support vector machine, multivariate adaptive regression splines, and random forest time series methods in snowfall modeling. These models were applied to a data set of monthly snowfall collected during six cold months at Hamadan Airport sample station located in the Zagros Mountain Range in Iran. We considered monthly data of snowfall from 1981 to 2008 during the period from October/November to April/May as the training set and the data from 2009 to 2015 as the testing set. The root mean square errors (RMSE), mean absolute errors (MAE), determination coefficient (R 2), coefficient of efficiency (E%), and intra-class correlation coefficient (ICC) statistics were used as evaluation criteria. Our results indicated that the random forest time series model outperformed the support vector machine and multivariate adaptive regression splines models in predicting monthly snowfall in terms of several criteria. The RMSE, MAE, R 2, E, and ICC for the testing set were 7.84, 5.52, 0.92, 0.89, and 0.93, respectively. The overall results indicated that the random forest time series model could be successfully used to estimate monthly snowfall values. Moreover, the support vector machine model showed substantial performance as well, suggesting it may also be applied to forecast snowfall in this area.
Differential constraints for bounded recursive identification with multivariate splines
De Visser, C.C.; Chu, Q.P.; Mulder, J.A.
2011-01-01
The ability to perform online model identification for nonlinear systems with unknown dynamics is essential to any adaptive model-based control system. In this paper, a new differential equality constrained recursive least squares estimator for multivariate simplex splines is presented that is able
Point based interactive image segmentation using multiquadrics splines
Meena, Sachin; Duraisamy, Prakash; Palniappan, Kannappan; Seetharaman, Guna
2017-05-01
Multiquadrics (MQ) are radial basis spline function that can provide an efficient interpolation of data points located in a high dimensional space. MQ were developed by Hardy to approximate geographical surfaces and terrain modelling. In this paper we frame the task of interactive image segmentation as a semi-supervised interpolation where an interpolating function learned from the user provided seed points is used to predict the labels of unlabeled pixel and the spline function used in the semi-supervised interpolation is MQ. This semi-supervised interpolation framework has a nice closed form solution which along with the fact that MQ is a radial basis spline function lead to a very fast interactive image segmentation process. Quantitative and qualitative results on the standard datasets show that MQ outperforms other regression based methods, GEBS, Ridge Regression and Logistic Regression, and popular methods like Graph Cut,4 Random Walk and Random Forest.6
DEFF Research Database (Denmark)
Engell-Nørregård, Morten Pol; Erleben, Kenny
We present a method for simulating the active contraction of deformable models, usable for interactive animation of soft deformable objects. We present a novel physical principle as the governing equation for the coupling between the low dimensional 1D activation force model and the higher...
Piecewise linear regression splines with hyperbolic covariates
International Nuclear Information System (INIS)
Cologne, John B.; Sposto, Richard
1992-09-01
Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)
Quadrotor system identification using the multivariate multiplex b-spline
Visser, T.; De Visser, C.C.; Van Kampen, E.J.
2015-01-01
A novel method for aircraft system identification is presented that is based on a new multivariate spline type; the multivariate multiplex B-spline. The multivariate multiplex B-spline is a generalization of the recently introduced tensor-simplex B-spline. Multivariate multiplex splines obtain
Characterizing vaccine-associated risks using cubic smoothing splines.
Brookhart, M Alan; Walker, Alexander M; Lu, Yun; Polakowski, Laura; Li, Jie; Paeglow, Corrie; Puenpatom, Tosmai; Izurieta, Hector; Daniel, Gregory W
2012-11-15
Estimating risks associated with the use of childhood vaccines is challenging. The authors propose a new approach for studying short-term vaccine-related risks. The method uses a cubic smoothing spline to flexibly estimate the daily risk of an event after vaccination. The predicted incidence rates from the spline regression are then compared with the expected rates under a log-linear trend that excludes the days surrounding vaccination. The 2 models are then used to estimate the excess cumulative incidence attributable to the vaccination during the 42-day period after vaccination. Confidence intervals are obtained using a model-based bootstrap procedure. The method is applied to a study of known effects (positive controls) and expected noneffects (negative controls) of the measles, mumps, and rubella and measles, mumps, rubella, and varicella vaccines among children who are 1 year of age. The splines revealed well-resolved spikes in fever, rash, and adenopathy diagnoses, with the maximum incidence occurring between 9 and 11 days after vaccination. For the negative control outcomes, the spline model yielded a predicted incidence more consistent with the modeled day-specific risks, although there was evidence of increased risk of diagnoses of congenital malformations after vaccination, possibly because of a "provider visit effect." The proposed approach may be useful for vaccine safety surveillance.
Construction of local integro quintic splines
Directory of Open Access Journals (Sweden)
T. Zhanlav
2016-06-01
Full Text Available In this paper, we show that the integro quintic splines can locally be constructed without solving any systems of equations. The new construction does not require any additional end conditions. By virtue of these advantages the proposed algorithm is easy to implement and effective. At the same time, the local integro quintic splines possess as good approximation properties as the integro quintic splines. In this paper, we have proved that our local integro quintic spline has superconvergence properties at the knots for the first and third derivatives. The orders of convergence at the knots are six (not five for the first derivative and four (not three for the third derivative.
Pourghasemi, Hamid Reza; Rossi, Mauro
2017-10-01
Landslides are identified as one of the most important natural hazards in many areas throughout the world. The essential purpose of this study is to compare general linear model (GLM), general additive model (GAM), multivariate adaptive regression spline (MARS), and modified analytical hierarchy process (M-AHP) models and assessment of their performances for landslide susceptibility modeling in the west of Mazandaran Province, Iran. First, landslides were identified by interpreting aerial photographs, and extensive field works. In total, 153 landslides were identified in the study area. Among these, 105 landslides were randomly selected as training data (i.e. used in the models training) and the remaining 48 (30 %) cases were used for the validation (i.e. used in the models validation). Afterward, based on a deep literature review on 220 scientific papers (period between 2005 and 2012), eleven conditioning factors including lithology, land use, distance from rivers, distance from roads, distance from faults, slope angle, slope aspect, altitude, topographic wetness index (TWI), plan curvature, and profile curvature were selected. The Certainty Factor (CF) model was used for managing uncertainty in rule-based systems and evaluation of the correlation between the dependent (landslides) and independent variables. Finally, the landslide susceptibility zonation was produced using GLM, GAM, MARS, and M-AHP models. For evaluation of the models, the area under the curve (AUC) method was used and both success and prediction rate curves were calculated. The evaluation of models for GLM, GAM, and MARS showed 90.50, 88.90, and 82.10 % for training data and 77.52, 70.49, and 78.17 % for validation data, respectively. Furthermore, The AUC value of the produced landslide susceptibility map using M-AHP showed a training value of 77.82 % and validation value of 82.77 % accuracy. Based on the overall assessments, the proposed approaches showed reasonable results for landslide
Spline methods for conversation equations
International Nuclear Information System (INIS)
Bottcher, C.; Strayer, M.R.
1991-01-01
The consider the numerical solution of physical theories, in particular hydrodynamics, which can be formulated as systems of conservation laws. To this end we briefly describe the Basis Spline and collocation methods, paying particular attention to representation theory, which provides discrete analogues of the continuum conservation and dispersion relations, and hence a rigorous understanding of errors and instabilities. On this foundation we propose an algorithm for hydrodynamic problems in which most linear and nonlinear instabilities are brought under control. Numerical examples are presented from one-dimensional relativistic hydrodynamics. 9 refs., 10 figs
quadratic spline finite element method
Directory of Open Access Journals (Sweden)
A. R. Bahadir
2002-01-01
Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.
Directory of Open Access Journals (Sweden)
Shu-Cherng Fang
2010-08-01
Full Text Available We compare univariate L1 interpolating splines calculated on 5-point windows, on 7-point windows and on global data sets using four different spline functionals, namely, ones based on the second derivative, the first derivative, the function value and the antiderivative. Computational results indicate that second-derivative-based 5-point-window L1 splines preserve shape as well as or better than the other types of L1 splines. To calculate second-derivative-based 5-point-window L1 splines, we introduce an analysis-based, parallelizable algorithm. This algorithm is orders of magnitude faster than the previously widely used primal affine algorithm.
Spline fitting for multi-set data
International Nuclear Information System (INIS)
Zhou Hongmo; Liu Renqiu; Liu Tingjin
1987-01-01
A spline fit method and program for multi-set data have been developed. Improvements have been made to have new functions: any order of spline as base, knot optimization and accurate calculation for error of fit value. The program has been used for practical evaluation of nuclear data
Deconinck, E; Zhang, M H; Petitet, F; Dubus, E; Ijjaali, I; Coomans, D; Vander Heyden, Y
2008-02-18
The use of some unconventional non-linear modeling techniques, i.e. classification and regression trees and multivariate adaptive regression splines-based methods, was explored to model the blood-brain barrier (BBB) passage of drugs and drug-like molecules. The data set contains BBB passage values for 299 structural and pharmacological diverse drugs, originating from a structured knowledge-based database. Models were built using boosted regression trees (BRT) and multivariate adaptive regression splines (MARS), as well as their respective combinations with stepwise multiple linear regression (MLR) and partial least squares (PLS) regression in two-step approaches. The best models were obtained using combinations of MARS with either stepwise MLR or PLS. It could be concluded that the use of combinations of a linear with a non-linear modeling technique results in some improved properties compared to the individual linear and non-linear models and that, when the use of such a combination is appropriate, combinations using MARS as non-linear technique should be preferred over those with BRT, due to some serious drawbacks of the BRT approaches.
Comparative Analysis for Robust Penalized Spline Smoothing Methods
Directory of Open Access Journals (Sweden)
Bin Wang
2014-01-01
Full Text Available Smoothing noisy data is commonly encountered in engineering domain, and currently robust penalized regression spline models are perceived to be the most promising methods for coping with this issue, due to their flexibilities in capturing the nonlinear trends in the data and effectively alleviating the disturbance from the outliers. Against such a background, this paper conducts a thoroughly comparative analysis of two popular robust smoothing techniques, the M-type estimator and S-estimation for penalized regression splines, both of which are reelaborated starting from their origins, with their derivation process reformulated and the corresponding algorithms reorganized under a unified framework. Performances of these two estimators are thoroughly evaluated from the aspects of fitting accuracy, robustness, and execution time upon the MATLAB platform. Elaborately comparative experiments demonstrate that robust penalized spline smoothing methods possess the capability of resistance to the noise effect compared with the nonrobust penalized LS spline regression method. Furthermore, the M-estimator exerts stable performance only for the observations with moderate perturbation error, whereas the S-estimator behaves fairly well even for heavily contaminated observations, but consuming more execution time. These findings can be served as guidance to the selection of appropriate approach for smoothing the noisy data.
Sala, Carole; Morignat, Eric; Ducrot, Christian; Calavas, Didier
2009-07-01
An age-period-cohort (APC) analysis was used to assess the trend in prevalence of bovine spongiform encephalopathy (BSE) in France over time in relation to the control measures adopted since onset of the epidemic. Restricted cubic regression splines were used to model the functional forms of the non-linear effects of age at screening, birth cohort and date of diagnosis of the tested animals. The data of the 2001-2007 period of surveillance was analysed using 1-year categorisation. A categorical analysis was performed as control to check the accuracy of the sets of knots in the spline models, which were selected according to the Akaike Information Criterion (AIC). Knot selection was based on a priori knowledge of the disease and the dates of implementation of the five main BSE control measures. It was assumed that disease prevalence was a function of exposure to BSE and that changes in the exposure of cattle to BSE were mainly due to the control measures. The effects of the five main control measures were discussed in relation to the trend in BSE risk for the successive birth cohorts. The six selected models confirmed that all measures participated in disease control. However, characterization of the respective effect of individual measures was not straightforward due to the very low disease prevalence, incompletely tested cohorts and probably cumulative and overlapping effects of successive measures. The ban of importation of meat and bone meal (MBM) from the UK and the ban of use of MBM in bovines were insufficient to control the epidemic. The decline in the BSE epidemic more likely originated from implementation of the ban of MBM use in all ruminants in 1994, whose effect was probably reinforced by the evolution in perception of the BSE risk following evidence of BSE transmission to humans. Finally, the respective effects of the last two measures (prohibition of the use of specific risk material in 1996 and total MBM ban in 2000) could not be characterized as
Mars, High-Resolution Digital Terrain Model Quadrangles on the Basis of Mars-Express HRSC Data
Dumke, A.; Spiegel, M.; van Gasselt, S.; Neu, D.; Neukum, G.
2010-05-01
Introduction: Since December 2003, the European Space Agency's (ESA) Mars Express (MEX) orbiter has been investigating Mars. The High Resolution Stereo Camera (HRSC), one of the scientific experiments onboard MEX, is a pushbroom stereo color scanning instrument with nine line detectors, each equipped with 5176 CCD sensor elements [1,2]. One of the goals for MEX HRSC is to cover Mars globally in color and stereoscopically at high-resolution. So far, HRSC has covered half of the surface of Mars at a resolution better than 20 meters per pixel. HRSC data allows to derive high-resolution digital terrain models (DTM), color-orthoimage mosaics and additionally higher-level 3D data products. Past work concentrated on producing regional data mosaics for areas of scientific interest in a single strip and/or bundle block adjustment and deriving DTMs [3]. The next logical step, based on substantially the same procedure, is to systematically expand the derivation of DTMs and orthoimage data to the 140 map quadrangle scheme (Q-DTM). Methods: The division of the Mars surface into 140 quadrangles is briefly described in Greeley and Batson [4] and based upon the standard MC 30 (Mars Chart) system. The quadrangles are named by alpha-numerical labels. The workflow for the determination of new orientation data for the derivation of digital terrain models takes place in two steps. First, for each HRSC orbits covering a quadrangle, new exterior orientation parameters are determined [5,6]. The successfully classified exterior orientation parameters become the input for the next step in which the exterior orientation parameters are determined together in a bundle block adjustment. Only those orbit strips which have a sufficient overlap area and a certain number of tie points can be used in a common bundle block adjustment. For the automated determination of tie points, software provided by the Leibniz Universität Hannover [7] is used. Results: For the derivation of Q-DTMs and ortho
Smith, Michael D.; Daerden, Frank; Neary, Lori; Khayat, Alain
2018-02-01
Radiative transfer modeling of near-infrared spectra taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument onboard Mars Reconnaissance Orbiter (MRO) enables the column-integrated abundance of carbon monoxide (CO) and water vapor (H2O) to be retrieved. These results provide a detailed global description of the seasonal and spatial distribution of CO in the Mars atmosphere and new information about the interannual variability of H2O. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be near 800 ppm, but with strong seasonal variations, especially at high latitudes. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure and shows little variation with topography. At high latitudes, carbon monoxide is depleted in the summer hemisphere by a factor of two or more, while in the winter hemisphere there is relatively higher mixing ratio in regions with low-lying topography. Water vapor shows only modest interannual variations, with the largest observed difference being unusually dry conditions in the wake of the Mars Year 28 global dust storm. Modeling results from the GEM-Mars general circulation model generally reproduce the observed seasonal and spatial trends and provide insight into the underlying physical processes.
Directory of Open Access Journals (Sweden)
Saira Esar Esar
2017-06-01
Full Text Available Cubic splines are commonly used for capturing the changes in economic analysis. This is because of the fact that traditional regression including polynomial regression fail to capture the underlying changes in the corresponding response variables. Moreover, these variables do not change monotonically, i.e. there are discontinuities in the trend of these variables over a period of time. The objective of this research is to explain the movement of under-five child mortality in Pakistan over the past few decades through a combination of statistical techniques. While cubic splines explain the movement of under-five child mortality to a large extent, we cannot deny the possibility that splines with fractional powers might better explain the underlying movement. . Hence, we estimated the value of fractional power by nonlinear regression method and used it to develop the fractional splines. Although, the fractional spline model may have the potential to improve upon the cubic spline model, it does not demonstrate a real improvement in results of this case, but, perhaps, with a different data set.
Model of transcriptional activation by MarA in escherichia coli
Energy Technology Data Exchange (ETDEWEB)
Wall, Michael E [Los Alamos National Laboratory; Rosner, Judah L [NATIONAL INSTITUTE OF HEALTH; Martin, Robert G [NATIONAL INSTITUTE OF HEALTH
2009-01-01
The AraC family transcription factor MarA activates approximately 40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of correspondence, we developed a computational model of transcriptional activation in which a transcription factor either increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment. These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond.
Kinetic Modeling of Mineral Sequences on Early Mars Using Fully Open Systems
Uceda, E. R.; Fairén, A. G.; Gil-Lozano, C.; Losa-Adams, E.; Gago-Duport, L.
2017-10-01
We model the formation of mineral sequences known to exist on Mars considering open system conditions both at the atmosphere-water and water-rock interfaces, and implementing a kinetic approach for the dissolution and precipitation of solid phases.
Higher-order numerical solutions using cubic splines. [for partial differential equations
Rubin, S. G.; Khosla, P. K.
1975-01-01
A cubic spline collocation procedure has recently been developed for the numerical solution of partial differential equations. In the present paper, this spline procedure is reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy for a non-uniform mesh and overall fourth-order accuracy for a uniform mesh. Solutions using both spline procedures, as well as three-point finite difference methods, will be presented for several model problems.-
Numerical modeling of wind-blown sand on Mars.
Huang, HaoJie; Bo, TianLi; Zheng, XiaoJing
2014-09-01
Recent observation results show that sand ripples and dunes are movable like those on Earth under current Martian climate. And the aeolian process on Mars therefore is re-attracting the eyes of scientific researchers in different fields. In this paper, the spatial and temporal evolution of wind-blown sand on Mars is simulated by the large-eddy simulation method. The simulations are conducted under the conditions of both friction wind speed higher and lower than the "fluid threshold", respectively. The fluid entrainment of the sand particles, the processes among saltation sand particles and sand bed, and the negative feedback of sand movement to flow field are considered. Our results show that the "overshoot" phenomenon also exists in the evolution of wind-blown sand on Mars both temporally and spatially; impact entrainment affects the sand transport rate on Mars when the wind speed is smaller or larger than the fluid threshold; and both the average saltation length and height are one order of magnitudes larger than those on Earth. Eventually, the formulas describing the sand transport rate, average saltation length and height on Mars are given, respectively.
Xu, A; Zhang, Y; Ran, T; Liu, H; Lu, S; Xu, J; Xiong, X; Jiang, Y; Lu, T; Chen, Y
2015-01-01
Bruton's tyrosine kinase (BTK) plays a crucial role in B-cell activation and development, and has emerged as a new molecular target for the treatment of autoimmune diseases and B-cell malignancies. In this study, two- and three-dimensional quantitative structure-activity relationship (2D and 3D-QSAR) analyses were performed on a series of pyridine and pyrimidine-based BTK inhibitors by means of genetic algorithm optimized multivariate adaptive regression spline (GA-MARS) and comparative molecular similarity index analysis (CoMSIA) methods. Here, we propose a modified MARS algorithm to develop 2D-QSAR models. The top ranked models showed satisfactory statistical results (2D-QSAR: Q(2) = 0.884, r(2) = 0.929, r(2)pred = 0.878; 3D-QSAR: q(2) = 0.616, r(2) = 0.987, r(2)pred = 0.905). Key descriptors selected by 2D-QSAR were in good agreement with the conclusions of 3D-QSAR, and the 3D-CoMSIA contour maps facilitated interpretation of the structure-activity relationship. A new molecular database was generated by molecular fragment replacement (MFR) and further evaluated with GA-MARS and CoMSIA prediction. Twenty-five pyridine and pyrimidine derivatives as novel potential BTK inhibitors were finally selected for further study. These results also demonstrated that our method can be a very efficient tool for the discovery of novel potent BTK inhibitors.
Seismic model of Mars. 2. Free oscillations and travel times
Gudkova, Tamara; Lognonne, Philippe; Raevskiy, Sergey; Zharkov, Vladimir
When constructing an interior structure model of a planet, it is common used method to describe the model by a restricted set of parameters: the thickness of the crust, the location of phase transitions, the core radius. The variation of these parameters originates from the uncertainties in temperature profile, composition, elastic and anelastic properties of relevant minerals. Water content should also be considered as a compositional variable in the mantle. Olivine and its high pressure phases, wadsleyite and ringwoodite are particularly important as they constitute about 60 wt% of the Martian mantle and have probably large capacity for water in the Martian mantle (Zharkov and Gudkova, 2014). At present Mars’ internal density distribution is constrained by the recent estimates of the moment of inertia and the Love number k _{2} (Konoplive et al., 2011). Below we use the data from Earth studies and laboratory data (Mao et al., 2010, 2011, 2012,extrapolated for P-T conditions in Mars, and show how the admixture of water in the main Martian minerals influences velocity drops at phase transition boundaries in Martian interiors and study the effects of hydration on the periods of free oscillations and travel times for P, PcP, S, ScS waves , which could serve as additional constraints, if upcoming seismic experiments are successful, as they can potentially constrain mantle composition and make more precise the location of transition zones. It is of importance to determine the depth of the phase transitions in the mantle, as it will fix the temperature profile in Mars. Our analysis is based on a trial seismic model M14_3 from (Zharkov et al., 2009). The crust is 50 km thick (with density of 2.9 g/cm (3) ), the molar ratio Fe/(Fe+Mg) in the mantle is 0.20, the Fe-Ni core contains 70 mol % H in addition to 14 wt % S with radius of 1800 km. The bulk Fe/Si ratio is close to chondritic 1.7. The upper mantle extends down to 1590 km depth. Olivine-wadsleite transition zone
Desai, Pooja; Hauser, Dan; Sutherlin, Steven
2017-01-01
NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
Positivity Preserving Interpolation Using Rational Bicubic Spline
Directory of Open Access Journals (Sweden)
Samsul Ariffin Abdul Karim
2015-01-01
Full Text Available This paper discusses the positivity preserving interpolation for positive surfaces data by extending the C1 rational cubic spline interpolant of Karim and Kong to the bivariate cases. The partially blended rational bicubic spline has 12 parameters in the descriptions where 8 of them are free parameters. The sufficient conditions for the positivity are derived on every four boundary curves network on the rectangular patch. Numerical comparison with existing schemes also has been done in detail. Based on Root Mean Square Error (RMSE, our partially blended rational bicubic spline is on a par with the established methods.
Smoothing noisy spectroscopic data with many-knot spline method
Energy Technology Data Exchange (ETDEWEB)
Zhu, M.H. [Space Exploration Laboratory, Macau University of Science and Technology, Taipa, Macau (China)], E-mail: peter_zu@163.com; Liu, L.G.; Qi, D.X.; You, Z.; Xu, A.A. [Space Exploration Laboratory, Macau University of Science and Technology, Taipa, Macau (China)
2008-05-15
In this paper, we present the development of a many-knot spline method derived to remove the statistical noise in the spectroscopic data. This method is an expansion of the B-spline method. Compared to the B-spline method, the many-knot spline method is significantly faster.
Optimal Approximation of Biquartic Polynomials by Bicubic Splines
Directory of Open Access Journals (Sweden)
Kačala Viliam
2018-01-01
The goal of this paper is to resolve this problem. Unlike the spline curves, in the case of spline surfaces it is insufficient to suppose that the grid should be uniform and the spline derivatives computed from a biquartic polynomial. We show that the biquartic polynomial coefficients have to satisfy some additional constraints to achieve optimal approximation by bicubic splines.
An Open Modelling Approach for Availability and Reliability of Systems - OpenMARS
Penttinen, Jussi-Pekka; Gutleber, Johannes
2018-01-01
This document introduces and gives specification for OpenMARS, which is an open modelling approach for availability and reliability of systems. It supports the most common risk assessment and operation modelling techniques. Uniquely OpenMARS allows combining and connecting models defined with different techniques. This ensures that a modeller has a high degree of freedom to accurately describe the modelled system without limitations imposed by an individual technique. Here the OpenMARS model definition is specified with a tool independent tabular format, which supports managing models developed in a collaborative fashion. Origin of our research is in Future Circular Collider (FCC) study, where we developed the unique features of our concept to model the availability and luminosity production of particle colliders. We were motivated to describe our approach in detail as we see potential further applications in performance and energy efficiency analyses of large scientific infrastructures or industrial processe...
Description of the University of Auckland Global Mars Mesoscale Meteorological Model (GM4)
Wing, D. R.; Austin, G. L.
2005-08-01
The University of Auckland Global Mars Mesoscale Meteorological Model (GM4) is a numerical weather prediction model of the Martian atmosphere that has been developed through the conversion of the Penn State University / National Center for Atmospheric Research fifth generation mesoscale model (MM5). The global aspect of this model is self consistent, overlapping, and forms a continuous domain around the entire planet, removing the need to provide boundary conditions other than at initialisation, yielding independence from the constraint of a Mars general circulation model. The brief overview of the model will be given, outlining the key physical processes and setup of the model. Comparison between data collected from Mars Pathfinder during its 1997 mission and simulated conditions using GM4 have been performed. Diurnal temperature variation as predicted by the model shows very good correspondence with the surface truth data, to within 5 K for the majority of the diurnal cycle. Mars Viking Data is also compared with the model, with good agreement. As a further means of validation for the model, various seasonal comparisons of surface and vertical atmospheric structure are conducted with the European Space Agency AOPP/LMD Mars Climate Database. Selected simulations over regions of interest will also be presented.
Numerical treatment of Hunter Saxton equation using cubic trigonometric B-spline collocation method
Hashmi, M. S.; Awais, Muhammad; Waheed, Ammarah; Ali, Qutab
2017-09-01
In this article, authors proposed a computational model based on cubic trigonometric B-spline collocation method to solve Hunter Saxton equation. The nonlinear second order partial differential equation arises in modeling of nematic liquid crystals and describes some aspects of orientation wave. The problem is decomposed into system of linear equations using cubic trigonometric B-spline collocation method with quasilinearization. To show the efficiency of the proposed method, two numerical examples have been tested for different values of t. The results are described using error tables and graphs and compared with the results existed in literature. It is evident that results are in good agreement with analytical solution and better than Arbabi, Nazari, and Davishi, Optik 127, 5255-5258 (2016). In current problem, it is also observed that the cubic trigonometric B-spline gives better results as compared to cubic B-spline.
Biomechanical Analysis with Cubic Spline Functions
McLaughlin, Thomas M.; And Others
1977-01-01
Results of experimentation suggest that the cubic spline is a convenient and consistent method for providing an accurate description of displacement-time data and for obtaining the corresponding time derivatives. (MJB)
On convexity and Schoenberg's variation diminishing splines
International Nuclear Information System (INIS)
Feng, Yuyu; Kozak, J.
1992-11-01
In the paper we characterize a convex function by the monotonicity of a particular variation diminishing spline sequence. The result extends the property known for the Bernstein polynomial sequence. (author). 4 refs
Spline Variational Theory for Composite Bolted Joints
National Research Council Canada - National Science Library
Iarve, E
1997-01-01
.... Two approaches were implemented. A conventional mesh overlay method in the crack region to satisfy the crack face boundary conditions and a novel spline basis partitioning method were compared...
Uncertainty Quantification using Epi-Splines and Soft Information
2012-06-01
prediction of the behavior of constructed models of phenomena in physics, 1 biology, chemistry, ecology, engineered sytems , politics, etc. ... Results...spline framework being applied to one of the most common, yet most complex, systems known – the human body . Chapter 5 concludes the thesis by...complex a system known to man than that of the human body . The number of variables im- pacting the performance of one human over another in a given
Development of the MARS input model for Kori nuclear units 1 transient analyzer
International Nuclear Information System (INIS)
Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.
2004-11-01
KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1
P-Splines Using Derivative Information
Calderon, Christopher P.
2010-01-01
Time series associated with single-molecule experiments and/or simulations contain a wealth of multiscale information about complex biomolecular systems. We demonstrate how a collection of Penalized-splines (P-splines) can be useful in quantitatively summarizing such data. In this work, functions estimated using P-splines are associated with stochastic differential equations (SDEs). It is shown how quantities estimated in a single SDE summarize fast-scale phenomena, whereas variation between curves associated with different SDEs partially reflects noise induced by motion evolving on a slower time scale. P-splines assist in "semiparametrically" estimating nonlinear SDEs in situations where a time-dependent external force is applied to a single-molecule system. The P-splines introduced simultaneously use function and derivative scatterplot information to refine curve estimates. We refer to the approach as the PuDI (P-splines using Derivative Information) method. It is shown how generalized least squares ideas fit seamlessly into the PuDI method. Applications demonstrating how utilizing uncertainty information/approximations along with generalized least squares techniques improve PuDI fits are presented. Although the primary application here is in estimating nonlinear SDEs, the PuDI method is applicable to situations where both unbiased function and derivative estimates are available.
An enhanced splined saddle method
Ghasemi, S. Alireza; Goedecker, Stefan
2011-07-01
We present modifications for the method recently developed by Granot and Baer [J. Chem. Phys. 128, 184111 (2008)], 10.1063/1.2916716. These modifications significantly enhance the efficiency and reliability of the method. In addition, we discuss some specific features of this method. These features provide important flexibilities which are crucial for a double-ended saddle point search method in order to be applicable to complex reaction mechanisms. Furthermore, it is discussed under what circumstances this methods might fail to find the transition state and remedies to avoid such situations are provided. We demonstrate the performance of the enhanced splined saddle method on several examples with increasing complexity, isomerization of ammonia, ethane and cyclopropane molecules, tautomerization of cytosine, the ring opening of cyclobutene, the Stone-Wales transformation of the C60 fullerene, and finally rolling a small NaCl cube on NaCl(001) surface. All of these calculations are based on density functional theory. The efficiency of the method is remarkable in regard to the reduction of the total computational time.
Early Mars Climate Modeling and the Faint Young Sun Paradox.
Haberle, Robert M.
2015-01-01
Today Mars is a cold, dry, desert planet. Liquid water is not stable on its surface. There are no lakes, seas, or oceans, and precipitation falls as snowfall. Yet early in its history during the Noachian epoch, there is geological and mineralogical evidence that liquid water from rainfall flowed on its surface creating drainage systems, lakes, and - possibly - seas and oceans. More recent observations by Curiosity in Gale crater hint that such conditions may have persited into the Hesperian. The implication is that early Mars had a wamer climate than it does today as a result of a thicker atmosphere with a more powerful greenhouse effect capable of producing an active hydrological cycle with rainfall, runoff, and evaporation. Since Mariner 9 began accumulating such evidence, researchers have been trying to understand what kind of a climate system could have created greenhouse conditions favorable for liquid water. Unfortunately, the problem is not yet solved.
Acoustic Emission Signatures of Fatigue Damage in Idealized Bevel Gear Spline for Localized Sensing
Directory of Open Access Journals (Sweden)
Lu Zhang
2017-06-01
Full Text Available In many rotating machinery applications, such as helicopters, the splines of an externally-splined steel shaft that emerges from the gearbox engage with the reverse geometry of an internally splined driven shaft for the delivery of power. The splined section of the shaft is a critical and non-redundant element which is prone to cracking due to complex loading conditions. Thus, early detection of flaws is required to prevent catastrophic failures. The acoustic emission (AE method is a direct way of detecting such active flaws, but its application to detect flaws in a splined shaft in a gearbox is difficult due to the interference of background noise and uncertainty about the effects of the wave propagation path on the received AE signature. Here, to model how AE may detect fault propagation in a hollow cylindrical splined shaft, the splined section is essentially unrolled into a metal plate of the same thickness as the cylinder wall. Spline ridges are cut into this plate, a through-notch is cut perpendicular to the spline to model fatigue crack initiation, and tensile cyclic loading is applied parallel to the spline to propagate the crack. In this paper, the new piezoelectric sensor array is introduced with the purpose of placing them within the gearbox to minimize the wave propagation path. The fatigue crack growth of a notched and flattened gearbox spline component is monitored using a new piezoelectric sensor array and conventional sensors in a laboratory environment with the purpose of developing source models and testing the new sensor performance. The AE data is continuously collected together with strain gauges strategically positioned on the structure. A significant amount of continuous emission due to the plastic deformation accompanied with the crack growth is observed. The frequency spectra of continuous emissions and burst emissions are compared to understand the differences of plastic deformation and sudden crack jump. The
Testing for cubic smoothing splines under dependent data.
Nummi, Tapio; Pan, Jianxin; Siren, Tarja; Liu, Kun
2011-09-01
In most research on smoothing splines the focus has been on estimation, while inference, especially hypothesis testing, has received less attention. By defining design matrices for fixed and random effects and the structure of the covariance matrices of random errors in an appropriate way, the cubic smoothing spline admits a mixed model formulation, which places this nonparametric smoother firmly in a parametric setting. Thus nonlinear curves can be included with random effects and random coefficients. The smoothing parameter is the ratio of the random-coefficient and error variances and tests for linear regression reduce to tests for zero random-coefficient variances. We propose an exact F-test for the situation and investigate its performance in a real pine stem data set and by simulation experiments. Under certain conditions the suggested methods can also be applied when the data are dependent. © 2010, The International Biometric Society.
Placing Spline Knots in Neural Networks Using Splines as Activation Functions
Czech Academy of Sciences Publication Activity Database
Hlaváčková, Kateřina; Verleysen, M.
1997-01-01
Roč. 17, 3/4 (1997), s. 159-166 ISSN 0925-2312 R&D Projects: GA ČR GA201/93/0427; GA ČR GA201/96/0971 Keywords : cubic -spline function * approximation error * knots of spline function * feedforward neural network Impact factor: 0.422, year: 1997
Development of the MARS input model for Ulchin 3/4 transient analyzer
International Nuclear Information System (INIS)
Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Hwang, M. G.
2003-12-01
KAERI has been developing the NSSS transient analyzer based on best-estimate codes.The MARS and RETRAN code are adopted as the best-estimate codes for the NSSS transient analyzer. Among these two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the MARS input model requirements and the calculation note for the MARS input data generation (see the Appendix) for Ulchin 3/4 plant analyzer. In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 3/4
Michel, Volker
2013-01-01
Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author’s lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets. Methods for approximating functions on the real line are treated first, as they provide the foundations for the methods on the sphere and the ball and are useful for the analysis of time-dependent (spherical) problems. The author then examines the transfer of these spherical methods to problems on the ball, such as the modeling of the Earth’s or the brain’s interior. Specific topics covered include: * the advantages and disadvantages of Fourier, spline, and wavelet methods * theory and numerics of orthogonal polynomials on intervals, spheres, and balls * cubic splines and splines based on reproducing kernels * multiresolution analysis using wavelet...
Global Reference Atmospheric Models, Including Thermospheres, for Mars, Venus and Earth
Justh, Hilary L.; Justus, C. G.; Keller, Vernon W.
2006-01-01
This document is the viewgraph slides of the presentation. Marshall Space Flight Center's Natural Environments Branch has developed Global Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other solar system destinations. Mars-GRAM has been widely used for engineering applications including systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Preliminary results are presented, comparing Mars-GRAM with measurements from Mars Reconnaissance Orbiter (MRO) during its aerobraking in Mars thermosphere. Venus-GRAM is based on the Committee on Space Research (COSPAR) Venus International Reference Atmosphere (VIRA), and is suitable for similar engineering applications in the thermosphere or other altitude regions of the atmosphere of Venus. Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In addition to including an updated version of MET, it now includes an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model. Some characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also presented.
Valles Marineris, Mars: High-Resolution Digital Terrain Model on the basis of Mars-Express HRSC data
Dumke, A.; Spiegel, M.; van Gasselt, S.; Neukum, G.
2009-04-01
Introduction: Since December 2003, the European Space Agency's (ESA) Mars Express (MEX) orbiter has been investigating Mars. The High Resolution Stereo Camera (HRSC), one of the scientific experiments onboard MEX, is a pushbroom stereo color scanning instrument with nine line detectors, each equipped with 5176 CCD sensor elements. Five CCD lines operate with panchromatic filters and four lines with red, green, blue and infrared filters at different observation angles [1]. MEX has a highly elliptical near-polar orbit and reaches a distance of 270 km at periapsis. Ground resolution of image data predominantly varies with respect to spacecraft altitude and the chosen macro-pixel format. Usually, although not exclusively, the nadir channel provides full resolution of up to 10 m per pixel. Stereo-, photometry and color channels generally have a coarser resolution. One of the goals for MEX HRSC is to cover Mars globally in color and stereoscopically at high-resolution. So far, HRSC has covered almost half of the surface of Mars at a resolution better than 20 meters per pixel. Such data are utilized to derive high resolution digital terrain models (DTM), ortho-image mosaics and additionally higher-level 3D data products such as 3D views. Standardized high-resolution single-strip digital terrain models (using improved orientation data) have been derived at the German Aerospace Center (DLR) in Berlin-Adlershof [2]. Those datasets, i.e. high-resolution digital terrain models as well as ortho-image data, are distributed as Vicar image files (http://www-mipl.jpl.nasa.gov/external/vicar.html) via the HRSCview web-interface [3], accessible at http://hrscview.fu-berlin.de. A systematic processing workflow is described in detail in [4,5]. In consideration of the scientific interest, the processing of the Valles Marineris region will be discussed in this paper. The DTM mosaic was derived from 82 HRSC orbits at approximately -22° S to 1° N and 250° to 311° E. Methods: Apart from
MARS code manual volume I: code structure, system models, and solution methods
International Nuclear Information System (INIS)
Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Yoon, Churl
2010-02-01
Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible
Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking
Dec, John A.; Gasbarre, Joseph F.; Amundsen, Ruth M.
2007-01-01
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.
Mars Colony in situ resource utilization: An integrated architecture and economics model
Shishko, Robert; Fradet, René; Do, Sydney; Saydam, Serkan; Tapia-Cortez, Carlos; Dempster, Andrew G.; Coulton, Jeff
2017-09-01
This paper reports on our effort to develop an ensemble of specialized models to explore the commercial potential of mining water/ice on Mars in support of a Mars Colony. This ensemble starts with a formal systems architecting framework to describe a Mars Colony and capture its artifacts' parameters and technical attributes. The resulting database is then linked to a variety of ;downstream; analytic models. In particular, we integrated an extraction process (i.e., ;mining;) model, a simulation of the colony's environmental control and life support infrastructure known as HabNet, and a risk-based economics model. The mining model focuses on the technologies associated with in situ resource extraction, processing, storage and handling, and delivery. This model computes the production rate as a function of the systems' technical parameters and the local Mars environment. HabNet simulates the fundamental sustainability relationships associated with establishing and maintaining the colony's population. The economics model brings together market information, investment and operating costs, along with measures of market uncertainty and Monte Carlo techniques, with the objective of determining the profitability of commercial water/ice in situ mining operations. All told, over 50 market and technical parameters can be varied in order to address ;what-if; questions, including colony location.
The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling
Mischna, M.; Piqueux, S.
2017-12-01
On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may
A smoothing algorithm using cubic spline functions
Smith, R. E., Jr.; Price, J. M.; Howser, L. M.
1974-01-01
Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.
Thick plate flexure. [for lithospheric models of Mars and earth
Comer, R. P.
1983-01-01
Analytical expressions are derived for the displacements and stresses due to loading of a floating, uniform, elastic plate of arbitrary thickness by a plane or axisymmetric harmonic load. The solution is exact except for assumptions of small strains and linear boundary conditions, and gravitation within the plate is neglected. For typical earth parameters its predictions are comparable to those of the usual thin plate theory frequently assumed in studies of lithospheric flexure, gravity and regional isostasy. Even for a very thick lithosphere, which may exist in some regions of Mars, the thin plate theory is a better approximation to the thick plate solution than the elastic half-space limit, except for short-wavelength loads.
Scripted Bodies and Spline Driven Animation
DEFF Research Database (Denmark)
Erleben, Kenny; Henriksen, Knud
2002-01-01
In this paper we will take a close look at the details and technicalities in applying spline driven animation to scripted bodies in the context of dynamic simulation. The main contributions presented in this paper are methods for computing velocities and accelerations in the time domain of the sp......In this paper we will take a close look at the details and technicalities in applying spline driven animation to scripted bodies in the context of dynamic simulation. The main contributions presented in this paper are methods for computing velocities and accelerations in the time domain...
Dimitrova, L. L.; Haines, M.; Holt, W. E.; Schultz, R. A.; Richard, G.; Haines, A. J.
2006-12-01
Interactive maps of surface-breaking faults and stress models on Mars provide important tools to engage undergraduate students, educators, and scientists with current geological and geophysical research. We have developed a map based on the Google Maps API -- an Internet based tool combining DHTML and AJAX, -- which allows very large maps to be viewed over the World Wide Web. Typically, small portions of the maps are downloaded as needed, rather than the entire image at once. This set-up enables relatively fast access for users with low bandwidth. Furthermore, Google Maps provides an extensible interactive interface making it ideal for visualizing multiple data sets at the user's choice. The Google Maps API works primarily with data referenced to latitudes and longitudes, which is then mapped in Mercator projection only. We have developed utilities for general cylindrical coordinate systems by converting these coordinates into equivalent Mercator projection before including them on the map. The MARTIAN project is available at http://rock.geo.sunysb.edu/~holt/Mars/MARTIAN/. We begin with an introduction to the Martian surface using a topography model. Faults from several datasets are classified by type (extension vs. compression) and by time epoch. Deviatoric stresses due to gravitational potential energy differences, calculated from the topography and crustal thickness, can be overlain. Several quantitative measures for the fit of the stress field to the faults are also included. We provide introductory text and exercises spanning a range of topics: how are faults identified, what stress is and how it relates to faults, what gravitational potential energy is and how variations in it produce stress, how the models are created, and how these models can be evaluated and interpreted. The MARTIAN tool is used at Stony Brook University in GEO 310: Introduction to Geophysics, a class geared towards junior and senior geosciences majors. Although this project is in its
Schwarz and multilevel methods for quadratic spline collocation
Energy Technology Data Exchange (ETDEWEB)
Christara, C.C. [Univ. of Toronto, Ontario (Canada); Smith, B. [Univ. of California, Los Angeles, CA (United States)
1994-12-31
Smooth spline collocation methods offer an alternative to Galerkin finite element methods, as well as to Hermite spline collocation methods, for the solution of linear elliptic Partial Differential Equations (PDEs). Recently, optimal order of convergence spline collocation methods have been developed for certain degree splines. Convergence proofs for smooth spline collocation methods are generally more difficult than for Galerkin finite elements or Hermite spline collocation, and they require stronger assumptions and more restrictions. However, numerical tests indicate that spline collocation methods are applicable to a wider class of problems, than the analysis requires, and are very competitive to finite element methods, with respect to efficiency. The authors will discuss Schwarz and multilevel methods for the solution of elliptic PDEs using quadratic spline collocation, and compare these with domain decomposition methods using substructuring. Numerical tests on a variety of parallel machines will also be presented. In addition, preliminary convergence analysis using Schwarz and/or maximum principle techniques will be presented.
Development of the MARS input model for Ulchin 1/2 transient analyzer
International Nuclear Information System (INIS)
Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.
2003-03-01
KAERI has been developing the NSSS transient analyzer based on best-estimate codes for Ulchin 1/2 plants. The MARS and RETRAN code are used as the best-estimate codes for the NSSS transient analyzer. Among the two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the input model requirements and the calculation note for the Ulchin 1/2 MARS input data generation (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 1/2
Gravity Aided Navigation Precise Algorithm with Gauss Spline Interpolation
Directory of Open Access Journals (Sweden)
WEN Chaobin
2015-01-01
Full Text Available The gravity compensation of error equation thoroughly should be solved before the study on gravity aided navigation with high precision. A gravity aided navigation model construction algorithm based on research the algorithm to approximate local grid gravity anomaly filed with the 2D Gauss spline interpolation is proposed. Gravity disturbance vector, standard gravity value error and Eotvos effect are all compensated in this precision model. The experiment result shows that positioning accuracy is raised by 1 times, the attitude and velocity accuracy is raised by 1～2 times and the positional error is maintained from 100~200 m.
Modeling Proton- and Light Ion-Induced Reactions at Low Energies in the MARS15 Code
Energy Technology Data Exchange (ETDEWEB)
Rakhno, I. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gudima, K. K. [National Academy of Sciences, Cisineu (Moldova)
2015-04-25
An implementation of both ALICE code and TENDL evaluated nuclear data library in order to describe nuclear reactions induced by low-energy projectiles in the Monte Carlo code MARS15 is presented. Comparisons between results of modeling and experimental data on reaction cross sections and secondary particle distributions are shown.
Components of Mathematics Anxiety: Factor Modeling of the MARS30-Brief
Pletzer, Belinda; Wood, Guilherme; Scherndl, Thomas; Kerschbaum, Hubert H.; Nuerk, Hans-Christoph
2016-01-01
Mathematics anxiety involves feelings of tension, discomfort, high arousal, and physiological reactivity interfering with number manipulation and mathematical problem solving. Several factor analytic models indicate that mathematics anxiety is rather a multidimensional than unique construct. However, the factor structure of mathematics anxiety has not been fully clarified by now. This issue shall be addressed in the current study. The Mathematics Anxiety Rating Scale (MARS) is a reliable measure of mathematics anxiety (Richardson and Suinn, 1972), for which several reduced forms have been developed. Most recently, a shortened version of the MARS (MARS30-brief) with comparable reliability was published. Different studies suggest that mathematics anxiety involves up to seven different factors. Here we examined the factor structure of the MARS30-brief by means of confirmatory factor analysis. The best model fit was obtained by a six-factor model, dismembering the known two general factors “Mathematical Test Anxiety” (MTA) and “Numerical Anxiety” (NA) in three factors each. However, a more parsimonious 5-factor model with two sub-factors for MTA and three for NA fitted the data comparably well. Factors were differentially susceptible to sex differences and differences between majors. Measurement invariance for sex was established. PMID:26924996
Energetic protons at Mars. Interpretation of SLED/Phobos-2 observations by a kinetic model
Energy Technology Data Exchange (ETDEWEB)
Kallio, E.; Alho, M.; Jarvinen, R.; Dyadechkin, S. [Finnish Meteorological Institute, Helsinki (Finland); McKenna-Lawlor, S. [Space Technology Ireland, Maynooth, Co. Kildare (Ireland); Afonin, V.V. [Space Research Institute, Moscow (Russian Federation)
2012-07-01
Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs) from the Sun can penetrate close to the planet (under some circumstances reaching the surface). On 13 March 1989 the SLED instrument aboard the Phobos- 2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8RM). In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3- D self-consistent hybrid model (HYB-Mars) where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1) a flux enhancement near the inbound bow shock, (2) the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3) the energy dependency of the flux enhancement near the bow shock and (4) how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars-solar wind interaction significantly modulated the Martian energetic particle environment. (orig.)
Dust Storm Prediction with the Auckland Mars Mesoscale Model GM4
Walter, C.; Austin, G. L.
2008-11-01
The University of Auckland Global Mars Mesoscale Meteorological Model (GM4) has been used to study the annual variation of the weather in two study sites in order to find a correlation between local atmospheric conditions and the occurrence of local dust storms.
Gap Conductance model Validation in the TASS/SMR-S code using MARS code
International Nuclear Information System (INIS)
Ahn, Sang Jun; Yang, Soo Hyung; Chung, Young Jong; Lee, Won Jae
2010-01-01
Korea Atomic Energy Research Institute (KAERI) has been developing the TASS/SMR-S (Transient and Setpoint Simulation/Small and Medium Reactor) code, which is a thermal hydraulic code for the safety analysis of the advanced integral reactor. An appropriate work to validate the applicability of the thermal hydraulic models within the code should be demanded. Among the models, the gap conductance model which is describes the thermal gap conductivity between fuel and cladding was validated through the comparison with MARS code. The validation of the gap conductance model was performed by evaluating the variation of the gap temperature and gap width as the changed with the power fraction. In this paper, a brief description of the gap conductance model in the TASS/SMR-S code is presented. In addition, calculated results to validate the gap conductance model are demonstrated by comparing with the results of the MARS code with the test case
The use of splines to analyze scanning tunneling microscopy data
Wormeester, Herbert; Kip, Gerhardus A.M.; Sasse, A.G.B.M.; van Midden, H.J.P.
1990-01-01
Scanning tunneling microscopy (STM) requires a two‐dimensional (2D) image displaying technique for its interpretation. The flexibility and global approximation properties of splines, characteristic of a solid data reduction method as known from cubic spline interpolation, is called for. Splines were
Predictors of anemia after bariatric surgery using multivariate adaptive regression splines.
Lee, Yi-Chih; Lee, Tian-Shyug; Lee, Wei-Jei; Lin, Yang-Chu; Lee, Chia-Ko; Liew, Phui-Ly
2012-01-01
Anemia is the most common nutritional deficiency after bariatric surgery. The predictors of anemia have not been clearly identified. This issue is useful for selecting an appropriate surgery procedure for morbid obesity. From December 2000 to October 2007, a retrospective study of 442 obese patients after bariatric surgery with two years' follow-up data was conducted. Anemia was defined by hemoglobin (Hb) under 13mg/dL in male and 11.5mg/dL in female. We analyzed the clinical information and laboratory data during the initial evaluation of patients referred to bariatric surgery for predictors of anemia development after surgery. All data were analyzed by using multivariate adaptive regression splines (MARS) method. Of the patients, the mean age was 30.8±8.6 years; mean BMI was 40.7±7.8kg/m2 and preoperative mean hemoglobin (Hb) was 13.7±1.5g/ dL. The prevalence of anemia increased from preoperatively 5.4% to 38.0% two years after surgery. Mean Hb was significantly lower in patients receiving gastric bypass than in restrictive type surgery (11.9mg/dL vs. 13.1mg/dL, p=0.040) two years after surgery. Besides, the preoperative optimal value of hemoglobin to predict future anemia in MARS model is 15.6mg/dL. The prevalence of anemia increased to 38.0% two years after bariatric surgery. We obtained an optimal preoperative value of hemoglobin 15.6mg/dL to predict postoperative anemia, which was important in preoperative assessment for bariatric surgery. Patients undergone gastric bypass surgery developed more severe anemia than gastric banding or sleeve gastrectomy.
Smoothing two-dimensional Malaysian mortality data using P-splines indexed by age and year
Kamaruddin, Halim Shukri; Ismail, Noriszura
2014-06-01
Nonparametric regression implements data to derive the best coefficient of a model from a large class of flexible functions. Eilers and Marx (1996) introduced P-splines as a method of smoothing in generalized linear models, GLMs, in which the ordinary B-splines with a difference roughness penalty on coefficients is being used in a single dimensional mortality data. Modeling and forecasting mortality rate is a problem of fundamental importance in insurance company calculation in which accuracy of models and forecasts are the main concern of the industry. The original idea of P-splines is extended to two dimensional mortality data. The data indexed by age of death and year of death, in which the large set of data will be supplied by Department of Statistics Malaysia. The extension of this idea constructs the best fitted surface and provides sensible prediction of the underlying mortality rate in Malaysia mortality case.
Updates on Modeling the Water Cycle with the NASA Ames Mars Global Climate Model
Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Montmessin, F.; Brecht, A. S.; Urata, R.; Klassen, D. R.; Wolff, M. J.
2017-01-01
Global Circulation Models (GCMs) have made steady progress in simulating the current Mars water cycle. It is now widely recognized that clouds are a critical component that can significantly affect the nature of the simulated water cycle. Two processes in particular are key to implementing clouds in a GCM: the microphysical processes of formation and dissipation, and their radiative effects on heating/ cooling rates. Together, these processes alter the thermal structure, change the dynamics, and regulate inter-hemispheric transport. We have made considerable progress representing these processes in the NASA Ames GCM, particularly in the presence of radiatively active water ice clouds. We present the current state of our group's water cycle modeling efforts, show results from selected simulations, highlight some of the issues, and discuss avenues for further investigation.
Finite Element Modeling and Analysis of Mars Entry Aeroshell Baseline Concept
Ahmed, Samee W.; Lane, Brittney M.
2017-01-01
The structure that is developed and analyzed in this project must be able to survive all the various load conditions that it will encounter along its course to Mars with the minimal amount of weight and material. At this stage, the goal is to study the capability of the structure using a finite element model (FEM). This FEM is created using a python script, and is numerically solved in Nastran. The purpose of the model is to achieve an optimization of mass given specific constraints on launch and entry. The generation and analysis of the baseline Rigid Mid-Range Lift to Drag Ratio Aeroshell model is a continuation and an improvement on previous work done for the FEM. The model is generated using Python programming with the axisymmetric placement of nodes for beam and shell elements. The shells are assigned a honeycomb sandwich material with an aluminum honeycomb core and composite face sheets, and the beams are assigned the same material as the shell face sheets. There are two load cases assigned to the model: Earth launch and Mars entry. The Earth launch case consists of pressure, gravity, and vibration loads, and the Mars entry case consists of just pressure and gravity loads. The Earth launch case was determined to be the driving case, though the analyses are performed for both cases to ensure the constraints are satisfied. The types of analysis performed with the model are design optimization, statics, buckling, normal modes, and frequency response, the last of which is only for the Earth launch load case. The final results indicated that all of the requirements are satisfied except the thermal limits, which could not yet be tested, and the normal modes for the Mars entry. However, the frequency limits during Mars entry are expected to be much higher than the lower frequency limits set for the analysis. In addition, there are still improvements that can be made in order to reduce the weight while still meeting all requirements.
Weighted thin-plate spline image denoising
Czech Academy of Sciences Publication Activity Database
Kašpar, Roman; Zitová, Barbara
2003-01-01
Roč. 36, č. 12 (2003), s. 3027-3030 ISSN 0031-3203 R&D Projects: GA ČR GP102/01/P065 Institutional research plan: CEZ:AV0Z1075907 Keywords : image denoising * thin-plate splines Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.611, year: 2003
South polar permanent CO2 ice cap presentation in the Global Mars Multiscale Model
Fazel-Rastgar, Farahnaz
2018-02-01
The atmospheric influence caused by the Martian permanent south CO2 ice cap is examined to improve the Global Mars Multiscale Model (GM3) to see if it can significantly improve the representation of south polar meteorology. However, the seasonal carbon dioxide ice in the polar regions is presented in the surface ice simulation by the Global Mars Multiscale Model but the model does not produce a permanent south CO2 ice cap, and the physics code must modify to capture the realistic physical such as ice process detail; probably makes a bias in terms of total CO2 ice and meteorological processes in the model aside from ice formation. The permanent south CO2 ice cap in the model can significantly improve the representation of south polar meteorology for example in predicted surface temperatures, surface pressures, horizontal and zonal winds over the south cap and possible initiation of dust storms at south polar region during the southern summer period.
Free web-based modelling platform for managed aquifer recharge (MAR) applications
Stefan, Catalin; Junghanns, Ralf; Glaß, Jana; Sallwey, Jana; Fatkhutdinov, Aybulat; Fichtner, Thomas; Barquero, Felix; Moreno, Miguel; Bonilla, José; Kwoyiga, Lydia
2017-04-01
Managed aquifer recharge represents a valuable instrument for sustainable water resources management. The concept implies purposeful infiltration of surface water into underground for later recovery or environmental benefits. Over decades, MAR schemes were successfully installed worldwide for a variety of reasons: to maximize the natural storage capacity of aquifers, physical aquifer management, water quality management, and ecological benefits. The INOWAS-DSS platform provides a collection of free web-based tools for planning, management and optimization of main components of MAR schemes. The tools are grouped into 13 specific applications that cover most relevant challenges encountered at MAR sites, both from quantitative and qualitative perspectives. The applications include among others the optimization of MAR site location, the assessment of saltwater intrusion, the restoration of groundwater levels in overexploited aquifers, the maximization of natural storage capacity of aquifers, the improvement of water quality, the design and operational optimization of MAR schemes, clogging development and risk assessment. The platform contains a collection of about 35 web-based tools of various degrees of complexity, which are either included in application specific workflows or used as standalone modelling instruments. Among them are simple tools derived from data mining and empirical equations, analytical groundwater related equations, as well as complex numerical flow and transport models (MODFLOW, MT3DMS and SEAWAT). Up to now, the simulation core of the INOWAS-DSS, which is based on the finite differences groundwater flow model MODFLOW, is implemented and runs on the web. A scenario analyser helps to easily set up and evaluate new management options as well as future development such as land use and climate change and compare them to previous scenarios. Additionally simple tools such as analytical equations to assess saltwater intrusion are already running online
T-Spline Based Unifying Registration Procedure for Free-Form Surface Workpieces in Intelligent CMM
Directory of Open Access Journals (Sweden)
Zhenhua Han
2017-10-01
Full Text Available With the development of the modern manufacturing industry, the free-form surface is widely used in various fields, and the automatic detection of a free-form surface is an important function of future intelligent three-coordinate measuring machines (CMMs. To improve the intelligence of CMMs, a new visual system is designed based on the characteristics of CMMs. A unified model of the free-form surface is proposed based on T-splines. A discretization method of the T-spline surface formula model is proposed. Under this discretization, the position and orientation of the workpiece would be recognized by point cloud registration. A high accuracy evaluation method is proposed between the measured point cloud and the T-spline surface formula. The experimental results demonstrate that the proposed method has the potential to realize the automatic detection of different free-form surfaces and improve the intelligence of CMMs.
Topographic influence on thermo-rheologic modeling of the lava flows of Daedalia Planum, Mars
Beauchamp, N.; Ramsey, M. S.
2017-12-01
Modeling of lava flow length relies on many factors including the relationship between the rheologic properties (e.g., yield strength, viscosity), mass eruption rate, erupted volume, and the topography over which it flows. In general, numerical modeling assumes that flows are either governed by the amount of erupted material (volume limited) or by the rate of heat loss (cooling limited), which determines their rheologic properties. One such cooling-limited model is FLOWGO, a 1-D thermo-rheologic approach developed to model open-channel lava flows. It uses the time averaged discharge rate (TADR) plus measurements of thickness and path slope to forecast the final flow length, defined as the point where the predicted velocity is equal to zero or the core temperature reaches the solidus. We have modified several of the model's input variables and assumed the rheologic properties of large basaltic flows on Earth, to make FLOWGO applicable to the Mars environment. The underlying slope of the flow path is one critical variable that is unknown for this older flow field, however the regional slope can be used as a proxy for pre-existing topography. Topographic data for Mars is provided by the Mars Orbiter Laser Altimeter (MOLA) instrument, which measured elevation with a vertical accuracy of 37.5 cm and horizontal accuracy of 100 m. Daedalia Planum, the region of Mars containing the flow field, is a plain that extends to the south of Arisa Mons volcano with an average slope of less than 0.5°. Results show that, in addition to the average slope, small variations in topography play an important role in the final flow length. For example, using the average slope of an assumed flow path produces modeled flows that are at least 10% longer than results using the measured slope variations. This work shows that interpolated gridded digital topographic data tend to smooth smaller-scale features, thus decreasing the final model accuracy.
Directory of Open Access Journals (Sweden)
Neng Wan
2014-01-01
Full Text Available In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.
Gearbox Reliability Collaborative Analytic Formulation for the Evaluation of Spline Couplings
Energy Technology Data Exchange (ETDEWEB)
Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Errichello, Robert [GEARTECH, Houston, TX (United States); Halse, Chris [Romax Technology, Nottingham (United Kingdom)
2013-12-01
Gearboxes in wind turbines have not been achieving their expected design life; however, they commonly meet and exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the down time associated with these failures, has elevated the cost of wind energy. The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliability using a combined approach of dynamometer testing, field testing, and modeling. As part of the GRC program, this paper investigates the design of the spline coupling often used in modern wind turbine gearboxes to connect the planetary and helical gear stages. Aside from transmitting the driving torque, another common function of the spline coupling is to allow the sun to float between the planets. The amount the sun can float is determined by the spline design and the sun shaft flexibility subject to the operational loads. Current standards address spline coupling design requirements in varying detail. This report provides additional insight beyond these current standards to quickly evaluate spline coupling designs.
Human Exploration of the Moon and Mars: Space Radiation Data, Modeling and Instrumentation Needs
Adams, James H.; Barghouty, A. F.; Bhattacharya, M.; Lin, Zi-Wei
2005-01-01
On January 14, 2004 President Bush announced the Vision for Space Exploration, a program for long-term human and robotic exploration of the solar system which will include a return of humans to the moon not later than 2020, followed by human missions to Mars. Since this announcement, NASA has been developing plans and mission architectures for these human missions as well as robotic precursor missions. Among the critical needs for research and development in support of this Vision are investigations on the ionizing radiation environment and development of instrumentation to guide NASA in managing the radiation exposure of the crew during the manned missions. For mission planning, models are needed for a reference worst-case solar energetic particle event and a reference worst-case galactic cosmic ray environment. During Lunar missions it will be necessary to carefully manage the radiation exposure of the crew in real time because of the variability of the radiation environment due to solar activity. In particular, prompt warnings will be needed when large solar energetic particle events occur. Accurate predictions will also be needed of the particle flux and flux history at the moon to support critical mission management decisions. A new generation of dosimeters and radiation monitors will also be needed to accompany the crew. These instruments must return data in real time so that they can be used in the critical decisions that must be made if a large solar energetic particle event occurs. This is especially true if it occurs during a lunar excursion. A substantial radiation exposure on extended lunar missions and Mars missions comes from galactic cosmic rays. This exposure must be mitigated by radiation shielding and other measures. During Mars missions the galactic cosmic ray exposure occurs primarily during the cruse phase between the Earth and Mars. This is especially true for opposition class missions. These missions would typically last -430 days with only
Hsu, Ming-Chen; Kamensky, David; Xu, Fei; Kiendl, Josef; Wang, Chenglong; Wu, Michael C H; Mineroff, Joshua; Reali, Alessandro; Bazilevs, Yuri; Sacks, Michael S
2015-06-01
This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.
Energetic protons at Mars: interpretation of SLED/Phobos-2 observations by a kinetic model
Directory of Open Access Journals (Sweden)
E. Kallio
2012-11-01
Full Text Available Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs from the Sun can penetrate close to the planet (under some circumstances reaching the surface. On 13 March 1989 the SLED instrument aboard the Phobos-2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8 RM. In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3-D self-consistent hybrid model (HYB-Mars where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1 a flux enhancement near the inbound bow shock, (2 the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3 the energy dependency of the flux enhancement near the bow shock and (4 how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars–solar wind interaction significantly modulated the Martian energetic particle environment.
Marion, G.M.; Crowley, J.K.; Thomson, B.J.; Kargel, J.S.; Bridges, N.T.; Hook, S.J.; Baldridge, A.; Brown, A.J.; Ribeiro da Luz, B.; de Souza, Filho C.R.
2009-01-01
Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron precipitates such as jarosite and hematite. Differences include: (1) the dominance of NaCl in many WA lakes, versus the dominance of Fe-Mg-Ca-SO4 in Meridiani Planum, (2) excessively low K
Some splines produced by smooth interpolation
Czech Academy of Sciences Publication Activity Database
Segeth, Karel
2018-01-01
Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www. science direct.com/ science /article/pii/S0096300317302746?via%3Dihub
Some splines produced by smooth interpolation
Czech Academy of Sciences Publication Activity Database
Segeth, Karel
2018-01-01
Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300317302746?via%3Dihub
Application of multivariate splines to discrete mathematics
Xu, Zhiqiang
2005-01-01
Using methods developed in multivariate splines, we present an explicit formula for discrete truncated powers, which are defined as the number of non-negative integer solutions of linear Diophantine equations. We further use the formula to study some classical problems in discrete mathematics as follows. First, we extend the partition function of integers in number theory. Second, we exploit the relation between the relative volume of convex polytopes and multivariate truncated powers and giv...
Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results
Plumlee, Geoffrey S.; Ridley, W. Ian
1992-01-01
Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.
Encouraging IS developers to learn business skills: an examination of the MARS model
Tsay, Han-Huei (Crystal)
2016-01-01
Though prior research has recognized business skills as one of the keys to successful information system development, few studies have investigated the determinants of an IS developer’s behavioral intention to learn such skills. Based on the Motivation–Ability–Role Perception–Situational factors (i.e., the MARS model), this study argues that the intention of IS developers to acquire business skills is influenced by learning motivation (M), learning self-efficacy (A), change agent role percept...
A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data
Barnes, J. R.
1993-01-01
Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.
Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging.
Proppert, Sven; Wolter, Steve; Holm, Thorge; Klein, Teresa; van de Linde, Sebastian; Sauer, Markus
2014-05-05
In recent years three-dimensional (3D) super-resolution fluorescence imaging by single-molecule localization (localization microscopy) has gained considerable interest because of its simple implementation and high optical resolution. Astigmatic and biplane imaging are experimentally simple methods to engineer a 3D-specific point spread function (PSF), but existing evaluation methods have proven problematic in practical application. Here we introduce the use of cubic B-splines to model the relationship of axial position and PSF width in the above mentioned approaches and compare the performance with existing methods. We show that cubic B-splines are the first method that can combine precision, accuracy and simplicity.
GA Based Rational cubic B-Spline Representation for Still Image Interpolation
Directory of Open Access Journals (Sweden)
Samreen Abbas
2016-12-01
Full Text Available In this paper, an image interpolation scheme is designed for 2D natural images. A local support rational cubic spline with control parameters, as interpolatory function, is being optimized using Genetic Algorithm (GA. GA is applied to determine the appropriate values of control parameter used in the description of rational cubic spline. Three state-of-the-art Image Quality Assessment (IQA models with traditional one are hired for comparison with existing image interpolation schemes and perceptual quality check of resulting images. The results show that the proposed scheme is better than the existing ones in comparison.
Marion, G. M.; Crowley, J. K.; Thomson, B. J.; Kargel, J. S.; Bridges, N. T.; Hook, S. J.; Baldridge, A.; Brown, A. J.; Ribeiro da Luz, B.; de Souza Filho, C. R.
2009-06-01
Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron precipitates such as jarosite and hematite. Differences include: (1) the dominance of NaCl in many WA lakes, versus the dominance of Fe-Mg-Ca-SO 4 in Meridiani Planum, (2) excessively low K + concentrations in Meridiani Planum due to jarosite precipitation, (3) higher acid production in the presence of high iron concentrations in Meridiani Planum, and probably lower rates of acid neutralization and hence, higher acidities on Mars owing to colder temperatures, and (4) lateral salt patterns in WA lakes. The WA playa lakes display significant lateral variations in mineralogy and water
TPSLVM: a dimensionality reduction algorithm based on thin plate splines.
Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming
2014-10-01
Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.
Chanthrasuwan, Maveeka; Asri, Nur Asreenawaty Mohd; Hamid, Nur Nadiah Abd; Majid, Ahmad Abd.; Azmi, Amirah
2017-08-01
The cubic B-spline and cubic trigonometric B-spline functions are used to set up the collocation in finding solutions for the Buckmaster equation. These splines are applied as interpolating functions in the spatial dimension while the finite difference method (FDM) is used to discretize the time derivative. The Buckmaster equation is linearized using Taylor's expansion and solved using two schemes, namely Crank-Nicolson and fully implicit. The von Neumann stability analysis is carried out on the two schemes and they are shown to be conditionally stable. In order to demonstrate the capability of the schemes, some problems are solved and compared with analytical and FDM solutions. The proposed methods are found to generate more accurate results than the FDM.
PSPLINE: Princeton Spline and Hermite cubic interpolation routines
McCune, Doug
2017-10-01
PSPLINE is a collection of Spline and Hermite interpolation tools for 1D, 2D, and 3D datasets on rectilinear grids. Spline routines give full control over boundary conditions, including periodic, 1st or 2nd derivative match, or divided difference-based boundary conditions on either end of each grid dimension. Hermite routines take the function value and derivatives at each grid point as input, giving back a representation of the function between grid points. Routines are provided for creating Hermite datasets, with appropriate boundary conditions applied. The 1D spline and Hermite routines are based on standard methods; the 2D and 3D spline or Hermite interpolation functions are constructed from 1D spline or Hermite interpolation functions in a straightforward manner. Spline and Hermite interpolation functions are often much faster to evaluate than other representations using e.g. Fourier series or otherwise involving transcendental functions.
Present-day heat flow and seismicity of Mars as predicted from convective thermal evolution models
Plesa, A.-C.; Tosi, N.; Knapmeyer, M.; Grott, M.; Breuer, D.; Golombek, M.; Wieczorek, M.; Spohn, T.
2017-09-01
The InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Discovery class mission, to be launched in 2018, will perform a comprehensive geophysical investigation of Mars using a seismometer and a heat flow probe as well as precision tracking. The seismic and heat flow data are ultimately important to constrain the present-day interior structure and heat budget of the planet, and, in turn, offer constraints on its thermal and chemical evolution. As the InSight lander will perform its measurements at a single location, in the Elysium Planitia region, numerical simulations of the dynamics of the interior can greatly help to interpret the data in a global context. In this study we present 3D numerical thermal evolution models of Mars and focus on the present-day state. Furthermore, we compare our results with available estimates of elastic lithosphere thickness and seismicity.
A mesoscale model study of atmospheric circulations for the northern hemisphere summer on Mars
Tyler, Daniel, Jr.
The Penn-State/NCAR MM5 mesoscale model was adapted for mesoscale simulations of the Martian atmosphere (the OSU MMM5). The NASA Ames Mars GCM provides initial and boundary conditions. High-resolution maps for albedo, thermal inertia and topography were developed from Mars Global Surveyor (MGS) data; these baseline maps are processed to appropriate resolutions for use in the GCM and the mesoscale model. The OSU MMM5 is validated in Chapter 2 by comparing with surface meteorology observed at the Viking Lander 1 (VL1) and Mars Pathfinder (MPF) landing sites. How the diurnal cycle of surface pressure (the surface pressure tide) is affected by boundaries, domain/nest choices and the resolution of surface properties (topography, albedo and thermal inertia) is examined. Chapter 2 additionally shows the influence of regional slope flows in the diurnal surface pressure cycle for certain locations on Mars. Building on the methods of Chapter 2, Chapter 3 describes the northern midsummer polar circulation and the circulations (both large and small scale) that influence it. Improvements to the model for these studies include: the topographical gradient is now considered when computing surface insolation, and the thermal inertia maps and model initialization are improved for high latitudes; this yields a realistic simulation of surface temperatures for the North Pole Residual Cap (NPRC) and the surrounding region. The midsummer polar circulation is vigorous, with abundant and dynamically important transient eddies. The preferred locations of transients varies significantly during this study, between L s = 120 and L s = 150. At L s = 120 transient circulations are seen primarily along the NPRC margin, consistently producing strong flow over the residual cap (~15 m/s). By L s = 135, transient eddies form a "storm track" between the northern slopes of Tharsis and the NPRC. By L s = 150, the circulation is becoming strong and winter-like. These transient eddies may be important in
Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don
1996-01-01
This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.
Image edges detection through B-Spline filters
International Nuclear Information System (INIS)
Mastropiero, D.G.
1997-01-01
B-Spline signal processing was used to detect the edges of a digital image. This technique is based upon processing the image in the Spline transform domain, instead of doing so in the space domain (classical processing). The transformation to the Spline transform domain means finding out the real coefficients that makes it possible to interpolate the grey levels of the original image, with a B-Spline polynomial. There exist basically two methods of carrying out this interpolation, which produces the existence of two different Spline transforms: an exact interpolation of the grey values (direct Spline transform), and an approximated interpolation (smoothing Spline transform). The latter results in a higher smoothness of the gray distribution function defined by the Spline transform coefficients, and is carried out with the aim of obtaining an edge detection algorithm which higher immunity to noise. Finally the transformed image was processed in order to detect the edges of the original image (the gradient method was used), and the results of the three methods (classical, direct Spline transform and smoothing Spline transform) were compared. The results were that, as expected, the smoothing Spline transform technique produced a detection algorithm more immune to external noise. On the other hand the direct Spline transform technique, emphasizes more the edges, even more than the classical method. As far as the consuming time is concerned, the classical method is clearly the fastest one, and may be applied whenever the presence of noise is not important, and whenever edges with high detail are not required in the final image. (author). 9 refs., 17 figs., 1 tab
Fang, Ming; Bowin, Carl
1992-01-01
To construct Venus' gravity disturbance field (or gravity anomaly) with the spacecraft-observer line of site (LOS) acceleration perturbation data, both a global and a local approach can be used. The global approach, e.g., spherical harmonic coefficients, and the local approach, e.g., the integral operator method, based on geodetic techniques are generally not the same, so that they must be used separately for mapping long wavelength features and short wavelength features. Harmonic spline, as an interpolation and extrapolation technique, is intrinsically flexible to both global and local mapping of a potential field. Theoretically, it preserves the information of the potential field up to the bound by sampling theorem regardless of whether it is global or local mapping, and is never bothered with truncation errors. The improvement of harmonic spline methodology for global mapping is reported. New basis functions, a singular value decomposition (SVD) based modification to Parker & Shure's numerical procedure, and preliminary results are presented.
Recursive B-spline approximation using the Kalman filter
Directory of Open Access Journals (Sweden)
Jens Jauch
2017-02-01
Full Text Available This paper proposes a novel recursive B-spline approximation (RBA algorithm which approximates an unbounded number of data points with a B-spline function and achieves lower computational effort compared with previous algorithms. Conventional recursive algorithms based on the Kalman filter (KF restrict the approximation to a bounded and predefined interval. Conversely RBA includes a novel shift operation that enables to shift estimated B-spline coefficients in the state vector of a KF. This allows to adapt the interval in which the B-spline function can approximate data points during run-time.
Thermophysical Modeling of Recent Lava Flows in Daedalia Planum, Mars
Ramsey, M. S.; Simurda, C.; Crown, D. A.
2017-12-01
Mantling by eolian-derived material (i.e., dust and sand) can hinder compositional analysis of the Martian surface by obscuring the spectral signature of underlying coarser grained materials and bedrock. However, checkboard style mixing of larger lava outcrops plus fine-grained material in low-lying regions can also result in a spectrum similar to that of a continuous, optically-thin layer of fine material. Multiple datasets with either high spatial or spectral resolution were used to identify these mixing relationships on the flow surfaces in Daedalia Planum in hope of discerning the spectral signature of the lava. Daedalia Planum contains a flow apron originating from the SW flank of Arsia Mons, the southernmost Tharsis shield volcano, and was selected for its coverage by multiple datasets and extensive basaltic lava flow fields. CTX and HiRISE images were used to visually identify flow boundaries, superposition relationships, and surface morphology. THEMIS derived thermal inertia (TI) was compared with THEMIS infrared (IR) day and night brightness temperature (PBT) to determine the thermophysical response of individual flows. Statistical analysis (including ANOVA) of regions of interest (ROIs) in the TI and PBT data was performed to also assess the variability across the entire flow field. Four categories were defined based on these results. Finally, these THEMIS-defined categories, TI, and surface morphology were compared to identify possible unmantled outcrops. Analyses of thermophysical properties and flow morphology reveal that individual flows respond differently to diurnal heating, suggesting the presence of different roughness distributions or mixing relationships between the mantling material and lava outcrops. Statistical analysis reveals that flows with rugged surfaces are most likely to have a checkboard mixing distribution. The identification of the flows with minimally-mantled lava outcrops will next be used with TI modeling to determine its
International Nuclear Information System (INIS)
Soderblom, L.A.
1988-01-01
The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references
Computer Modeling of Sand Transport on Mars Using a Compart-Mentalized Fluids Algorithm (CFA)
Marshall, J.; Stratton, D.
1999-01-01
It has been postulated that aeolian transport on Mars may be significantly different from that on Earth. From laboratory experiments simulating martian grain transport [2], it has been observed that (saltating) grains striking the bed can cause hundreds of secondary reptation trajectories when impact occurs at speeds postulated for Mars. Some of the ballistically induced trajectories "die ouf' and effectively join the ranks on the creep population that is merely nudged along by impact. Many of the induced reptation trajectories, however, are sufficiently high for the grains to become part of the saltation load (it is irrelevant to the boundary layer how a grain attained its initial lift force). When these grains, in turn, strike the surface, they too are capable of inducing more reptating grains. This cascading effect has been discussed in connection with terrestrial aeolian transport in an attempt to dispel the notion that sand motion is divisible only into creep and saltation loads. On Earth, only a few grains are splashed by impact. On Mars, it may be hundreds. We developed a computer model to address this phenomenon because there are some important ramifications: First, this ratio may mean that martian aeolian transport is dominated by reptation flux rather than saltation. On Earth, the flux would be a roughly balanced mixture between reptation/creep and saltation. On Venus, there would be no transport other than by saltation. In other words, an understanding of planetary aeolian processes may not be necessarily understood by extrapolating from the "Earth case", with only gravity and atmospheric density/viscosity being considered as variables. Second, the reptation flux on Mars may be self sustaining, so that little input is required by the wind once transport has been initiated. The number of grains saturating the boundary layer near the bed may mean that average grain speed on Mars might conceivably be less than that on Earth. This would say much for models
Mars science laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings
Hassler, Donald M.; Norbury, John W.; Reitz, Günther
2017-08-01
The Radiation Assessment Detector (RAD) (Hassler et al., 2012; Zeitlin et al., 2016) onboard the Mars Science Laboratory (MSL) Curiosity rover (Grotzinger et al., 2012) is a sophisticated charged and neutral particle radiation analyzer developed by an international team of scientists and engineers from Southwest Research Institute in Boulder, Colorado as the leading institution, the University of Kiel and the German Aerospace Center in Cologne, Germany. RAD is a compact, powerful instrument capable of distinguishing between ionizing particles and neutral particles and providing neutron, gamma, and charged particle spectra from protons to iron as well as absorbed dose measurements in tissue-equivalent material. During the 6 month cruise to Mars, inside the MSL spacecraft, RAD served as a proxy to validate models of the radiation levels expected inside a spacecraft that future astronauts might experience (Zeitlin et al., 2013). RAD was turned on one day after the landing on August 7, 2012, exactly 100 years to the day after the discovery of cosmic rays on Earth by Victor Hess. These measurements are the first of their kind on the surface of another planet (Hassler et al., 2014), and the radiation data collected by RAD on the surface of Mars will inform projections of crew health risks and the design of protective surface habitats and other countermeasures for future human missions in the coming decades.
Tarasashvili, M. V.; Sabashvili, Sh. A.; Tsereteli, S. L.; Aleksidze, N. D.; Dalakishvili, O.
2017-10-01
The Mars Climate Simulation Chamber (MCSC) (GEO PAT 12 522/01) is designed for the investigation of the possible past and present habitability of Mars, as well as for the solution of practical tasks necessary for the colonization and Terraformation of the Planet. There are specific tasks such as the experimental investigation of the biological parameters that allow many terrestrial organisms to adapt to the imitated Martian conditions: chemistry of the ground, atmosphere, temperature, radiation, etc. MCSC is set for the simulation of the conduction of various biological experiments, as well as the selection of extremophile microorganisms for the possible Settlement, Ecopoesis and/or Terraformation purposes and investigation of their physiological functions. For long-term purposes, it is possible to cultivate genetically modified organisms (e.g., plants) adapted to the Martian conditions for future Martian agriculture to sustain human Mars missions and permanent settlements. The size of the chamber allows preliminary testing of the functionality of space-station mini-models and personal protection devices such as space-suits, covering and building materials and other structures. The reliability of the experimental biotechnological materials can also be tested over a period of years. Complex and thorough research has been performed to acquire the most appropriate technical tools for the accurate engineering of the MCSC and precious programmed simulation of Martian environmental conditions. This paper describes the construction and technical details of the equipment of the MCSC, which allows its semi-automated, long-term operation.
An overview of challenges in modeling heat and mass transfer for living on Mars.
Yamashita, Masamichi; Ishikawa, Yoji; Kitaya, Yoshiaki; Goto, Eiji; Arai, Mayumi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Hirafuji, Masayuki; Omori, Katsunori; Shiraishi, Atsushi; Tani, Akira; Toki, Kyoichiro; Yokota, Hiroki; Fujita, Osamu
2006-09-01
Engineering a life-support system for living on Mars requires the modeling of heat and mass transfer. This report describes the analysis of heat and mass transfer phenomena in a greenhouse dome, which is being designed as a pressurized life-support system for agricultural production on Mars. In this Martian greenhouse, solar energy will be converted into chemical energy in plant biomass. Agricultural products will be harvested for food and plant cultivation, and waste materials will be processed in a composting microbial ecosystem. Transpired water from plants will be condensed and recycled. In our thermal design and analysis for the Martian greenhouse, we addressed the question of whether temperature and pressure would be maintained in the appropriate range for humans as well as plants. Energy flow and material circulation should be controlled to provide an artificial ecological system on Mars. In our analysis, we assumed that the greenhouse would be maintained at a subatmospheric pressure under 1/3-G gravitational force with 1/2 solar light intensity on Earth. Convection of atmospheric gases will be induced inside the greenhouse, primarily by heating from sunlight. Microclimate (thermal and gas species structure) could be generated locally around plant bodies, which would affect gas transport. Potential effects of those environmental factors are discussed on the phenomena including plant growth and plant physiology and focusing on transport processes. Fire safety is a crucial issue and we evaluate its impact on the total gas pressure in the greenhouse dome.
An Integrated Economics Model for ISRU in Support of a Mars Colony - Initial Status Report
Shishko, Robert; Fradet, Rene; Saydam, Serkan; Tapia-Cortez, Carlos; Dempster, Andrew G.; Coulton, Jeff
2015-01-01
The aim of this effort is to develop an integrated set of risk-based financial and technical models to evaluate multiple Off-Earth Mining (OEM) scenarios. This quantitative, scenario- and simulation-based tool will help identify combinations of market variables, technical parameters, and policy levers that will enable the expansion of the global economy into the solar system and return economic benefits. Human ventures in space are entering a new phase in which missions formerly driven by government agencies are now being replaced by those led by commercial enterprises - in launch, satellite deployment, resupply of the International Space Station, and space tourism. In the not-too-distant future, commercial opportunities will also include the mining of asteroids, the Moon, and Mars. This investigation will examine the role of OEM in a growing space economy. (In this investigation, the term 'mining' is taken to embrace minerals, ice/water, and other in situ resources.) OEM can be the engine that drives the space economy, so it would be useful to understand what OEM market conditions and technology requirements are needed for that economy to prosper. These specific elements will be studied in the wider context of creating an economy that could ultimately support a sustainable Mars Colony. Such a colony will need in situ resources not only for its own survival, but to prosper and grow, it must create viable business ventures, essentially by fulfilling the demand for in situ resources from and on Mars. This investigation will focus on understanding the role and economic prospect for OEM associated with the Human Colonization of Mars (HCM).
An electrodynamic model of the solar wind interaction with the ionospheres of Mars and Venus
International Nuclear Information System (INIS)
Cloutier, P.A.; Daniell, R.E. Jr.
1979-01-01
the electrodynamic model for the solar wind interaction with non-magnetic planets (Cloutier and Daniell, Planet. Space Sci. 21, 463, 1973; Daniell and Cloutier, Planet. Space Sci. 25, 621, 1977) is modified to include the effects of non-ohmic currents in the upper ionosphere. The model is then used to calculate convection patterns induced by the solar wind in the ionospheres of Mars and Venus. For Mars the observations of the neutral mass spectrometer or Vikings 1 and 2 provided the neutral atmosphere. Model calculations reproduced the retarding potential analyzer data and indicate that the ionosphere above about 200 km is probably controlled by convection rather than chemistry or diffusion. For Venus a model atmosphere based on Dickenson and Ridley, J. Atmos. Sci. 32, 1219 (1975) and Mayr et al., J. Geophys. Res. 83, 4411 (1978) was used. The resulting model calculations were compared to radio occultation data from Mariners 5 and 10 and Venera 9 which represent extremes in the variability of the upper Cytherean ionosphere. The model calculations are shown to fall within this variation. These results represent the state of the theory immediately prior to the Pioneer-Venus encounter. (author)
Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers
Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren
2011-01-01
To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz
Cardiovascular models of simulated moon and mars gravities: head-up tilt vs. lower body unweighting.
Kostas, Vladimir I; Stenger, Michael B; Knapp, Charles F; Shapiro, Robert; Wang, Siqi; Diedrich, André; Evans, Joyce M
2014-04-01
In this study we compare two models [head-up tilt (HUT) vs. body unweighting using lower body positive pressure (LBPP)] to simulate Moon, Mars, and Earth gravities. A literature search did not reveal any comparisons of this type performed previously. We hypothesized that segmental fluid volume shifts (thorax, abdomen, upper and lower leg), cardiac output, and blood pressure (BP), heart rate (HR), and total peripheral resistance to standing would be similar in the LBPP and HUT models. There were 21 subjects who were studied while supine (simulation of spaceflight) and standing at 100% (Earth), 40% (Mars), and 20% (Moon) bodyweight produced by LBPP in Alter-G and while supine and tilted at 80 degrees, 20 degrees, and 10 degrees HUT (analogues of Earth, Mars, and Moon gravities, respectively). Compared to supine, fluid shifts from the chest to the abdomen, increases in HR, and decreases in stroke volume were greater at 100% bodyweight than at reduced weights in response to both LBPP and HUT. Differences between the two models were found for systolic BP, diastolic BP, mean arterial BP, stroke volume, total peripheral resistance, and thorax and abdomen impedances, while HR, cardiac output, and upper and lower leg impedances were similar. Bodyweight unloading via both LBPP and HUT resulted in cardiovascular changes similar to those anticipated in actual reduced gravity environments. The LBPP model/Alter-G has the advantage of providing an environment that allows dynamic activity at reduced bodyweight; however, the significant increase in blood pressures in the Alter-GC may favor the HUT model.
LIMIT STRESS SPLINE MODELS FOR GRP COMPOSITES
African Journals Online (AJOL)
ES OBE
Compressive failure of. GRP composites manifests as kinking failure. Kink bands are formed which are bounded by fiber breaks resulting from deformations ..... measured with micrometer screw gauge and. 85 percentile was used to determine where about 85% of the measured thicknesses would fall. For F, G and H 85 ...
Lognonne, P. H.; Rolland, L.; Karakostas, F. G.; Garcia, R.; Mimoun, D.; Banerdt, W. B.; Smrekar, S. E.
2015-12-01
Earth, Venus and Mars are all planets in which infrasounds can propagate and interact with the solid surface. This leads to infrasound generation for internal sources (e.g. quakes) and to seismic waves generations for atmospheric sources (e.g. meteor, impactor explosions, boundary layer turbulences). Both the atmospheric profile, surface density, atmospheric wind and viscous/attenuation processes are however greatly different, including major differences between Mars/Venus and Earth due to the CO2 molecular relaxation. We present modeling results and compare the seismic/acoustic coupling strength for Earth, Mars and Venus. This modeling is made through normal modes modelling for models integrating the interior, atmosphere, both with realistic attenuation (intrinsic Q for solid part, viscosity and molecular relaxation for the atmosphere). We complete these modeling, made for spherical structure, by integration of wind, assuming the later to be homogeneous at the scale of the infrasound wavelength. This allows us to compute either the Seismic normal modes (e.g. Rayleigh surface waves), or the acoustic or the atmospheric gravity modes. Comparisons are done, for either a seismic source or an atmospheric source, on the amplitude of expected signals as a function of distance and frequency. Effects of local time are integrated in the modeling. We illustrate the Rayleigh waves modelling by Earth data (for large quakes and volcanoes eruptions). For Venus, very large coupling can occur at resonance frequencies between the solid part and atmospheric part of the planet through infrasounds/Rayleigh waves coupling. If the atmosphere reduced the Q (quality coefficient) of Rayleigh waves in general, the atmosphere at these resonance soffers better propagation than Venus crust and increases their Q. For Mars, Rayleigh waves excitations by atmospheric burst is shown and discussed for the typical yield of impacts. The new data of the Nasa INSIGHT mission which carry both seismic and
Gaussian quadrature for splines via homotopy continuation: Rules for C2 cubic splines
Barton, Michael
2015-10-24
We introduce a new concept for generating optimal quadrature rules for splines. To generate an optimal quadrature rule in a given (target) spline space, we build an associated source space with known optimal quadrature and transfer the rule from the source space to the target one, while preserving the number of quadrature points and therefore optimality. The quadrature nodes and weights are, considered as a higher-dimensional point, a zero of a particular system of polynomial equations. As the space is continuously deformed by changing the source knot vector, the quadrature rule gets updated using polynomial homotopy continuation. For example, starting with C1C1 cubic splines with uniform knot sequences, we demonstrate the methodology by deriving the optimal rules for uniform C2C2 cubic spline spaces where the rule was only conjectured to date. We validate our algorithm by showing that the resulting quadrature rule is independent of the path chosen between the target and the source knot vectors as well as the source rule chosen.
Wüst, Sabine; Wendt, Verena; Linz, Ricarda; Bittner, Michael
2017-09-01
Cubic splines with equidistant spline sampling points are a common method in atmospheric science, used for the approximation of background conditions by means of filtering superimposed fluctuations from a data series. What is defined as background or superimposed fluctuation depends on the specific research question. The latter also determines whether the spline or the residuals - the subtraction of the spline from the original time series - are further analysed.Based on test data sets, we show that the quality of approximation of the background state does not increase continuously with an increasing number of spline sampling points and/or decreasing distance between two spline sampling points. Splines can generate considerable artificial oscillations in the background and the residuals.We introduce a repeating spline approach which is able to significantly reduce this phenomenon. We apply it not only to the test data but also to TIMED-SABER temperature data and choose the distance between two spline sampling points in a way that is sensitive for a large spectrum of gravity waves.
Directory of Open Access Journals (Sweden)
S. Wüst
2017-09-01
Full Text Available Cubic splines with equidistant spline sampling points are a common method in atmospheric science, used for the approximation of background conditions by means of filtering superimposed fluctuations from a data series. What is defined as background or superimposed fluctuation depends on the specific research question. The latter also determines whether the spline or the residuals – the subtraction of the spline from the original time series – are further analysed.Based on test data sets, we show that the quality of approximation of the background state does not increase continuously with an increasing number of spline sampling points and/or decreasing distance between two spline sampling points. Splines can generate considerable artificial oscillations in the background and the residuals.We introduce a repeating spline approach which is able to significantly reduce this phenomenon. We apply it not only to the test data but also to TIMED-SABER temperature data and choose the distance between two spline sampling points in a way that is sensitive for a large spectrum of gravity waves.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
Bering, E. A.; Ramsey, J.; Dominey, W.; Kapral, A.; Carlson, C.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.
2011-12-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The program culminates in a capstone event held at the University of Houston (or other central location in the other communities that will be involved
Intensity-based hierarchical elastic registration using approximating splines.
Serifovic-Trbalic, Amira; Demirovic, Damir; Cattin, Philippe C
2014-01-01
We introduce a new hierarchical approach for elastic medical image registration using approximating splines. In order to obtain the dense deformation field, we employ Gaussian elastic body splines (GEBS) that incorporate anisotropic landmark errors and rotation information. Since the GEBS approach is based on a physical model in form of analytical solutions of the Navier equation, it can very well cope with the local as well as global deformations present in the images by varying the standard deviation of the Gaussian forces. The proposed GEBS approximating model is integrated into the elastic hierarchical image registration framework, which decomposes a nonrigid registration problem into numerous local rigid transformations. The approximating GEBS registration scheme incorporates anisotropic landmark errors as well as rotation information. The anisotropic landmark localization uncertainties can be estimated directly from the image data, and in this case, they represent the minimal stochastic localization error, i.e., the Cramér-Rao bound. The rotation information of each landmark obtained from the hierarchical procedure is transposed in an additional angular landmark, doubling the number of landmarks in the GEBS model. The modified hierarchical registration using the approximating GEBS model is applied to register 161 image pairs from a digital mammogram database. The obtained results are very encouraging, and the proposed approach significantly improved all registrations comparing the mean-square error in relation to approximating TPS with the rotation information. On artificially deformed breast images, the newly proposed method performed better than the state-of-the-art registration algorithm introduced by Rueckert et al. (IEEE Trans Med Imaging 18:712-721, 1999). The average error per breast tissue pixel was less than 2.23 pixels compared to 2.46 pixels for Rueckert's method. The proposed hierarchical elastic image registration approach incorporates the GEBS
Theoretical modeling and computational simulation of robust control for Mars aircraft
Oh, Seyool
The focus of this dissertation is the development of control system design algorithms for autonomous operation of an aircraft in the Martian atmosphere. This research will show theoretical modeling and computational simulation of robust control and gain scheduling for a prototype Mars aircraft. A few hundred meters above the surface of Mars, the air density is less than 1% of the density of the Earth's atmosphere at sea level. However, at about 33 km (110,000 ft) above the Earth, the air density is similar to that near the surface of Mars. Marsflyer II was designed to investigate these flight regimes: 33 km above the Earth and the actual Mars environment. The fuselage for the preliminary design was cylindrical with a length of 2.59 m (8.49 ft), the wing span was 3.98 m (13.09 ft). The total weight of the demonstrator aircraft was around 4.54 kg (10.02 lb). Aircraft design tools have been developed based on successful aircraft for the Earth`s atmosphere. However, above Mars an airborne robotic explorer would encounter low Reynolds Number flow phenomena combined with high Mach numbers, a region that is unknown for normal Earth aerodynamic applications. These flows are more complex than those occurring at high Reynolds numbers. The performance of airfoils at low Reynolds numbers is poorly understood and generally results in unfavorable aerodynamic characteristics. Design and simulation tools for the low Reynolds number Martian environment could be used to develop Unmanned Aerial Vehicles (UAV). In this study, a robust control method is used to analyze a prototype Mars aircraft. The purpose of this aircraft is to demonstrate stability, control, and performance within a simulated Mars environment. Due to uncertainty regarding the actual Martian environment, flexibility in the operation of the aircraft`s control system is important for successful performance. The stability and control derivatives of Marsflyer II were obtained by using the Advanced Aircraft Analysis (AAA
BS Methods: A New Class of Spline Collocation BVMs
Mazzia, Francesca; Sestini, Alessandra; Trigiante, Donato
2008-09-01
BS methods are a recently introduced class of Boundary Value Methods which is based on B-splines. They can also be interpreted as spline collocation methods. For uniform meshes, the coefficients defining the k-step BS method are just the values of the (k+1)-degree uniform B-spline and B-spline derivative at its integer active knots; for general nonuniform meshes they are computed by solving local linear systems whose dimension depends on k. An important specific feature of BS methods is the possibility to associate a spline of degree k+1 and smoothness Ck to the numerical solution produced by the k-step method of this class. Such spline collocates the differential equation at the knots, shares the convergence order with the numerical solution, and can be computed with negligible additional computational cost. Here a survey on such methods is given, presenting the general definition, the convergence and stability features, and introducing the strategy for the computation of the coefficients in the B-spline basis which define the associated spline. Finally, some related numerical results are also presented.
About some properties of bivariate splines with shape parameters
Caliò, F.; Marchetti, E.
2017-07-01
The paper presents and proves geometrical properties of a particular bivariate function spline, built and algorithmically implemented in previous papers. The properties typical of this family of splines impact the field of computer graphics in particular that of the reverse engineering.
Modeling soluble salt assemblages on Mars: past aqueous history and present-day habitability
Toner, J. D.; Catling, D. C.; Light, B.
2014-12-01
Soluble salt assemblages formed through aqueous processes are widespread on Mars. These minerals are important for understanding the past aqueous history of Mars and indicate critical habitability parameters such as pH, temperature, water activity, and salinity. Equilibrium models have been used to determine solution chemistry and salt precipitation sequences from aqueous chemical data; however, current models are limited by a lack of experimental data for low-temperature perchlorates, and some model predictions are clearly anomalous. To address the need for accurate equilibrium models, we have developed a comprehensive model for low-temperature perchlorate-rich brines using (1) previously neglected literature data, (2) experimental solubilities determined in low-temperature perchlorate solutions, and (3) solubility and heat capacity results determined using Differential Scanning Calorimetry (DSC). Our resulting model is a significant improvement over existing models, such as FREZCHEM, particularly for perchlorate mixtures. We have applied our model to evaporation and freezing of a nominal Wet Chemistry Laboratory (WCL) solution measured at the Phoenix site. For a freezing WCL solution, our model indicates that ice, KClO4, hydromagnesite (3MgCO3·Mg(OH)2·3H2O), calcite (CaCO3), meridianiite (MgSO4·11H2O), MgCl2·12H2O, NaClO4·2H2O, and Mg(ClO4)2·6H2O form at the eutectic (209 K); whereas, KClO4, hydromagnesite, kieserite (MgSO4·H2O), anhydrite (CaSO4), halite (NaCl), NaClO4·H2O, and Mg(ClO4)2·6H2O form upon complete evaporation at 298 K. In general, evaporation yields more dehydrated mineral assemblages than salts produced by freezing. Hydrated phases that form during evaporation contain 0.3 wt. % water, which compares with 1.2 wt. % during freezing. Given independent evidence for the presence of calcite and minimum water contents in Martian soils of ~1.5 wt. %, salts at the Phoenix site, and possibly elsewhere, appear more likely to have formed during
Groundwater head responses due to random stream stage fluctuations using basis splines
Knight, J. H.; Rassam, D. W.
2007-06-01
Stream-aquifer interactions are becoming increasingly important processes in water resources and riparian management. The linearized Boussinesq equation describes the transient movement of a groundwater free surface in unconfined flow. Some standard solutions are those corresponding to an input, which is a delta function impulse, or to its integral, a unit step function in the time domain. For more complicated inputs, the response can be expressed as a convolution integral, which must be evaluated numerically. When the input is a time series of measured data, a spline function or piecewise polynomial can easily be fitted to the data. Any such spline function can be expressed in terms of a finite series of basis splines with numerical coefficients. The analytical groundwater response functions corresponding to these basis splines are presented, thus giving a direct and accurate way to calculate the groundwater response for a random time series input representing the stream stage. We use the technique to estimate responses due to a random stream stage time series and show that the predicted heads compare favorably to those obtained from numerical simulations using the Modular Three-Dimensional Finite-Difference Ground-Water Flow Model (MODFLOW) simulations; we then demonstrate how to calculate residence times used for estimating riparian denitrification during bank storage.
Error bounds for two even degree tridiagonal splines
Directory of Open Access Journals (Sweden)
Gary W. Howell
1990-01-01
Full Text Available We study a C(1 parabolic and a C(2 quartic spline which are determined by solution of a tridiagonal matrix and which interpolate subinterval midpoints. In contrast to the cubic C(2 spline, both of these algorithms converge to any continuous function as the length of the largest subinterval goes to zero, regardless of mesh ratios. For parabolic splines, this convergence property was discovered by Marsden [1974]. The quartic spline introduced here achieves this convergence by choosing the second derivative zero at the breakpoints. Many of Marsden's bounds are substantially tightened here. We show that for functions of two or fewer coninuous derivatives the quartic spline is shown to give yet better bounds. Several of the bounds given here are optimal.
Kahre, Melinda A.; Hollingsworth, Jeffery
2012-01-01
The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.
Seismic model of Mars. 1. Effects of temperature, composition and hydration
Zharkov, Vladimir; Gudkova, Tamara
At present in the geophysics of the Earth, scientists highlight to the study of the effect of water traces in mantle minerals on physical properties of Earth’s interiors. It turned out, that at the base of the upper mantle near the seismic boundary of 410 km depth olivine can accumulate up to 0.4 wt. % H _{2}O. According to (Mao et al., 2010, 2011, 2012) oivine can accumulate up to 1 wt % of water, wadesleite - up to 2 wt % of water and ringwoodite up to 1 wt % of water. It is considered, that Mars was basically formed from protobodies of two types: a highly reduced component A and an oxidized component B. In two-component DW geochemical model (Dreibus, Wanke, 1989), oxidized component B (40%) contains up to 20 wt % H _{2}O. Important character of Mars is that under its formation a lot amount of water could be incorporated into the planet. The important parameter of mantle silicates is an iron number, which is defined as a molecular ratio Fe#=Fe/(Fe+Mg)x100. In the DW model Fe#=25 for the silicate reservoir of a planet. The thickness of the Martian crust is assumed to lie in the range of 50 - 100 km. When melting of such a thick crust, the iron number of the Martian mantle decreases, and its value is taken to be Fe# ≈ 20 - 25 at modeling Martian interiors. The iron number of the Earth’s mantle is noticeably less ≈ 10. The higher the iron value Fe# is, the larger corresponding capacity of minerals to accumulate water. Thus, from one side, Mars could get larger amount of water with the component B under its formation, than the Earth; and from the other side, in principle, Martian minerals could accumulate larger amount of water than the Earth, as the iron number Fe# for Mars is two times higher than in Earth’s minerals. Our analysis is based on a four-layer model M14_3 (Zharkov et al., 2009), for which all the effects of studied model parameters are considered. It consists of a two-layer crust, a mantle and a core. The composition of the crust is derived
Nonlinear Multivariate Spline-Based Control Allocation for High-Performance Aircraft
Tol, H.J.; De Visser, C.C.; Van Kampen, E.; Chu, Q.P.
2014-01-01
High performance flight control systems based on the nonlinear dynamic inversion (NDI) principle require highly accurate models of aircraft aerodynamics. In general, the accuracy of the internal model determines to what degree the system nonlinearities can be canceled; the more accurate the model, the better the cancellation, and with that, the higher the performance of the controller. In this paper a new control system is presented that combines NDI with multivariate simplex spline based con...
Allophane on Mars: Evidence from IR Spectroscopy and TES Spectral Models
Ming, Douglas W.; Rampe, E. B.; Kraft, M. D.; Sharp. T. G.; Golden, D. C.; Christensen, P. C.
2010-01-01
Allophane is an alteration product of volcanic glass and a clay mineral precursor that is commonly found in basaltic soils on Earth. It is a poorly-crystalline or amorphous, hydrous aluminosilicate with Si/Al ratios ranging from approx.0.5-1 [Wada, 1989]. Analyses of thermal infrared (TIR) spectra of the Martian surface from TES show high-silica phases at mid-to-high latitudes that have been proposed to be primary volcanic glass [Bandfield et al., 2000; Bandfield, 2002; Rogers and Christensen, 2007] or poorly-crystalline secondary silicates such as allophane or aluminous amorphous silica [Kraft et al., 2003; Michalski et al., 2006; Rogers and Christensen, 2007; Kraft, 2009]. Phase modeling of chemical data from the APXS on the Mars Exploration Rover Spirit suggest the presence of allophane in chemically weathered rocks [Ming et al., 2006]. The presence of allophane on Mars has not been previously tested with IR spectroscopy because allophane spectra have not been available. We synthesized allophanes and allophanic gels with a range of Si/Al ratios to measure TIR emission and VNIR reflectance spectra and to test for the presence of allophane in Martian soils. VNIR reflectance spectra of the synthetic allophane samples have broad absorptions near 1.4 m from OH stretching overtones and 1.9 m from a combination of stretching and bending vibrations in H2O. Samples have a broad absorption centered near 2.25 microns, from AlAlOH combination bending and stretching vibrations, that shifts position with Si/Al ratio. Amorphous silica (opaline silica or primary volcanic glass) has been identified in CRISM spectra of southern highland terrains based on the presence of 1.4, 1.9, and broad 2.25 m absorptions [Mustard et al., 2008]; however, these absorptions are also consistent with the presence of allophane. TIR emission spectra of the synthetic allophanes show two spectrally distinct types: Si-rich and Al-rich. Si-rich allophanes have two broad absorptions centered near 1080
Quinn, Philip R.; Schwadron, Nathan A.; Townsend, Larry W.; Wimmer-Schweingruber, Robert F.; Case, Anthony W.; Spence, Harlan E.; Wilson, Jody K.; Joyce, Colin J.
2017-08-01
Radiation in the form of solar energetic particles (SEPs) presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth's protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements) is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon and from the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm-2 and 5.0 g cm-2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.
Maguire, William C.; Pearl, J. C.; Smith, M. D.; Thompson, R. F.; Conrath, B. J.; Dason, S.; Kaelberer, M. S.; Christensen, P. R.
1999-01-01
Part of the task of interpreting IR spectral features observed by MGS/TES due to surface minerals requires distinguishing those IR signatures from atmospheric signatures of gas and dust. Surface-atmosphere separation for MGS/TES depends on knowledge of the retrieved temperature profile. In turn, the temperature retrieval Erom the observed data depends on molecular parameters including 15 micron CO2 line shape or line intensities which contribute to defining the Mars synthetic radiative transfer model. Using a simple isothermal, homogeneous single layer model of Pinnock and Shine, we find the ratio of (the error in degrees Kelvin of the retrieved temperature profile) to (the percentage error in the absorption coefficient) (deg K/percent) to be 0.4 at 200K. This ratio at 150K and 250K is 0.2 and 0.6, respectively. A more refined model, incorporating observed MGS/TES retrieved temperature profiles, the TES instrumental resolution and the most recent molecular modelling, will yield an improved knowledge of this error sensitivity. We present results of such a sensitivity study to determine the dependence of temperature profiles inverted from MGS/TES on these and other molecular parameters. This work was supported in part by NASA's Mars Data Analysis Program.
Developing a Crew Time Model for Human Exploration Missions to Mars
Battfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Cirillo, William; Goodliff, Kandyce
2015-01-01
Candidate human missions to Mars require mission lengths that could extend beyond those that have previously been demonstrated during crewed Lunar (Apollo) and International Space Station (ISS) missions. The nature of the architectures required for deep space human exploration will likely necessitate major changes in how crews operate and maintain the spacecraft. The uncertainties associated with these shifts in mission constructs - including changes to habitation systems, transit durations, and system operations - raise concerns as to the ability of the crew to complete required overhead activities while still having time to conduct a set of robust exploration activities. This paper will present an initial assessment of crew operational requirements for human missions to the Mars surface. The presented results integrate assessments of crew habitation, system maintenance, and utilization to present a comprehensive analysis of potential crew time usage. Destination operations were assessed for a short (approx. 50 day) and long duration (approx. 500 day) surface habitation case. Crew time allocations are broken out by mission segment, and the availability of utilization opportunities was evaluated throughout the entire mission progression. To support this assessment, the integrated crew operations model (ICOM) was developed. ICOM was used to parse overhead, maintenance and system repair, and destination operations requirements within each mission segment - outbound transit, Mars surface duration, and return transit - to develop a comprehensive estimation of exploration crew time allocations. Overhead operational requirements included daily crew operations, health maintenance activities, and down time. Maintenance and repair operational allocations are derived using the Exploration Maintainability and Analysis Tool (EMAT) to develop a probabilistic estimation of crew repair time necessary to maintain systems functionality throughout the mission.
Solving Dym equation using quartic B-spline and quartic trigonometric B-spline collocation methods
Anuar, Hanis Safirah Saiful; Mafazi, Nur Hidayah; Hamid, Nur Nadiah Abd; Majid, Ahmad Abd.; Azmi, Amirah
2017-08-01
The nonlinear Dym equation is solved numerically using the quartic B-spline (QuBS) and quartic trigonometric B-spline (QuTBS) collocation methods. The QuBS and QuTBS are utilized as interpolating functions in the spatial dimension while the finite difference method (FDM) is applied to discretize the temporal space with the help of theta-weighted method. The nonlinear term in the Dym equation is linearized using Taylor's expansion. Two schemes are performed on both methods which are Crank-Nicolson and fully implicit. Applying the Von-Neumann stability analysis, these schemes are found to be conditionally stable. Several numerical examples of different forms are discussed and compared in term of errors with exact solutions and results from the FDM.
Application of stability enhancing minimum interfacial pressure force model for MARS
International Nuclear Information System (INIS)
Lee, Won Jae; Lim, Ho Gon; Kim, Kyung Doo; Ha, Kwi Seok
2001-04-01
For thermal-hydraulic modeling of two-phase flow systems, two-fluid model, which assumes that the pressures of liquid, vapor and interface are identical, a so-called single-pressure model, is commonly used in codes for nuclear reactor safety analyses. Typical two-phase model with single pressure assumption possesses complex characteristics that result in system being ill-posed. As a result, typical single pressure model may cause the unbounded growth of instabilities. In order to overcome the ill-posedness of single-pressure two-fluid model, a hyperbolic equation system has been developed by introducing an interfacial pressure force into single pressure two-fluid model. The potential impact of the present model on the stability of finite difference solution has been examined by Von-Neumann stability analysis. The obvious improvement in numerical stability has been found when a semi-implicit time advancement scheme is used. Numerical experiments using the pilot code were also performed for the conceptual problems. It was found that the result was consistent with numerical stability test. The new model was implemented to MARS using Two-step approach. Through the conceptual stability test problems and benchmark problems, the applicability of the new model was verified
Theoretical seismic models of Mars: the importance of the iron content of the mantle
Mocquet, A.; Vacher, P.; Grasset, O.; Sotin, C.
1996-11-01
Present-day averaged temperature profiles of the mantle of Mars are computed through numerical convection experiments performed with axisymmetrical geometry, for different values of core radii and different boundary conditions at the core-mantle boundary. Internal heating of the mantle is considered in each case. It is found that the temperature profiles of the mantle are very stable whatever the imposed conditions at the core-mantle boundary. A 300 km thick thermal lithosphere, displaying a temperature gradient equal to 4.4 K km -1 is followed at greater depths by a quasi-isothermal mantle, the temperature of which is found in a 1200-1600 K temperature range. A mean temperature equal to 1400 K is in a good agreement with the low Q of Mars at tidal frequencies. These characteristics, together with the small increase of pressure with depth, of the order of 0.01 GPa km -1, induce the presence of a low-velocity zone similar to the Earth's one, down to 300 km depth. Densities and seismic velocities corresponding to these thermodynamical conditions are computed using Grüneisen's and third-order finite strain theory for different values of the iron content of mantle minerals. Below 300 km depth, the values of magnitude as within the Earth's transition zone. An increase of the iron content of the Martian mantle with respect to the Earth's one results (1) in an increase of density, and a decrease of seismic velocities, which can reach more than 2% of the values expected from an Earth like composition, (2) in a homogenization of mantle structure through the smoothing out of seismic discontinuities over a thickness of a few hundred kilometres. This smoothing process is due to the large pressure domains of coexistence between different phases of olivine when the iron content of this latter mineral increases. Plausible domains of core density and core radius are finally checked back for each of the computed models of mantle density. These tests show that the principal moment
Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallee, H
2012-01-01
We report future projections of Surface Mass Balance (SMB) over the Greenland ice sheet (GrIS) obtained with the regional climate model MAR, forced by the outputs of three CMIP5 General Circulation Models (GCMs) when considering two different warming scenarios (RCP 4.5 and RCP 8.5). The GCMs
Leblanc, F.; Chaufray, J. Y.; Modolo, R.; Leclercq, L.; Curry, S.; Luhmann, J.; Lillis, R.; Hara, T.; McFadden, J.; Halekas, J.; Schneider, N.; Deighan, J.; Mahaffy, P. R.; Benna, M.; Johnson, R. E.; Gonzalez-Galindo, F.; Forget, F.; Lopez-Valverde, M. A.; Eparvier, F. G.; Jakosky, B.
2017-12-01
The first measurements of the emission brightness of the oxygen atomic exosphere by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission have clearly shown that it is composed of a thermal component produced by the extension of the upper atmosphere and of a nonthermal component. Modeling these measurements allows us to constrain the origins of the exospheric O and, as a consequence, to estimate Mars' present oxygen escape rate. We here propose an analysis of three periods of MAVEN observations based on a set of three coupled models: a hybrid magnetospheric model (LATmos HYbrid Simulation (LatHyS)), an Exospheric General Model (EGM), and the Global Martian Circulation model of the Laboratoire de Météorologie Dynamique (LMD-GCM), which provide a description of Mars' environment from the surface up to the solar wind. The simulated magnetosphere by LatHyS is in good agreement with MAVEN Plasma and Field Package instruments data. The LMD-GCM modeled upper atmospheric profiles for the main neutral and ion species are compared to Neutral Gas and Ion Mass Spectrometer/MAVEN data showing that the LMD-GCM can provide a satisfactory global view of Mars' upper atmosphere. Finally, we were able to reconstruct the expected emission brightness intensity from the oxygen exosphere using EGM. The good agreement with the averaged measured profiles by Imaging Ultraviolet Spectrograph during these three periods suggests that Mars' exospheric nonthermal component can be fully explained by the reactions of dissociative recombination of the O2+ ion in Mars' ionosphere, limiting significantly our ability to extract information from MAVEN observations of the O exosphere on other nonthermal processes, such as sputtering.
Batson, R. M.
1987-01-01
A medium-resolution Digital Image Model (DIM) of Mars is being compiled. A DIM is a mosaic of radiometrically corrected, photometrically modelled spacecraft images displaying accurate reflectance properties at uniform resolution, and geometrically tied to the best available control. The Mars medium-resolution DIM contains approximately 4700 Viking Orbiter image frames that were used to compile the recently completed 1:2,000,000-scale controlled photomosaic series of Mars. This DIM provides a planimetric control base to which all other Mars maps will be registered. A similar control base of topographic elevations (Digital Terrain Model, or DTM) is also being compiled. These products are scheduled for completion in 1989.
Efficient computation of smoothing splines via adaptive basis sampling
Ma, Ping
2015-06-24
© 2015 Biometrika Trust. Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is applicable, a smoothing spline for a regression problem with sample size n can be expressed as a linear combination of n basis functions and its computational complexity is generally O(n^{3}). We achieve a more scalable computation in the multivariate case by evaluating the smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme that uses values of the response variable. Our asymptotic analysis shows that smoothing splines computed via adaptive basis sampling converge to the true function at the same rate as full basis smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary imaging study, we show that the proposed method outperforms a sampling method that does not use the values of response variables.
Shape Designing of Engineering Images Using Rational Spline Interpolation
Directory of Open Access Journals (Sweden)
Muhammad Sarfraz
2015-01-01
Full Text Available In modern days, engineers encounter a remarkable range of different engineering problems like study of structure, structure properties, and designing of different engineering images, for example, automotive images, aerospace industrial images, architectural designs, shipbuilding, and so forth. This paper purposes an interactive curve scheme for designing engineering images. The purposed scheme furnishes object designing not just in the area of engineering, but it is equally useful for other areas including image processing (IP, Computer Graphics (CG, Computer-Aided Engineering (CAE, Computer-Aided Manufacturing (CAM, and Computer-Aided Design (CAD. As a method, a piecewise rational cubic spline interpolant, with four shape parameters, has been purposed. The method provides effective results together with the effects of derivatives and shape parameters on the shape of the curves in a local and global manner. The spline method, due to its most generalized description, recovers various existing rational spline methods and serves as an alternative to various other methods including v-splines, gamma splines, weighted splines, and beta splines.
Pla-García, Jorge
2017-04-01
Introduction: The Mars Regional Atmospheric Modeling System (MRAMS) was used to predict meteorological conditions that are likely to be encountered by the Mars 2020 (NASA) Rover at several of their respective proposed landing sites during entry, descent, and landing at Ls5 [1] and by the ExoMars (ESA) Rover at one of the final landing sites. MRAMS is ideally suited for this type of investigation; the model is explicitly designed to simu-late Mars' atmospheric circulations at the mesoscale and smaller with realistic, high-resolution surface proper-ties [2, 3]. One of the sights studied for both rovers was Mawrth Vallis (MV), an ancient water outflow channel with light colored clay-rich rocks in the mid-latitude north hemisphere (Oxia Palus quadrangle). MV is the northernmost of the Mars2020 and ExoMars landing sites and the closest to the northern polar cap water source. The primary source of water vapor to the atmosphere is the northern polar cap during the northern summer. In order to highlight MV habitability implications, additional numerical experiments at Ls90, 140 and 180, highest column abundance of water vapor is found over MV [4], were performed to study how the atmospheric circulation connects MV with the polar water source. Once the winter CO2 retreats, the underlying polar water ice is exposed and begins to sublimate. The water is transported equatorward where it is manifested in the tropical aphelion cloud belt. If transport is assumed to be the result of the summer Hadley Cell, then the polar water is carried aloft in the northern high latitude rising branch before moving equatorward and eventually toward the southern high latitudes. Thus, the mean meridional summer circulation precludes a direct water vapor connection between MV and the polar source. Around the equinoxes (Ls0 and Ls180), there is a brief transition period where the rising branch quickly crosses from one hemisphere into the other as it migrates to its more typical solstitial location
From Initial Models of Seismicity, Structure and Noise to Synthetic Seismograms for Mars
Ceylan, Savas; van Driel, Martin; Euchner, Fabian; Khan, Amir; Clinton, John; Krischer, Lion; Böse, Maren; Stähler, Simon; Giardini, Domenico
2017-10-01
The InSight mission will land a single seismic station on Mars in November 2018, and the resultant seismicity catalog will be a key component for studies aiming to understand the interior structure of the planet. Here, we present a preliminary version of the web services that will be used to distribute the event and station metadata in practice, employing synthetic seismograms generated for Mars using a catalog of expected seismicity. Our seismicity catalog consists of 120 events with double-couple source mechanisms only. We also provide Green's functions databases for a total of 16 structural models, which are constructed to reflect one-dimensional thin (30 km) and thick (80 km) Martian crust with varying seismic wave speeds and densities, combined with two different profiles for temperature and composition for the mantle. Both the Green's functions databases and the precomputed seismograms are accessible online. These new utilities allow the researchers to either download the precomputed synthetic waveforms directly, or produce customized data sets using any desired source mechanism and event distribution via our servers.
Pla-García, Jorge; Rafkin, Scot C. R.
2015-04-01
The Mars Regional Atmospheric Modeling System (MRAMS) is used to predict meteorological conditions that are likely to be encountered by the Mars 2020 Exploration Rover at several proposed landing sites during entry, descent, and landing (EDL). The meteorology during the EDL window at most of the sites is dynamic. The intense heating of the lower atmosphere drives intense thermals and mesoscale thermal circulations. Moderate mean winds, wind shear, turbulence, and vertical air currents associated with convection are present and potentially hazardous to EDL [1]. Nine areas with specific high-priority landing ellipses of the 2020 Rover, are investigated: NE Syrtis, Nili Fossae, Nili Fossae Carbonates, Jezero Crater Delta, Holden Crater, McLaughlin Crater, Southwest Melas Basin, Mawrth Vallis and East Margaritifer Chloride. MRAMS was applied to the landing site regions using nested grids with a spacing of 330 meters on the innermost grid that is centered over each landing site. MRAMS is ideally suited for this investigation; the model is explicitly designed to simulate Mars' atmospheric thermal circulations at the mesoscale and smaller with realistic, high-resolution surface properties [2, 3]. Horizontal wind speeds, both vertical profiles and vertical cross-sections wind speeds, are studied. For some landing sites simulations, two example configurations -including and not including Hellas basin in the mother domain- were generated, in order to study how the basin affects the innermost grids circulations. Afternoon circulations at all sites pose some risk entry, descent, and landing. Most of the atmospheric hazards are not evident in current observational data and general circulation model simulations and can only be ascertained through mesoscale modeling of the region. Decide where to go first and then design a system that can tolerate the environment would greatly minimize risk. References: [1] Rafkin, S. C. R., and T. I. Michaels (2003), J. Geophys. Res., 108(E12
A Coupled Soil-Atmosphere Model of H2O2 on Mars
Bullock, Mark A.; Stoker, Carol R.; Mckay, Christopher P.; Zent, Aaron P.
1994-01-01
The Viking Gas Chromatograph Mass Spectrometer failed to detect organic compounds on Mars, and both the Viking Labeled Release and the Viking Gas Exchange experiments indicated a reactive soil surface. These results have led to the widespread belief that there are oxidants in the martian soil. Since H2O2 is produced by photochemical processes in the atmosphere of Mars, and has been shown in the laboratory to reproduce closely the Viking LR results, it is a likely candidate for a martian soil oxidant. Here, we report on the results of a coupled soil/atmosphere transport model for H202 on Mars. Upon diffusing into the soil, its concentration is determined by the extent to which it is adsorbed and by the rate at which it is catalytically destroyed. An analytical model for calculating the distribution of H202 in the martian atmosphere and soil is developed. The concentration of H202 in the soil is shown to go to zero at a finite depth, a consequence of the nonlinear soil diffusion equation. The model is parameterized in terms of an unknown quantity, the lifetime of H202 against heterogeneous catalytic destruction in the soil. Calculated concentrations are compared with a H202 concentration of 30 nmoles/cu cm, inferred from the Viking Labeled Release experiment. A significant result of this model is that for a wide range of H202 lifetimes (up to 105 years), the extinction depth was found to be less than 3 m. The maximum possible concentration in the top 4 cm is calculated to be approx. 240 nmoles/cu cm, achieved with lifetimes of greater than 1000 years. Concentrations higher than 30 nmoles/cu cm require lifetimes of greater than 4.3 terrestrial years. For a wide range of H202 lifetimes, it was found that the atmospheric concentration is only weakly coupled with soil loss processes. Losses to the soil become significant only when lifetimes are less than a few hours. If there are depths below which H202 is not transported, it is plausible that organic compounds
3D Global Climate Modelling of the environmental effect of meteoritic impacts on Early Mars
Turbet, Martin; Forget, Francois; Gillmann, Cedric; Karatekin, Ozgur; Svetsov, Vladimir; Popova, Olga; Wallemacq, Quentin
2016-10-01
There are now robust evidences that liquid water flowed on ancient Mars: dry river beds and lakes, hydrated sedimentary minerals and high erosion rates. Climate models that consider only CO2/H2O as greenhouse gases have been unable yet to produce warm climates suitable for liquid water on Early Mars, given the lower solar luminosity at that time. It has been suggested that the warm conditions required to explain the formation of the 3.8 Gyrs old valley networks could have been transient and produced in response to the meteoritic impacts that occured during the contemporaneous Late Heavy Bombardment (LHB). This scenario is appealing because, in a predominately cold climate, the ice tends to accumulate preferentially in the regions where the rivers were sculpted ('Icy Highlands' scenario). This would be a very efficient mechanism of recharge of the valley network water sources between two impact-induced melting events.Using the LMD Global Climate Model (LMD-GCM) designed for flexible (from cold & dry to warm & wet) conditions, we explored the environmental effect of LHB impact events of various sizes on Early Mars. Our main result is that, whatever the initial impact-induced temperatures and water vapor content injected, warm climates cannot be stable and are in fact short-lived (lifetime of ~ 5 martian years/bar of H2O injected). Moreover, we will give preliminar estimates of the amount of rainfall/snowmelt that can be produced after impact events depending on their size, following three different approaches:1) For large impact events (Dimpactor warm/moist conditions prescribed with simple scaling laws and assuming energy conservation.2) For moderate-size events (5km < Dimpactor < 50km, N ~ 3x103) we use the SOVA hydrocode for short-term modelling of impact cratering. It provides us with post-impact temperature fields, injection of volatiles, ejecta and dust distribution that serve as input for the LMD-GCM.3) Simultaneously, we derive the cumulated long-term effect
Detrending of non-stationary noise data by spline techniques
International Nuclear Information System (INIS)
Behringer, K.
1989-11-01
An off-line method for detrending non-stationary noise data has been investigated. It uses a least squares spline approximation of the noise data with equally spaced breakpoints. Subtraction of the spline approximation from the noise signal at each data point gives a residual noise signal. The method acts as a high-pass filter with very sharp frequency cutoff. The cutoff frequency is determined by the breakpoint distance. The steepness of the cutoff is controlled by the spline order. (author) 12 figs., 1 tab., 5 refs
Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines
Cao, Jinshan; Fu, Jianhong; Yuan, Xiuxiao; Gong, Jianya
2017-11-01
Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1
Drilleau, M.; Dubois, A.; Blanchette-Guertin, J. F.; Kawamura, T.; Lognonne, P. H.
2015-12-01
In 2016, the InSight mission will provide the very first seismic records from Mars after installing a seismometer on the surface of the Red Planet. Obtaining information on the deep 1-D seismic structure of Mars using a single geophysical station will be challenging. However, successful test inversions using body and surface waves have been presented in a preliminary study by Panning et al. (2015). Future investigations need now to focus on inversions making a complete use of the seismic waveform. An important challenge is to investigate the effects of 3-D lateral variations of seismic velocity structures on seismograms. The HOPT (Higher Order Perturbation Theory) code originally developed by P. Lognonné and E. Clévédé (Lognonné, 1991 ; Lognonné and Clévédé, 2002) and based on the perturbation theory allows for the computation of synthetic seismograms in a 3-D Earth. We adapted the code for Mars and computed surface wave synthetics in a 3-D planet, initially only considering the effects of the planet's ellipticity as well as the lateral variations in the depth of the Moho which are known through gravity measurements (e.g. Neumann et al., 2004). Additional constraints from lateral variations in topography will be the focus of future work. These synthetics can be compared to future seismic data in order to identify a suite of Martian internal structure models that best match the data. To do so, we first need to estimate the resolvable parameters concerning the Mars deep interior while considering the 3-D effects, which is the main goal of this study. Furthermore, in preparation for the InSight mission data return phase, the computation of these synthetic (but realistic) seismograms is primordial to test the softwares developed by the InSight Mars Quake and Mars Structure Services (in charge of locating the seismic events, and using them to assess the internal structure of Mars).
Sanchez, Braulio V.; Haberle, Robert M.; Schaeffer, James
2004-01-01
The objective of the investigation is to determine the motion of the rotational axis of Mars as a result of mass variations in the atmosphere and condensation and sublimation of CO2 ice on the polar caps. A planet experiences this type of motion if it has an atmosphere, which is changing its mass distribution with respect to the solid body of the planet and/or it is asymmetrically changing the amount of ice at the polar caps. The physical principle involved is the conservation of angular momentum, one can get a feeling for it by sitting on a well oiled swivel chair holding a rotating wheel on a horizontal direction and then changing the rotation axis of the wheel to a vertical direction. The person holding the wheel and the chair would begin to rotate in opposite direction to the rotation of the wheel. The motions of Mars atmosphere and the ice caps variations are obtained from a mathematical model developed at the NASA Ames Research Center. The model produces outputs for a time span of one Martian year, which is equivalent to 687 Earth days. The results indicate that Mars axis of rotation moves in a spiral with respect to a reference point on the surface of the planet. It can move as far away as 35.3 cm from the initial location as a result of both mass variations in the atmosphere and asymmetric ice variations at the polar caps. Furthermore the pole performs close to two revolutions around the reference point during a Martian year. This motion is a combination of two motions, one produced by the atmospheric mass variations and another due to the variations in the ice caps. The motion due to the atmospheric variations is a spiral performing about two and a half revolutions around the reference point during which the pole can move as far as 40.9 cm. The motion due to variations in the ice caps is a spiral performing almost three revolutions during which the pole can move as far as 32.8 cm.
Hybrid Modeling for Testing Intelligent Software for Lunar-Mars Closed Life Support
Malin, Jane T.; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
Intelligent software is being developed for closed life support systems with biological components, for human exploration of the Moon and Mars. The intelligent software functions include planning/scheduling, reactive discrete control and sequencing, management of continuous control, and fault detection, diagnosis, and management of failures and errors. Four types of modeling information have been essential to system modeling and simulation to develop and test the software and to provide operational model-based what-if analyses: discrete component operational and failure modes; continuous dynamic performance within component modes, modeled qualitatively or quantitatively; configuration of flows and power among components in the system; and operations activities and scenarios. CONFIG, a multi-purpose discrete event simulation tool that integrates all four types of models for use throughout the engineering and operations life cycle, has been used to model components and systems involved in the production and transfer of oxygen and carbon dioxide in a plant-growth chamber and between that chamber and a habitation chamber with physicochemical systems for gas processing.
International Nuclear Information System (INIS)
Mittal, R.C.; Rohila, Rajni
2016-01-01
In this paper, we have applied modified cubic B-spline based differential quadrature method to get numerical solutions of one dimensional reaction-diffusion systems such as linear reaction-diffusion system, Brusselator system, Isothermal system and Gray-Scott system. The models represented by these systems have important applications in different areas of science and engineering. The most striking and interesting part of the work is the solution patterns obtained for Gray Scott model, reminiscent of which are often seen in nature. We have used cubic B-spline functions for space discretization to get a system of ordinary differential equations. This system of ODE’s is solved by highly stable SSP-RK43 method to get solution at the knots. The computed results are very accurate and shown to be better than those available in the literature. Method is easy and simple to apply and gives solutions with less computational efforts.
Modeling and observational occurrences of near-surface drainage in Utopia Planitia, Mars
Costard, F.; Sejourne, A.; Kargel, J.; Godin, E.
2016-12-01
During the past 15 years, evidence for an ice-rich planet Mars has rapidly mounted, become increasingly varied in terms of types of deposits and types of observational data, and has become more widespread across the surface. The mid-latitudes of Mars, especially Utopia Planitia, show many types of interesting landforms similar to those in periglacial landscapes on Earth that suggest the presence of ice-rich permafrost. These include thermal contraction polygonal networks, scalloped terrains similar to thermokarst pits, debris flows, small mounds like pingos and rock glaciers. Here, we address questions concerning the influence of meltwater in the Utopia Planitia (UP) landscape using analogs of near-surface melting and drainage along ice-wedge troughs on Bylot Island, northern Canada. In Utopia Planitia, based on the identification of sinuous channel-like pits within polygonal networks, we suggest that episodic underground melting was possible under severe periglacial climate conditions. In UP, the collapse pattern and morphology of unconnected sinuous elongated pits that follow the polygon crack are similar to underground melting in Bylot Island (Nunavut, Canada). Based on this terrestrial analogue, we develop a thermal model that consists of a thick insulating dusty layer over ice-saturated dust during a period of slight climatic warming relative to today's climate. In the model, the melting point is reached at depths down to 150 m. We suggest that small-scale melting could have occurred below ground within ground-ice polygonal fractures and pooled in underground cavities. Then the water may have been released episodically causing mechanical erosion as well as undermining and collapse. After melting, the dry surface dusty layer might have been blown away, thus exposing the degraded terrain of the substrate layer.
Segmented Regression Based on B-Splines with Solved Examples
Directory of Open Access Journals (Sweden)
Miloš Kaňka
2015-12-01
Full Text Available The subject of the paper is segmented linear, quadratic, and cubic regression based on B-spline basis functions. In this article we expose the formulas for the computation of B-splines of order one, two, and three that is needed to construct linear, quadratic, and cubic regression. We list some interesting properties of these functions. For a clearer understanding we give the solutions of a couple of elementary exercises regarding these functions.
Extension of the quantum-kinetic model to lunar and Mars return physics
International Nuclear Information System (INIS)
Liechty, D. S.; Lewis, M. J.
2014-01-01
The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high-mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. A recently introduced molecular-level chemistry model, the quantum-kinetic, or Q-K, model that predicts reaction rates for gases in thermal equilibrium and non-equilibrium using only kinetic theory and fundamental molecular properties, is extended in the current work to include electronic energy level transitions and reactions involving charged particles. Like the Q-K procedures for neutral species chemical reactions, these new models are phenomenological procedures that aim to reproduce the reaction/transition rates but do not necessarily capture the exact physics. These engineering models are necessarily efficient due to the requirement to compute billions of simulated collisions in direct simulation Monte Carlo (DSMC) simulations. The new models are shown to generally agree within the spread of reported transition and reaction rates from the literature for near equilibrium conditions
Body wave travel times and amplitudes for present-day seismic model of Mars
Raevskiy, Sergey; Gudkova, Tamara
At the moment Martian interior structure models are constrained by the satellite observational data (the mass, the moment of inertia factor, the Love number k _{2}) (Konopliv et al., 2011) and high pressure experimental data (Bertka and Fei, 1997). Seismological observations could provide unparalleled capability for studying Martian interiors. Future missions include seismic experiments on Mars (Lognonné et al., 2012). The main instrument for these seismic experiments is a broadband seismometer (Robert et al., 2012). When seismic measurements are not yet available, physically consistent interior models, characterized by properties of relevant minerals, make possible to study of the seismic response of the planet. \\To estimate travel times for direct P, S, core reflected PcP, ScS and core refracted PKP body waves as a function of epicentral distance and hypocentral depth, as well as their amplitudes at the surface for a given marsquake, software product was developed in MatLab, as it encompasses many plotting routines that plot resulting travel times and ray paths. The computational results have been compared with the program TTBox (Knapmeyer, 2004). The code computes seismic ray paths and travel times for a one-dimentional spherical interior model (density and seismic velocities are functions of a radius only). Calculations of travel times tables for direct P, S, core reflected PcP, ScS and core refracted PKP waves and their amplitudes are carried out for a trial seismic model of Mars M14_3 from (Zharkov et al., 2009): the core radius is 1800 km, the thickness of the crust is 50 km. Direct and core reflected P and S waves are recorded to a maximum epicentral distance equal to about 100(°) , and PKP arrivals can be detected for epicental distances larger than 150(°) . The shadow zone is getting wider in comparison with previous results (Knapmeyer, 2010), as the liquid core radius of the seismic model under consideration is larger. Based on the estimates of
Modelling of EISS GPR's electrical and magnetic antennas for ExoMars mission
Biancheri-Astier, M.; Ciarletti, V.; Reineix, A.; Corbel, C.; Dolon, F.; Simon, Y.; Caudoux, C.; Lapauw, L.; Berthelier, Jj.; Ney, R.
2009-04-01
magnetic sensor accommodated on the Rover. As a consequence, since the direction that the rover will follow after its egress will not be know until the Lander is on Mars, it is essential to chose a configuration that will result in a radiation pattern compatible with bi-static measurements whatever the direction of the rover is (within a distance of 1 kilometer). Studies based on electromagnetic simulations have been performed to check the impact of the angle between the two monopoles on the radiation pattern. Study of EISS performances is ongoing using numerical modeling and experimental verifications. We use numerical simulation (FDTD code), analytical models and data processing algorithms to determine the performances of each operating mode and to prepare data interpretation. The subsurface survey requires knowledge of the permittivity of the studied sub-surface layers to convert the measured propagation delay into distance. Access to electrical characteristics of ground without return samples and in situ analysis is unusual in space missions and aroused great interest. Results will be presented about different ways EISS can provide estimation of the electrical properties of the shallow subsurface. Simulations that highlight the impact of the chosen resistive profile and of the angle between the two deployed monopoles will be shown. The presentation will mainly be focused on the bi-static mode that greatly improves the 3D representation of subsurface structure and on the associated instrumental requirements such as the perfect synchronization of the two part of the instrument. A method to retrieve the direction of arrival for each detected echo will be presented that allows a more accurate sub-surface mapping. Only the three magnetic field components are required to implement it, which makes the EISS configuration particularly interesting. This method is based on the orthogonality between the propagation vector and the polarization plane.
Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.
2012-01-01
The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.
Verhoeven, O.; Rivoldini, A.; Vacher, P.; Mocquet, A.; Choblet, G.; Menvielle, M.; Dehant, V.; Van Hoolst, T.; Sleewaegen, J.; Barriot, J.-P.; Lognonné, P.
2005-04-01
We present a new procedure to describe the one-dimensional thermodynamical state and mineralogy of any Earth-like planetary mantle, with Mars as an example. The model parameters are directly related to expected results from a geophysical network mission, in this case electromagnetic, geodetic, and seismological processed observations supplemented with laboratory measurements. We describe the internal structure of the planet in terms of a one-dimensional model depending on a set of eight parameters: for the crust, the thickness and the mean density, for the mantle, the bulk volume fraction of iron, the olivine volume fraction, the pressure gradient, and the temperature profile, and for the core, its mass and radius. Currently, available geophysical and geochemical knowledge constrains the range of the parameter values. In the present paper, we develop the forward problem and present the governing equations from which synthetic data are computed using a set of parameter values. Among all Martian models fitting the currently available knowledge, we select eight candidate models for which we compute synthetic network science data sets. The synergy between the three geophysical experiments of electromagnetic sounding, geodesy, and seismology is emphasized. The stochastic inversion of the synthetic data sets will be presented in a companion paper.
Survival estimation through the cumulative hazard function with monotone natural cubic splines.
Bantis, Leonidas E; Tsimikas, John V; Georgiou, Stelios D
2012-07-01
In this paper we explore the estimation of survival probabilities via a smoothed version of the survival function, in the presence of censoring. We investigate the fit of a natural cubic spline on the cumulative hazard function under appropriate constraints. Under the proposed technique the problem reduces to a restricted least squares one, leading to convex optimization. The approach taken in this paper is evaluated and compared via simulations to other known methods such as the Kaplan Meier and the logspline estimator. Our approach is easily extended to address estimation of survival probabilities in the presence of covariates when the proportional hazards model assumption holds. In this case the method is compared to a restricted cubic spline approach that involves maximum likelihood. The proposed approach can be also adjusted to accommodate left censoring.
Finite nucleus Dirac mean field theory and random phase approximation using finite B splines
International Nuclear Information System (INIS)
McNeil, J.A.; Furnstahl, R.J.; Rost, E.; Shepard, J.R.; Department of Physics, University of Maryland, College Park, Maryland 20742; Department of Physics, University of Colorado, Boulder, Colorado 80309)
1989-01-01
We calculate the finite nucleus Dirac mean field spectrum in a Galerkin approach using finite basis splines. We review the method and present results for the relativistic σ-ω model for the closed-shell nuclei 16 O and 40 Ca. We study the convergence of the method as a function of the size of the basis and the closure properties of the spectrum using an energy-weighted dipole sum rule. We apply the method to the Dirac random-phase-approximation response and present results for the isoscalar 1/sup -/ and 3/sup -/ longitudinal form factors of 16 O and 40 Ca. We also use a B-spline spectral representation of the positive-energy projector to evaluate partial energy-weighted sum rules and compare with nonrelativistic sum rule results
Jarosch, H. S.
1982-01-01
A method based on the use of constrained spline fits is used to overcome the difficulties arising when body-wave data in the form of T-delta are reduced to the tau-p form in the presence of cusps. In comparison with unconstrained spline fits, the method proposed here tends to produce much smoother models which lie approximately in the middle of the bounds produced by the extremal method. The method is noniterative and, therefore, computationally efficient. The method is applied to the lunar seismic data, where at least one triplication is presumed to occur in the P-wave travel-time curve. It is shown, however, that because of an insufficient number of data points for events close to the antipode of the center of the lunar network, the present analysis is not accurate enough to resolve the problem of a possible lunar core.
Newman, Claire E.; Gomez-Elvira, Javier; Marin, Mercedes; Navarro, Sara; Torres, Josefina; Richardson, Mark I.; Battalio, J. Michael; Guzewich, Scott D.; Sullivan, Robert; de la Torre, Manuel;
2016-01-01
A high density of REMS wind measurements were collected in three science investigations during MSL's Bagnold Dunes Campaign, which took place over approx. 80 sols around southern winter solstice (Ls approx. 90deg) and constituted the first in situ analysis of the environmental conditions, morphology, structure, and composition of an active dune field on Mars. The Wind Characterization Investigation was designed to fully characterize the near-surface wind field just outside the dunes and confirmed the primarily upslope/downslope flow expected from theory and modeling of the circulation on the slopes of Aeolis Mons in this season. The basic pattern of winds is 'upslope' (from the northwest, heading up Aeolis Mons) during the daytime (approx. 09:00-17:00 or 18:00) and 'downslope' (from the southeast, heading down Aeolis Mons) at night (approx. 20:00 to some time before 08:00). Between these times the wind rotates largely clockwise, giving generally westerly winds mid-morning and easterly winds in the early evening. The timings of these direction changes are relatively consistent from sol to sol; however, the wind direction and speed at any given time shows considerable intersol variability. This pattern and timing is similar to predictions from the MarsWRF numerical model, run at a resolution of approx. 490 m in this region, although the model predicts the upslope winds to have a stronger component from the E than the W, misses a wind speed peak at approx. 09:00, and under-predicts the strength of daytime wind speeds by approx. 2-4 m/s. The Namib Dune Lee Investigation reveals 'blocking' of northerly winds by the dune, leaving primarily a westerly component to the daytime winds, and also shows a broadening of the 1 Hz wind speed distribution likely associated with lee turbulence. The Namib Dune Side Investigation measured primarily daytime winds at the side of the same dune, in support of aeolian change detection experiments designed to put limits on the saltation
Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012
Directory of Open Access Journals (Sweden)
Quinn Philip R.
2017-01-01
Full Text Available Radiation in the form of solar energetic particles (SEPs presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth’s protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER onboard the Lunar Reconnaissance Orbiter (LRO at the Moon and from the Radiation Assessment Detector (RAD on the Mars Science Laboratory (MSL during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm−2 and 5.0 g cm−2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.
International Nuclear Information System (INIS)
Yoon, C.; Rhee, B. W.; Chung, B. D.; Ahn, S. H.; Kim, M. W.
2009-01-01
Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to a lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use a vendor's code for a regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed the RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of the existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of the RELAP5/MOD3/CANDU code to the MARS code including a quality assurance of the developed models
Coupling SPH and thermochemical models of planets: Methodology and example of a Mars-sized body
Golabek, G. J.; Emsenhuber, A.; Jutzi, M.; Asphaug, E. I.; Gerya, T. V.
2018-02-01
Giant impacts have been suggested to explain various characteristics of terrestrial planets and their moons. However, so far in most models only the immediate effects of the collisions have been considered, while the long-term interior evolution of the impacted planets was not studied. Here we present a new approach, combining 3-D shock physics collision calculations with 3-D thermochemical interior evolution models. We apply the combined methods to a demonstration example of a giant impact on a Mars-sized body, using typical collisional parameters from previous studies. While the material parameters (equation of state, rheology model) used in the impact simulations can have some effect on the long-term evolution, we find that the impact angle is the most crucial parameter for the resulting spatial distribution of the newly formed crust. The results indicate that a dichotomous crustal pattern can form after a head-on collision, while this is not the case when considering a more likely grazing collision. Our results underline that end-to-end 3-D calculations of the entire process are required to study in the future the effects of large-scale impacts on the evolution of planetary interiors.
Modeling of the seismic signals generated by dust devils on Mars
Kenda, B.; Lognonne, P. H.; Spiga, A.; Kawamura, T.; Kedar, S.; Banerdt, W. B.; Lorenz, R. D.
2016-12-01
The solar heating of the surface of Mars during the daytime causes the formation of strong convective vortices and dust devils. However, the impact of these vortices is not limited to the atmosphere. The pressure they exert on the surface forces indeed the ground to move and in this way seismic signals are generated, as recently shown in a terrestrial field study (Lorenz et al. 2015). Hence, the very sensitive seismometer of the Seismic Experiment for Interior Structure (SEIS) of the InSight mission will likely detect dust devils passing close enough to the lander. It is therefore necessary to characterize and describe the signals generated by vortices: on the one hand to distinguish and subtract them from internally originated signals, and on the other hand to use them as a seismic source for the subsurface exploration. To model the source, we used the pressure and wind fields resulting from high-resolution Large-Eddy Simulations, which resolve the turbulence and the dynamics of the Planetary Boundary Layer of Mars. We then computed the corresponding long-period displacement fields at the surface in the quasi-static hypothesis for different models of the subsurface down to a few tens of meters depth. In the 10-100 s band, typical vortices with a pressure drop of 1-3 Pa generate seismometer accelerations in the range 5-25 nm/s2, depending on the ground model. The main effect is related to ground tilt on the horizontal components and can be detected by SEIS, with an encounter frequency of about 0.5 episode/sol. Thus, the analysis of seismic and meteorological measurements will permit to estimate the intensity and the path of the vortex, as well as the compliance of the Martian regolith. In addition, Terrestrial data show acoustic and high-frequency surface waves generated by the vortices, which may be used to determine the layering and inverse for the shear-wave profile of the subsurface at the InSight landing site.
Micropolar Fluids Using B-spline Divergence Conforming Spaces
Sarmiento, Adel
2014-06-06
We discretized the two-dimensional linear momentum, microrotation, energy and mass conservation equations from micropolar fluids theory, with the finite element method, creating divergence conforming spaces based on B-spline basis functions to obtain pointwise divergence free solutions [8]. Weak boundary conditions were imposed using Nitsche\\'s method for tangential conditions, while normal conditions were imposed strongly. Once the exact mass conservation was provided by the divergence free formulation, we focused on evaluating the differences between micropolar fluids and conventional fluids, to show the advantages of using the micropolar fluid model to capture the features of complex fluids. A square and an arc heat driven cavities were solved as test cases. A variation of the parameters of the model, along with the variation of Rayleigh number were performed for a better understanding of the system. The divergence free formulation was used to guarantee an accurate solution of the flow. This formulation was implemented using the framework PetIGA as a basis, using its parallel stuctures to achieve high scalability. The results of the square heat driven cavity test case are in good agreement with those reported earlier.
Validation of Friction Models in MARS-MultiD Module with Two-Phase Cross Flow Experiment
International Nuclear Information System (INIS)
Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher; Euh, Dong-Jin
2015-01-01
In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multidimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the multidimensional modules of system analysis codes. In this study, MARS-MultiD was used to simulate the Yang's experiment, and obtained the local variables. Then, the friction models used in MARS-MultiD were validated by comparing the two-phase flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by the MARS-MultiD. Compared with the experimental results, the calculated results by the code properly presented mass conservation which could be known from the relation between the liquid film velocity and thickness at the same flow rate. The magnitude and direction of the liquid film, however, did not follow well with experimental results. According to the results of Case-2, wall friction should be increased, and interfacial friction should be decreased in MARS-MultiD. These results show that it is needed to modify the friction models in the MARS-MultiD to simulate the two-phase cross flow
MARS-LMR modeling for the post-test analysis of Phenix End-of-Life natural circulation
International Nuclear Information System (INIS)
Jeong, Hae Yong; Ha, Kwi Seok; Chang, Won Pyo; Lee, Kwi Lim
2011-01-01
For a successful design and analysis of Sodium cooled Fast Reactor (SFR), it is required to have a reliable and well-proven system analysis code. To achieve this purpose, KAERI is enhancing the modeling capability of MARS code by adding the SFR-specific models such as pressure drop model, heat transfer model and reactivity feedback model. This version of MARS-LMR will be used as a basic tool in the design and analysis of future SFR systems in Korea. Before wide application of MARS-LMR code, it is required to verify and validate the code models through analyses for appropriate experimental data or analytical results. The end-of-life test of Phenix reactor performed by the CEA provided a unique opportunity to have reliable test data which is very valuable in the validation and verification of a SFR system analysis code. The KAERI joined this international program of the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main test of natural circulation was completed in 2009. Before the test the KAERI performed the pre-test analysis based on the design condition provided by the CEA. Then, the blind post-test analysis was also performed based on the test conditions measured during the test before the CEA provide the final test results. Finally, the final post-test analysis was performed recently to predict the test results as accurate as possible. This paper introduces the modeling approach of the MARS-LMR used in the final post-test analysis and summarizes the major results of the analysis
On developing B-spline registration algorithms for multi-core processors.
Shackleford, J A; Kandasamy, N; Sharp, G C
2010-11-07
Spline-based deformable registration methods are quite popular within the medical-imaging community due to their flexibility and robustness. However, they require a large amount of computing time to obtain adequate results. This paper makes two contributions towards accelerating B-spline-based registration. First, we propose a grid-alignment scheme and associated data structures that greatly reduce the complexity of the registration algorithm. Based on this grid-alignment scheme, we then develop highly data parallel designs for B-spline registration within the stream-processing model, suitable for implementation on multi-core processors such as graphics processing units (GPUs). Particular attention is focused on an optimal method for performing analytic gradient computations in a data parallel fashion. CPU and GPU versions are validated for execution time and registration quality. Performance results on large images show that our GPU algorithm achieves a speedup of 15 times over the single-threaded CPU implementation whereas our multi-core CPU algorithm achieves a speedup of 8 times over the single-threaded implementation. The CPU and GPU versions achieve near-identical registration quality in terms of RMS differences between the generated vector fields.
On developing B-spline registration algorithms for multi-core processors
International Nuclear Information System (INIS)
Shackleford, J A; Kandasamy, N; Sharp, G C
2010-01-01
Spline-based deformable registration methods are quite popular within the medical-imaging community due to their flexibility and robustness. However, they require a large amount of computing time to obtain adequate results. This paper makes two contributions towards accelerating B-spline-based registration. First, we propose a grid-alignment scheme and associated data structures that greatly reduce the complexity of the registration algorithm. Based on this grid-alignment scheme, we then develop highly data parallel designs for B-spline registration within the stream-processing model, suitable for implementation on multi-core processors such as graphics processing units (GPUs). Particular attention is focused on an optimal method for performing analytic gradient computations in a data parallel fashion. CPU and GPU versions are validated for execution time and registration quality. Performance results on large images show that our GPU algorithm achieves a speedup of 15 times over the single-threaded CPU implementation whereas our multi-core CPU algorithm achieves a speedup of 8 times over the single-threaded implementation. The CPU and GPU versions achieve near-identical registration quality in terms of RMS differences between the generated vector fields.
Shape Preserving Interpolation Using C2 Rational Cubic Spline
Directory of Open Access Journals (Sweden)
Samsul Ariffin Abdul Karim
2016-01-01
Full Text Available This paper discusses the construction of new C2 rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters αi, βi, and γi. The sufficient conditions for the positivity are derived on one parameter γi while the other two parameters αi and βi are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with C2 continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and C2 continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives di, i=1,…,n-1. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new C2 rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is ft∈C3t0,tn is also investigated in detail.
Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Nagy, A. F.; Brain, D. A.; Najib, D.
2012-12-01
The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered great interest in recent years. Among the large number of topics in this research area, the investigation of ion escape rates has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3D Mars neutral atmosphere profiles from the well-regarded Mars Thermospheric Global Circulation Model (M-TGCM) and one-way couple it with the 3D BATS-R-US Mars multi-fluid MHD model that solves separate momentum equations for each ion species. The M-TGCM model takes into account the effects of the solar cycle (solar minimum: F10.7=70 and solar maximum: F10.7=200 with equinox condition: Ls=0), allowing us to investigate the effects of the solar cycle on the Mars upper atmosphere ion escape by using a one-way coupling, i.e., the M-TGCM model outputs are used as inputs for the multi-fluid MHD model. A case for solar maximum with extremely high solar wind parameters is also investigated to estimate how high the escape flux can be for such an extreme case. Moreover, the ion escape flux along a satellite trajectory will be studied. This has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN mission (2012-2016). In order to make the code run more efficiently, we adopt a more appropriate grid structure compared to the one used previously. This new grid structure will benefit us to investigate the effects of some dynamic events (such as CME and dust storm) on the ion escape flux.
VO1/VO2 MARS VISUAL IMAGING SUBSYSTEM DIGITAL IMAGING MODEL
National Aeronautics and Space Administration — This digital image map of Mars is a cartographic extension of a previously released set of CD volumes containing individual Viking Orbiter Images (PDS volumes...
VO1/VO2 MARS VISUAL IMAGING SUBSYSTEM DIGITAL TERRAIN MODEL
National Aeronautics and Space Administration — This digital image map of Mars is a cartographic extension of a previously released set of CDROM volumes containing individual Viking Orbiter Images (PDS volumes...
On the Challenge of Simulating the Early Mars Environment with Climate Models
Forget, F.; Turbet, M.; Millour, E.; Kerber, L.; Wordsworth, R. D.; Head, J. W.
2017-10-01
We still do not understand which climate processes allowed water to flow on early Mars. Each proposed solution has its difficulties. Nevertheless, based on the new ideas that are regularly proposed, there is hope ahead.
Model-Based Fault Detection and Diagnosis System for NASA Mars Subsurface Drill Prototype
National Aeronautics and Space Administration — The Drilling Automation for Mars Environment (DAME) project, led by NASA Ames Research Center, is aimed at developing a lightweight, low-power drill prototype that...
MARS EXPRESS HRSC ORTHOPHOTO AND DIGITAL TERRAIN MODEL V1.0
National Aeronautics and Space Administration — This dataset contains images from the High resolution Stereo Camara (HRSC)onboard the MarsExpress spacecraft. It also contains documentation which describe the image...
The analysis of internet addiction scale using multivariate adaptive regression splines.
Kayri, M
2010-01-01
Determining real effects on internet dependency is too crucial with unbiased and robust statistical method. MARS is a new non-parametric method in use in the literature for parameter estimations of cause and effect based research. MARS can both obtain legible model curves and make unbiased parametric predictions. In order to examine the performance of MARS, MARS findings will be compared to Classification and Regression Tree (C&RT) findings, which are considered in the literature to be efficient in revealing correlations between variables. The data set for the study is taken from "The Internet Addiction Scale" (IAS), which attempts to reveal addiction levels of individuals. The population of the study consists of 754 secondary school students (301 female, 443 male students with 10 missing data). MARS 2.0 trial version is used for analysis by MARS method and C&RT analysis was done by SPSS. MARS obtained six base functions of the model. As a common result of these six functions, regression equation of the model was found. Over the predicted variable, MARS showed that the predictors of daily Internet-use time on average, the purpose of Internet-use, grade of students and occupations of mothers had a significant effect (Pdependency level prediction. The fact that MARS revealed extent to which the variable, which was considered significant, changes the character of the model was observed in this study.
Investigating Mars South Residual CO2 Cap with a Global Climate Model
Kahre, M. A.; Dequaire, J.; Hollingsworth, J. L.; Haberle, R. M.
2016-01-01
The CO2 cycle is one of the three controlling climate cycles on Mars. One aspect of the CO2 cycle that is not yet fully understood is the existence of a residual CO2 ice cap that is offset from the south pole. Previous investigations suggest that the atmosphere may control the placement of the south residual cap (e.g., Colaprete et al., 2005). These investigations show that topographically forced stationary eddies in the south during southern hemisphere winter produce colder atmospheric temperatures and increased CO2 snowfall over the hemisphere where the residual cap resides. Since precipitated CO2 ice produces higher surface albedos than directly deposited CO2 ice, it is plausible that CO2 snowfall resulting from the zonally asymmetric atmospheric circulation produces surface ice albedos high enough to maintain a residual cap only in one hemisphere. The goal of the current work is to further evaluate Colaprete et al.'s hypothesis by investigating model-predicted seasonally varying snowfall patterns in the southern polar region and the atmospheric circulation components that control them.
International Nuclear Information System (INIS)
Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M.
2005-04-01
A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST
[Multimodal medical image registration using cubic spline interpolation method].
He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan
2007-12-01
Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.
A cubic spline approximation for problems in fluid mechanics
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
Viscous flow solutions with a cubic spline approximation
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is used for the solution of several problems in fluid mechanics. This procedure provides a high degree of accuracy even with a nonuniform mesh, and leads to a more accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several typical integration schemes are presented. For two-dimensional flows a spline-alternating-direction-implicit (SADI) method is evaluated. The spline procedure is assessed and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
Stability of Spline-Type Systems in the Abelian Case
Directory of Open Access Journals (Sweden)
Darian Onchis
2017-12-01
Full Text Available In this paper, the stability of translation-invariant spaces of distributions over locally compact groups is stated as boundedness of synthesis and projection operators. At first, a characterization of the stability of spline-type spaces is given, in the standard sense of the stability for shift-invariant spaces, that is, linear independence characterizes lower boundedness of the synthesis operator in Banach spaces of distributions. The constructive nature of the proof for Theorem 2 enabled us to constructively realize the biorthogonal system of a given one. Then, inspired by the multiresolution analysis and the Lax equivalence for general discretization schemes, we approached the stability of a sequence of spline-type spaces as uniform boundedness of projection operators. Through Theorem 3, we characterize stable sequences of stable spline-type spaces.
Stability of Spline-Type Systems in the Abelian Case.
Onchis, Darian; Zappalà, Simone
2017-12-27
In this paper, the stability of translation-invariant spaces of distributions over locally compact groups is stated as boundedness of synthesis and projection operators. At first, a characterization of the stability of spline-type spaces is given, in the standard sense of the stability for shift-invariant spaces, that is, linear independence characterizes lower boundedness of the synthesis operator in Banach spaces of distributions. The constructive nature of the proof for Theorem 2 enabled us to constructively realize the biorthogonal system of a given one. Then, inspired by the multiresolution analysis and the Lax equivalence for general discretization schemes, we approached the stability of a sequence of spline-type spaces as uniform boundedness of projection operators. Through Theorem 3, we characterize stable sequences of stable spline-type spaces.
Analysis of Phenix End-of-Life asymmetry test with multi-dimensional pool modeling of MARS-LMR code
International Nuclear Information System (INIS)
Jeong, H.-Y.; Ha, K.-S.; Choi, C.-W.; Park, M.-G.
2015-01-01
Highlights: • Pool behaviors under asymmetrical condition in an SFR were evaluated with MARS-LMR. • The Phenix asymmetry test was analyzed one-dimensionally and multi-dimensionally. • One-dimensional modeling has limitation to predict the cold pool temperature. • Multi-dimensional modeling shows improved prediction of stratification and mixing. - Abstract: The understanding of complicated pool behaviors and its modeling is essential for the design and safety analysis of a pool-type Sodium-cooled Fast Reactor. One of the remarkable recent efforts on the study of pool thermal–hydraulic behaviors is the asymmetrical test performed as a part of Phenix End-of-Life tests by the CEA. To evaluate the performance of MARS-LMR code, which is a key system analysis tool for the design of an SFR in Korea, in the prediction of thermal hydraulic behaviors during an asymmetrical condition, the Phenix asymmetry test is analyzed with MARS-LMR in the present study. Pool regions are modeled with two different approaches, one-dimensional modeling and multi-dimensional one, and the prediction results are analyzed to identify the appropriateness of each modeling method. The prediction with one-dimensional pool modeling shows a large deviation from the measured data at the early stage of the test, which suggests limitations to describe the complicated thermal–hydraulic phenomena. When the pool regions are modeled multi-dimensionally, the prediction gives improved results quite a bit. This improvement is explained by the enhanced modeling of pool mixing with the multi-dimensional modeling. On the basis of the results from the present study, it is concluded that an accurate modeling of pool thermal–hydraulics is a prerequisite for the evaluation of design performance and safety margin quantification in the future SFR developments
Solid T-spline Construction from Boundary Triangulations with Arbitrary Genus Topology
2012-04-01
sculpture model has genus two and (a) (b) (c) Fig. 11. The solid T-spline construction result for the “Eight” model. (a) The constructed solid T...1,536) 5,735 (16, 16) 200 1,440 (0.10, 1.00) 8.5 Sculpture 2 (8,635, 17,276) 10,549 (16, 16) 252 7,072 (0.09, 1.00) 41.5 (a) (b) (c) (d) (e) (f) (g) (h...isogeometric analysis result. 10 (a) (b) (c) (d) (e) (f) (g) (h) Fig. 14. Sculpture model with genus two. (a) The input boundary triangle mesh; (b) the
Interpolation in numerical optimization. [by cubic spline generation
Hall, K. R.; Hull, D. G.
1975-01-01
The present work discusses the generation of the cubic-spline interpolator in numerical optimization methods which use a variable-step integrator with step size control based on local relative truncation error. An algorithm for generating the cubic spline with successive over-relaxation is presented which represents an improvement over that given by Ralston and Wilf (1967). Rewriting the code reduces the number of N-vectors from eight to one. The algorithm is formulated in such a way that the solution of the linear system set up yields the first derivatives at the nodal points. This method is as accurate as other schemes but requires the minimum amount of storage.
Shape preserving rational cubic spline for positive and convex data
Directory of Open Access Journals (Sweden)
Malik Zawwar Hussain
2011-11-01
Full Text Available In this paper, the problem of shape preserving C2 rational cubic spline has been proposed. The shapes of the positive and convex data are under discussion of the proposed spline solutions. A C2 rational cubic function with two families of free parameters has been introduced to attain the C2 positive curves from positive data and C2 convex curves from convex data. Simple data dependent constraints are derived on free parameters in the description of rational cubic function to obtain the desired shape of the data. The rational cubic schemes have unique representations.
Control theoretic splines optimal control, statistical, and path planning
Egerstedt, Magnus
2010-01-01
Splines, both interpolatory and smoothing, have a long and rich history that has largely been application driven. This book unifies these constructions in a comprehensive and accessible way, drawing from the latest methods and applications to show how they arise naturally in the theory of linear control systems. Magnus Egerstedt and Clyde Martin are leading innovators in the use of control theoretic splines to bring together many diverse applications within a common framework. In this book, they begin with a series of problems ranging from path planning to statistics to approximation.
Solution of higher order boundary value problems by spline methods
Chaurasia, Anju; Srivastava, P. C.; Gupta, Yogesh
2017-10-01
Spline solution of Boundary Value Problems has received much attention in recent years. It has proven to be a powerful tool due to the ease of use and quality of results. This paper concerns with the survey of methods that try to approximate the solution of higher order BVPs using various spline functions. The purpose of this article is to thrash out the problems as well as conclusions, reached by the numerous authors in the related field. We critically assess many important relevant papers, published in reputed journals during last six years.
Bristow, N.; Blois, G.; Kim, T.; Anderson, W.; Day, M. D.; Kocurek, G.; Christensen, K. T.
2017-12-01
Impact craters, common large-scale topographic features on the surface of Mars, are circular depressions delimited by a sharp ridge. A variety of crater fill morphologies exist, suggesting that complex intracrater circulations affect their evolution. Some large craters (diameter > 10 km), particularly at mid latitudes on Mars, exhibit a central mound surrounded by circular moat. Foremost among these examples is Gale crater, landing site of NASA's Curiosity rover, since large-scale climatic processes early in in the history of Mars are preserved in the stratigraphic record of the inner mound. Investigating the intracrater flow produced by large scale winds aloft Mars craters is key to a number of important scientific issues including ongoing research on Mars paleo-environmental reconstruction and the planning of future missions (these results must be viewed in conjunction with the affects of radial katabatibc flows, the importance of which is already established in preceding studies). In this work we consider a number of crater shapes inspired by Gale morphology, including idealized craters. Access to the flow field within such geometrically complex topography is achieved herein using a refractive index matched approach. Instantaneous velocity maps, using both planar and volumetric PIV techniques, are presented to elucidate complex three-dimensional flow within the crater. In addition, first- and second-order statistics will be discussed in the context of wind-driven (aeolian) excavation of crater fill.
Directory of Open Access Journals (Sweden)
Świąder Andrzej
2014-12-01
Full Text Available Digital Terrain Models (DTMs produced from stereoscopic, submeter-resolution High Resolution Imaging Science Experiment (HiRISE imagery provide a solid basis for all morphometric analyses of the surface of Mars. In view of the fact that a more effective use of DTMs is hindered by complicated and time-consuming manual handling, the automated process provided by specialists of the Ames Intelligent Robotics Group (NASA, Ames Stereo Pipeline, constitutes a good alternative. Four DTMs, covering the global dichotomy boundary between the southern highlands and northern lowlands along the line of the presumable Arabia shoreline, were produced and analysed. One of them included forms that are likely to be indicative of an oceanic basin that extended across the lowland northern hemisphere of Mars in the geological past. The high resolution DTMs obtained were used in the process of landscape visualisation.
International Nuclear Information System (INIS)
Yoon, C.; Rhee, B. W.; Chung, B. D.; Cho, Y. J.; Kim, M. W.
2008-01-01
Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use vendor's code for regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of RELAP5/MOD3/CANDU code to MARS code including quality assurance of the developed models. This first part of the research series presents the implementation and verification of the Wolsong pump model, the pressure tube deformation model, and the off-take model for arbitrary-angled branch pipes
Deficiencies in the Theory of Free-Knot and Variable-Knot Spline ...
African Journals Online (AJOL)
This paper revisits the theory and practical implementation of graduation of mortality rates using spline functions, and in particular, variable-knot cubic spline graduation. The paper contrasts the actuarial literature on free-knot splines with the mathematical literature. It finds that the practical difficulties of implementing ...
Modelling the impact of vegetation on marly catchments in the Southern Alps of France
Carriere, Alexandra; Le Bouteiller, Caroline; Tucker, Greg; Naaim, Mohamed
2017-04-01
The Southern Alps of France have been identified as a hot-spot in a global climate change context where the rainfall intensity increase may exacerbate the erosion of already badly erodible lands: Badlands. Vegetalization methods are a promising area of research for erosion control and slope and riverbed stabilization. Nevertheless the impact of vegetation on erosive dynamics is still poorly understood. We own data collected over the last thirty years on marly catchments in the Southern Alps of France from the Draix-Bléone Observatory, part of the Network of Drainage Basins RBV. These are temporal data of sedimentary flux at the scale of the precipitation event but also more recent topographic data on watersheds with areas ranging from 10-3 square kilometers to twenty square kilometers. Erosion rates in this landscape reach 1 cm per year. We simulate the topographic evolution of the catchments over a few decades to centuries with the landscape evolution model Landlab, using our data to calibrate and explicitly validate the model. This model, in comparison with other landscape evolution models, incorporates a more advanced vegetation module in terms of ecology. Nevertheless the erosion-vegetation coupling is not present in Landlab and we are working on its construction. To this end we use an erosion module and a vegetation module that we seek to couple. We want to see how the erosion laws parameters depend on the vegetation cover. We have implemented the calibration of parameters of a non-linear diffusion module coupled with a transport-limited law by comparing the simulated annual sediment flux with the one of the data of the observatory as a function of the percentage of vegetation cover of the ground. We obtained average values of parameters adjusted according to vegetation cover. We observe that the values of the erosion laws parameters are strongly affected by the percentage of vegetation cover. We will then spatialize these parameters on our vegetation maps in
Basalt models for the Mars penetrator mission: Geology of the Amboy Lava Field, California
Greeley, R.; Bunch, T. E.
1976-01-01
Amboy lava field (San Bernardino County, California) is a Holocene basalt flow selected as a test site for potential Mars Penetrators. A discussion is presented of (1) the general relations of basalt flow features and textures to styles of eruptions on earth, (2) the types of basalt flows likely to be encountered on Mars and the rationale for selection of the Amboy lava field as a test site, (3) the general geology of the Amboy lava field, and (4) detailed descriptions of the target sites at Amboy lava field.
3D Modeling of South Polar Layered Deposits on Mars with SHARAD radar data
Kofman, W.; Grima, C.; Mouginot, J.; Herique, A.; Seu, R.; Biccari, D.; Orosei, R.
2007-08-01
The SHAllow RADar (SHARAD) is a subsurface sounding instrument aboard the NASA's Mars Reconnaissance Orbiter (MRO) spacecraft. The routine science observations started in November 2006 has already provided a huge amount of data promising an unprecedented insight into the Martian subsurface. The main SHARAD scientific objectives are to map the underground distribution of water over the planet as well as to seek buried geological structures in order to understand the formation of the superficial Martian landscape. SHARAD is working at a 20 MHz central frequency with a 10 MHz bandwidth. The operating parameters allow a 10 m vertical free space resolution and a penetration depth in the range of 0.1 to 1 km. Horizontally, the cross-track and along-track foot print range are respectively 3-7 km and 0.3-1 km. Assuming a low impurities water ice the depth range of the radar should be 1 km with about 7 m of theoretical vertical resolution. This makes possible to sound the internal polar caps structures like never before. We report some observations made in Planum Australe over a 36.000 km2 area. 24 orbits crossing it have been selected. Each shows clear radar echoes with linear shape reaching the radar later than the surface echo. After comparison with simulations able to highlight any potential clutter signals, they have been interpreted as being polar layers. From this set of data a 3D modeling of the subsurface layering was undertaken. We show the results and discuss the method employed. A comparison between the layers behaviour determined in this study, the MOLA topography and the basal mapping made by MARSIS recently, allows initiating geomorphologic discussions.
Elysium region, mars: Tests of lithospheric loading models for the formation of tectonic features
International Nuclear Information System (INIS)
Hall, J.L.; Solomon, S.C.; Head, J.W.
1986-01-01
The second largest volcanic province on Mars lies in the Elysium region. Like the larger Tharsis province, Elysium is marked by a topographic rise and a broad free air gravity anomaly and also exhibits a complex assortment of tectonic and volcanic features. We test the hypothesis that the tectonic features in the Elysium region are the product of stresses produced by loading of the Martian lithosphere. We consider loading at three different scales: local loading by individual volcanoes, regional loading of the lithosphere from above or below, and quasi-global loading by Tharsis. A comparison of flexural stresses with lithospheric strength and with the inferred maximum depth of faulting confirms that concentric graben around Elysium Mons can be explained as resulting from local flexure of an elastic lithosphere about 50 km thick in response to the volcano load. Volcanic loading on a regional scale, however, leads to predicted stresses inconsistent with all observed tectonic features, suggesting that loading by widespread emplacement of thick plains deposits was not an important factor in the tectonic evolution of the Elysium region. A number of linear extensional features oriented generally NW-SE may have been the result of flexural uplift of the lithosphere on the scale of the Elysium rise. The global stress field associated with the support of the Tharsis rise appears to have influenced the development of many of the tectonic features in the Elysium region, including Cerberus Rupes and the systems of ridges in eastern and western Elysium. The comparisons of stress models for Elysium with the preserved tectonic features support a succession of stress fields operating at different times in the region
Charalambous, C. A.; Pike, W. T.
2013-12-01
We present the development of a soil evolution framework and multiscale modelling of the surface of Mars, Moon and Itokawa thus providing an atlas of extra-terrestrial Particle Size Distributions (PSD). These PSDs are profoundly based on a tailoring method which interconnects several datasets from different sites captured by the various missions. The final integrated product is then fully justified through a soil evolution analysis model mathematically constructed via fundamental physical principles (Charalambous, 2013). The construction of the PSD takes into account the macroscale fresh primary impacts and their products, the mesoscale distributions obtained by the in-situ data of surface missions (Golombek et al., 1997, 2012) and finally the microscopic scale distributions provided by Curiosity and Phoenix Lander (Pike, 2011). The distribution naturally extends at the magnitudinal scales at which current data does not exist due to the lack of scientific instruments capturing the populations at these data absent scales. The extension is based on the model distribution (Charalambous, 2013) which takes as parameters known values of material specific probabilities of fragmentation and grinding limits. Additionally, the establishment of a closed-form statistical distribution provides a quantitative description of the soil's structure. Consequently, reverse engineering of the model distribution allows the synthesis of soil that faithfully represents the particle population at the studied sites (Charalambous, 2011). Such representation essentially delivers a virtual soil environment to work with for numerous applications. A specific application demonstrated here will be the information that can directly be extracted for the successful drilling probability as a function of distance in an effort to aid the HP3 instrument of the 2016 Insight Mission to Mars. Pike, W. T., et al. "Quantification of the dry history of the Martian soil inferred from in situ microscopy
Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.
2005-05-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system
Thiriet, M.; Plesa, A. C.; Breuer, D.; Michaut, C.
2017-12-01
To model the thermal evolution of terrestrial planets, 1D parametrized models are often used as 2 or 3D mantle convection codes are very time-consuming. In these parameterized models, scaling laws that describe the convective heat transfer rate as a function of the convective parameters are derived from 2-3D steady state convection models. However, so far there has been no comprehensive comparison whether they can be applied to model the thermal evolution of a cooling planet. Here we compare 2D and 3D thermal evolution models in the stagnant lid regime with 1D parametrized models and use parameters representing the cooling of the Martian mantle. For the 1D parameterized models, we use the approach of Grasset and Parmentier (1998) and treat the stagnant lid and the convecting layer separately. In the convecting layer, the scaling law for a fluid with constant viscosity is valid with Nu (Ra/Rac) ?, with Rac the critical Rayleigh number at which the thermal boundary layers (TBL) - top or bottom - destabilize. ? varies between 1/3 and 1/4 depending on the heating mode and previous studies have proposed intermediate values of b 0.28-0.32 according to their model set-up. The base of the stagnant lid is defined by the temperature at which the mantle viscosity has increased by a factor of 10; it thus depends on the rate of viscosity change with temperature multiplied by a factor? , whose value appears to vary depending on the geometry and convection conditions. In applying Monte Carlo simulations, we search for the best fit to temperature profiles and heat flux using three free parameters, i.e. ? of the upper TBL, ? and the Rac of the lower TBL. We find that depending on the definition of the stagnant lid thickness in the 2-3D models several combinations of ? and ? for the upper TBL can retrieve suitable fits. E.g. combinations of ? = 0.329 and ? = 2.19 but also ? = 0.295 and ? = 2.97 are possible; Rac of the lower TBL is 10 for all best fits. The results show that
C2-rational cubic spline involving tension parameters
Indian Academy of Sciences (India)
preferred which preserves some of the characteristics of the function to be interpolated. In order to tackle such ... Shape preserving properties of the rational (cubic/quadratic) spline interpolant have been studied ... tension parameters which is used to interpolate the given monotonic data is described in. [6]. Shape preserving ...
Approximate Implicitization of Parametric Curves Using Cubic Algebraic Splines
Directory of Open Access Journals (Sweden)
Xiaolei Zhang
2009-01-01
Full Text Available This paper presents an algorithm to solve the approximate implicitization of planar parametric curves using cubic algebraic splines. It applies piecewise cubic algebraic curves to give a global G2 continuity approximation to planar parametric curves. Approximation error on approximate implicitization of rational curves is given. Several examples are provided to prove that the proposed method is flexible and efficient.
Cubic spline approximation techniques for parameter estimation in distributed systems
Banks, H. T.; Crowley, J. M.; Kunisch, K.
1983-01-01
Approximation schemes employing cubic splines in the context of a linear semigroup framework are developed for both parabolic and hyperbolic second-order partial differential equation parameter estimation problems. Convergence results are established for problems with linear and nonlinear systems, and a summary of numerical experiments with the techniques proposed is given.
Connecting the Dots Parametrically: An Alternative to Cubic Splines.
Hildebrand, Wilbur J.
1990-01-01
Discusses a method of cubic splines to determine a curve through a series of points and a second method for obtaining parametric equations for a smooth curve that passes through a sequence of points. Procedures for determining the curves and results of each of the methods are compared. (YP)
C2-rational cubic spline involving tension parameters
Indian Academy of Sciences (India)
In the present paper, 1-piecewise rational cubic spline function involving tension parameters is considered which produces a monotonic interpolant to a given monotonic data set. It is observed that under certain conditions the interpolant preserves the convexity property of the data set. The existence and uniqueness of a ...
Counterexamples to the B-spline Conjecture for Gabor Frames
DEFF Research Database (Denmark)
Lemvig, Jakob; Nielsen, Kamilla Haahr
2016-01-01
The frame set conjecture for B-splines Bn, n≥2, states that the frame set is the maximal set that avoids the known obstructions. We show that any hyperbola of the form ab=r, where r is a rational number smaller than one and a and b denote the sampling and modulation rates, respectively, has infin...
Kriging and thin plate splines for mapping climate variables
Boer, E.P.J.; Beurs, de K.M.; Hartkamp, A.D.
2001-01-01
Four forms of kriging and three forms of thin plate splines are discussed in this paper to predict monthly maximum temperature and monthly mean precipitation in Jalisco State of Mexico. Results show that techniques using elevation as additional information improve the prediction results
Spline function fit for multi-sets of correlative data
International Nuclear Information System (INIS)
Liu Tingjin; Zhou Hongmo
1992-01-01
The Spline fit method for multi-sets of correlative data is developed. The properties of correlative data fit are investigated. The data of 23 Na(n, 2n) cross section are fitted in the cases with and without correlation
DEFF Research Database (Denmark)
Hendricks, Vincent Fella; Hendricks, Elbert
2009-01-01
2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen......2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen...
Czech Academy of Sciences Publication Activity Database
Brož, Petr; Čadek, O.; Hauber, E.; Rossi, A. P.
2015-01-01
Roč. 120, č. 9 (2015), s. 1512-1527 ISSN 2169-9097 Institutional support: RVO:67985530 Keywords : Mars surface * volcanism * pyroclastic cone * scoria cone Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.440, year: 2013
Shape of scoria cones on Mars: Insights from numerical modeling of ballistic pathways
Czech Academy of Sciences Publication Activity Database
Brož, Petr; Čadek, O.; Hauber, E.; Rossi, A. P.
2014-01-01
Roč. 406, November (2014), s. 14-23 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars * explosive volcanism * scoria cone * ballistic pathway Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.734, year: 2014
Modelling tools for managing Induced RiverBank Filtration MAR schemes
De Filippis, Giovanna; Barbagli, Alessio; Marchina, Chiara; Borsi, Iacopo; Mazzanti, Giorgio; Nardi, Marco; Vienken, Thomas; Bonari, Enrico; Rossetto, Rudy
2017-04-01
Induced RiverBank Filtration (IRBF) is a widely used technique in Managed Aquifer Recharge (MAR) schemes, when aquifers are hydraulically connected with surface water bodies, with proven positive effects on quality and quantity of groundwater. IRBF allows abstraction of a large volume of water, avoiding large decrease in groundwater heads. Moreover, thanks to the filtration process through the soil, the concentration of chemical species in surface water can be reduced, thus becoming an excellent resource for the production of drinking water. Within the FP7 MARSOL project (demonstrating Managed Aquifer Recharge as a SOLution to water scarcity and drought; http://www.marsol.eu/), the Sant'Alessio IRBF (Lucca, Italy) was used to demonstrate the feasibility and technical and economic benefits of managing IRBF schemes (Rossetto et al., 2015a). The Sant'Alessio IRBF along the Serchio river allows to abstract an overall amount of about 0.5 m3/s providing drinking water for 300000 people of the coastal Tuscany (mainly to the town of Lucca, Pisa and Livorno). The supplied water is made available by enhancing river bank infiltration into a high yield (10-2 m2/s transmissivity) sandy-gravelly aquifer by rising the river head and using ten vertical wells along the river embankment. A Decision Support System, consisting in connected measurements from an advanced monitoring network and modelling tools was set up to manage the IRBF. The modelling system is based on spatially distributed and physically based coupled ground-/surface-water flow and solute transport models integrated in the FREEWAT platform (developed within the H2020 FREEWAT project - FREE and Open Source Software Tools for WATer Resource Management; Rossetto et al., 2015b), an open source and public domain GIS-integrated modelling environment for the simulation of the hydrological cycle. The platform aims at improving water resource management by simplifying the application of EU water-related Directives and at
Energy Technology Data Exchange (ETDEWEB)
Yang, Jin-Hwa [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Choi, Chi-Jin [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)
2017-02-15
Recently, high precision and high accuracy analysis on multi-dimensional thermal hydraulic phenomena in a nuclear power plant has been considered as state-of-the-art issues. System analysis code, MARS, also adopted a multi-dimensional module to simulate them more accurately. Even though it was applied to represent the multi-dimensional phenomena, but implemented models and correlations in that are one-dimensional empirical ones based on one-dimensional pipe experimental results. Prior to the application of the multi-dimensional simulation tools, however, the constitutive models for a two-phase flow need to be carefully validated, such as the wall friction model. Especially, in a Direct Vessel Injection (DVI) system, the injected emergency core coolant (ECC) on the upper part of the downcomer interacts with the lateral steam flow during the reflood phase in the Large-Break Loss-Of-Coolant-Accident (LBLOCA). The interaction between the falling film and lateral steam flow induces a multi-dimensional two-phase flow. The prediction of ECC flow behavior plays a key role in determining the amount of coolant that can be used as core cooling. Therefore, the wall friction model which is implemented to simulate the multi-dimensional phenomena should be assessed by multidimensional experimental results. In this paper, the air–water cross film flow experiments simulating the multi-dimensional phenomenon in upper part of downcomer as a conceptual problem will be introduced. The two-dimensional local liquid film velocity and thickness data were used as benchmark data for code assessment. And then the previous wall friction model of the MARS-MultiD in the annular flow regime was modified. As a result, the modified MARS-MultiD produced improved calculation result than previous one.
Polynomial estimation of the smoothing splines for the new Finnish reference values for spirometry.
Kainu, Annette; Timonen, Kirsi
2016-07-01
Background Discontinuity of spirometry reference values from childhood into adulthood has been a problem with traditional reference values, thus modern modelling approaches using smoothing spline functions to better depict the transition during growth and ageing have been recently introduced. Following the publication of the new international Global Lung Initiative (GLI2012) reference values also new national Finnish reference values have been calculated using similar GAMLSS-modelling, with spline estimates for mean (Mspline) and standard deviation (Sspline) provided in tables. The aim of this study was to produce polynomial estimates for these spline functions to use in lieu of lookup tables and to assess their validity in the reference population of healthy non-smokers. Methods Linear regression modelling was used to approximate the estimated values for Mspline and Sspline using similar polynomial functions as in the international GLI2012 reference values. Estimated values were compared to original calculations in absolute values, the derived predicted mean and individually calculated z-scores using both values. Results Polynomial functions were estimated for all 10 spirometry variables. The agreement between original lookup table-produced values and polynomial estimates was very good, with no significant differences found. The variation slightly increased in larger predicted volumes, but a range of -0.018 to +0.022 litres of FEV1 representing ± 0.4% of maximum difference in predicted mean. Conclusions Polynomial approximations were very close to the original lookup tables and are recommended for use in clinical practice to facilitate the use of new reference values.
International Nuclear Information System (INIS)
Raines, J.C.; Dawson, S.M.; Deitke, B.; Henry, R.E.
1996-01-01
to true or false identifications of the sequence type. The assessment of the sequence type is important information for the accident manager and is also an essential aspect for the MARS Tracker. This evaluates the accident behavior and continually tests its 'understanding' using the MAAP thermal-hydraulic model and the evolving plant data. The tracking of the accident progression by the MARS Tracker enables the system to initiate near term faster than real-time predictions using the MARS Predictors. The MARS Predictors provide the operators with additional insights into the possible future plant states. This paper demonstrates how the MARS software is able to successfully identify and track a simulated SGTR sequence. (author)
Gutierrez, Juan B; Lai, Ming-Jun; Slavov, George
2015-12-01
We study a time dependent partial differential equation (PDE) which arises from classic models in ecology involving logistic growth with Allee effect by introducing a discrete weak solution. Existence, uniqueness and stability of the discrete weak solutions are discussed. We use bivariate splines to approximate the discrete weak solution of the nonlinear PDE. A computational algorithm is designed to solve this PDE. A convergence analysis of the algorithm is presented. We present some simulations of population development over some irregular domains. Finally, we discuss applications in epidemiology and other ecological problems. Copyright © 2015 Elsevier Inc. All rights reserved.
Pseudo-cubic thin-plate type Spline method for analyzing experimental data
International Nuclear Information System (INIS)
Crecy, F. de.
1993-01-01
A mathematical tool, using pseudo-cubic thin-plate type Spline, has been developed for analysis of experimental data points. The main purpose is to obtain, without any a priori given model, a mathematical predictor with related uncertainties, usable at any point in the multidimensional parameter space. The smoothing parameter is determined by a generalized cross validation method. The residual standard deviation obtained is significantly smaller than that of a least square regression. An example of use is given with critical heat flux data, showing a significant decrease of the conception criterion (minimum allowable value of the DNB ratio). (author) 4 figs., 1 tab., 7 refs
Energy Technology Data Exchange (ETDEWEB)
N.V. Mokhov
2003-04-09
Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.
Pla-García, Jorge
2016-04-01
1. Introduction: The putative in situ detection of methane by Sample Analysis at Mars (SAM) instrument suite on Curiosi-ty at Gale crater has garnered significant attention because of the potential implications for the presence of geological methane sources or indigenous Martian organisms [1, 2]. SAM reported detection of back-ground levels of atmospheric methane of mean value 0.69±0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). Additionally, in four sequential measurements spanning a 60-sol period, SAM observed elevated levels of methane of 7.2±2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. There are many major unresolved questions regard-ing this detection: 1) What are the potential sources of the methane release? 2) What causes the rapid decrease in concentration? and 3) Where is the re-lease location? 4) How spatially extensive is the re-lease? 5) For how long is CH4 released? Regarding the first question, the source of methane, is so far not identified. It could be related with geo-logical process like methane release from clathrates [3], serpentinisation [4] and volcanism [5]; or due to biological activity from methanogenesis [6]. To answer the second question, the rapid decrease in concentration, it is important to note that the photo-chemical lifetime of methane is of order 100 years, much longer than the atmospheric mixing time scale, and thus the gas should tend to be well mixed except near a source or shortly after an episodic release. The observed spike of 7 ppb from the background of System (MRAMS). The model was focused on rover locations using nested grids with a spacing of 330 meters on the in-nermost grid that is centered over the landing [8, 9]. MRAMS is ideally suited for this investigation; the model is explicitly designed to simulate Mars' at-mospheric circulations at the mesoscale and smaller with realistic, high-resolution surface properties [10, 11
Delaney, J. S.
1994-01-01
Oxygen is the most abundant element in most meteorites, yet the ratios of its isotopes are seldom used to constrain the compositional history of achondrites. The two major achondrite groups have O isotope signatures that differ from any plausible chondritic precursors and lie between the ordinary and carbonaceous chondrite domains. If the assumption is made that the present global sampling of chondritic meteorites reflects the variability of O reservoirs at the time of planetessimal/planet aggregation in the early nebula, then the O in these groups must reflect mixing between known chondritic reservoirs. This approach, in combination with constraints based on Fe-Mn-Mg systematics, has been used previously to model the composition of the basaltic achondrite parent body (BAP) and provides a model precursor composition that is generally consistent with previous eucrite parent body (EPB) estimates. The same approach is applied to Mars exploiting the assumption that the SNC and related meteorites sample the martian lithosphere. Model planet and planetesimal compositions can be derived by mixing of known chondritic components using O isotope ratios as the fundamental compositional constraint. The major- and minor-element composition for Mars derived here and that derived previously for the basaltic achondrite parent body are, in many respects, compatible with model compositions generated using completely independent constraints. The role of volatile elements and alkalis in particular remains a major difficulty in applying such models.
Earth analogs for Martian life - Microbes in evaporites, a new model system for life on Mars
Rothschild, Lynn J.
1990-01-01
It is suggested that 'oases' in which life forms may persist on Mars could occur, by analogy with terrestrial cases, in (1) rocks, as known in endolithic microorganisms, (2) polar ice caps, as seen in snow and ice algae, and (3) volcanic regions, as witnessed in the chemoautotrophs which live in ocean-floor hydrothermal vents. Microorganisms, moreover, have been known to survive in salt crystals, and it has even been shown that organisms can metabolize while encrusted in evaporites. Evaporites which may occur on Mars would be able to attenuate UV light, while remaining more transparent to the 400-700 nm radiation useful in photosynthesis. Suggestions are made for the selection of Martian exobiological investigation sites.
Moore, H. J.; Arthur, D. W. G.; Schaber, G. G.
1978-01-01
Dimensions of flows on the earth, Mars, and moon and their topographic gradients obtained from remote measurements are used to calculate yield strengths with a view to explore the validity of the Bingham plastic model and determine whether there is a relation between yield strengths and silica contents. Other factors are considered such as the vagaries of natural phenomena that might contribute to erroneous interpretations and measurements. Comparison of yield strengths of Martian and lunar flows with terrestrial flows suggests that the Martian and lunar flows are more akin to terrestrial basalts than they are to terrestrial andesites, trachytes, and rhyolites.
Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.
2002-08-01
It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.
Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.|info:eu-repo/dai/nl/325922470; Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Gallée, H.
2013-01-01
To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Mod`ele Atmosph´erique R´egional), forced by output of three CMIP5 (Coupled Model
Non-stationary hydrologic frequency analysis using B-spline quantile regression
Nasri, B.; Bouezmarni, T.; St-Hilaire, A.; Ouarda, T. B. M. J.
2017-11-01
Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic and water resources systems under the assumption of stationarity. However, with increasing evidence of climate change, it is possible that the assumption of stationarity, which is prerequisite for traditional frequency analysis and hence, the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extremes based on B-Spline quantile regression which allows to model data in the presence of non-stationarity and/or dependence on covariates with linear and non-linear dependence. A Markov Chain Monte Carlo (MCMC) algorithm was used to estimate quantiles and their posterior distributions. A coefficient of determination and Bayesian information criterion (BIC) for quantile regression are used in order to select the best model, i.e. for each quantile, we choose the degree and number of knots of the adequate B-spline quantile regression model. The method is applied to annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in the variable of interest and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for an annual maximum and minimum discharge with high annual non-exceedance probabilities.
Segmentation of ultrasound images of the carotid using RANSAC and cubic splines.
Rocha, Rui; Campilho, Aurélio; Silva, Jorge; Azevedo, Elsa; Santos, Rosa
2011-01-01
A new algorithm is proposed for the semi-automatic segmentation of the near-end and the far-end adventitia boundary of the common carotid artery in ultrasound images. It uses the random sample consensus method to estimate the most significant cubic splines fitting the edge map of a longitudinal section. The consensus of the geometric model (a spline) is evaluated through a new gain function, which integrates the responses to different discriminating features of the carotid boundary: the proximity of the geometric model to any edge or to valley shaped edges; the consistency between the orientation of the normal to the geometric model and the intensity gradient; and the distance to a rough estimate of the lumen boundary. A set of 50 longitudinal B-mode images of the common carotid and their manual segmentations performed by two medical experts were used to assess the performance of the method. The image set was taken from 25 different subjects, most of them having plaques of different classes (class II to class IV), sizes and shapes. The quantitative evaluation showed promising results, having detection errors similar to the ones observed in manual segmentations for 95% of the far-end boundaries and 73% of the near-end boundaries. 2011 Elsevier Ireland Ltd. All rights reserved.
Berger, J. A.; Schmidt, M. E.; Izawa, M. R. M.; Gellert, R.; Ming, D. W.; Rampe, E. B.; VanBommel, S. J.; McAdam, A. C.
2016-01-01
The Mars rover Curiosity has encountered silica-enriched bedrock (as strata and as veins and associated halos of alteration) in the largely basaltic Murray Fm. of Mt. Sharp in Gale Crater. Alpha Particle X-ray Spectrometer (APXS) investigations of the Murray Fm. revealed decreasing Mg, Ca, Mn, Fe, and Al, and higher S, as silica increased (Fig. 1). A positive correlation between SiO2 and TiO2 (up to 74.4 and 1.7 wt %, respectively) suggests that these two insoluble elements were retained while acidic fluids leached more soluble elements. Other evidence also supports a silica-retaining, acidic alteration model for the Murray Fm., including low trace element abundances consistent with leaching, and the presence of opaline silica and jarosite determined by CheMin. Phosphate stability is a key component of this model because PO4 3- is typically soluble in acidic water and is likely a mobile ion in diagenetic fluids (pH less than 5). However, the Murray rocks are not leached of P; they have variable P2O5 (Fig. 1) ranging from average Mars (0.9 wt%) up to the highest values in Gale Crater (2.5 wt%). Here we evaluate APXS measurements of Murray Fm. bedrock and veins with respect to phosphate stability in acidic fluids as a test of the acidic alteration model for the Lower Mt. Sharp rocks.
Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan
2018-01-01
For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.
Data reduction using cubic rational B-splines
Chou, Jin J.; Piegl, Les A.
1992-01-01
A geometric method is proposed for fitting rational cubic B-spline curves to data that represent smooth curves including intersection or silhouette lines. The algorithm is based on the convex hull and the variation diminishing properties of Bezier/B-spline curves. The algorithm has the following structure: it tries to fit one Bezier segment to the entire data set and if it is impossible it subdivides the data set and reconsiders the subset. After accepting the subset the algorithm tries to find the longest run of points within a tolerance and then approximates this set with a Bezier cubic segment. The algorithm uses this procedure repeatedly to the rest of the data points until all points are fitted. It is concluded that the algorithm delivers fitting curves which approximate the data with high accuracy even in cases with large tolerances.
Monotonicity preserving splines using rational cubic Timmer interpolation
Zakaria, Wan Zafira Ezza Wan; Alimin, Nur Safiyah; Ali, Jamaludin Md
2017-08-01
In scientific application and Computer Aided Design (CAD), users usually need to generate a spline passing through a given set of data, which preserves certain shape properties of the data such as positivity, monotonicity or convexity. The required curve has to be a smooth shape-preserving interpolant. In this paper a rational cubic spline in Timmer representation is developed to generate interpolant that preserves monotonicity with visually pleasing curve. To control the shape of the interpolant three parameters are introduced. The shape parameters in the description of the rational cubic interpolant are subjected to monotonicity constrained. The necessary and sufficient conditions of the rational cubic interpolant are derived and visually the proposed rational cubic Timmer interpolant gives very pleasing results.
High-order numerical solutions using cubic splines
Rubin, S. G.; Khosla, P. K.
1975-01-01
The cubic spline collocation procedure for the numerical solution of partial differential equations was reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy for a nonuniform mesh and overall fourth-order accuracy for a uniform mesh. Application of the technique was made to the Burger's equation, to the flow around a linear corner, to the potential flow over a circular cylinder, and to boundary layer problems. The results confirmed the higher-order accuracy of the spline method and suggest that accurate solutions for more practical flow problems can be obtained with relatively coarse nonuniform meshes.
Golder, K.; Burr, D. M.; Tran, L.
2017-12-01
Regional volcanic processes shaped many planetary surfaces in the Solar System, often through the emplacement of long, voluminous lava flows. Terrestrial examples of this type of lava flow have been used as analogues for extensive martian flows, including those within the circum-Cerberus outflow channels. This analogy is based on similarities in morphology, extent, and inferred eruptive style between terrestrial and martian flows, which raises the question of how these lava flows appear comparable in size and morphology on different planets. The parameters that influence the areal extent of silicate lavas during emplacement may be categorized as either inherent or external to the lava. The inherent parameters include the lava yield strength, density, composition, water content, crystallinity, exsolved gas content, pressure, and temperature. Each inherent parameter affects the overall viscosity of the lava, and for this work can be considered a subset of the viscosity parameter. External parameters include the effusion rate, total erupted volume, regional slope, and gravity. To investigate which parameter(s) may control(s) the development of long lava flows on Mars, we are applying a computational numerical-modelling to reproduce the observed lava flow morphologies. Using a matrix of boundary conditions in the model enables us to investigate the possible range of emplacement conditions that can yield the observed morphologies. We have constructed the basic model framework in Model Builder within ArcMap, including all governing equations and parameters that we seek to test, and initial implementation and calibration has been performed. The base model is currently capable of generating a lava flow that propagates along a pathway governed by the local topography. At AGU, the results of model calibration using the Eldgá and Laki lava flows in Iceland will be presented, along with the application of the model to lava flows within the Cerberus plains on Mars. We then
Data interpolation using rational cubic Ball spline with three parameters
Karim, Samsul Ariffin Abdul
2016-11-01
Data interpolation is an important task for scientific visualization. This research introduces new rational cubic Ball spline scheme with three parameters. The rational cubic Ball will be used for data interpolation with or without true derivative values. Error estimation show that the proposed scheme works well and is a very good interpolant to approximate the function. All graphical examples are presented by using Mathematica software.
Cubic Splines for Trachea and Bronchial Tubes Grid Generation
Directory of Open Access Journals (Sweden)
Eliandro Rodrigues Cirilo
2006-02-01
Full Text Available Grid generation plays an important role in the development of efficient numerical techniques for solving complex flows. Therefore, the present work develops a method for bidimensional blocks structured grid generation for geometries such as the trachea and bronchial tubes. A set of 55 blocks completes the geometry, whose contours are defined by cubic splines. Besides, this technique build on early ones because of its simplicity and efficiency in terms of very complex geometry grid generation.
Numerical simulation of Burgers' equation using cubic B-splines
Lakshmi, C.; Awasthi, Ashish
2017-03-01
In this paper, a numerical θ scheme is proposed for solving nonlinear Burgers' equation. By employing Hopf-Cole transformation, the nonlinear Burgers' equation is linearized to the linear Heat equation. The resulting Heat equation is further solved by cubic B-splines. The time discretization of linear Heat equation is carried out using Crank-Nicolson scheme (θ = {1 \\over 2}) as well as backward Euler scheme (θ = 1). Accuracy in temporal direction is improved by using Richardson extrapolation. This method hence possesses fourth order accuracy both in space and time. The system of matrix which arises by using cubic splines is always diagonal. Therefore, working with splines has the advantage of reduced computational cost and easy implementation. Stability of the schemes have been discussed in detail and shown to be unconditionally stable. Three examples have been examined and the L2 and L∞ error norms have been calculated to establish the performance of the method. The numerical results obtained on applying this method have shown to give more accurate results than existing works of Kutluay et al. [1], Ozis et al. [2], Dag et al. [3], Salkuyeh et al. [4] and Korkmaz et al. [5].
USING SPLINE FUNCTIONS FOR THE SUBSTANTIATION OF TAX POLICIES BY LOCAL AUTHORITIES
Directory of Open Access Journals (Sweden)
Otgon Cristian
2011-07-01
Full Text Available The paper aims to approach innovative financial instruments for the management of public resources. In the category of these innovative tools have been included polynomial spline functions used for budgetary sizing in the substantiating of fiscal and budgetary policies. In order to use polynomial spline functions there have been made a number of steps consisted in the establishment of nodes, the calculation of specific coefficients corresponding to the spline functions, development and determination of errors of approximation. Also in this paper was done extrapolation of series of property tax data using polynomial spline functions of order I. For spline impelementation were taken two series of data, one reffering to property tax as a resultative variable and the second one reffering to building tax, resulting a correlation indicator R=0,95. Moreover the calculation of spline functions are easy to solve and due to small errors of approximation have a great power of predictibility, much better than using ordinary least squares method. In order to realise the research there have been used as methods of research several steps, namely observation, series of data construction and processing the data with spline functions. The data construction is a daily series gathered from the budget account, reffering to building tax and property tax. The added value of this paper is given by the possibility of avoiding deficits by using spline functions as innovative instruments in the publlic finance, the original contribution is made by the average of splines resulted from the series of data. The research results lead to conclusion that the polynomial spline functions are recommended to form the elaboration of fiscal and budgetary policies, due to relatively small errors obtained in the extrapolation of economic processes and phenomena. Future research directions are taking in consideration to study the polynomial spline functions of second-order, third
Non-Stationary Hydrologic Frequency Analysis using B-Splines Quantile Regression
Nasri, B.; St-Hilaire, A.; Bouezmarni, T.; Ouarda, T.
2015-12-01
Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic structures and water resources system under the assumption of stationarity. However, with increasing evidence of changing climate, it is possible that the assumption of stationarity would no longer be valid and the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extreme flows based on B-Splines quantile regression, which allows to model non-stationary data that have a dependence on covariates. Such covariates may have linear or nonlinear dependence. A Markov Chain Monte Carlo (MCMC) algorithm is used to estimate quantiles and their posterior distributions. A coefficient of determination for quantiles regression is proposed to evaluate the estimation of the proposed model for each quantile level. The method is applied on annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in these variables and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for annual maximum and minimum discharge with high annual non-exceedance probabilities. Keywords: Quantile regression, B-Splines functions, MCMC, Streamflow, Climate indices, non-stationarity.
McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)
1996-01-01
Although the Viking results may indicate that Mars has no life today, the possibility exists that Mars may hold the best record of the events that led to the origin of life. There is direct geomorphological evidence that in the past Mars had large amounts of liquid water on its surface. Atmospheric models would suggest that this early period of hydrological activity was due to the presence of a thick atmosphere and the resulting warmer temperatures. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. If Mars did maintain a clement environment for longer than it took for life to originate on Earth, then the question of the origin of life on Mars follows naturally.
Murdin, P.
2000-11-01
First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...
Rahan, Nur Nadiah Mohd; Ishak, Siti Noor Shahira; Hamid, Nur Nadiah Abd; Majid, Ahmad Abd.; Azmi, Amirah
2017-04-01
In this research, the nonlinear Benjamin-Bona-Mahony (BBM) equation is solved numerically using the cubic B-spline (CuBS) and cubic trigonometric B-spline (CuTBS) collocation methods. The CuBS and CuTBS are utilized as interpolating functions in the spatial dimension while the standard finite difference method (FDM) is applied to discretize the temporal space. In order to solve the nonlinear problem, the BBM equation is linearized using Taylor's expansion. Applying the von-Neumann stability analysis, the proposed techniques are shown to be unconditionally stable under the Crank-Nicolson scheme. Several numerical examples are discussed and compared with exact solutions and results from the FDM.
Bantis, Leonidas E; Tsimikas, John V; Georgiou, Stelios D
2013-09-01
The use of ROC curves in evaluating a continuous or ordinal biomarker for the discrimination of two populations is commonplace. However, in many settings, marker measurements above or below a certain value cannot be obtained. In this paper, we study the construction of a smooth ROC curve (or surface in the case of three populations) when there is a lower or upper limit of detection. We propose the use of spline models that incorporate monotonicity constraints for the cumulative hazard function of the marker distribution. The proposed technique is computationally stable and simulation results showed a satisfactory performance. Other observed covariates can be also accommodated by this spline-based approach. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Roush, Ted L.; Brown, Adrian Jon; Blake, D.; Bristow, T.
2014-01-01
Data obtained at visible and nearinfrared wavelengths by OMEGA on MarsExpress and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al- OH-bearing phyllosilicates were identified including the smectites nontronite, saponite, and montmorillonite. To constrain the abundances of these phyllosilicates, spectral analyses of mixtures are needed. We report on our effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. Here we focus on two component mixtures of the hydrated/ hydroxylated silicates, saponite and montmorillonite (Mg- and Al-rich smectites) with each other and with two analogs for other Martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass, hereafter referred to as palagonite). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 micron. Here we focus upon mixtures of the 63-90 m size fractions.
A Spline-Based Lack-Of-Fit Test for Independent Variable Effect in Poisson Regression.
Li, Chin-Shang; Tu, Wanzhu
2007-05-01
In regression analysis of count data, independent variables are often modeled by their linear effects under the assumption of log-linearity. In reality, the validity of such an assumption is rarely tested, and its use is at times unjustifiable. A lack-of-fit test is proposed for the adequacy of a postulated functional form of an independent variable within the framework of semiparametric Poisson regression models based on penalized splines. It offers added flexibility in accommodating the potentially non-loglinear effect of the independent variable. A likelihood ratio test is constructed for the adequacy of the postulated parametric form, for example log-linearity, of the independent variable effect. Simulations indicate that the proposed model performs well, and misspecified parametric model has much reduced power. An example is given.
Cervical Spline Analysis for Ejection Injury Prediction.
1982-11-30
problems that motivated such modelling effort are 1) pilot ejection , 2) whiplash due to auto- mobile accidents, 3) athletic injuries, 4) the effect of...bones are united into two structures; the first five form the sacrum and the remaining two the coccyx . A typical vertebra consists of an anterior...CRVICAL SPINE SECTION R- 1 REFNCS (11 Aho, A. et al., "Segmentary mobility of the lumbar spine in antero- posterior flexion", Ann. MED. INT. SENN
Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro
2016-08-01
Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.
Beaumet, Julien; Doutreloup, Sébastien; Fettweis, Xavier; Erpicum, Michel
2015-04-01
Solar irradiance modelling is crucial for solar resource management, photovoltaic production forecasting and for a better integration of solar energy in the electrical grid network. For those reasons, an adapted version of the Modèle Atmospheric Regional (MAR) is being developed at the Laboratory of Climatology of the University of Liège in order to provide high quality modelling of solar radiation, wind and temperature over north-western Europe. In this new model version, the radiation scheme has been calibrated using solar irradiance in-situ measurements and CORINE Land Cover data have been assimilated in order to improve the modelling of 10 m wind speed and near-surface temperature. In this study, MAR is forced at its boundary by ERA-40 reanalysis and its horizontal resolution is 10 kilometres. Diffuse radiation is estimated using global radiation from MAR outputs and a calibrated version of Ruiz-Arias et al., (2010) sigmoid model. This study proposes to evaluate the method performance for global and diffuse radiation modelling at both the hourly and daily time scale using data from the European Solar Radiation Atlas database for the weather stations of Uccle (Belgium) and Braunschweig (Germany). After that, a 30-year climatology of global and diffuse irradiance for the 1981-2010 period over western Europe is built. The created data set is then analysed in order to highlight possible regional or seasonal trends. The validity of the results is then evaluated after comparison with trends found in in-situ data or from different studies from the literature.
International Nuclear Information System (INIS)
Fletcher, S.K.
2002-01-01
1 - Description of program or function: The three programs SPLPKG, WFCMPR, and WFAPPX provide the capability for interactively generating, comparing and approximating Wilson-Fowler Splines. The Wilson-Fowler spline is widely used in Computer Aided Design and Manufacturing (CAD/CAM) systems. It is favored for many applications because it produces a smooth, low curvature fit to planar data points. Program SPLPKG generates a Wilson-Fowler spline passing through given nodes (with given end conditions) and also generates a piecewise linear approximation to that spline within a user-defined tolerance. The program may be used to generate a 'desired' spline against which to compare other Splines generated by CAD/CAM systems. It may also be used to generate an acceptable approximation to a desired spline in the event that an acceptable spline cannot be generated by the receiving CAD/CAM system. SPLPKG writes an IGES file of points evaluated on the spline and/or a file containing the spline description. Program WFCMPR computes the maximum difference between two Wilson-Fowler Splines and may be used to verify the spline recomputed by a receiving system. It compares two Wilson-Fowler Splines with common nodes and reports the maximum distance between curves (measured perpendicular to segments) and the maximum difference of their tangents (or normals), both computed along the entire length of the Splines. Program WFAPPX computes the maximum difference between a Wilson- Fowler spline and a piecewise linear curve. It may be used to accept or reject a proposed approximation to a desired Wilson-Fowler spline, even if the origin of the approximation is unknown. The maximum deviation between these two curves, and the parameter value on the spline where it occurs are reported. 2 - Restrictions on the complexity of the problem - Maxima of: 1600 evaluation points (SPLPKG), 1000 evaluation points (WFAPPX), 1000 linear curve breakpoints (WFAPPX), 100 spline Nodes
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
The estimation of the technical efficiency comprises a vast literature in the field of applied production economics. There are two predominant approaches: the non-parametric and non-stochastic Data Envelopment Analysis (DEA) and the parametric Stochastic Frontier Analysis (SFA). The DEA...... of specifying an unsuitable functional form and thus, model misspecification and biased parameter estimates. Given these problems of the DEA and the SFA, Fan, Li and Weersink (1996) proposed a semi-parametric stochastic frontier model that estimates the production function (frontier) by non-parametric......), Kumbhakar et al. (2007), and Henningsen and Kumbhakar (2009). The aim of this paper and its main contribution to the existing literature is the estimation semi-parametric stochastic frontier models using a different non-parametric estimation technique: spline regression (Ma et al. 2011). We apply...
Zhu, Zhongxia; Janunts, Edgar; Eppig, Timo; Sauer, Tomas; Langenbucher, Achim
2010-01-01
The aim of this study is to represent the corneal anterior surface by utilizing radius and height data extracted from a TMS-2N topographic system with three different mathematical approaches and to simulate the visual performance. An iteratively re-weighted bi-cubic spline method is introduced for the local representation of the corneal surface. For comparison, two standard mathematical global representation approaches are used: the general quadratic function and the higher order Taylor polynomial approach. First, these methods were applied in simulations using three corneal models. Then, two real eye examples were investigated: one eye with regular astigmatism, and one eye which had undergone refractive surgery. A ray-tracing program was developed to evaluate the imaging performance of these examples with each surface representation strategy at the best focus plane. A 6 mm pupil size was chosen for the simulation. The fitting error (deviation) of the presented methods was compared. It was found that the accuracy of the topography representation was worst using the quadratic function and best with bicubic spline. The quadratic function cannot precisely describe the irregular corneal shape. In order to achieve a sub-micron fitting precision, the Taylor polynomial's order selection behaves adaptive to the corneal shape. The bi-cubic spline shows more stable performance. Considering the visual performance, the more precise the cornea representation is, the worse the visual performance is. The re-weighted bi-cubic spline method is a reasonable and stable method for representing the anterior corneal surface in measurements using a Placido-ring-pattern-based corneal topographer. Copyright © 2010. Published by Elsevier GmbH.
Castillo, Edward; Castillo, Richard; Fuentes, David; Guerrero, Thomas
2014-04-01
Block matching is a well-known strategy for estimating corresponding voxel locations between a pair of images according to an image similarity metric. Though robust to issues such as image noise and large magnitude voxel displacements, the estimated point matches are not guaranteed to be spatially accurate. However, the underlying optimization problem solved by the block matching procedure is similar in structure to the class of optimization problem associated with B-spline based registration methods. By exploiting this relationship, the authors derive a numerical method for computing a global minimizer to a constrained B-spline registration problem that incorporates the robustness of block matching with the global smoothness properties inherent to B-spline parameterization. The method reformulates the traditional B-spline registration problem as a basis pursuit problem describing the minimall1-perturbation to block match pairs required to produce a B-spline fitting error within a given tolerance. The sparsity pattern of the optimal perturbation then defines a voxel point cloud subset on which the B-spline fit is a global minimizer to a constrained variant of the B-spline registration problem. As opposed to traditional B-spline algorithms, the optimization step involving the actual image data is addressed by block matching. The performance of the method is measured in terms of spatial accuracy using ten inhale/exhale thoracic CT image pairs (available for download atwww.dir-lab.com) obtained from the COPDgene dataset and corresponding sets of expert-determined landmark point pairs. The results of the validation procedure demonstrate that the method can achieve a high spatial accuracy on a significantly complex image set. The proposed methodology is demonstrated to achieve a high spatial accuracy and is generalizable in that in can employ any displacement field parameterization described as a least squares fit to block match generated estimates. Thus, the framework
Directory of Open Access Journals (Sweden)
Marko Wilke
2018-02-01
Full Text Available This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender as well as technical (field strength, data quality predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php. Keywords: MRI template creation, Multivariate adaptive regression splines, DARTEL, Structural MRI
Semisupervised feature selection via spline regression for video semantic recognition.
Han, Yahong; Yang, Yi; Yan, Yan; Ma, Zhigang; Sebe, Nicu; Zhou, Xiaofang
2015-02-01
To improve both the efficiency and accuracy of video semantic recognition, we can perform feature selection on the extracted video features to select a subset of features from the high-dimensional feature set for a compact and accurate video data representation. Provided the number of labeled videos is small, supervised feature selection could fail to identify the relevant features that are discriminative to target classes. In many applications, abundant unlabeled videos are easily accessible. This motivates us to develop semisupervised feature selection algorithms to better identify the relevant video features, which are discriminative to target classes by effectively exploiting the information underlying the huge amount of unlabeled video data. In this paper, we propose a framework of video semantic recognition by semisupervised feature selection via spline regression (S(2)FS(2)R) . Two scatter matrices are combined to capture both the discriminative information and the local geometry structure of labeled and unlabeled training videos: A within-class scatter matrix encoding discriminative information of labeled training videos and a spline scatter output from a local spline regression encoding data distribution. An l2,1 -norm is imposed as a regularization term on the transformation matrix to ensure it is sparse in rows, making it particularly suitable for feature selection. To efficiently solve S(2)FS(2)R , we develop an iterative algorithm and prove its convergency. In the experiments, three typical tasks of video semantic recognition, such as video concept detection, video classification, and human action recognition, are used to demonstrate that the proposed S(2)FS(2)R achieves better performance compared with the state-of-the-art methods.
Thin-plate spline analysis of mandibular growth.
Franchi, L; Baccetti, T; McNamara, J A
2001-04-01
The analysis of mandibular growth changes around the pubertal spurt in humans has several important implications for the diagnosis and orthopedic correction of skeletal disharmonies. The purpose of this study was to evaluate mandibular shape and size growth changes around the pubertal spurt in a longitudinal sample of subjects with normal occlusion by means of an appropriate morphometric technique (thin-plate spline analysis). Ten mandibular landmarks were identified on lateral cephalograms of 29 subjects at 6 different developmental phases. The 6 phases corresponded to 6 different maturational stages in cervical vertebrae during accelerative and decelerative phases of the pubertal growth curve of the mandible. Differences in shape between average mandibular configurations at the 6 developmental stages were visualized by means of thin-plate spline analysis and subjected to permutation test. Centroid size was used as the measure of the geometric size of each mandibular specimen. Differences in size at the 6 developmental phases were tested statistically. The results of graphical analysis indicated a statistically significant change in mandibular shape only for the growth interval from stage 3 to stage 4 in cervical vertebral maturation. Significant increases in centroid size were found at all developmental phases, with evidence of a prepubertal minimum and of a pubertal maximum. The existence of a pubertal peak in human mandibular growth, therefore, is confirmed by thin-plate spline analysis. Significant morphological changes in the mandible during the growth interval from stage 3 to stage 4 in cervical vertebral maturation may be described as an upward-forward direction of condylar growth determining an overall "shrinkage" of the mandibular configuration along the measurement of total mandibular length. This biological mechanism is particularly efficient in compensating for major increments in mandibular size at the adolescent spurt.
Ivanov, B. A.
2005-01-01
The presence of water/ice/brine in upper layers of Martian crust affects many processes of impact cratering. Modeling of these effects promises better understanding of Martian cratering records. We present here the new ANEOS-based multiphase equation of state for water/ice constructed for usage in hydrocodes and first numerical experiments on permafrost shock melting. Preliminary results show that due to multiple shock compression of ice inclusions in rocks the entropy jump in shocked ice is smaller than in pure ice for the same shock pressure. Hence previous estimates of ice melting during impact cratering on Mars should be re-evaluated. Additional information is included in the original extended abstract.
Achieving high data reduction with integral cubic B-splines
Chou, Jin J.
1993-01-01
During geometry processing, tangent directions at the data points are frequently readily available from the computation process that generates the points. It is desirable to utilize this information to improve the accuracy of curve fitting and to improve data reduction. This paper presents a curve fitting method which utilizes both position and tangent direction data. This method produces G(exp 1) non-rational B-spline curves. From the examples, the method demonstrates very good data reduction rates while maintaining high accuracy in both position and tangent direction.
C2-rational cubic spline involving tension parameters
Indian Academy of Sciences (India)
the impact of variation of parameters ri and ti on the shape of the interpolant. Some remarks are given in x 6. 2. The rational spline interpolant. Let P И fxign. iИ1 where a И x1 ` x2 ` ┴┴┴ ` xn И b, be a partition of the interval ЙaY bК, let fi, i И 1Y ... Y n be the function values at the data points. We set hi И xiЗ1 └ xiY ∆i И Е ...
International Nuclear Information System (INIS)
Russell, K.D.; Skinner, N.L.
1994-07-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The primary function of MAR-D is to create a data repository for completed PRAs and Individual Plant Examinations (IPEs) by providing input, conversion, and output capabilities for data used by IRRAS, SARA, SETS, and FRANTIC software. As probabilistic risk assessments and individual plant examinations are submitted to the NRC for review, MAR-D can be used to convert the models and results from the study for use with IRRAS and SARA. Then, these data can be easily accessed by future studies and will be in a form that will enhance the analysis process. This reference manual provides an overview of the functions available within MAR-D and step-by-step operating instructions
Optimal Design of Grooved Cam Profile Using Non-uniform Rational B-splines
Directory of Open Access Journals (Sweden)
Xuan Guantao
2017-01-01
Full Text Available In order to reduce the fatigue damage in grooved cam mechanisms, grooved cam profile was reconstructed with non-uniform rational B-splines (NURBS. Considering joint friction, dynamic model of grooved cam mechanisms was established and the contact stress between grooved cam and follower was calculated using Hertz contact theory. Taking the minimum contact stress and the minimum acceleration as optimal objectives, integrated design model for respective kinematic and dynamic design approaches was set up. The integrated design mode was optimized to search Pareto-optimal solution by an improved artificial fish swarm algorithm, and optimized NURBS profile for grooved cam was acquired. The results show NURBS profile has better kinematic and dynamic performances. The impacts on grooved cam mechanism are reduced and wear characteristics are improved.
Wörz, Stefan; Rohr, Karl
2006-01-01
We introduce an elastic registration approach which is based on a physical deformation model and uses Gaussian elastic body splines (GEBS). We formulate an extended energy functional related to the Navier equation under Gaussian forces which also includes landmark localization uncertainties. These uncertainties are characterized by weight matrices representing anisotropic errors. Since the approach is based on a physical deformation model, cross-effects in elastic deformations can be taken into account. Moreover, we have a free parameter to control the locality of the transformation for improved registration of local geometric image differences. We demonstrate the applicability of our scheme based on 3D CT images from the Truth Cube experiment, 2D MR images of the brain, as well as 2D gel electrophoresis images. It turns out that the new scheme achieves more accurate results compared to previous approaches.
Full-turn symplectic map from a generator in a Fourier-spline basis
International Nuclear Information System (INIS)
Berg, J.S.; Warnock, R.L.; Ruth, R.D.; Forest, E.
1993-04-01
Given an arbitrary symplectic tracking code, one can construct a full-turn symplectic map that approximates the result of the code to high accuracy. The map is defined implicitly by a mixed-variable generating function. The implicit definition is no great drawback in practice, thanks to an efficient use of Newton's method to solve for the explicit map at each iteration. The generator is represented by a Fourier series in angle variables, with coefficients given as B-spline functions of action variables. It is constructed by using results of single-turn tracking from many initial conditions. The method has been appliedto a realistic model of the SSC in three degrees of freedom. Orbits can be mapped symplectically for 10 7 turns on an IBM RS6000 model 320 workstation, in a run of about one day
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation.
Wilke, Marko; Altaye, Mekibib; Holland, Scott K
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating "unusual" populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php.
Utah Marbles and Mars Blueberries: Comparitive Terrestrial Analogs for Hematite Concretions on Mars
Chan, M. A.; Beitler, B.; Parry, W. T.; Ormö, J.; Komatsu, G.
2005-03-01
Compelling comparisons show why Utah iron oxide-cemented "marbles" are a good analog for Mars hematite "blueberries". Terrestrial examples offer valuable models for interpreting the diagenetic history and importance of water on Mars.
Review Random regression test-day model for the analysis of dairy ...
African Journals Online (AJOL)
jannes
Splines are readily fitted within the mixed model analyses (Verbyla et al., 1999; Ruppert et al., 2003). White et al. (1999) used cubic splines, while Torres & Quaas (2001) used B-splines with 10 knots in separate RR analyses of test-day records of dairy cows. Too many knots would increase model complexity, while too few ...
Analyzing Single Molecule Localization Microscopy Data Using Cubic Splines.
Babcock, Hazen P; Zhuang, Xiaowei
2017-04-03
The resolution of super-resolution microscopy based on single molecule localization is in part determined by the accuracy of the localization algorithm. In most published approaches to date this localization is done by fitting an analytical function that approximates the point spread function (PSF) of the microscope. However, particularly for localization in 3D, analytical functions such as a Gaussian, which are computationally inexpensive, may not accurately capture the PSF shape leading to reduced fitting accuracy. On the other hand, analytical functions that can accurately capture the PSF shape, such as those based on pupil functions, can be computationally expensive. Here we investigate the use of cubic splines as an alternative fitting approach. We demonstrate that cubic splines can capture the shape of any PSF with high accuracy and that they can be used for fitting the PSF with only a 2-3x increase in computation time as compared to Gaussian fitting. We provide an open-source software package that measures the PSF of any microscope and uses the measured PSF to perform 3D single molecule localization microscopy analysis with reasonable accuracy and speed.
Lunar and Planetary Science XXXV: Mars Geophysics
2004-01-01
The titles in this section include: 1) Distribution of Large Visible and Buried Impact Basins on Mars: Comparison with Free-Air Gravity, Crustal Thickness, and Magnetization Models; 2) The Early Thermal and Magnetic State of Terra Cimmeria, Southern Highlands of Mars; 3) Compatible Vector Components of the Magnetic Field of the Martian Crust; 4) Vertical Extrapolation of Mars Magnetic Potentials; 5) Rock Magnetic Fields Shield the Surface of Mars from Harmful Radiation; 6) Loading-induced Stresses near the Martian Hemispheric Dichotomy Boundary; 7) Growth of the Hemispheric Dichotomy and the Cessation of Plate Tectonics on Mars; 8) A Look at the Interior of Mars; 9) Uncertainties on Mars Interior Parameters Deduced from Orientation Parameters Using Different Radio-Links: Analytical Simulations; 10) Refinement of Phobos Ephemeris Using Mars Orbiter Laser Altimetry Radiometry.
Schneider, A.; Mittlefehldt, D.
2006-10-01
The Mars Exploration Rover Opportunity discovered hematite-rich spherules (``blueberries'') believed to be diagenetic concretions formed in the bedrock in stagnant or slow-moving groundwater. These spherules likely precipitated from solution, but their origins are poorly understood. Three formation mechanisms are possible: inclusive, replacive and displacive. The first would result in a distinct spherule composition compared to the other two. We propose that chemical clues may help to constrain the nature of blueberry formation. We used Alpha Particle X-ray Spectrometer data for undisturbed soils that were blueberry-free and with visible blueberries at the surface in Microscopic Imager images. We made plots of the elements versus iron for the spherule-rich soils and compared them to a mixing line representative of a pure hematite end member spherule (called ``the zero model''). This modeled the replacive formation mechanism, in which pure hematite would replace all of the original material. If the spherules grew inclusively, chemical data should reflect a compositional component of the rock grains included during formation. Four models were developed to test for possible compositions of a rock component. These models could not easily explain the APXS data and thus demonstrate that the most plausible rock compositions are not components of blueberries.
A wet-geology and cold-climate Mars model: Punctuation of a slow dynamic approach to equilibrium
Kargel, J. S.
1993-01-01
It was suggested that Mars may have possessed a relatively warm humid climate and a vigorous hydrological cycle involving meteoric precipitation, oceans, and continental ice sheets. Baker hypothesized that these geologically active conditions may have been repeated several times; each of these dynamic epochs was followed by a collapse of the climate and hydrologic cycle of Mars into essentially current conditions, completing what is termed a 'Baker cycle'. The purpose is to present an endmember possibility that Martian glacial landscapes, including some that were previously considered to have formed under warm climatic conditions, might be explained by processes compatible with an extremely cold surface. Two aspects of hypothesized Martian glacial terrains were cited as favoring a warm climate during Baker cycles: (1) the formation of some landscapes, including possible eskers, tunnel channels, drumlins, and outwash plains, appears to have required liquid water, and (2) a liquid-surfaced ocean was probably necessary to feed the glaciers. The requirement for liquid water, if these features were correctly interpreted, is difficult to avoid; it is entirely possible that a comparatively warm climate was involved, but it is not clear that formation of landforms by wet-based glaciers actually requires a warm climate. Even less certain is the supposed requirement for liquid oceans. Formation of glaciers only requires a source of water or ice to supply an amount of precipitation that exceeds losses due to melting and sublimation. At Martian temperatures precipitation is very low, but so are melting and sublimation, so a large body of ice that is unstable with respect to sublimation may take the role of Earth's oceans in feeding the glaciers. Recent models suggest that even current Martian polar caps, long thought to be static bodies of ice and dust, might actually be slow-moving, cryogenic continental glaciers. Is it possible that subglacial processes beneath cryogenic
B-spline solution of a singularly perturbed boundary value problem arising in biology
International Nuclear Information System (INIS)
Lin Bin; Li Kaitai; Cheng Zhengxing
2009-01-01
We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.
B-LUT: Fast and low memory B-spline image interpolation.
Sarrut, David; Vandemeulebroucke, Jef
2010-08-01
We propose a fast alternative to B-splines in image processing based on an approximate calculation using precomputed B-spline weights. During B-spline indirect transformation, these weights are efficiently retrieved in a nearest-neighbor fashion from a look-up table, greatly reducing overall computation time. Depending on the application, calculating a B-spline using a look-up table, called B-LUT, will result in an exact or approximate B-spline calculation. In case of the latter the obtained accuracy can be controlled by the user. The method is applicable to a wide range of B-spline applications and has very low memory requirements compared to other proposed accelerations. The performance of the proposed B-LUTs was compared to conventional B-splines as implemented in the popular ITK toolkit for the general case of image intensity interpolation. Experiments illustrated that highly accurate B-spline approximation can be obtained all while computation time is reduced with a factor of 5-6. The B-LUT source code, compatible with the ITK toolkit, has been made freely available to the community. 2009 Elsevier Ireland Ltd. All rights reserved.
B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy
Directory of Open Access Journals (Sweden)
Shilpa Dilipkumar
2015-03-01
Full Text Available An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy. A comparative study of the proposed technique with the state-of-art maximum likelihood (ML and maximum-a-posteriori (MAP with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED.
Directory of Open Access Journals (Sweden)
Shu-Cherng Fang
2010-07-01
Full Text Available We analytically investigate univariate C1 continuous cubic L1 interpolating splines calculated by minimizing an L1 spline functional based on the second derivative on 5-point windows. Specifically, we link geometric properties of the data points in the windows with linearity, convexity and oscillation properties of the resulting L1 spline. These analytical results provide the basis for a computationally efficient algorithm for calculation of L1 splines on 5-point windows.
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
-parametric regression based on kernel estimators. This approach combines the virtues of the DEA and the SFA, while avoiding their drawbacks: it avoids the specification of a functional form and at the same time accounts for statistical noise. More recently, this approach was used by Henderson and Simar (2005...... is criticised, because it cannot account for statistical noise such as random production shocks and measurement errors, which are inherent in more or less all production data sets. In contrast, the SFA is criticised, because it requires the specification of a functional form, which involves the risk......), Kumbhakar et al. (2007), and Henningsen and Kumbhakar (2009). The aim of this paper and its main contribution to the existing literature is the estimation semi-parametric stochastic frontier models using a different non-parametric estimation technique: spline regression (Ma et al. 2011). We apply...
A Novel Structure and Design Optimization of Compact Spline-Parameterized UWB Slot Antenna
Directory of Open Access Journals (Sweden)
Koziel Slawomir
2016-12-01
Full Text Available In this paper, a novel structure of a compact UWB slot antenna and its design optimization procedure has been presented. In order to achieve a sufficient number of degrees of freedom necessary to obtain a considerable size reduction rate, the slot is parameterized using spline curves. All antenna dimensions are simultaneously adjusted using numerical optimization procedures. The fundamental bottleneck here is a high cost of the electromagnetic (EM simulation model of the structure that includes (for reliability an SMA connector. Another problem is a large number of geometry parameters (nineteen. For the sake of computational efficiency, the optimization process is therefore performed using variable-fidelity EM simulations and surrogate-assisted algorithms. The optimization process is oriented towards explicit reduction of the antenna size and leads to a compact footprint of 199 mm2 as well as acceptable matching within the entire UWB band. The simulation results are validated using physical measurements of the fabricated antenna prototype.
Graph analysis of non-uniform rational B-spline-based metamodels
Steuben, John C.; Turner, Cameron J.
2015-09-01
Over the past decade metamodels, also known as surrogate models, based on non-uniform rational B-splines (NURBs) have been developed. These metamodels exhibit unique properties that enable a wide range of computationally efficient analyses. Thus far, the analysis of these metamodels has been of a geometric nature, but in this article an approach based on graph theory is used. The properties of NURBs enable the interpretation of NURBs-based metamodels as graphs, and enable the demonstration of several analyses based on this structure. The general case of an analytically defined continuous-variable problem is given in the first example. A specific application in the field of robotic path planning constitutes the second example. Finally, an observation on the current state of this research, its merits and drawbacks, and an outline of future efforts that may increase its utility is provided.
Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul
2018-02-01
We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.
Tavana, Madjid
2003-01-01
The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.
Cowell, Rosemary A; Bussey, Timothy J; Saksida, Lisa M
2012-11-01
We describe how computational models can be useful to cognitive and behavioral neuroscience, and discuss some guidelines for deciding whether a model is useful. We emphasize that because instantiating a cognitive theory as a computational model requires specification of an explicit mechanism for the function in question, it often produces clear and novel behavioral predictions to guide empirical research. However, computational modeling in cognitive and behavioral neuroscience remains somewhat rare, perhaps because of misconceptions concerning the use of computational models (in particular, connectionist models) in these fields. We highlight some common misconceptions, each of which relates to an aspect of computational models: the problem space of the model, the level of biological organization at which the model is formulated, and the importance (or not) of biological plausibility, parsimony, and model parameters. Careful consideration of these aspects of a model by empiricists, along with careful delineation of them by modelers, may facilitate communication between the two disciplines and promote the use of computational models for guiding cognitive and behavioral experiments. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines
Directory of Open Access Journals (Sweden)
Fernando Sánchez Lasheras
2015-03-01
Full Text Available Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS technique with the principal component analysis (PCA, dendrograms and classification and regression trees (CARTs. Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.. Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.
Perbaikan Metode Penghitungan Debit Sungai Menggunakan Cubic Spline Interpolation
Directory of Open Access Journals (Sweden)
Budi I. Setiawan
2007-09-01
Full Text Available Makalah ini menyajikan perbaikan metode pengukuran debit sungai menggunakan fungsi cubic spline interpolation. Fungi ini digunakan untuk menggambarkan profil sungai secara kontinyu yang terbentuk atas hasil pengukuran jarak dan kedalaman sungai. Dengan metoda baru ini, luas dan perimeter sungai lebih mudah, cepat dan tepat dihitung. Demikian pula, fungsi kebalikannnya (inverse function tersedia menggunakan metode. Newton-Raphson sehingga memudahkan dalam perhitungan luas dan perimeter bila tinggi air sungai diketahui. Metode baru ini dapat langsung menghitung debit sungaimenggunakan formula Manning, dan menghasilkan kurva debit (rating curve. Dalam makalah ini dikemukaan satu canton pengukuran debit sungai Rudeng Aceh. Sungai ini mempunyai lebar sekitar 120 m dan kedalaman 7 m, dan pada saat pengukuran mempunyai debit 41 .3 m3/s, serta kurva debitnya mengikuti formula: Q= 0.1649 x H 2.884 , dimana Q debit (m3/s dan H tinggi air dari dasar sungai (m.
Directory of Open Access Journals (Sweden)
Zhigang XU
2014-07-01
Full Text Available Research on the integrated NC conceptual layout design (I-NCC concerned with a broader area of interests. The key issues of I-NCC system are associated with NURBS and agent. Firstly, formulas for the derivatives and normal vectors of non-rational B-spline and NURBS are proved based on de BOOR’s recursive formula. Compared with the existing approaches targeting at the non-rational B- spline basis functions, these equations are directly targeted at the controlling points, so the algorithms and programs for NURBS curve and surface can also be applied to the derivatives and normals, the calculating performance is increased. A simplified equation is also proved in this paper. Secondly, the NC conceptual configuration design is transformed into a 3D cuboids layout problem by the introduction of three typical modules: translation module, rotation module and base module based on the analysis of the normal unit vector of work piece surface (in NURBS format. 3D cuboids layout problem is viewed as a generalization of the quadratic assignment problem and therefore belongs to the class of NP hard problems. Apart from the complexity and variety of 3D layout optimization algorithms, this paper introduces agent oriented cooperative design system. Agent models and the corresponding design management systems are put forward to deal with the creative NC layout design. Though the key theoretical issues are now applied to the NC system design, there should be more industrial applications because of the prevalent proliferation nature of NURBS and agent.
Exploring the Argumentation Pattern in Modeling-Based Learning about Apparent Motion of Mars
Park, Su-Kyeong
2016-01-01
This study proposed an analytic framework for coding students' dialogic argumentation and investigated the characteristics of the small-group argumentation pattern observed in modeling-based learning. The participants were 122 second grade high school students in South Korea divided into an experimental and a comparison group. Modeling-based…
Directory of Open Access Journals (Sweden)
Elhoucine Essefi
2014-08-01
Full Text Available Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early to the islet (“island” stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii indurated eolian sedimentation and erosional remnants are common
Meshing Force of Misaligned Spline Coupling and the Influence on Rotor System
Directory of Open Access Journals (Sweden)
Guang Zhao
2008-01-01
Full Text Available Meshing force of misaligned spline coupling is derived, dynamic equation of rotor-spline coupling system is established based on finite element analysis, the influence of meshing force on rotor-spline coupling system is simulated by numerical integral method. According to the theoretical analysis, meshing force of spline coupling is related to coupling parameters, misalignment, transmitting torque, static misalignment, dynamic vibration displacement, and so on. The meshing force increases nonlinearly with increasing the spline thickness and static misalignment or decreasing alignment meshing distance (AMD. Stiffness of coupling relates to dynamic vibration displacement, and static misalignment is not a constant. Dynamic behaviors of rotor-spline coupling system reveal the following: 1X-rotating speed is the main response frequency of system when there is no misalignment; while 2X-rotating speed appears when misalignment is present. Moreover, when misalignment increases, vibration of the system gets intricate; shaft orbit departs from origin, and magnitudes of all frequencies increase. Research results can provide important criterions on both optimization design of spline coupling and trouble shooting of rotor systems.
Efficacy of the Novel Medical Adhesive, MAR-VIVO-107, in an Acute Porcine Liver Resection Model.
Tanaka, Hirokazu; Fukushima, Kenji; Srinivasan, Pramod Kadaba; Pawlowsky, Kerstin; Koegel, Babette; Hata, Koichiro; Ku, Yonson; Uemoto, Shinji; Tolba, René H
2017-10-01
Despite modern surgical techniques, insufficient hemostasis after liver trauma is still a major cause of morbidity and mortality after injury. Therefore, efficient hemostatic agents are indicated. In this study, we evaluated the hemostatic efficacy of a novel synthetic wound adhesive (MAR-VIVO-107) based on polyurethane/polyurea, compared with a widely used fibrin adhesive (Tisseel). Twelve German Landrace pigs were randomly assigned to 2 groups. The animals were operated under sterile conditions. A midline laparotomy was performed and the left liver lobe was isolated and resected, using a surgical scissor, in order to induce hepatic trauma. MAR-VIVO-107 or Tisseel was applied to the resected area. The animals were monitored for 60 minutes; thereafter, they were sacrificed under anesthesia. Blood and tissue samples were collected pre- and postresection for biochemical and hematological analyses. MAR-VIVO-107 versus Tisseel (mean ± SD, P value)-postsurgical survival rate was 100% in both groups. Bleeding time was significantly higher in Tisseel compared with MAR-VIVO-107 (10.3 ± 5.0 vs 3.7 ± 1.5 minutes, P = .0124). In trend, blood loss was less in the MAR-VIVO-107 group (54.3 ± 34.9 vs 105.5 ± 65.8 g, P = .222). Aspartate transaminase levels were significantly lower in the MAR-VIVO-107 group when compared with the Tisseel group (39.0 ± 10.0 vs 72.4 ± 23.4 U/L, P = .0459). The efficacy of MAR-VIVO-107 and comparable performance to the gold standard fibrin have been shown under pre-clinical conditions. MAR-VIVO-107 permits hemorrhage control within seconds, even in wet environment.
International Nuclear Information System (INIS)
Reiber, D.B.
1988-01-01
Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space
Wells, R. A.
1979-01-01
A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.
Parametric Mass Modeling for Mars Entry, Descent and Landing System Analysis Study
Samareh, Jamshid A.; Komar, D. R.
2011-01-01
This paper provides an overview of the parametric mass models used for the Entry, Descent, and Landing Systems Analysis study conducted by NASA in FY2009-2010. The study examined eight unique exploration class architectures that included elements such as a rigid mid-L/D aeroshell, a lifting hypersonic inflatable decelerator, a drag supersonic inflatable decelerator, a lifting supersonic inflatable decelerator implemented with a skirt, and subsonic/supersonic retro-propulsion. Parametric models used in this study relate the component mass to vehicle dimensions and mission key environmental parameters such as maximum deceleration and total heat load. The use of a parametric mass model allows the simultaneous optimization of trajectory and mass sizing parameters.
N-dimensional non uniform rational B-splines for metamodeling
Energy Technology Data Exchange (ETDEWEB)
Turner, Cameron J [Los Alamos National Laboratory; Crawford, Richard H [UT - AUSTIN
2008-01-01
Non Uniform Rational B-splines (NURBs) have unique properties that make them attractive for engineering metamodeling applications. NURBs are known to accurately model many different continuous curve and surface topologies in 1-and 2-variate spaces. However, engineering metamodels of the design space often require hypervariate representations of multidimensional outputs. In essence, design space metamodels are hyperdimensional constructs with a dimensionality determined by their input and output variables. To use NURBs as the basis for a metamodel in a hyperdimensional space, traditional geometric fitting techniques must be adapted to hypervariate and hyperdimensional spaces composed of both continuous and discontinuous variable types. In this paper, we describe the necessary adaptations for the development of a NURBs-based metamodel called a Hyperdimensional Performance Model or HyPerModel. HyPerModels are capable of accurately and reliably modeling nonlinear hyperdimensional objects defined by both continuous and discontinuous variables of a wide variety of topologies, such as those that define typical engineering design spaces. We demonstrate this ability by successfully generating accurate HyPerModels of 10 trial functions laying the foundation for future work with N-dimensional NURBs in design space applications.
International Nuclear Information System (INIS)
Lee, Won Woong; Kim, Min Gil; Lee, Jeong Ik; Bang, Young Seok
2015-01-01
In particular, CCFL(the counter current flow limitation) occurs in components such as hot leg, downcomer annulus and steam generator inlet plenum during LOCA which is possible to have flows in two opposite directions. Therefore, CCFL is one of the thermal-hydraulic models which has significant effect on the reactor safety analysis code performance. In this study, the CCFL model will be evaluated with MARS-KS based on two-phase two-field governing equations and SPACE code based on two-phase three-field governing equations. This study will be conducted by comparing MARS-KS code which is being used for evaluating the safety of a Korean Nuclear Power Plant and SPACE code which is currently under assessment for evaluating the safety of the designed nuclear power plant. In this study, comparison of the results of liquid upflow and liquid downflow rate for different gas flow rate from two code to the famous Dukler's CCFL experimental data are presented. This study will be helpful to understand the difference between system analysis codes with different governing equations, models and correlations, and further improving the accuracy of system analysis codes. In the nuclear reactor system, CCFL is an important phenomenon for evaluating the safety of nuclear reactors. This is because CCFL phenomenon can limit injection of ECCS water when CCFL occurs in components such as hot leg, downcomer annulus or steam generator inlet plenum during LOCA which is possible to flow in two opposite directions. Therefore, CCFL is one of the thermal-hydraulic models which has significant effect on the reactor safety analysis code performance. In this study, the CCFL model was evaluated with MARS-KS and SPACE codes for studying the difference between system analysis codes with different governing equations, models and correlations. This study was conducted by comparing MARS-KS and SPACE code results of liquid upflow and liquid downflow rate for different gas flow rate to the famous Dukler
International Nuclear Information System (INIS)
Morgan, J.W.; Anders, E.
1979-01-01
The composition of Mars has been calculated from a cosmochemical model which assumes that planets and chondrites underwent the same 4 fractionation processes in the solar nebula. Because elements of similar volatility stay together in these processes, only 4 index elements are needed to calculate the abundances of all 83 elements in the planet. The values chosen are U = 28 ppb, K = 62 ppm, Fe = 26.72% and Tl = 0.14 ppb. The mantle of Mars is an iron-rich garnet wehrlite. It is nearly identical to the previously reported bulk Moon composition. The core makes up 0.19 of the planet and contains 3.5% S - much less than estimated by other models. Volatiles have nearly Moon-like abundances, being depleted relative to the Earth. The water abundance corresponds to a 9 m layer, but could be higher by as much as a factor of 11. Comparison of model compositions for 5 differentiated planets (Earth, Venus, Mars, Moon, and eucrite parent body) suggests that volatile depletion correlates mainly with size rather than with radial distance from the Sun. However, the relatively high volatile content of shergottites and some chondrites shows that the correlation is not simple; other factors must also be involved. (author)
Jin, Renchao; Liu, Yongchuan; Chen, Mi; Zhang, Sheng; Song, Enmin
2018-01-01
A robust contour propagation method is proposed to help physicians delineate lung tumors on all phase images of four-dimensional computed tomography (4D-CT) by only manually delineating the contours on a reference phase. The proposed method models the trajectory surface swept by a contour in a respiratory cycle as a tensor-product surface of two closed cubic B-spline curves: a non-uniform B-spline curve which models the contour and a uniform B-spline curve which models the trajectory of a point on the contour. The surface is treated as a deformable entity, and is optimized from an initial surface by moving its control vertices such that the sum of the intensity similarities between the sampling points on the manually delineated contour and their corresponding ones on different phases is maximized. The initial surface is constructed by fitting the manually delineated contour on the reference phase with a closed B-spline curve. In this way, the proposed method can focus the registration on the contour instead of the entire image to prevent the deformation of the contour from being smoothed by its surrounding tissues, and greatly reduce the time consumption while keeping the accuracy of the contour propagation as well as the temporal consistency of the estimated respiratory motions across all phases in 4D-CT. Eighteen 4D-CT cases with 235 gross tumor volume (GTV) contours on the maximal inhale phase and 209 GTV contours on the maximal exhale phase are manually delineated slice by slice. The maximal inhale phase is used as the reference phase, which provides the initial contours. On the maximal exhale phase, the Jaccard similarity coefficient between the propagated GTV and the manually delineated GTV is 0.881 +/- 0.026, and the Hausdorff distance is 3.07 +/- 1.08 mm. The time for propagating the GTV to all phases is 5.55 +/- 6.21 min. The results are better than those of the fast adaptive stochastic gradient descent B-spline method, the 3D + t B-spline
Numerical solution of system of boundary value problems using B-spline with free parameter
Gupta, Yogesh
2017-01-01
This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.
Cubic B-spline solution for two-point boundary value problem with AOR iterative method
Suardi, M. N.; Radzuan, N. Z. F. M.; Sulaiman, J.
2017-09-01
In this study, the cubic B-spline approximation equation has been derived by using the cubic B-spline discretization scheme to solve two-point boundary value problems. In addition to that, system of cubic B-spline approximation equations is generated from this spline approximation equation in order to get the numerical solutions. To do this, the Accelerated Over Relaxation (AOR) iterative method has been used to solve the generated linear system. For the purpose of comparison, the GS iterative method is designated as a control method to compare between SOR and AOR iterative methods. There are two examples of proposed problems that have been considered to examine the efficiency of these proposed iterative methods via three parameters such as their number of iterations, computational time and maximum absolute error. The numerical results are obtained from these iterative methods, it can be concluded that the AOR iterative method is slightly efficient as compared with SOR iterative method.
SPLINE-FUNCTIONS IN THE TASK OF THE FLOW AIRFOIL PROFILE
Directory of Open Access Journals (Sweden)
Mikhail Lopatjuk
2013-12-01
Full Text Available The method and the algorithm of solving the problem of streamlining are presented. Neumann boundary problem is reduced to the solution of integral equations with given boundary conditions using the cubic spline-functions
Vibration Analysis of Suspension Cable with Attached Masses by Non-linear Spline Function Method
Directory of Open Access Journals (Sweden)
Qin Jian
2016-01-01
Full Text Available The nonlinear strain and stress expressions of suspension cable are established from the basic condition of suspension structure on the Lagrange coordinates and the equilibrium equation of the suspension structure is obtained. The dynamics equations of motion of the suspended cable with attached masses are proposed according to the virtual work principle. Using the spline function as interpolation functions of displacement and spatial position, the spline function method of dynamics equation of suspension cable is formed in which the stiffness matrix is expressed by spline function, and the solution method of stiffness matrix, matrix assembly method based on spline integral, is put forwards which can save cost time efficiency. The vibration frequency of the suspension cable is calculated with different attached masses, which provides theoretical basis for valuing of safety coefficient of the bearing cable of the cableway.
Properties of cryobrines on Mars
DEFF Research Database (Denmark)
Möhlmann, D.; Thomsen, Kaj
2011-01-01
Brines, i.e. aqueous salty solutions, increasingly play a role in a better understanding of physics and chemistry (and eventually also putative biology) of the upper surface of Mars. Results of physico-chemical modeling and experimentally determined data to characterize properties of cryobrines...... of potential interest with respect to Mars are described. Eutectic diagrams, the related numerical eutectic values of composition and temperature, the water activity of Mars-relevant brines of sulfates, chlorides, perchlorides and carbonates, including related deliquescence relative humidity, are parameters...... and properties, which are described here in some detail. The results characterize conditions for liquid low-temperature brines ("cryobrines") to evolve and to exist, at least temporarily, on present Mars. (C) 2010 Elsevier Inc. All rights reserved....
Directory of Open Access Journals (Sweden)
Felisa Córdova G.
2017-06-01
Full Text Available In the 1990s, NASA implemented a programme named "Faster, Better, Cheaper," (FBC which involved essential changes to the way in which the organization used to be established. It was a huge organizational and transformational effort that required delivering dramatic advances in robustness, flexibility, and efficiency. Nevertheless in 1999, the failures of two consecutive Mars Climate Orbiter and Polar Lander missions brought to a stop of the FBC programme. We critically analyze and evaluate NASA's reorganization across of two models of organization theory such as the Diamond and Star, which show that FBC style needed a super-high-tech, a high level of complexity and novelty, and a time-critical pace. In addition, the majority of the missions' failures were also because of the short schedule, limited budget, and a deficient coordination of the processes management particularly in learning.
Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline
Directory of Open Access Journals (Sweden)
Ravi Kanth A.S.V.
2016-01-01
Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.
Numerical and Analytical Model of an Electrodynamic Dust Shield for Solar Panels on Mars
Calle, C. I.; Linell, B.; Chen, A.; Meyer, J.; Clements, S.; Mazumder, M. K.
2006-01-01
Masuda and collaborators at the University of Tokyo developed a method to confine and transport particles called the electric curtain in which a series of parallel electrodes connected to an AC source generates a traveling wave that acts as a contactless conveyor. The curtain electrodes can be excited by a single-phase or a multi-phase AC voltage. A multi-phase curtain produces a non-uniform traveling wave that provides controlled transport of those particles [1-6]. Multi-phase electric curtains from two to six phases have been developed and studied by several research groups [7-9]. We have developed an Electrodynamic Dust Shield prototype using threephase AC voltage electrodes to remove dust from surfaces. The purpose of the modeling work presented here is to research and to better understand the physics governing the electrodynamic shield, as well as to advance and to support the experimental dust shield research.
International Nuclear Information System (INIS)
Cordell, B.M.
1986-01-01
Possible mechanisms to explain the global ice covering of Mars, and previous ice ages on the earth, are considered. Evidence for the Milankovitch effect is found in the close correspondence of earth's past climate with its orbital variations, as recorded principally in ocean sediments, and the role of CO 2 is discussed. Mars' range of obliquity, 10 times that of the earth, and orbital eccentricity, fluctuating over a range 2 1/2 times that of the earth, could produce an important climate-driving cycle. Mathematical models of the Martian surface and atmosphere based on Viking data suggest that escaped CO 2 could create a surface pressure of 1-3 bars. Other factors such as the effect of continental drift, the increased brightness of the sun, and planetary reversals of magnetic field polarity are discussed, and the questions of where Martian water and CO 2 have gone are considered
Spline Truncated Multivariabel pada Permodelan Nilai Ujian Nasional di Kabupaten Lombok Barat
Directory of Open Access Journals (Sweden)
Nurul Fitriyani
2017-12-01
Full Text Available Regression model is used to analyze the relationship between dependent variable and independent variable. If the regression curve form is not known, then the regression curve estimation can be done by nonparametric regression approach. This study aimed to investigate the relationship between the value resulted by National Examination and the factors that influence it. The statistical analysis used was multivariable truncated spline, in order to analyze the relationship between variables. The research that has been done showed that the best model obtained by using three knot points. This model produced a minimum GCV value of 44.46 and the value of determination coefficient of 58.627%. The parameter test showed that all factors used were significantly influence the National Examination Score for Senior High School students in West Lombok Regency year 2017. The variables were as follows: National Examination Score of Junior High School; School or Madrasah Examination Score; the value of Student’s Report Card; Student’s House Distance to School; and Number of Student’s Siblings.
Theoretical complex Stark energies of lithium by a complex scaling plus the B-spline approach
Energy Technology Data Exchange (ETDEWEB)
Meng Huiyan [School of Applied Science of Taiyuan University of Science and Technology, Taiyuan 030024 (China); Zhang Yuexia; Kang Shuai; Shi Tingyn; Zhan Mingsheng [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)], E-mail: menghy@mail.ustc.edu.cn, E-mail: tyshi@wipm.ac.cn, E-mail: mszhan@wipm.ac.cn
2008-08-14
The B-spline-based coordinate rotation method plus the model potential approach is applied to investigate the complex energies of low-lying resonances of the lithium atom in an electric field. Our results are compared with two recent calculations by a state-specific complex eigenvalue Schroedinger equation (CESE) (Themelis and Nicolaides 2001 J. Phys. B: At. Mol. Opt. Phys. 34 2905) and complex absorbing potential (CAP) (Sahoo and Ho 2000 J. Phys. B: At. Mol. Opt. Phys. 33 5151) methods, which are in controversy. The positions of resonances by the present calculation are found to be in agreement with theoretical data obtained by both the CESE and CAP methods. Our investigation clarifies that the contradiction about '4f{sub 0}' resonant position varies with the electric field. However, for the width of resonances, our results are only consistent with those by the CESE method for all strengths of the electric field under consideration. A detailed comparison on the m = 0 state among these three calculations shows that the unusual behaviour of width of resonances in the weak-field case by the CAP method is not a 'new' finding but a misguiding resulting from nonconvergent results. The systematic agreement between our model potential calculation and the ab initio calculation by the CESE for lithium indicates that the present proposed method is reliable and appropriate to simplify the calculation of the alkali metal atom in external fields.
Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.
Petrinović, Davor; Brezović, Marko
2011-04-01
We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE
Evaluation of the spline reconstruction technique for PET
Energy Technology Data Exchange (ETDEWEB)
Kastis, George A., E-mail: gkastis@academyofathens.gr; Kyriakopoulou, Dimitra [Research Center of Mathematics, Academy of Athens, Athens 11527 (Greece); Gaitanis, Anastasios [Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens 11527 (Greece); Fernández, Yolanda [Centre d’Imatge Molecular Experimental (CIME), CETIR-ERESA, Barcelona 08950 (Spain); Hutton, Brian F. [Institute of Nuclear Medicine, University College London, London NW1 2BU (United Kingdom); Fokas, Athanasios S. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB30WA (United Kingdom)
2014-04-15
Purpose: The spline reconstruction technique (SRT), based on the analytic formula for the inverse Radon transform, has been presented earlier in the literature. In this study, the authors present an improved formulation and numerical implementation of this algorithm and evaluate it in comparison to filtered backprojection (FBP). Methods: The SRT is based on the numerical evaluation of the Hilbert transform of the sinogram via an approximation in terms of “custom made” cubic splines. By restricting reconstruction only within object pixels and by utilizing certain mathematical symmetries, the authors achieve a reconstruction time comparable to that of FBP. The authors have implemented SRT in STIR and have evaluated this technique using simulated data from a clinical positron emission tomography (PET) system, as well as real data obtained from clinical and preclinical PET scanners. For the simulation studies, the authors have simulated sinograms of a point-source and three digital phantoms. Using these sinograms, the authors have created realizations of Poisson noise at five noise levels. In addition to visual comparisons of the reconstructed images, the authors have determined contrast and bias for different regions of the phantoms as a function of noise level. For the real-data studies, sinograms of an{sup 18}F-FDG injected mouse, a NEMA NU 4-2008 image quality phantom, and a Derenzo phantom have been acquired from a commercial PET system. The authors have determined: (a) coefficient of variations (COV) and contrast from the NEMA phantom, (b) contrast for the various sections of the Derenzo phantom, and (c) line profiles for the Derenzo phantom. Furthermore, the authors have acquired sinograms from a whole-body PET scan of an {sup 18}F-FDG injected cancer patient, using the GE Discovery ST PET/CT system. SRT and FBP reconstructions of the thorax have been visually evaluated. Results: The results indicate an improvement in FWHM and FWTM in both simulated and real
RELAP5/Mod3.3 and MARS3.0a Modeling of a Siphon Break Experiment
International Nuclear Information System (INIS)
Park, Su Ki; Kim, Heon Il; Park, Cheol; Yoon, Ju Hyeon
2011-01-01
Pool water plays a very important role as a final heat sink for most pool-type research reactors following postulated events. Therefore, one of design criteria for the reactors is that the water level of reactor pool must not decrease below a predefined elevation even against the most severe accident due to ruptures of coolant boundary of connecting systems to the reactor pool. In order to accomplish the design criterion, all the connecting systems are usually arranged to be above the elevation of reactor core. However, some research reactors with a downward flow in the reactor core have a primary cooling system located below the elevation of reactor core because of meeting an available net positive suction head of pumps in the system. These reactors have a provision consisting of pipes penetrating a reactor pool wall at a higher elevation than that of reactor core and siphon break devices to meet the design criterion. A series of experiments was carried out to figure out thermal hydraulic characteristics during siphon is blocked and establish design requirements for siphon breaker. The experimental study provided a lot of data and observations to the process of siphon break, but it does not provide a sufficient theoretical analysis and present practical design requirements applicable to industry. The experimental range is not also sufficient to cover operating conditions of siphon breakers for research reactors. A series of numerical simulations on the experimental data has been tried by using thermal hydraulic system analysis codes, RELAP5/Mod3.3 and MARS3.0a. This paper includes a part of the numerical simulations. First output from this study shows an importance of an adequate use of thermal hydraulic models in the codes and a big different prediction between the two codes especially in relation to the use of choked flow option. From this study, it seems that RELAP5/Mod3.3 has some problems on the control of a choked flow option-flag or the prediction of a
He, Shanshan; Ou, Daojiang; Yan, Changya; Lee, Chen-Han
2015-01-01
Piecewise linear (G01-based) tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical...
Csébfalvi, Balázs
2010-01-01
In this paper, we demonstrate that quasi-interpolation of orders two and four can be efficiently implemented on the Body-Centered Cubic (BCC) lattice by using tensor-product B-splines combined with appropriate discrete prefilters. Unlike the nonseparable box-spline reconstruction previously proposed for the BCC lattice, the prefiltered B-spline reconstruction can utilize the fast trilinear texture-fetching capability of the recent graphics cards. Therefore, it can be applied for rendering BCC-sampled volumetric data interactively. Furthermore, we show that a separable B-spline filter can suppress the postaliasing effect much more isotropically than a nonseparable box-spline filter of the same approximation power. Although prefilters that make the B-splines interpolating on the BCC lattice do not exist, we demonstrate that quasi-interpolating prefiltered linear and cubic B-spline reconstructions can still provide similar or higher image quality than the interpolating linear box-spline and prefiltered quintic box-spline reconstructions, respectively.
Practical box splines for reconstruction on the body centered cubic lattice.
Entezari, Alireza; Van De Ville, Dimitri; Möeller, Torsten
2008-01-01
We introduce a family of box splines for efficient, accurate and smooth reconstruction of volumetric data sampled on the Body Centered Cubic (BCC) lattice, which is the favorable volumetric sampling pattern due to its optimal spectral sphere packing property. First, we construct a box spline based on the four principal directions of the BCC lattice that allows for a linear C(0) reconstruction. Then, the design is extended for higher degrees of continuity. We derive the explicit piecewise polynomial representation of the C(0) and C(2) box splines that are useful for practical reconstruction applications. We further demonstrate that approximation in the shift-invariant space---generated by BCC-lattice shifts of these box splines---is {twice} as efficient as using the tensor-product B-spline solutions on the Cartesian lattice (with comparable smoothness and approximation order, and with the same sampling density). Practical evidence is provided demonstrating that not only the BCC lattice is generally a more accurate sampling pattern, but also allows for extremely efficient reconstructions that outperform tensor-product Cartesian reconstructions.
Directory of Open Access Journals (Sweden)
Bush William S
2009-12-01
Full Text Available Abstract Background Gene-centric analysis tools for genome-wide association study data are being developed both to annotate single locus statistics and to prioritize or group single nucleotide polymorphisms (SNPs prior to analysis. These approaches require knowledge about the relationships between SNPs on a genotyping platform and genes in the human genome. SNPs in the genome can represent broader genomic regions via linkage disequilibrium (LD, and population-specific patterns of LD can be exploited to generate a data-driven map of SNPs to genes. Methods In this study, we implemented LD-Spline, a database routine that defines the genomic boundaries a particular SNP represents using linkage disequilibrium statistics from the International HapMap Project. We compared the LD-Spline haplotype block partitioning approach to that of the four gamete rule and the Gabriel et al. approach using simulated data; in addition, we processed two commonly used genome-wide association study platforms. Results We illustrate that LD-Spline performs comparably to the four-gamete rule and the Gabriel et al. approach; however as a SNP-centric approach LD-Spline has the added benefit of systematically identifying a genomic boundary for each SNP, where the global block partitioning approaches may falter due to sampling variation in LD statistics. Conclusion LD-Spline is an integrated database routine that quickly and effectively defines the genomic region marked by a SNP using linkage disequilibrium, with a SNP-centric block definition algorithm.
Modeling of Output Characteristics of a UV Cu+ Ne-CuBr Laser
Directory of Open Access Journals (Sweden)
Snezhana Georgieva Gocheva-Ilieva
2012-01-01
Full Text Available This paper examines experiment data for a Ne-CuBr UV copper ion laser excited by longitudinal pulsed discharge emitting in multiline regime. The flexible multivariate adaptive regression splines (MARSs method has been used to develop nonparametric regression models describing the laser output power and service life of the devices. The models have been constructed as explicit functions of 9 basic input laser characteristics. The obtained models account for local nonlinearities of the relationships within the various multivariate subregions. The built best MARS models account for over 98% of data. The models are used to estimate the investigated output laser characteristics of existing UV lasers. The capabilities for using the models in predicting existing and future experiments have been demonstrated. Specific analyses have been presented comparing the models with actual experiments. The obtained results are applicable for guiding and planning the engineering experiment. The modeling methodology can be applied for a wide range of similar lasers and laser devices.
Morgan, J.W.; Anders, E.
1979-01-01
The composition of Mars has been calculated from the cosmochemical model of Ganapathy and Anders (1974) which assumes that planets and chondrites underwent the same 4 fractionation processes in the solar nebula. Because elements of similar volatility stay together in these processes, only 4 index elements (U, Fe, K and Tl or Ar36) are needed to calculate the abundances of all 83 elements in the planet. The values chosen are U = 28 ppb, K = 62 ppm (based on K U = 2200 from orbital ??-spectrometry and on thermal history calculations by Tokso??z and Hsui (1978) Fe = 26.72% (from geophysical data), and Tl = 0.14 ppb (from the Ar36 and Ar40 abundances measured by Viking). The mantle of Mars is an iron-rich [Mg/(Mg + Fe) = 0.77] garnet wehrlite (?? = 3.52-3.54 g/cm3), similar to McGetchin and Smyth's (1978) estimate but containing more Ca and Al. It is nearly identical to the bulk Moon composition of Morgan et al. (1978b). The core makes up 0.19 of the planet and contains 3.5% S-much less than estimated by other models. Volatiles have nearly Moon-like abundances, being depleted relative to the Earth by factors of 0.36 (K-group, Tcond = 600-1300 K) or 0.029 (Tl group, Tcond planets (Earth, Venus, Mars, Moon, and eucrite parent body) suggests that volatile depletion correlates mainly with size rather than with radial distance from the Sun. However, the relatively high volatile content of shergottites and some chondrites shows that the correlation is not simple; other factors must also be involved. ?? 1979.
1997-01-01
The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.
Duddu, Ravindra
2011-10-05
We present a numerical formulation aimed at modeling the nonlinear response of elastic materials using large deformation continuum mechanics in three dimensions. This finite element formulation is based on the Eulerian description of motion and the transport of the deformation gradient. When modeling a nearly incompressible solid, the transport of the deformation gradient is decomposed into its isochoric part and the Jacobian determinant as independent fields. A homogeneous isotropic hyperelastic solid is assumed and B-splines-based finite elements are used for the spatial discretization. A variational multiscale residual-based approach is employed to stabilize the transport equations. The performance of the scheme is explored for both compressible and nearly incompressible applications. The numerical results are in good agreement with theory illustrating the viability of the computational scheme. © 2011 John Wiley & Sons, Ltd.
BSR: B-spline atomic R-matrix codes
Zatsarinny, Oleg
2006-02-01
BSR is a general program to calculate atomic continuum processes using the B-spline R-matrix method, including electron-atom and electron-ion scattering, and radiative processes such as bound-bound transitions, photoionization and polarizabilities. The calculations can be performed in LS-coupling or in an intermediate-coupling scheme by including terms of the Breit-Pauli Hamiltonian. New version program summaryTitle of program: BSR Catalogue identifier: ADWY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWY Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers on which the program has been tested: Microway Beowulf cluster; Compaq Beowulf cluster; DEC Alpha workstation; DELL PC Operating systems under which the new version has been tested: UNIX, Windows XP Programming language used: FORTRAN 95 Memory required to execute with typical data: Typically 256-512 Mwords. Since all the principal dimensions are allocatable, the available memory defines the maximum complexity of the problem No. of bits in a word: 8 No. of processors used: 1 Has the code been vectorized or parallelized?: no No. of lines in distributed program, including test data, etc.: 69 943 No. of bytes in distributed program, including test data, etc.: 746 450 Peripherals used: scratch disk store; permanent disk store Distribution format: tar.gz Nature of physical problem: This program uses the R-matrix method to calculate electron-atom and electron-ion collision processes, with options to calculate radiative data, photoionization, etc. The calculations can be performed in LS-coupling or in an intermediate-coupling scheme, with options to include Breit-Pauli terms in the Hamiltonian. Method of solution: The R-matrix method is used [P.G. Burke, K.A. Berrington, Atomic and Molecular Processes: An R-Matrix Approach, IOP Publishing, Bristol, 1993; P.G. Burke, W.D. Robb, Adv. At. Mol. Phys. 11 (1975) 143; K.A. Berrington, W.B. Eissner, P.H. Norrington, Comput
Cubic spline interpolation of functions with high gradients in boundary layers
Blatov, I. A.; Zadorin, A. I.; Kitaeva, E. V.
2017-01-01
The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes N is fixed. A modified cubic interpolation spline is proposed, for which O((ln N/N)4) error estimates that are uniform with respect to the small parameter are obtained.
B-spline design of digital FIR filter using evolutionary computation techniques
Swain, Manorama; Panda, Rutuparna
2011-10-01
In the forth coming era, digital filters are becoming a true replacement for the analog filter designs. Here in this paper we examine a design method for FIR filter using global search optimization techniques known as Evolutionary computation via genetic algorithm and bacterial foraging, where the filter design considered as an optimization problem. In this paper, an effort is made to design the maximally flat filters using generalized B-spline window. The key to our success is the fact that the bandwidth of the filer response can be modified by changing tuning parameters incorporated well within the B-spline function. This is an optimization problem. Direct approach has been deployed to design B-spline window based FIR digital filters. Four parameters (order, width, length and tuning parameter) have been optimized by using GA and EBFS. It is observed that the desired response can be obtained with lower order FIR filters with optimal width and tuning parameters.
Directory of Open Access Journals (Sweden)
Bagiyo Suwasono
2011-05-01
Full Text Available Ability of production processes associated with state-of-the-art technology, which allows the shipbuilding, is customized with modern equipment. It will give impact to level of productivity and competitiveness. This study proposes a nonparametric regression cubic spline approach with 1 knot, 2 knots, and 3 knots. The application programs Tibco Spotfire S+ showed that a cubic spline with 2 knots (4.25 and 4.50 gave the best result with the value of GCV = 56.21556, and R2 = 94.03%.Estimation result of cubic spline with 2 knots for the PT. Batamec shipyard = 35.61 MH/CGT, PT. Dok & Perkapalan Surabaya = 27.49 MH/CGT, PT. Karimun Sembawang Shipyard = 27.49 MH/CGT, and PT. PAL Indonesia = 19.89 MH/CGT.
Error Estimates Derived from the Data for Least-Squares Spline Fitting
Energy Technology Data Exchange (ETDEWEB)
Jerome Blair
2007-06-25
The use of least-squares fitting by cubic splines for the purpose of noise reduction in measured data is studied. Splines with variable mesh size are considered. The error, the difference between the input signal and its estimate, is divided into two sources: the R-error, which depends only on the noise and increases with decreasing mesh size, and the Ferror, which depends only on the signal and decreases with decreasing mesh size. The estimation of both errors as a function of time is demonstrated. The R-error estimation requires knowledge of the statistics of the noise and uses well-known methods. The primary contribution of the paper is a method for estimating the F-error that requires no prior knowledge of the signal except that it has four derivatives. It is calculated from the difference between two different spline fits to the data and is illustrated with Monte Carlo simulations and with an example.
Susanti, D.; Hartini, E.; Permana, A.
2017-01-01
Sale and purchase of the growing competition between companies in Indonesian, make every company should have a proper planning in order to win the competition with other companies. One of the things that can be done to design the plan is to make car sales forecast for the next few periods, it’s required that the amount of inventory of cars that will be sold in proportion to the number of cars needed. While to get the correct forecasting, on of the methods that can be used is the method of Adaptive Spline Threshold Autoregression (ASTAR). Therefore, this time the discussion will focus on the use of Adaptive Spline Threshold Autoregression (ASTAR) method in forecasting the volume of car sales in PT.Srikandi Diamond Motors using time series data.In the discussion of this research, forecasting using the method of forecasting value Adaptive Spline Threshold Autoregression (ASTAR) produce approximately correct.
Meier, Anne J.; Shah, Malay; Petersen, Elspeth; Hintze, Paul; Muscatello, Tony
2017-01-01
The Atmospheric Processing Module (APM) is a Mars In-Situ Resource Utilization (ISRU) technology designed to demonstrate conversion of the Martian atmosphere into methane and water. The Martian atmosphere consists of approximately 95 carbon dioxide (CO2) and residual argon and nitrogen. APM utilizes cryocoolers for CO2 acquisition from a simulated Martian atmosphere and pressure. The captured CO2 is sublimated and pressurized as a feedstock into the Sabatier reactor, which converts CO2 and hydrogen to methane and water. The Sabatier reaction occurs over a packed bed reactor filled with Ru/Al2O3 pellets. The long duration use of the APM system and catalyst was investigated for future scaling and failure limits. Failure of the catalyst was detected by gas chromatography and temperature sensors on the system. Following this, characterization and experimentation with the catalyst was carried out with analysis including x-ray photoelectron spectroscopy and scanning electron microscopy with elemental dispersive spectroscopy. This paper will discuss results of the catalyst performance, the overall APM Sabatier approach, as well as intrinsic catalyst considerations of the Sabatier reactor performance incorporated into a chemical model.
MARS Validation Plan and Status
International Nuclear Information System (INIS)
Ahn, Seung-hoon; Cho, Yong-jin
2008-01-01
The KINS Reactor Thermal-hydraulic Analysis System (KINS-RETAS) under development is directed toward a realistic analysis approach of best-estimate (BE) codes and realistic assumptions. In this system, MARS is pivoted to provide the BE Thermal-Hydraulic (T-H) response in core and reactor coolant system to various operational transients and accidental conditions. As required for other BE codes, the qualification is essential to ensure reliable and reasonable accuracy for a targeted MARS application. Validation is a key element of the code qualification, and determines the capability of a computer code in predicting the major phenomena expected to occur. The MARS validation was made by its developer KAERI, on basic premise that its backbone code RELAP5/MOD3.2 is well qualified against analytical solutions, test or operational data. A screening was made to select the test data for MARS validation; some models transplanted from RELAP5, if already validated and found to be acceptable, were screened out from assessment. It seems to be reasonable, but does not demonstrate whether code adequacy complies with the software QA guidelines. Especially there may be much difficulty in validating the life-cycle products such as code updates or modifications. This paper presents the plan for MARS validation, and the current implementation status
French, Bevan M.
This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…
Davies, D. W.
1981-01-01
A model has been developed to test the hypothesis that the observed seasonal and latitudinal distribution of water on Mars is controlled by the sublimation and condensation of surface ice deposits in the Arctic and Antarctic, and the meridional transport of water vapor. Besides reproducing the observed water vapor distribution, the model correctly reproduces the presence of a large permanent ice cap in the Arctic and not in the Antarctic. No permanent ice reservoirs are predicted in the temperate or equatorial zones. Wintertime ice deposits in the Arctic are shown to be the source of the large water vapor abundances observed in the Arctic summertime, and the moderate water vapor abundances in the northern temperate region. Model calculations suggest that a year without dust storms results in very little change in the water vapor distribution. The current water distribution appears to be the equilibrium distribution for present atmospheric conditions.
Preconditioning cubic spline collocation method by FEM and FDM for elliptic equations
Energy Technology Data Exchange (ETDEWEB)
Kim, Sang Dong [KyungPook National Univ., Taegu (Korea, Republic of)
1996-12-31
In this talk we discuss the finite element and finite difference technique for the cubic spline collocation method. For this purpose, we consider the uniformly elliptic operator A defined by Au := -{Delta}u + a{sub 1}u{sub x} + a{sub 2}u{sub y} + a{sub 0}u in {Omega} (the unit square) with Dirichlet or Neumann boundary conditions and its discretization based on Hermite cubic spline spaces and collocation at the Gauss points. Using an interpolatory basis with support on the Gauss points one obtains the matrix A{sub N} (h = 1/N).
Natural spline interpolation and exponential parameterization for length estimation of curves
Kozera, R.; Wilkołazka, M.
2017-07-01
This paper tackles the problem of estimating a length of a regular parameterized curve γ from an ordered sample of interpolation points in arbitrary Euclidean space by a natural spline. The corresponding tabular parameters are not given and are approximated by the so-called exponential parameterization (depending on λ ∈ [0, 1]). The respective convergence orders α(λ) for estimating length of γ are established for curves sampled more-or-less uniformly. The numerical experiments confirm a slow convergence orders α(λ) = 2 for all λ ∈ [0, 1) and a cubic order α(1) = 3 once natural spline is used.
About a family of C2 splines with one free generating function
Directory of Open Access Journals (Sweden)
Igor Verlan
2005-01-01
Full Text Available The problem of interpolation of discrete set of data on the interval [a, b] representing the function f is investigated. A family of C*C splines with one free generating function is introduced in order to solve this problem. Cubic C*C splines belong to this family. The required conditions which must satisfy the generating function in order to obtain explicit interpolants are presented and examples of generating functions are given. Mathematics Subject Classification: 2000: 65D05, 65D07, 41A05, 41A15.
Cui, Zhongmin; Kolen, Michael J.
2009-01-01
This article considers two new smoothing methods in equipercentile equating, the cubic B-spline presmoothing method and the direct presmoothing method. Using a simulation study, these two methods are compared with established methods, the beta-4 method, the polynomial loglinear method, and the cubic spline postsmoothing method, under three sample…
Underground Habitats in the Río Tinto Basin: A Model for Subsurface Life Habitats on Mars
Fernández-Remolar, David C.; Prieto-Ballesteros, Olga; Rodríguez, Nuria; Gómez, Felipe; Amils, Ricardo; Gómez-Elvira, Javier; Stoker, Carol R.
2008-10-01
A search for evidence of cryptic life in the subsurface region of a fractured Paleozoic volcanosedimentary deposit near the source waters of the Río Tinto River (Iberian pyrite belt, southwest Spain) was carried out by Mars Astrobiology Research and Technology Experiment (MARTE) project investigators in 2003 and 2004. This conventional deep-drilling experiment is referred to as the MARTE ground truth drilling project. Boreholes were drilled at three sites, and samples from extracted cores were analyzed with light microscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. Core leachates were analyzed with ion chromatography, and borehole fluids were analyzed with ion and gas chromatography. Key variables of the groundwater system (e.g. , pO2, pH, and salinity) exhibit huge ranges probably due to surficial oxygenation of overall reducing waters, physical mixing of waters, and biologically mediated water-rock interactions. Mineral distribution is mainly driven by the pH of subsurface solutions, which range from highly acidic to neutral. Borehole fluids contain dissolved gases such as CO2, CH4, and H2. SEM-EDS analyses of core samples revealed evidence of microbes attacking pyrite. The Río Tinto alteration mechanisms may be similar to subsurface weathering of the martian crust and provide insights into the possible (bio)geochemical cycles that may have accompanied underground habitats in extensive early Mars volcanic regions and associated sulfide ores.