WorldWideScience

Sample records for spliced pmchl transcripts

  1. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, C.N.; Worton, R.G. [Univ. of Toronto and the Hospital for Sick Children, Ontario (Canada)

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  2. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast

    OpenAIRE

    Aslanzadeh, Vahid; Huang, Yuanhua; Sanguinetti, Guido; Beggs, Jean D.

    2018-01-01

    The functional consequences of alternative splicing on altering the transcription rate have been the subject of intensive study in mammalian cells but less is known about effects of splicing on changing the transcription rate in yeast. We present several lines of evidence showing that slow RNA polymerase II elongation increases both cotranscriptional splicing and splicing efficiency and that faster elongation reduces cotranscriptional splicing and splicing efficiency in budding yeast, suggest...

  3. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing.

    NARCIS (Netherlands)

    Heyd, F.; Dam, G.B. ten; Moroy, T.

    2006-01-01

    By alternative splicing, different isoforms of the transmembrane tyrosine phosphatase CD45 are generated that either enhance or limit T cell receptor signaling. We report here that CD45 alternative splicing is regulated by cooperative action of the splice factor U2AF26 and the transcription factor

  4. SpliceDetector: a software for detection of alternative splicing events in human and model organisms directly from transcript IDs.

    Science.gov (United States)

    Baharlou Houreh, Mandana; Ghorbani Kalkhajeh, Payam; Niazi, Ali; Ebrahimi, Faezeh; Ebrahimie, Esmaeil

    2018-03-22

    In eukaryotes, different combinations of exons lead to multiple transcripts with various functions in protein level, in a process called alternative splicing (AS). Unfolding the complexity of functional genomics through genome-wide profiling of AS and determining the altered ultimate products provide new insights for better understanding of many biological processes, disease progress as well as drug development programs to target harmful splicing variants. The current available tools of alternative splicing work with raw data and include heavy computation. In particular, there is a shortcoming in tools to discover AS events directly from transcripts. Here, we developed a Windows-based user-friendly tool for identifying AS events from transcripts without the need to any advanced computer skill or database download. Meanwhile, due to online working mode, our application employs the updated SpliceGraphs without the need to any resource updating. First, SpliceGraph forms based on the frequency of active splice sites in pre-mRNA. Then, the presented approach compares query transcript exons to SpliceGraph exons. The tool provides the possibility of statistical analysis of AS events as well as AS visualization compared to SpliceGraph. The developed application works for transcript sets in human and model organisms.

  5. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren

    2008-01-01

    Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin mRNAs, harb...... a promoter-proximal 5′ splice site via its U1 snRNA interaction can feed back to stimulate transcription initiation by enhancing preinitiation complex assembly.......Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin mRNAs......, harboring wild-type or various 5′ splice site mutations, we demonstrate a strong positive correlation between splicing efficiency and transcription activity. Interestingly, a 5′ splice site can stimulate transcription even in the absence of splicing. Chromatin immunoprecipitation experiments show enhanced...

  6. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast.

    Science.gov (United States)

    Aslanzadeh, Vahid; Huang, Yuanhua; Sanguinetti, Guido; Beggs, Jean D

    2018-02-01

    The functional consequences of alternative splicing on altering the transcription rate have been the subject of intensive study in mammalian cells but less is known about effects of splicing on changing the transcription rate in yeast. We present several lines of evidence showing that slow RNA polymerase II elongation increases both cotranscriptional splicing and splicing efficiency and that faster elongation reduces cotranscriptional splicing and splicing efficiency in budding yeast, suggesting that splicing is more efficient when cotranscriptional. Moreover, we demonstrate that altering the RNA polymerase II elongation rate in either direction compromises splicing fidelity, and we reveal that splicing fidelity depends largely on intron length together with secondary structure and splice site score. These effects are notably stronger for the highly expressed ribosomal protein coding transcripts. We propose that transcription by RNA polymerase II is tuned to optimize the efficiency and accuracy of ribosomal protein gene expression, while allowing flexibility in splice site choice with the nonribosomal protein transcripts. © 2018 Aslanzadeh et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Non-sequential and multi-step splicing of the dystrophin transcript.

    Science.gov (United States)

    Gazzoli, Isabella; Pulyakhina, Irina; Verwey, Nisha E; Ariyurek, Yavuz; Laros, Jeroen F J; 't Hoen, Peter A C; Aartsma-Rus, Annemieke

    2016-01-01

    The dystrophin protein encoding DMD gene is the longest human gene. The 2.2 Mb long human dystrophin transcript takes 16 hours to be transcribed and is co-transcriptionally spliced. It contains long introns (24 over 10kb long, 5 over 100kb long) and the heterogeneity in intron size makes it an ideal transcript to study different aspects of the human splicing process. Splicing is a complex process and much is unknown regarding the splicing of long introns in human genes. Here, we used ultra-deep transcript sequencing to characterize splicing of the dystrophin transcripts in 3 different human skeletal muscle cell lines, and explored the order of intron removal and multi-step splicing. Coverage and read pair analyses showed that around 40% of the introns were not always removed sequentially. Additionally, for the first time, we report that non-consecutive intron removal resulted in 3 or more joined exons which are flanked by unspliced introns and we defined these joined exons as an exon block. Lastly, computational and experimental data revealed that, for the majority of dystrophin introns, multistep splicing events are used to splice out a single intron. Overall, our data show for the first time in a human transcript, that multi-step intron removal is a general feature of mRNA splicing.

  8. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation

    DEFF Research Database (Denmark)

    Close, Pierre; East, Philip; Dirac-Svejstrup, A Barbara

    2012-01-01

    Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation. As the nascent pre-mRNA em...... elongation, particularly across areas encompassing affected exons. Together, these data indicate that the DBIRD complex acts at the interface between mRNP particles and RNAPII, integrating transcript elongation with the regulation of alternative splicing.......Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation. As the nascent pre...... and help to integrate transcript elongation with mRNA splicing remain unclear. Here we characterize the human interactome of chromatin-associated mRNP particles. This led us to identify deleted in breast cancer 1 (DBC1) and ZNF326 (which we call ZNF-protein interacting with nuclear mRNPs and DBC1 (ZIRD...

  9. Detained introns are a novel, widespread class of post-transcriptionally spliced introns.

    Science.gov (United States)

    Boutz, Paul L; Bhutkar, Arjun; Sharp, Phillip A

    2015-01-01

    Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as "detained" introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs-including those in Mdm4, a negative regulator of p53-was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression. © 2015 Boutz et al.; Published by Cold Spring Harbor Laboratory Press.

  10. The splicing machinery promotes RNA-directed DNA methylation and transcriptional silencing in Arabidopsis

    Science.gov (United States)

    Zhang, Cui-Jun; Zhou, Jin-Xing; Liu, Jun; Ma, Ze-Yang; Zhang, Su-Wei; Dou, Kun; Huang, Huan-Wei; Cai, Tao; Liu, Renyi; Zhu, Jian-Kang; He, Xin-Jian

    2013-01-01

    DNA methylation in transposons and other DNA repeats is conserved in plants as well as in animals. In Arabidopsis thaliana, an RNA-directed DNA methylation (RdDM) pathway directs de novo DNA methylation. We performed a forward genetic screen for suppressors of the DNA demethylase mutant ros1 and identified a novel Zinc-finger and OCRE domain-containing Protein 1 (ZOP1) that promotes Pol IV-dependent siRNA accumulation, DNA methylation, and transcriptional silencing. Whole-genome methods disclosed the genome-wide effects of zop1 on Pol IV-dependent siRNA accumulation and DNA methylation, suggesting that ZOP1 has both RdDM-dependent and -independent roles in transcriptional silencing. We demonstrated that ZOP1 is a pre-mRNA splicing factor that associates with several typical components of the splicing machinery as well as with Pol II. Immunofluorescence assay revealed that ZOP1 overlaps with Cajal body and is partially colocalized with NRPE1 and DRM2. Moreover, we found that the other development-defective splicing mutants tested including mac3a3b, mos4, mos12 and mos14 show defects in RdDM and transcriptional silencing. We propose that the splicing machinery rather than specific splicing factors is involved in promoting RdDM and transcriptional silencing. PMID:23524848

  11. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Pleiss

    2007-04-01

    Full Text Available Appropriate expression of most eukaryotic genes requires the removal of introns from their pre-messenger RNAs (pre-mRNAs, a process catalyzed by the spliceosome. In higher eukaryotes a large family of auxiliary factors known as SR proteins can improve the splicing efficiency of transcripts containing suboptimal splice sites by interacting with distinct sequences present in those pre-mRNAs. The yeast Saccharomyces cerevisiae lacks functional equivalents of most of these factors; thus, it has been unclear whether the spliceosome could effectively distinguish among transcripts. To address this question, we have used a microarray-based approach to examine the effects of mutations in 18 highly conserved core components of the spliceosomal machinery. The kinetic profiles reveal clear differences in the splicing defects of particular pre-mRNA substrates. Most notably, the behaviors of ribosomal protein gene transcripts are generally distinct from other intron-containing transcripts in response to several spliceosomal mutations. However, dramatically different behaviors can be seen for some pairs of transcripts encoding ribosomal protein gene paralogs, suggesting that the spliceosome can readily distinguish between otherwise highly similar pre-mRNAs. The ability of the spliceosome to distinguish among its different substrates may therefore offer an important opportunity for yeast to regulate gene expression in a transcript-dependent fashion. Given the high level of conservation of core spliceosomal components across eukaryotes, we expect that these results will significantly impact our understanding of how regulated splicing is controlled in higher eukaryotes as well.

  12. Alternate splicing of transcripts shape macrophage response to Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Haroon Kalam

    2017-03-01

    Full Text Available Transcriptional reprogramming of macrophages upon Mycobacterium tuberculosis (Mtb infection is widely studied; however, the significance of alternate splicing (AS in shaping cellular responses to mycobacterial infections is not yet appreciated. Alternate splicing can influence transcript stability or structure, function and localization of corresponding proteins thereby altering protein stoichiometry and physiological consequences. Using comprehensive analysis of a time-series RNA-seq data obtained from human macrophages infected with virulent or avirulent strains of Mtb, we show extensive remodeling of alternate splicing in macrophage transcriptome. The global nature of this regulation was evident since genes belonging to functional classes like trafficking, immune response, autophagy, redox and metabolism showed marked departure in the pattern of splicing in the infected macrophages. The systemic perturbation of splicing machinery in the infected macrophages was apparent as genes involved at different stages of spliceosome assembly were also regulated at the splicing level. Curiously there was a considerable increase in the expression of truncated/non-translatable variants of several genes, specifically upon virulent infections. Increased expression of truncated transcripts correlated with a decline in the corresponding protein levels. We verified the physiological relevance for one such candidate gene RAB8B; whose truncated variant gets enriched in H37Rv infected cells. Upon tweaking relative abundance of longer or shorter variants of RAB8B transcripts by specialized transduction, mycobacterial targeting to lysosomes could be promoted or blocked respectively, which also resulted in corresponding changes in the bacterial survival. Our results show RAB8B recruitment to the mycobacterial phagosomes is required for phagosome maturation. Thus the abundance of truncated RAB8B variant helps virulent Mtb survival by limiting the RAB8B levels in the

  13. Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.).

    Science.gov (United States)

    Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef; Hehl, Reinhard

    2010-09-01

    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT-PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain.

  14. High resolution analysis of the human transcriptome: detection of extensive alternative splicing independent of transcriptional activity

    Directory of Open Access Journals (Sweden)

    Rouet Fabien

    2009-10-01

    Full Text Available Abstract Background Commercially available microarrays have been used in many settings to generate expression profiles for a variety of applications, including target selection for disease detection, classification, profiling for pharmacogenomic response to therapeutics, and potential disease staging. However, many commercially available microarray platforms fail to capture transcript diversity produced by alternative splicing, a major mechanism for driving proteomic diversity through transcript heterogeneity. Results The human Genome-Wide SpliceArray™ (GWSA, a novel microarray platform, utilizes an existing probe design concept to monitor such transcript diversity on a genome scale. The human GWSA allows the detection of alternatively spliced events within the human genome through the use of exon body and exon junction probes to provide a direct measure of each transcript, through simple calculations derived from expression data. This report focuses on the performance and validation of the array when measured against standards recently published by the Microarray Quality Control (MAQC Project. The array was shown to be highly quantitative, and displayed greater than 85% correlation with the HG-U133 Plus 2.0 array at the gene level while providing more extensive coverage of each gene. Almost 60% of splice events among genes demonstrating differential expression of greater than 3 fold also contained extensive splicing alterations. Importantly, almost 10% of splice events within the gene set displaying constant overall expression values had evidence of transcript diversity. Two examples illustrate the types of events identified: LIM domain 7 showed no differential expression at the gene level, but demonstrated deregulation of an exon skip event, while erythrocyte membrane protein band 4.1 -like 3 was differentially expressed and also displayed deregulation of a skipped exon isoform. Conclusion Significant changes were detected independent of

  15. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan

    2017-04-05

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  16. Human aldehyde dehydrogenase genes: alternatively spliced transcriptional variants and their suggested nomenclature.

    Science.gov (United States)

    Black, William J; Stagos, Dimitrios; Marchitti, Satori A; Nebert, Daniel W; Tipton, Keith F; Bairoch, Amos; Vasiliou, Vasilis

    2009-11-01

    The human aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 genes encoding enzymes critical for NAD(P)-dependent oxidation of endogenous and exogenous aldehydes, including drugs and environmental toxicants. Mutations in ALDH genes are the molecular basis of several disease states (e.g. Sjögren-Larsson syndrome, pyridoxine-dependent seizures, and type II hyperprolinemia) and may contribute to the etiology of complex diseases such as cancer and Alzheimer's disease. The aim of this nomenclature update was to identify splice transcriptional variants principally for the human ALDH genes. Data-mining methods were used to retrieve all human ALDH sequences. Alternatively spliced transcriptional variants were determined based on (i) criteria for sequence integrity and genomic alignment; (ii) evidence of multiple independent cDNA sequences corresponding to a variant sequence; and (iii) if available, empirical evidence of variants from the literature. Alternatively spliced transcriptional variants and their encoded proteins exist for most of the human ALDH genes; however, their function and significance remain to be established. When compared with the human genome, rat and mouse include an additional gene, Aldh1a7, in the ALDH1A subfamily. To avoid confusion when identifying splice variants in various genomes, nomenclature guidelines for the naming of such alternative transcriptional variants and proteins are recommended herein. In addition, a web database (www.aldh.org) has been developed to provide up-to-date information and nomenclature guidelines for the ALDH superfamily.

  17. A directed approach for the identification of transcripts harbouring the spliced leader sequence and the effect of trans-splicing knockdown in Schistosoma mansoni.

    Science.gov (United States)

    Mourão, Marina de Moraes; Bitar, Mainá; Lobo, Francisco Pereira; Peconick, Ana Paula; Grynberg, Priscila; Prosdocimi, Francisco; Waisberg, Michael; Cerqueira, Gustavo Coutinho; Macedo, Andréa Mara; Machado, Carlos Renato; Yoshino, Timothy; Franco, Glória Regina

    2013-09-01

    Schistosomiasis is a major neglected tropical disease caused by trematodes from the genus Schistosoma. Because schistosomes exhibit a complex life cycle and numerous mechanisms for regulating gene expression, it is believed that spliced leader (SL) trans-splicing could play an important role in the biology of these parasites. The purpose of this study was to investigate the function of trans-splicing in Schistosoma mansoni through analysis of genes that may be regulated by this mechanism and via silencing SL-containing transcripts through RNA interference. Here, we report our analysis of SL transcript-enriched cDNA libraries from different S. mansoni life stages. Our results show that the trans-splicing mechanism is apparently not associated with specific genes, subcellular localisations or life stages. In cross-species comparisons, even though the sets of genes that are subject to SL trans-splicing regulation appear to differ between organisms, several commonly shared orthologues were observed. Knockdown of trans-spliced transcripts in sporocysts resulted in a systemic reduction of the expression levels of all tested trans-spliced transcripts; however, the only phenotypic effect observed was diminished larval size. Further studies involving the findings from this work will provide new insights into the role of trans-splicing in the biology of S. mansoni and other organisms. All Expressed Sequence Tags generated in this study were submitted to dbEST as five different libraries. The accessions for each library and for the individual sequences are as follows: (i) adult worms of mixed sexes (LIBEST_027999: JZ139310 - JZ139779), (ii) female adult worms (LIBEST_028000: JZ139780 - JZ140379), (iii) male adult worms (LIBEST_028001: JZ140380 - JZ141002), (iv) eggs (LIBEST_028002: JZ141003 - JZ141497) and (v) schistosomula (LIBEST_028003: JZ141498 - JZ141974).

  18. A directed approach for the identification of transcripts harbouring the spliced leader sequence and the effect of trans-splicing knockdown in Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Marina de Moraes Mourao

    2013-09-01

    Full Text Available Schistosomiasis is a major neglected tropical disease caused by trematodes from the genus Schistosoma. Because schistosomes exhibit a complex life cycle and numerous mechanisms for regulating gene expression, it is believed that spliced leader (SL trans-splicing could play an important role in the biology of these parasites. The purpose of this study was to investigate the function of trans-splicing in Schistosoma mansoni through analysis of genes that may be regulated by this mechanism and via silencing SL-containing transcripts through RNA interference. Here, we report our analysis of SL transcript-enriched cDNA libraries from different S. mansoni life stages. Our results show that the trans-splicing mechanism is apparently not associated with specific genes, subcellular localisations or life stages. In cross-species comparisons, even though the sets of genes that are subject to SL trans-splicing regulation appear to differ between organisms, several commonly shared orthologues were observed. Knockdown of trans-spliced transcripts in sporocysts resulted in a systemic reduction of the expression levels of all tested trans-spliced transcripts; however, the only phenotypic effect observed was diminished larval size. Further studies involving the findings from this work will provide new insights into the role of trans-splicing in the biology of S. mansoni and other organisms. All Expressed Sequence Tags generated in this study were submitted to dbEST as five different libraries. The accessions for each library and for the individual sequences are as follows: (i adult worms of mixed sexes (LIBEST_027999: JZ139310 - JZ139779, (ii female adult worms (LIBEST_028000: JZ139780 - JZ140379, (iii male adult worms (LIBEST_028001: JZ140380 - JZ141002, (iv eggs (LIBEST_028002: JZ141003 - JZ141497 and (v schistosomula (LIBEST_028003: JZ141498 - JZ141974.

  19. Self-splicing of a group IIC intron: 5? exon recognition and alternative 5? splicing events implicate the stem?loop motif of a transcriptional terminator

    OpenAIRE

    Toor, Navtej; Robart, Aaron R.; Christianson, Joshua; Zimmerly, Steven

    2006-01-01

    Bacterial IIC introns are a newly recognized subclass of group II introns whose ribozyme properties have not been characterized in detail. IIC introns are typically located downstream of transcriptional terminator motifs (inverted repeat followed by T's) or other inverted repeats in bacterial genomes. Here we have characterized the self-splicing activity of a IIC intron, B.h.I1, from Bacillus halodurans. B.h.I1 self-splices in vitro through hydrolysis to produce linear intron, but interesting...

  20. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jeong H Ahn

    2016-08-01

    Full Text Available The elongation phase of transcription by RNA Polymerase II (Pol II involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3' end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation.

  1. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation.

    Science.gov (United States)

    Sebastian, Soji; Faralli, Hervé; Yao, Zizhen; Rakopoulos, Patricia; Palii, Carmen; Cao, Yi; Singh, Kulwant; Liu, Qi-Cai; Chu, Alphonse; Aziz, Arif; Brand, Marjorie; Tapscott, Stephen J; Dilworth, F Jeffrey

    2013-06-01

    Alternate splicing contributes extensively to cellular complexity by generating protein isoforms with divergent functions. However, the role of alternate isoforms in development remains poorly understood. Mef2 transcription factors are essential transducers of cell signaling that modulate differentiation of many cell types. Among Mef2 family members, Mef2D is unique, as it undergoes tissue-specific splicing to generate a muscle-specific isoform. Since the ubiquitously expressed (Mef2Dα1) and muscle-specific (Mef2Dα2) isoforms of Mef2D are both expressed in muscle, we examined the relative contribution of each Mef2D isoform to differentiation. Using both in vitro and in vivo models, we demonstrate that Mef2D isoforms act antagonistically to modulate differentiation. While chromatin immunoprecipitation (ChIP) sequencing analysis shows that the Mef2D isoforms bind an overlapping set of genes, only Mef2Dα2 activates late muscle transcription. Mechanistically, the differential ability of Mef2D isoforms to activate transcription depends on their susceptibility to phosphorylation by protein kinase A (PKA). Phosphorylation of Mef2Dα1 by PKA provokes its association with corepressors. Conversely, exon switching allows Mef2Dα2 to escape this inhibitory phosphorylation, permitting recruitment of Ash2L for transactivation of muscle genes. Thus, our results reveal a novel mechanism in which a tissue-specific alternate splicing event has evolved that permits a ubiquitously expressed transcription factor to escape inhibitory signaling for temporal regulation of gene expression.

  2. Alternative splicing generates novel Fads3 transcript in mice

    Science.gov (United States)

    Park, Hui Gyu; Kim, Ellen; Liu, Guowen; Kothapalli, Kumar S. D.; Brenna, J. Thomas

    2016-01-01

    Fads3 is the third member of the fatty acid desaturase gene cluster; with at least eight evolutionarily conserved alternative transcripts (AT), having no clearly established function as are known for FADS2 and FADS1. Here we present identification of a novel Fads3 transcript in mice (Fads3AT9), characterize Fads3AT9 expression in mouse tissues and evaluate correlations with metabolite profiles. Total RNA obtained from mouse tissues is reverse-transcribed into cDNA and used as template for PCR reactions. Tissue fatty acids were extracted and quantified by gas chromatography. Sequencing analysis revealed complete absence of exon 2 resulting in an open reading frame of 1239 bp, encoding a putative protein of 412 aa with loss of 37 aa compared to classical Fads3 (Fads3CS). FADS3AT9 retains all the conserved regions characteristic of front end desaturase (cytochrome b5 domain and three histidine repeats). Both Fads3CS and Fads3AT9 are ubiquitously expressed in 11 mouse tissues. Fads3AT9 abundance was greater than Fads3CS in pancreas, liver, spleen, brown adipose tissue and thymus. Fads3CS expression is low in pancreas while Fads3AT9 is over ten-fold greater abundance. The eicosanoid precursor fatty acid 20:4n - 6, the immediate desaturation product of the Fads1 coded Δ5-desaturase, was highest in pancreas where Fads3CS is low. Changes in expression patterns and fatty acid profiles suggest that Fads3AT9 may play a role in the regulation and/or biosynthesis of long chain polyunsaturated fatty acids from precursors. PMID:27216536

  3. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis.

    Science.gov (United States)

    Liu, Guo-Feng; Liu, Jing-Jing; He, Zhi-Rong; Wang, Fu-Min; Yang, Hua; Yan, Yi-Feng; Gao, Ming-Jun; Gruber, Margaret Y; Wan, Xiao-Chun; Wei, Shu

    2018-01-01

    Volatile terpenoids produced in tea plants (Camellia sinensis) are airborne signals interacting against other ecosystem members, but also pleasant odorants of tea products. Transcription regulation (including transcript processing) is pivotal for plant volatile terpenoid production. In this study, a terpene synthase gene CsLIS/NES was recovered from tea plants (C. sinensis cv. "Long-Men Xiang"). CsLIS/NES transcription regulation resulted in 2 splicing forms: CsLIS/NES-1 and CsLIS/NES-2 lacking a 305 bp-fragment at N-terminus, both producing (E)-nerolidol and linalool in vitro. Transgenic tobacco studies and a gene-specific antisense oligo-deoxynucleotide suppression applied in tea leaves indicated that CsLIS/NES-1, localized in chloroplasts, acted as linalool synthase, whereas CsLIS/NES-2 localized in cytosol, functioned as a potential nerolidol synthase, but not linalool synthase. Expression patterns of the 2 transcript isoforms in tea were distinctly different and responded differentially to the application of stress signal molecule methyl jasmonate. Leaf expression of CsLIS/NES-1, but not CsLIS/NES-2, was significantly induced by methyl jasmonate. Our data indicated that distinct transcript splicing regulation patterns, together with subcellular compartmentation of CsLIS/NE-1 and CsLIS/NE-2 implemented the linalool biosynthesis regulation in tea plants in responding to endogenous and exogenous regulatory factors. © 2017 John Wiley & Sons Ltd.

  4. Analysis of multiply spliced transcripts in lymphoid tissue reservoirs of rhesus macaques infected with RT-SHIV during HAART.

    Directory of Open Access Journals (Sweden)

    Jesse D Deere

    Full Text Available Highly active antiretroviral therapy (HAART can reduce levels of human immunodeficiency virus type 1 (HIV-1 to undetectable levels in infected individuals, but the virus is not eradicated. The mechanisms of viral persistence during HAART are poorly defined, but some reservoirs have been identified, such as latently infected resting memory CD4⁺ T cells. During latency, in addition to blocks at the initiation and elongation steps of viral transcription, there is a block in the export of viral RNA (vRNA, leading to the accumulation of multiply-spliced transcripts in the nucleus. Two of the genes encoded by the multiply-spliced transcripts are Tat and Rev, which are essential early in the viral replication cycle and might indicate the state of infection in a given population of cells. Here, the levels of multiply-spliced transcripts were compared to the levels of gag-containing RNA in tissue samples from RT-SHIV-infected rhesus macaques treated with HAART. Splice site sequence variation was identified during development of a TaqMan PCR assay. Multiply-spliced transcripts were detected in gastrointestinal and lymphatic tissues, but not the thymus. Levels of multiply-spliced transcripts were lower than levels of gag RNA, and both correlated with plasma virus loads. The ratio of multiply-spliced to gag RNA was greatest in the gastrointestinal samples from macaques with plasma virus loads <50 vRNA copies per mL at necropsy. Levels of gag RNA and multiply-spliced mRNA in tissues from RT-SHIV-infected macaques correlate with plasma virus load.

  5. Alternative splicing and extensive RNA editing of human TPH2 transcripts.

    Directory of Open Access Journals (Sweden)

    Maik Grohmann

    Full Text Available Brain serotonin (5-HT neurotransmission plays a key role in the regulation of mood and has been implicated in a variety of neuropsychiatric conditions. Tryptophan hydroxylase (TPH is the rate-limiting enzyme in the biosynthesis of 5-HT. Recently, we discovered a second TPH isoform (TPH2 in vertebrates, including man, which is predominantly expressed in brain, while the previously known TPH isoform (TPH1 is primarly a non-neuronal enzyme. Overwhelming evidence now points to TPH2 as a candidate gene for 5-HT-related psychiatric disorders. To assess the role of TPH2 gene variability in the etiology of psychiatric diseases we performed cDNA sequence analysis of TPH2 transcripts from human post mortem amygdala samples obtained from individuals with psychiatric disorders (drug abuse, schizophrenia, suicide and controls. Here we show that TPH2 exists in two alternatively spliced variants in the coding region, denoted TPH2a and TPH2b. Moreover, we found evidence that the pre-mRNAs of both splice variants are dynamically RNA-edited in a mutually exclusive manner. Kinetic studies with cell lines expressing recombinant TPH2 variants revealed a higher activity of the novel TPH2B protein compared with the previously known TPH2A, whereas RNA editing was shown to inhibit the enzymatic activity of both TPH2 splice variants. Therefore, our results strongly suggest a complex fine-tuning of central nervous system 5-HT biosynthesis by TPH2 alternative splicing and RNA editing. Finally, we present molecular and large-scale linkage data evidencing that deregulated alternative splicing and RNA editing is involved in the etiology of psychiatric diseases, such as suicidal behaviour.

  6. Alternative mRNA splicing creates transcripts encoding soluble proteins from most LILR genes.

    Science.gov (United States)

    Jones, Des C; Roghanian, Ali; Brown, Damien P; Chang, Chiwen; Allen, Rachel L; Trowsdale, John; Young, Neil T

    2009-11-01

    Leucocyte Ig-like receptors (LILR) are a family of innate immune receptors expressed on myeloid and lymphoid cells that influence adaptive immune responses. We identified a common mechanism of alternative mRNA splicing, which generates transcripts that encode soluble protein isoforms of the majority of human LILR. These alternative splice variants lack transmembrane and cytoplasmic encoding regions, due to the transcription of a cryptic stop codon present in an intron 5' of the transmembrane encoding exon. The alternative LILR transcripts were detected in cell types that express their membrane-associated isoforms. Expression of the alternative LILRB1 transcript in transfected cells resulted in the release of a soluble approximately 65 Kd LILRB1 protein into culture supernatants. Soluble LILRB1 protein was also detected in the culture supernatants of monocyte-derived DC. In vitro assays suggested that soluble LILRB1 could block the interaction between membrane-associated LILRB1 and HLA-class I. Soluble LILRB1 may act as a dominant negative regulator of HLA-class I-mediated LILRB1 inhibition. Soluble isoforms of the other LILR may function in a comparable way.

  7. Becker muscular dystrophy due to an intronic splicing mutation inducing a dual dystrophin transcript.

    Science.gov (United States)

    Todeschini, Alice; Gualandi, Francesca; Trabanelli, Cecilia; Armaroli, Annarita; Ravani, Anna; Fanin, Marina; Rota, Silvia; Bello, Luca; Ferlini, Alessandra; Pegoraro, Elena; Padovani, Alessandro; Filosto, Massimiliano

    2016-10-01

    We describe a 29-year-old patient who complained of left thigh muscle weakness since he was 23 and of moderate proximal weakness of both lower limbs with difficulty in climbing stairs and running since he was 27. Mild weakness of iliopsoas and quadriceps muscles and muscle atrophy of both the distal forearm and thigh were observed upon clinical examination. He harboured a novel c.1150-3C>G substitution in the DMD gene, affecting the intron 10 acceptor splice site and causing exon 11 skipping and an out-of-frame transcript. However, protein of normal molecular weight but in reduced amounts was observed on Western Blot analysis. Reverse transcription analysis on muscle RNA showed production, via alternative splicing, of a transcript missing exon 11 as well as a low abundant full-length transcript which is enough to avoid the severe Duchenne phenotype. Our study showed that a reduced amount of full length dystrophin leads to a mild form of Becker muscular dystrophy. These results confirm earlier findings that low amounts of dystrophin can be associated with a milder phenotype, which is promising for therapies aiming at dystrophin restoration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A TIMP-1 splice variant transcript: Possible role in regulation of TIMP-1 expression

    DEFF Research Database (Denmark)

    Friesgaard Øbro, Nina; Lademann, Ulrik; Birkenkamp-Demtröder, Karin

    2008-01-01

    A splice variant of tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA lacking exon 2 (TIMP-1-v2) has been identified in human cancer cells and in colorectal and breast cancer tumors. The purpose of this study was (1) to study the level of full length TIMP-1 and TIMP-1-v2 transcripts...... relative to full length TIMP-1 was higher in normal compared to tumor tissue. Translation of TIMP-1-v2 to protein was analyzed in CHO cells. In this system, no TIMP-1-v2 protein was produced. Thus, the variant transcript seems to be an untranslated mRNA. These findings suggest that alternative splicing...... in colorectal tumors; (2) to investigate if TIMP-1-v2 is translated to protein. Full length TIMP-1 and TIMP-1-v2 mRNA levels were compared between colorectal tumors and normal mucosa by Q-PCR. Both full length TIMP-1 and TIMP-1-v2 transcripts were upregulated in tumor tissue. However, the level of TIMP-1-v2...

  9. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3' processing

    Czech Academy of Sciences Publication Activity Database

    Abe, K.; Yamamoto, R.; Franke, V.; Cao, M.; Suzuki, Y.; Suzuki, M.G.; Vlahovicek, K.; Svoboda, Petr; Schultz, R. M.; Aoki, F.

    2015-01-01

    Roč. 34, č. 11 (2015), s. 1523-1537 ISSN 0261-4189. [GBP305/12/G034. CZ] EU Projects: European Commission(BE) 315997 Grant - others:GA MŠk LH13084; GA AV ČR M200521202; NIH(US) HD022681; Croatian Ministry of Science, Education and Sports(HR) 119-0982913-1211 Program:LH Institutional support: RVO:68378050 Keywords : gene expression * preimplantation mouse embryo * pre-mRNA splicing * RNA-Seq * transcription Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.643, year: 2015

  10. Identification of Alternative Splicing and Fusion Transcripts in Non-Small Cell Lung Cancer by RNA Sequencing.

    Science.gov (United States)

    Hong, Yoonki; Kim, Woo Jin; Bang, Chi Young; Lee, Jae Cheol; Oh, Yeon-Mok

    2016-04-01

    Lung cancer is the most common cause of cancer related death. Alterations in gene sequence, structure, and expression have an important role in the pathogenesis of lung cancer. Fusion genes and alternative splicing of cancer-related genes have the potential to be oncogenic. In the current study, we performed RNA-sequencing (RNA-seq) to investigate potential fusion genes and alternative splicing in non-small cell lung cancer. RNA was isolated from lung tissues obtained from 86 subjects with lung cancer. The RNA samples from lung cancer and normal tissues were processed with RNA-seq using the HiSeq 2000 system. Fusion genes were evaluated using Defuse and ChimeraScan. Candidate fusion transcripts were validated by Sanger sequencing. Alternative splicing was analyzed using multivariate analysis of transcript sequencing and validated using quantitative real time polymerase chain reaction. RNA-seq data identified oncogenic fusion genes EML4-ALK and SLC34A2-ROS1 in three of 86 normal-cancer paired samples. Nine distinct fusion transcripts were selected using DeFuse and ChimeraScan; of which, four fusion transcripts were validated by Sanger sequencing. In 33 squamous cell carcinoma, 29 tumor specific skipped exon events and six mutually exclusive exon events were identified. ITGB4 and PYCR1 were top genes that showed significant tumor specific splice variants. In conclusion, RNA-seq data identified novel potential fusion transcripts and splice variants. Further evaluation of their functional significance in the pathogenesis of lung cancer is required.

  11. Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts

    Science.gov (United States)

    2010-01-01

    Background Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by ERBB2 (HER-2/neu) oncogene expression. Results The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of ERBB2-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of ERBB2. The relative expression balance between AS variants from 3 genes was differentially modulated by ERBB2 in this model system. Conclusions In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts

  12. Study of USH1 splicing variants through minigenes and transcript analysis from nasal epithelial cells.

    Directory of Open Access Journals (Sweden)

    María José Aparisi

    Full Text Available Usher syndrome type I (USH1 is an autosomal recessive disorder characterized by congenital profound deafness, vestibular areflexia and prepubertal retinitis pigmentosa. The first purpose of this study was to determine the pathologic nature of eighteen USH1 putative splicing variants found in our series and their effect in the splicing process by minigene assays. These variants were selected according to bioinformatic analysis. The second aim was to analyze the USH1 transcripts, obtained from nasal epithelial cells samples of our patients, in order to corroborate the observed effect of mutations by minigenes in patient's tissues. The last objective was to evaluate the nasal ciliary beat frequency in patients with USH1 and compare it with control subjects. In silico analysis were performed using four bioinformatic programs: NNSplice, Human Splicing Finder, NetGene2 and Spliceview. Afterward, minigenes based on the pSPL3 vector were used to investigate the implication of selected changes in the mRNA processing. To observe the effect of mutations in the patient's tissues, RNA was extracted from nasal epithelial cells and RT-PCR analyses were performed. Four MYO7A (c.470G>A, c.1342_1343delAG, c.5856G>A and c.3652G>A, three CDH23 (c.2289+1G>A, c.6049G>A and c.8722+1delG and one PCDH15 (c.3717+2dupTT variants were observed to affect the splicing process by minigene assays and/or transcripts analysis obtained from nasal cells. Based on our results, minigenes are a good approach to determine the implication of identified variants in the mRNA processing, and the analysis of RNA obtained from nasal epithelial cells is an alternative method to discriminate neutral Usher variants from those with a pathogenic effect on the splicing process. In addition, we could observe that the nasal ciliated epithelium of USH1 patients shows a lower ciliary beat frequency than control subjects.

  13. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses

    Directory of Open Access Journals (Sweden)

    Kathrin Davari

    2017-04-01

    Full Text Available Summary: Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP, and RNA polymerase II (RNA Pol II ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD and activation of the positive transcription elongation factor (pTEFb. Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation. : Davari et al. visualize global changes in RNA Pol II binding, transcription, splicing, and translation. T cells change their functional program by rapid de novo recruitment of RNA Pol II and coupled changes in transcription and translation. This coincides with fluctuations in RNA Pol II phosphorylation and a temporary reduction in cotranscriptional splicing. Keywords: RNA Pol II, cotranscriptional splicing, T cell activation, ribosome profiling, 4sU, H3K36, Ser-5 RNA Pol II, Ser-2 RNA Pol II, immune response, immediate-early genes

  14. Assignment of the human pro-melanin-concentrating hormone gene (PMCH) to chromosome 12q23-q24 and two variant genes (PMCHL1 and PMCHL2) to chromosome 5p14 and 5q12-q13

    Energy Technology Data Exchange (ETDEWEB)

    Pedeutour, F. (Laboratoire de Genetique Moleculaire des Cancers Humans, Nice (France)); Szpirer, C. (Universite Libre de Bruxelles, Rhode-St-Genese (Belgium)); Nahon, J.L. (Institut de Pharmacologie Moleculaire et Cellulaire, Valbonne (France))

    1994-01-01

    Melanin-concentrating hormone (MCH) is a peptide that has been isolated from salmon pituitary and rat hypothalamus. In mammals, pro-MCH (PMCH) encodes two putative peptides, named NEI and NGE, in addition to MCH. Those peptides are expressed predominantly in hypothalamus and display a broad array of functions in rat brain. The authors have previously mapped the PMCH locus on human chromosome 12q and rat chromosome 7. Genomic cloning has revealed the existence of two distinct MCH genes in human: one authentic and one variant. In this report, they describe Southern blotting analysis with DNA from a panel of somatic cell hybrids and demonstrate that the authentic human MCH (hMCH) gene is located as expected on chromosome 12, while the variant form of hMCH gene is located on chromosome 5. Direct chromosomal assignment of the authentic and variant hMCH genes was obtained by using fluorescence in situ hybridization on metaphase chromosomes. A strong signal was observed in 12q23-q24 with the authentic HMCH genomic DNA probe. Surprisingly, two signals were conspicuously found in 5p14 and 5q12-q13 with different variant hMCH genomic DNA probes. These loci were designated PMCHL1 and PMCHL2. Evidence of physiological and pathological data in rodents together with locus linkage analyses in human suggests that hMCH authentic and variant genes may be involved in human brain disorders. 44 refs., 3 figs., 1 tab.

  15. Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development.

    Science.gov (United States)

    Thomas-Jinu, Swapna; Gordon, Patricia M; Fielding, Triona; Taylor, Richard; Smith, Bradley N; Snowden, Victoria; Blanc, Eric; Vance, Caroline; Topp, Simon; Wong, Chun-Hao; Bielen, Holger; Williams, Kelly L; McCann, Emily P; Nicholson, Garth A; Pan-Vazquez, Alejandro; Fox, Archa H; Bond, Charles S; Talbot, William S; Blair, Ian P; Shaw, Christopher E; Houart, Corinne

    2017-04-19

    Recent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously. In addition to its nuclear localization, the protein unexpectedly localizes to motor axons. The cytosolic version of SFPQ abolishes motor axonal defects, rescuing key transcripts, and restores motility in the paralyzed sfpq null mutants, indicating a non-nuclear processing role in motor axons. Novel variants affecting the conserved coiled-coil domain, so far exclusively found in fALS exomes, specifically affect the ability of SFPQ to localize in axons. They broadly rescue morphology and motility in the zebrafish mutant, but alter motor axon morphology, demonstrating functional requirement for axonal SFPQ. Altogether, we uncover the axonal function of the splicing factor SFPQ in motor development and highlight the importance of the coiled-coil domain in this process. VIDEO ABSTRACT. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Abiotic Stresses Cause Differential Regulation of Alternative Splice Forms of GATA Transcription Factor in Rice

    Directory of Open Access Journals (Sweden)

    Priyanka Gupta

    2017-11-01

    Full Text Available The GATA gene family is one of the most conserved families of transcription factors, playing a significant role in different aspects of cellular processes, in organisms ranging from fungi to angiosperms. GATA transcription factors are DNA-binding proteins, having a class IV zinc-finger motif CX2CX17−20CX2C followed by a highly basic region and are known to bind a consensus sequence WGATAR. In plants, GATAs are known to be involved in light-dependent gene regulation and nitrate assimilation. However, a comprehensive analysis of these GATA gene members has not yet been highlighted in rice when subjected to environmental stresses. In this study, we present an overview of the GATA gene family in rice (OsGATA in terms of, their chromosomal distribution, domain architecture, and phylogeny. Our study has revealed the presence of 28 genes, encoding 35 putative GATA transcription factors belonging to seven subfamilies in the rice genome. Transcript abundance analysis in contrasting genotypes of rice—IR64 (salt sensitive and Pokkali (salt tolerant, for individual GATA members indicated their differential expression in response to various abiotic stresses such as salinity, drought, and exogenous ABA. One of the members of subfamily VII—OsGATA23a, emerged as a multi-stress responsive transcription factor giving elevated expression levels in response to salinity and drought. ABA also induces expression of OsGATA23a by 35 and 55-folds in IR64 and Pokkali respectively. However, OsGATA23b, an alternative splice variant of OsGATA23 did not respond to above-mentioned stresses. Developmental regulation of the OsGATA genes based on a publicly available microarray database showed distinct expression patterns for most of the GATA members throughout different stages of rice development. Altogether, our results suggest inherent roles of diverse OsGATA factors in abiotic stress signaling and also throw some light on the tight regulation of the spliced variants of

  17. Splice-site mutations cause Rrp6-mediated nuclear retention of the unspliced RNAs and transcriptional down-regulation of the splicing-defective genes.

    Directory of Open Access Journals (Sweden)

    Andrea B Eberle

    Full Text Available BACKGROUND: Eukaryotic cells have developed surveillance mechanisms to prevent the expression of aberrant transcripts. An early surveillance checkpoint acts at the transcription site and prevents the release of mRNAs that carry processing defects. The exosome subunit Rrp6 is required for this checkpoint in Saccharomyces cerevisiae, but it is not known whether Rrp6 also plays a role in mRNA surveillance in higher eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an in vivo system to study nuclear mRNA surveillance in Drosophila melanogaster. We have produced S2 cells that express a human beta-globin gene with mutated splice sites in intron 2 (mut beta-globin. The transcripts encoded by the mut beta-globin gene are normally spliced at intron 1 but retain intron 2. The levels of the mut beta-globin transcripts are much lower than those of wild type (wt ss-globin mRNAs transcribed from the same promoter. We have compared the expression of the mut and wt beta-globin genes to investigate the mechanisms that down-regulate the production of defective mRNAs. Both wt and mut beta-globin transcripts are processed at the 3', but the mut beta-globin transcripts are less efficiently cleaved than the wt transcripts. Moreover, the mut beta-globin transcripts are less efficiently released from the transcription site, as shown by FISH, and this defect is restored by depletion of Rrp6 by RNAi. Furthermore, transcription of the mut beta-globin gene is significantly impaired as revealed by ChIP experiments that measure the association of the RNA polymerase II with the transcribed genes. We have also shown that the mut beta-globin gene shows reduced levels of H3K4me3. CONCLUSIONS/SIGNIFICANCE: Our results show that there are at least two surveillance responses that operate cotranscriptionally in insect cells and probably in all metazoans. One response requires Rrp6 and results in the inefficient release of defective mRNAs from the transcription site. The

  18. Distinct Transcriptional and Alternative Splicing Signatures of Decidual CD4+ T Cells in Early Human Pregnancy

    Directory of Open Access Journals (Sweden)

    Weihong Zeng

    2017-06-01

    Full Text Available Decidual CD4+ T (dCD4 T cells are crucial for the maternal-fetal immune tolerance required for a healthy pregnancy outcome. However, their molecular and functional characteristics are not well elucidated. In this study, we performed the first analysis of transcriptional and alternative splicing (AS landscapes for paired decidual and peripheral blood CD4+ T (pCD4 T cells in human early pregnancy using high throughput mRNA sequencing. Our data showed that dCD4 T cells are endowed with a unique transcriptional signature when compared to pCD4 T cells: dCD4 T cells upregulate 1,695 genes enriched in immune system process whereas downregulate 1,011 genes mainly related to mRNA catabolic process and the ribosome. Moreover, dCD4 T cells were observed to be at M phase, and show increased activation, proliferation, and cytokine production, as well as display an effector-memory phenotype and a heterogenous nature containing Th1, Th17, and Treg cell subsets. However, dCD4 T cells undergo a comparable number of upregulated and downregulated AS events, both of which are enriched in the genes related to cellular metabolic process. And the changes at the AS event level do not reflect measurable differences at the gene expression level in dCD4 T cells. Collectively, our findings provide a comprehensive portrait of the unique transcriptional signature and AS profile of CD4+ T cells in human decidua and help us gain more understanding of the functional characteristic of these cells during early pregnancy.

  19. Alternative splicing of T cell receptor (TCR) alpha chain transcripts containing V alpha 1 or V alpha 14 elements.

    Science.gov (United States)

    Mahotka, C; Hansen-Hagge, T E; Bartram, C R

    1995-10-01

    Human acute lymphoblastic leukemia cell lines represent valuable tools to investigate distinct steps of the complex regulatory pathways underlying T cell receptor recombination and expression. A case in point are V delta 2D delta 3 and subsequent V delta 2D delta 3J alpha rearrangements observed in human leukemic pre-B cells as well as in normal lymphopoiesis. The functional expression of these unusual (VD) delta (JC) alpha hybrids is almost exclusively prevented by alternative splicing events. In this report we show that alternative splicing at cryptic splice donor sites within V elements is not a unique feature of hybrid TCR delta/alpha transcripts. Among seven V alpha families analyzed by RT-PCR, alternatively spliced products were observed in TCR alpha recombinations containing V alpha 1 or V alpha 14 elements. In contrast to normal peripheral blood cells and thymocytes, the leukemia cell line JM expressing functional V alpha 1J alpha 3C alpha transcripts lacked evidence of aberrant TCR alpha RNA species.

  20. Clinical significance of intronic variants in BRAF inhibitor resistant melanomas with altered BRAF transcript splicing

    OpenAIRE

    Pupo, Gulietta M.; Boyd, Suzanah C.; Fung, Carina; Carlino, Matteo S.; Menzies, Alexander M.; Pedersen, Bernadette; Johansson, Peter; Hayward, Nicholas K.; Kefford, Richard F.; Scolyer, Richard A.; Long, Georgina V.; Rizos, Helen

    2017-01-01

    Alternate BRAF splicing is the most common mechanism of acquired resistance to BRAF inhibitor treatment in melanoma. Recently, alternate BRAF exon 4?8 splicing was shown to involve an intronic mutation, located 51 nucleotides upstream of BRAF exon 9 within a predicted splicing branch point. This intronic mutation was identified in a single cell line but has not been examined in vivo. Herein we demonstrate that in three melanomas biopsied from patients with acquired resistance to BRAF inhibito...

  1. HPV-18 E2circumflexE4 chimera: 2 new spliced transcripts and proteins induced by keratinocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chye Ling [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Gunaratne, Jayantha [Mass Spectrometry and Systems Biology Laboratory, Institute of Molecular and Cell Biology, A-STAR, Biopolis, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); Lai, Deborah [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Carthagena, Laetitia [UMR-S996, Universite Paris-Sud 11, 32 rue des Carnets, 92140 Clamart (France); Wang, Qian [MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London N10 3UE (United Kingdom); Xue, Yue Zhen; Quek, Ling Shih [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Doorbar, John [MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London N10 3UE (United Kingdom); Bachelerie, Francoise [UMR-S996, Universite Paris-Sud 11, 32 rue des Carnets, 92140 Clamart (France); Thierry, Francoise, E-mail: francoise.thierry@imb.a-star.edu.sg [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Bellanger, Sophie, E-mail: sophie.bellanger@imb.a-star.edu.sg [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore)

    2012-07-20

    The Human Papillomavirus (HPV) E4 is known to be synthesized as an E1circumflexE4 fusion resulting from splice donor and acceptor sites conserved across HPV types. Here we demonstrate the existence of 2 HPV-18 E2circumflexE4 transcripts resulting from 2 splice donor sites in the 5 Prime part of E2, while the splice acceptor site is the one used for E1circumflexE4. Both E2circumflexE4 transcripts are up-regulated by keratinocyte differentiation in vitro and can be detected in clinical samples containing low-grade HPV-18-positive cells from Pap smears. They give rise to two fusion proteins in vitro, E2circumflexE4-S and E2circumflexE4-L. Whereas we could not differentiate E2circumflexE4-S from E1circumflexE4 in vivo, E2circumflexE4-L could be formally identified as a 23 kDa protein in raft cultures in which the corresponding transcript was also found, and in a biopsy from a patient with cervical intraepithelial neoplasia stage I-II (CINI-II) associated with HPV-18, demonstrating the physiological relevance of E2circumflexE4 products.

  2. Cloning and characterization of the mouse Mcoln1 gene reveals an alternatively spliced transcript not seen in humans

    Directory of Open Access Journals (Sweden)

    Stahl Stefanie

    2002-02-01

    Full Text Available Abstract Background Mucolipidosis type IV (MLIV is an autosomal recessive lysosomal storage disorder characterized by severe neurologic and ophthalmologic abnormalities. Recently the MLIV gene, MCOLN1, has been identified as a new member of the transient receptor potential (TRP cation channel superfamily. Here we report the cloning and characterization of the mouse homologue, Mcoln1, and report a novel splice variant that is not seen in humans. Results The human and mouse genes display a high degree of synteny. Mcoln1 shows 91% amino acid and 86% nucleotide identity to MCOLN1. Also, Mcoln1 maps to chromosome 8 and contains an open reading frame of 580 amino acids, with a transcript length of approximately 2 kb encoded by 14 exons, similar to its human counterpart. The transcript that results from murine specific alternative splicing encodes a 611 amino acid protein that differs at the c-terminus. Conclusions Mcoln1 is highly similar to MCOLN1, especially in the transmembrane domains and ion pore region. Also, the late endosomal/lysosomal targeting signal is conserved, supporting the hypothesis that the protein is localized to these vesicle membranes. To date, there are very few reports describing species-specific splice variants. While identification of Mcoln1 is crucial to the development of mouse models for MLIV, the fact that there are two transcripts in mice suggests an additional or alternate function of the gene that may complicate phenotypic assessment.

  3. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis.

    Directory of Open Access Journals (Sweden)

    Xiu Ge Wang

    Full Text Available Alternative splicing (AS contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A and mastitic (HS8A cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine-cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5' splicing and alternative 3' splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A and 5.4% (HS8A novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis.

  4. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis

    Science.gov (United States)

    Jiang, Qiang; Yang, Chun Hong; Zhang, Yan; Sun, Yan; Li, Rong Ling; Wang, Chang Fa; Zhong, Ji Feng; Huang, Jin Ming

    2016-01-01

    Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine–cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5′ splicing and alternative 3ʹ splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis. PMID:27459697

  5. Alternative splicing produces two transcripts encoding female-biased pheromone subfamily receptors in the navel orangeworm, Amyelois transitella

    Directory of Open Access Journals (Sweden)

    Stephen F Garczynski

    2015-10-01

    Full Text Available Insect odorant receptors are key sensors of environmental odors and members of the lepidopteran pheromone receptor subfamily are thought to play important roles in mate finding by recognizing sex pheromones. Much research has been done to identify putative pheromone receptors in lepidopteran males, but little attention has been given to female counterparts. In this study, degenerate oligonucleotide primers designed against a conserved amino acid region in the C-terminus of lepidopteran pheromone receptors were used in 3’ RACE reactions to identify candidate pheromone receptors expressed in the antennae of female navel orangeworm. Two near full-length transcripts of 1469 nt and 1302 nt encoding the complete open reading frames for proteins of 446 and 425 amino acids, respectively, were identified. Based on BLAST homology and phylogenetic analyses, the putative proteins encoded by these transcripts are members of the lepidopteran pheromone receptor subfamily. Characterization of these transcripts indicates that they are alternatively spliced products of a single gene. Tissue expression studies indicate that the transcripts are female-biased with detection mainly in female antennae. To the best of our knowledge, these transcripts represent the first detection of alternatively spliced female-biased members of the lepidopteran pheromone receptor subfamily.

  6. Expression of a splice variant of the platelet-activating factor receptor transcript 2 in various human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ibtissam Youlyouz

    2002-01-01

    Full Text Available Platelet-activating factor receptor (PAF-R transcripts were analysed by reverse transcriptase-polymerase chain reaction in five human cancer cell lines derived from the breast (BT20, SKBR3 and T47D cells, the pancreas (Miapaca cells and the bladder (5637 cells in order to confirm the existence of a splice variant of the PAF-R transcript 2. After cloning and sequencing, we confirmed its existence in all cell lines. It consisted of the PAF-R transcript 2 lengthening with 82 nucleotides from the 3' end of exon 1 of the PAF-R gene. The role of this elongated form of the tissue-type PAF-R transcript in cell physiology remains to be elucidated.

  7. Identification of new splice sites used for generation of rev transcripts in human immunodeficiency virus type 1 subtype C primary isolates.

    Directory of Open Access Journals (Sweden)

    Elena Delgado

    Full Text Available The HIV-1 primary transcript undergoes a complex splicing process by which more than 40 different spliced RNAs are generated. One of the factors contributing to HIV-1 splicing complexity is the multiplicity of 3' splice sites (3'ss used for generation of rev RNAs, with two 3'ss, A4a and A4b, being most commonly used, a third site, A4c, used less frequently, and two additional sites, A4d and A4e, reported in only two and one isolates, respectively. HIV-1 splicing has been analyzed mostly in subtype B isolates, and data on other group M clades are lacking. Here we examine splice site usage in three primary isolates of subtype C, the most prevalent clade in the HIV-1 pandemic, by using an in vitro infection assay of peripheral blood mononuclear cells. Viral spliced RNAs were identified by RT-PCR amplification using a fluorescently-labeled primer and software analyses and by cloning and sequencing the amplified products. The results revealed that splice site usage for generation of rev transcripts in subtype C differs from that reported for subtype B, with most rev RNAs using two previously unreported 3'ss, one located 7 nucleotides upstream of 3'ss A4a, designated A4f, preferentially used by two isolates, and another located 14 nucleotides upstream of 3'ss A4c, designated A4g, preferentially used by the third isolate. A new 5' splice site, designated D2a, was also identified in one virus. Usage of the newly identified splice sites is consistent with sequence features commonly found in subtype C viruses. These results show that splice site usage may differ between HIV-1 subtypes.

  8. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    Science.gov (United States)

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients. © 2013 Wiley Periodicals, Inc.

  9. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    KAUST Repository

    Nagashima, Yukihiro

    2011-07-01

    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor.

  10. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Directory of Open Access Journals (Sweden)

    Brewster Brooke L

    2010-05-01

    Full Text Available Abstract Background Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs remains a challenge. Methods This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches. Results Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly, BRCA2 c.8972G > A (p.Arg2991His, BRCA2 c.9172A > G (p.Ser3058Gly, and BRCA2 c.9213G > T (p.Glu3071Asp by a minigene assay, revealed no evidence for aberrant splicing. Conclusions These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.

  11. AtRTD2: A Reference Transcript Dataset for accurate quantification of alternative splicing and expression changes in Arabidopsis thaliana RNA-seq data

    KAUST Repository

    Zhang, Runxuan

    2016-05-06

    Background Alternative splicing is the major post-transcriptional mechanism by which gene expression is regulated and affects a wide range of processes and responses in most eukaryotic organisms. RNA-sequencing (RNA-seq) can generate genome-wide quantification of individual transcript isoforms to identify changes in expression and alternative splicing. RNA-seq is an essential modern tool but its ability to accurately quantify transcript isoforms depends on the diversity, completeness and quality of the transcript information. Results We have developed a new Reference Transcript Dataset for Arabidopsis (AtRTD2) for RNA-seq analysis containing over 82k non-redundant transcripts, whereby 74,194 transcripts originate from 27,667 protein-coding genes. A total of 13,524 protein-coding genes have at least one alternatively spliced transcript in AtRTD2 such that about 60% of the 22,453 protein-coding, intron-containing genes in Arabidopsis undergo alternative splicing. More than 600 putative U12 introns were identified in more than 2,000 transcripts. AtRTD2 was generated from transcript assemblies of ca. 8.5 billion pairs of reads from 285 RNA-seq data sets obtained from 129 RNA-seq libraries and merged along with the previous version, AtRTD, and Araport11 transcript assemblies. AtRTD2 increases the diversity of transcripts and through application of stringent filters represents the most extensive and accurate transcript collection for Arabidopsis to date. We have demonstrated a generally good correlation of alternative splicing ratios from RNA-seq data analysed by Salmon and experimental data from high resolution RT-PCR. However, we have observed inaccurate quantification of transcript isoforms for genes with multiple transcripts which have variation in the lengths of their UTRs. This variation is not effectively corrected in RNA-seq analysis programmes and will therefore impact RNA-seq analyses generally. To address this, we have tested different genome

  12. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes.

    Science.gov (United States)

    Yan, Qingqing; Xia, Xi; Sun, Zhenfei; Fang, Yuda

    2017-03-01

    Serine/arginine-rich (SR) proteins are important splicing factors which play significant roles in spliceosome assembly and splicing regulation. However, little is known regarding their biological functions in plants. Here, we analyzed the phenotypes of mutants upon depleting different subfamilies of Arabidopsis SR proteins. We found that loss of the functions of SC35 and SC35-like (SCL) proteins cause pleiotropic changes in plant morphology and development, including serrated leaves, late flowering, shorter roots and abnormal silique phyllotaxy. Using RNA-seq, we found that SC35 and SCL proteins play roles in the pre-mRNA splicing. Motif analysis revealed that SC35 and SCL proteins preferentially bind to a specific RNA sequence containing the AGAAGA motif. In addition, the transcriptions of a subset of genes are affected by the deletion of SC35 and SCL proteins which interact with NRPB4, a specific subunit of RNA polymerase II. The splicing of FLOWERING LOCUS C (FLC) intron1 and transcription of FLC were significantly regulated by SC35 and SCL proteins to control Arabidopsis flowering. Therefore, our findings provide mechanistic insight into the functions of plant SC35 and SCL proteins in the regulation of splicing and transcription in a direct or indirect manner to maintain the proper expression of genes and development.

  13. spliceR

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Porse, Bo Torben; Sandelin, Albin

    2014-01-01

    RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternative splicing...

  14. Regulation of HIV-1 splicing

    NARCIS (Netherlands)

    Müller, N.

    2016-01-01

    Human immunodeficiency virus type-1 (HIV-1) produces a single primary RNA transcript. The full-length transcript functions as RNA genome that is packaged into virions and as mRNA for translation of the Gag and Pol proteins. HIV-1 RNA contains several splice donor (5’splice site; 5’ss) and splice

  15. The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression

    Directory of Open Access Journals (Sweden)

    Kazuhiro Fukumura

    2016-08-01

    Full Text Available The exon junction complex (EJC that is deposited onto spliced mRNAs upstream of exon–exon junctions plays important roles in multiple post-splicing gene expression events, such as mRNA export, surveillance, localization, and translation. However, a direct role for the human EJC in pre-mRNA splicing has not been fully understood. Using HeLa cells, we depleted one of the EJC core components, Y14, and the resulting transcriptome was analyzed by deep sequencing (RNA-Seq and confirmed by RT–PCR. We found that Y14 is required for efficient and faithful splicing of a group of transcripts that is enriched in short intron-containing genes involved in mitotic cell-cycle progression. Tethering of EJC core components (Y14, eIF4AIII or MAGOH to a model reporter pre-mRNA harboring a short intron showed that these core components are prerequisites for the splicing activation. Taken together, we conclude that the EJC core assembled on pre-mRNA is critical for efficient and faithful splicing of a specific subset of short introns in mitotic cell cycle-related genes.

  16. Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Zhichao eXu

    2016-02-01

    Full Text Available Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and 4 alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of the identified key genes related to rosmarinic acid biosynthesis. According to co-expression patterns, we predicted that 6 candidate cytochrome P450s and 5 candidate laccases participate in the salvianolic acid pathway. Our results provide a valuable resource for further investigation into the synthetic biology of phenolic acids in S. miltiorrhiza.

  17. Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells.

    Science.gov (United States)

    Zhou, Rui; Park, Juw Won; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Zavala, Kathryn; Sea, Jessica L; Lu, Zhi-Xiang; Xu, Jianzhong; Adams, John S; Xing, Yi; Hewison, Martin

    2017-01-25

    Traditionally recognized as an RNA splicing regulator, heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC1/C2) can also bind to double-stranded DNA and function in trans as a vitamin D response element (VDRE)-binding protein. As such, hnRNPC1/C2 may couple transcription induced by the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH) 2 D) with subsequent RNA splicing. In MG63 osteoblastic cells, increased expression of the 1,25(OH) 2 D target gene CYP24A1 involved immunoprecipitation of hnRNPC1/C2 with CYP24A1 chromatin and RNA. Knockdown of hnRNPC1/C2 suppressed expression of CYP24A1, but also increased expression of an exon 10-skipped CYP24A1 splice variant; in a minigene model the latter was attenuated by a functional VDRE in the CYP24A1 promoter. In genome-wide analyses, knockdown of hnRNPC1/C2 resulted in 3500 differentially expressed genes and 2232 differentially spliced genes, with significant commonality between groups. 1,25(OH) 2 D induced 324 differentially expressed genes, with 187 also observed following hnRNPC1/C2 knockdown, and a further 168 unique to hnRNPC1/C2 knockdown. However, 1,25(OH) 2 D induced only 10 differentially spliced genes, with no overlap with differentially expressed genes. These data indicate that hnRNPC1/C2 binds to both DNA and RNA and influences both gene expression and RNA splicing, but these actions do not appear to be linked through 1,25(OH) 2 D-mediated induction of transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. In vivo mutation of pre-mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation

    OpenAIRE

    Keightley, Maria-Cristina; Crowhurst, Meredith O.; Layton, Judith E.; Beilharz, Traude; Markmiller, Sebastian; Varma, Sony; Hogan, Benjamin M.; de Jong-Curtain, Tanya A.; Heath, Joan K.; Lieschke, Graham J.

    2013-01-01

    Mutated spliceosome components are recurrently being associated with perturbed tissue development and disease pathogenesis. Cephalophŏnus (cph), is a zebrafish mutant carrying an early premature STOP codon in the spliceosome component Prpf8 (pre-mRNA processing factor 8). Cph initially develops normally, but then develops widespread cell death, especially in neurons, and is embryonic lethal. Cph mutants accumulate aberrantly spliced transcripts retaining both U2- and U12-type introns. Within ...

  19. PTB-associated splicing factor (PSF) functions as a repressor of STAT6-mediated IG{epsilon} gene transcription by recruitment of HDAC1

    DEFF Research Database (Denmark)

    Dong, Lijie; Zhang, Xinyu; Fu, Xiao

    2010-01-01

    of phosphorylation, and IL-4 stimulation increased tyrosine phosphorylation of PSF and STAT6. Functional analysis demonstrated that ectopic expression of PSF resulted in inhibition of STAT6-mediated gene transcriptional activation and mRNA expression of Ig heavy chain germline Ig ε, while knockdown of PSF increased......Regulation of transcription requires cooperation between sequence specific transcription factors and numerous coregulatory proteins. In IL-4/IL-13 signaling several coactivators for STAT6 have been identified, but the molecular mechanisms of STAT6-mediated gene transcription are still not fully...... understood. Here we identified by proteomic approach that PTB-associated splicing factor (PSF) interacts with STAT6. In cells the interaction required IL-4 stimulation and was observed both with endogenous and ectopically expressed proteins. The ligand dependency of the interaction suggested involvement...

  20. Trans-splicing of plastid rps12 transcripts, mediated by AtPPR4, is essential for embryo patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Tadini, Luca; Ferrari, Roberto; Lehniger, Marie-Kristin; Mizzotti, Chiara; Moratti, Fabio; Resentini, Francesca; Colombo, Monica; Costa, Alex; Masiero, Simona; Pesaresi, Paolo

    2018-04-23

    AtPPR4-mediated trans-splicing of plastid rps12 transcripts is essential for key embryo morphogenetic events such as development of cotyledons, determination of provascular tissue, and organization of the shoot apical meristem (SAM), but not for the formation of the protodermal layer. Members of the pentatricopeptide repeat (PPR) containing protein family have emerged as key regulators of the organelle post-transcriptional processing and to be essential for proper plant embryo development. In this study, we report the functional characterization of the AtPPR4 (At5g04810) gene encoding a plastid nucleoid PPR protein. In-situ hybridization analysis reveals the presence of AtPPR4 transcripts already at the transition stage of embryo development. As a consequence, embryos lacking the AtPPR4 protein arrest their development at the transition/early-heart stages and show defects in the determination of the provascular tissue and organization of SAM. This complex phenotype is due to the specific role of AtPPR4 in the trans-splicing of the plastid rps12 transcripts, as shown by northern and slot-blot hybridizations, and the consequent defect in 70S ribosome accumulation and plastid protein synthesis, in agreement with the role proposed for the maize orthologue, ZmPPR4.

  1. Doubly Spliced RNA of Hepatitis B Virus Suppresses Viral Transcription via TATA-Binding Protein and Induces Stress Granule Assembly.

    Science.gov (United States)

    Tsai, Kuen-Nan; Chong, Chin-Liew; Chou, Yu-Chi; Huang, Chien-Chiao; Wang, Yi-Ling; Wang, Shao-Win; Chen, Mong-Liang; Chen, Chun-Hong; Chang, Chungming

    2015-11-01

    The risk of liver cancer in patients infected with the hepatitis B virus (HBV) and their clinical response to interferon alpha therapy vary based on the HBV genotype. The mechanisms underlying these differences in HBV pathogenesis remain unclear. In HepG2 cells transfected with a mutant HBV(G2335A) expression plasmid that does not transcribe the 2.2-kb doubly spliced RNA (2.2DS-RNA) expressed by wild-type HBV genotype A, the level of HBV pregenomic RNA (pgRNA) was higher than that in cells transfected with an HBV genotype A expression plasmid. By using cotransfection with HBV genotype D and 2.2DS-RNA expression plasmids, we found that a reduction of pgRNA was observed in the cells even in the presence of small amounts of the 2.2DS-RNA plasmid. Moreover, ectopic expression of 2.2DS-RNA in the HBV-producing cell line 1.3ES2 reduced the expression of pgRNA. Further analysis showed that exogenously transcribed 2.2DS-RNA inhibited a reconstituted transcription in vitro. In Huh7 cells ectopically expressing 2.2DS-RNA, RNA immunoprecipitation revealed that 2.2DS-RNA interacted with the TATA-binding protein (TBP) and that nucleotides 432 to 832 of 2.2DS-RNA were required for efficient TBP binding. Immunofluorescence experiments showed that 2.2DS-RNA colocalized with cytoplasmic TBP and the stress granule components, G3BP and poly(A)-binding protein 1 (PABP1), in Huh7 cells. In conclusion, our study reveals that 2.2DS-RNA acts as a repressor of HBV transcription through an interaction with TBP that induces stress granule formation. The expression of 2.2DS-RNA may be one of the viral factors involved in viral replication, which may underlie differences in clinical outcomes of liver disease and responses to interferon alpha therapy between patients infected with different HBV genotypes. Patients infected with certain genotypes of HBV have a lower risk of hepatocellular carcinoma and exhibit a more favorable response to antiviral therapy than patients infected with other HBV

  2. Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available Plant chloroplast genes are usually co-transcribed while its posttranscriptional splicing is fairly complex and remains largely unsolved. On basis of sequencing the three complete Camellia (Theaceae chloroplast genomes for the first time, we comprehensively analyzed the evolutionary patterns of ycf15, a plastid gene quite paradoxical in terms of its function and evolution, along the inferred angiosperm phylogeny. Although many species in separate lineages including the three species reported here contained an intact ycf15 gene in their chloroplast genomes, the phylogenetic mixture of both intact and obviously disabled ycf15 genes imply that they are all non-functional. Both intracellular gene transfer (IGT and horizontal gene transfer (HGT failed to explain such distributional anomalies. While, transcriptome analyses revealed that ycf15 was transcribed as precursor polycistronic transcript which contained ycf2, ycf15 and antisense trnL-CAA. The transcriptome assembly was surprisingly found to cover near the complete Camellia chloroplast genome. Many non-coding regions including pseudogenes were mapped by multiple transcripts, indicating the generality of pseudogene transcriptions. Our results suggest that plastid DNA posttranscriptional splicing may involve complex cleavage of non-functional genes.

  3. Novel forms of Paired-like homeodomain transcription factor 2 (PITX2): Generation by alternative translation initiation and mRNA splicing

    OpenAIRE

    Bernard Daniel J; Hjalt Tord A; Lamba Pankaj

    2008-01-01

    Abstract Background Members of the Paired-like homeodomain transcription factor (PITX) gene family, particularly PITX1 and PITX2, play important roles in normal development and in differentiated cell functions. Three major isoforms of PITX2 were previously reported to be produced through both alternative mRNA splicing (PITX2A and PITX2B) and alternative promoter usage (PITX2C). The proteins derived from these mRNAs contain identical homeodomain and carboxyl termini. Differences in the amino-t...

  4. In vivo mutation of pre-mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation

    Science.gov (United States)

    Keightley, Maria-Cristina; Crowhurst, Meredith O.; Layton, Judith E.; Beilharz, Traude; Markmiller, Sebastian; Varma, Sony; Hogan, Benjamin M.; de Jong-Curtain, Tanya A.; Heath, Joan K.; Lieschke, Graham J.

    2013-01-01

    Mutated spliceosome components are recurrently being associated with perturbed tissue development and disease pathogenesis. Cephalophŏnus (cph), is a zebrafish mutant carrying an early premature STOP codon in the spliceosome component Prpf8 (pre-mRNA processing factor 8). Cph initially develops normally, but then develops widespread cell death, especially in neurons, and is embryonic lethal. Cph mutants accumulate aberrantly spliced transcripts retaining both U2- and U12-type introns. Within early haematopoeisis, myeloid differentiation is impaired suggesting Prpf8 is required for haematopoietic development. Cph provides an animal model for zygotic PRPF8 dysfunction diseases and for evaluating therapeutic interventions. PMID:23714367

  5. Proof that dinoflagellate spliced leader (DinoSL) is a useful hook for fishing dinoflagellate transcripts from mixed microbial samples: Symbiodinium kawagutii as a case study.

    Science.gov (United States)

    Zhang, Huan; Zhuang, Yunyun; Gill, John; Lin, Senjie

    2013-07-01

    The ability to analyze dinoflagellate lineage-specific transcriptomes in the natural environment would be powerful for gaining understanding on how these organisms thrive in diverse environments and how they form harmful algal blooms and produce biotoxins. This can be made possible by lineage-specific mRNA markers such as the dinoflagellate-specific trans-spliced leader (DinoSL). By constructing and sequencing a 5'-cap selective full-length cDNA library for a monoculture of the coral reef endosymbiotic dinoflagellate Symbiodinium kawagutii and a DinoSL-based cDNA library for a mixture of S. kawagutii and other phytoplankton, we found DinoSL in essentially all full-length cDNAs in the 5'-cap selective library. We also discovered that the DinoSL-based library contained functionally diverse transcripts all belonging to dinoflagellates with no evidence of biases toward certain groups of functional genes. The results verified that DinoSL is specific to dinoflagellate mRNAs and is ubiquitous in the dinoflagellate transcriptomes. Annotation of the unigene dataset generated from the two libraries combined indicated high functional diversity of the transcriptome and revealed some biochemical pathways previously undocumented in Symbiodinium such as an mRNA splicing machinery potentially serving both cis- and trans-splicing. The protocol will be useful for transcriptomic studies of Symbiodinium in hospite and other dinoflagellates in natural environments. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure Normal Arabidopsis Development[W

    Science.gov (United States)

    Perea-Resa, Carlos; Hernández-Verdeja, Tamara; López-Cobollo, Rosa; Castellano, María del Mar; Salinas, Julio

    2012-01-01

    In yeast and animals, SM-like (LSM) proteins typically exist as heptameric complexes and are involved in different aspects of RNA metabolism. Eight LSM proteins, LSM1 to 8, are highly conserved and form two distinct heteroheptameric complexes, LSM1-7 and LSM2-8,that function in mRNA decay and splicing, respectively. A search of the Arabidopsis thaliana genome identifies 11 genes encoding proteins related to the eight conserved LSMs, the genes encoding the putative LSM1, LSM3, and LSM6 proteins being duplicated. Here, we report the molecular and functional characterization of the Arabidopsis LSM gene family. Our results show that the 11 LSM genes are active and encode proteins that are also organized in two different heptameric complexes. The LSM1-7 complex is cytoplasmic and is involved in P-body formation and mRNA decay by promoting decapping. The LSM2-8 complex is nuclear and is required for precursor mRNA splicing through U6 small nuclear RNA stabilization. More importantly, our results also reveal that these complexes are essential for the correct turnover and splicing of selected development-related mRNAs and for the normal development of Arabidopsis. We propose that LSMs play a critical role in Arabidopsis development by ensuring the appropriate development-related gene expression through the regulation of mRNA splicing and decay. PMID:23221597

  7. Systematic Profiling of Poly(A)+ Transcripts Modulated by Core 3’ End Processing and Splicing Factors Reveals Regulatory Rules of Alternative Cleavage and Polyadenylation

    Science.gov (United States)

    Li, Wencheng; You, Bei; Hoque, Mainul; Zheng, Dinghai; Luo, Wenting; Ji, Zhe; Park, Ji Yeon; Gunderson, Samuel I.; Kalsotra, Auinash; Manley, James L.; Tian, Bin

    2015-01-01

    Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3’ untranslated regions (3’UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3’UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5’ end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS), a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors. PMID:25906188

  8. IGF1 mRNA splicing variants in Liaoning cashmere goat: identification, characterization, and transcriptional patterns in skin and visceral organs.

    Science.gov (United States)

    Bai, Wen L; Yin, Rong H; Yin, Rong L; Wang, Jiao J; Jiang, Wu Q; Luo, Guang B; Zhao, Zhi H

    2013-01-01

    Insulin-like growth factor I (IGF1) is a member of the insulin superfamily. It performs important roles in the proliferation and differentiation of skin cell and control of hair cycles and is thought to be a potential candidate gene for goat cashmere traits. In this work, we isolated and characterized three kinds of IGF1 mRNA splicing variants from the liver of Liaoning Cashmere goat, and the expression characterization of the IGF1 mRNA splicing variants were investigated in skin and other tissues of Liaoning cashmere goat. The sequencing results indicated that the classes 1w, 1, and 2 of IGF1 cDNAs in Liaoning cashmere goat, each included an open reading frame encoding the IGF1 precursor protein. The deduced amino acid sequences of the three IGF1 precursor proteins differed only in their NH2-terminal leader peptides. Through removal of the signal peptide and extension peptide, the three IGF1 mRNA splicing variants (classes 1w, 1, and 2) resulted in the same mature IGF1 protein in Liaoning cashmere goat. In skin tissue of Liaoning cashmere goat, class 1 and class 2 were detected in all stages of hair follicle cycling, and they had the highest transcription level at anagen, and then early anagen; whereas at telogen both classes 1 and 2 had the lowest expression in mRNA level, but the class 1 appears to be relatively more abundant than class 2 in skin tissue of Liaoning cashmere goat. However, the class 1w transcript was not detected in the skin tissues. Three classes of IGF1 mRNA were transcribed in a variety of tissues, including heart, brain, spleen, lung, kidney, liver, and skeletal muscle, but class 1 IGF1 mRNA was more abundant than classes 1w and 2 in the investigated tissues.

  9. Systematic profiling of poly(A+ transcripts modulated by core 3' end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation.

    Directory of Open Access Journals (Sweden)

    Wencheng Li

    2015-04-01

    Full Text Available Alternative cleavage and polyadenylation (APA results in mRNA isoforms containing different 3' untranslated regions (3'UTRs and/or coding sequences. How core cleavage/polyadenylation (C/P factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3'UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A sites (pAs, CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5' end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS, a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors.

  10. A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dariel Ashton-Beaucage

    2014-03-01

    Full Text Available The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway--including a new protein complex modulating RAF activation--we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing

  11. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template.

    Science.gov (United States)

    Keskin, Havva; Storici, Francesca

    2018-01-01

    A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells. © 2018 Elsevier Inc. All rights reserved.

  12. Novel forms of Paired-like homeodomain transcription factor 2 (PITX2: Generation by alternative translation initiation and mRNA splicing

    Directory of Open Access Journals (Sweden)

    Bernard Daniel J

    2008-03-01

    Full Text Available Abstract Background Members of the Paired-like homeodomain transcription factor (PITX gene family, particularly PITX1 and PITX2, play important roles in normal development and in differentiated cell functions. Three major isoforms of PITX2 were previously reported to be produced through both alternative mRNA splicing (PITX2A and PITX2B and alternative promoter usage (PITX2C. The proteins derived from these mRNAs contain identical homeodomain and carboxyl termini. Differences in the amino-termini of the proteins may confer functional differences in some contexts. Results Here, we report the identification of two novel PITX2 isoforms. First, we demonstrate that the Pitx2c mRNA generates two protein products, PITX2Cα and PITX2Cβ, via alternative translation initiation. Second, we identified a novel mRNA splice variant, Pitx2b2, which uses the same 5' splice donor in intron 2 as Pitx2b (hereafter referred to as Pitx2b1, but employs an alternative 3' splice acceptor, leading to an in-frame deletion of 39 base pairs relative to Pitx2b1. Pitx2b2 mRNA is expressed in both murine and human pituitary. The data show that in a murine gonadotrope cell line and adult murine pituitary what was previously thought to be PITX2B1 is actually PITX2Cβ, or perhaps PITX2B2. PITX2B1 is expressed at lower levels than previously thought. PITX2Cβ and PITX2B2 activate gonadotrope-specific gene promoter-reporters similarly to known PITX2 isoforms. Conclusion We have identified and characterized two novel isoforms of PITX2, generated by alternative translation initiation (PITX2Cβ and alternative mRNA splicing (PITX2B2. These proteins show similar DNA binding and trans-activation functions as other PITX2 isoforms in vitro, though their conservation across species suggests that they may play distinct, as yet unidentified, roles in vivo.

  13. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    Science.gov (United States)

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.

  14. The C-terminal domain of Brd2 is important for chromatin interaction and regulation of transcription and alternative splicing

    Czech Academy of Sciences Publication Activity Database

    Hnilicová, Jarmila; Hozeifi, Samira; Stejskalová, Eva; Dušková, Eva; Poser, I.; Humpolíčková, Jana; Hof, Martin; Staněk, David

    2013-01-01

    Roč. 24, č. 22 (2013), s. 3557-3568 ISSN 1059-1524 R&D Projects: GA AV ČR KAN200520801; GA ČR GAP305/10/0424; GA ČR GBP208/12/G016; GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68378050 ; RVO:61388955 Keywords : Brd2 * alternative splicing * chromatin Subject RIV: EB - Genetics ; Molecular Biology; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 4.548, year: 2013

  15. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to bt cotton in India.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Fabrick

    Full Text Available Evolution of resistance by insect pests can reduce the benefits of insecticidal proteins from Bacillus thuringiensis (Bt that are used extensively in sprays and transgenic crops. Despite considerable knowledge of the genes conferring insect resistance to Bt toxins in laboratory-selected strains and in field populations exposed to Bt sprays, understanding of the genetic basis of field-evolved resistance to Bt crops remains limited. In particular, previous work has not identified the genes conferring resistance in any cases where field-evolved resistance has reduced the efficacy of a Bt crop. Here we report that mutations in a gene encoding a cadherin protein that binds Bt toxin Cry1Ac are associated with field-evolved resistance of pink bollworm (Pectinophora gossypiella in India to Cry1Ac produced by transgenic cotton. We conducted laboratory bioassays that confirmed previously reported resistance to Cry1Ac in pink bollworm from the state of Gujarat, where Bt cotton producing Cry1Ac has been grown extensively. Analysis of DNA from 436 pink bollworm from seven populations in India detected none of the four cadherin resistance alleles previously reported to be linked with resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona. However, DNA sequencing of pink bollworm derived from resistant and susceptible field populations in India revealed eight novel, severely disrupted cadherin alleles associated with resistance to Cry1Ac. For these eight alleles, analysis of complementary DNA (cDNA revealed a total of 19 transcript isoforms, each containing a premature stop codon, a deletion of at least 99 base pairs, or both. Seven of the eight disrupted alleles each produced two or more different transcript isoforms, which implicates alternative splicing of messenger RNA (mRNA. This represents the first example of alternative splicing associated with field-evolved resistance that reduced the efficacy of a Bt crop.

  16. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to bt cotton in India.

    Science.gov (United States)

    Fabrick, Jeffrey A; Ponnuraj, Jeyakumar; Singh, Amar; Tanwar, Raj K; Unnithan, Gopalan C; Yelich, Alex J; Li, Xianchun; Carrière, Yves; Tabashnik, Bruce E

    2014-01-01

    Evolution of resistance by insect pests can reduce the benefits of insecticidal proteins from Bacillus thuringiensis (Bt) that are used extensively in sprays and transgenic crops. Despite considerable knowledge of the genes conferring insect resistance to Bt toxins in laboratory-selected strains and in field populations exposed to Bt sprays, understanding of the genetic basis of field-evolved resistance to Bt crops remains limited. In particular, previous work has not identified the genes conferring resistance in any cases where field-evolved resistance has reduced the efficacy of a Bt crop. Here we report that mutations in a gene encoding a cadherin protein that binds Bt toxin Cry1Ac are associated with field-evolved resistance of pink bollworm (Pectinophora gossypiella) in India to Cry1Ac produced by transgenic cotton. We conducted laboratory bioassays that confirmed previously reported resistance to Cry1Ac in pink bollworm from the state of Gujarat, where Bt cotton producing Cry1Ac has been grown extensively. Analysis of DNA from 436 pink bollworm from seven populations in India detected none of the four cadherin resistance alleles previously reported to be linked with resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona. However, DNA sequencing of pink bollworm derived from resistant and susceptible field populations in India revealed eight novel, severely disrupted cadherin alleles associated with resistance to Cry1Ac. For these eight alleles, analysis of complementary DNA (cDNA) revealed a total of 19 transcript isoforms, each containing a premature stop codon, a deletion of at least 99 base pairs, or both. Seven of the eight disrupted alleles each produced two or more different transcript isoforms, which implicates alternative splicing of messenger RNA (mRNA). This represents the first example of alternative splicing associated with field-evolved resistance that reduced the efficacy of a Bt crop.

  17. Reverse transcription of spliced psbA mRNA in Chlamydomonas spp. and its possible role in evolutionary intron loss.

    Science.gov (United States)

    Odom, Obed W; Herrin, David L

    2013-12-01

    Reverse transcription of mRNA is thought to be an important first step in a model that explains certain evolutionary changes within genes, such as the loss of introns or RNA editing sites. In this model, reverse transcription of mRNA produces cDNA molecules that replace part of the parental gene by homologous recombination. In vivo evidence of reverse transcription of physiologically relevant mRNAs is generally lacking, however, except in genetically engineered cells. Here, we provide in vivo evidence for reverse transcription of the chloroplast psbA mRNA in two naturally occurring species of Chlamydomonas (raudensis and subcaudata) that is based on the presence of spliced cDNAs in both organisms. The psbA cDNAs, which lack the group II intron of the genomic gene, are nearly full length, and the majority of them--though not all--are in the form of RNA-cDNA hybrids. Moreover, the presence in these species of psbA cDNAs is correlated with the loss of an early group I intron from the same psbA gene. The group II intron that interrupts psbA in C. raudensis and C. subcaudata potentially encodes a protein with a reverse transcriptase domain, and the C. raudensis protein was shown to have reverse transcriptase activity in vitro. These results provide strong evidence for reverse transcription of a physiologically important mRNA (psbA) in two species of Chlamydomonas that have also lost an intron from the same gene, possibly through recombination with the cDNA.

  18. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Lykke-Andersen, Søren; Jensen, Torben Heick

    2007-01-01

    The glial fibrillary acidic protein, GFAP, forms the intermediate cytoskeleton in cells of the glial lineage. Besides the common GFAP alpha transcript, the GFAP epsilon and GFAP kappa transcripts are generated by alternative mRNA 3'-end processing. Here we use a GFAP minigene to characterize...

  19. Where splicing joins chromatin

    Czech Academy of Sciences Publication Activity Database

    Hnilicová, Jarmila; Staněk, David

    2011-01-01

    Roč. 2, č. 3 (2011), s. 182-188 ISSN 1949-1034 R&D Projects: GA ČR GAP305/10/0424; GA AV ČR KAN200520801 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromatin * exon * alternative splicing * transcription * snRNP Subject RIV: EB - Genetics ; Molecular Biology

  20. Alternative REST Splicing Underappreciated

    OpenAIRE

    Chen, Guo-Lin; Miller, Gregory

    2017-01-01

    As a major orchestrator of the cellular epigenome, the repressor element-1 silencing transcription factor (REST) can either repress or activate thousands of genes depending on cellular context, suggesting a highly context-dependent REST function tuned by environmental cues. While REST shows cell-type non-selective active transcription, an N-terminal REST4 isoform caused by alternative splicing - inclusion of an extra exon (N3c) which introduces a pre-mature stop codon - has been implicated in...

  1. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats.

    Directory of Open Access Journals (Sweden)

    Gracia Zabala

    Full Text Available We determined the molecular basis of three soybean lines that vary in seed coat color at the R locus which is thought to encode a MYB transcription factor. RM55-r(m is homozygous for a mutable allele (r(m that specifies black and brown striped seeds; RM30-R* is a stable black revertant isoline derived from the mutable line; and RM38-r has brown seed coats due to a recessive r allele shown to translate a truncated MYB protein. Using long range PCR, 454 sequencing of amplicons, and whole genome re-sequencing, we determined that the variegated RM55-r(m line had a 13 kb CACTA subfamily transposon insertion (designated TgmR* at a position 110 bp from the beginning of Intron2 of the R locus, Glyma09g36983. Although the MYB encoded by R was expressed at only very low levels in older seed coats of the black revertant RM30-R* line, it upregulated expression of anthocyanidin synthase genes (ANS2, ANS3 to promote the synthesis of anthocyanins. Surprisingly, the RM30-R* revertant also carried the 13 kb TgmR* insertion in Intron2. Using RNA-Seq, we showed that intron splicing was accurate, albeit at lower levels, despite the presence of the 13 kb TgmR* element. As determined by whole genome methylation sequencing, we demonstrate that the TgmR* sequence was relatively more methylated in RM30-R* than in the mutable RM55-r(m progenitor line. The stabilized and more methylated RM30-R* revertant line apparently lacks effective binding of a transposae to its subterminal repeats, thus allowing intron splicing to proceed resulting in sufficient MYB protein to stimulate anthocyanin production and thus black seed coats. In this regard, the TgmR* element in soybean resembles McClintock's Spm-suppressible and change-of-state alleles of maize. This comparison explains the opposite effects of the TgmR* element on intron splicing of the MYB gene in which it resides depending on the methylation state of the element.

  2. Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts

    Science.gov (United States)

    Luis F. Larrondo; Bernardo Gonzalez; Dan Cullen; Rafael Vicuna

    2004-01-01

    A cluster of multicopper oxidase genes (mco1, mco2, mco3, mco4) from the lignin-degrading basidiomycete Phanerochaete chrysosporium is described. The four genes share the same transcriptional orientation within a 25 kb region. mco1, mco2 and mco3 are tightly grouped, with intergenic regions of 2.3 and 0.8 kb, respectively, whereas mco4 is located 11 kb upstream of mco1...

  3. Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5' exon usage and splicing.

    Directory of Open Access Journals (Sweden)

    Mari Sepp

    Full Text Available BACKGROUND: Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2 is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG. While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS: In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS: Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence

  4. GC content around splice sites affects splicing through pre-mRNA secondary structures

    Directory of Open Access Journals (Sweden)

    Chen Liang

    2011-01-01

    Full Text Available Abstract Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens, mice (Mus musculus, fruit flies (Drosophila melanogaster, and nematodes (Caenorhabditis elegans to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  5. Splicing pattern - ASTRA | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us ASTRA Splicing pattern Data detail Data name Splicing pattern DOI 10.18908/lsdba.nbdc00371-0...04 Description of data contents The patterns of alternative splicing/transcriptional initiation Data file Fi...le name: astra_splicing_pattern.zip File URL: ftp://ftp.biosciencedbc.jp/archive/astra/LATEST/astra_splicing_patte...ogodb/view/astra_splicing_pattern#en Data acquisition method For the five organisms (H. sapiens, M. musculus...apping data into bit arrays, detection of splicing patterns and distribution to t

  6. Alternative Splicing in Neurogenesis and Brain Development

    Directory of Open Access Journals (Sweden)

    Chun-Hao Su

    2018-02-01

    Full Text Available Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  7. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy

    2010-01-01

    OBJECTIVE: Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the cy...

  8. Vitamin D and alternative splicing of RNA.

    Science.gov (United States)

    Zhou, Rui; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Xu, Jianzhong; Adams, John S; Hewison, Martin

    2015-04-01

    The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. RNA Splicing: Regulation and Dysregulation in the Heart

    NARCIS (Netherlands)

    van den Hoogenhof, Maarten M. G.; Pinto, Yigal M.; Creemers, Esther E.

    2016-01-01

    RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new

  10. A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein.

    Directory of Open Access Journals (Sweden)

    Georgios Valianatos

    Full Text Available MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, including melanoma. However, there are no approved drugs, which could translate these new findings into clinical applications. We analyzed the anti-melanoma activity of enoxacin, a fluoroquinolone antibiotic inhibiting the growth of some human cancers in vitro and in vivo by promoting miRNA maturation. We found that enoxacin inhibited the growth and viability of human melanoma cell lines much stronger than a structurally related fluoroquinolone ofloxacin, which only weakly modulates miRNA processing. A microarray analysis identified a set of miRNAs significantly dysregulated in enoxacin-treated A375 melanoma cells. They had the potential to target multiple signaling pathways required for cancer cell growth, among them the RNA splicing. Recent studies showed that interfering with cellular splicing machinery can result in MdmX downregulation in cancer cells. We, therefore, hypothesized that enoxacin could, by modulating miRNAs targeting splicing machinery, activate p53 in melanoma cells overexpressing MdmX. We found that enoxacin and ciprofloxacin, a related fluoroquinolone capable of promoting microRNA processing, but not ofloxacin, strongly activated wild type p53-dependent transcription in A375 melanoma without causing significant DNA damage. On the molecular level, the drugs promoted MdmX exon 6 skipping, leading to a dose-dependent downregulation of MdmX. Not only in melanoma, but also in MCF7 breast carcinoma and A2780 ovarian carcinoma cells overexpressing MdmX. Together, our results suggest that some clinically approved fluoroquinolones could potentially be repurposed as activators of p53 tumor suppressor in cancers overexpressing Mdm

  11. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG) transcripts

    Science.gov (United States)

    Kumar, Amit; Parkesh, Raman; Sznajder, Lukasz J.; Childs-Disney, Jessica; Sobczak, Krzysztof; Disney, Matthew D.

    2012-01-01

    Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)exp) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5’CAG/3’GAC motif found in r(CAG)exp hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)exp. The compound was identified by first studying the binding of RNA 1×1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5’CAG/3’GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate as small molecule capable of improving pre-mRNA splicing defects associated with the r(CAG)exp-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)exp and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)exp toxicity. The approach used in these studies, defining the small RNA motifs that bind known nucleic acid binders and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in human genomic sequence. PMID:22252896

  12. Identification of alternatively spliced transcripts for human c-myb: molecular cloning and sequence analysis of human c-myb exon 9A sequences.

    Science.gov (United States)

    Dasgupta, P; Reddy, E P

    1989-12-01

    The murine c-myb gene has been recently shown to code for two protein products of 75kd and 89kd. The 89kd protein appears to be generated from an alternatively spliced mRNA which contains an additional stretch of 363 bases between exons 9 and 10. In this communication, we have examined whether similar alternatively spliced mRNAs of c-myb occur in human cells. Human c-myb exon 9A has been identified and sequenced in a cDNA clone (ML5) generated from the acute myeloid leukemic cell line ML-2. This alternatively spliced exon of c-myb has been found to contain the same number of nucleotides (363bp) as the corresponding mouse exon. Between murine and human exon 9A sequences, 81% sequence homology was found at the DNA level, while the homology at the predicted amino acid level was found to be 73%. A stretch of 14 amino acid residues at the junction of exons 9A and 10 have been found to be conserved between Drosophila and human sequences indicating that this region might perform an essential biological function which was deemed necessary through evolution.

  13. Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing?

    Directory of Open Access Journals (Sweden)

    Sushmita Poddar

    2014-06-01

    Full Text Available To date the Simian Virus 40 (SV40 is the only proven example of a virus that recruits the mechanism of RNA trans-splicing to diversify its sequences and gene products. Thereby, two identical viral transcripts are efficiently joined by homologous trans-splicing triggering the formation of a highly transforming 100 kDa super T antigen. Sequences of other viruses including HIV-1 and the human adenovirus type 5 were reported to be involved in heterologous trans-splicing towards cellular or viral sequences but the meaning of these events remains unclear. We computationally and experimentally investigated molecular features associated with viral RNA trans-splicing and identified a common pattern: Viral RNA trans-splicing occurs between strong cryptic or regular viral splice sites and strong regular or cryptic splice sites of the trans-splice partner sequences. The majority of these splice sites are supported by exonic splice enhancers. Splice sites that could compete with the trans-splicing sites for cis-splice reactions are weaker or inexistent. Finally, all but one of the trans-splice reactions seem to be facilitated by one or more complementary binding domains of 11 to 16 nucleotides in length which, however occur with a statistical probability close to one for the given length of the involved sequences. The chimeric RNAs generated via heterologous viral RNA trans-splicing either did not lead to fusion proteins or led to proteins of unknown function. Our data suggest that distinct viral RNAs are highly susceptible to trans-splicing and that heterologous viral trans-splicing, unlike homologous SV40 trans-splicing, represents a chance event.

  14. Alcoholism and Alternative Splicing of Candidate Genes

    Directory of Open Access Journals (Sweden)

    Toshikazu Sasabe

    2010-03-01

    Full Text Available Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.

  15. Mechanism of alternative splicing and its regulation.

    Science.gov (United States)

    Wang, Yan; Liu, Jing; Huang, B O; Xu, Yan-Mei; Li, Jing; Huang, Lin-Feng; Lin, Jin; Zhang, Jing; Min, Qing-Hua; Yang, Wei-Ming; Wang, Xiao-Zhong

    2015-03-01

    Alternative splicing of precursor mRNA is an essential mechanism to increase the complexity of gene expression, and it plays an important role in cellular differentiation and organism development. Regulation of alternative splicing is a complicated process in which numerous interacting components are at work, including cis-acting elements and trans-acting factors, and is further guided by the functional coupling between transcription and splicing. Additional molecular features, such as chromatin structure, RNA structure and alternative transcription initiation or alternative transcription termination, collaborate with these basic components to generate the protein diversity due to alternative splicing. All these factors contributing to this one fundamental biological process add up to a mechanism that is critical to the proper functioning of cells. Any corruption of the process may lead to disruption of normal cellular function and the eventuality of disease. Cancer is one of those diseases, where alternative splicing may be the basis for the identification of novel diagnostic and prognostic biomarkers, as well as new strategies for therapy. Thus, an in-depth understanding of alternative splicing regulation has the potential not only to elucidate fundamental biological principles, but to provide solutions for various diseases.

  16. Alternative Splicing of FOXP3-Virtue and Vice.

    Science.gov (United States)

    Mailer, Reiner K W

    2018-01-01

    FOXP3 is the lineage-defining transcription factor of CD4+ CD25+ regulatory T cells. While many aspects of its regulation, interaction, and function are conserved among species, alternatively spliced FOXP3 isoforms are expressed only in human cells. This review summarizes current knowledge about alternative splicing of FOXP3 and the specific functions of FOXP3 isoforms in health and disease. Future perspectives in research and the therapeutic potential of manipulating alternative splicing of FOXP3 are discussed.

  17. Splice Site Mutations in the ATP7A Gene

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Tümer, Zeynep; Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12...... mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation...... to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations...

  18. A study of alternative splicing in the pig

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Cirera Salicio, Susanna; Gilchrist, Michael J.

    2010-01-01

    BACKGROUND: Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs) provide evidence of a great number of possible...... alternative isoforms. With the EST resource for the domestic pig now containing more than one million porcine ESTs, it is possible to identify alternative splice forms of the individual transcripts in this species from the EST data with some confidence. RESULTS: The pig EST data generated by the Sino...... transcripts with expression patterns matching those of the EST data. The remaining four genes had tissue-restricted expression of alternative spliced transcripts. Five out of the 16 splice events that were experimentally verified were found to be putative pig specific. CONCLUSIONS: In accordance with human...

  19. Universal Alternative Splicing of Noncoding Exons

    DEFF Research Database (Denmark)

    Deveson, Ira W; Brunck, Marion E; Blackburn, James

    2018-01-01

    The human transcriptome is so large, diverse, and dynamic that, even after a decade of investigation by RNA sequencing (RNA-seq), we have yet to resolve its true dimensions. RNA-seq suffers from an expression-dependent bias that impedes characterization of low-abundance transcripts. We performed......, indicative of regulation by a deeply conserved splicing code. We propose that noncoding exons are functionally modular, with alternative splicing generating an enormous repertoire of potential regulatory RNAs and a rich transcriptional reservoir for gene evolution....

  20. Depolarization-mediated regulation of alternative splicing

    Directory of Open Access Journals (Sweden)

    Alok eSharma

    2011-12-01

    Full Text Available Alternative splicing in eukaryotes plays an important role in regulating gene expression by selectively including alternative exons. A wealth of information has been accumulated that explains how alternative exons are selected in a developmental stage- or tissue-specific fashion. However, our knowledge of how cells respond to environmental changes to alter alternative splicing is very limited. For example, although a number of alternative exons have been shown to be regulated by calcium level alterations, the underlying mechanisms are not well understood. As calcium signaling in neurons plays a crucial role in essential neuronal functions such as learning and memory formation, it is important to understand how this process is regulated at every level in gene expression. The significance of the dynamic control of alternative splicing in response to changes of calcium levels has been largely unappreciated. In this communication, we will summarize the recent advances in calcium signaling-mediated alternative splicing that have provided some insights into the important regulatory mechanisms. In addition to describing the cis-acting RNA elements on the pre-mRNA molecules that respond to changes of intracellular calcium levels, we will summarize how splicing regulators change and affect alternative splicing in this process. We will also discuss a novel mode of calcium-mediated splicing regulation at the level of chromatin structure and transcription.

  1. tRNA splicing

    OpenAIRE

    Abelson, John; Trotta, Christopher R.; Li, Hong

    1998-01-01

    Introns interrupt the continuity of many eukaryal genes, and therefore their removal by splicing is a crucial step in gene expression. Interestingly, even within Eukarya there are at least four splicing mechanisms. mRNA splicing in the nucleus takes place in two phosphotransfer reactions on a complex and dynamic machine, the spliceosome. This reaction is related in mechanism to the two self-splicing mechanisms for Group 1 and Group 2 introns. In fact the Group 2 introns are spliced by an iden...

  2. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2.

    OpenAIRE

    Buettner, R; Kannan, P; Imhof, A; Bauer, R; Yim, S O; Glockshuber, R; Van Dyke, M W; Tainsky, M A

    1993-01-01

    AP-2 is a retinoic acid-inducible and developmentally regulated activator of transcription. We have cloned an alternative AP-2 transcript (AP-2B) from the human teratocarcinoma cell line PA-1, which encodes a protein differing in the C terminus from the previously isolated AP-2 protein (AP-2A). This protein contains the activation domain of AP-2 and part of the DNA binding domain but lacks the dimerization domain which is necessary for DNA binding. Analysis of overlapping genomic clones spann...

  3. Alternative Splicing in Plant Immunity

    Directory of Open Access Journals (Sweden)

    Shengming Yang

    2014-06-01

    Full Text Available Alternative splicing (AS occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.

  4. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    OpenAIRE

    Bonomi, Serena; Gallo, Stefania; Catillo, Morena; Pignataro, Daniela; Biamonti, Giuseppe; Ghigna, Claudia

    2013-01-01

    Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer ...

  5. Stochastic principles governing alternative splicing of RNA.

    OpenAIRE

    Jianfei Hu; Eli Boritz; William Wylie; Daniel C Douek

    2017-01-01

    Author summary Alternative RNA splicing within eukaryotic cells enables each gene to generate multiple different mature transcripts which further encode proteins with distinct or even opposing functions. The relative frequencies of the transcript isoforms generated by a particular gene are essential to the maintenance of normal cellular physiology; however, the underlying mechanisms and principles that govern these frequencies are unknown. We analyzed the frequency distribution of all transcr...

  6. Splice site mutations in the ATP7A gene.

    Directory of Open Access Journals (Sweden)

    Tina Skjørringe

    Full Text Available Menkes disease (MD is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12 mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations identified in 12 patients with milder phenotypes were predicted to have no significant effect on splicing, which concurs with the presence of wild-type transcript in 7 out of 9 patients investigated in vivo. Both the in silico predictions and the in vivo results support the hypothesis previously suggested by us and others, that the presence of some wild-type transcript is correlated to a milder phenotype.

  7. Splicing variants of porcine synphilin-1

    DEFF Research Database (Denmark)

    Larsen, Knud Erik; Madsen, Lone Bruhn; Farajzadeh, Leila

    2015-01-01

    %) and to mouse (84%) synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing variants and a novel...... splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation....... with α-synuclein in LBs. The aim of this study was to isolate and characterize porcine synphilin-1 and isoforms hereof with the future perspective to use the pig as a model for Parkinson's disease. The porcine SNCAIP cDNA was cloned by reverse transcriptase PCR. The spatial expression of SNCAIP mRNA...

  8. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing.

    Science.gov (United States)

    Juan, Wen Chun; Roca, Xavier; Ong, S Tiong

    2014-01-01

    Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3' end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.

  9. Global Splicing Pattern Reversion during Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Sho Ohta

    2013-10-01

    Full Text Available Alternative splicing generates multiple transcripts from a single gene, and cell-type-specific splicing profiles are important for the properties and functions of the cells. Recently, somatic cells have been shown to undergo dedifferentiation after the forced expression of transcription factors. However, it remains unclear whether somatic cell splicing is reorganized during reprogramming. Here, by combining deep sequencing with high-throughput absolute qRT-PCR, we show that somatic splicing profiles revert to pluripotent ones during reprogramming. Remarkably, the splicing pattern in pluripotent stem cells resembles that in testes, and the regulatory regions have specific characteristics in length and sequence. Furthermore, our siRNA screen has identified RNA-binding proteins that regulate splicing events in iPSCs. We have then demonstrated that two of the RNA-binding proteins, U2af1 and Srsf3, play a role in somatic cell reprogramming. Our results indicate that the drastic alteration in splicing represents part of the molecular network involved in the reprogramming process.

  10. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  11. Multiset splicing systems.

    Science.gov (United States)

    Dassow, Jürgen; Vaszil, György

    2004-01-01

    We consider splicing systems reflecting two important aspects of the behaviour of DNA molecules in nature or in laboratory experiments which so far have not been studied in the literature. We examine the effect of splicing rules applied to finite multisets of words using sequential and different types of parallel derivation strategies and compare the sets of words or sets of multisets which can be obtained.

  12. ASpedia: a comprehensive encyclopedia of human alternative splicing.

    Science.gov (United States)

    Hyung, Daejin; Kim, Jihyun; Cho, Soo Young; Park, Charny

    2018-01-04

    Alternative splicing confers the human genome complexity by increasing the diversity of expressed mRNAs. Hundreds or thousands of splicing regions have been identified through differential alternative splicing analysis of high-throughput datasets. However, it is hard to explain the functional impact of each splicing event. Protein domain formation and nonsense-mediated decay are considered the main functional features of splicing. However, other functional features such as miRNA target sites, phosphorylation sites and single-nucleotide variations are directly affected by alternative splicing and affect downstream function. Hence, we established ASpedia: a comprehensive database for human alternative splicing annotation, which encompasses a range of functions, from genomic annotation to isoform-specific function (ASpedia, http://combio.snu.ac.kr/aspedia). The database provides three features: (i) genomic annotation extracted from DNA, RNA and proteins; (ii) transcription and regulation elements analyzed from next-generation sequencing datasets; and (iii) isoform-specific functions collected from known and published datasets. The ASpedia web application includes three components: an annotation database, a retrieval system and a browser specialized in the identification of human alternative splicing events. The retrieval system supports multiple AS event searches resulting from high-throughput analysis and the AS browser comprises genome tracks. Thus, ASpedia facilitates the systemic annotation of the functional impacts of multiple AS events. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes

    Science.gov (United States)

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  14. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes.

    Directory of Open Access Journals (Sweden)

    Jonàs Juan-Mateu

    Full Text Available DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements.

  15. Novel female-specific trans-spliced and alternative splice forms of dsx in the silkworm Bombyx mori.

    Science.gov (United States)

    Duan, Jianping; Xu, Hanfu; Wang, Feng; Ma, Sanyuan; Zha, Xingfu; Guo, Huizhen; Zhao, Ping; Xia, Qingyou

    2013-02-15

    The Bombyx mori doublesex gene (Bmdsx) plays an important role in somatic sexual development. Its pre-mRNA splices in a sex-specific manner to generate two female-specific and one male-specific splice forms. The present study investigated six novel dsx variants generated by trans-splicing between female dsx transcripts and two additional novel genes, dsr1 and dsr2. Expression analysis indicated that Bmdsx-dsr1 represented splicing noise, whereas dsr2, which trans-spliced with dsx to generate five variants, regulated the expression of the female-specific B. mori dsx transcript Bmdsx(F)s. We unexpectedly found a novel exon 2n insertion during Bmdsx transcription, which did not influence the validity of the novel protein, BmDSX(F3). Ectopic expression of BmDSX(F3) repressed the pheromone-binding protein gene and the testis-specific gene A2 in males, and activated of the storage protein 1 gene. Our findings suggest that trans-splicing is a novel regulatory function of Bmdsx, which participates in female sexual development by regulating the expression of three BmDSX(F) proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Interplay between estrogen receptor and AKT in estradiol-induced alternative splicing.

    Science.gov (United States)

    Bhat-Nakshatri, Poornima; Song, Eun-Kyung; Collins, Nikail R; Uversky, Vladimir N; Dunker, A Keith; O'Malley, Bert W; Geistlinger, Tim R; Carroll, Jason S; Brown, Myles; Nakshatri, Harikrishna

    2013-06-11

    Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ER

  17. SPA: a probabilistic algorithm for spliced alignment.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because they use ad hoc scoring models that cannot correctly trade off the likelihoods of various sequencing errors against the probabilities of different gene structures. Here we develop a Bayesian probabilistic approach to cDNA-to-genome alignment. Gene structures are assigned prior probabilities based on the lengths of their introns and exons, and based on the sequences at their splice boundaries. A likelihood model for sequencing errors takes into account the rates at which misincorporation, as well as insertions and deletions of different lengths, occurs during sequencing. The parameters of both the prior and likelihood model can be automatically estimated from a set of cDNAs, thus enabling our method to adapt itself to different organisms and experimental procedures. We implemented our method in a fast cDNA-to-genome alignment program, SPA, and applied it to the FANTOM3 dataset of over 100,000 full-length mouse cDNAs and a dataset of over 20,000 full-length human cDNAs. Comparison with the results of four other mapping programs shows that SPA produces alignments of significantly higher quality. In particular, the quality of the SPA alignments near splice boundaries and SPA's mapping of the 5' and 3' ends of the cDNAs are highly improved, allowing for more accurate identification of transcript starts and ends, and accurate identification of subtle splice variations. Finally, our splice boundary analysis on the human dataset suggests the existence of a novel non

  18. The Role of Canonical and Noncanonical Pre-mRNA Splicing in Plant Stress Responses

    Directory of Open Access Journals (Sweden)

    A. S. Dubrovina

    2013-01-01

    Full Text Available Plants are sessile organisms capable of adapting to various environmental constraints, such as high or low temperatures, drought, soil salinity, or pathogen attack. To survive the unfavorable conditions, plants actively employ pre-mRNA splicing as a mechanism to regulate expression of stress-responsive genes and reprogram intracellular regulatory networks. There is a growing evidence that various stresses strongly affect the frequency and diversity of alternative splicing events in the stress-responsive genes and lead to an increased accumulation of mRNAs containing premature stop codons, which in turn have an impact on plant stress response. A number of studies revealed that some mRNAs involved in plant stress response are spliced counter to the traditional conception of alternative splicing. Such noncanonical mRNA splicing events include trans-splicing, intraexonic deletions, or variations affecting multiple exons and often require short direct repeats to occur. The noncanonical alternative splicing, along with common splicing events, targets the spliced transcripts to degradation through nonsense-mediated mRNA decay or leads to translation of truncated proteins. Investigation of the diversity, biological consequences, and mechanisms of the canonical and noncanonical alternative splicing events will help one to identify those transcripts which are promising for using in genetic engineering and selection of stress-tolerant plants.

  19. The neurogenetics of alternative splicing.

    Science.gov (United States)

    Vuong, Celine K; Black, Douglas L; Zheng, Sika

    2016-05-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain.

  20. Alternative Splicing in Lung Cancer

    OpenAIRE

    Pio, Ruben; Montuenga, Luis M.

    2009-01-01

    Abstract: Alterations in alternative splicing affect essential biologic processes and are the basis for a number of pathologic conditions, including cancer. In this review we will summarize the evidence supporting the relevance of alternative splicing in lung cancer. An example that illustrates this relevance is the altered balance between Bcl-xL and Bcl-xS, two splice variants of the apoptosis regulator Bcl-x. Splice modifications in cancer-related genes can be associated ...

  1. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes

    KAUST Repository

    Lee, Keh Chien

    2017-04-11

    The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3\\' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized. Here, we show that the RRM domain differentially affects the full function of the Arabidopsis thaliana AtSF1 protein under different experimental conditions. For example, the deletion of RRM domain influences AtSF1-mediated control of flowering time, but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM-β transcripts. We also found that the RRM domain affects the alternative splicing of a heat shock transcription factor HsfA2 pre-mRNA, thereby mediating the heat stress response. Taken together, our results suggest the importance of RRM domain for AtSF1-mediated alternative splicing of a subset of genes involved in the regulation of flowering and adaptation to heat stress.

  2. Width of gene expression profile drives alternative splicing.

    Directory of Open Access Journals (Sweden)

    Daniel Wegmann

    Full Text Available Alternative splicing generates an enormous amount of functional and proteomic diversity in metazoan organisms. This process is probably central to the macromolecular and cellular complexity of higher eukaryotes. While most studies have focused on the molecular mechanism triggering and controlling alternative splicing, as well as on its incidence in different species, its maintenance and evolution within populations has been little investigated. Here, we propose to address these questions by comparing the structural characteristics as well as the functional and transcriptional profiles of genes with monomorphic or polymorphic splicing, referred to as MS and PS genes, respectively. We find that MS and PS genes differ particularly in the number of tissues and cell types where they are expressed.We find a striking deficit of PS genes on the sex chromosomes, particularly on the Y chromosome where it is shown not to be due to the observed lower breadth of expression of genes on that chromosome. The development of a simple model of evolution of cis-regulated alternative splicing leads to predictions in agreement with these observations. It further predicts the conditions for the emergence and the maintenance of cis-regulated alternative splicing, which are both favored by the tissue specific expression of splicing variants. We finally propose that the width of the gene expression profile is an essential factor for the acquisition of new transcript isoforms that could later be maintained by a new form of balancing selection.

  3. Effect of splice-site polymorphisms of the TMPRSS4, NPHP4 and ...

    Indian Academy of Sciences (India)

    Unknown

    structural changes in mRNA transcripts as a result of splice-site polymorphisms implies that they may be of biological significance in certain pathological conditions. ..... show the genomic structures of the normal (diagram “a”) and abnormal (diagram “b” and “c”) splicing forms. Inserted and deleted sequences are indicated ...

  4. Expressiveness of basic Splice

    NARCIS (Netherlands)

    J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe study a simple software architecture, in which application processes are coordinated by writing into and reading from a global set. This architecture underlies Splice, which is developed and used at the company Hollandse Signaalapparaten. Our approach is distinguished by viewing the

  5. Splicing-Mediated Autoregulation Modulates Rpl22p Expression in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jason Gabunilas

    2016-04-01

    Full Text Available In Saccharomyces cerevisiae, splicing is critical for expression of ribosomal protein genes (RPGs, which are among the most highly expressed genes and are tightly regulated according to growth and environmental conditions. However, knowledge of the precise mechanisms by which RPG pre-mRNA splicing is regulated on a gene-by-gene basis is lacking. Here we show that Rpl22p has an extraribosomal role in the inhibition of splicing of the RPL22B pre-mRNA transcript. A stem loop secondary structure within the intron is necessary for pre-mRNA binding by Rpl22p in vivo and splicing inhibition in vivo and in vitro and can rescue splicing inhibition in vitro when added in trans to splicing reactions. Splicing inhibition by Rpl22p may be partly attributed to the reduction of co-transcriptional U1 snRNP recruitment to the pre-mRNA at the RPL22B locus. We further demonstrate that the inhibition of RPL22B pre-mRNA splicing contributes to the down-regulation of mature transcript during specific stress conditions, and provide evidence hinting at a regulatory role for this mechanism in conditions of suppressed ribosome biogenesis. These results demonstrate an autoregulatory mechanism that fine-tunes the expression of the Rpl22 protein and by extension Rpl22p paralog composition according to the cellular demands for ribosome biogenesis.

  6. Splicing-Mediated Autoregulation Modulates Rpl22p Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gabunilas, Jason; Chanfreau, Guillaume

    2016-04-01

    In Saccharomyces cerevisiae, splicing is critical for expression of ribosomal protein genes (RPGs), which are among the most highly expressed genes and are tightly regulated according to growth and environmental conditions. However, knowledge of the precise mechanisms by which RPG pre-mRNA splicing is regulated on a gene-by-gene basis is lacking. Here we show that Rpl22p has an extraribosomal role in the inhibition of splicing of the RPL22B pre-mRNA transcript. A stem loop secondary structure within the intron is necessary for pre-mRNA binding by Rpl22p in vivo and splicing inhibition in vivo and in vitro and can rescue splicing inhibition in vitro when added in trans to splicing reactions. Splicing inhibition by Rpl22p may be partly attributed to the reduction of co-transcriptional U1 snRNP recruitment to the pre-mRNA at the RPL22B locus. We further demonstrate that the inhibition of RPL22B pre-mRNA splicing contributes to the down-regulation of mature transcript during specific stress conditions, and provide evidence hinting at a regulatory role for this mechanism in conditions of suppressed ribosome biogenesis. These results demonstrate an autoregulatory mechanism that fine-tunes the expression of the Rpl22 protein and by extension Rpl22p paralog composition according to the cellular demands for ribosome biogenesis.

  7. Targeted RNA-Seq profiling of splicing pattern in the DMD gene: exons are mostly constitutively spliced in human skeletal muscle.

    Science.gov (United States)

    Bougé, Anne-Laure; Murauer, Eva; Beyne, Emmanuelle; Miro, Julie; Varilh, Jessica; Taulan, Magali; Koenig, Michel; Claustres, Mireille; Tuffery-Giraud, Sylvie

    2017-01-03

    We have analysed the splicing pattern of the human Duchenne Muscular Dystrophy (DMD) NB transcript in normal skeletal muscle. To achieve depth of coverage required for the analysis of this lowly expressed gene in muscle, we designed a targeted RNA-Seq procedure that combines amplification of the full-length 11.3 kb DMD cDNA sequence and 454 sequencing technology. A high and uniform coverage of the cDNA sequence was obtained that allowed to draw up a reliable inventory of the physiological alternative splicing events in the muscular DMD transcript. In contrast to previous assumptions, we evidenced that most of the 79 DMD exons are constitutively spliced in skeletal muscle. Only a limited number of 12 alternative splicing events were identified, all present at a very low level. These include previously known exon skipping events but also newly described pseudoexon inclusions and alternative 3' splice sites, of which one is the first functional NAGNAG splice site reported in the DMD gene. This study provides the first RNA-Seq-based reference of DMD splicing pattern in skeletal muscle and reports on an experimental procedure well suited to detect condition-specific differences in this low abundance transcript that may prove useful for diagnostic, research or RNA-based therapeutic applications.

  8. Genetic variations and alternative splicing. The Glioma associated oncogene 1, GLI1.

    Directory of Open Access Journals (Sweden)

    Peter eZaphiropoulos

    2012-07-01

    Full Text Available Alternative splicing is a post-transcriptional regulatory process that is attaining stronger recognition as a modulator of gene expression. Alternative splicing occurs when the primary RNA transcript is differentially processed into more than one mature RNAs. This is the result of a variable definition/inclusion of the exons, the sequences that are excised from the primary RNA to form the mature RNAs. Consequently, RNA expression can generate a collection of differentially spliced RNAs, which may distinctly influence subsequent biological events, such as protein synthesis or other biomolecular interactions. Still the mechanisms that control exon definition and exon inclusion are not fully clarified. This mini-review highlights advances in this field as well as the impact of single nucleotide polymorphisms in affecting splicing decisions. The Glioma associated oncogene 1, GLI1, is taken as an example in addressing the role of nucleotide substitutions for splicing regulation.

  9. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Zodwa Dlamini

    2015-11-01

    Full Text Available Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.

  10. TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-mammary syndrome.

    Directory of Open Access Journals (Sweden)

    Pavan Kumar P

    2014-03-01

    Full Text Available TBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 interacting proteins in vivo and discovered that TBX3 interacts with multiple mRNA splicing factors and RNA metabolic proteins. We discovered that TBX3 regulates alternative splicing in vivo and can promote or inhibit splicing depending on context and transcript. TBX3 associates with alternatively spliced mRNAs and binds RNA directly. TBX3 binds RNAs containing TBX binding motifs, and these motifs are required for regulation of splicing. Our study reveals that TBX3 mutations seen in humans with UMS disrupt its splicing regulatory function. The pleiotropic effects of TBX3 mutations in humans and mice likely result from disrupting at least two molecular functions of this protein: transcriptional regulation and pre-mRNA splicing.

  11. TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-mammary syndrome.

    Science.gov (United States)

    Kumar P, Pavan; Franklin, Sarah; Emechebe, Uchenna; Hu, Hao; Moore, Barry; Lehman, Chris; Yandell, Mark; Moon, Anne M

    2014-03-01

    TBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 interacting proteins in vivo and discovered that TBX3 interacts with multiple mRNA splicing factors and RNA metabolic proteins. We discovered that TBX3 regulates alternative splicing in vivo and can promote or inhibit splicing depending on context and transcript. TBX3 associates with alternatively spliced mRNAs and binds RNA directly. TBX3 binds RNAs containing TBX binding motifs, and these motifs are required for regulation of splicing. Our study reveals that TBX3 mutations seen in humans with UMS disrupt its splicing regulatory function. The pleiotropic effects of TBX3 mutations in humans and mice likely result from disrupting at least two molecular functions of this protein: transcriptional regulation and pre-mRNA splicing.

  12. The neurogenetics of alternative splicing

    OpenAIRE

    Vuong, Celine K.; Black, Douglas L.; Zheng, Sika

    2016-01-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that r...

  13. Work organization for splice consolidation

    CERN Document Server

    Bertinelli, F

    2011-01-01

    The Splices Task Force has worked in 2010 to prepare the necessary interventions for 7 TeV operation. The design solution for consolidating the main interconnection splices is well advanced. The required activities to implement it are described, highlighting working assumptions, missing resources and schedule considerations. Progress has also been made in assessing other splices, 6 kA praying hands and corrector circuits: results and ongoing work are presented, highlighting priorities for the remaining work.

  14. Resolving deconvolution ambiguity in gene alternative splicing

    Directory of Open Access Journals (Sweden)

    Hubbell Earl

    2009-08-01

    Full Text Available Abstract Background For many gene structures it is impossible to resolve intensity data uniquely to establish abundances of splice variants. This was empirically noted by Wang et al. in which it was called a "degeneracy problem". The ambiguity results from an ill-posed problem where additional information is needed in order to obtain an unique answer in splice variant deconvolution. Results In this paper, we analyze the situations under which the problem occurs and perform a rigorous mathematical study which gives necessary and sufficient conditions on how many and what type of constraints are needed to resolve all ambiguity. This analysis is generally applicable to matrix models of splice variants. We explore the proposal that probe sequence information may provide sufficient additional constraints to resolve real-world instances. However, probe behavior cannot be predicted with sufficient accuracy by any existing probe sequence model, and so we present a Bayesian framework for estimating variant abundances by incorporating the prediction uncertainty from the micro-model of probe responsiveness into the macro-model of probe intensities. Conclusion The matrix analysis of constraints provides a tool for detecting real-world instances in which additional constraints may be necessary to resolve splice variants. While purely mathematical constraints can be stated without error, real-world constraints may themselves be poorly resolved. Our Bayesian framework provides a generic solution to the problem of uniquely estimating transcript abundances given additional constraints that themselves may be uncertain, such as regression fit to probe sequence models. We demonstrate the efficacy of it by extensive simulations as well as various biological data.

  15. Influenza A Virus Utilizes Suboptimal Splicing to Coordinate the Timing of Infection

    Directory of Open Access Journals (Sweden)

    Mark A. Chua

    2013-01-01

    Full Text Available Influenza A virus is unique as an RNA virus in that it replicates in the nucleus and undergoes splicing. With only ten major proteins, the virus must gain nuclear access, replicate, assemble progeny virions in the cytoplasm, and then egress. In an effort to elucidate the coordination of these events, we manipulated the transcript levels from the bicistronic nonstructural segment that encodes the spliced virus product responsible for genomic nuclear export. We find that utilization of an erroneous splice site ensures the slow accumulation of the viral nuclear export protein (NEP while generating excessive levels of an antagonist that inhibits the cellular response to infection. Modulation of this simple transcriptional event results in improperly timed export and loss of virus infection. Together, these data demonstrate that coordination of the influenza A virus life cycle is set by a “molecular timer” that operates on the inefficient splicing of a virus transcript.

  16. Proteomic analysis of Entamoeba histolytica in vivo assembled pre-mRNA splicing complexes.

    Science.gov (United States)

    Valdés, Jesús; Nozaki, Tomoyoshi; Sato, Emi; Chiba, Yoko; Nakada-Tsukui, Kumiko; Villegas-Sepúlveda, Nicolás; Winkler, Robert; Azuara-Liceaga, Elisa; Mendoza-Figueroa, María Saraí; Watanabe, Natsuki; Santos, Herbert J; Saito-Nakano, Yumiko; Galindo-Rosales, José Manuel

    2014-12-05

    The genome of the human intestinal parasite Entamoeba histolytica contains nearly 3000 introns and bioinformatic predictions indicate that major and minor spliceosomes occur in Entamoeba. However, except for the U2-, U4-, U5- and U6 snRNAs, no other splicing factor has been cloned and characterized. Here, we HA-tagged cloned the snRNP component U1A and assessed its expression and nuclear localization. Because the snRNP-free U1A form interacts with polyadenylate-binding protein, HA-U1A immunoprecipitates could identify early and late splicing complexes. Avoiding Entamoeba's endonucleases and ensuring the precipitation of RNA-binding proteins, parasite cultures were UV cross-linked prior to nuclear fraction immunoprecipitations with HA antibodies, and precipitates were subjected to tandem mass spectrometry (MS/MS) analyses. To discriminate their nuclear roles (chromatin-, co-transcriptional-, splicing-related), MS/MS analyses were carried out with proteins eluted with MS2-GST-sepharose from nuclear extracts of an MS2 aptamer-tagged Rabx13 intron amoeba transformant. Thus, we probed thirty-six Entamoeba proteins corresponding to 32 cognate splicing-specific factors, including 13 DExH/D helicases required for all stages of splicing, and 12 different splicing-related helicases were identified also. Furthermore 50 additional proteins, possibly involved in co-transcriptional processes were identified, revealing the complexity of co-transcriptional splicing in Entamoeba. Some of these later factors were not previously found in splicing complex analyses. Numerous facts about the splicing of the nearly 3000 introns of the Entamoeba genome have not been unraveled, particularly the splicing factors and their activities. Considering that many of such introns are located in metabolic genes, the knowledge of the splicing cues has the potential to be used to attack or control the parasite. We have found numerous new splicing-related factors which could have therapeutic benefit. We

  17. Endogenous Multiple Exon Skipping and Back-Splicing at the DMD Mutation Hotspot.

    Science.gov (United States)

    Suzuki, Hitoshi; Aoki, Yoshitsugu; Kameyama, Toshiki; Saito, Takashi; Masuda, Satoru; Tanihata, Jun; Nagata, Tetsuya; Mayeda, Akila; Takeda, Shin'ichi; Tsukahara, Toshifumi

    2016-10-13

    Duchenne muscular dystrophy (DMD) is a severe muscular disorder. It was reported that multiple exon skipping (MES), targeting exon 45-55 of the DMD gene, might improve patients' symptoms because patients who have a genomic deletion of all these exons showed very mild symptoms. Thus, exon 45-55 skipping treatments for DMD have been proposed as a potential clinical cure. Herein, we detected the expression of endogenous exons 44-56 connected mRNA transcript of the DMD using total RNAs derived from human normal skeletal muscle by reverse transcription polymerase chain reaction (RT-PCR), and identified a total of eight types of MES products around the hotspot. Surprisingly, the 5' splice sites of recently reported post-transcriptional introns (remaining introns after co-transcriptional splicing) act as splicing donor sites for MESs. We also tested exon combinations to generate DMD circular RNAs (circRNAs) and determined the preferential splice sites of back-splicing, which are involved not only in circRNA generation, but also in MESs. Our results fit the current circRNA-generation model, suggesting that upstream post-transcriptional introns trigger MES and generate circRNA because its existence is critical for the intra-intronic interaction or for extremely distal splicing.

  18. Changes in RNA Splicing in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Delasa Aghamirzaie

    2013-11-01

    Full Text Available Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.

  19. Quantification of pre-mRNA escape rate and synergy in splicing.

    Science.gov (United States)

    Bonde, Marie Mi; Voegeli, Sylvia; Baudrimont, Antoine; Séraphin, Bertrand; Becskei, Attila

    2014-11-10

    Splicing reactions generally combine high speed with accuracy. However, some of the pre-mRNAs escape the nucleus with a retained intron. Intron retention can control gene expression and increase proteome diversity. We calculated the escape rate for the yeast PTC7 intron and pre-mRNA. This prediction was facilitated by the observation that splicing is a linear process and by deriving simple algebraic expressions from a model of co- and post-transcriptional splicing and RNA surveillance that determines the rate of the nonsense-mediated decay (NMD) of the pre-mRNAs with the retained intron. The escape rate was consistent with the observed threshold of splicing rate below which the mature mRNA level declined. When an mRNA contains multiple introns, the outcome of splicing becomes more difficult to predict since not only the escape rate of the pre-mRNA has to be considered, but also the possibility that the splicing of each intron is influenced by the others. We showed that the two adjacent introns in the SUS1 mRNA are spliced cooperatively, but this does not counteract the escape of the partially spliced mRNA. These findings will help to infer promoter activity and to predict the behavior of and to control splicing regulatory networks. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. The proper splicing of RNAi factors is critical for pericentric heterochromatin assembly in fission yeast.

    Directory of Open Access Journals (Sweden)

    Scott P Kallgren

    Full Text Available Heterochromatin preferentially assembles at repetitive DNA elements, playing roles in transcriptional silencing, recombination suppression, and chromosome segregation. The RNAi machinery is required for heterochromatin assembly in a diverse range of organisms. In fission yeast, RNA splicing factors are also required for pericentric heterochromatin assembly, and a prevailing model is that splicing factors provide a platform for siRNA generation independently of their splicing activity. Here, by screening the fission yeast deletion library, we discovered four novel splicing factors that are required for pericentric heterochromatin assembly. Sequencing total cellular RNAs from the strongest of these mutants, cwf14Δ, showed intron retention in mRNAs of several RNAi factors. Moreover, introducing cDNA versions of RNAi factors significantly restored pericentric heterochromatin in splicing mutants. We also found that mutations of splicing factors resulted in defective telomeric heterochromatin assembly and mis-splicing the mRNA of shelterin component Tpz1, and that replacement of tpz1+ with its cDNA partially rescued heterochromatin defects at telomeres in splicing mutants. Thus, proper splicing of RNAi and shelterin factors contributes to heterochromatin assembly at pericentric regions and telomeres.

  1. Footprints of a trypanosomatid RNA world: pre-small subunit rRNA processing by spliced leader addition trans-splicing

    Directory of Open Access Journals (Sweden)

    Mario Gustavo Mayer

    2012-06-01

    Full Text Available The addition of a capped mini-exon [spliced leader (SL] through trans-splicing is essential for the maturation of RNA polymerase (pol II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS region. Additionally, we detected the SL-5'ETS molecule using three distinct methods and located the acceptor site between two known 5'ETS rRNA processing sites (A' and A1 in four different trypanosomatids. Moreover, we detected a polyadenylated 5'ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin, we observed SL-5'ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA led to the accumulation of SL-5'ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.

  2. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis.

    Science.gov (United States)

    Kwon, Young-Ju; Park, Mi-Jeong; Kim, Sang-Gyu; Baldwin, Ian T; Park, Chung-Mo

    2014-05-19

    The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5' splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress

  3. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray.

    Directory of Open Access Journals (Sweden)

    Noam Leviatan

    Full Text Available Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression.

  4. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray.

    Science.gov (United States)

    Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert

    2013-01-01

    Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression.

  5. Two new splice variants in porcine PPARGC1A

    Directory of Open Access Journals (Sweden)

    Peelman Luc J

    2008-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A is a coactivator with a vital and central role in fat and energy metabolism. It is considered to be a candidate gene for meat quality in pigs and is involved in the development of obesity and diabetes in humans. How its many functions are regulated, is however still largely unclear. Therefore a transcription profile of PPARGC1A in 32 tissues and 4 embryonic developmental stages in the pig was constructed by screening its cDNA for possible splice variants with exon-spanning primers. Findings This led to the discovery of 2 new splice variants in the pig, which were subsequently also detected in human tissues. In these variants, exon 8 was either completely or partly (the last 66 bp were conserved spliced out, potentially coding for a much shorter protein of respectively 337 and 359 amino acids (aa, of which the first 291 aa would be the same compared to the complete protein (796 aa. Conclusion Considering the functional domains of the PPARGC1A protein, it is very likely these splice variants considerably affect the function of the protein and alternative splicing could be one of the mechanisms by which the diverse functions of PPARGC1A are regulated.

  6. Intronic Alus influence alternative splicing.

    Directory of Open Access Journals (Sweden)

    Galit Lev-Maor

    2008-09-01

    Full Text Available Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.

  7. Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Xiao

    2005-09-01

    Full Text Available Splicing is an important process for regulation of gene expression in eukaryotes, and it has important functional links to other steps of gene expression. Two examples of these linkages include Ceg1, a component of the mRNA capping enzyme, and the chromatin elongation factors Spt4-5, both of which have recently been shown to play a role in the normal splicing of several genes in the yeast Saccharomyces cerevisiae. Using a genomic approach to characterize the roles of Spt4-5 in splicing, we used splicing-sensitive DNA microarrays to identify specific sets of genes that are mis-spliced in ceg1, spt4, and spt5 mutants. In the context of a complex, nested, experimental design featuring 22 dye-swap array hybridizations, comprising both biological and technical replicates, we applied five appropriate statistical models for assessing differential expression between wild-type and the mutants. To refine selection of differential expression genes, we then used a robust model-synthesizing approach, Differential Expression via Distance Synthesis, to integrate all five models. The resultant list of differentially expressed genes was then further analyzed with regard to select attributes: we found that highly transcribed genes with long introns were most sensitive to spt mutations. QPCR confirmation of differential expression was established for the limited number of genes evaluated. In this paper, we showcase splicing array technology, as well as powerful, yet general, statistical methodology for assessing differential expression, in the context of a real, complex experimental design. Our results suggest that the Spt4-Spt5 complex may help coordinate splicing with transcription under conditions that present kinetic challenges to spliceosome assembly or function.

  8. Functional Characterization of NIPBL Physiological Splice Variants and Eight Splicing Mutations in Patients with Cornelia de Lange Syndrome

    Directory of Open Access Journals (Sweden)

    María E. Teresa-Rodrigo

    2014-06-01

    Full Text Available Cornelia de Lange syndrome (CdLS is a congenital developmental disorder characterized by distinctive craniofacial features, growth retardation, cognitive impairment, limb defects, hirsutism, and multisystem involvement. Mutations in five genes encoding structural components (SMC1A, SMC3, RAD21 or functionally associated factors (NIPBL, HDAC8 of the cohesin complex have been found in patients with CdLS. In about 60% of the patients, mutations in NIPBL could be identified. Interestingly, 17% of them are predicted to change normal splicing, however, detailed molecular investigations are often missing. Here, we report the first systematic study of the physiological splicing of the NIPBL gene, that would reveal the identification of four new splicing isoforms ΔE10, ΔE12, ΔE33,34, and B’. Furthermore, we have investigated nine mutations affecting splice-sites in the NIPBL gene identified in twelve CdLS patients. All mutations have been examined on the DNA and RNA level, as well as by in silico analyses. Although patients with mutations affecting NIPBL splicing show a broad clinical variability, the more severe phenotypes seem to be associated with aberrant transcripts resulting in a shift of the reading frame.

  9. A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize

    Directory of Open Access Journals (Sweden)

    Wenbin Mei

    2017-05-01

    Full Text Available Identifying and characterizing alternative splicing (AS enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 × Mo17 recombinant inbred lines (RILs identified splicing QTL (sQTL. The 43.3% of cis-sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans-sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize.

  10. DNA damage regulates alternative splicing through changes in POL II elongation

    International Nuclear Information System (INIS)

    Munoz, M.J.; Perez Santangelo, M.S.; De la Mata, M.; Kornblihtt, A.R.

    2008-01-01

    Many apoptotic genes are regulated via alternative splicing (AS) but little is known about the mechanisms controlling AS in stress situations derived from DNA damage. Here we show that ultraviolet (UV) radiation affects co-transcriptional, but not post transcriptional, AS through a systemic mechanism involving a CDK-9-dependent hyper phosphorylation of RNA polymerase II carboxy terminal domain (CTD) and a subsequent and unprecedented inhibition of transcriptional elongation, estimated in vivo and in real time by FRAP. To mimic this hyper phosphorylation we used CTD mutants with serines 2 or 5 substituted by glutamic acids and found that they not only display lower elongation rates but duplicate the effects of UV light on AS in the absence of irradiation. Consistently, substitution of the serines with alanines prevents the UV effect on splicing. These results represent the first in vivo proof of modulation of elongation in response to an environmental signal, affecting in turn the kinetic coupling between transcription and splicing. (authors)

  11. The Cancer Exome Generated by Alternative mRNA Splicing Dilutes Predicted HLA Class I Epitope Density

    DEFF Research Database (Denmark)

    Stranzl, Thomas; Larsen, Mette Voldby; Lund, Ole

    2012-01-01

    Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered presentation of HLA class I epitopes...... is frequently observed in various types of cancer. Down-regulation of genes related to HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the cell surface. Here, we use a peptidome wide analysis of predicted alternative splice forms, based...... on a publicly available database, to show that peptides over-represented in cancer splice variants comprise significantly fewer predicted HLA class I epitopes compared to peptides from normal transcripts. Peptides over-represented in cancer transcripts are in the case of the three most common HLA class I...

  12. Effect of splice-site polymorphisms of the TMPRSS4, NPHP4 and ...

    Indian Academy of Sciences (India)

    Unknown

    1 Handayama,. Hamamatsu ... structural changes in mRNA transcripts as a result of splice-site polymorphisms implies that they may be of biological significance in ... structural change in an mRNA transcript, leading to the production of a ...

  13. Handbook of knotting and splicing

    CERN Document Server

    Hasluck, Paul N

    2005-01-01

    Clearly written and amply illustrated with 208 figures, this classic guide ranges from simple and useful knots to complex varieties. Additional topics include rope splicing, working cordage, hammock making, more.

  14. Supplementary Material for: Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-01-01

    Abstract Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  15. Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2004-09-01

    Full Text Available Abstract Background Alternative splicing contributes significantly to the complexity of the human transcriptome and proteome. Computational prediction of alternative splice isoforms are usually based on EST sequences that also allow to approximate the expression pattern of the related transcripts. However, the limited number of tissues represented in the EST data as well as the different cDNA construction protocols may influence the predictive capacity of ESTs to unravel tissue-specifically expressed transcripts. Methods We predict tissue and tumor specific splice isoforms based on the genomic mapping (SpliceNest of the EST consensus sequences and library annotation provided in the GeneNest database. We further ascertain the potentially rare tissue specific transcripts as the ones represented only by ESTs derived from normalized libraries. A subset of the predicted tissue and tumor specific isoforms are then validated via RT-PCR experiments over a spectrum of 40 tissue types. Results Our strategy revealed 427 genes with at least one tissue specific transcript as well as 1120 genes showing tumor specific isoforms. While our experimental evaluation of computationally predicted tissue-specific isoforms revealed a high success rate in confirming the expression of these isoforms in the respective tissue, the strategy frequently failed to detect the expected restricted expression pattern. The analysis of putative lowly expressed transcripts using normalized cDNA libraries suggests that our ability to detect tissue-specific isoforms strongly depends on the expression level of the respective transcript as well as on the sensitivity of the experimental methods. Especially splice isoforms predicted to be disease-specific tend to represent transcripts that are expressed in a set of healthy tissues rather than novel isoforms. Conclusions We propose to combine the computational prediction of alternative splice isoforms with experimental validation for

  16. The Cancer Exome Generated by Alternative mRNA Splicing Dilutes Predicted HLA Class I Epitope Density

    OpenAIRE

    Stranzl, Thomas; Larsen, Mette V.; Lund, Ole; Nielsen, Morten; Brunak, Søren

    2012-01-01

    Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered presentation of HLA class I epitopes is frequently observed in various types of cancer. Down-regulation of genes related to HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the c...

  17. New insights into the genomic organization and splicing of the doublesex gene, a terminal regulator of sexual differentiation in the silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Jianping Duan

    Full Text Available Sex-determination mechanisms differ among organisms. The primary mechanism is diverse, whereas the terminal regulator is relatively-conserved. We analyzed the transcripts of the Bombyx mori doublesex gene (Bmdsx, and reported novel results concerning the genomic organization and expression of Bmdsx. Bmdsx consists of nine exons and eight introns, of which two exons are novel and have not been reported previously. Bmdsx transcripts are spliced to generate seventeen alternatively-spliced forms and eleven putative trans-spliced variants. Thirteen of the alternatively-spliced forms and five of the putative trans-spliced forms are reported here for the first time. Sequence analysis predicts that ten female-specific, six male-specific splice forms and one splice form found in males and females will result in four female-specific, two male-specific Dsx proteins and one Dsx protein common to males and females. The Dsx proteins are expected to be functional and regulate downstream target genes. Some of the predicted Dsx proteins are described here for the first time. Therefore the expression of the dsx gene in B. mori results in a variety of cis- and trans-spliced transcripts and multiple Dsx proteins. These findings show that in B. mori there is a complicated pattern of dsx splicing, and that the regulation of splicing and sex-specific functions of lepidopteran dsx have evolved complexity.

  18. Two novel splicing mutations in the SLC45A2 gene cause Oculocutaneous Albinism Type IV by unmasking cryptic splice sites.

    Science.gov (United States)

    Straniero, Letizia; Rimoldi, Valeria; Soldà, Giulia; Mauri, Lucia; Manfredini, Emanuela; Andreucci, Elena; Bargiacchi, Sara; Penco, Silvana; Gesu, Giovanni P; Del Longo, Alessandra; Piozzi, Elena; Asselta, Rosanna; Primignani, Paola

    2015-09-01

    Oculocutaneous albinism (OCA) is characterized by hypopigmentation of the skin, hair and eye, and by ophthalmologic abnormalities caused by a deficiency in melanin biosynthesis. OCA type IV (OCA4) is one of the four commonly recognized forms of albinism, and is determined by mutation in the SLC45A2 gene. Here, we investigated the genetic basis of OCA4 in an Italian child. The mutational screening of the SLC45A2 gene identified two novel potentially pathogenic splicing mutations: a synonymous transition (c.888G>A) involving the last nucleotide of exon 3 and a single-nucleotide insertion (c.1156+2dupT) within the consensus sequence of the donor splice site of intron 5. As computer-assisted analysis for mutant splice-site prediction was not conclusive, we investigated the effects on pre-mRNA splicing of these two variants by using an in vitro minigene approach. Production of mutant transcripts in HeLa cells demonstrated that both mutations cause the almost complete abolishment of the physiologic donor splice site, with the concomitant unmasking of cryptic donor splice sites. To our knowledge, this work represents the first in-depth molecular characterization of splicing defects in a OCA4 patient.

  19. Rhythmic Behavior Is Controlled by the SRm160 Splicing Factor in Drosophila melanogaster.

    Science.gov (United States)

    Beckwith, Esteban J; Hernando, Carlos E; Polcowñuk, Sofía; Bertolin, Agustina P; Mancini, Estefania; Ceriani, M Fernanda; Yanovsky, Marcelo J

    2017-10-01

    Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day-night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in period ( per ) levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced per construct, but not by an extra copy of the endogenous locus, showing that SRm160 positively regulates per levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model. Copyright © 2017 by the Genetics Society of America.

  20. Alternative splice variants of the human PD-1 gene

    DEFF Research Database (Denmark)

    Nielsen, Christian; Ohm-Laursen, Line; Barington, Torben

    2005-01-01

    PD-1 is an immunoregulatory receptor expressed on the surface of activated T cells, B cells, and monocytes. We describe four alternatively spliced PD-1 mRNA transcripts (PD-1Deltaex2, PD-1Deltaex3, PD-1Deltaex2,3, and PD-1Deltaex2,3,4) in addition to the full length isoform. PD-1Deltaex2 and PD-1...

  1. Minor class splicing shapes the zebrafish transcriptome during development.

    Science.gov (United States)

    Markmiller, Sebastian; Cloonan, Nicole; Lardelli, Rea M; Doggett, Karen; Keightley, Maria-Cristina; Boglev, Yeliz; Trotter, Andrew J; Ng, Annie Y; Wilkins, Simon J; Verkade, Heather; Ober, Elke A; Field, Holly A; Grimmond, Sean M; Lieschke, Graham J; Stainier, Didier Y R; Heath, Joan K

    2014-02-25

    Minor class or U12-type splicing is a highly conserved process required to remove a minute fraction of introns from human pre-mRNAs. Defects in this splicing pathway have recently been linked to human disease, including a severe developmental disorder encompassing brain and skeletal abnormalities known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we describe a unique zebrafish mutant, caliban (clbn), with arrested development of the digestive organs caused by an ethylnitrosourea-induced recessive lethal point mutation in the rnpc3 [RNA-binding region (RNP1, RRM) containing 3] gene. rnpc3 encodes the zebrafish ortholog of human RNPC3, also known as the U11/U12 di-snRNP 65-kDa protein, a unique component of the U12-type spliceosome. The biochemical impact of the mutation in clbn is the formation of aberrant U11- and U12-containing small nuclear ribonucleoproteins that impair the efficiency of U12-type splicing. Using RNA sequencing and microarrays, we show that multiple genes involved in various steps of mRNA processing, including transcription, splicing, and nuclear export are disrupted in clbn, either through intron retention or differential gene expression. Thus, clbn provides a useful and specific model of aberrant U12-type splicing in vivo. Analysis of its transcriptome reveals efficient mRNA processing as a critical process for the growth and proliferation of cells during vertebrate development.

  2. Diverse splicing patterns of exonized Alu elements in human tissues.

    Directory of Open Access Journals (Sweden)

    Lan Lin

    2008-10-01

    Full Text Available Exonization of Alu elements is a major mechanism for birth of new exons in primate genomes. Prior analyses of expressed sequence tags show that almost all Alu-derived exons are alternatively spliced, and the vast majority of these exons have low transcript inclusion levels. In this work, we provide genomic and experimental evidence for diverse splicing patterns of exonized Alu elements in human tissues. Using Exon array data of 330 Alu-derived exons in 11 human tissues and detailed RT-PCR analyses of 38 exons, we show that some Alu-derived exons are constitutively spliced in a broad range of human tissues, and some display strong tissue-specific switch in their transcript inclusion levels. Most of such exons are derived from ancient Alu elements in the genome. In SEPN1, mutations of which are linked to a form of congenital muscular dystrophy, the muscle-specific inclusion of an Alu-derived exon may be important for regulating SEPN1 activity in muscle. Realtime qPCR analysis of this SEPN1 exon in macaque and chimpanzee tissues indicates human-specific increase in its transcript inclusion level and muscle specificity after the divergence of humans and chimpanzees. Our results imply that some Alu exonization events may have acquired adaptive benefits during the evolution of primate transcriptomes.

  3. A Splice Variant of Bardet-Biedl Syndrome 5 (BBS5 Protein that Is Selectively Expressed in Retina.

    Directory of Open Access Journals (Sweden)

    Susan N Bolch

    Full Text Available Bardet-Biedl syndrome is a complex ciliopathy that usually manifests with some form of retinal degeneration, amongst other ciliary-related deficiencies. One of the genetic causes of this syndrome results from a defect in Bardet-Biedl Syndrome 5 (BBS5 protein. BBS5 is one component of the BBSome, a complex of proteins that regulates the protein composition in cilia. In this study, we identify a smaller molecular mass form of BBS5 as a variant formed by alternative splicing and show that expression of this splice variant is restricted to the retina.Reverse transcription PCR from RNA was used to isolate and identify potential alternative transcripts of Bbs5. A peptide unique to the C-terminus of the BBS5 splice variant was synthesized and used to prepare antibodies that selectively recognized the BBS5 splice variant. These antibodies were used on immunoblots of tissue extracts to determine the extent of expression of the alternative transcript and on tissue slices to determine the localization of expressed protein. Pull-down of fluorescently labeled arrestin1 by immunoprecipitation of the BBS5 splice variant was performed to assess functional interaction between the two proteins.PCR from mouse retinal cDNA using Bbs5-specific primers amplified a unique cDNA that was shown to be a splice variant of BBS5 resulting from the use of cryptic splicing sites in Intron 7. The resulting transcript codes for a truncated form of the BBS5 protein with a unique 24 amino acid C-terminus, and predicted 26.5 kD molecular mass. PCR screening of RNA isolated from various ciliated tissues and immunoblots of protein extracts from these same tissues showed that this splice variant was expressed in retina, but not brain, heart, kidney, or testes. Quantitative PCR showed that the splice variant transcript is 8.9-fold (+/- 1.1-fold less abundant than the full-length transcript. In the retina, the splice variant of BBS5 appears to be most abundant in the connecting cilium

  4. Sequence Analysis of In Vivo-Expressed HIV-1 Spliced RNAs Reveals the Usage of New and Unusual Splice Sites by Viruses of Different Subtypes.

    Science.gov (United States)

    Vega, Yolanda; Delgado, Elena; de la Barrera, Jorge; Carrera, Cristina; Zaballos, Ángel; Cuesta, Isabel; Mariño, Ana; Ocampo, Antonio; Miralles, Celia; Pérez-Castro, Sonia; Álvarez, Hortensia; López-Miragaya, Isabel; García-Bodas, Elena; Díez-Fuertes, Francisco; Thomson, Michael M

    2016-01-01

    HIV-1 RNAs are generated through a complex splicing mechanism, resulting in a great diversity of transcripts, which are classified in three major categories: unspliced, singly spliced (SS), and doubly spliced (DS). Knowledge on HIV-1 RNA splicing in vivo and by non-subtype B viruses is scarce. Here we analyze HIV-1 RNA splice site usage in CD4+CD25+ lymphocytes from HIV-1-infected individuals through pyrosequencing. HIV-1 DS and SS RNAs were amplified by RT-PCR in 19 and 12 samples, respectively. 13,108 sequences from HIV-1 spliced RNAs, derived from viruses of five subtypes (A, B, C, F, G), were identified. In four samples, three of non-B subtypes, five 3' splice sites (3'ss) mapping to unreported positions in the HIV-1 genome were identified. Two, designated A4i and A4j, were used in 22% and 25% of rev RNAs in two viruses of subtypes B and A, respectively. Given their close proximity (one or two nucleotides) to A4c and A4d, respectively, they could be viewed as variants of these sites. Three 3'ss, designated A7g, A7h, and A7i, located 20, 32, and 18 nucleotides downstream of A7, respectively, were identified in a subtype C (A7g, A7h) and a subtype G (A7i) viruses, each in around 2% of nef RNAs. The new splice sites or variants of splice sites were associated with the usual sequence features of 3'ss. Usage of unusual 3'ss A4d, A4e, A5a, A7a, and A7b was also detected. A4f, previously identified in two subtype C viruses, was preferentially used by rev RNAs of a subtype C virus. These results highlight the great diversity of in vivo splice site usage by HIV-1 RNAs. The fact that four of five newly identified splice sites or variants of splice sites were detected in non-subtype B viruses allows anticipating an even greater diversity of HIV-1 splice site usage than currently known.

  5. Tissue Restricted Splice Junctions Originate Not Only from Tissue-Specific Gene Loci, but Gene Loci with a Broad Pattern of Expression.

    Directory of Open Access Journals (Sweden)

    Matthew S Hestand

    Full Text Available Cellular mechanisms that achieve protein diversity in eukaryotes are multifaceted, including transcriptional components such as RNA splicing. Through alternative splicing, a single protein-coding gene can generate multiple mRNA transcripts and protein isoforms, some of which are tissue-specific. We have conducted qualitative and quantitative analyses of the Bodymap 2.0 messenger RNA-sequencing data from 16 human tissue samples and identified 209,363 splice junctions. Of these, 22,231 (10.6% were not previously annotated and 21,650 (10.3% were expressed in a tissue-restricted pattern. Tissue-restricted alternative splicing was found to be widespread, with approximately 65% of expressed multi-exon genes containing at least one tissue-specific splice junction. Interestingly, we observed many tissue-specific splice junctions not only in genes expressed in one or a few tissues, but also from gene loci with a broad pattern of expression.

  6. Impairment of alternative splice sites defining a novel gammaretroviral exon within gag modifies the oncogenic properties of Akv murine leukemia virus

    DEFF Research Database (Denmark)

    Sørensen, Annette Balle; Lund, Anders H; Kunder, Sandra

    2007-01-01

    to be associated with specific tumor diagnoses or individual viral mutants. CONCLUSION: We present here the first example of a doubly spliced transcript within the group of gammaretroviruses, and we show that mutation of the alternative splice sites that define this novel RNA product change the oncogenic potential......) and histiocytic sarcoma. Interestingly, a broader spectrum of diagnoses was made from the two single splice-site mutants than from as well the wild-type as the double splice-site mutant. Both single- and double-spliced transcripts are produced in vivo using the SA' and/or the SD' sites, but the mechanisms......BACKGROUND: Mutations of an alternative splice donor site located within the gag region has previously been shown to broaden the pathogenic potential of the T-lymphomagenic gammaretrovirus Moloney murine leukemia virus, while the equivalent mutations in the erythroleukemia inducing Friend murine...

  7. Spliceman2: a computational web server that predicts defects in pre-mRNA splicing.

    Science.gov (United States)

    Cygan, Kamil Jan; Sanford, Clayton Hendrick; Fairbrother, William Guy

    2017-09-15

    Most pre-mRNA transcripts in eukaryotic cells must undergo splicing to remove introns and join exons, and splicing elements present a large mutational target for disease-causing mutations. Splicing elements are strongly position dependent with respect to the transcript annotations. In 2012, we presented Spliceman, an online tool that used positional dependence to predict how likely distant mutations around annotated splice sites were to disrupt splicing. Here, we present an improved version of the previous tool that will be more useful for predicting the likelihood of splicing mutations. We have added industry-standard input options (i.e. Spliceman now accepts variant call format files), which allow much larger inputs than previously available. The tool also can visualize the locations-within exons and introns-of sequence variants to be analyzed and the predicted effects on splicing of the pre-mRNA transcript. In addition, Spliceman2 integrates with RNAcompete motif libraries to provide a prediction of which trans -acting factors binding sites are disrupted/created and links out to the UCSC genome browser. In summary, the new features in Spliceman2 will allow scientists and physicians to better understand the effects of single nucleotide variations on splicing. Freely available on the web at http://fairbrother.biomed.brown.edu/spliceman2 . Website implemented in PHP framework-Laravel 5, PostgreSQL, Apache, and Perl, with all major browsers supported. william_fairbrother@brown.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array

    Directory of Open Access Journals (Sweden)

    Sugnet Charles

    2006-12-01

    Full Text Available Abstract Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic

  9. 0-6652 : spliced Texas girder bridges.

    Science.gov (United States)

    2015-02-01

    Spliced girder technology continues to attract : attention due to its versatility over traditional : prestressed concrete highway bridge construction. : By joining multiple precast concrete girders using : post-tensioning, spliced girder technology :...

  10. DeepBound: accurate identification of transcript boundaries via deep convolutional neural fields

    KAUST Repository

    Shao, Mingfu

    2017-04-20

    Motivation: Reconstructing the full- length expressed transcripts (a. k. a. the transcript assembly problem) from the short sequencing reads produced by RNA-seq protocol plays a central role in identifying novel genes and transcripts as well as in studying gene expressions and gene functions. A crucial step in transcript assembly is to accurately determine the splicing junctions and boundaries of the expressed transcripts from the reads alignment. In contrast to the splicing junctions that can be efficiently detected from spliced reads, the problem of identifying boundaries remains open and challenging, due to the fact that the signal related to boundaries is noisy and weak.

  11. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    International Nuclear Information System (INIS)

    White, Eric S.; Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Muro, Andres F.

    2010-01-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-β, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten -/- fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten -/- cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten -/- cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  12. BAP1 missense mutation c.2054 A>T (p.E685V completely disrupts normal splicing through creation of a novel 5' splice site in a human mesothelioma cell line.

    Directory of Open Access Journals (Sweden)

    Arianne Morrison

    Full Text Available BAP1 is a tumor suppressor gene that is lost or deleted in diverse cancers, including uveal mela¬noma, malignant pleural mesothelioma (MPM, clear cell renal carcinoma, and cholangiocarcinoma. Recently, BAP1 germline mutations have been reported in families with combinations of these same cancers. A particular challenge for mutation screening is the classification of non-truncating BAP1 sequence variants because it is not known whether these subtle changes can affect the protein function sufficiently to predispose to cancer development. Here we report mRNA splicing analysis on a homozygous substitution mutation, BAP1 c. 2054 A&T (p.Glu685Val, identified in an MPM cell line derived from a mesothelioma patient. The mutation occurred at the 3rd nucleotide from the 3' end of exon 16. RT-PCR, cloning and subsequent sequencing revealed several aberrant splicing products not observed in the controls: 1 a 4 bp deletion at the end of exon 16 in all clones derived from the major splicing product. The BAP1 c. 2054 A&T mutation introduced a new 5' splice site (GU, which resulted in the deletion of 4 base pairs and presumably protein truncation; 2 a variety of alternative splicing products that led to retention of different introns: introns 14-16; introns 15-16; intron 14 and intron 16; 3 partial intron 14 and 15 retentions caused by activation of alternative 3' splice acceptor sites (AG in the introns. Taken together, we were unable to detect any correctly spliced mRNA transcripts in this cell line. These results suggest that aberrant splicing caused by this mutation is quite efficient as it completely abolishes normal splicing through creation of a novel 5' splice site and activation of cryptic splice sites. These data support the conclusion that BAP1 c.2054 A&T (p.E685V variant is a pathogenic mutation and contributes to MPM through disruption of normal splicing.

  13. Splice variants of porcine PPHLN1 encoding periphilin-1

    DEFF Research Database (Denmark)

    Larsen, Knud Erik; Momeni, Jamal; Farajzadeh, Leila

    2017-01-01

    splice variants hereof. RT-PCR cloning using oligonucleotide primers derived from in silico sequences resulted in three PPHLN1 transcripts: a full-length mRNA and two transcript variant resulting in shorter proteins. The longest encoded periphilin-1, consisting of 373 amino acids, displays a high......The periphilin-1 protein is encoded by the PPHLN1 gene. Periphilin-1 is found in the cornified cell envelope during the terminal differentiation of keratinocyte at the outer layer of epidermis. In the current study we report on the cloning and characterization of the porcine PPHLN1 cDNA and two...... homology to the human periphilin-1 protein coded by the transcript variant 2 (91%). A shorter transcript variant (PPHLN1Sp1) contains a 1065-codon ORF, which is consistent with that of the authentic PPHLN1, but lacks a region of 57 bp spanning exon 7. Hence, the encoded polypeptide periphilin-1Sp1 consists...

  14. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome.

    Directory of Open Access Journals (Sweden)

    Ronghui Li

    2016-06-01

    Full Text Available Mutations in the human MECP2 gene cause Rett syndrome (RTT, a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies.

  15. The Musashi 1 Controls the Splicing of Photoreceptor-Specific Exons in the Vertebrate Retina

    Science.gov (United States)

    Murphy, Daniel; Carstens, Russ

    2016-01-01

    Alternative pre-mRNA splicing expands the coding capacity of eukaryotic genomes, potentially enabling a limited number of genes to govern the development of complex anatomical structures. Alternative splicing is particularly prevalent in the vertebrate nervous system, where it is required for neuronal development and function. Here, we show that photoreceptor cells, a type of sensory neuron, express a characteristic splicing program that affects a broad set of transcripts and is initiated prior to the development of the light sensing outer segments. Surprisingly, photoreceptors lack prototypical neuronal splicing factors and their splicing profile is driven to a significant degree by the Musashi 1 (MSI1) protein. A striking feature of the photoreceptor splicing program are exons that display a "switch-like" pattern of high inclusion levels in photoreceptors and near complete exclusion outside of the retina. Several ubiquitously expressed genes that are involved in the biogenesis and function of primary cilia produce highly photoreceptor specific isoforms through use of such “switch-like” exons. Our results suggest a potential role for alternative splicing in the development of photoreceptors and the conversion of their primary cilia to the light sensing outer segments. PMID:27541351

  16. Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins

    Directory of Open Access Journals (Sweden)

    Yanqi Hao

    2015-07-01

    Full Text Available Alternative splicing acts on transcripts from almost all human multi-exon genes. Notwithstanding its ubiquity, fundamental ramifications of splicing on protein expression remain unresolved. The number and identity of spliced transcripts that form stably folded proteins remain the sources of considerable debate, due largely to low coverage of experimental methods and the resulting absence of negative data. We circumvent this issue by developing a semi-supervised learning algorithm, positive unlabeled learning for splicing elucidation (PULSE; http://www.kimlab.org/software/pulse, which uses 48 features spanning various categories. We validated its accuracy on sets of bona fide protein isoforms and directly on mass spectrometry (MS spectra for an overall AU-ROC of 0.85. We predict that around 32% of “exon skipping” alternative splicing events produce stable proteins, suggesting that the process engenders a significant number of previously uncharacterized proteins. We also provide insights into the distribution of positive isoforms in various functional classes and into the structural effects of alternative splicing.

  17. Gene Therapy via Trans-Splicing for LMNA-Related Congenital Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Feriel Azibani

    2018-03-01

    Full Text Available We assessed the potential of Lmna-mRNA repair by spliceosome-mediated RNA trans-splicing as a therapeutic approach for LMNA-related congenital muscular dystrophy. This gene therapy strategy leads to reduction of mutated transcript expression for the benefit of corresponding wild-type (WT transcripts. We developed 5′-RNA pre-trans-splicing molecules containing the first five exons of Lmna and targeting intron 5 of Lmna pre-mRNA. Among nine pre-trans-splicing molecules, differing in the targeted sequence in intron 5 and tested in C2C12 myoblasts, three induced trans-splicing events on endogenous Lmna mRNA and confirmed at protein level. Further analyses performed in primary myotubes derived from an LMNA-related congenital muscular dystrophy (L-CMD mouse model led to a partial rescue of the mutant phenotype. Finally, we tested this approach in vivo using adeno-associated virus (AAV delivery in newborn mice and showed that trans-splicing events occurred in WT mice 50 days after AAV delivery, although at a low rate. Altogether, while these results provide the first evidence for reprogramming LMNA mRNA in vitro, strategies to improve the rate of trans-splicing events still need to be developed for efficient application of this therapeutic approach in vivo.

  18. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  19. Insertion of a T next to the donor splice site of intron 1 causes aberrantly spliced mRNA in a case of infantile GM1-gangliosidosis.

    Science.gov (United States)

    Morrone, A; Morreau, H; Zhou, X Y; Zammarchi, E; Kleijer, W J; Galjaard, H; d'Azzo, A

    1994-01-01

    The lysosomal storage disorders GM1-gangliosidosis and Morquio B syndrome are caused by a complete or partial deficiency of acid beta-galactosidase. Here, we have characterized the mutation segregating in a family with two siblings affected by the severe infantile form of GM1-gangliosidosis. In total mRNA preparations derived from the patients' fibroblasts at least two aberrantly spliced beta-galactosidase transcripts (1 and 2) have been identified. Both transcripts contain a 20 nucleotide (nt) insertion derived from the 5' end of intron 1 of the beta-galactosidase gene. Furthermore, in transcript 2 sequences encoded by exon II are deleted during the splicing process. Comparison of the 20-nt insertion with wild-type intronic sequences indicated that in the genomic DNA of the patients an extra T nucleotide is present immediately downstream of the conserved GT splice donor dinucleotide of intron 1. Both patients are homozygous for the T nucleotide insertion. We propose that this single base insertion is the mutation responsible for aberrant splicing of beta-galactosidase pre-mRNA, giving rise to transcripts that cannot encode a normal protein.

  20. Exon array analysis reveals neuroblastoma tumors have distinct alternative splicing patterns according to stage and MYCN amplification status

    Directory of Open Access Journals (Sweden)

    Wei Jun S

    2011-04-01

    Full Text Available Abstract Background Neuroblastoma (NB tumors are well known for their pronounced clinical and molecular heterogeneity. The global gene expression and DNA copy number alterations have been shown to have profound differences in tumors of low or high stage and those with or without MYCN amplification. RNA splicing is an important regulatory mechanism of gene expression, and differential RNA splicing may be associated with the clinical behavior of a tumor. Methods In this study, we used exon array profiling to investigate global alternative splicing pattern of 47 neuroblastoma samples in stage 1 and stage 4 with normal or amplified MYCN copy number (stage 1-, 4- and 4+. The ratio of exon-level expression to gene-level expression was used to detect alternative splicing events, while the gene-level expression was applied to characterize whole gene expression change. Results Principal component analysis (PCA demonstrated distinct splicing pattern in three groups of samples. Pairwise comparison identified genes with splicing changes and/or whole gene expression changes in high stage tumors. In stage 4- compared with stage 1- tumors, alternatively spliced candidate genes had little overlap with genes showing whole gene expression changes, and most of them were involved in different biological processes. In contrast, a larger number of genes exhibited either exon-level splicing, gene-level expression or both changes in stage 4+ versus stage 1- tumors. Those biological processes involved in stage 4- tumors were disrupted to a greater extent by both splicing and transcription regulations in stage 4+ tumors. Conclusions Our results demonstrated a significant role of alternative splicing in high stage neuroblastoma, and suggested a MYCN-associated splicing regulation pathway in stage 4+ tumors. The identification of differentially spliced genes and pathways in neuroblastoma tumors of different stages and molecular subtypes may be important to the

  1. RBM20 and RBM24 cooperatively promote the expression of short enh splice variants.

    Science.gov (United States)

    Ito, Jumpei; Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Kuroda, Shun'ichi; Maturana, Andrés D

    2016-07-01

    PDZ-LIM protein ENH1 is a scaffold protein for protein kinases and transcriptional regulators. While ENH1 promotes the hypertrophic growth of cardiomyocytes, its short splice variant (ENH3) prevents the hypertrophic growth. The mechanism underlying the alternative splicing of enh mRNA between ENH short and long isoforms has remained unknown. Here, we found that two splicing factors, RNA-binding motif 20 (RBM20) and RNA-binding motif 24 (RBM24) together promoted the expression of short enh splice variants and bound the 5' intronic region of exon 11 containing an in-phase stop codon. In addition, expression of both RBMs is repressed by hypertrophic stimulations. Collectively, our results suggest that, in healthy conditions, RBM20 and RBM24 cooperate to promote the expression of short ENH isoforms. © 2016 Federation of European Biochemical Societies.

  2. Rbfox proteins regulate tissue-specific alternative splicing of Mef2D required for muscle differentiation.

    Science.gov (United States)

    Runfola, Valeria; Sebastian, Soji; Dilworth, F Jeffrey; Gabellini, Davide

    2015-02-15

    Among the Mef2 family of transcription factors, Mef2D is unique in that it undergoes tissue-specific splicing to generate an isoform that is essential for muscle differentiation. However, the mechanisms mediating this muscle-specific processing of Mef2D remain unknown. Using bioinformatics, we identified Rbfox proteins as putative modulators of Mef2D muscle-specific splicing. Accordingly, we found direct and specific Rbfox1 and Rbfox2 binding to Mef2D pre-mRNA in vivo. Gain- and loss-of-function experiments demonstrated that Rbfox1 and Rbfox2 cooperate in promoting Mef2D splicing and subsequent myogenesis. Thus, our findings reveal a new role for Rbfox proteins in regulating myogenesis through activation of essential muscle-specific splicing events. © 2015. Published by The Company of Biologists Ltd.

  3. Identifying alternative hyper-splicing signatures in MG-thymoma by exon arrays.

    Directory of Open Access Journals (Sweden)

    Lilach Soreq

    Full Text Available BACKGROUND: The vast majority of human genes (>70% are alternatively spliced. Although alternative pre-mRNA processing is modified in multiple tumors, alternative hyper-splicing signatures specific to particular tumor types are still lacking. Here, we report the use of Affymetrix Human Exon Arrays to spot hyper-splicing events characteristic of myasthenia gravis (MG-thymoma, thymic tumors which develop in patients with MG and discriminate them from colon cancer changes. METHODOLOGY/PRINCIPAL FINDINGS: We combined GO term to parent threshold-based and threshold-independent ad-hoc functional statistics with in-depth analysis of key modified transcripts to highlight various exon-specific changes. These denote alternative splicing in MG-thymoma tumors compared to healthy human thymus and to in-house and Affymetrix datasets from colon cancer and healthy tissues. By using both global and specific, term-to-parent Gene Ontology (GO statistical comparisons, our functional integrative ad-hoc method allowed the detection of disease-relevant splicing events. CONCLUSIONS/SIGNIFICANCE: Hyper-spliced transcripts spanned several categories, including the tumorogenic ERBB4 tyrosine kinase receptor and the connective tissue growth factor CTGF, as well as the immune function-related histocompatibility gene HLA-DRB1 and interleukin (IL19, two muscle-specific collagens and one myosin heavy chain gene; intriguingly, a putative new exon was discovered in the MG-involved acetylcholinesterase ACHE gene. Corresponding changes in spliceosome composition were indicated by co-decreases in the splicing factors ASF/SF(2 and SC35. Parallel tumor-associated changes occurred in colon cancer as well, but the majority of the apparent hyper-splicing events were particular to MG-thymoma and could be validated by Fluorescent In-Situ Hybridization (FISH, Reverse Transcription-Polymerase Chain Reaction (RT-PCR and mass spectrometry (MS followed by peptide sequencing. Our findings

  4. Alternative Splicing of NOX4 in the Failing Human Heart

    Directory of Open Access Journals (Sweden)

    Zoltán V. Varga

    2017-11-01

    Full Text Available Increased oxidative stress is a major contributor to the development and progression of heart failure, however, our knowledge on the role of the distinct NADPH oxidase (NOX isoenzymes, especially on NOX4 is controversial. Therefore, we aimed to characterize NOX4 expression in human samples from healthy and failing hearts. Explanted human heart samples (left and right ventricular, and septal regions were obtained from patients suffering from heart failure of ischemic or dilated origin. Control samples were obtained from donor hearts that were not used for transplantation. Deep RNA sequencing of the cardiac transcriptome indicated extensive alternative splicing of the NOX4 gene in heart failure as compared to samples from healthy donor hearts. Long distance PCR analysis with a universal 5′-3′ end primer pair, allowing amplification of different splice variants, confirmed the presence of the splice variants. To assess translation of the alternatively spliced transcripts we determined protein expression of NOX4 by using a specific antibody recognizing a conserved region in all variants. Western blot analysis showed up-regulation of the full-length NOX4 in ischemic cardiomyopathy samples and confirmed presence of shorter isoforms both in control and failing samples with disease-associated expression pattern. We describe here for the first time that NOX4 undergoes extensive alternative splicing in human hearts which gives rise to the expression of different enzyme isoforms. The full length NOX4 is significantly upregulated in ischemic cardiomyopathy suggesting a role for NOX4 in ROS production during heart failure.

  5. Decoding of exon splicing patterns in the human RUNX1-RUNX1T1 fusion gene.

    Science.gov (United States)

    Grinev, Vasily V; Migas, Alexandr A; Kirsanava, Aksana D; Mishkova, Olga A; Siomava, Natalia; Ramanouskaya, Tatiana V; Vaitsiankova, Alina V; Ilyushonak, Ilia M; Nazarov, Petr V; Vallar, Laurent; Aleinikova, Olga V

    2015-11-01

    The t(8;21) translocation is the most widespread genetic defect found in human acute myeloid leukemia. This translocation results in the RUNX1-RUNX1T1 fusion gene that produces a wide variety of alternative transcripts and influences the course of the disease. The rules of combinatorics and splicing of exons in the RUNX1-RUNX1T1 transcripts are not known. To address this issue, we developed an exon graph model of the fusion gene organization and evaluated its local exon combinatorics by the exon combinatorial index (ECI). Here we show that the local exon combinatorics of the RUNX1-RUNX1T1 gene follows a power-law behavior and (i) the vast majority of exons has a low ECI, (ii) only a small part is represented by "exons-hubs" of splicing with very high ECI values, and (iii) it is scale-free and very sensitive to targeted skipping of "exons-hubs". Stochasticity of the splicing machinery and preferred usage of exons in alternative splicing can explain such behavior of the system. Stochasticity may explain up to 12% of the ECI variance and results in a number of non-coding and unproductive transcripts that can be considered as a noise. Half-life of these transcripts is increased due to the deregulation of some key genes of the nonsense-mediated decay system in leukemia cells. On the other hand, preferred usage of exons may explain up to 75% of the ECI variability. Our analysis revealed a set of splicing-related cis-regulatory motifs that can explain "attractiveness" of exons in alternative splicing but only when they are considered together. Cis-regulatory motifs are guides for splicing trans-factors and we observed a leukemia-specific profile of expression of the splicing genes in t(8;21)-positive blasts. Altogether, our results show that alternative splicing of the RUNX1-RUNX1T1 transcripts follows strict rules and that the power-law component of the fusion gene organization confers a high flexibility to this process. Copyright © 2015 Elsevier Ltd. All rights

  6. Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity.

    Science.gov (United States)

    Marquez, Yamile; Höpfler, Markus; Ayatollahi, Zahra; Barta, Andrea; Kalyna, Maria

    2015-07-01

    Alternative splicing (AS) diversifies transcriptomes and proteomes and is widely recognized as a key mechanism for regulating gene expression. Previously, in an analysis of intron retention events in Arabidopsis, we found unusual AS events inside annotated protein-coding exons. Here, we also identify such AS events in human and use these two sets to analyse their features, regulation, functional impact, and evolutionary origin. As these events involve introns with features of both introns and protein-coding exons, we name them exitrons (exonic introns). Though exitrons were detected as a subset of retained introns, they are clearly distinguishable, and their splicing results in transcripts with different fates. About half of the 1002 Arabidopsis and 923 human exitrons have sizes of multiples of 3 nucleotides (nt). Splicing of these exitrons results in internally deleted proteins and affects protein domains, disordered regions, and various post-translational modification sites, thus broadly impacting protein function. Exitron splicing is regulated across tissues, in response to stress and in carcinogenesis. Intriguingly, annotated intronless genes can be also alternatively spliced via exitron usage. We demonstrate that at least some exitrons originate from ancestral coding exons. Based on our findings, we propose a "splicing memory" hypothesis whereby upon intron loss imprints of former exon borders defined by vestigial splicing regulatory elements could drive the evolution of exitron splicing. Altogether, our studies show that exitron splicing is a conserved strategy for increasing proteome plasticity in plants and animals, complementing the repertoire of AS events. © 2015 Marquez et al.; Published by Cold Spring Harbor Laboratory Press.

  7. ZmbZIP60 mRNA is spliced in maize in response to ER stress

    Directory of Open Access Journals (Sweden)

    Li Yanjie

    2012-03-01

    Full Text Available Abstract Background Adverse environmental conditions produce ER stress and elicit the unfolded protein response (UPR in plants. Plants are reported to have two "arms" of the ER stress signaling pathway-one arm involving membrane-bound transcription factors and the other involving a membrane-associated RNA splicing factor, IRE1. IRE1 in yeast to mammals recognizes a conserved twin loop structure in the target RNA. Results A segment of the mRNA encoding ZmbZIP60 in maize can be folded into a twin loop structure, and in response to ER stress this mRNA is spliced, excising a 20b intron. Splicing converts the predicted protein from a membrane-associated transcription factor to one that is targeted to the nucleus. Splicing of ZmbZIP60 can be elicited in maize seedlings by ER stress agents such as dithiothreitol (DTT or tunicamycin (TM or by heat treatment. Younger, rather than older seedlings display a more robust splicing response as do younger parts of leaf, along a developmental gradient in a leaf. The molecular signature of an ER stress response in plants includes the upregulation of Binding Protein (BIP genes. Maize has numerous BIP-like genes, and ER stress was found to upregulate one of these, ZmBIPb. Conclusions The splicing of ZmbZIP60 mRNA is an indicator of ER stress in maize seedlings resulting from adverse environmental conditions such as heat stress. ZmbZIP60 mRNA splicing in maize leads predictively to the formation of active bZIP transcription factor targeted to the nucleus to upregulate stress response genes. Among the genes upregulated by ER stress in maize is one of 22 BIP-like genes, ZmBIPb.

  8. Titin Diversity—Alternative Splicing Gone Wild

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2010-01-01

    Full Text Available Titin is an extremely large protein found in highest concentrations in heart and skeletal muscle. The single mammalian gene is expressed in multiple isoforms as a result of alternative splicing. Although titin isoform expression is controlled developmentally and in a tissue specific manner, the vast number of potential splicing pathways far exceeds those described in any other alternatively spliced gene. Over 1 million human splice pathways for a single individual can be potentially derived from the PEVK region alone. A new splicing pattern for the human cardiac N2BA isoform type has been found in which the PEVK region includes only the N2B type exons. The alterations in splicing and titin isoform expression in human heart disease provide impetus for future detailed study of the splicing mechanisms for this giant protein.

  9. Exon expression and alternatively spliced genes in Tourette Syndrome.

    Science.gov (United States)

    Tian, Yingfang; Liao, Isaac H; Zhan, Xinhua; Gunther, Joan R; Ander, Bradley P; Liu, Dazhi; Lit, Lisa; Jickling, Glen C; Corbett, Blythe A; Bos-Veneman, Netty G P; Hoekstra, Pieter J; Sharp, Frank R

    2011-01-01

    Tourette Syndrome (TS) is diagnosed based upon clinical criteria including motor and vocal tics. We hypothesized that differences in exon expression and splicing might be useful for pathophysiology and diagnosis. To demonstrate exon expression and alternatively spliced gene differences in blood of individuals with TS compared to healthy controls (HC), RNA was isolated from the blood of 26 un-medicated TS subjects and 23 HC. Each sample was run on Affymetrix Human Exon 1.0 ST (HuExon) arrays and on 3' biased U133 Plus 2.0 (HuU133) arrays. To investigate the differentially expressed exons and transcripts, analyses of covariance (ANCOVA) were performed, controlling for age, gender, and batch. Differential alternative splicing patterns between TS and HC were identified using analyses of variance (ANOVA) models in Partek. Three hundred and seventy-six exon probe sets were differentially expressed between TS and HC (raw P |1.2|) that separated TS and HC subjects using hierarchical clustering and Principal Components Analysis. The probe sets predicted TS compared to HC with a >90% sensitivity and specificity using a 10-fold cross-validation. Ninety genes (transcripts) had differential expression of a single exon (raw P < 0.005) and were predicted to be alternatively spliced (raw P < 0.05) in TS compared to HC. These preliminary findings might provide insight into the pathophysiology of TS and potentially provide prognostic and diagnostic biomarkers. However, the findings are tempered by the small sample size and multiple comparisons and require confirmation using PCR or deep RNA sequencing and a much larger patient population. Copyright © 2010 Wiley-Liss, Inc.

  10. HIV-1 splicing at the major splice donor site is restricted by RNA structure.

    Science.gov (United States)

    Mueller, Nancy; van Bel, Nikki; Berkhout, Ben; Das, Atze T

    2014-11-01

    The 5' leader region of the HIV-1 RNA contains the major 5' splice site (ss) that is used in the production of all spliced viral RNAs. This splice-donor (SD) region can fold a stem-loop structure. We demonstrate that whereas stabilization of this SD hairpin reduces splicing efficiency, destabilization increases splicing. Both stabilization and destabilization reduce viral fitness. These results demonstrate that the stability of the SD hairpin can modulate the level of splicing, most likely by controlling the accessibility of the 5'ss for the splicing machinery. The natural stability of the SD hairpin restricts splicing and this stability seems to be fine-tuned to reach the optimal balance between unspliced and spliced RNAs for efficient virus replication. The 5'ss region of different HIV-1 isolates and the related SIVmac239 can fold a similar structure. This evolutionary conservation supports the importance of this structure in viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. High qualitative and quantitative conservation of alternative splicing in Caenorhabditis elegans and Caenorhabditis briggsae

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Irimia, Manuel; Mørk, Søren

    2007-01-01

    the qualitative and quantitative expression of 21 orthologous alternative splice events through the development of 2 nematode species separated by 85-110 Myr of evolutionary time. We demonstrate that most of these alternative splice events present in Caenorhabditis elegans are conserved in Caenorhabditis briggsae...... mechanisms controlling AS are to a large extent conserved during the evolution of Caenorhabditis. This strong conservation indicates that both major and minor splice forms have important functional roles and that the relative quantities in which they are expressed are crucial. Our results therefore suggest...... that the quantitative regulation of isoform expression levels is an intrinsic part of most AS events. Moreover, our results indicate that AS contributes little to transcript variation in Caenorhabditis genes and that gene duplication may be the major evolutionary mechanism for the origin of novel transcripts in these 2...

  12. Alternative RNA splicing in the endothelium mediated in part by Rbfox2 regulates the arterial response to low flow

    Science.gov (United States)

    Butty, Vincent L; Boutz, Paul L; Begum, Shahinoor; Kimble, Amy L; Sharp, Phillip A; Burge, Christopher B

    2018-01-01

    Low and disturbed blood flow drives the progression of arterial diseases including atherosclerosis and aneurysms. The endothelial response to flow and its interactions with recruited platelets and leukocytes determine disease progression. Here, we report widespread changes in alternative splicing of pre-mRNA in the flow-activated murine arterial endothelium in vivo. Alternative splicing was suppressed by depletion of platelets and macrophages recruited to the arterial endothelium under low and disturbed flow. Binding motifs for the Rbfox-family are enriched adjacent to many of the regulated exons. Endothelial deletion of Rbfox2, the only family member expressed in arterial endothelium, suppresses a subset of the changes in transcription and RNA splicing induced by low flow. Our data reveal an alternative splicing program activated by Rbfox2 in the endothelium on recruitment of platelets and macrophages and demonstrate its relevance in transcriptional responses during flow-driven vascular inflammation. PMID:29293084

  13. Pre-mRNA trans-splicing: from kinetoplastids to mammals, an easy language for life diversity

    Directory of Open Access Journals (Sweden)

    Mario Gustavo Mayer

    2005-08-01

    Full Text Available Since the discovery that genes are split into intron and exons, the studies of the mechanisms involved in splicing pointed to presence of consensus signals in an attempt to generalize the process for all living cells. However, as discussed in the present review, splicing is a theme full of variations. The trans-splicing of pre-mRNAs, the joining of exons from distinct transcripts, is one of these variations with broad distribution in the phylogenetic tree. The biological meaning of this phenomenon is discussed encompassing reactions resembling a possible noise to mechanisms of gene expression regulation. All of them however, can contribute to the generation of life diversity.

  14. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    International Nuclear Information System (INIS)

    Kvissel, Anne-Katrine; Orstavik, Sigurd; Eikvar, Sissel; Brede, Gaute; Jahnsen, Tore; Collas, Philippe; Akusjaervi, Goeran; Skalhegg, Bjorn Steen

    2007-01-01

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both Cα and Cβ are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism

  15. Global Gene Expression Profiling and Alternative Splicing Events during the Chondrogenic Differentiation of Human Cartilage Endplate-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Jin Shang

    2015-01-01

    Full Text Available Low back pain (LBP is a very prevalent disease and degenerative disc diseases (DDDs usually account for the LBP. However, the pathogenesis of DDDs is complicated and difficult to elucidate. Alternative splicing is a sophisticated regulatory process which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. In addition, the cartilage endplate-derived stem cells have been discovered and identified by our research group. In this paper, we continue to investigate gene expression profiling and alternative splicing events during chondrogenic differentiation of cartilage endplate-derived stem cells. We adopted Affymetrix Human Transcriptome Array 2.0 (HTA 2.0 to compare the transcriptional and splicing changes between the control and differentiated samples. RT-PCR and quantitative PCR are used to validate the microarray results. The GO and KEGG pathway analysis was also performed. After bioinformatics analysis of the data, we detected 1953 differentially expressed genes. In terms of alternative splicing, the Splicing Index algorithm was used to select alternatively spliced genes. We detected 4411 alternatively spliced genes. GO and KEGG pathway analysis also revealed several functionally involved biological processes and signaling pathways. To our knowledge, this is the first study to investigate the alternative splicing mechanisms in chondrogenic differentiation of stem cells on a genome-wide scale.

  16. Comparative in vitro and in silico analyses of variants in splicing regions of BRCA1 and BRCA2 genes and characterization of novel pathogenic mutations.

    Science.gov (United States)

    Colombo, Mara; De Vecchi, Giovanna; Caleca, Laura; Foglia, Claudia; Ripamonti, Carla B; Ficarazzi, Filomena; Barile, Monica; Varesco, Liliana; Peissel, Bernard; Manoukian, Siranoush; Radice, Paolo

    2013-01-01

    Several unclassified variants (UVs) have been identified in splicing regions of disease-associated genes and their characterization as pathogenic mutations or benign polymorphisms is crucial for the understanding of their role in disease development. In this study, 24 UVs located at BRCA1 and BRCA2 splice sites were characterized by transcripts analysis. These results were used to evaluate the ability of nine bioinformatics programs in predicting genetic variants causing aberrant splicing (spliceogenic variants) and the nature of aberrant transcripts. Eleven variants in BRCA1 and 8 in BRCA2, including 8 not previously characterized at transcript level, were ascertained to affect mRNA splicing. Of these, 16 led to the synthesis of aberrant transcripts containing premature termination codons (PTCs), 2 to the up-regulation of naturally occurring alternative transcripts containing PTCs, and one to an in-frame deletion within the region coding for the DNA binding domain of BRCA2, causing the loss of the ability to bind the partner protein DSS1 and ssDNA. For each computational program, we evaluated the rate of non-informative analyses, i.e. those that did not recognize the natural splice sites in the wild-type sequence, and the rate of false positive predictions, i.e., variants incorrectly classified as spliceogenic, as a measure of their specificity, under conditions setting sensitivity of predictions to 100%. The programs that performed better were Human Splicing Finder and Automated Splice Site Analyses, both exhibiting 100% informativeness and specificity. For 10 mutations the activation of cryptic splice sites was observed, but we were unable to derive simple criteria to select, among the different cryptic sites predicted by the bioinformatics analyses, those actually used. Consistent with previous reports, our study provides evidences that in silico tools can be used for selecting splice site variants for in vitro analyses. However, the latter remain mandatory for

  17. NOTCH2 and FLT3 gene mis-splicings are common events in patients with acute myeloid leukemia (AML): new potential targets in AML.

    Science.gov (United States)

    Adamia, Sophia; Bar-Natan, Michal; Haibe-Kains, Benjamin; Pilarski, Patrick M; Bach, Christian; Pevzner, Samuel; Calimeri, Teresa; Avet-Loiseau, Herve; Lode, Laurence; Verselis, Sigitas; Fox, Edward A; Galinsky, Ilene; Mathews, Steven; Dagogo-Jack, Ibiayi; Wadleigh, Martha; Steensma, David P; Motyckova, Gabriela; Deangelo, Daniel J; Quackenbush, John; Tenen, Daniel G; Stone, Richard M; Griffin, James D

    2014-05-01

    Our previous studies revealed an increase in alternative splicing of multiple RNAs in cells from patients with acute myeloid leukemia (AML) compared with CD34(+) bone marrow cells from normal donors. Aberrantly spliced genes included a number of oncogenes, tumor suppressor genes, and genes involved in regulation of apoptosis, cell cycle, and cell differentiation. Among the most commonly mis-spliced genes (>70% of AML patients) were 2, NOTCH2 and FLT3, that encode myeloid cell surface proteins. The splice variants of NOTCH2 and FLT3 resulted from complete or partial exon skipping and utilization of cryptic splice sites. Longitudinal analyses suggested that NOTCH2 and FLT3 aberrant splicing correlated with disease status. Correlation analyses between splice variants of these genes and clinical features of patients showed an association between NOTCH2-Va splice variant and overall survival of patients. Our results suggest that NOTCH2 and FLT3 mis-splicing is a common characteristic of AML and has the potential to generate transcripts encoding proteins with altered function. Thus, splice variants of these genes might provide disease markers and targets for novel therapeutics.

  18. Splicing transitions of the anchoring protein ENH during striated muscle development.

    Science.gov (United States)

    Ito, Jumpei; Hashimoto, Taiki; Nakamura, Sho; Aita, Yusuke; Yamazaki, Tomoko; Schlegel, Werner; Takimoto, Koichi; Maturana, Andrés D

    2012-05-04

    The ENH (PDLIM5) protein acts as a scaffold to tether various functional proteins at subcellular sites via PDZ and three LIM domains. Splicing of the ENH primary transcript generates various products with different repertories of protein interaction modules. Three LIM-containing ENH predominates in neonatal cardiac tissue, whereas LIM-less ENHs are abundant in adult hearts, as well as skeletal muscles. Here we examine the timing of splicing transitions of ENH gene products during postnatal heart development and C2C12 myoblast differentiation. Real-time PCR analysis shows that LIM-containing ENH1 mRNA is gradually decreased during postnatal heart development, whereas transcripts with the short exon 5 appear in the late postnatal period and continues to increase until at least one month after birth. The splicing transition from LIM-containing ENH1 to LIM-less ENHs is also observed during the early period of C2C12 differentiation. This transition correlates with the emergence of ENH transcripts with the short exon 5, as well as the expression of myogenin mRNA. In contrast, the shift from the short exon 5 to the exon 7 occurs in the late differentiation period. The timing of this late event corresponds to the appearance of mRNA for the skeletal myosin heavy chain MYH4. Thus, coordinated and stepwise splicing transitions result in the production of specific ENH transcripts in mature striated muscles. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The Identification of Splice Variants as Molecular Markers in Parkinson’s Disease

    Science.gov (United States)

    2008-09-01

    Purpose: Alternative splicing is responsible for producing several products from a single transcript and can cause pathogenic changes in RNA in...or submitted for publication some of these findings and in addition, are carrying out gene expression studies to localize the aberrant spice

  20. Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle.

    Science.gov (United States)

    Huang, J M; Wang, Z Y; Ju, Z H; Wang, C F; Li, Q L; Sun, T; Hou, Q L; Hang, S Q; Hou, M H; Zhong, J F

    2011-12-21

    Bovine lactoferrin (bLF) is a member of the transferrin family; it plays an important role in the innate immune response. We identified novel splice variants of the bLF gene in mastitis-infected and healthy cows. Reverse transcription-polymerase chain reaction (RT-PCR) and clone sequencing analysis were used to screen the splice variants of the bLF gene in the mammary gland, spleen and liver tissues. One main transcript corresponding to the bLF reference sequence was found in three tissues in both healthy and mastitis-infected cows. Quantitative real-time PCR analysis showed that the expression levels of the LF gene's main transcript were not significantly different in tissues from healthy versus mastitis-infected cows. However, the new splice variant, LF-AS2, which has the exon-skipping alternative splicing pattern, was only identified in mammary glands infected with Staphylococcus aureus. Sequencing analysis showed that the new splice variant was 251 bp in length, including exon 1, part of exon 2, part of exon 16, and exon 17. We conclude that bLF may play a role in resistance to mastitis through alternative splicing mechanisms.

  1. Pre-mRNA splicing is a determinant of histone H3K36 methylation.

    Science.gov (United States)

    Kim, Soojin; Kim, Hyunmin; Fong, Nova; Erickson, Benjamin; Bentley, David L

    2011-08-16

    A chromatin code appears to mark introns and exons with distinct patterns of nucleosome enrichment and histone methylation. We investigated whether a causal relationship exists between splicing and chromatin modification by asking whether splice-site mutations affect the methylation of histone H3K36. Deletions of the 3' splice site in intron 2 or in both introns 1 and 2 of an integrated β-globin reporter gene caused a shift in relative distribution of H3K36 trimethylation away from 5' ends and toward 3' ends. The effects of splice-site mutations correlated with enhanced retention of a U5 snRNP subunit on transcription complexes downstream of the gene. In contrast, a poly(A) site mutation did not affect H3K36 methylation. Similarly, global inhibition of splicing by spliceostatin A caused a rapid repositioning of H3K36me3 away from 5' ends in favor of 3' ends. These results suggest that the cotranscriptional splicing apparatus influences establishment of normal patterns of histone modification.

  2. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis.

    Science.gov (United States)

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-08-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5' and 3' splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level.

  3. Live-Cell Visualization of Pre-mRNA Splicing with Single-Molecule Sensitivity

    Directory of Open Access Journals (Sweden)

    Robert M. Martin

    2013-09-01

    Full Text Available Removal of introns from pre-messenger RNAs (pre-mRNAs via splicing provides a versatile means of genetic regulation that is often disrupted in human diseases. To decipher how splicing occurs in real time, we directly examined with single-molecule sensitivity the kinetics of intron excision from pre-mRNA in the nucleus of living human cells. By using two different RNA labeling methods, MS2 and λN, we show that β-globin introns are transcribed and excised in 20–30 s. Furthermore, we show that replacing the weak polypyrimidine (Py tract in mouse immunoglobulin μ (IgM pre-mRNA by a U-rich Py decreases the intron lifetime, thus providing direct evidence that splice-site strength influences splicing kinetics. We also found that RNA polymerase II transcribes at elongation rates ranging between 3 and 6 kb min−1 and that transcription can be rate limiting for splicing. These results have important implications for a mechanistic understanding of cotranscriptional splicing regulation in the live-cell context.

  4. FUBP1: a new protagonist in splicing regulation of the DMD gene.

    Science.gov (United States)

    Miro, Julie; Laaref, Abdelhamid Mahdi; Rofidal, Valérie; Lagrafeuille, Rosyne; Hem, Sonia; Thorel, Delphine; Méchin, Déborah; Mamchaoui, Kamel; Mouly, Vincent; Claustres, Mireille; Tuffery-Giraud, Sylvie

    2015-02-27

    We investigated the molecular mechanisms for in-frame skipping of DMD exon 39 caused by the nonsense c.5480T>A mutation in a patient with Becker muscular dystrophy. RNase-assisted pull down assay coupled with mass spectrometry revealed that the mutant RNA probe specifically recruits hnRNPA1, hnRNPA2/B1 and DAZAP1. Functional studies in a human myoblast cell line transfected with DMD minigenes confirmed the splicing inhibitory activity of hnRNPA1 and hnRNPA2/B1, and showed that DAZAP1, also known to activate splicing, acts negatively in the context of the mutated exon 39. Furthermore, we uncovered that recognition of endogenous DMD exon 39 in muscle cells is promoted by FUSE binding protein 1 (FUBP1), a multifunctional DNA- and RNA-binding protein whose role in splicing is largely unknown. By serial deletion and mutagenesis studies in minigenes, we delineated a functional intronic splicing enhancer (ISE) in intron 38. FUBP1 recruitment to the RNA sequence containing the ISE was established by RNA pull down and RNA EMSA, and further confirmed by RNA-ChIP on endogenous DMD pre-mRNA. This study provides new insights about the splicing regulation of DMD exon 39, highlighting the emerging role of FUBP1 in splicing and describing the first ISE for constitutive exon inclusion in the mature DMD transcript. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Benzo[a]pyrene treatment leads to changes in nuclear protein expression and alternative splicing

    Energy Technology Data Exchange (ETDEWEB)

    Yan Chunlan; Wu Wei [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Li Haiyan [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000 (China); Zhang Guanglin [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Duerksen-Hughes, Penelope J. [Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 (United States); Zhu Xinqiang, E-mail: zhuxq@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Yang Jun, E-mail: gastate@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Zhejiang-California International Nanosystems Institute, Hangzhou, Zhejiang 310029 (China)

    2010-04-01

    Benzo[a]pyrene (BaP) is a potent pro-carcinogen generated from the combustion of fossil fuel and cigarette smoke. Previously, using a proteomic approach, we have shown that BaP can induce changes in the expression of many cellular proteins, including transcription regulators. In the present study, using a similar approach, we examined the nuclear protein response to BaP in HeLa cells and found that BaP treatment caused expression changes in many nuclear proteins. Twenty-four of these proteins were successfully identified, several of which are involved in the alternative splicing of mRNA, DNA replication, recombination, and repair. The changed expression levels were further confirmed by immunoblot analysis using specific antibodies for two proteins, Lamin A and mitotic checkpoint protein Bub3. The nuclear localization of these two proteins was also confirmed by confocal microscopy. To determine whether alternative splicing was activated following BaP treatment, we examined Fas and CD44, two genes previously shown to be targets of alternative splicing in respond to DNA damage. While no significant activation of alternative splicing was observed for Fas, CD44 splicing variants were found after BaP treatment. Together, these data show that DNA damage induces dramatic changes in nuclear protein expression, and that alternative splicing might be involved in the cellular response to DNA damage.

  6. The evolutionary landscape of intergenic trans-splicing events in insects

    Science.gov (United States)

    Kong, Yimeng; Zhou, Hongxia; Yu, Yao; Chen, Longxian; Hao, Pei; Li, Xuan

    2015-01-01

    To explore the landscape of intergenic trans-splicing events and characterize their functions and evolutionary dynamics, we conduct a mega-data study of a phylogeny containing eight species across five orders of class Insecta, a model system spanning 400 million years of evolution. A total of 1,627 trans-splicing events involving 2,199 genes are identified, accounting for 1.58% of the total genes. Homology analysis reveals that mod(mdg4)-like trans-splicing is the only conserved event that is consistently observed in multiple species across two orders, which represents a unique case of functional diversification involving trans-splicing. Thus, evolutionarily its potential for generating proteins with novel function is not broadly utilized by insects. Furthermore, 146 non-mod trans-spliced transcripts are found to resemble canonical genes from different species. Trans-splicing preserving the function of ‘breakup' genes may serve as a general mechanism for relaxing the constraints on gene structure, with profound implications for the evolution of genes and genomes. PMID:26521696

  7. Genome-wide association between DNA methylation and alternative splicing in an invertebrate

    Directory of Open Access Journals (Sweden)

    Flores Kevin

    2012-09-01

    Full Text Available Abstract Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee and Nasonia vitripennis (jewel wasp analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice

  8. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    Full Text Available Autoimmune polyendocrine syndrome type 1 (APS-1 is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203 containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  9. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  10. RNA-Seq Analysis of Differential Splice Junction Usage and Intron Retentions by DEXSeq.

    Directory of Open Access Journals (Sweden)

    Yafang Li

    Full Text Available Alternative splicing is an important biological process in the generation of multiple functional transcripts from the same genomic sequences. Differential analysis of splice junctions (SJs and intron retentions (IRs is helpful in the detection of alternative splicing events. In this study, we conducted differential analysis of SJs and IRs by use of DEXSeq, a Bioconductor package originally designed for differential exon usage analysis in RNA-seq data analysis. We set up an analysis pipeline including mapping of RNA-seq reads, the preparation of count tables of SJs and IRs as the input files, and the differential analysis in DEXSeq. We analyzed the public RNA-seq datasets generated from RNAi experiments on Drosophila melanogaster S2-DRSC cells to deplete RNA-binding proteins (GSE18508. The analysis confirmed previous findings on the alternative splicing of the trol and Ant2 (sesB genes in the CG8144 (ps-depletion experiment and identified some new alternative splicing events in other RNAi experiments. We also identified IRs that were confirmed in our SJ analysis. The proposed method used in our study can output the genomic coordinates of differentially used SJs and thus enable sequence motif search. Sequence motif search and gene function annotation analysis helped us infer the underlying mechanism in alternative splicing events. To further evaluate this method, we also applied the method to public RNA-seq data from human breast cancer (GSE45419 and the plant Arabidopsis (SRP008262. In conclusion, our study showed that DEXSeq can be adapted to differential analysis of SJs and IRs, which will facilitate the identification of alternative splicing events and provide insights into the molecular mechanisms of transcription processes and disease development.

  11. Capacity of columns with splice imperfections

    International Nuclear Information System (INIS)

    Popov, E.P.; Stephen, R.M.

    1977-01-01

    To study the behavior of spliced columns subjected to tensile forces simulating situations which may develop in an earthquake, all of the spliced specimens were tested to failure in tension after first having been subjected to large compressive loads. The results of these tests indicate that the lack of perfect contact at compression splices of columns may not be important, provided that the gaps are shimmed and welding is used to maintain the sections in alignment

  12. The connection between splicing and cancer

    OpenAIRE

    Srebrow, Anabella; Kornblihtt, Alberto Rodolfo

    2017-01-01

    Alternative splicing is a crucial mechanism for generating protein diversity. Different splice variants of a given protein can display different and even antagonistic biological functions. Therefore, appropriate control of their synthesis is required to assure the complex orchestration of cellular processes within multicellular organisms. Mutations in cisacting splicing elements or changes in the activity of regulatory proteins that compromise the accuracy of either constitutive or alternativ...

  13. A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets.

    Science.gov (United States)

    Adamia, Sophia; Haibe-Kains, Benjamin; Pilarski, Patrick M; Bar-Natan, Michal; Pevzner, Samuel; Avet-Loiseau, Herve; Lode, Laurence; Verselis, Sigitas; Fox, Edward A; Burke, John; Galinsky, Ilene; Dagogo-Jack, Ibiayi; Wadleigh, Martha; Steensma, David P; Motyckova, Gabriela; Deangelo, Daniel J; Quackenbush, John; Stone, Richard; Griffin, James D

    2014-03-01

    Despite new treatments, acute myeloid leukemia (AML) remains an incurable disease. More effective drug design requires an expanded view of the molecular complexity that underlies AML. Alternative splicing of RNA is used by normal cells to generate protein diversity. Growing evidence indicates that aberrant splicing of genes plays a key role in cancer. We investigated genome-wide splicing abnormalities in AML and based on these abnormalities, we aimed to identify novel potential biomarkers and therapeutic targets. We used genome-wide alternative splicing screening to investigate alternative splicing abnormalities in two independent AML patient cohorts [Dana-Farber Cancer Institute (DFCI) (Boston, MA) and University Hospital de Nantes (UHN) (Nantes, France)] and normal donors. Selected splicing events were confirmed through cloning and sequencing analysis, and than validated in 193 patients with AML. Our results show that approximately 29% of expressed genes genome-wide were differentially and recurrently spliced in patients with AML compared with normal donors bone marrow CD34(+) cells. Results were reproducible in two independent AML cohorts. In both cohorts, annotation analyses indicated similar proportions of differentially spliced genes encoding several oncogenes, tumor suppressor proteins, splicing factors, and heterogeneous-nuclear-ribonucleoproteins, proteins involved in apoptosis, cell proliferation, and spliceosome assembly. Our findings are consistent with reports for other malignances and indicate that AML-specific aberrations in splicing mechanisms are a hallmark of AML pathogenesis. Overall, our results suggest that aberrant splicing is a common characteristic for AML. Our findings also suggest that splice variant transcripts that are the result of splicing aberrations create novel disease markers and provide potential targets for small molecules or antibody therapeutics for this disease. ©2013 AACR

  14. Novel pre-mRNA splicing of intronically integrated HBV generates oncogenic chimera in hepatocellular carcinoma.

    Science.gov (United States)

    Chiu, Yung-Tuen; Wong, John K L; Choi, Shing-Wan; Sze, Karen M F; Ho, Daniel W H; Chan, Lo-Kong; Lee, Joyce M F; Man, Kwan; Cherny, Stacey; Yang, Wan-Ling; Wong, Chun-Ming; Sham, Pak-Chung; Ng, Irene O L

    2016-06-01

    Hepatitis B virus (HBV) integration is common in HBV-associated hepatocellular carcinoma (HCC) and may play an important pathogenic role through the production of chimeric HBV-human transcripts. We aimed to screen the transcriptome for HBV integrations in HCCs. Transcriptome sequencing was performed on paired HBV-associated HCCs and corresponding non-tumorous liver tissues to identify viral-human chimeric sites. Validation was further performed in an expanded cohort of human HCCs. Here we report the discovery of a novel pre-mRNA splicing mechanism in generating HBV-human chimeric protein. This mechanism was exemplified by the formation of a recurrent HBV-cyclin A2 (CCNA2) chimeric transcript (A2S), as detected in 12.5% (6 of 48) of HCC patients, but in none of the 22 non-HCC HBV-associated cirrhotic liver samples examined. Upon the integration of HBV into the intron of the CCNA2 gene, the mammalian splicing machinery utilized the foreign splice sites at 282nt. and 458nt. of the HBV genome to generate a pseudo-exon, forming an in-frame chimeric fusion with CCNA2. The A2S chimeric protein gained a non-degradable property and promoted cell cycle progression, demonstrating its potential oncogenic functions. A pre-mRNA splicing mechanism is involved in the formation of HBV-human chimeric proteins. This represents a novel and possibly common mechanism underlying the formation of HBV-human chimeric transcripts from intronically integrated HBV genome with functional impact. HBV is involved in the mammalian pre-mRNA splicing machinery in the generation of potential tumorigenic HBV-human chimeras. This study also provided insight on the impact of intronic HBV integration with the gain of splice sites in the development of HBV-associated HCC. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    Science.gov (United States)

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Expression of Human CAR Splicing Variants in BAC-Transgenic Mice

    OpenAIRE

    Zhang, Yu-Kun Jennifer; Lu, Hong; Klaassen, Curtis D.

    2012-01-01

    The nuclear receptor constitutive androstane receptor (CAR) is a key regulator for drug metabolism in liver. Human CAR (hCAR) transcripts are subjected to alternative splicing. Some hCAR splicing variants (SVs) have been shown to encode functional proteins by reporter assays. However, in vivo research on the activity of these hCAR SVs has been impeded by the absence of a valid model. This study engineered an hCAR-BAC-transgenic (hCAR-TG) mouse model by integrating the 8.5-kbp hCAR gene as wel...

  17. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yi, E-mail: yihooyi@gmail.com; Ericsson, Ida, E-mail: ida.ericsson@ntnu.no; Doseth, Berit, E-mail: berit.doseth@ntnu.no; Liabakk, Nina B., E-mail: nina.beate.liabakk@ntnu.no; Krokan, Hans E., E-mail: hans.krokan@ntnu.no; Kavli, Bodil, E-mail: bodil.kavli@ntnu.no

    2014-03-10

    Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and found that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation. - Highlights: • AID and its interaction partner CTNNBL1 localize to Cajal bodies and nuclear speckles. • AID associates with its activating kinase PKA in nuclear speckles. • AID is linked to the splicing machinery in switching B-cells. • Our findings suggest a transcription-coupled splicing associated mechanism for AID targeting and activation.

  18. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors

    International Nuclear Information System (INIS)

    Hu, Yi; Ericsson, Ida; Doseth, Berit; Liabakk, Nina B.; Krokan, Hans E.; Kavli, Bodil

    2014-01-01

    Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and found that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation. - Highlights: • AID and its interaction partner CTNNBL1 localize to Cajal bodies and nuclear speckles. • AID associates with its activating kinase PKA in nuclear speckles. • AID is linked to the splicing machinery in switching B-cells. • Our findings suggest a transcription-coupled splicing associated mechanism for AID targeting and activation

  19. Characterization of TTN Novex Splicing Variants across Species and the Role of RBM20 in Novex-Specific Exon Splicing

    Directory of Open Access Journals (Sweden)

    Zhilong Chen

    2018-02-01

    Full Text Available Titin (TTN is a major disease-causing gene in cardiac muscle. Titin (TTN contains 363 exons in human encoding various sizes of TTN protein due to alternative splicing regulated mainly by RNA binding motif 20 (RBM20. Three isoforms of TTN protein are produced by mutually exclusive exons 45 (Novex 1, 46 (Novex 2, and 48 (Novex 3. Alternatively splicing in Novex isoforms across species and whether Novex isoforms are associated with heart disease remains completely unknown. Cross-species exon comparison with the mVISTA online tool revealed that exon 45 is more highly conserved across all species than exons 46 and 48. Importantly, a conserved region between exons 47 and 48 across species was revealed for the first time. Reverse transcript polymerase chain reaction (RT-PCR and DNA sequencing confirmed a new exon named as 48′ in Novex 3. In addition, with primer pairs for Novex 1, a new truncated form preserving introns 44 and 45 was discovered. We discovered that Novex 2 is not expressed in the pig, mouse, and rat with Novex 2 primer pairs. Unexpectedly, three truncated forms were identified. One TTN variant with intron 46 retention is mainly expressed in the human and frog heart, another variant with co-expression of exons 45 and 46 exists predominantly in chicken and frog heart, and a third with retention of introns 45 and 46 is mainly expressed in pig, mouse, rat, and chicken. Using Rbm20 knockout rat heart, we revealed that RBM20 is not a splicing regulator of Novex variants. Furthermore, the expression levels of Novex variants in human hearts with cardiomyopathies suggested that Novexes 2 and 3 could be associated with dilated cardiomyopathy (DCM and/or arrhythmogenic right ventricular cardiomyopathy (ARVC. Taken together, our study reveals that splicing diversity of Novex exons across species and Novex variants might play a role in cardiomyopathy.

  20. Novel aberrant splicings caused by a splice site mutation (IVS1a+5g>a) in F7 gene.

    Science.gov (United States)

    Ding, Qiulan; Wu, Wenman; Fu, Qihua; Wang, Xuefeng; Hu, Yiqun; Wang, Hongli; Wang, Zhenyi

    2005-06-01

    Low FVII coagulant activity (FVII:C 8.2%) and antigen level (FVII:Ag 34.1%) in a 46-year-old Chinese male led to a diagnosis of coagulation factor VII (FVII) deficiency. Compound heterozygous mutations were identified in his F 7 gene:a G to A transition in the 5' donor splice site of intron 1a (IVS1a+5g>a) and a T to G transition at the nucleotide position 10961 in exon 8, resulting in a His to Gln substitution at amino acid residue 348. An analysis of ectopic transcripts of F7 in the leukocytes of the patient reveals that the mutation (IVS1a+5g>a) is associated with two novel aberrant patterns of splicing. The predominant alternative transcript removes exon 2, but retains intron 3, which shifts the reading frame and predicts a premature translation termination at the nucleotide positions 2-4 in intron 3. The minor alternative transcript skips both exon 2 and exon 3 (FVII Delta 2, 3), leading to an in-frame deletion of the propeptide and gamma-carboxylated glutamic acid (Gla) domains of mature FVII protein. In vitro expression studies of the alternative transcript FVII Delta 2,3 by transient transfection of HEK 293 cells with PcDNA 3.1(-) expression vector showed that although the mutant protein could be secreted, no pro-coagulation activity was detected. The coexistence of the two abnormal transcripts and a heterozygous mutation His348Gln, explained the patient's phenotype.

  1. A DNMT3B alternatively spliced exon and encoded peptide are novel biomarkers of human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Sailesh Gopalakrishna-Pillai

    Full Text Available A major obstacle in human stem cell research is the limited number of reagents capable of distinguishing pluripotent stem cells from partially differentiated or incompletely reprogrammed derivatives. Although human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs express numerous alternatively spliced transcripts, little attention has been directed at developing splice variant-encoded protein isoforms as reagents for stem cell research. In this study, several genes encoding proteins involved in important signaling pathways were screened to detect alternatively spliced transcripts that exhibited differential expression in pluripotent stem cells (PSCs relative to spontaneously differentiated cells (SDCs. Transcripts containing the alternatively spliced exon 10 of the de novo DNA methyltransferase gene, DNMT3B, were identified that are expressed in PSCs. To demonstrate the utility and superiority of splice variant specific reagents for stem cell research, a peptide encoded by DNMT3B exon 10 was used to generate an antibody, SG1. The SG1 antibody detects a single DNMT3B protein isoform that is expressed only in PSCs but not in SDCs. The SG1 antibody is also demonstrably superior to other antibodies at distinguishing PSCs from SDCs in mixed cultures containing both pluripotent stem cells and partially differentiated derivatives. The tightly controlled down regulation of DNMT3B exon 10 containing transcripts (and exon 10 encoded peptide upon spontaneous differentiation of PSCs suggests that this DNMT3B splice isoform is characteristic of the pluripotent state. Alternatively spliced exons, and the proteins they encode, represent a vast untapped reservoir of novel biomarkers that can be used to develop superior reagents for stem cell research and to gain further insight into mechanisms controlling stem cell pluripotency.

  2. SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells.

    Science.gov (United States)

    Lu, Xinyi; Göke, Jonathan; Sachs, Friedrich; Jacques, Pierre-Étienne; Liang, Hongqing; Feng, Bo; Bourque, Guillaume; Bubulya, Paula A; Ng, Huck-Hui

    2013-10-01

    Human embryonic stem cells (hESCs) harbour the ability to undergo lineage-specific differentiation into clinically relevant cell types. Transcription factors and epigenetic modifiers are known to play important roles in the maintenance of pluripotency of hESCs. However, little is known about regulation of pluripotency through splicing. In this study, we identify the spliceosome-associated factor SON as a factor essential for the maintenance of hESCs. Depletion of SON in hESCs results in the loss of pluripotency and cell death. Using genome-wide RNA profiling, we identified transcripts that are regulated by SON. Importantly, we confirmed that SON regulates the proper splicing of transcripts encoding for pluripotency regulators such as OCT4, PRDM14, E4F1 and MED24. Furthermore, we show that SON is bound to these transcripts in vivo. In summary, we connect a splicing-regulatory network for accurate transcript production to the maintenance of pluripotency and self-renewal of hESCs.

  3. Examining the intersection between splicing, nuclear export and small RNA pathways.

    Science.gov (United States)

    Nabih, Amena; Sobotka, Julia A; Wu, Monica Z; Wedeles, Christopher J; Claycomb, Julie M

    2017-11-01

    Nuclear Argonaute/small RNA pathways in a variety of eukaryotic species are generally known to regulate gene expression via chromatin modulation and transcription attenuation in a process known as transcriptional gene silencing (TGS). However, recent data, including genetic screens, phylogenetic profiling, and molecular mechanistic studies, also point to a novel and emerging intersection between the splicing and nuclear export machinery with nuclear Argonaute/small RNA pathways in many organisms. In this review, we summarize the field's current understanding regarding the relationship between splicing, export and small RNA pathways, and consider the biological implications for coordinated regulation of transcripts by these pathways. We also address the importance and available approaches for understanding the RNA regulatory logic generated by the intersection of these particular pathways in the context of synthetic biology. The interactions between various eukaryotic RNA regulatory pathways, particularly splicing, nuclear export and small RNA pathways provide a type of combinatorial code that informs the identity ("self" versus "non-self") and dictates the fate of each transcript in a cell. Although the molecular mechanisms for how splicing and nuclear export impact small RNA pathways are not entirely clear at this early stage, the links between these pathways are widespread across eukaryotic phyla. The link between splicing, nuclear export, and small RNA pathways is emerging and establishes a new frontier for understanding the combinatorial logic of gene regulation across species that could someday be harnessed for therapeutic, biotechnology and agricultural applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Optimization of Peptide Nucleic Acid Antisense Oligonucleotides for Local and Systemic Dystrophin Splice Correction in the mdx Mouse

    Science.gov (United States)

    Yin, HaiFang; Betts, Corinne; Saleh, Amer F; Ivanova, Gabriela D; Lee, Hyunil; Seow, Yiqi; Kim, Dalsoo; Gait, Michael J; Wood, Matthew JA

    2010-01-01

    Antisense oligonucleotides (AOs) have the capacity to alter the processing of pre-mRNA transcripts in order to correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle degenerative disease that arises from mutations in the DMD gene leading to an absence of dystrophin protein. AOs have been shown to restore the expression of functional dystrophin via splice correction by intramuscular and systemic delivery in animal models of DMD and in DMD patients via intramuscular administration. Major challenges in developing this splice correction therapy are to optimize AO chemistry and to develop more effective systemic AO delivery. Peptide nucleic acid (PNA) AOs are an alternative AO chemistry with favorable in vivo biochemical properties and splice correcting abilities. Here, we show long-term splice correction of the DMD gene in mdx mice following intramuscular PNA delivery and effective splice correction in aged mdx mice. Further, we report detailed optimization of systemic PNA delivery dose regimens and PNA AO lengths to yield splice correction, with 25-mer PNA AOs providing the greatest splice correcting efficacy, restoring dystrophin protein in multiple peripheral muscle groups. PNA AOs therefore provide an attractive candidate AO chemistry for DMD exon skipping therapy. PMID:20068555

  5. Functional characterisation of an intron retaining K+ transporter of barley reveals intron-mediated alternate splicing

    KAUST Repository

    Shahzad, K.

    2015-01-01

    Intron retention in transcripts and the presence of 5 and 3 splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K+ transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K+ uptake restored growth in medium containing hygromycin in the presence of different concentrations of K+ and mediated hypersensitivity to Na+. HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K+ and Na+ concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  6. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis

    KAUST Repository

    Cui, Peng

    2014-01-07

    Background: Sm-like proteins are highly conserved proteins that form the core of the U6 ribonucleoprotein and function in several mRNA metabolism processes, including pre-mRNA splicing. Despite their wide occurrence in all eukaryotes, little is known about the roles of Sm-like proteins in the regulation of splicing.Results: Here, through comprehensive transcriptome analyses, we demonstrate that depletion of the Arabidopsis supersensitive to abscisic acid and drought 1 gene (SAD1), which encodes Sm-like protein 5 (LSm5), promotes an inaccurate selection of splice sites that leads to a genome-wide increase in alternative splicing. In contrast, overexpression of SAD1 strengthens the precision of splice-site recognition and globally inhibits alternative splicing. Further, SAD1 modulates the splicing of stress-responsive genes, particularly under salt-stress conditions. Finally, we find that overexpression of SAD1 in Arabidopsis improves salt tolerance in transgenic plants, which correlates with an increase in splicing accuracy and efficiency for stress-responsive genes.Conclusions: We conclude that SAD1 dynamically controls splicing efficiency and splice-site recognition in Arabidopsis, and propose that this may contribute to SAD1-mediated stress tolerance through the metabolism of transcripts expressed from stress-responsive genes. Our study not only provides novel insights into the function of Sm-like proteins in splicing, but also uncovers new means to improve splicing efficiency and to enhance stress tolerance in a higher eukaryote. 2014 Cui et al.; licensee BioMed Central Ltd.

  7. Changes in Alternative Splicing as Pharmacodynamic Markers for Sudemycin D6

    Directory of Open Access Journals (Sweden)

    Morgan Thurman

    2017-09-01

    Full Text Available Objective: The aim of the study was to define pharmacodynamic markers for sudemycin D6, an experimental cancer drug that changes alternative splicing in human blood. Methods: Blood samples from 12 donors were incubated with sudemycin D6 for up to 24 hours, and at several time points total RNA from lymphocytes was prepared and the pre-messenger RNA (mRNA splicing patterns were analyzed with reverse transcription-polymerase chain reaction. Results: Similar to immortalized cells, blood lymphocytes change alternative splicing due to sudemycin D6 treatment. However, lymphocytes in blood respond slower than immortalized cultured cells. Conclusions: Exon skipping in the DUSP11 and SRRM1 pre-mRNAs are pharmacodynamic markers for sudemycin D6 treatment and show effects beginning at 9 hours after treatment.

  8. Spliced

    DEFF Research Database (Denmark)

    Addison, Courtney Page

    2017-01-01

    Human gene therapy (HGT) aims to cure disease by inserting or editing the DNA of patients with genetic conditions. Since foundational genetic techniques came into use in the 1970s, the field has developed to the point that now three therapies have market approval, and over 1800 clinical trials have...... been initiated. In this article I present a brief history of HGT, showing how the ethical and practical viability of the field was achieved by key scientific and regulatory actors. These parties carefully articulated gene therapy’s scope, limiting it to therapeutic interventions on somatic cells......, and cultivated alliances and divisions that bolstered the field’s legitimacy. At times these measures faltered, and then practitioners and sometimes patients would invoke an ethical imperative, posing gene therapy as the best solution to life and death problems. I suggest that we consider how boundary...

  9. Multivariate Analysis and Visualization of Splicing Correlations in Single-Gene Transcriptomes

    Directory of Open Access Journals (Sweden)

    Agnew William S

    2007-01-01

    Full Text Available Abstract Background RNA metabolism, through 'combinatorial splicing', can generate enormous structural diversity in the proteome. Alternative domains may interact, however, with unpredictable phenotypic consequences, necessitating integrated RNA-level regulation of molecular composition. Splicing correlations within transcripts of single genes provide valuable clues to functional relationships among molecular domains as well as genomic targets for higher-order splicing regulation. Results We present tools to visualize complex splicing patterns in full-length cDNA libraries. Developmental changes in pair-wise correlations are presented vectorially in 'clock plots' and linkage grids. Higher-order correlations are assessed statistically through Monte Carlo analysis of a log-linear model with an empirical-Bayes estimate of the true probabilities of observed and unobserved splice forms. Log-linear coefficients are visualized in a 'spliceprint,' a signature of splice correlations in the transcriptome. We present two novel metrics: the linkage change index, which measures the directional change in pair-wise correlation with tissue differentiation, and the accuracy index, a very simple goodness-of-fit metric that is more sensitive than the integrated squared error when applied to sparsely populated tables, and unlike chi-square, does not diverge at low variance. Considerable attention is given to sparse contingency tables, which are inherent to single-gene libraries. Conclusion Patterns of splicing correlations are revealed, which span a broad range of interaction order and change in development. The methods have a broad scope of applicability, beyond the single gene – including, for example, multiple gene interactions in the complete transcriptome.

  10. Identification of a novel splicing form of amelogenin gene in a reptile, Ctenosaura similis.

    Directory of Open Access Journals (Sweden)

    Xinping Wang

    Full Text Available Amelogenin, the major enamel matrix protein in tooth development, has been demonstrated to play a significant role in tooth enamel formation. Previous studies have identified the alternative splicing of amelogenin in many mammalian vertebrates as one mechanism for amelogenin heterogeneous expression in teeth. While amelogenin and its splicing forms in mammalian vertebrates have been cloned and sequenced, the amelogenin gene, especially its splicing forms in non-mammalian species, remains largely unknown. To better understand the mechanism underlying amelogenin evolution, we previously cloned and characterized an amelogenin gene sequence from a squamate, the green iguana. In this study, we employed RT-PCR to amplify the amelogenin gene from the black spiny-tailed iguana Ctenosaura similis teeth, and discovered a novel splicing form of the amelogenin gene. The transcript of the newly identified iguana amelogenin gene (named C. Similis-T2L is 873 nucleotides long encoding an expected polypeptide of 206 amino acids. The C. Similis-T2L contains a unique exon denominated exon X, which is located between exon 5 and exon 6. The C. Similis-T2L contains 7 exons including exon 1, 2, 3, 5, X, 6, and 7. Analysis of the secondary and tertiary structures of T2L amelogenin protein demonstrated that exon X has a dramatic effect on the amelogenin structures. This is the first report to provide definitive evidence for the amelogenin alternative splicing in non-mammalian vertebrates, revealing a unique exon X and the splicing form of the amelogenin gene transcript in Ctenosaura similis.

  11. The cancer exome generated by alternative mRNA splicing dilutes predicted HLA class I epitope density.

    Science.gov (United States)

    Stranzl, Thomas; Larsen, Mette V; Lund, Ole; Nielsen, Morten; Brunak, Søren

    2012-01-01

    Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered presentation of HLA class I epitopes is frequently observed in various types of cancer. Down-regulation of genes related to HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the cell surface. Here, we use a peptidome wide analysis of predicted alternative splice forms, based on a publicly available database, to show that peptides over-represented in cancer splice variants comprise significantly fewer predicted HLA class I epitopes compared to peptides from normal transcripts. Peptides over-represented in cancer transcripts are in the case of the three most common HLA class I supertype representatives consistently found to contain fewer predicted epitopes compared to normal tissue. We observed a significant difference in amino acid composition between protein sequences associated with normal versus cancer tissue, as transcripts found in cancer are enriched with hydrophilic amino acids. This variation contributes to the observed significant lower likelihood of cancer-specific peptides to be predicted epitopes compared to peptides found in normal tissue.

  12. The cancer exome generated by alternative mRNA splicing dilutes predicted HLA class I epitope density.

    Directory of Open Access Journals (Sweden)

    Thomas Stranzl

    Full Text Available Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered presentation of HLA class I epitopes is frequently observed in various types of cancer. Down-regulation of genes related to HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the cell surface. Here, we use a peptidome wide analysis of predicted alternative splice forms, based on a publicly available database, to show that peptides over-represented in cancer splice variants comprise significantly fewer predicted HLA class I epitopes compared to peptides from normal transcripts. Peptides over-represented in cancer transcripts are in the case of the three most common HLA class I supertype representatives consistently found to contain fewer predicted epitopes compared to normal tissue. We observed a significant difference in amino acid composition between protein sequences associated with normal versus cancer tissue, as transcripts found in cancer are enriched with hydrophilic amino acids. This variation contributes to the observed significant lower likelihood of cancer-specific peptides to be predicted epitopes compared to peptides found in normal tissue.

  13. A View of Pre-mRNA Splicing from RNase R Resistant RNAs

    Directory of Open Access Journals (Sweden)

    Hitoshi Suzuki

    2014-05-01

    Full Text Available During pre-mRNA splicing, exons in the primary transcript are precisely connected to generate an mRNA. Intron lariat RNAs are formed as by-products of this process. In addition, some exonic circular RNAs (circRNAs may also result from exon skipping as by-products. Lariat RNAs and circRNAs are both RNase R resistant RNAs. RNase R is a strong 3' to 5' exoribonuclease, which efficiently degrades linear RNAs, such as mRNAs and rRNAs; therefore, the circular parts of lariat RNAs and the circRNAs can be segregated from eukaryotic total RNAs by their RNase R resistance. Thus, RNase R resistant RNAs could provide unexplored splicing information not available from mRNAs. Analyses of these RNAs identified repeating splicing phenomena, such as re-splicing of mature mRNAs and nested splicing. Moreover, circRNA might function as microRNA sponges. There is an enormous variety of endogenous circRNAs, which are generally synthesized in cells and tissues.

  14. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing.

    Science.gov (United States)

    Li, Sanshu; Breaker, Ronald R

    2013-03-01

    Thiamin pyrophosphate (TPP) riboswitches are found in organisms from all three domains of life. Examples in bacteria commonly repress gene expression by terminating transcription or by blocking ribosome binding, whereas most eukaryotic TPP riboswitches are predicted to regulate gene expression by modulating RNA splicing. Given the widespread distribution of eukaryotic TPP riboswitches and the diversity of their locations in precursor messenger RNAs (pre-mRNAs), we sought to examine the mechanism of alternative splicing regulation by a fungal TPP riboswitch from Neurospora crassa, which is mostly located in a large intron separating protein-coding exons. Our data reveal that this riboswitch uses a long-distance (∼530-nt separation) base-pairing interaction to regulate alternative splicing. Specifically, a portion of the TPP-binding aptamer can form a base-paired structure with a conserved sequence element (α) located near a 5' splice site, which greatly increases use of this 5' splice site and promotes gene expression. Comparative sequence analyses indicate that many fungal species carry a TPP riboswitch with similar intron architecture, and therefore the homologous genes in these fungi are likely to use the same mechanism. Our findings expand the scope of genetic control mechanisms relying on long-range RNA interactions to include riboswitches.

  15. Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes

    Directory of Open Access Journals (Sweden)

    Ulrich F. Müller

    2017-01-01

    Full Text Available Group I intron ribozymes occur naturally as cis-splicing ribozymes, in the form of introns that do not require the spliceosome for their removal. Instead, they catalyze two consecutive trans-phosphorylation reactions to remove themselves from a primary transcript, and join the two flanking exons. Designed, trans-splicing variants of these ribozymes replace the 3′-portion of a substrate with the ribozyme’s 3′-exon, replace the 5′-portion with the ribozyme’s 5′-exon, or insert/remove an internal sequence of the substrate. Two of these designs have been evolved experimentally in cells, leading to variants of group I intron ribozymes that splice more efficiently, recruit a cellular protein to modify the substrate’s gene expression, or elucidate evolutionary pathways of ribozymes in cells. Some of the artificial, trans-splicing ribozymes are promising as tools in therapy, and as model systems for RNA evolution in cells. This review provides an overview of the different types of trans-splicing group I intron ribozymes that have been generated, and the experimental evolution systems that have been used to improve them.

  16. Effect of 5-fluorouracil incorporation into pre-mRNA on RNA splicing in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Doong, S.L.

    1988-01-01

    5-Fluorouracil(FUra) has been proven useful in the chemotherapy of a number of cancers. The mechanism underlying its cytotoxicity is controversial. We are interested in studying the FUra effect on the fidelity of the pre-mRNA splicing process. ({sup 32}P)-labeled human {beta}-globin pre-mRNA containing the first two exons and the first intervening sequence was synthesized in the presence of UTP, FUTP, or both. The appearance of a new minor spliced product was dependent on both the pH of the splicing reaction and the extent of FUra incorporation into pre-mRNA. At least 84% substitution of U by FUra was required to observe the presence of the abnormal splicing pathway. The new spliced product was sequenced and found to contain an additional 20 bases derived from the 3{prime} end of the intervening sequence. Nearest neighbor analysis, RNase T{sub 1} fingerprinting, and short primer extension experiments were carried out to assess the extent of transcription infidelity induced by FUra. Site directed mutagenesis was performed to determine the sequence(s) of FUra substitution which contribute to missplicing in vitro.

  17. Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model.

    Science.gov (United States)

    Bestas, Burcu; Moreno, Pedro M D; Blomberg, K Emelie M; Mohammad, Dara K; Saleh, Amer F; Sutlu, Tolga; Nordin, Joel Z; Guterstam, Peter; Gustafsson, Manuela O; Kharazi, Shabnam; Piątosa, Barbara; Roberts, Thomas C; Behlke, Mark A; Wood, Matthew J A; Gait, Michael J; Lundin, Karin E; El Andaloussi, Samir; Månsson, Robert; Berglöf, Anna; Wengel, Jesper; Smith, C I Edvard

    2014-09-01

    X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton's tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense, splice-correcting oligonucleotides (SCOs) targeting mutated BTK transcripts for treating XLA. Both the SCO structural design and chemical properties were optimized using 2'-O-methyl, locked nucleic acid, or phosphorodiamidate morpholino backbones. In order to have access to an animal model of XLA, we engineered a transgenic mouse that harbors a BAC with an authentic, mutated, splice-defective human BTK gene. BTK transgenic mice were bred onto a Btk knockout background to avoid interference of the orthologous mouse protein. Using this model, we determined that BTK-specific SCOs are able to correct aberrantly spliced BTK in B lymphocytes, including pro-B cells. Correction of BTK mRNA restored expression of functional protein, as shown both by enhanced lymphocyte survival and reestablished BTK activation upon B cell receptor stimulation. Furthermore, SCO treatment corrected splicing and restored BTK expression in primary cells from patients with XLA. Together, our data demonstrate that SCOs can restore BTK function and that BTK-targeting SCOs have potential as personalized medicine in patients with XLA.

  18. On the path to genetic novelties: insights from programmed DNA elimination and RNA splicing.

    Science.gov (United States)

    Catania, Francesco; Schmitz, Jürgen

    2015-01-01

    Understanding how genetic novelties arise is a central goal of evolutionary biology. To this end, programmed DNA elimination and RNA splicing deserve special consideration. While programmed DNA elimination reshapes genomes by eliminating chromatin during organismal development, RNA splicing rearranges genetic messages by removing intronic regions during transcription. Small RNAs help to mediate this class of sequence reorganization, which is not error-free. It is this imperfection that makes programmed DNA elimination and RNA splicing excellent candidates for generating evolutionary novelties. Leveraging a number of these two processes' mechanistic and evolutionary properties, which have been uncovered over the past years, we present recently proposed models and empirical evidence for how splicing can shape the structure of protein-coding genes in eukaryotes. We also chronicle a number of intriguing similarities between the processes of programmed DNA elimination and RNA splicing, and highlight the role that the variation in the population-genetic environment may play in shaping their target sequences. © 2015 Wiley Periodicals, Inc.

  19. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    Science.gov (United States)

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns.

  20. Transcriptomic insights into the alternative splicing-mediated adaptation of the entomopathogenic fungus Beauveria bassiana to host niches: autophagy-related gene 8 as an example.

    Science.gov (United States)

    Dong, Wei-Xia; Ding, Jin-Li; Gao, Yang; Peng, Yue-Jin; Feng, Ming-Guang; Ying, Sheng-Hua

    2017-10-01

    Alternative splicing (AS) regulates various biological processes in fungi by extending the cellular proteome. However, comprehensive studies investigating AS in entomopathogenic fungi are lacking. Based on transcriptome data obtained via dual RNA-seq, the first overview of AS events was developed for Beauveria bassiana growing in an insect haemocoel. The AS was demonstrated for 556 of 8840 expressed genes, accounting for 5.4% of the total genes in B. bassiana. Intron retention was the most abundant type of AS, accounting for 87.1% of all splicing events and exon skipping events were rare, only accounting for 2.0% of all events. Functional distribution analysis indicated an association between alternatively spliced genes and several physiological processes. Notably, B. bassiana autophagy-related gene 8 (BbATG8), an indispensable gene for autophagy, was spliced at an alternative 5' splice site to generate two transcripts (BbATG8-α and BbATG8-β). The BbATG8-α transcript was necessary for fungal autophagy and oxidation tolerance, while the BbATG8-β transcript was not. These two transcripts differentially contributed to the formation of conidia or blastospores as well as fungal virulence. Thus, AS acts as a powerful post-transcriptional regulatory strategy in insect mycopathogens and significantly mediates fungal transcriptional adaption to host niches. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    White, Eric S., E-mail: docew@umich.edu [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI (United States); Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B. [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI (United States); Ritzenthaler, Jeffrey D.; Roman, Jesse [Department of Medicine, University of Louisville School of Medicine, Louisville, KY (United States); Muro, Andres F. [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2010-10-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-{beta}, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten{sup -/-} fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten{sup -/-} cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten{sup -/-} cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  2. The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor.

    Science.gov (United States)

    Sharina, Iraida G; Martin, Emil

    2017-01-20

    Nitric oxide (NO)-dependent signaling is critical to many cellular functions and physiological processes. Soluble guanylyl cyclase (sGC) acts as an NO receptor and mediates the majority of NO functions. The signaling between NO and sGC is strongly altered by reactive oxygen and nitrogen species. Recent Advances: Besides NO scavenging, sGC is affected by oxidation/loss of sGC heme, oxidation, or nitrosation of cysteine residues and phosphorylation. Apo-sGC or sGC containing oxidized heme is targeted for degradation. sGC transcription and the stability of sGC mRNA are also affected by oxidative stress. Studies cited in this review suggest the existence of compensatory processes that adapt cellular processes to diminished sGC function under conditions of short-term or moderate oxidative stress. Alternative splicing of sGC transcripts is discussed as a mechanism with the potential to both enhance and reduce sGC function. The expression of α1 isoform B, a functional and stable splice variant of human α1 sGC subunit, is proposed as one of such compensatory mechanisms. The expression of dysfunctional splice isoforms is discussed as a contributor to decreased sGC function in vascular disease. Targeting the process of sGC splicing may be an important approach to maintain the composition of sGC transcripts that are expressed in healthy tissues under normal conditions. Emerging new strategies that allow for targeted manipulations of RNA splicing offer opportunities to use this approach as a preventive measure and to control the composition of sGC splice isoforms. Rational management of expressed sGC splice forms may be a valuable complementary treatment strategy for existing sGC-directed therapies. Antioxid. Redox Signal. 26, 122-136.

  3. RAGE splicing variants in mammals.

    Science.gov (United States)

    Sterenczak, Katharina Anna; Nolte, Ingo; Murua Escobar, Hugo

    2013-01-01

    The receptor for advanced glycation end products (RAGE) is a multiligand receptor of environmental stressors which plays key roles in pathophysiological processes, including immune/inflammatory disorders, Alzheimer's disease, diabetic arteriosclerosis, tumorigenesis, and metastasis. Besides the full-length RAGE protein in humans nearly 20 natural occurring RAGE splicing variants were described on mRNA and protein level. These naturally occurring isoforms are characterized by either N-terminally or C-terminally truncations and are discussed as possible regulators of the full-length RAGE receptor either by competitive ligand binding or by displacing the full-length protein in the membrane. Accordingly, expression deregulations of the naturally occurring isoforms were supposed to have significant effect on RAGE-mediated disorders. Thereby the soluble C-truncated RAGE isoforms present in plasma and tissues are the mostly focused isoforms in research and clinics. Deregulations of the circulating levels of soluble RAGE forms were reported in several RAGE-associated pathological disorders including for example atherosclerosis, diabetes, renal failure, Alzheimer's disease, and several cancer types. Regarding other mammalian species, the canine RAGE gene showed high similarities to the corresponding human structures indicating RAGE to be evolutionary highly conserved between both species. Similar to humans the canine RAGE showed a complex and extensive splicing activity leading to a manifold pattern of RAGE isoforms. Due to the similarities seen in several canine and human diseases-including cancer-comparative structural and functional analyses allow the development of RAGE and ligand-specific therapeutic approaches beneficial for human and veterinary medicine.

  4. Scaffold protein enigma homolog activates CREB whereas a short splice variant prevents CREB activation in cardiomyocytes.

    Science.gov (United States)

    Ito, Jumpei; Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Kuroda, Shun'ichi; Maturana, Andrés D

    2015-12-01

    Enigma Homolog (ENH1 or Pdlim5) is a scaffold protein composed of an N-terminal PDZ domain and three LIM domains at the C-terminal end. The enh gene encodes for several splice variants with opposing functions. ENH1 promotes cardiomyocytes hypertrophy whereas ENH splice variants lacking LIM domains prevent it. ENH1 interacts with various Protein Kinase C (PKC) isozymes and Protein Kinase D1 (PKD1). In addition, the binding of ENH1's LIM domains to PKC is sufficient to activate the kinase without stimulation. The downstream events of the ENH1-PKC/PKD1 complex remain unknown. PKC and PKD1 are known to phosphorylate the transcription factor cAMP-response element binding protein (CREB). We tested whether ENH1 could play a role in the activation of CREB. We found that, in neonatal rat ventricular cardiomyocytes, ENH1 interacts with CREB, is necessary for the phosphorylation of CREB at ser133, and the activation of CREB-dependent transcription. On the contrary, the overexpression of ENH3, a LIM-less splice variant, inhibited the phosphorylation of CREB. ENH3 overexpression or shRNA knockdown of ENH1 prevented the CREB-dependent transcription. Our results thus suggest that ENH1 plays an essential role in CREB's activation and dependent transcription in cardiomyocytes. At the opposite, ENH3 prevents the CREB transcriptional activity. In conclusion, these results provide a first molecular explanation to the opposing functions of ENH splice variants. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Regular languages, regular grammars and automata in splicing systems

    Science.gov (United States)

    Mohamad Jan, Nurhidaya; Fong, Wan Heng; Sarmin, Nor Haniza

    2013-04-01

    Splicing system is known as a mathematical model that initiates the connection between the study of DNA molecules and formal language theory. In splicing systems, languages called splicing languages refer to the set of double-stranded DNA molecules that may arise from an initial set of DNA molecules in the presence of restriction enzymes and ligase. In this paper, some splicing languages resulted from their respective splicing systems are shown. Since all splicing languages are regular, languages which result from the splicing systems can be further investigated using grammars and automata in the field of formal language theory. The splicing language can be written in the form of regular languages generated by grammar. Besides that, splicing systems can be accepted by automata. In this research, two restriction enzymes are used in splicing systems namely BfuCI and NcoI.

  6. The Am-tra2 gene is an essential regulator of female splice regulation at two levels of the sex determination hierarchy of the honeybee.

    Science.gov (United States)

    Nissen, Inga; Müller, Miriam; Beye, Martin

    2012-11-01

    Heteroallelic and homo- or hemiallelic Complementary sex determiner (Csd) proteins determine sexual fate in the honeybee (Apis mellifera) by controlling the alternative splicing of the downstream gene fem (feminizer). Thus far, we have little understanding of how heteroallelic Csd proteins mediate the splicing of female fem messenger RNAs (mRNAs) or how Fem proteins direct the splicing of honeybee dsx (Am-dsx) pre-mRNAs. Here, we report that Am-tra2, which is an ortholog of Drosophila melanogaster tra2, is an essential component of female splicing of the fem and Am-dsx transcripts in the honeybee. The Am-tra2 transcripts are alternatively (but non-sex-specifically) spliced, and they are translated into six protein isoforms that all share the basic RNA-binding domain/RS (arginine/serine) domain structure. Knockdown studies showed that the Am-tra2 gene is required to splice fem mRNAs into the productive female and nonproductive male forms. We suggest that the Am-Tra2 proteins are essential regulators of fem pre-mRNA splicing that, together with heteroallelic Csd proteins and/or Fem proteins, implement the female pathway. In males, the Am-Tra2 proteins may enhance the switch of fem transcripts into the nonproductive male form when heteroallelic Csd proteins are absent. This dual function of Am-Tra2 proteins possibly enhances and stabilizes the binary decision process of male/female splicing. Our knockdown studies also imply that the Am-Tra2 protein is an essential regulator for Am-dsx female splice regulation, suggesting an ancestral role in holometabolous insects. We also provide evidence that the Am-tra2 gene has an essential function in honeybee embryogenesis that is unrelated to sex determination.

  7. Extraction of transcript diversity from scientific literature.

    Directory of Open Access Journals (Sweden)

    Parantu K Shah

    2005-06-01

    Full Text Available Transcript diversity generated by alternative splicing and associated mechanisms contributes heavily to the functional complexity of biological systems. The numerous examples of the mechanisms and functional implications of these events are scattered throughout the scientific literature. Thus, it is crucial to have a tool that can automatically extract the relevant facts and collect them in a knowledge base that can aid the interpretation of data from high-throughput methods. We have developed and applied a composite text-mining method for extracting information on transcript diversity from the entire MEDLINE database in order to create a database of genes with alternative transcripts. It contains information on tissue specificity, number of isoforms, causative mechanisms, functional implications, and experimental methods used for detection. We have mined this resource to identify 959 instances of tissue-specific splicing. Our results in combination with those from EST-based methods suggest that alternative splicing is the preferred mechanism for generating transcript diversity in the nervous system. We provide new annotations for 1,860 genes with the potential for generating transcript diversity. We assign the MeSH term "alternative splicing" to 1,536 additional abstracts in the MEDLINE database and suggest new MeSH terms for other events. We have successfully extracted information about transcript diversity and semiautomatically generated a database, LSAT, that can provide a quantitative understanding of the mechanisms behind tissue-specific gene expression. LSAT (Literature Support for Alternative Transcripts is publicly available at http://www.bork.embl.de/LSAT/.

  8. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  9. HOLLYWOOD: a comparative relational database of alternative splicing.

    Science.gov (United States)

    Holste, Dirk; Huo, George; Tung, Vivian; Burge, Christopher B

    2006-01-01

    RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information about the splicing of orthologous genes in different species, we have developed the Hollywood system. This database was built upon genomic annotation of splicing patterns of known genes derived from spliced alignment of complementary DNAs (cDNAs) and expressed sequence tags, and links features such as splice site sequence and strength, exonic splicing enhancers and silencers, conserved and non-conserved patterns of splicing, and cDNA library information for inferred alternative exons. Hollywood was implemented as a relational database and currently contains comprehensive information for human and mouse. It is accompanied by a web query tool that allows searches for sets of exons with specific splicing characteristics or splicing regulatory element composition, or gives a graphical or sequence-level summary of splicing patterns for a specific gene. A streamlined graphical representation of gene splicing patterns is provided, and these patterns can alternatively be layered onto existing information in the UCSC Genome Browser. The database is accessible at http://hollywood.mit.edu.

  10. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan); Igarashi, Masayuki [Laboratory of Disease Biology, Institute of Microbial Chemistry, Shinagawa-ku, Tokyo 141-0021 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan)

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.

  11. Thermopriming Triggers Splicing Memory in Arabidopsis

    KAUST Repository

    Ling, Yu

    2018-02-20

    Abiotic and biotic stresses limit crop productivity. Exposure to a non-lethal stress, referred to as priming, can allow plants to survive subsequent and otherwise lethal conditions; the priming effect persists even after a prolonged stress-free period. However, the molecular mechanisms underlying priming are not fully understood. Here, we investigated the molecular basis of heat shock memory and the role of priming in Arabidopsisthaliana. Comprehensive analysis of transcriptome-wide changes in gene expression and alternative splicing in primed and non-primed plants revealed that alternative splicing functions as a novel component of heat shock memory. We show that priming of plants with a non-lethal heat stress results in de-repression of splicing after a second exposure to heat stress. By contrast, non-primed plants showed significant repression of splicing. These observations link ‘splicing memory’ to the ability of plants to survive subsequent and otherwise lethal heat stress. This newly discovered priming-induced splicing memory may represent a general feature of heat stress responses in plants and other organisms as many of the key components of heat shock responses are conserved among eukaryotes. Furthermore, this finding could facilitate the development of novel approaches to improve plant survival under extreme heat stress.

  12. Impaired RNA splicing of 5'-regulatory sequences of the astroglial glutamate transporter EAAT2 in human astrocytoma

    NARCIS (Netherlands)

    Münch, C.; Penndorf, A.; Schwalenstöcker, B.; Troost, D.; Ludolph, A. C.; Ince, P.; Meyer, T.

    2001-01-01

    A loss of the glutamate transporter EAAT2 has been reported in the neoplastic transformation of astrocytic cells and astrocytoma. The RNA expression of EAAT2 and five 5'-regulatory splice variants was investigated to identify alterations of the post-transcriptional EAAT2 gene regulation in human

  13. Adipocyte spliced form of X-box-binding protein 1 promotes adiponectin multimerization and systemic glucose homeostasis

    NARCIS (Netherlands)

    Sha, H.; Yang, L.; Liu, M.; Xia, S.; Liu, Y.; Liu, F.; Kersten, A.H.; Qi, L.

    2014-01-01

    The physiological role of the spliced form of X-box–binding protein 1 (XBP1s), a key transcription factor of the endoplasmic reticulum (ER) stress response, in adipose tissue remains largely unknown. In this study, we show that overexpression of XBP1s promotes adiponectin multimerization in

  14. Distribution of splicing proteins and putative coiled bodies during pollen development and androgenesis in Brassica napus L.

    NARCIS (Netherlands)

    Straatman, K.R.; Schel, J.H.N.

    2001-01-01

    Small nuclear ribonucleoprotein particles (snRNPs) are subunits of splicing complexes, which show a transcription-dependent localization pattern. We have analyzed the labelling pattern of snRNPs during pollen development and microspore and pollen embryogenesis in Brassica napus with an antibody

  15. Divergent mitochondrial and endoplasmic reticulum association of DMPK splice isoforms depends on unique sequence arrangements in tail anchors.

    NARCIS (Netherlands)

    Herpen, R.E.M.A. van; Oude Ophuis, R.J.A.; Wijers-Rouw, M.J.P.; Bennink, M.B.; Loo, F.A.J. van de; Fransen, J.; Wieringa, B.; Wansink, D.G.

    2005-01-01

    Myotonic dystrophy protein kinase (DMPK) is a Ser/Thr-type protein kinase with unknown function, originally identified as the product of the gene that is mutated by triplet repeat expansion in patients with myotonic dystrophy type 1 (DM1). Alternative splicing of DMPK transcripts results in multiple

  16. Identification and characterization of NAGNAG alternative splicing in the moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Bolte Kathrin

    2010-04-01

    Full Text Available Abstract Background Alternative splicing (AS involving tandem acceptors that are separated by three nucleotides (NAGNAG is an evolutionarily widespread class of AS, which is well studied in Homo sapiens (human and Mus musculus (mouse. It has also been shown to be common in the model seed plants Arabidopsis thaliana and Oryza sativa (rice. In one of the first studies involving sequence-based prediction of AS in plants, we performed a genome-wide identification and characterization of NAGNAG AS in the model plant Physcomitrella patens, a moss. Results Using Sanger data, we found 295 alternatively used NAGNAG acceptors in P. patens. Using 31 features and training and test datasets of constitutive and alternative NAGNAGs, we trained a classifier to predict the splicing outcome at NAGNAG tandem splice sites (alternative splicing, constitutive at the first acceptor, or constitutive at the second acceptor. Our classifier achieved a balanced specificity and sensitivity of ≥ 89%. Subsequently, a classifier trained exclusively on data well supported by transcript evidence was used to make genome-wide predictions of NAGNAG splicing outcomes. By generation of more transcript evidence from a next-generation sequencing platform (Roche 454, we found additional evidence for NAGNAG AS, with altogether 664 alternative NAGNAGs being detected in P. patens using all currently available transcript evidence. The 454 data also enabled us to validate the predictions of the classifier, with 64% (80/125 of the well-supported cases of AS being predicted correctly. Conclusion NAGNAG AS is just as common in the moss P. patens as it is in the seed plants A. thaliana and O. sativa (but not conserved on the level of orthologous introns, and can be predicted with high accuracy. The most informative features are the nucleotides in the NAGNAG and in its immediate vicinity, along with the splice sites scores, as found earlier for NAGNAG AS in animals. Our results suggest that the

  17. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    Science.gov (United States)

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis[W

    Science.gov (United States)

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-01-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380

  19. A novel splicing silencer generated by DMD exon 45 deletion junction could explain upstream exon 44 skipping that modifies dystrophinopathy.

    Science.gov (United States)

    Dwianingsih, Ery Kus; Malueka, Rusdy Ghazali; Nishida, Atsushi; Itoh, Kyoko; Lee, Tomoko; Yagi, Mariko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2014-08-01

    Duchenne muscular dystrophy (DMD), a progressive muscle-wasting disease, is mostly caused by exon deletion mutations in the DMD gene. The reading frame rule explains that out-of-frame deletions lead to muscle dystrophin deficiency in DMD. In outliers to this rule, deletion junction sequences have never previously been explored as splicing modulators. In a Japanese case, we identified a single exon 45 deletion in the patient's DMD gene, indicating out-of-frame mutation. However, immunohistochemical examination disclosed weak dystrophin signals in his muscle. Reverse transcription-PCR amplification of DMD exons 42 to 47 revealed a major normally spliced product with exon 45 deletion and an additional in-frame product with deletion of both exons 44 and 45, indicating upstream exon 44 skipping. We considered the latter to underlie the observed dystrophin expression. Remarkably, the junction sequence cloned by PCR walking abolished the splicing enhancer activity of the upstream intron in a chimeric doublesex gene pre-mRNA in vitro splicing. Furthermore, antisense oligonucleotides directed against the junction site counteracted this effect. These indicated that the junction sequence was a splicing silencer that induced upstream exon 44 skipping. It was strongly suggested that creation of splicing regulator is a modifier of dystrophinopathy.

  20. Transcriptome-wide analysis of alternative RNA splicing events in Epstein-Barr virus-associated gastric carcinomas.

    Science.gov (United States)

    Armero, Victoria E S; Tremblay, Marie-Pier; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Duval, Cyntia; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Bisaillon, Martin

    2017-01-01

    Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein-Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS.

  1. Dystrophin rescue by trans-splicing: a strategy for DMD genotypes not eligible for exon skipping approaches

    Science.gov (United States)

    Lorain, Stéphanie; Peccate, Cécile; Le Hir, Maëva; Griffith, Graziella; Philippi, Susanne; Précigout, Guillaume; Mamchaoui, Kamel; Jollet, Arnaud; Voit, Thomas; Garcia, Luis

    2013-01-01

    RNA-based therapeutic approaches using splice-switching oligonucleotides have been successfully applied to rescue dystrophin in Duchenne muscular dystrophy (DMD) preclinical models and are currently being evaluated in DMD patients. Although the modular structure of dystrophin protein tolerates internal deletions, many mutations that affect nondispensable domains of the protein require further strategies. Among these, trans-splicing technology is particularly attractive, as it allows the replacement of any mutated exon by its normal version as well as introducing missing exons or correcting duplication mutations. We have applied such a strategy in vitro by using cotransfection of pre–trans-splicing molecule (PTM) constructs along with a reporter minigene containing part of the dystrophin gene harboring the stop-codon mutation found in the mdx mouse model of DMD. Optimization of the different functional domains of the PTMs allowed achieving accurate and efficient trans-splicing of up to 30% of the transcript encoded by the cotransfected minigene. Optimized parameters included mRNA stabilization, choice of splice site sequence, inclusion of exon splice enhancers and artificial intronic sequence. Intramuscular delivery of adeno-associated virus vectors expressing PTMs allowed detectable levels of dystrophin in mdx and mdx4Cv, illustrating that a given PTM can be suitable for a variety of mutations. PMID:23861443

  2. Coding potential of the products of alternative splicing in human.

    KAUST Repository

    Leoni, Guido

    2011-01-20

    BACKGROUND: Analysis of the human genome has revealed that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized genes. A number of these transcripts are alternatively spliced forms of known protein coding genes; however, it is becoming clear that many of them do not necessarily correspond to a functional protein. RESULTS: In this study we analyze alternative splicing isoforms of human gene products that are unambiguously identified by mass spectrometry and compare their properties with those of isoforms of the same genes for which no peptide was found in publicly available mass spectrometry datasets. We analyze them in detail for the presence of uninterrupted functional domains, active sites as well as the plausibility of their predicted structure. We report how well each of these strategies and their combination can correctly identify translated isoforms and derive a lower limit for their specificity, that is, their ability to correctly identify non-translated products. CONCLUSIONS: The most effective strategy for correctly identifying translated products relies on the conservation of active sites, but it can only be applied to a small fraction of isoforms, while a reasonably high coverage, sensitivity and specificity can be achieved by analyzing the presence of non-truncated functional domains. Combining the latter with an assessment of the plausibility of the modeled structure of the isoform increases both coverage and specificity with a moderate cost in terms of sensitivity.

  3. Diversification of the Histone Acetyltransferase GCN5 through Alternative Splicing in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Alexandre Martel

    2017-12-01

    Full Text Available The epigenetic modulatory SAGA complex is involved in various developmental and stress responsive pathways in plants. Alternative transcripts of the SAGA complex's enzymatic subunit GCN5 have been identified in Brachypodium distachyon. These splice variants differ based on the presence and integrity of their conserved domain sequences: the histone acetyltransferase domain, responsible for catalytic activity, and the bromodomain, involved in acetyl-lysine binding and genomic loci targeting. GCN5 is the wild-type transcript, while alternative splice sites result in the following transcriptional variants: L-GCN5, which is missing the bromodomain and S-GCN5, which lacks the bromodomain as well as certain motifs of the histone acetyltransferase domain. Absolute mRNA quantification revealed that, across eight B. distachyon accessions, GCN5 was the dominant transcript isoform, accounting for up to 90% of the entire transcript pool, followed by L-GCN5 and S-GCN5. A cycloheximide treatment further revealed that the S-GCN5 splice variant was degraded through the nonsense-mediated decay pathway. All alternative BdGCN5 transcripts displayed similar transcript profiles, being induced during early exposure to heat and displaying higher levels of accumulation in the crown, compared to aerial tissues. All predicted protein isoforms localize to the nucleus, which lends weight to their purported epigenetic functions. S-GCN5 was incapable of forming an in vivo protein interaction with ADA2, the transcriptional adaptor that links the histone acetyltransferase subunit to the SAGA complex, while both GCN5 and L-GCN5 interacted with ADA2, which suggests that a complete histone acetyltransferase domain is required for BdGCN5-BdADA2 interaction in vivo. Thus, there has been a diversification in BdGCN5 through alternative splicing that has resulted in differences in conserved domain composition, transcript fate and in vivo protein interaction partners. Furthermore, our

  4. Modulation of KCNQ1 alternative splicing regulates cardiac IKs and action potential repolarization.

    Science.gov (United States)

    Lee, Hsiang-Chun; Rudy, Yoram; Po-Yuan, Phd; Sheu, Sheng-Hsiung; Chang, Jan-Gowth; Cui, Jianmin

    2013-08-01

    Slow delayed-rectifier potassium current (IKs) channels, made of the pore-forming KCNQ1 and auxiliary KCNE1 subunits, play a key role in determining action potential duration (APD) in cardiac myocytes. The consequences of drug-induced KCNQ1 splice alteration remain unknown. To study the modulation of KCNQ1 alternative splicing by amiloride and the consequent changes in IKs and action potentials (APs) in ventricular myocytes. Canine endocardial, midmyocardial, and epicardial ventricular myocytes were isolated. Levels of KCNQ1a and KCNQ1b as well as a series of splicing factors were quantified by using the reverse transcriptase-polymerase chain reaction and Western blot. The effect of amiloride-induced changes in the KCNQ1b/total KCNQ1 ratio on AP was measured by using whole-cell patch clamp with and without isoproterenol. With 50 μmol/L of amiloride for 6 hours, KCNQ1a at transcriptional and translational levels increased in midmyocardial myocytes but decreased in endo- and epicardial myocytes. Likewise, changes in splicing factors in midmyocardial were opposite to that in endo- and epicardial myocytes. In midmyocardial myocytes amiloride shortened APD and decreased isoproterenol-induced early afterdepolarizations significantly. The same amiloride-induced effects were demonstrated by using human ventricular myocyte model for AP simulations under beta-adrenergic stimulation. Moreover, amiloride reduced the transmural dispersion of repolarization in pseudo-electrocardiogram. Amiloride regulates IKs and APs with transmural differences and reduces arrhythmogenicity through the modulation of KCNQ1 splicing. We suggested that the modulation of KCNQ1 splicing may help prevent arrhythmia. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. A biophysical model for identifying splicing regulatory elements and their interactions.

    Directory of Open Access Journals (Sweden)

    Ji Wen

    Full Text Available Alternative splicing (AS of precursor mRNA (pre-mRNA is a crucial step in the expression of most eukaryotic genes. Splicing factors (SFs play an important role in AS regulation by binding to the cis-regulatory elements on the pre-mRNA. Although many splicing factors (SFs and their binding sites have been identified, their combinatorial regulatory effects remain to be elucidated. In this paper, we derive a biophysical model for AS regulation that integrates combinatorial signals of cis-acting splicing regulatory elements (SREs and their interactions. We also develop a systematic framework for model inference. Applying the biophysical model to a human RNA-Seq data set, we demonstrate that our model can explain 49.1%-66.5% variance of the data, which is comparable to the best result achieved by biophysical models for transcription. In total, we identified 119 SRE pairs between different regions of cassette exons that may regulate exon or intron definition in splicing, and 77 SRE pairs from the same region that may arise from a long motif or two different SREs bound by different SFs. Particularly, putative binding sites of polypyrimidine tract-binding protein (PTB, heterogeneous nuclear ribonucleoprotein (hnRNP F/H and E/K are identified as interacting SRE pairs, and have been shown to be consistent with the interaction models proposed in previous experimental results. These results show that our biophysical model and inference method provide a means of quantitative modeling of splicing regulation and is a useful tool for identifying SREs and their interactions. The software package for model inference is available under an open source license.

  6. Novel mutations in EVC cause aberrant splicing in Ellis-van Creveld syndrome.

    Science.gov (United States)

    Shi, Lisong; Luo, Chunyan; Ahmed, Mairaj K; Attaie, Ali B; Ye, Xiaoqian

    2016-04-01

    Ellis-van Creveld syndrome (EvC) is a rare autosomal recessive disorder characterized by disproportionate chondrodysplasia, postaxial polydactyly, nail dystrophy, dental abnormalities and in a proportion of patients, congenital cardiac malformations. Weyers acrofacial dysostosis (Weyers) is another dominantly inherited disorder allelic to EvC syndrome but with milder phenotypes. Both disorders can result from loss-of-function mutations in either EVC or EVC2 gene, and phenotypes associated with the two gene mutations are clinically indistinguishable. We present here a clinical and molecular analysis of a Chinese family manifested specific features of EvC syndrome. Sequencing of both EVC and EVC2 identified two novel heterozygous splice site mutations c.384+5G>C in intron 3 and c.1465-1G>A in intron 10 in EVC, which were inherited from mother and father, respectively. In vitro minigene expression assay, RT-PCR and sequencing analysis demonstrated that c.384+5G>C mutation abolished normal splice site and created a new cryptic acceptor site within exon 4, whereas c.1465-1G>A mutation affected consensus splice junction site and resulted in full exon 11 skipping. These two aberrant pre-mRNA splicing processes both produced in-frame abnormal transcripts that possibly led to abolishment of important functional domains. To our knowledge, this is the first report of EVC mutations that cause EvC syndrome in Chinese population. Our data revealed that EVC splice site mutations altered splicing pattern and helped elucidate the pathogenesis of EvC syndrome.

  7. Alternative splicing originates different domain structure organization of Lutzomyia longipalpis chitinases.

    Science.gov (United States)

    Ortigão-Farias, João Ramalho; Di-Blasi, Tatiana; Telleria, Erich Loza; Andorinho, Ana Carolina; Lemos-Silva, Thais; Ramalho-Ortigão, Marcelo; Tempone, Antônio Jorge; Traub-Csekö, Yara Maria

    2018-02-01

    BACKGROUND The insect chitinase gene family is composed by more than 10 paralogs, which can codify proteins with different domain structures. In Lutzomyia longipalpis, the main vector of visceral leishmaniasis in Brazil, a chitinase cDNA from adult female insects was previously characterized. The predicted protein contains one catalytic domain and one chitin-binding domain (CBD). The expression of this gene coincided with the end of blood digestion indicating a putative role in peritrophic matrix degradation. OBJECTIVES To determine the occurrence of alternative splicing in chitinases of L. longipalpis. METHODS We sequenced the LlChit1 gene from a genomic clone and the three spliced forms obtained by reverse transcription polymerase chain reaction (RT-PCR) using larvae cDNA. FINDINGS We showed that LlChit1 from L. longipalpis immature forms undergoes alternative splicing. The spliced form corresponding to the adult cDNA was named LlChit1A and the two larvae specific transcripts were named LlChit1B and LlChit1C. The B and C forms possess stop codons interrupting the translation of the CBD. The A form is present in adult females post blood meal, L4 larvae and pre-pupae, while the other two forms are present only in L4 larvae and disappear just before pupation. Two bands of the expected size were identified by Western blot only in L4 larvae. MAIN CONCLUSIONS We show for the first time alternative splicing generating chitinases with different domain structures increasing our understanding on the finely regulated digestion physiology and shedding light on a potential target for controlling L. longipalpis larval development.

  8. BRCA1 Exon 11, a CERES (Composite Regulatory Element of Splicing Element Involved in Splice Regulation

    Directory of Open Access Journals (Sweden)

    Claudia Tammaro

    2014-07-01

    Full Text Available Unclassified variants (UV of BRCA1 can affect normal pre-mRNA splicing. Here, we investigate the UV c.693G>A, a “silent” change in BRCA1 exon 11, which we have found induces aberrant splicing in patient carriers and in vitro. Using a minigene assay, we show that the UV c.693G>A has a strong effect on the splicing isoform ratio of BRCA1. Systematic site-directed mutagenesis of the area surrounding the nucleotide position c.693G>A induced variable changes in the level of exon 11 inclusion/exclusion in the mRNA, pointing to the presence of a complex regulatory element with overlapping enhancer and silencer functions. Accordingly, protein binding analysis in the region detected several splicing regulatory factors involved, including SRSF1, SRSF6 and SRSF9, suggesting that this sequence represents a composite regulatory element of splicing (CERES.

  9. Modulation of 5' splice site selection using tailed oligonucleotides carrying splicing signals

    Directory of Open Access Journals (Sweden)

    Elela Sherif

    2006-01-01

    Full Text Available Abstract Background We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins. In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures. Results We show that an oligonucleotide with a 5' tail containing the human β-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition. Conclusion Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.

  10. Splice-mediated Variants of Proteins (SpliVaP) - data and characterization of changes in signatures among protein isoforms due to alternative splicing.

    Science.gov (United States)

    Floris, Matteo; Orsini, Massimiliano; Thanaraj, Thangavel Alphonse

    2008-10-02

    It is often the case that mammalian genes are alternatively spliced; the resulting alternate transcripts often encode protein isoforms that differ in amino acid sequences. Changes among the protein isoforms can alter the cellular properties of proteins. The effect can range from a subtle modulation to a complete loss of function. (i) We examined human splice-mediated protein isoforms (as extracted from a manually curated data set, and from a computationally predicted data set) for differences in the annotation for protein signatures (Pfam domains and PRINTS fingerprints) and we characterized the differences & their effects on protein functionalities. An important question addressed relates to the extent of protein isoforms that may lack any known function in the cell. (ii) We present a database that reports differences in protein signatures among human splice-mediated protein isoform sequences. (i) Characterization: The work points to distinct sets of alternatively spliced genes with varying degrees of annotation for the splice-mediated protein isoforms. Protein molecular functions seen to be often affected are those that relate to: binding, catalytic, transcription regulation, structural molecule, transporter, motor, and antioxidant; and the processes that are often affected are nucleic acid binding, signal transduction, and protein-protein interactions. Signatures are often included/excluded and truncated in length among protein isoforms; truncation is seen as the predominant type of change. Analysis points to the following novel aspects: (a) Analysis using data from the manually curated Vega indicates that one in 8.9 genes can lead to a protein isoform of no "known" function; and one in 18 expressed protein isoforms can be such an "orphan" isoform; the corresponding numbers as seen with computationally predicted ASD data set are: one in 4.9 genes and one in 9.8 isoforms. (b) When swapping of signatures occurs, it is often between those of same functional

  11. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/GAAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  12. Alternative splicing of the cardiac sodium channel creates multiple variants of mutant T1620K channels.

    Directory of Open Access Journals (Sweden)

    Stefan Walzik

    2011-04-01

    Full Text Available Alternative splicing creates several Na(v1.5 transcripts in the mammalian myocardium and in various other tissues including brain, dorsal root ganglia, breast cancer cells as well as neuronal stem cell lines. In total nine Na(v1.5 splice variants have been discovered. Four of them, namely Na(v1.5a, Na(v1.5c, Na(v1.5d, and Na(v1.5e, generate functional channels in heterologous expression systems. The significance of alternatively spliced transcripts for cardiac excitation, in particular their role in SCN5A channelopathies, is less well understood. In the present study, we systematically investigated electrophysiological properties of mutant T1620K channels in the background of all known functional Na(v1.5 splice variants in HEK293 cells. This mutation has been previously associated with two distinct cardiac excitation disorders: with long QT syndrome type 3 (LQT3 and isolated cardiac conduction disease (CCD. When investigating the effect of the T1620K mutation, we noticed similar channel defects in the background of hNa(v1.5, hNa(v1.5a, and hNa(v1.5c. In contrast, the hNa(v1.5d background produced differential effects: In the mutant channel, some gain-of-function features did not emerge, whereas loss-of-function became more pronounced. In case of hNa(v1.5e, the neonatal variant of hNa(v1.5, both the splice variant itself as well as the corresponding mutant channel showed electrophysiological properties that were distinct from the wild-type and mutant reference channels, hNa(v1.5 and T1620K, respectively. In conclusion, our data show that alternative splicing is a mechanism capable of generating a variety of functionally distinct wild-type and mutant hNa(v1.5 channels. Thus, the cellular splicing machinery is a potential player affecting genotype-phenotype correlations in SCN5A channelopathies.

  13. Computational Recognition of RNA Splice Sites by Exact Algorithms for the Quadratic Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Anja Fischer

    2015-06-01

    Full Text Available One fundamental problem of bioinformatics is the computational recognition of DNA and RNA binding sites. Given a set of short DNA or RNA sequences of equal length such as transcription factor binding sites or RNA splice sites, the task is to learn a pattern from this set that allows the recognition of similar sites in another set of DNA or RNA sequences. Permuted Markov (PM models and permuted variable length Markov (PVLM models are two powerful models for this task, but the problem of finding an optimal PM model or PVLM model is NP-hard. While the problem of finding an optimal PM model or PVLM model of order one is equivalent to the traveling salesman problem (TSP, the problem of finding an optimal PM model or PVLM model of order two is equivalent to the quadratic TSP (QTSP. Several exact algorithms exist for solving the QTSP, but it is unclear if these algorithms are capable of solving QTSP instances resulting from RNA splice sites of at least 150 base pairs in a reasonable time frame. Here, we investigate the performance of three exact algorithms for solving the QTSP for ten datasets of splice acceptor sites and splice donor sites of five different species and find that one of these algorithms is capable of solving QTSP instances of up to 200 base pairs with a running time of less than two days.

  14. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant

    Science.gov (United States)

    Sun, Shihua; Sprenger, Cynthia C.T.; Vessella, Robert L.; Haugk, Kathleen; Soriano, Kathryn; Mostaghel, Elahe A.; Page, Stephanie T.; Coleman, Ilsa M.; Nguyen, Holly M.; Sun, Huiying; Nelson, Peter S.; Plymate, Stephen R.

    2010-01-01

    Progression of prostate cancer following castration is associated with increased androgen receptor (AR) expression and signaling despite AR blockade. Recent studies suggest that these activities are due to the generation of constitutively active AR splice variants, but the mechanisms by which these splice variants could mediate such effects are not fully understood. Here we have identified what we believe to be a novel human AR splice variant in which exons 5, 6, and 7 are deleted (ARv567es) and demonstrated that this variant can contribute to cancer progression in human prostate cancer xenograft models in mice following castration. We determined that, in human prostate cancer cell lines, ARv567es functioned as a constitutively active receptor, increased expression of full-length AR (ARfl), and enhanced the transcriptional activity of AR. In human xenografts, human prostate cancer cells transfected with ARv567es cDNA formed tumors that were resistant to castration. Furthermore, the ratio of ARv567es to ARfl expression within the xenografts positively correlated with resistance to castration. Importantly, we also detected ARv567es frequently in human prostate cancer metastases. In summary, these data indicate that constitutively active AR splice variants can contribute to the development of castration-resistant prostate cancers and may serve as biomarkers for patients who are likely to suffer from early recurrence and are candidates for therapies directly targeting the AR rather than ligand. PMID:20644256

  15. Dynamic ASXL1 Exon Skipping and Alternative Circular Splicing in Single Human Cells.

    Directory of Open Access Journals (Sweden)

    Winston Koh

    Full Text Available Circular RNAs comprise a poorly understood new class of noncoding RNA. In this study, we used a combination of targeted deletion, high-resolution splicing detection, and single-cell sequencing to deeply probe ASXL1 circular splicing. We found that efficient circular splicing required the canonical transcriptional start site and inverted AluSx elements. Sequencing-based interrogation of isoforms after ASXL1 overexpression identified promiscuous linear splicing between all exons, with the two most abundant non-canonical linear products skipping the exons that produced the circular isoforms. Single-cell sequencing revealed a strong preference for either the linear or circular ASXL1 isoforms in each cell, and found the predominant exon skipping product is frequently co-expressed with its reciprocal circular isoform. Finally, absolute quantification of ASXL1 isoforms confirmed our findings and suggests that standard methods overestimate circRNA abundance. Taken together, these data reveal a dynamic new view of circRNA genesis, providing additional framework for studying their roles in cellular biology.

  16. Characterization of viral RNA splicing using whole-transcriptome datasets from host species.

    Science.gov (United States)

    Zhou, Chengran; Liu, Shanlin; Song, Wenhui; Luo, Shiqi; Meng, Guanliang; Yang, Chentao; Yang, Hua; Ma, Jinmin; Wang, Liang; Gao, Shan; Wang, Jian; Yang, Huanming; Zhao, Yun; Wang, Hui; Zhou, Xin

    2018-02-19

    RNA alternative splicing (AS) is an important post-transcriptional mechanism enabling single genes to produce multiple proteins. It has been well demonstrated that viruses deploy host AS machinery for viral protein productions. However, knowledge on viral AS is limited to a few disease-causing viruses in model species. Here we report a novel approach to characterizing viral AS using whole transcriptome dataset from host species. Two insect transcriptomes (Acheta domesticus and Planococcus citri) generated in the 1,000 Insect Transcriptome Evolution (1KITE) project were used as a proof of concept using the new pipeline. Two closely related densoviruses (Acheta domesticus densovirus, AdDNV, and Planococcus citri densovirus, PcDNV, Ambidensovirus, Densovirinae, Parvoviridae) were detected and analyzed for AS patterns. The results suggested that although the two viruses shared major AS features, dramatic AS divergences were observed. Detailed analysis of the splicing junctions showed clusters of AS events occurred in two regions of the virus genome, demonstrating that transcriptome analysis could gain valuable insights into viral splicing. When applied to large-scale transcriptomics projects with diverse taxonomic sampling, our new method is expected to rapidly expand our knowledge on RNA splicing mechanisms for a wide range of viruses.

  17. Designing Efficient Double RNA trans-Splicing Molecules for Targeted RNA Repair

    Science.gov (United States)

    Hüttner, Clemens; Murauer, Eva M.; Hainzl, Stefan; Kocher, Thomas; Neumayer, Anna; Reichelt, Julia; Bauer, Johann W.; Koller, Ulrich

    2016-01-01

    RNA trans-splicing is a promising tool for mRNA modification in a diversity of genetic disorders. In particular, the substitution of internal exons of a gene by combining 3′ and 5′ RNA trans-splicing seems to be an elegant way to modify especially large pre-mRNAs. Here we discuss a robust method for designing double RNA trans-splicing molecules (dRTM). We demonstrate how the technique can be implemented in an endogenous setting, using COL7A1, the gene encoding type VII collagen, as a target. An RTM screening system was developed with the aim of testing the replacement of two internal COL7A1 exons, harbouring a homozygous mutation, with the wild-type version. The most efficient RTMs from a pool of randomly generated variants were selected via our fluorescence-based screening system and adapted for use in an in vitro disease model system. Transduction of type VII collagen-deficient keratinocytes with the selected dRTM led to accurate replacement of two internal COL7A1 exons resulting in a restored wild-type RNA sequence. This is the first study demonstrating specific exon replacement by double RNA trans-splicing within an endogenous transcript in cultured cells, corroborating the utility of this technology for mRNA repair in a variety of genetic disorders. PMID:27669223

  18. Phylogenetic analyses suggest reverse splicing spread of group I introns in fungal ribosomal DNA

    Directory of Open Access Journals (Sweden)

    Simon Dawn M

    2005-11-01

    Full Text Available Abstract Background Group I introns have spread into over 90 different sites in nuclear ribosomal DNA (rDNA with greater than 1700 introns reported in these genes. These ribozymes generally spread through endonuclease-mediated intron homing. Another putative pathway is reverse splicing whereby a free group I intron inserts into a homologous or heterologous RNA through complementary base-pairing between the intron and exon RNA. Reverse-transcription of the RNA followed by general recombination results in intron spread. Here we used phylogenetics to test for reverse splicing spread in a taxonomically broadly sampled data set of fungal group I introns including 9 putatively ancient group I introns in the rDNA of the yeast-like symbiont Symbiotaphrina buchneri. Results Our analyses reveal a complex evolutionary history of the fungal introns with many cases of vertical inheritance (putatively for the 9 introns in S. buchneri and intron lateral transfer. There are several examples in which introns, many of which are still present in S. buchneri, may have spread through reverse splicing into heterologous rDNA sites. If the S. buchneri introns are ancient as we postulate, then group I intron loss was widespread in fungal rDNA evolution. Conclusion On the basis of these results, we suggest that the extensive distribution of fungal group I introns is at least partially explained by the reverse splicing movement of existing introns into ectopic rDNA sites.

  19. DBATE: database of alternative transcripts expression.

    Science.gov (United States)

    Bianchi, Valerio; Colantoni, Alessio; Calderone, Alberto; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2013-01-01

    The use of high-throughput RNA sequencing technology (RNA-seq) allows whole transcriptome analysis, providing an unbiased and unabridged view of alternative transcript expression. Coupling splicing variant-specific expression with its functional inference is still an open and difficult issue for which we created the DataBase of Alternative Transcripts Expression (DBATE), a web-based repository storing expression values and functional annotation of alternative splicing variants. We processed 13 large RNA-seq panels from human healthy tissues and in disease conditions, reporting expression levels and functional annotations gathered and integrated from different sources for each splicing variant, using a variant-specific annotation transfer pipeline. The possibility to perform complex queries by cross-referencing different functional annotations permits the retrieval of desired subsets of splicing variant expression values that can be visualized in several ways, from simple to more informative. DBATE is intended as a novel tool to help appreciate how, and possibly why, the transcriptome expression is shaped. DATABASE URL: http://bioinformatica.uniroma2.it/DBATE/.

  20. Widespread evolutionary conservation of alternatively spliced exons in caenorhabditis

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob L; Penny, David

    2007-01-01

    Alternative splicing (AS) contributes to increased transcriptome and proteome diversity in various eukaryotic lineages. Previous studies showed low levels of conservation of alternatively spliced (cassette) exons within mammals and within dipterans. We report a strikingly different pattern in Cae...

  1. Identification of Common Genetic Variation That Modulates Alternative Splicing

    OpenAIRE

    Hull, Jeremy; Campino, Susana; Rowlands, Kate; Chan, Man-Suen; Copley, Richard R; Taylor, Martin S; Rockett, Kirk; Elvidge, Gareth; Keating, Brendan; Knight, Julian; Kwiatkowski, Dominic

    2007-01-01

    Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by nat...

  2. An in vivo genetic screen for genes involved in spliced leader trans-splicing indicates a crucial role for continuous de novo spliced leader RNP assembly.

    Science.gov (United States)

    Philippe, Lucas; Pandarakalam, George C; Fasimoye, Rotimi; Harrison, Neale; Connolly, Bernadette; Pettitt, Jonathan; Müller, Berndt

    2017-08-21

    Spliced leader (SL) trans-splicing is a critical element of gene expression in a number of eukaryotic groups. This process is arguably best understood in nematodes, where biochemical and molecular studies in Caenorhabditis elegans and Ascaris suum have identified key steps and factors involved. Despite this, the precise details of SL trans-splicing have yet to be elucidated. In part, this is because the systematic identification of the molecules involved has not previously been possible due to the lack of a specific phenotype associated with defects in this process. We present here a novel GFP-based reporter assay that can monitor SL1 trans-splicing in living C. elegans. Using this assay, we have identified mutants in sna-1 that are defective in SL trans-splicing, and demonstrate that reducing function of SNA-1, SNA-2 and SUT-1, proteins that associate with SL1 RNA and related SmY RNAs, impairs SL trans-splicing. We further demonstrate that the Sm proteins and pICln, SMN and Gemin5, which are involved in small nuclear ribonucleoprotein assembly, have an important role in SL trans-splicing. Taken together these results provide the first in vivo evidence for proteins involved in SL trans-splicing, and indicate that continuous replacement of SL ribonucleoproteins consumed during trans-splicing reactions is essential for effective trans-splicing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Generation of Chimeric RNAs by cis-splicing of adjacent genes (cis-SAGe) in mammals.

    Science.gov (United States)

    Zhuo, Jian-Shu; Jing, Xiao-Yan; Du, Xin; Yang, Xiu-Qin

    2018-02-20

    Chimeric RNA molecules, possessing exons from two or more independent genes, are traditionally believed to be produced by chromosome rearrangement. However, recent studies revealed that cis-splicing of adjacent genes (cis- SAGe) is one of the major mechanisms underlying the formation of chimeric RNAs. cis-SAGe refers to intergenic splicing of directly adjacent genes with the same transcriptional orientation, resulting in read-through transcripts, termed chimeric RNAs, which contain sequences from two or more parental genes. cis-SAGe was first identified in tumor cells, since then its potential in carcinogenesis has attracted extensive attention. More and more scientists are focusing on it. With the development of research, cis-SAGe was found to be ubiquitous in various normal tissues, and might make a crucial contribution to the formation of novel genes in the evolution of genomes. In this review, we summarize the splicing pattern, expression characteristics, possible mechanisms, and significance of cis-SAGe in mammals. This review will be helpful for general understanding of the current status and development tendency of cis-SAGe.

  4. The hnRNP 2H9 gene, which is involved in the splicing reaction, is a multiply spliced gene

    DEFF Research Database (Denmark)

    Honoré, B

    2000-01-01

    The hnRNP 2H9 gene products are involved in the splicing process and participate in early heat shock-induced splicing arrest. By combining low/high stringency hybridisation, database search, Northern and Western blotting it is shown that the gene is alternatively spliced into at least six transcr...

  5. Analysis of RNA splicing defects in PITX2 mutants supports a gene dosage model of Axenfeld-Rieger syndrome

    Directory of Open Access Journals (Sweden)

    Semina Elena V

    2006-07-01

    Full Text Available Abstract Background Axenfeld-Rieger syndrome (ARS is associated with mutations in the PITX2 gene that encodes a homeobox transcription factor. Several intronic PITX2 mutations have been reported in Axenfeld-Rieger patients but their effects on gene expression have not been tested. Methods We present two new families with recurrent PITX2 intronic mutations and use PITX2c minigenes and transfected cells to address the hypothesis that intronic mutations effect RNA splicing. Three PITX2 mutations have been analyzed: a G>T mutation within the AG 3' splice site (ss junction associated with exon 4 (IVS4-1G>T, a G>C mutation at position +5 of the 5' (ss of exon 4 (IVS4+5G>C, and a previously reported A>G substitution at position -11 of 3'ss of exon 5 (IVS5-11A>G. Results Mutation IVS4+5G>C showed 71% retention of the intron between exons 4 and 5, and poorly expressed protein. Wild-type protein levels were proportionally expressed from correctly spliced mRNA. The G>T mutation within the exon 4 AG 3'ss junction shifted splicing exclusively to a new AG and resulted in a severely truncated, poorly expressed protein. Finally, the A>G substitution at position -11 of the 3'ss of exon 5 shifted splicing exclusively to a newly created upstream AG and resulted in generation of a protein with a truncated homeodomain. Conclusion This is the first direct evidence to support aberrant RNA splicing as the mechanism underlying the disorder in some patients and suggests that the magnitude of the splicing defect may contribute to the variability of ARS phenotypes, in support of a gene dosage model of Axenfeld-Rieger syndrome.

  6. Functional characterization of two novel splicing mutations in the OCA2 gene associated with oculocutaneous albinism type II.

    Science.gov (United States)

    Rimoldi, Valeria; Straniero, Letizia; Asselta, Rosanna; Mauri, Lucia; Manfredini, Emanuela; Penco, Silvana; Gesu, Giovanni P; Del Longo, Alessandra; Piozzi, Elena; Soldà, Giulia; Primignani, Paola

    2014-03-01

    Oculocutaneous albinism (OCA) is characterized by hypopigmentation of the skin, hair and eye, and by ophthalmologic abnormalities caused by a deficiency in melanin biosynthesis. OCA type II (OCA2) is one of the four commonly-recognized forms of albinism, and is determined by mutation in the OCA2 gene. In the present study, we investigated the molecular basis of OCA2 in two siblings and one unrelated patient. The mutational screening of the OCA2 gene identified two hitherto-unknown putative splicing mutations. The first one (c.1503+5G>A), identified in an Italian proband and her affected sibling, lies in the consensus sequence of the donor splice site of OCA2 intron 14 (IVS14+5G>A), in compound heterozygosity with a frameshift mutation, c.1450_1451insCTGCCCTGACA, which is predicted to determine the premature termination of the polypeptide chain (p.I484Tfs*19). In-silico prediction of the effect of the IVS14+5G>A mutation on splicing showed a score reduction for the mutant splice site and indicated the possible activation of a newly-created deep-intronic acceptor splice site. The second mutation is a synonymous transition (c.2139G>A, p.K713K) involving the last nucleotide of exon 20. This mutation was found in a young African albino patient in compound heterozygosity with a previously-reported OCA2 missense mutation (p.T404M). In-silico analysis predicted that the mutant c.2139G>A allele would result in the abolition of the splice donor site. The effects on splicing of these two novel mutations were investigated using an in-vitro hybrid-minigene approach that led to the demonstration of the causal role of the two mutations and to the identification of aberrant transcript variants. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Abnormalities in alternative splicing of angiogenesis-related genes and their role in HIV-related cancers

    Directory of Open Access Journals (Sweden)

    Mthembu NN

    2017-03-01

    Full Text Available Nonkululeko N Mthembu,1 Zukile Mbita,2 Rodney Hull,1 Zodwa Dlamini1 1Research, Innovation and Engagements, Mangosuthu University of Technology, Durban, 2Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa Abstract: Alternative splicing of mRNA leads to an increase in proteome biodiversity by allowing the generation of multiple mRNAs, coding for multiple protein isoforms of various structural and functional properties from a single primary pre-mRNA transcript. The protein isoforms produced are tightly regulated in normal development but are mostly deregulated in various cancers. In HIV-infected individuals with AIDS, there is an increase in aberrant alternative splicing, resulting in an increase in HIV/AIDS-related cancers, such as Kaposi’s sarcoma, non-Hodgkin’s lymphoma, and cervical cancer. This aberrant splicing leads to abnormal production of protein and is caused by mutations in cis-acting elements or trans-acting factors in angiogenesis-related genes. Restoring the normal regulation of alternative splicing of angiogenic genes would alter the expression of protein isoforms and may confer normal cell physiology in patients with these cancers. This review highlights the abnormalities in alternative splicing of angiogenesis-related genes and their implication in HIV/AIDS-related cancers. This allows us to gain an insight into the pathogenesis of HIV/AIDS-related cancer and in turn elucidate the therapeutic potential of alternatively spliced genes in HIV/AIDS-related malignancies. Keywords: vascular endothelial growth factor, oncogenic viruses, hypoxia induced factor 1, Kaposi’s sarcoma, non-Hodgkin’s lymphoma, therapies targeting alternative splicing

  8. Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data.

    Directory of Open Access Journals (Sweden)

    Yongsheng Bai

    Full Text Available During endoplasmic reticulum (ER stress, the endoribonuclease (RNase Ire1α initiates removal of a 26 nt region from the mRNA encoding the transcription factor Xbp1 via an unconventional mechanism (atypically within the cytosol. This causes an open reading frame-shift that leads to altered transcriptional regulation of numerous downstream genes in response to ER stress as part of the unfolded protein response (UPR. Strikingly, other examples of targeted, unconventional splicing of short mRNA regions have yet to be reported.Our goal was to develop an approach to identify non-canonical, possibly very short, splicing regions using RNA-Seq data and apply it to ER stress-induced Ire1α heterozygous and knockout mouse embryonic fibroblast (MEF cell lines to identify additional Ire1α targets.We developed a bioinformatics approach called the Read-Split-Walk (RSW pipeline, and evaluated it using two Ire1α heterozygous and two Ire1α-null samples. The 26 nt non-canonical splice site in Xbp1 was detected as the top hit by our RSW pipeline in heterozygous samples but not in the negative control Ire1α knockout samples. We compared the Xbp1 results from our approach with results using the alignment program BWA, Bowtie2, STAR, Exonerate and the Unix "grep" command. We then applied our RSW pipeline to RNA-Seq data from the SKBR3 human breast cancer cell line. RSW reported a large number of non-canonical spliced regions for 108 genes in chromosome 17, which were identified by an independent study.We conclude that our RSW pipeline is a practical approach for identifying non-canonical splice junction sites on a genome-wide level. We demonstrate that our pipeline can detect novel splice sites in RNA-Seq data generated under similar conditions for multiple species, in our case mouse and human.

  9. Pax258 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain

    Directory of Open Access Journals (Sweden)

    Peter eFabian

    2015-07-01

    Full Text Available Paired box transcription factors play important role in development and tissue morphogenesis. The number of Pax homologs varies among species studied so far, due to genome and gene duplications that have affected PAX family to a great extent. Based on sequence similarity and functional domains, four Pax classes have been identified in chordates, namely Pax1/9, Pax2/5/8, Pax3/7 and Pax4/6. Numerous splicing events have been reported mainly for Pax2/5/8 and Pax6 genes. Of significant interest are those events that lead to Pax proteins with presumed novel properties, such as altered DNA-binding or transcriptional activity. In the current study, a thorough analysis of Pax2/5/8 splicing events from cephalochordate and vertebrates was performed. We focused more on Pax2/5/8 and Pax6 splicing events in which the paired domain is involved. Three new splicing events were identified in Oryzias latipes, one of which seems to be conserved in Acanthomorphata. Using representatives from deuterostome and protostome phyla, a comparative analysis of the Pax6 exon-intron structure of the paired domain was performed, during an attempt to estimate the time of appearance of the Pax6(5a mRNA isoform. As shown in our analysis, this splicing event is absent in basal chordates and is characteristic of Gnathostomata. Moreover, expression pattern of alternative spliced variants was compared between basal chordates and fish species. In summary, our data indicate expansion of alternative mRNA variants in paired box region of Pax2/5/8 and Pax6 genes during the course of vertebrate evolution.

  10. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida

    2014-01-01

    of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...

  11. Sample Size Estimation for Detection of Splicing Events in Transcriptome Sequencing Data.

    Science.gov (United States)

    Kaisers, Wolfgang; Schwender, Holger; Schaal, Heiner

    2017-09-05

    Merging data from multiple samples is required to detect low expressed transcripts or splicing events that might be present only in a subset of samples. However, the exact number of required replicates enabling the detection of such rare events often remains a mystery but can be approached through probability theory. Here, we describe a probabilistic model, relating the number of observed events in a batch of samples with observation probabilities. Therein, samples appear as a heterogeneous collection of events, which are observed with some probability. The model is evaluated in a batch of 54 transcriptomes of human dermal fibroblast samples. The majority of putative splice-sites (alignment gap-sites) are detected in (almost) all samples or only sporadically, resulting in an U-shaped pattern for observation probabilities. The probabilistic model systematically underestimates event numbers due to a bias resulting from finite sampling. However, using an additional assumption, the probabilistic model can predict observed event numbers within a events (mean 7122 in alignments from TopHat alignments and 86,215 in alignments from STAR). We conclude that the probabilistic model provides an adequate description for observation of gap-sites in transcriptome data. Thus, the calculation of required sample sizes can be done by application of a simple binomial model to sporadically observed random events. Due to the large number of uniquely observed putative splice-sites and the known stochastic noise in the splicing machinery, it appears advisable to include observation of rare splicing events into analysis objectives. Therefore, it is beneficial to take scores for the validation of gap-sites into account.

  12. Survey of gene splicing algorithms based on reads.

    Science.gov (United States)

    Si, Xiuhua; Wang, Qian; Zhang, Lei; Wu, Ruo; Ma, Jiquan

    2017-11-02

    Gene splicing is the process of assembling a large number of unordered short sequence fragments to the original genome sequence as accurately as possible. Several popular splicing algorithms based on reads are reviewed in this article, including reference genome algorithms and de novo splicing algorithms (Greedy-extension, Overlap-Layout-Consensus graph, De Bruijn graph). We also discuss a new splicing method based on the MapReduce strategy and Hadoop. By comparing these algorithms, some conclusions are drawn and some suggestions on gene splicing research are made.

  13. Approaches to link RNA secondary structures with splicing regulation

    DEFF Research Database (Denmark)

    Plass, Mireya; Eyras, Eduardo

    2014-01-01

    by facilitating or hindering the interaction with factors and small nuclear ribonucleoproteins (snRNPs) that regulate splicing. Moreover, the secondary structure could play a fundamental role in the splicing of yeast species, which lack many of the regulatory splicing factors present in metazoans. This chapter......In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either...

  14. Alternative splicing in the human cytochrome P450IIB6 gene generates a high level of aberrant messages

    Energy Technology Data Exchange (ETDEWEB)

    Miles, J.S.; McLaren, A.W.; Wolf, C.R. (Imperial Cancer Research Fund, Edinburgh (England))

    1989-10-25

    Polymorphisms within the human cytochrome P450 system can have severe clinical consequences and have been associated with adverse drug side effects and susceptibility to environmentally linked disease such as cancer. Aberrant splicing of cytochrome P450 mRNA has been proposed as a potential mechanism for these polymorphisms. The authors have isolated aberrantly, as well as normally, spliced mRNAs (cDNAs) from the human P450IIB6 gene which either contain part of intron 5 and lack exon 8 or which contain a 58-bp fragment (exon 8A) instead of exon 8. Sequence analysis of the P450IIB6 gene demonstrates the presence of cryptic splice sites in intron 8 which will account for the generation of exon 8A. The mRNAs were therefore generated by alternative splicing. These data gain significance as the mRNAs will not encode a functional P450 enzyme and appear to represent a high proportion of the P450IIB6 mRNA population. Analysis of mRNA from fifteen individual human livers and cDNA libraries constructed from a variety of human tissues using the polymerase chain reaction shows that the aberrant splicing occurs in all cells and all individuals tested. This suggests a high level of infidelity in the processing of P450IIB6 mRNAs and demonstrates that the presence of abnormal transcripts does not imply the presence of a functionally inactive gene.

  15. A Phylogenetic Survey on the Structure of the HIV-1 Leader RNA Domain That Encodes the Splice Donor Signal.

    Science.gov (United States)

    Mueller, Nancy; Das, Atze T; Berkhout, Ben

    2016-07-21

    RNA splicing is a critical step in the human immunodeficiency virus type 1 (HIV-1) replication cycle because it controls the expression of the complex viral proteome. The major 5' splice site (5'ss) that is positioned in the untranslated leader of the HIV-1 RNA transcript is of particular interest because it is used for the production of the more than 40 differentially spliced subgenomic mRNAs. HIV-1 splicing needs to be balanced tightly to ensure the proper levels of all viral proteins, including the Gag-Pol proteins that are translated from the unspliced RNA. We previously presented evidence that the major 5'ss is regulated by a repressive local RNA structure, the splice donor (SD) hairpin, that masks the 11 nucleotides (nts) of the 5'ss signal for recognition by U1 small nuclear RNA (snRNA) of the spliceosome machinery. A strikingly different multiple-hairpin RNA conformation was recently proposed for this part of the HIV-1 leader RNA. We therefore inspected the sequence of natural HIV-1 isolates in search for support, in the form of base pair (bp) co-variations, for the different RNA conformations.

  16. pPKCδ activates SC35 splicing factor during H9c2 myoblastic differentiation.

    Science.gov (United States)

    Zara, Susi; Falconi, Mirella; Rapino, Monica; Zago, Michela; Orsini, Giovanna; Mazzotti, Giovanni; Cataldi, Amelia; Teti, Gabriella

    2011-01-01

    Although Protein Kinase C (PKC) isoforms' role in the neonatal and adult cardiac tissue development and ageing has been widely described "in vivo", the interaction of such enzymes with specific nuclear substrates needs to be investigated. The aim of our research has been the study of the expression, localization and interaction with the splicing factor SC35 of PKC isoforms (α, δ, ε, ζ) and their potential role in modulating the transcription machinery. H9c2 cells induced to myoblast differentiation in the presence of 1% Horse Serum (HS) have represented our experimental model. The expression of PKC isoforms, their distribution and interaction with SC35 have been evaluated by western blotting, co-immunoprecipitation and double gold immunolabeling for transmission and scanning electron microscopy. Our results show PKCδ as the most expressed isoform in differentiated cells. Surprisingly, the distribution of PKCδ and SC35 does not show any significant modification between 10%FBS and 1%HS treated samples and no co-localization is observed. Moreover the interaction between the phosphorylated form of PKCδ (pPKCδ) and SC35 increases, is distributed and co-localizes within the nucleus of differentiated H9c2. These data represent reasonable evidence of pPKCδ mediated SC35 splicing factor activation, suggesting its direct effect on transcription via interaction with the transcription machinery. Furthermore, this co-localization represents a crucial event resulting in downstream changes in transcription of components which determine the morphological modifications related to cardiomyoblast differentiated phenotype.

  17. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  18. mRNA Transcript Diversity Creates New Opportunities for Pharmacological Intervention

    OpenAIRE

    Barrie, Elizabeth S.; Smith, Ryan M.; Sanford, Jonathan C.; Sadee, Wolfgang

    2012-01-01

    Most protein coding genes generate multiple RNA transcripts through alternative splicing, variable 3′ and 5′UTRs, and RNA editing. Although drug design typically targets the main transcript, alternative transcripts can have profound physiological effects, encoding proteins with distinct functions or regulatory properties. Formation of these alternative transcripts is tissue-selective and context-dependent, creating opportunities for more effective and targeted therapies with reduced adverse e...

  19. Alternative Splicing Regulated by Butyrate in Bovine Epithelial Cells

    Science.gov (United States)

    Wu, Sitao; Li, Congjun; Huang, Wen; Li, Weizhong; Li, Robert W.

    2012-01-01

    As a signaling molecule and an inhibitor of histone deacetylases (HDACs), butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT) and control (CT) groups. 201,326 potential splicing junctions detected were supported by ≥3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG) while ∼3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC inhibitors. PMID:22720068

  20. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  1. PPS, a large multidomain protein, functions with sex-lethal to regulate alternative splicing in Drosophila.

    Science.gov (United States)

    Johnson, Matthew L; Nagengast, Alexis A; Salz, Helen K

    2010-03-05

    Alternative splicing controls the expression of many genes, including the Drosophila sex determination gene Sex-lethal (Sxl). Sxl expression is controlled via a negative regulatory mechanism where inclusion of the translation-terminating male exon is blocked in females. Previous studies have shown that the mechanism leading to exon skipping is autoregulatory and requires the SXL protein to antagonize exon inclusion by interacting with core spliceosomal proteins, including the U1 snRNP protein Sans-fille (SNF). In studies begun by screening for proteins that interact with SNF, we identified PPS, a previously uncharacterized protein, as a novel component of the machinery required for Sxl male exon skipping. PPS encodes a large protein with four signature motifs, PHD, BRK, TFS2M, and SPOC, typically found in proteins involved in transcription. We demonstrate that PPS has a direct role in Sxl male exon skipping by showing first that loss of function mutations have phenotypes indicative of Sxl misregulation and second that the PPS protein forms a complex with SXL and the unspliced Sxl RNA. In addition, we mapped the recruitment of PPS, SXL, and SNF along the Sxl gene using chromatin immunoprecipitation (ChIP), which revealed that, like many other splicing factors, these proteins bind their RNA targets while in close proximity to the DNA. Interestingly, while SNF and SXL are specifically recruited to their predicted binding sites, PPS has a distinct pattern of accumulation along the Sxl gene, associating with a region that includes, but is not limited to, the SxlPm promoter. Together, these data indicate that PPS is different from other splicing factors involved in male-exon skipping and suggest, for the first time, a functional link between transcription and SXL-mediated alternative splicing. Loss of zygotic PPS function, however, is lethal to both sexes, indicating that its role may be of broad significance.

  2. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David

    2007-01-01

    , and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional...... classes, cellular locations, intron/exon structures and evolutionary origins. RESULTS: For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products...

  3. Analysis of 30 putative BRCA1 splicing mutations in hereditary breast and ovarian cancer families identifies exonic splice site mutations that escape in silico prediction.

    Directory of Open Access Journals (Sweden)

    Barbara Wappenschmidt

    Full Text Available Screening for pathogenic mutations in breast and ovarian cancer genes such as BRCA1/2, CHEK2 and RAD51C is common practice for individuals from high-risk families. However, test results may be ambiguous due to the presence of unclassified variants (UCV in the concurrent absence of clearly cancer-predisposing mutations. Especially the presence of intronic or exonic variants within these genes that possibly affect proper pre-mRNA processing poses a challenge as their functional implications are not immediately apparent. Therefore, it appears necessary to characterize potential splicing UCV and to develop appropriate classification tools. We investigated 30 distinct BRCA1 variants, both intronic and exonic, regarding their spliceogenic potential by commonly used in silico prediction algorithms (HSF, MaxEntScan along with in vitro transcript analyses. A total of 25 variants were identified spliceogenic, either causing/enhancing exon skipping or activation of cryptic splice sites, or both. Except from a single intronic variant causing minor effects on BRCA1 pre-mRNA processing in our analyses, 23 out of 24 intronic variants were correctly predicted by MaxEntScan, while HSF was less accurate in this cohort. Among the 6 exonic variants analyzed, 4 severely impair correct pre-mRNA processing, while the remaining two have partial effects. In contrast to the intronic alterations investigated, only half of the spliceogenic exonic variants were correctly predicted by HSF and/or MaxEntScan. These data support the idea that exonic splicing mutations are commonly disease-causing and concurrently prone to escape in silico prediction, hence necessitating experimental in vitro splicing analysis.

  4. Spliced leader RNA silencing (SLS - a programmed cell death pathway in Trypanosoma brucei that is induced upon ER stress

    Directory of Open Access Journals (Sweden)

    Michaeli Shulamit

    2012-05-01

    Full Text Available Abstract Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite cycles between its insect (procyclic form and mammalian hosts (bloodstream form. Trypanosomes lack conventional transcription regulation, and their genes are transcribed in polycistronic units that are processed by trans-splicing and polyadenylation. In trans-splicing, which is essential for processing of each mRNA, an exon, the spliced leader (SL is added to all mRNAs from a small RNA, the SL RNA. Trypanosomes lack the machinery for the unfolded protein response (UPR, which in other eukaryotes is induced under endoplasmic reticulum (ER stress. Trypanosomes respond to such stress by changing the stability of mRNAs, which are essential for coping with the stress. However, under severe ER stress that is induced by blocking translocation of proteins to the ER, treatment of cells with chemicals that induce misfolding in the ER, or extreme pH, trypanosomes elicit the spliced leader silencing (SLS pathway. In SLS, the transcription of the SL RNA gene is extinguished, and tSNAP42, a specific SL RNA transcription factor, fails to bind to its cognate promoter. SLS leads to complete shut-off of trans-splicing. In this review, I discuss the UPR in mammals and compare it to the ER stress response in T. brucei leading to SLS. I summarize the evidence supporting the notion that SLS is a programmed cell death (PCD pathway that is utilized by the parasites to substitute for the apoptosis observed in higher eukaryotes under prolonged ER stress. I present the hypothesis that SLS evolved to expedite the death process, and rapidly remove from the population unfit parasites that, by elimination via SLS, cause minimal damage to the parasite population.

  5. Conservation and Sex-Specific Splicing of the transformer Gene in the Calliphorids Cochliomyia hominivorax, Cochliomyia macellaria and Lucilia sericata

    Science.gov (United States)

    Li, Fang; Vensko, Steven P.; Belikoff, Esther J.; Scott, Maxwell J.

    2013-01-01

    Transformer (TRA) promotes female development in several dipteran species including the Australian sheep blowfly Lucilia cuprina, the Mediterranean fruit fly, housefly and Drosophila melanogaster. tra transcripts are sex-specifically spliced such that only the female form encodes full length functional protein. The presence of six predicted TRA/TRA2 binding sites in the sex-specific female intron of the L. cuprina gene suggested that tra splicing is auto-regulated as in medfly and housefly. With the aim of identifying conserved motifs that may play a role in tra sex-specific splicing, here we have isolated and characterized the tra gene from three additional blowfly species, L. sericata, Cochliomyia hominivorax and C. macellaria. The blowfly adult male and female transcripts differ in the choice of splice donor site in the first intron, with males using a site downstream of the site used in females. The tra genes all contain a single TRA/TRA2 site in the male exon and a cluster of four to five sites in the male intron. However, overall the sex-specific intron sequences are poorly conserved in closely related blowflies. The most conserved regions are around the exon/intron junctions, the 3′ end of the intron and near the cluster of TRA/TRA2 sites. We propose a model for sex specific regulation of tra splicing that incorporates the conserved features identified in this study. In L. sericata embryos, the male tra transcript was first detected at around the time of cellular blastoderm formation. RNAi experiments showed that tra is required for female development in L. sericata and C. macellaria. The isolation of the tra gene from the New World screwworm fly C. hominivorax, a major livestock pest, will facilitate the development of a “male-only” strain for genetic control programs. PMID:23409170

  6. Conservation and sex-specific splicing of the transformer gene in the calliphorids Cochliomyia hominivorax, Cochliomyia macellaria and Lucilia sericata.

    Directory of Open Access Journals (Sweden)

    Fang Li

    Full Text Available Transformer (TRA promotes female development in several dipteran species including the Australian sheep blowfly Lucilia cuprina, the Mediterranean fruit fly, housefly and Drosophila melanogaster. tra transcripts are sex-specifically spliced such that only the female form encodes full length functional protein. The presence of six predicted TRA/TRA2 binding sites in the sex-specific female intron of the L. cuprina gene suggested that tra splicing is auto-regulated as in medfly and housefly. With the aim of identifying conserved motifs that may play a role in tra sex-specific splicing, here we have isolated and characterized the tra gene from three additional blowfly species, L. sericata, Cochliomyia hominivorax and C. macellaria. The blowfly adult male and female transcripts differ in the choice of splice donor site in the first intron, with males using a site downstream of the site used in females. The tra genes all contain a single TRA/TRA2 site in the male exon and a cluster of four to five sites in the male intron. However, overall the sex-specific intron sequences are poorly conserved in closely related blowflies. The most conserved regions are around the exon/intron junctions, the 3' end of the intron and near the cluster of TRA/TRA2 sites. We propose a model for sex specific regulation of tra splicing that incorporates the conserved features identified in this study. In L. sericata embryos, the male tra transcript was first detected at around the time of cellular blastoderm formation. RNAi experiments showed that tra is required for female development in L. sericata and C. macellaria. The isolation of the tra gene from the New World screwworm fly C. hominivorax, a major livestock pest, will facilitate the development of a "male-only" strain for genetic control programs.

  7. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    Science.gov (United States)

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Characterization of splice variants of the genes encoding human mitochondrial HMG-CoA lyase and HMG-CoA synthase, the main enzymes of the ketogenesis pathway.

    Science.gov (United States)

    Puisac, Beatriz; Ramos, Mónica; Arnedo, María; Menao, Sebastián; Gil-Rodríguez, María Concepción; Teresa-Rodrigo, María Esperanza; Pié, Angeles; de Karam, Juan Carlos; Wesselink, Jan-Jaap; Giménez, Ignacio; Ramos, Feliciano J; Casals, Nuria; Gómez-Puertas, Paulino; Hegardt, Fausto G; Pié, Juan

    2012-04-01

    The genes HMGCS2 and HMGCL encode the two main enzymes for ketone-body synthesis, mitochondrial HMG-CoA synthase and HMG-CoA lyase. Here, we identify and describe possible splice variants of these genes in human tissues. We detected an alternative transcript of HMGCS2 carrying a deletion of exon 4, and two alternative transcripts of HMGCL with deletions of exons 5 and 6, and exons 5, 6 and 7, respectively. All splice variants maintained the reading frame. However, Western blot studies and overexpression measurements in eukaryotic or prokaryotic cell models did not reveal HL or mHS protein variants. Both genes showed a similar distribution of the inactive variants in different tissues. Surprisingly, the highest percentages were found in tissues where almost no ketone bodies are synthesized: heart, skeletal muscle and brain. Our results suggest that alternative splicing might coordinately block the two main enzymes of ketogenesis in specific human tissues.

  9. Development of a novel splice array platform and its application in the identification of alternative splice variants in lung cancer

    Directory of Open Access Journals (Sweden)

    Gomez-Roman Javier

    2010-06-01

    Full Text Available Abstract Background Microarrays strategies, which allow for the characterization of thousands of alternative splice forms in a single test, can be applied to identify differential alternative splicing events. In this study, a novel splice array approach was developed, including the design of a high-density oligonucleotide array, a labeling procedure, and an algorithm to identify splice events. Results The array consisted of exon probes and thermodynamically balanced junction probes. Suboptimal probes were tagged and considered in the final analysis. An unbiased labeling protocol was developed using random primers. The algorithm used to distinguish changes in expression from changes in splicing was calibrated using internal non-spliced control sequences. The performance of this splice array was validated with artificial constructs for CDC6, VEGF, and PCBP4 isoforms. The platform was then applied to the analysis of differential splice forms in lung cancer samples compared to matched normal lung tissue. Overexpression of splice isoforms was identified for genes encoding CEACAM1, FHL-1, MLPH, and SUSD2. None of these splicing isoforms had been previously associated with lung cancer. Conclusions This methodology enables the detection of alternative splicing events in complex biological samples, providing a powerful tool to identify novel diagnostic and prognostic biomarkers for cancer and other pathologies.

  10. A novel splice variant in the N-propeptide of COL5A1 causes an EDS phenotype with severe kyphoscoliosis and eye involvement.

    Directory of Open Access Journals (Sweden)

    Sofie Symoens

    Full Text Available BACKGROUND: The Ehlers-Danlos Syndrome (EDS is a heritable connective tissue disorder characterized by hyperextensible skin, joint hypermobility and soft tissue fragility. The classic subtype of EDS is caused by mutations in one of the type V collagen genes (COL5A1 and COL5A2. Most mutations affect the type V collagen helical domain and lead to a diminished or structurally abnormal type V collagen protein. Remarkably, only two mutations were reported to affect the extended, highly conserved N-propeptide domain, which plays an important role in the regulation of the heterotypic collagen fibril diameter. We identified a novel COL5A1 N-propeptide mutation, resulting in an unusual but severe classic EDS phenotype and a remarkable splicing outcome. METHODOLOGY/PRINCIPAL FINDINGS: We identified a novel COL5A1 N-propeptide acceptor-splice site mutation (IVS6-2A>G, NM_000093.3_c.925-2A>G in a patient with cutaneous features of EDS, severe progressive scoliosis and eye involvement. Two mutant transcripts were identified, one with an exon 7 skip and one in which exon 7 and the upstream exon 6 are deleted. Both transcripts are expressed and secreted into the extracellular matrix, where they can participate in and perturb collagen fibrillogenesis, as illustrated by the presence of dermal collagen cauliflowers. Determination of the order of intron removal and computational analysis showed that simultaneous skipping of exons 6 and 7 is due to the combined effect of delayed splicing of intron 7, altered pre-mRNA secondary structure, low splice site strength and possibly disturbed binding of splicing factors. CONCLUSIONS/SIGNIFICANCE: We report a novel COL5A1 N-propeptide acceptor-splice site mutation in intron 6, which not only affects splicing of the adjacent exon 7, but also causes a splicing error of the upstream exon 6. Our findings add further insights into the COL5A1 splicing order and show for the first time that a single COL5A1 acceptor-splice site

  11. Genomic HEXploring allows landscaping of novel potential splicing regulatory elements.

    Science.gov (United States)

    Erkelenz, Steffen; Theiss, Stephan; Otte, Marianne; Widera, Marek; Peter, Jan Otto; Schaal, Heiner

    2014-01-01

    Effective splice site selection is critically controlled by flanking splicing regulatory elements (SREs) that can enhance or repress splice site use. Although several computational algorithms currently identify a multitude of potential SRE motifs, their predictive power with respect to mutation effects is limited. Following a RESCUE-type approach, we defined a hexamer-based 'HEXplorer score' as average Z-score of all six hexamers overlapping with a given nucleotide in an arbitrary genomic sequence. Plotted along genomic regions, HEXplorer score profiles varied slowly in the vicinity of splice sites. They reflected the respective splice enhancing and silencing properties of splice site neighborhoods beyond the identification of single dedicated SRE motifs. In particular, HEXplorer score differences between mutant and reference sequences faithfully represented exonic mutation effects on splice site usage. Using the HIV-1 pre-mRNA as a model system highly dependent on SREs, we found an excellent correlation in 29 mutations between splicing activity and HEXplorer score. We successfully predicted and confirmed five novel SREs and optimized mutations inactivating a known silencer. The HEXplorer score allowed landscaping of splicing regulatory regions, provided a quantitative measure of mutation effects on splice enhancing and silencing properties and permitted calculation of the mutationally most effective nucleotide. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Evolution of Nova-dependent splicing regulation in the brain.

    Directory of Open Access Journals (Sweden)

    Nejc Jelen

    2007-10-01

    Full Text Available A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs.

  13. Alternative mRNA Splicing in the Pathogenesis of Obesity

    Directory of Open Access Journals (Sweden)

    Chi-Ming Wong

    2018-02-01

    Full Text Available Alternative mRNA splicing is an important mechanism in expansion of proteome diversity by production of multiple protein isoforms. However, emerging evidence indicates that only a limited number of annotated protein isoforms by alternative splicing are detected, and the coding sequence of alternative splice variants usually is only slightly different from that of the canonical sequence. Nevertheless, mis-splicing is associated with a large array of human diseases. Previous reviews mainly focused on hereditary and somatic mutations in cis-acting RNA sequence elements and trans-acting splicing factors. The importance of environmental perturbations contributed to mis-splicing is not assessed. As significant changes in exon skipping and splicing factors expression levels are observed with diet-induced obesity, this review focuses on several well-known alternatively spliced metabolic factors and discusses recent advances in the regulation of the expressions of splice variants under the pathophysiological conditions of obesity. The potential of targeting the alternative mRNA mis-splicing for obesity-associated diseases therapies will also be discussed.

  14. Intronic alternative splicing regulators identified by comparative genomics in nematodes.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kabat

    2006-07-01

    Full Text Available Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high-scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (TGCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis

  15. DNA computing based on splicing: universality results.

    Science.gov (United States)

    Csuhaj-Varjú, E; Freund, R; Kari, L; Păun, G

    1996-01-01

    The paper extends some of the most recently obtained results on the computational universality of specific variants of H systems (e.g. with regular sets of rules) and proves that we can construct universal computers based on various types of H systems with a finite set of splicing rules as well as a finite set of axioms, i.e. we show the theoretical possibility to design programmable universal DNA computers based on the splicing operation. For H systems working in the multiset style (where the numbers of copies of all available strings are counted) we elaborate how a Turing machine computing a partial recursive function can be simulated by an equivalent H system computing the same function; in that way, from a universal Turning machine we obtain a universal H system. Considering H systems as language generating devices we have to add various simple control mechanisms (checking the presence/absence of certain symbols in the spliced strings) to systems with a finite set of splicing rules as well as with a finite set of axioms in order to obtain the full computational power, i.e. to get a characterization of the family of recursively enumerable languages. We also introduce test tube systems, where several H systems work in parallel in their tubes and from time to time the contents of each tube are redistributed to all tubes according to certain separation conditions. By the construction of universal test tube systems we show that also such systems could serve as the theoretical basis for the development of biological (DNA) computers.

  16. Alternative splicing regulated by butyrate in bovine epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sitao Wu

    Full Text Available As a signaling molecule and an inhibitor of histone deacetylases (HDACs, butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT and control (CT groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001 at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor and Exon#11 (Acceptor in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC

  17. A contracted DNA repeat in LHX3 intron 5 is associated with aberrant splicing and pituitary dwarfism in German shepherd dogs.

    Directory of Open Access Journals (Sweden)

    Annemarie M W Y Voorbij

    Full Text Available Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism.

  18. Arabidopsis mTERF15 is required for mitochondrial nad2 intron 3 splicing and functional complex I activity.

    Directory of Open Access Journals (Sweden)

    Ya-Wen Hsu

    Full Text Available Mitochondria play a pivotal role in most eukaryotic cells, as they are responsible for the generation of energy and diverse metabolic intermediates for many cellular events. During endosymbiosis, approximately 99% of the genes encoded by the mitochondrial genome were transferred into the host nucleus, and mitochondria import more than 1000 nuclear-encoded proteins from the cytosol to maintain structural integrity and fundamental functions, including DNA replication, mRNA transcription and RNA metabolism of dozens of mitochondrial genes. In metazoans, a family of nuclear-encoded proteins called the mitochondrial transcription termination factors (mTERFs regulates mitochondrial transcription, including transcriptional termination and initiation, via their DNA-binding activities, and the dysfunction of individual mTERF members causes severe developmental defects. Arabidopsis thaliana and Oryza sativa contain 35 and 48 mTERFs, respectively, but the biological functions of only a few of these proteins have been explored. Here, we investigated the biological role and molecular mechanism of Arabidopsis mTERF15 in plant organelle metabolism using molecular genetics, cytological and biochemical approaches. The null homozygous T-DNA mutant of mTERF15, mterf15, was found to result in substantial retardation of both vegetative and reproductive development, which was fully complemented by the wild-type genomic sequence. Surprisingly, mitochondria-localized mTERF15 lacks obvious DNA-binding activity but processes mitochondrial nad2 intron 3 splicing through its RNA-binding ability. Impairment of this splicing event not only disrupted mitochondrial structure but also abolished the activity of mitochondrial respiratory chain complex I. These effects are in agreement with the severe phenotype of the mterf15 homozygous mutant. Our study suggests that Arabidopsis mTERF15 functions as a splicing factor for nad2 intron 3 splicing in mitochondria, which is essential

  19. Two self-splicing group I introns in the ribonucleotide reductase large subunit gene of Staphylococcus aureus phage Twort

    OpenAIRE

    Landthaler, Markus; Begley, Ulrike; Lau, Nelson C.; Shub, David A.

    2002-01-01

    We have recently described three group I introns inserted into a single gene, orf142, of the staphylococcal bacteriophage Twort and suggested the presence of at least two additional self-splicing introns in this phage genome. Here we report that two previously uncharacterized introns, 429 and 1087 nt in length, interrupt the Twort gene coding for the large subunit of ribonucleotide reductase (nrdE). Reverse transcription-polymerase chain reaction (RT-PCR) of RNA isolated from Staphylococcus a...

  20. Cytoplasmic tethering of a RING protein RBCK1 by its splice variant lacking the RING domain

    International Nuclear Information System (INIS)

    Yoshimoto, Nobuo; Tatematsu, Kenji; Koyanagi, Tomoyoshi; Okajima, Toshihide; Tanizawa, Katsuyuki; Kuroda, Shun'ichi

    2005-01-01

    RBCC protein interacting with PKC 1 (RBCK1) is a transcription factor belonging to the RING-IBR protein family and has been shown to shuttle between the nucleus and cytoplasm, possessing both the nuclear export and localization signals within its amino acid sequence. RBCK2, lacking the C-terminal half of RBCK1 including the RING-IBR domain, has also been identified as an alternative splice variant of RBCK1. RBCK2 shows no transcriptional activity and instead it represses the transcriptional activity of RBCK1. Here, we show that RBCK2 is present usually in the cytoplasm containing two Leu-rich regions that presumably serve as a nuclear export signal (NES). Moreover, an NES-disrupted RBCK1 that is mostly localized within the nucleus is translocated to the cytoplasm when coexpressed with RBCK2, suggesting that RBCK2 serves as a cytoplasmic tethering protein for RBCK1. We propose a novel and general function of RING-lacking splice variants of RING proteins to control the intracellular localization and functions of the parental RING proteins by forming a hetero-oligomeric complex

  1. Genome-wide analyses of alternative splicing in plants: opportunities and challenges.

    Science.gov (United States)

    Barbazuk, W Brad; Fu, Yan; McGinnis, Karen M

    2008-09-01

    Alternative splicing (AS) creates multiple mRNA transcripts from a single gene. While AS is known to contribute to gene regulation and proteome diversity in animals, the study of its importance in plants is in its early stages. However, recently available plant genome and transcript sequence data sets are enabling a global analysis of AS in many plant species. Results of genome analysis have revealed differences between animals and plants in the frequency of alternative splicing. The proportion of plant genes that have one or more alternative transcript isoforms is approximately 20%, indicating that AS in plants is not rare, although this rate is approximately one-third of that observed in human. The majority of plant AS events have not been functionally characterized, but evidence suggests that AS participates in important plant functions, including stress response, and may impact domestication and trait selection. The increasing availability of plant genome sequence data will enable larger comparative analyses that will identify functionally important plant AS events based on their evolutionary conservation, determine the influence of genome duplication on the evolution of AS, and discover plant-specific cis-elements that regulate AS. This review summarizes recent analyses of AS in plants, discusses the importance of further analysis, and suggests directions for future efforts.

  2. Splicing alternativo y quimerismo en genes del MHC de clase III: relación de esta región con la Artritis Reumatoide

    OpenAIRE

    López Díez, Raquel

    2014-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología. Fecha de lectura; 10-07-2014 Post-transcriptional regulations such as Alternative Splicing (AS) and Transcription Induced Chimerism (TIC) are mechanisms that expand transcriptome and proteome diversity in higher eukaryotes. These mechanisms allow the generation of different RNAs and multiple protein isoforms. Several Major Histocompatibility Complex (MHC) class III ...

  3. Splicing modulation therapy in the treatment of genetic diseases

    Directory of Open Access Journals (Sweden)

    Arechavala-Gomeza V

    2014-12-01

    Full Text Available Virginia Arechavala-Gomeza,1 Bernard Khoo,2 Annemieke Aartsma-Rus3 1Neuromuscular Disorders Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain; 2Endocrinology, Division of Medicine, University College London, London, UK; 3Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands All authors contributed equally to this manuscript Abstract: Antisense-mediated splicing modulation is a tool that can be exploited in several ways to provide a potential therapy for rare genetic diseases. This approach is currently being tested in clinical trials for Duchenne muscular dystrophy and spinal muscular atrophy. The present review outlines the versatility of the approach to correct cryptic splicing, modulate alternative splicing, restore the open reading frame, and induce protein knockdown, providing examples of each. Finally, we outline a possible path forward toward the clinical application of this approach for a wide variety of inherited rare diseases. Keywords: splicing, therapy, antisense oligonucleotides, cryptic splicing, alternative splicing

  4. The emerging role of alternative splicing in senescence and aging.

    Science.gov (United States)

    Deschênes, Mathieu; Chabot, Benoit

    2017-10-01

    Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Accumulation of GC donor splice signals in mammals

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2008-07-01

    Full Text Available Abstract The GT dinucleotide in the first two intron positions is the most conserved element of the U2 donor splice signals. However, in a small fraction of donor sites, GT is replaced by GC. A substantial enrichment of GC in donor sites of alternatively spliced genes has been observed previously in human, nematode and Arabidopsis, suggesting that GC signals are important for regulation of alternative splicing. We used parsimony analysis to reconstruct evolution of donor splice sites and inferred 298 GT > GC conversion events compared to 40 GC > GT conversion events in primate and rodent genomes. Thus, there was substantive accumulation of GC donor splice sites during the evolution of mammals. Accumulation of GC sites might have been driven by selection for alternative splicing. Reviewers This article was reviewed by Jerzy Jurka and Anton Nekrutenko. For the full reviews, please go to the Reviewers' Reports section.

  6. Do Non-Genomically Encoded Fusion Transcripts Cause Recurrent Chromosomal Translocations?

    Directory of Open Access Journals (Sweden)

    Theo Dingermann

    2012-10-01

    Full Text Available We among others have recently demonstrated that normal cells produce “fusion mRNAs”. These fusion mRNAs do not derive from rearranged genomic loci, but rather they are derived from “early-terminated transcripts” (ETTs. Premature transcriptional termination takes place in intronic sequences that belong to “breakpoint cluster regions”. One important property of ETTs is that they exhibit an unsaturated splice donor site. This results in: (1 splicing to “cryptic exons” present in the final intron; (2 Splicing to another transcript of the same gene (intragenic trans-splicing, resulting in “exon repetitions”; (3 splicing to a transcript of another gene (intergenic trans-splicing, leading to “non-genomically encoded fusion transcripts” (NGEFTs. These NGEFTs bear the potential risk to influence DNA repair processes, since they share identical nucleotides with their DNA of origin, and thus, could be used as “guidance RNA” for DNA repair processes. Here, we present experimental data about four other genes. Three of them are associated with hemato-malignancies (ETV6, NUP98 and RUNX1, while one is associated with solid tumors (EWSR1. Our results demonstrate that all genes investigated so far (MLL, AF4, AF9, ENL, ELL, ETV6, NUP98, RUNX1 and EWSR1 display ETTs and produce transpliced mRNA species, indicating that this is a genuine property of translocating genes.

  7. Do Non-Genomically Encoded Fusion Transcripts Cause Recurrent Chromosomal Translocations?

    Energy Technology Data Exchange (ETDEWEB)

    Kowarz, Eric; Dingermann, Theo; Marschalek, Rolf, E-mail: Rolf.Marschalek@em.uni-frankfurt.de [Institute of Pharmaceutical Biology/ZAFES/DCAL, Goethe-University of Frankfurt, Biocenter, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main (Germany)

    2012-10-18

    We among others have recently demonstrated that normal cells produce “fusion mRNAs”. These fusion mRNAs do not derive from rearranged genomic loci, but rather they are derived from “early-terminated transcripts” (ETTs). Premature transcriptional termination takes place in intronic sequences that belong to “breakpoint cluster regions”. One important property of ETTs is that they exhibit an unsaturated splice donor site. This results in: (1) splicing to “cryptic exons” present in the final intron; (2) Splicing to another transcript of the same gene (intragenic trans-splicing), resulting in “exon repetitions”; (3) splicing to a transcript of another gene (intergenic trans-splicing), leading to “non-genomically encoded fusion transcripts” (NGEFTs). These NGEFTs bear the potential risk to influence DNA repair processes, since they share identical nucleotides with their DNA of origin, and thus, could be used as “guidance RNA” for DNA repair processes. Here, we present experimental data about four other genes. Three of them are associated with hemato-malignancies (ETV6, NUP98 and RUNX1), while one is associated with solid tumors (EWSR1). Our results demonstrate that all genes investigated so far (MLL, AF4, AF9, ENL, ELL, ETV6, NUP98, RUNX1 and EWSR1) display ETTs and produce transpliced mRNA species, indicating that this is a genuine property of translocating genes.

  8. Splicing Express: a software suite for alternative splicing analysis using next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Jose E. Kroll

    2015-11-01

    Full Text Available Motivation. Alternative splicing events (ASEs are prevalent in the transcriptome of eukaryotic species and are known to influence many biological phenomena. The identification and quantification of these events are crucial for a better understanding of biological processes. Next-generation DNA sequencing technologies have allowed deep characterization of transcriptomes and made it possible to address these issues. ASEs analysis, however, represents a challenging task especially when many different samples need to be compared. Some popular tools for the analysis of ASEs are known to report thousands of events without annotations and/or graphical representations. A new tool for the identification and visualization of ASEs is here described, which can be used by biologists without a solid bioinformatics background.Results. A software suite named Splicing Express was created to perform ASEs analysis from transcriptome sequencing data derived from next-generation DNA sequencing platforms. Its major goal is to serve the needs of biomedical researchers who do not have bioinformatics skills. Splicing Express performs automatic annotation of transcriptome data (GTF files using gene coordinates available from the UCSC genome browser and allows the analysis of data from all available species. The identification of ASEs is done by a known algorithm previously implemented in another tool named Splooce. As a final result, Splicing Express creates a set of HTML files composed of graphics and tables designed to describe the expression profile of ASEs among all analyzed samples. By using RNA-Seq data from the Illumina Human Body Map and the Rat Body Map, we show that Splicing Express is able to perform all tasks in a straightforward way, identifying well-known specific events.Availability and Implementation.Splicing Express is written in Perl and is suitable to run only in UNIX-like systems. More details can be found at: http://www.bioinformatics-brazil.org/splicingexpress.

  9. A splice acceptor mutation in C. elegans daf-19/Rfx disrupts functional specialization of male-specific ciliated neurons but does not affect ciliogenesis.

    Science.gov (United States)

    Wells, Kristen L; Rowneki, Mazhgan; Killian, Darrell J

    2015-04-01

    RFX transcription factors are master regulators of ciliogenesis in diverse animal species. The sole Caenorhabditis elegans RFX homolog, DAF-19, plays at least two roles in the formation of functional cilia. The DAF-19(C) isoform is required for ciliogenesis and the DAF-19(M) isoform is required for the functional specialization of a subset of male-specific ciliated neurons called PKD neurons. Here we report the identification of a novel mutation, daf-19(sm129), which disrupts the functional specification of PKD neurons and thus suggests that daf-19m activity is compromised. However, ciliogenesis is not disrupted in daf-19(sm129) mutants suggesting that daf-19c activity is retained. The sm129 mutation disrupts a splice acceptor site adjacent to an exon common to the daf-19c and daf-19m isoforms resulting in aberrant splicing in a proportion of transcripts. While aberrant splicing of daf-19c to upstream cryptic sites results in in-frame and functional products, a large proportion of daf-19m mRNAs include the entire upstream intron, which introduces a frameshift and stop codons. At least 15% of disease-causing mutations affect splicing of the gene bearing the mutation, thus it is important to understand the consequences of splice site mutations on gene function. However, predicting the effects of a splice site mutation remains difficult and experimental determination is still required. Using daf-19(sm129) as a model, our results suggest that this problem is exacerbated when a splice acceptor mutation is used by multiple isoforms of the same gene because the effects on each isoform can be dramatically different. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. RNA-Seq for enrichment and analysis of IRF5 transcript expression in SLE.

    Directory of Open Access Journals (Sweden)

    Rivka C Stone

    Full Text Available Polymorphisms in the interferon regulatory factor 5 (IRF5 gene have been consistently replicated and shown to confer risk for or protection from the development of systemic lupus erythematosus (SLE. IRF5 expression is significantly upregulated in SLE patients and upregulation associates with IRF5-SLE risk haplotypes. IRF5 alternative splicing has also been shown to be elevated in SLE patients. Given that human IRF5 exists as multiple alternatively spliced transcripts with distinct function(s, it is important to determine whether the IRF5 transcript profile expressed in healthy donor immune cells is different from that expressed in SLE patients. Moreover, it is not currently known whether an IRF5-SLE risk haplotype defines the profile of IRF5 transcripts expressed. Using standard molecular cloning techniques, we identified and isolated 14 new differentially spliced IRF5 transcript variants from purified monocytes of healthy donors and SLE patients to generate an IRF5 variant transcriptome. Next-generation sequencing was then used to perform in-depth and quantitative analysis of full-length IRF5 transcript expression in primary immune cells of SLE patients and healthy donors by next-generation sequencing. Evidence for additional alternatively spliced transcripts was obtained from de novo junction discovery. Data from these studies support the overall complexity of IRF5 alternative splicing in SLE. Results from next-generation sequencing correlated with cloning and gave similar abundance rankings in SLE patients thus supporting the use of this new technology for in-depth single gene transcript profiling. Results from this study provide the first proof that 1 SLE patients express an IRF5 transcript signature that is distinct from healthy donors, 2 an IRF5-SLE risk haplotype defines the top four most abundant IRF5 transcripts expressed in SLE patients, and 3 an IRF5 transcript signature enables clustering of SLE patients with the H2 risk haplotype.

  11. Alternative Splicing Generates Different 5′ UTRs in OCT4B Variants

    OpenAIRE

    Poursani, Ensieh M.; Mehravar, Majid; Shahryari, Alireza; Mowla, Seyed Javad; Mohammad Soltani, Bahram

    2017-01-01

    Background: The human OCT4 gene, responsible for pluripotency and self-renewal of Embryonic Stem (ES) and Embryonic Carcinoma (EC) cells, can generate several transcripts (OCT4A, OCT4B-variant 2, OCT4B-variant 3, OCT4B-variant 5, OCT4B1, OCT4 B2 and OCT4B3) by alternative splicing and alternative promoters. OCT4A that is responsible for ES and EC cell stemness properties is transcribed from a promoter upstream of Exon1a in those cells. The OCT4B group variants (OCT4B-variant2, OCT4B-variant3,...

  12. Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation.

    Science.gov (United States)

    Li, Chen; Zheng, Lanlan; Zhang, Jingxuan; Lv, Yanxia; Liu, Jianping; Wang, Xuanbin; Palfalvi, Gergo; Wang, Guodong; Zhang, Yonghong

    2017-07-01

    Arabidopsis thaliana LONG HYPOCOTYL5 (HY5) is a positive regulator of the light signaling pathway. The hy5 mutant has an elongated hypocotyl in all light conditions, whereas the hy5 homolog (hyh) mutant has a very weak phenotype, but only in blue light. However, overexpression of HYH rescues the elongated hypocotyl phenotype in the hy5 null mutant. Here, we report the identification of four HYH splicing variants in Arabidopsis. Alternative splicing in the 5' region of the HYH gene occurred such that the proteins encoded by all four HYH variants retained their bZIP domain. In hypocotyl tissue, transcript levels of HYH.2, HYH.3, and HYH.4 were higher than those of HYH.1. Like HY5, all HYH variants were induced by light. Functional analysis of the four HYH variants, based on their abilities to complement the hy5 mutant, indicated that they have similar roles in hypocotyl development, and may function redundantly with HY5. Our results indicate that the bZIP domain in HYH is critical for the function of four variants in the compensation of hy5 mutant in hypocotyl development. Additionally, while HY5/HYH is found in plant species ranging from green algae to flowering plants, the potential alternative splicing events are distinct in different species, with certain HYH variants found with greater frequency in some species than others. Copyright © 2017. Published by Elsevier B.V.

  13. Changes in Alternative Splicing in Apis Mellifera Bees Fed Apis Cerana Royal Jelly

    Directory of Open Access Journals (Sweden)

    Shi Yuan Yuan

    2014-12-01

    Full Text Available The Western honey bee (Apis mellifera is a social insect characterized by caste differentiation in which the queen bee and worker bees display marked differences in morphology, behavior, reproduction, and longevity despite their identical genomes. The main causative factor in caste differentiation is the food fed to queen larvae, termed royal jelly (RJ. Alternative splicing (AS is an important RNA-mediated post-transcriptional process in eukaryotes. Here we report AS changes in A. mellifera after being fed either A. mellifera RJ or A. cerana RJ. The results demonstrated that the RJ type affected 4 types of AS in adult A. mellifera: exon skipping, intron retention, alternative 5’ splice sites, and alternative 3’splice sites. After feeding with A. cerana RJ, AS occurred in many genes in adult A. mellifera that encode proteins involved in development, growth, the tricarboxylic acid cycle, and substance metabolism. This study provides the first evidence that heterospecific RJ can influence the AS of many genes related to honey bee development and growth.

  14. Clinical Relevance of Androgen Receptor Splice Variants in Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Maughan, Benjamin L; Antonarakis, Emmanuel S

    2015-12-01

    Metastatic castration-resistant prostate cancer (mCRPC) currently benefits from a wealth of treatment options, yet still remains lethal in the vast majority of patients. It is becoming increasingly understood that this disease entity continues to evolve over time, acquiring additional and diverse resistance mechanisms with each subsequent therapy used. This dynamic relationship between treatment pressure and disease resistance can be challenging for the managing clinician. The recent discovery of alternate splice variants of the androgen receptor (AR) is one potential mechanism of escape in mCRPC, and recognizing this resistance mechanism might be important for optimal treatment selection for our patients. AR-V7 appears to be the most relevant AR splice variant, and early clinical data suggest that it is a negative prognostic marker in mCRPC. Emerging evidence also suggests that detection of AR-V7 may be associated with resistance to novel hormonal therapy (abiraterone and enzalutamide) but may be compatible with sensitivity to taxane chemotherapy (docetaxel and cabazitaxel). Adding to this complexity is the observation that AR-V7 is a dynamic marker whose status may change across time and depending on selective pressures induced by different therapies. Finally, it is possible that AR-V7 may represent a therapeutic target in mCRPC if drugs can be designed that degrade or inhibit AR splice variants or block their transcriptional activity. Several such agents (including galeterone, EPI-506, and bromodomain/BET inhibitors) are now in clinical development.

  15. Identification of common genetic variation that modulates alternative splicing.

    Directory of Open Access Journals (Sweden)

    Jeremy Hull

    2007-06-01

    Full Text Available Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs. In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron-exon boundary, although the distance between these SNPs and the intron-exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function.

  16. SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Xiong

    2015-08-01

    Full Text Available microRNAs (miRNAs are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs that contain Argonaute (AGO family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be

  17. Exon Array Analysis using re-defined probe sets results in reliable identification of alternatively spliced genes in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gröne Jörn

    2010-11-01

    Full Text Available Abstract Background Treatment of non-small cell lung cancer with novel targeted therapies is a major unmet clinical need. Alternative splicing is a mechanism which generates diverse protein products and is of functional relevance in cancer. Results In this study, a genome-wide analysis of the alteration of splicing patterns between lung cancer and normal lung tissue was performed. We generated an exon array data set derived from matched pairs of lung cancer and normal lung tissue including both the adenocarcinoma and the squamous cell carcinoma subtypes. An enhanced workflow was developed to reliably detect differential splicing in an exon array data set. In total, 330 genes were found to be differentially spliced in non-small cell lung cancer compared to normal lung tissue. Microarray findings were validated with independent laboratory methods for CLSTN1, FN1, KIAA1217, MYO18A, NCOR2, NUMB, SLK, SYNE2, TPM1, (in total, 10 events and ADD3, which was analysed in depth. We achieved a high validation rate of 69%. Evidence was found that the activity of FOX2, the splicing factor shown to cause cancer-specific splicing patterns in breast and ovarian cancer, is not altered at the transcript level in several cancer types including lung cancer. Conclusions This study demonstrates how alternatively spliced genes can reliably be identified in a cancer data set. Our findings underline that key processes of cancer progression in NSCLC are affected by alternative splicing, which can be exploited in the search for novel targeted therapies.

  18. A critical analysis of Atoh7 (Math5 mRNA splicing in the developing mouse retina.

    Directory of Open Access Journals (Sweden)

    Lev Prasov

    2010-08-01

    Full Text Available The Math5 (Atoh7 gene is transiently expressed during retinogenesis by progenitors exiting mitosis, and is essential for ganglion cell (RGC development. Math5 contains a single exon, and its 1.7 kb mRNA encodes a 149-aa polypeptide. Mouse Math5 mutants have essentially no RGCs or optic nerves. Given the importance of this gene in retinal development, we thoroughly investigated the possibility of Math5 mRNA splicing by Northern blot, 3'RACE, RNase protection assays, and RT-PCR, using RNAs extracted from embryonic eyes and adult cerebellum, or transcribed in vitro from cDNA clones. Because Math5 mRNA contains an elevated G+C content, we used graded concentrations of betaine, an isostabilizing agent that disrupts secondary structure. Although approximately 10% of cerebellar Math5 RNAs are spliced, truncating the polypeptide, our results show few, if any, spliced Math5 transcripts exist in the developing retina (<1%. Rare deleted cDNAs do arise via RT-mediated RNA template switching in vitro, and are selectively amplified during PCR. These data differ starkly from a recent study (Kanadia and Cepko 2010, which concluded that the vast majority of Math5 and other bHLH transcripts are spliced to generate noncoding RNAs. Our findings clarify the architecture of the Math5 gene and its mechanism of action. These results have implications for all members of the bHLH gene family, for any gene that is alternatively spliced, and for the interpretation of all RT-PCR experiments.

  19. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies.

    Science.gov (United States)

    Zhang, Yixi; Liu, Yang; Bao, Haibo; Sun, Huahua; Liu, Zewen

    2017-01-18

    Due to the great abundance within insect central nervous system (CNS), nicotinic acetylcholine receptors (nAChRs) play key roles in insect CNS, which makes it to be the targets of several classes of insecticides, such as neonicotinoids. Insect nAChRs are pentameric complexes consisting of five subunits, and a dozen subunits in one insect species can theoretically comprise diverse nAChRs. The alternative splicing in insect nAChR subunits may increase the diversity of insect nAChRs. In the oriental migratory locust (Locusta migratoria manilensis Meyen), a model insect species with agricultural importance, the alternative splicing was found in six α subunits among nine α and two β subunits, such as missing conserved residues in Loop D from Locα1, Locα6 and Locα9, a 34-residue insertion in Locα8 cytoplasmic loop, and truncated transcripts for Locα4, Locα7 and Locα9. Hybrid nAChRs were successfully constructed in Xenopus oocytes through co-expression with rat β2 and one α subunit from L. migratoria, which included Locα1, Locα2, Locα3, Locα4, Locα5, Locα8 and Locα9. Influences of alternative splicing in Locα1, Locα8 and Locα9 on acetylcholine potency were tested on hybrid nAChRs. The alternative splicing in Locα1 and Locα9 could increase acetylcholine sensitivities on recombinant receptors, while the splicing in Locα8 showed significant influences on the current amplitudes of oocytes. The results revealed that the alternative splicing at or close to the ligand-binding sites, as well as at cytoplasmic regions away from the ligand-binding sites, in insect nAChR subunits would change the agonist potencies on the receptors, which consequently increased nAChR diversity in functional and pharmacological properties. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    Directory of Open Access Journals (Sweden)

    Reyka G. Jayasinghe

    2018-04-01

    Full Text Available Summary: For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. : Jayasinghe et al. identify nearly 2,000 splice-site-creating mutations (SCMs from over 8,000 tumor samples across 33 cancer types. They provide a more accurate interpretation of previously mis-annotated mutations, highlighting the importance of integrating data types to understand the functional and the clinical implications of splicing mutations in human disease. Keywords: splicing, RNA, mutations of clinical relevance

  1. Functional analysis of U1-70K interacting SR proteins in pre-mRNA splicing in Arabidopsis

    International Nuclear Information System (INIS)

    Reddy, A.S.N.

    2008-01-01

    Proteins of a serine/arginine-rich (SR) family are part of the spliceosome and are implicated in both constitutive and alternative splicing of pre-mRNAs. With the funding from DOE we have been studying alternative of splicing of genes encoding serine/arginine-rich (SR) proteins and the roles of SR proteins that interact with U1-70K in regulating basic and alternative splicing. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins and its regulation by hormones and stresses: We analyzed the splicing of all 19 Arabidopsis genes in different tissues, during different seedling stages and in response to various hormonal and stress treatments. Remarkably, about 90 different transcripts are produced from 15 SR genes, thereby increasing the transcriptome complexity of SR genes by about five fold. Using the RNA isolated from polysomes we have shown that most of the splice variants are recruited for translation. Alternative splicing of some SR genes is controlled in a developmental and tissue-specific manner (Palusa et al., 2007). Interestingly, among the various hormones and abiotic stresses tested, temperature stress (cold and heat) and ultraviolet light dramatically altered alternative splicing of pre-mRNAs of several SR genes whereas hormones altered the splicing of only two SR genes (Palusa et al., 2007). Localization and dynamics of a novel serine/arginine-rich protein that interacts with U1-70K: We analyzed the intranuclear movement of SR45 fused to GFP by fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We demonstrate that the movement of GFP-SR45 is ATP-dependent. Interestingly, inhibition of transcription or phosphorylation slowed the mobility of GFP-SR45 (Ali et al., 2006). Our studies have revealed that the nuclear localization signals are located in arg/ser-rich domains (RS) 1 and 2, whereas the speckle targeting signals are exclusively present in RS2 (Ali et al., 2006). The regulation of

  2. Functional analysis of U1-70K interacting SR proteins in pre-mRNA splicing in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    A.S.N. Reddy

    2008-11-25

    Proteins of a serine/arginine-rich (SR) family are part of the spliceosome and are implicated in both constitutive and alternative splicing of pre-mRNAs. With the funding from DOE we have been studying alternative of splicing of genes encoding serine/arginine-rich (SR) proteins and the roles of SR proteins that interact with U1-70K in regulating basic and alternative splicing. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins and its regulation by hormones and stresses: We analyzed the splicing of all 19 Arabidopsis genes in different tissues, during different seedling stages and in response to various hormonal and stress treatments. Remarkably, about 90 different transcripts are produced from 15 SR genes, thereby increasing the transcriptome complexity of SR genes by about five fold. Using the RNA isolated from polysomes we have shown that most of the splice variants are recruited for translation. Alternative splicing of some SR genes is controlled in a developmental and tissue-specific manner (Palusa et al., 2007). Interestingly, among the various hormones and abiotic stresses tested, temperature stress (cold and heat) and ultraviolet light dramatically altered alternative splicing of pre-mRNAs of several SR genes whereas hormones altered the splicing of only two SR genes (Palusa et al., 2007). Localization and dynamics of a novel serine/arginine-rich protein that interacts with U1-70K: We analyzed the intranuclear movement of SR45 fused to GFP by fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We demonstrate that the movement of GFP-SR45 is ATP-dependent. Interestingly, inhibition of transcription or phosphorylation slowed the mobility of GFP-SR45 (Ali et al., 2006). Our studies have revealed that the nuclear localization signals are located in arg/ser-rich domains (RS) 1 and 2, whereas the speckle targeting signals are exclusively present in RS2 (Ali et al., 2006). The regulation of

  3. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Arcà Bruno

    2011-02-01

    Full Text Available Abstract Background In the model system Drosophila melanogaster, doublesex (dsx is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs. Results In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti (Aeadsx. Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators. Conclusions This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae

  4. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    Science.gov (United States)

    2011-01-01

    Background In the model system Drosophila melanogaster, doublesex (dsx) is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs. Results In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti (Aeadsx). Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR) led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators. Conclusions This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae Anopheles gambiae orthologue

  5. A statistical framework for genome-wide discovery of biomarker splice variations with GeneChip Human Exon 1.0 ST Arrays.

    Science.gov (United States)

    Yoshida, Ryo; Numata, Kazuyuki; Imoto, Seiya; Nagasaki, Masao; Doi, Atsushi; Ueno, Kazuko; Miyano, Satoru

    2006-01-01

    Alternative splicing is an important regulatory mechanism that generates multiple mRNA transcripts which are transcribed into functionally diverse proteins. According to the current studies, aberrant transcripts due to splicing mutations are known to cause for 15% of genetic diseases. Therefore understanding regulatory mechanism of alternative splicing is essential for identifying potential biomarkers for several types of human diseases. Most recently, advent of GeneChip Human Exon 1.0 ST Array enables us to measure genome-wide expression profiles of over one million exons. With this new microarray platform, analysis of functional gene expressions could be extended to detect not only differentially expressed genes, but also a set of specific-splicing events that are differentially observed between one or more experimental conditions, e.g. tumor or normal control cells. In this study, we address the statistical problems to identify differentially observed splicing variations from exon expression profiles. The proposed method is organized according to the following process: (1) Data preprocessing for removing systematic biases from the probe intensities. (2) Whole transcript analysis with the analysis of variance (ANOVA) to identify a set of loci that cause the alternative splicing-related to a certain disease. We test the proposed statistical approach on exon expression profiles of colorectal carcinoma. The applicability is verified and discussed in relation to the existing biological knowledge. This paper intends to highlight the potential role of statistical analysis of all exon microarray data. Our work is an important first step toward development of more advanced statistical technology. Supplementary information and materials are available from http://bonsai.ims.u-tokyo.ac.jp/~yoshidar/IBSB2006_ExonArray.htm.

  6. Splice variants of enigma homolog, differentially expressed during heart development, promote or prevent hypertrophy.

    Science.gov (United States)

    Yamazaki, Tomoko; Wälchli, Sébastien; Fujita, Toshitsugu; Ryser, Stephan; Hoshijima, Masahiko; Schlegel, Werner; Kuroda, Shun'ichi; Maturana, Andrés D

    2010-06-01

    Proteins with a PDZ (for PSD-95, DLG, ZO-1) and one to three LIM (for Lin11, Isl-1, Mec-3) domains are scaffolding sarcomeric and cytoskeletal elements that form structured muscle fibres and provide for the link to intracellular signalling by selectively associating protein kinases, ion channels, and transcription factors with the mechanical stress-strain sensors. Enigma homolog (ENH) is a PDZ-LIM protein with four splice variants: ENH1 with an N-terminal PDZ domain and three C-terminal LIM domains and ENH2, ENH3, and ENH4 without LIM domains. We addressed the functional role of ENH alternative splicing. We studied the expression of the four ENH isoforms in the heart during development and in a mouse model of heart hypertrophy. All four isoforms are expressed in the heart but the pattern of expression is clearly different between embryonic, neonatal, and adult stages. ENH1 appears as the embryonic isoform, whereas ENH2, ENH3, and ENH4 are predominant in adult heart. Moreover, alternative splicing of ENH was changed following induction of heart hypertrophy, producing an ENH isoform pattern similar to that of neonatal heart. Next, we tested a possible causal role of ENH1 and ENH4 in the development of cardiac hypertrophy. When overexpressed in rat neonatal cardiomyocytes, ENH1 promoted the expression of hypertrophy markers and increased cell volume, whereas, on the contrary, ENH4 overexpression prevented these changes. Antagonistic splice variants of ENH may play a central role in the adaptive changes of the link between mechanical stress-sensing and signalling occurring during embryonic development and/or heart hypertrophy.

  7. SnoI, a novel alternatively spliced isoform of the ski protooncogene homolog, sno.

    Science.gov (United States)

    Pearson-White, S

    1993-09-25

    We have cloned and sequenced a novel human isoform of sno, snoI for insertion. SnoI contains 1330 nucleotides inserted in place of 7 nucleotides of the snoN mRNA. Sno is a member of the ski protooncogene family, which has been implicated in muscle development. The two previously known sno alternatively spliced isoforms are snoN (684 amino acids), and snoA (415 amino acids); snoI encodes a truncated isoform of 399 amino acids (44,298 MW). Southern blot experiments show that snoI contains a third alternative exon from the sno gene; a single sno gene can express all three isoforms of sno by alternative splicing. All three isoforms contain the region that is most similar to the ski proto-oncogene. The relationship between snoI and snoN is analogous to that between delta fosB and fosB, where a truncated form of the fosB transcription factor is produced by alternative splicing. We find conservation of human snoI-specific sequences in several mammalian species, in monkey, dog, cow, rabbit and pig, but not in rodents, whereas the common portion of the sno gene is conserved in all vertebrate species tested. SnoN, snoA, and ski mRNAs accumulate in many human tissues including skeletal muscle; the snoI alternative mRNA accumulates more specifically in skeletal muscle. SnoI is also expressed in rhabdomyosarcoma tumor, a tumor that contains differentiated skeletal muscle. The tissue-specific alternative splicing of human snoI, an mRNA in the ski/sno gene family, and the presence of sno mRNAs in muscle are consistent with a proposed role for the sno oncogene in muscle gene regulation.

  8. Patterns of alternative splicing vary between species during heat stress.

    Science.gov (United States)

    Kannan, Sumetha; Halter, Gillian; Renner, Tanya; Waters, Elizabeth R

    2018-03-01

    Plants have evolved a variety of mechanisms to respond and adapt to abiotic stress. High temperature stress induces the heat shock response. During the heat shock response a large number of genes are up-regulated, many of which code for chaperone proteins that prevent irreversible protein aggregation and cell death. However, it is clear that heat shock is not the only mechanism involved in the plant heat stress response. Alternative splicing (AS) is also important during heat stress since this post-transcriptional regulatory mechanism can produce significant transcriptome and proteome variation. In this study, we examine AS during heat stress in the model species Arabidopsis thaliana and in the highly thermotolerant native California mustard Boechera depauperata . Analyses of AS during heat stress revealed that while a significant number of genes undergo AS and are differentially expressed (DE) during heat stress, some undergo both AS and DE. Analysis of the functional categories of genes undergoing AS indicated that enrichment patterns are different in the two species. Categories enriched in B. depauperata included light response genes and numerous abiotic stress response genes. Categories enriched in A. thaliana , but not in B. depauperata , included RNA processing and nucleotide binding. We conclude that AS and DE are largely independent responses to heat stress. Furthermore, this study reveals significant differences in the AS response to heat stress in the two related mustard species. This indicates AS responses to heat stress are species-specific. Future studies will explore the role of AS of specific genes in organismal thermotolerance.

  9. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    Directory of Open Access Journals (Sweden)

    Katja Meyer

    2015-07-01

    Full Text Available Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  10. Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights alternative splicing of normal C1s gene

    DEFF Research Database (Denmark)

    Armano, MT; Ferriani, VP; Florido, MP

    2008-01-01

    ' fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the C1s cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of C1s mRNA transcripts...... in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3' splice site within intron 1 which increases the size of exon 2 by 87 nucleotides....

  11. Splicing defects in ABCD1 gene leading to both exon skipping and partial intron retention in X-linked adrenoleukodystrophy Tunisian patient.

    Science.gov (United States)

    Kallabi, Fakhri; Hadj Salem, Ikhlass; Ben Chehida, Amel; Ben Salah, Ghada; Ben Turkia, Hadhami; Tebib, Neji; Keskes, Leila; Kamoun, Hassen

    2015-08-01

    X-linked adrenoleukodystrophy (X-ALD) affects the nervous system white matter and adrenal cortex secondary to mutations in the ABCD1 gene that encodes a peroxisomal membrane protein: the adrenoleukodystrophy protein. The disease is characterized by high concentrations of very long-chain fatty acids in plasma, adrenal, testicular and nervous tissues. Various types of mutations have been identified in the ABCD1 gene: point mutations, insertions, and deletions. To date, more than 40 point mutations have been reported at the splice junctions of the ABCD1 gene; only few functional studies have been performed to explore these types of mutations. In this study, we have identified de novo splice site mutation c.1780+2T>G in ABCD1 gene in an X-ALD Tunisian patient. Sequencing analysis of cDNA showed a minor transcript lacking exon 7 and a major transcript with a partial intron 7 retention due to activation of a new intronic cryptic splice site. Both outcomes lead to frameshifts with premature stop codon generation in exon 8 and intron 7 respectively. To the best of our knowledge, the current study demonstrates that a single splicing mutation affects the ABCD1 transcripts and the ALDP protein function. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  12. Alternative Splicing of L-type CaV1.2 Calcium Channels: Implications in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Zhenyu Hu

    2017-11-01

    Full Text Available L-type CaV1.2 calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alteration of CaV1.2 channel function has been implicated in multiple cardiovascular diseases, such as hypertension and cardiac hypertrophy. Alternative splicing is a post-transcriptional mechanism that expands CaV1.2 channel structures to modify function, pharmacological and biophysical property such as calcium/voltage-dependent inactivation (C/VDI, or to influence its post-translational modulation by interacting proteins such as Galectin-1. Alternative splicing has generated functionally diverse CaV1.2 isoforms that can be developmentally regulated in the heart, or under pathophysiological conditions such as in heart failure. More importantly, alternative splicing of certain exons of CaV1.2 has been reported to be regulated by splicing factors such as RNA-binding Fox-1 homolog 1/2 (Rbfox 1/2, polypyrimidine tract-binding protein (PTBP1 and RNA-binding motif protein 20 (RBM20. Understanding how CaV1.2 channel function is remodelled in disease will provide better information to guide the development of more targeted approaches to discover therapeutic agents for cardiovascular diseases.

  13. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation.

    Science.gov (United States)

    Park, Seung Kuk; Jeong, Sunjoo

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNA was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.

    Science.gov (United States)

    Xia, Heng; Chen, Dong; Wu, Qijia; Wu, Gang; Zhou, Yanhong; Zhang, Yi; Zhang, Libin

    2017-09-01

    The current RIP-seq approach has been developed for the identification of genome-wide interaction between RNA binding protein (RBP) and the bound RNA transcripts, but still rarely for identifying its binding sites. In this study, we performed RIP-seq experiments in HeLa cells using a monoclonal antibody against CELF1. Mapping of the RIP-seq reads showed a biased distribution at the 3'UTR and intronic regions. A total of 15,285 and 1384 CELF1-specific sense and antisense peaks were identified using the ABLIRC software tool. Our bioinformatics analyses revealed that 5' and 3' splice site motifs and GU-rich motifs were highly enriched in the CELF1-bound peaks. Furthermore, transcriptome analyses revealed that alternative splicing was globally regulated by CELF1 in HeLa cells. For example, the inclusion of exon 16 of LMO7 gene, a marker gene of breast cancer, is positively regulated by CELF1. Taken together, we have shown that RIP-seq data can be used to decipher RBP binding sites and reveal an unexpected landscape of the genome-wide CELF1-RNA interactions in HeLa cells. In addition, we found that CELF1 globally regulates the alternative splicing by binding the exon-intron boundary in HeLa cells, which will deepen our understanding of the regulatory roles of CELF1 in the pre-mRNA splicing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kuk; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNA was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms.

  16. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Roy, Scott William

    2009-01-01

    of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we...... compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs...

  17. Biodesign of a renal-protective peptide based on alternative splicing of B-type natriuretic peptide.

    Science.gov (United States)

    Pan, Shuchong; Chen, Horng H; Dickey, Deborah M; Boerrigter, Guido; Lee, Candace; Kleppe, Laurel S; Hall, Jennifer L; Lerman, Amir; Redfield, Margaret M; Potter, Lincoln R; Burnett, John C; Simari, Robert D

    2009-07-07

    Alternative RNA splicing may provide unique opportunities to identify drug targets and therapeutics. We identified an alternative spliced transcript for B-type natriuretic peptide (BNP) resulting from intronic retention. This transcript is present in failing human hearts and is reduced following mechanical unloading. The intron-retained transcript would generate a unique 34 amino acid (aa) carboxyl terminus while maintaining the remaining structure of native BNP. We generated antisera to this carboxyl terminus and identified immunoreactivity in failing human heart tissue. The alternatively spliced peptide (ASBNP) was synthesized and unlike BNP, failed to stimulate cGMP in vascular cells or vasorelax preconstricted arterial rings. This suggests that ASBNP may lack the dose-limiting effects of recombinant BNP. Given structural considerations, a carboxyl-terminal truncated form of ASBNP was generated (ASBNP.1) and was determined to retain the ability of BNP to stimulate cGMP in canine glomerular isolates and cultured human mesangial cells but lacked similar effects in vascular cells. In a canine-pacing model of heart failure, systemic infusion of ASBNP.1 did not alter mean arterial pressure but increased the glomerular filtration rate (GFR), suppressed plasma renin and angiotensin, while inducing natriuresis and diuresis. Consistent with its distinct in vivo effects, the activity of ASBNP.1 may not be explained through binding and activation of NPR-A or NPR-B. Thus, the biodesigner peptide ASBNP.1 enhances GFR associated with heart failure while lacking the vasoactive properties of BNP. These findings demonstrate that peptides with unique properties may be designed based on products of alternatively splicing.

  18. Genome-wide data-mining of candidate human splice translational efficiency polymorphisms (STEPs and an online database.

    Directory of Open Access Journals (Sweden)

    Christopher A Raistrick

    2010-10-01

    Full Text Available Variation in pre-mRNA splicing is common and in some cases caused by genetic variants in intronic splicing motifs. Recent studies into the insulin gene (INS discovered a polymorphism in a 5' non-coding intron that influences the likelihood of intron retention in the final mRNA, extending the 5' untranslated region and maintaining protein quality. Retention was also associated with increased insulin levels, suggesting that such variants--splice translational efficiency polymorphisms (STEPs--may relate to disease phenotypes through differential protein expression. We set out to explore the prevalence of STEPs in the human genome and validate this new category of protein quantitative trait loci (pQTL using publicly available data.Gene transcript and variant data were collected and mined for candidate STEPs in motif regions. Sequences from transcripts containing potential STEPs were analysed for evidence of splice site recognition and an effect in expressed sequence tags (ESTs. 16 publicly released genome-wide association data sets of common diseases were searched for association to candidate polymorphisms with HapMap frequency data. Our study found 3324 candidate STEPs lying in motif sequences of 5' non-coding introns and further mining revealed 170 with transcript evidence of intron retention. 21 potential STEPs had EST evidence of intron retention or exon extension, as well as population frequency data for comparison.Results suggest that the insulin STEP was not a unique example and that many STEPs may occur genome-wide with potentially causal effects in complex disease. An online database of STEPs is freely accessible at http://dbstep.genes.org.uk/.

  19. Euglena Transcript Processing.

    Science.gov (United States)

    McWatters, David C; Russell, Anthony G

    2017-01-01

    RNA transcript processing is an important stage in the gene expression pathway of all organisms and is subject to various mechanisms of control that influence the final levels of gene products. RNA processing involves events such as nuclease-mediated cleavage, removal of intervening sequences referred to as introns and modifications to RNA structure (nucleoside modification and editing). In Euglena, RNA transcript processing was initially examined in chloroplasts because of historical interest in the secondary endosymbiotic origin of this organelle in this organism. More recent efforts to examine mitochondrial genome structure and RNA maturation have been stimulated by the discovery of unusual processing pathways in other Euglenozoans such as kinetoplastids and diplonemids. Eukaryotes containing large genomes are now known to typically contain large collections of introns and regulatory RNAs involved in RNA processing events, and Euglena gracilis in particular has a relatively large genome for a protist. Studies examining the structure of nuclear genes and the mechanisms involved in nuclear RNA processing have revealed that indeed Euglena contains large numbers of introns in the limited set of genes so far examined and also possesses large numbers of specific classes of regulatory and processing RNAs, such as small nucleolar RNAs (snoRNAs). Most interestingly, these studies have also revealed that Euglena possesses novel processing pathways generating highly fragmented cytosolic ribosomal RNAs and subunits and non-conventional intron classes removed by unknown splicing mechanisms. This unexpected diversity in RNA processing pathways emphasizes the importance of identifying the components involved in these processing mechanisms and their evolutionary emergence in Euglena species.

  20. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription

    Science.gov (United States)

    Plemenitaš, Ana; Saksela, Kalle; Peterlin, B. Matija

    2011-01-01

    Autoimmune regulator (AIRE) is a transcription factor that induces the expression of a large subset of otherwise strictly tissue restricted antigens in medullary thymic epithelial cells, thereby enabling their presentation to developing T cells for negative selection. Mutations in AIRE lead to autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a rare monogenetic disease. Although it has been reported that AIRE interacts with proteins involved in nuclear transport, DNA-damage response, chromatin remodeling, transcription and pre-mRNA-splicing, the precise mechanism of AIRE-induced tissue restricted antigen expression has remained elusive. In this study, we investigated an APECED patient mutation that causes the loss of the extreme C-terminus of AIRE and found that this mutant protein is transcriptionaly inactive. When tethered heterologously to DNA, this domain could stimulate transcription and splicing by itself. Moreover, the loss of this C-terminus disrupted interactions with the positive transcription elongation factor b (P-TEFb). Via P-TEFb, AIRE increased levels of RNA polymerase II on and enhanced pre-mRNA splicing of heterologous and endogenous target genes. Indeed, the inhibition of CDK9, the kinase subunit of P-TEFb, inhibited AIRE-induced pre-mRNA splicing of these genes. Thus, AIRE requires P-TEFb to activate transcription elongation and co-transcriptional processing of target genes. PMID:21724609

  1. Revealing the Determinants of Widespread Alternative Splicing Perturbation in Cancer

    Directory of Open Access Journals (Sweden)

    Yongsheng Li

    2017-10-01

    Full Text Available It is increasingly appreciated that alternative splicing plays a key role in generating functional specificity and diversity in cancer. However, the mechanisms by which cancer mutations perturb splicing remain unknown. Here, we developed a network-based strategy, DrAS-Net, to investigate more than 2.5 million variants across cancer types and link somatic mutations with cancer-specific splicing events. We identified more than 40,000 driver variant candidates and their 80,000 putative splicing targets deregulated in 33 cancer types and inferred their functional impact. Strikingly, tumors with splicing perturbations show reduced expression of immune system-related genes and increased expression of cell proliferation markers. Tumors harboring different mutations in the same gene often exhibit distinct splicing perturbations. Further stratification of 10,000 patients based on their mutation-splicing relationships identifies subtypes with distinct clinical features, including survival rates. Our work reveals how single-nucleotide changes can alter the repertoires of splicing isoforms, providing insights into oncogenic mechanisms for precision medicine.

  2. Quantitative regulation of alternative splicing in evolution and development

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob L; Roy, Scott W

    2009-01-01

    Alternative splicing (AS) is a widespread mechanism with an important role in increasing transcriptome and proteome diversity by generating multiple different products from the same gene. Evolutionary studies of AS have focused primarily on the conservation of alternatively spliced sequences or o...

  3. Detecting Image Splicing Using Merged Features in Chroma Space

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2014-01-01

    Full Text Available Image splicing is an image editing method to copy a part of an image and paste it onto another image, and it is commonly followed by postprocessing such as local/global blurring, compression, and resizing. To detect this kind of forgery, the image rich models, a feature set successfully used in the steganalysis is evaluated on the splicing image dataset at first, and the dominant submodel is selected as the first kind of feature. The selected feature and the DCT Markov features are used together to detect splicing forgery in the chroma channel, which is convinced effective in splicing detection. The experimental results indicate that the proposed method can detect splicing forgeries with lower error rate compared to the previous literature.

  4. Some relations between two stages DNA splicing languages

    Science.gov (United States)

    Mudaber, Mohammad Hassan; Yusof, Yuhani; Mohamad, Mohd Sham

    2014-06-01

    A new symbolization of Yusof-Goode (Y-G) rule, which is associated with Y-G splicing system, was introduced by Yusof in 2012 under the framework of formal language theory. The purpose of this investigation is to present the biological process of DNA splicing in a translucent way. In this study, two stages splicing languages are introduced based on Y-G approach and some relations between stage one and stage two splicing languages are presented, given as theorems. Additionally, the existing relations between two stages splicing languages based on crossings and contexts of restriction enzymes factors with respect to two initial strings (having two cutting sites) and two rules are presented as subset.

  5. MAISTAS: a tool for automatic structural evaluation of alternative splicing products.

    Science.gov (United States)

    Floris, Matteo; Raimondo, Domenico; Leoni, Guido; Orsini, Massimiliano; Marcatili, Paolo; Tramontano, Anna

    2011-06-15

    Analysis of the human genome revealed that the amount of transcribed sequence is an order of magnitude greater than the number of predicted and well-characterized genes. A sizeable fraction of these transcripts is related to alternatively spliced forms of known protein coding genes. Inspection of the alternatively spliced transcripts identified in the pilot phase of the ENCODE project has clearly shown that often their structure might substantially differ from that of other isoforms of the same gene, and therefore that they might perform unrelated functions, or that they might even not correspond to a functional protein. Identifying these cases is obviously relevant for the functional assignment of gene products and for the interpretation of the effect of variations in the corresponding proteins. Here we describe a publicly available tool that, given a gene or a protein, retrieves and analyses all its annotated isoforms, provides users with three-dimensional models of the isoform(s) of his/her interest whenever possible and automatically assesses whether homology derived structural models correspond to plausible structures. This information is clearly relevant. When the homology model of some isoforms of a gene does not seem structurally plausible, the implications are that either they assume a structure unrelated to that of the other isoforms of the same gene with presumably significant functional differences, or do not correspond to functional products. We provide indications that the second hypothesis is likely to be true for a substantial fraction of the cases. http://maistas.bioinformatica.crs4.it/.

  6. Battles and hijacks: Noncoding transcription in plants

    KAUST Repository

    Ariel, Federico

    2015-06-01

    Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription. © 2015 Elsevier Ltd.

  7. Evidence for the possible biological significance of the igf-1 gene alternative splicing in prostate cancer

    Directory of Open Access Journals (Sweden)

    Anastassios ePhilippou

    2013-03-01

    Full Text Available Insulin-like growth factor I (IGF-I has been implicated in the pathogenesis of prostate cancer (PCa, since it plays a key role in cell proliferation, differentiation and apoptosis. The IGF-I actions are mediated mainly via its binding to the type I IGF receptor (IGF-IR, however IGF-I signaling via insulin receptor (IR and hybrid IGF-I/IR is also evident. Different IGF-I mRNA splice variants, namely IGF-IEa, IGF-IEb and IGF-IEc, are expressed in human cells and tissues. These transcripts encode several IGF-I precursor proteins which contain the same bioactive product (mature IGF-I, however, they differ by the length of their signal peptides on the amino-terminal end and the structure of the extension peptides (E-peptides on the carboxy-terminal end. There is an increasing interest in the possible different role of the IGF-I transcripts and their respective non-(matureIGF-I products in the regulation of distinct biological activities. Moreover, there is strong evidence of a differential expression profile of the IGF-I splice variants in normal vs. PCa tissues and PCa cells, implying that the expression pattern of the various IGF-I transcripts and their respective protein products may possess different functions in cancer biology. Herein, the evidence that the IGF-IEc transcript regulates PCa growth via Ec-peptide specific and IGF-IR/IR-independent signaling is discussed.

  8. Transcriptome sequencing revealed significant alteration of cortical promoter usage and splicing in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jing Qin Wu

    Full Text Available While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression.The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22 from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDR<0.05. Both types of transcriptional isoforms were exemplified by reads aligned to the neurodevelopmentally significant doublecortin-like kinase 1 (DCLK1 gene.This study provided the first deep and un-biased analysis of schizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia.

  9. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature1[OPEN

    Science.gov (United States)

    Jiang, Jianfu; Liu, Xinna; Liu, Guotian; Li, Shaohua

    2017-01-01

    Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. PMID:28049741

  10. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature.

    Science.gov (United States)

    Jiang, Jianfu; Liu, Xinna; Liu, Chonghuai; Liu, Guotian; Li, Shaohua; Wang, Lijun

    2017-02-01

    Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Mutations in SNRPB, encoding components of the core splicing machinery, cause cerebro-costo-mandibular syndrome.

    Science.gov (United States)

    Bacrot, Séverine; Doyard, Mathilde; Huber, Céline; Alibeu, Olivier; Feldhahn, Niklas; Lehalle, Daphné; Lacombe, Didier; Marlin, Sandrine; Nitschke, Patrick; Petit, Florence; Vazquez, Marie-Paule; Munnich, Arnold; Cormier-Daire, Valérie

    2015-02-01

    Cerebro-costo-mandibular syndrome (CCMS) is a developmental disorder characterized by the association of Pierre Robin sequence and posterior rib defects. Exome sequencing and Sanger sequencing in five unrelated CCMS patients revealed five heterozygous variants in the small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) gene. This gene includes three transcripts, namely transcripts 1 and 2, encoding components of the core spliceosomal machinery (SmB' and SmB) and transcript 3 undergoing nonsense-mediated mRNA decay. All variants were located in the premature termination codon (PTC)-introducing alternative exon of transcript 3. Quantitative RT-PCR analysis revealed a significant increase in transcript 3 levels in leukocytes of CCMS individuals compared to controls. We conclude that CCMS is due to heterozygous mutations in SNRPB, enhancing inclusion of a SNRPB PTC-introducing alternative exon, and show that this developmental disease is caused by defects in the splicing machinery. Our finding confirms the report of SNRPB mutations in CCMS patients by Lynch et al. (2014) and further extends the clinical and molecular observations. © 2014 WILEY PERIODICALS, INC.

  12. Identification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant.

    Directory of Open Access Journals (Sweden)

    Douglas A Schober

    Full Text Available Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant. Transcriptional evidence for this splice variant was confirmed by RNA-Seq and RT-PCR experiments performed from human donor brain prefrontal cortices. We detected a human upstream exon indicating the translation of the mature longer M4 receptor transcript. The predicted size for the longer two-exon M4 receptor splice variant with the additional 155 amino acid N-terminal extension, designated M4L is 69.7 kDa compared to the 53 kDa canonical single exon M4 receptor (M4S. Western blot analysis from a mammalian overexpression system, and saturation radioligand binding with [3H]-NMS (N-methyl-scopolamine demonstrated the expression of this new splice variant. Comparative pharmacological characterization between the M4L and M4S receptors revealed that both the orthosteric and allosteric binding sites for both receptors were very similar despite the addition of an N-terminal extension.

  13. Identification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant.

    Science.gov (United States)

    Schober, Douglas A; Croy, Carrie H; Ruble, Cara L; Tao, Ran; Felder, Christian C

    2017-01-01

    Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon) that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant. Transcriptional evidence for this splice variant was confirmed by RNA-Seq and RT-PCR experiments performed from human donor brain prefrontal cortices. We detected a human upstream exon indicating the translation of the mature longer M4 receptor transcript. The predicted size for the longer two-exon M4 receptor splice variant with the additional 155 amino acid N-terminal extension, designated M4L is 69.7 kDa compared to the 53 kDa canonical single exon M4 receptor (M4S). Western blot analysis from a mammalian overexpression system, and saturation radioligand binding with [3H]-NMS (N-methyl-scopolamine) demonstrated the expression of this new splice variant. Comparative pharmacological characterization between the M4L and M4S receptors revealed that both the orthosteric and allosteric binding sites for both receptors were very similar despite the addition of an N-terminal extension.

  14. Early-onset encephalopathy with epilepsy associated with a novel splice site mutation in SMC1A.

    Science.gov (United States)

    Lebrun, Nicolas; Lebon, Sébastien; Jeannet, Pierre-Yves; Jacquemont, Sébastien; Billuart, Pierre; Bienvenu, Thierry

    2015-12-01

    We report on the clinical and molecular characterization of a female patient with early-onset epileptic encephalopathy, who was found to carry a de novo novel splice site mutation in SMC1A. This girl shared some morphologic and anthropometric traits described in patients with clinical diagnosis of Cornelia de Lange syndrome and with SMC1A mutation but also has severe encephalopathy with early-onset epilepsy. In addition, she had midline hand stereotypies and scoliosis leading to the misdiagnosis of a Rett overlap syndrome. Molecular studies found a novel de novo splice site mutation (c.1911 + 1G > T) in SMC1A. This novel splice mutation was associated with an aberrantly processed mRNA that included intron 11 of the gene. Moreover, quantitative approach by RT-PCR showed a severe reduction of the SMC1A transcript suggesting that this aberrant transcript may be unstable and degraded. Taken together, our data suggest that the phenotype may be due to a loss-of-function of SMC1A in this patient. Our findings suggest that loss-of-function mutations of SMC1A may be associated with early-onset encephalopathy with epilepsy. © 2015 Wiley Periodicals, Inc.

  15. Repair of Mybpc3 mRNA by 5′-trans-splicing in a Mouse Model of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Giulia Mearini

    2013-01-01

    Full Text Available RNA trans-splicing has been explored as a therapeutic option for a variety of genetic diseases, but not for cardiac genetic disease. Hypertrophic cardiomyopathy (HCM is an autosomal-dominant disease, characterized by left ventricular hypertrophy (LVH and diastolic dysfunction. MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C is frequently mutated. We evaluated the 5′-trans-splicing strategy in a mouse model of HCM carrying a Mybpc3 mutation. 5′-trans-splicing was induced between two independently transcribed molecules, the mutant endogenous Mypbc3 pre-mRNA and an engineered pre-trans-splicing molecule (PTM carrying a FLAG-tagged wild-type (WT Mybpc3 cDNA sequence. PTMs were packaged into adeno-associated virus (AAV for transduction of cultured cardiac myocytes and the heart in vivo. Full-length repaired Mybpc3 mRNA represented up to 66% of total Mybpc3 transcripts in cardiac myocytes and 0.14% in the heart. Repaired cMyBP-C protein was detected by immunoprecipitation in cells and in vivo and exhibited correct incorporation into the sarcomere in cardiac myocytes. This study provides (i the first evidence of successful 5′-trans-splicing in vivo and (ii proof-of-concept of mRNA repair in the most prevalent cardiac genetic disease. Since current therapeutic options for HCM only alleviate symptoms, these findings open new horizons for causal therapy of the severe forms of the disease.

  16. A missense mutation (Q279R) in the fumarylacetoacetate hydrolase gene, responsible for hereditary tyrosinemia, acts as a splicing mutation.

    Science.gov (United States)

    Dreumont, N; Poudrier, J A; Bergeron, A; Levy, H L; Baklouti, F; Tanguay, R M

    2001-01-01

    Tyrosinemia type I, the most severe disease of the tyrosine catabolic pathway is caused by a deficiency in fumarylacetoacetate hydrolase (FAH). A patient showing few of the symptoms associated with the disease, was found to be a compound heterozygote for a splice mutation, IVS6-1g->t, and a putative missense mutation, Q279R. Analysis of FAH expression in liver sections obtained after resection for hepatocellular carcinoma revealed a mosaic pattern of expression. No FAH was found in tumor regions while a healthy region contained enzyme-expressing nodules. Analysis of DNA from a FAH expressing region showed that the expression of the protein was due to correction of the Q279R mutation. RT-PCR was used to assess if Q279R RNA was produced in the liver cells and in fibroblasts from the patient. Normal mRNA was found in the liver region where the mutation had reverted while splicing intermediates were found in non-expressing regions suggesting that the Q279R mutation acted as a splicing mutation in vivo. Sequence of transcripts showed skipping of exon 8 alone or together with exon 9. Using minigenes in transfection assays, the Q279R mutation was shown to induce skipping of exon 9 when placed in a constitutive splicing environment. These data suggest that the putative missense mutation Q279R in the FAH gene acts as a splicing mutation in vivo. Moreover FAH expression can be partially restored in certain liver cells as a result of a reversion of the Q279R mutation and expansion of the corrected cells.

  17. Genomic organization of Tropomodulins 2 and 4 and unusual intergenic and intraexonic splicing of YL-1 and Tropomodulin 4

    Directory of Open Access Journals (Sweden)

    Zoghbi Huda Y

    2001-10-01

    Full Text Available Abstract Background The tropomodulins (TMODs are a family of proteins that cap the pointed ends of actin filaments. Four TMODs have been identified in humans, with orthologs in mice. Mutations in actin or actin-binding proteins have been found to cause several human diseases, ranging from hypertrophic cardiomyopathy to immunodefiencies such as Wiskott-Aldrich syndrome. We had previously mapped Tropomodulin 2 (TMOD2 to the genomic region containing the gene for amyotrophic lateral sclerosis 5 (ALS5. We determined the genomic structure of Tmod2 in order to better analyze patient DNA for mutations; we also determined the genomic structure of Tropomodulin 4 (TMOD4. Results In this study, we determined the genomic structure of TMOD2 and TMOD4 and found the organization of both genes to be similar. Sequence analysis of TMOD2 revealed no mutations or polymorphisms in ALS5 patients or controls. Interestingly, we discovered that another gene, YL-1, intergenically splices into TMOD4. YL-1 encodes six exons, the last of which is 291 bp from a 5' untranslated exon of TMOD4. We used 5' RACE and RT-PCR from TMOD4 to identify several intergenic RACE products. YL-1 was also found to undergo unconventional splicing using non-canonical splice sites within exons (intraexonic splicing to produce several alternative transcripts. Conclusions The genomic structure of TMOD2 and TMOD4 have been delineated. This should facilitate future mutational analysis of these genes. In addition, intergenic splicing at TMOD4/YL-1 was discovered, demonstrating yet another level of complexity of gene organization and regulation.

  18. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Maksymilian Prondzynski

    2017-06-01

    Full Text Available Gene therapy is a promising option for severe forms of genetic diseases. We previously provided evidence for the feasibility of trans-splicing, exon skipping, and gene replacement in a mouse model of hypertrophic cardiomyopathy (HCM carrying a mutation in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C. Here we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs from an HCM patient carrying a heterozygous c.1358-1359insC MYBPC3 mutation and from a healthy donor. HCM hiPSC-CMs exhibited ∼50% lower MYBPC3 mRNA and cMyBP-C protein levels than control, no truncated cMyBP-C, larger cell size, and altered gene expression, thus reproducing human HCM features. We evaluated RNA trans-splicing and gene replacement after transducing hiPSC-CMs with adeno-associated virus. trans-splicing with 5′ or 3′ pre-trans-splicing molecules represented ∼1% of total MYBPC3 transcripts in healthy hiPSC-CMs. In contrast, gene replacement with the full-length MYBPC3 cDNA resulted in ∼2.5-fold higher MYBPC3 mRNA levels in HCM and control hiPSC-CMs. This restored the cMyBP-C level to 81% of the control level, suppressed hypertrophy, and partially restored gene expression to control level in HCM cells. This study provides evidence for (1 the feasibility of trans-splicing, although with low efficiency, and (2 efficient gene replacement in hiPSC-CMs with a MYBPC3 mutation.

  19. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  20. Human RBMY regulates germline-specific splicing events by modulating the function of the serine/arginine-rich proteins 9G8 and Tra2-{beta}.

    Science.gov (United States)

    Dreumont, Natacha; Bourgeois, Cyril F; Lejeune, Fabrice; Liu, Yilei; Ehrmann, Ingrid E; Elliott, David J; Stévenin, James

    2010-01-01

    RBMY is a male germline RNA binding protein and potential alternative splicing regulator, but the lack of a convenient biological system has made its cellular functions elusive. We found that human RBMY fused to green fluorescent protein was strictly nuclear in transfected cells, but spatially enriched in areas around nuclear speckles with some components of the exon junction complex (EJC). Human RBMY (hRBMY) and the EJC components Magoh and Y14 also physically interacted but, unlike these two proteins, hRBMY protein did not shuttle to the cytoplasm. In addition, it relocalised into nucleolar caps after inhibition of RNA polymerase II transcription. Protein interactions were also detected between RBMY and splicing factors 9G8 and transformer-2 protein homolog beta (Tra2-beta), mediated by multiple regions of the RBMY protein that contain serine/arginine-rich dipeptides, but not by the single region lacking such dipeptides. These interactions modulated the splicing of several pre-mRNAs regulated by 9G8 and Tra2-beta. Importantly, ectopic expression of hRBMY stimulated the inclusion of a testis-enriched exon from the Acinus gene, whereas 9G8 and Tra2-beta repressed this exon. We propose that hRBMY associates with regions of the nucleus enriched in nascent RNA and participates in the regulation of specific splicing events in the germline by modulating the activity of constitutively expressed splicing factors.

  1. Splicing Express: a software suite for alternative splicing analysis using next-generation sequencing data

    OpenAIRE

    Kroll, Jose E.; Kim, Jihoon; Ohno-Machado, Lucila; de Souza, Sandro J.

    2015-01-01

    Motivation. Alternative splicing events (ASEs) are prevalent in the transcriptome of eukaryotic species and are known to influence many biological phenomena. The identification and quantification of these events are crucial for a better understanding of biological processes. Next-generation DNA sequencing technologies have allowed deep characterization of transcriptomes and made it possible to address these issues. ASEs analysis, however, represents a challenging task especially when many dif...

  2. A family with attenuated familial adenomatous polyposis due to a mutation in the alternatively spliced region of APC exon 9.

    Science.gov (United States)

    Young, J; Simms, L A; Tarish, J; Buttenshaw, R; Knight, N; Anderson, G J; Bell, A; Leggett, B

    1998-01-01

    A family is presented with attenuated familial adenomatous polyposis of variable phenotype. The clinical features range from sparse right-sided polyposis and cancer in the proximal colon at the age of 34 to pan-colonic polyposis and cancer at the age of 68. Rectal sparing is common to all affected members. Heteroduplex analysis detected bands of altered mobility in exon 9 of the APC gene in all affected family members. Subsequently, a frameshift mutation was found in the alternatively spliced region of exon 9 at codon 398 which resulted in a stop signal 4 codons downstream. Alternatively spliced transcripts that delete the mutation were readily amplified from normal colonic mucosa and therefore create a mechanism for the attenuated phenotype seen in this family.

  3. Aberrant and alternative splicing in skeletal system disease.

    Science.gov (United States)

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy. © 2013 Elsevier B.V. All rights reserved.

  4. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA.

    Directory of Open Access Journals (Sweden)

    Stephen H Munroe

    Full Text Available The α-thyroid hormone receptor gene (TRα codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3' end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30 located downstream of the alternative 3'splice site of TRα2 mRNA and antisense to the 3'UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing.

  5. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA

    Science.gov (United States)

    Munroe, Stephen H.; Morales, Christopher H.; Duyck, Tessa H.; Waters, Paul D.

    2015-01-01

    The α-thyroid hormone receptor gene (TRα) codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3’ end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30) located downstream of the alternative 3’splice site of TRα2 mRNA and antisense to the 3’UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing. PMID:26368571

  6. Oriented scanning is the leading mechanism underlying 5' splice site selection in mammals

    NARCIS (Netherlands)

    Borensztajn, Keren; Sobrier, Marie-Laure; Duquesnoy, Philippe; Fischer, Anne-Marie; Tapon-Bretaudière, Jacqueline; Amselem, Serge

    2006-01-01

    Splice site selection is a key element of pre-mRNA splicing. Although it is known to involve specific recognition of short consensus sequences by the splicing machinery, the mechanisms by which 5' splice sites are accurately identified remain controversial and incompletely resolved. The human F7

  7. An engineered U1 small nuclear RNA rescues splicing-defective coagulation F7 gene expression in mice

    Science.gov (United States)

    Balestra, D; Faella, A; Margaritis, P; Cavallari, N; Pagani, F; Bernardi, F; Arruda, V R; Pinotti, M

    2014-01-01

    Background The ability of the spliceosomal small nuclear RNA U1 (U1snRNA) to rescue pre-mRNA splicing impaired by mutations makes it an attractive therapeutic molecule. Coagulation factor deficiencies due to splicing mutations are relatively frequent and could therefore benefit from this strategy. However, the effects of U1snRNAs in vivo remain unknown. Objectives To assess the rescue of the F7 c.859+5G>A splicing mutation (FVII+5A), causing severe human factor VII (hFVII) deficiency, by the modified U1snRNA+5a (U1+5a) in a murine model. Methods Mice expressing the human F7 c.859+5G>A mutant were generated following liver-directed expression by plasmid or recombinant adeno-associated viral (AAV) vector administration. The rescue of the splice-site defective pre-mRNA by U1+5a was monitored in liver and plasma through hFVII-specific assays. Results Injection of plasmids encoding the U1+5a rescued plasma hFVII levels, which increased from undetectable to ∼8.5% of those obtained with the wild-type hFVII plasmid control. To assess long-term effects, mice were injected with low and high doses of two AAV vectors encoding the FVII+5A splice site mutant as template to be corrected by U1+5a. This strategy resulted in hFVII plasma levels of 3.9 ± 0.8 or 23.3 ± 5.1 ng mL−1 in a dose-dependent manner, corresponding in patients to circulating FVII levels of ∼1–4.5% of normal. Moreover, in both experimental models, we also detected correctly spliced hFVII transcripts and hFVII-positive cells in liver cells. Conclusions Here we provide the first in vivo proof-of-principle of the rescue of the expression of a splicing-defective F7 mutant by U1snRNAs, thus highlighting their therapeutic potential in coagulation disorders. PMID:24738135

  8. An engineered U1 small nuclear RNA rescues splicing defective coagulation F7 gene expression in mice.

    Science.gov (United States)

    Balestra, D; Faella, A; Margaritis, P; Cavallari, N; Pagani, F; Bernardi, F; Arruda, V R; Pinotti, M

    2014-02-01

    The ability of the spliceosomal small nuclear RNA U1 (U1snRNA) to rescue pre-mRNA splicing impaired by mutations makes it an attractive therapeutic molecule. Coagulation factor deficiencies due to splicing mutations are relatively frequent and could therefore benefit from this strategy. However, the effects of U1snRNAs in vivo remain unknown. To assess the rescue of the F7 c.859+5G>A splicing mutation (FVII+5A), causing severe human factor VII (hFVII) deficiency, by the modified U1snRNA+5a (U1+5a) in a murine model. Mice expressing the human F7 c.859+5G>A mutant were generated following liver-directed expression by plasmid or recombinant adeno-associated viral (AAV) vector administration. The rescue of the splice-site defective pre-mRNA by U1+5a was monitored in liver and plasma through hFVII-specific assays. Injection of plasmids encoding the U1+5a rescued plasma hFVII levels, which increased from undetectable to ~8.5% of those obtained with the wild-type hFVII plasmid control. To assess long-term effects, mice were injected with low and high doses of two AAV vectors encoding the FVII+5A splice site mutant as template to be corrected by U1+5a. This strategy resulted in hFVII plasma levels of 3.9 ± 0.8 or 23.3 ± 5.1 ng mL⁻¹ in a dose-dependent manner, corresponding in patients to circulating FVII levels of ~1-4.5% of normal. Moreover, in both experimental models, we also detected correctly spliced hFVII transcripts and hFVII-positive cells in liver cells. Here we provide the first in vivo proof of-principle of the rescue of the expression of a splicing-defective F7 mutant by U1snRNAs, thus highlighting their therapeutic potential in coagulation disorders.

  9. Characterization of a new 5' splice site within the caprine arthritis encephalitis virus genome: evidence for a novel auxiliary protein

    Directory of Open Access Journals (Sweden)

    Perrin Cécile

    2008-02-01

    Full Text Available Abstract Background Lentiviral genomes encode multiple structural and regulatory proteins. Expression of the full complement of viral proteins is accomplished in part by alternative splicing of the genomic RNA. Caprine arthritis encephalitis virus (CAEV and maedi-visna virus (MVV are two highly related small-ruminant lentiviruses (SRLVs that infect goats and sheep. Their genome seems to be less complex than those of primate lentiviruses since SRLVs encode only three auxiliary proteins, namely, Tat, Rev, and Vif, in addition to the products of gag, pol, and env genes common to all retroviruses. Here, we investigated the central part of the SRLV genome to identify new splice elements and their relevance in viral mRNA and protein expression. Results We demonstrated the existence of a new 5' splice (SD site located within the central part of CAEV genome, 17 nucleotides downstream from the SD site used for the rev mRNA synthesis, and perfectly conserved among SRLV strains. This new SD site was found to be functional in both transfected and infected cells, leading to the production of a transcript containing an open reading frame generated by the splice junction with the 3' splice site used for the rev mRNA synthesis. This open reading frame encodes two major protein isoforms of 18- and 17-kDa, named Rtm, in which the N-terminal domain shared by the Env precursor and Rev proteins is fused to the entire cytoplasmic tail of the transmembrane glycoprotein. Immunoprecipitations using monospecific antibodies provided evidence for the expression of the Rtm isoforms in infected cells. The Rtm protein interacts specifically with the cytoplasmic domain of the transmembrane glycoprotein in vitro, and its expression impairs the fusion activity of the Env protein. Conclusion The characterization of a novel CAEV protein, named Rtm, which is produced by an additional multiply-spliced mRNA, indicated that the splicing pattern of CAEV genome is more complex than

  10. Splicing landscape of the eight collaborative cross founder strains.

    Science.gov (United States)

    Zheng, Christina L; Wilmot, Beth; Walter, Nicole Ar; Oberbeck, Denesa; Kawane, Sunita; Searles, Robert P; McWeeney, Shannon K; Hitzemann, Robert

    2015-02-05

    The Collaborative Cross (CC) is a large panel of genetically diverse recombinant inbred mouse strains specifically designed to provide a systems genetics resource for the study of complex traits. In part, the utility of the CC stems from the extensive genome-wide annotations of founder strain sequence and structural variation. Still missing, however, are transcriptome-specific annotations of the CC founder strains that could further enhance the utility of this resource. We provide a comprehensive survey of the splicing landscape of the 8 CC founder strains by leveraging the high level of alternative splicing within the brain. Using deep transcriptome sequencing, we found that a majority of the splicing landscape is conserved among the 8 strains, with ~65% of junctions being shared by at least 2 strains. We, however, found a large number of potential strain-specific splicing events as well, with an average of ~3000 and ~500 with ≥3 and ≥10 sequence read coverage, respectively, within each strain. To better understand strain-specific splicing within the CC founder strains, we defined criteria for and identified high-confidence strain-specific splicing events. These splicing events were defined as exon-exon junctions 1) found within only one strain, 2) with a read coverage ≥10, and 3) defined by a canonical splice site. With these criteria, a total of 1509 high-confidence strain-specific splicing events were identified, with the majority found within two of the wild-derived strains, CAST and PWK. Strikingly, the overwhelming majority, 94%, of these strain-specific splicing events are not yet annotated. Strain-specific splicing was also located within genomic regions recently reported to be over- and under-represented within CC populations. Phenotypic characterization of CC populations is increasing; thus these results will not only aid in further elucidating the transcriptomic architecture of the individual CC founder strains, but they will also help in guiding

  11. Alternative splicing variations in mouse CAPS2: differential expression and functional properties of splicing variants

    Directory of Open Access Journals (Sweden)

    Furuichi Teiichi

    2007-04-01

    Full Text Available Abstract Background Ca2+-dependent activator protein 2 (CAPS2/CADPS2 is a secretory vesicle-associated protein involved in the release of neurotrophin. We recently reported that an aberrant, alternatively spliced CAPS2 mRNA that lacks exon 3 (CAPS2Δexon3 is detected in some patients with autism. Splicing variations in mouse CAPS2 and their expression and functions remain unclear. Results In this study, we defined 31 exons in the mouse CAPS2 gene and identified six alternative splicing variants, CAPS2a-f. CAPS2a is an isoform lacking exons 22 and 25, which encode part of the Munc13-1-homologous domain (MHD. CAPS2b lacks exon 25. CAPS2c lacks exons 11 and 22. CAPS2d, 2e, and 2f have C-terminal deletions from exon 14, exon 12, and exon 5, respectively. On the other hand, a mouse counterpart of CAPS2Δexon3 was not detected in the mouse tissues tested. CAPS2b was expressed exclusively in the brain, and the other isoforms were highly expressed in the brain, but also in some non-neural tissues. In the brain, all isoforms showed predominant expression patterns in the cerebellum. In the developing cerebellum, CAPS2b showed an up-regulated expression pattern, whereas the other isoforms exhibited transiently peaked expression patterns. CAPS2 proteins were mostly recovered in soluble fractions, but some were present in membrane fractions, except for CAPS2c and 2f, both of which lack the PH domain, suggesting that the PH domain is important for membrane association. In contrast to CAPS2a and 2b, CAPS2c showed slightly decreased BDNF-releasing activity, which is likely due to the C-terminal truncation of the PH domain in CAPS2c. Conclusion This study indicates that, in mouse, there are six splicing variants of CAPS2 (CAPS2a-f, and that these are subdivided into two groups: a long form containing the C-terminal MHD and a short form lacking the C-terminal MHD. These results demonstrate that the splicing variations correlate with their expression patterns and

  12. A Novel SLC27A4 Splice Acceptor Site Mutation in Great Danes with Ichthyosis.

    Science.gov (United States)

    Metzger, Julia; Wöhlke, Anne; Mischke, Reinhard; Hoffmann, Annalena; Hewicker-Trautwein, Marion; Küch, Eva-Maria; Naim, Hassan Y; Distl, Ottmar

    2015-01-01

    Ichthyoses are a group of various different types of hereditary disorders affecting skin cornification. They are characterized by hyperkeratoses of different severity levels and are associated with a dry and scaling skin. Genome-wide association analysis of nine affected and 13 unaffected Great Danes revealed a genome-wide significant peak on chromosome 9 at 57-58 Mb in the region of SLC27A4. Sequence analysis of genomic DNA of SLC27A4 revealed the non-synonymous SNV SLC27A4:g.8684G>A in perfect association with ichthyosis-affection in Great Danes. The mutant transcript of SLC27A4 showed an in-frame loss of 54 base pairs in exon 8 probably induced by a new splice acceptor site motif created by the mutated A- allele of the SNV. Genotyping 413 controls from 35 different breeds of dogs and seven wolves revealed that this mutation could not be found in other populations except in Great Danes. Affected dogs revealed high amounts of mutant transcript but only low levels of the wild type transcript. Targeted analyses of SLC27A4 protein from skin tissues of three affected and two unaffected Great Danes indicated a markedly reduced or not detectable wild type and truncated protein levels in affected dogs but a high expression of wild type SLC27A4 protein in unaffected controls. Our data provide evidence of a new splice acceptor site creating SNV that results in a reduction or loss of intact SLC27A4 protein and probably explains the severe skin phenotype in Great Danes. Genetic testing will allow selective breeding to prevent ichthyosis-affected puppies in the future.

  13. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    Directory of Open Access Journals (Sweden)

    Giuseppe Fiume

    2016-11-01

    Full Text Available The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03% of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7% and 698 downregulated (54.3% RNAs. In K562 cells, 1959 (3.1% of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7% and 906 downregulated (46.3%. Only 137 transcripts (0.22% were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  14. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.

    Science.gov (United States)

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-11-07

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  15. Differential gene expression and alternative splicing between diploid and tetraploid watermelon.

    Science.gov (United States)

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A; Vajja, Venkata G; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K; Levi, Amnon; Wehner, Todd; Reddy, Umesh K

    2015-03-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. A Novel SLC27A4 Splice Acceptor Site Mutation in Great Danes with Ichthyosis.

    Directory of Open Access Journals (Sweden)

    Julia Metzger

    Full Text Available Ichthyoses are a group of various different types of hereditary disorders affecting skin cornification. They are characterized by hyperkeratoses of different severity levels and are associated with a dry and scaling skin. Genome-wide association analysis of nine affected and 13 unaffected Great Danes revealed a genome-wide significant peak on chromosome 9 at 57-58 Mb in the region of SLC27A4. Sequence analysis of genomic DNA of SLC27A4 revealed the non-synonymous SNV SLC27A4:g.8684G>A in perfect association with ichthyosis-affection in Great Danes. The mutant transcript of SLC27A4 showed an in-frame loss of 54 base pairs in exon 8 probably induced by a new splice acceptor site motif created by the mutated A- allele of the SNV. Genotyping 413 controls from 35 different breeds of dogs and seven wolves revealed that this mutation could not be found in other populations except in Great Danes. Affected dogs revealed high amounts of mutant transcript but only low levels of the wild type transcript. Targeted analyses of SLC27A4 protein from skin tissues of three affected and two unaffected Great Danes indicated a markedly reduced or not detectable wild type and truncated protein levels in affected dogs but a high expression of wild type SLC27A4 protein in unaffected controls. Our data provide evidence of a new splice acceptor site creating SNV that results in a reduction or loss of intact SLC27A4 protein and probably explains the severe skin phenotype in Great Danes. Genetic testing will allow selective breeding to prevent ichthyosis-affected puppies in the future.

  17. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.

    Science.gov (United States)

    Bai, Yongsheng; Kinne, Jeff; Donham, Brandon; Jiang, Feng; Ding, Lizhong; Hassler, Justin R; Kaufman, Randal J

    2016-08-22

    Most existing tools for detecting next-generation sequencing-based splicing events focus on generic splicing events. Consequently, special types of non-canonical splicing events of short mRNA regions (IRE1α targeted) have not yet been thoroughly addressed at a genome-wide level using bioinformatics approaches in conjunction with next-generation technologies. During endoplasmic reticulum (ER) stress, the gene encoding the RNase Ire1α is known to splice out a short 26 nt region from the mRNA of the transcription factor Xbp1 non-canonically within the cytosol. This causes an open reading frame-shift that induces expression of many downstream genes in reaction to ER stress as part of the unfolded protein response (UPR). We previously published an algorithm termed "Read-Split-Walk" (RSW) to identify non-canonical splicing regions using RNA-Seq data and applied it to ER stress-induced Ire1α heterozygote and knockout mouse embryonic fibroblast cell lines. In this study, we have developed an improved algorithm "Read-Split-Run" (RSR) for detecting genome-wide Ire1α-targeted genes with non-canonical spliced regions at a faster speed. We applied the RSR algorithm using different combinations of several parameters to the previously RSW tested mouse embryonic fibroblast cells (MEF) and the human Encyclopedia of DNA Elements (ENCODE) RNA-Seq data. We also compared the performance of RSR with two other alternative splicing events identification tools (TopHat (Trapnell et al., Bioinformatics 25:1105-1111, 2009) and Alt Event Finder (Zhou et al., BMC Genomics 13:S10, 2012)) utilizing the context of the spliced Xbp1 mRNA as a positive control in the data sets we identified it to be the top cleavage target present in Ire1α (+/-) but absent in Ire1α (-/-) MEF samples and this comparison was also extended to human ENCODE RNA-Seq data. Proof of principle came in our results by the fact that the 26 nt non-conventional splice site in Xbp1 was detected as the top hit by our new RSR

  18. Androgen Receptor Splice Variants and Resistance to Taxane Chemotherapy

    Science.gov (United States)

    2016-10-01

    report. Inventions, patent applications, and/or licenses Nothing to report. Others Nothing to report. 7. Participants & Other... Brand LJ et al: Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res

  19. Minor class splicing shapes the zebrafish transcriptome during development

    DEFF Research Database (Denmark)

    Markmiller, Sebastian; Cloonan, Nicole; Lardelli, Rea M

    2014-01-01

    Minor class or U12-type splicing is a highly conserved process required to remove a minute fraction of introns from human pre-mRNAs. Defects in this splicing pathway have recently been linked to human disease, including a severe developmental disorder encompassing brain and skeletal abnormalities...... known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we...... as the U11/U12 di-snRNP 65-kDa protein, a unique component of the U12-type spliceosome. The biochemical impact of the mutation in clbn is the formation of aberrant U11- and U12-containing small nuclear ribonucleoproteins that impair the efficiency of U12-type splicing. Using RNA sequencing and microarrays...

  20. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Yasumichi [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp [Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Tanaka, Hiroki [Department of Legal Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Torimoto, Yoshihiro [Oncology Center, Asahikawa Medical University Hospital, Hokkaido 078-8510 (Japan); Ohtake, Takaaki; Kohgo, Yutaka [Department of Gastroenterology, International University of Health and Welfare Hospital, Tochigi 329-2763 (Japan)

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  1. Liver myofibroblasts of murine origins express mesothelin: Identification of novel rat mesothelin splice variants.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available Liver myofibroblasts are specialized effector cells that drive hepatic fibrosis, a hallmark process of chronic liver diseases, leading to progressive scar formation and organ failure. Liver myofibroblasts are increasingly recognized as heterogeneous with regards to their origin, phenotype, and functions. For instance, liver myofibroblasts express cell markers that are universally represented such as, ItgαV and Pdgfrβ, or restricted to a given subpopulation such as, Lrat exclusively expressed in hepatic stellate cells, and Gpm6a in mesothelial cells. To study liver myofibroblasts in vitro, we have previously generated and characterized a SV40-immortalized polyclonal rat activated portal fibroblast cell line called RGF-N2 expressing multiple mesothelin mRNA transcripts. Mesothelin, a cell-surface molecule expressed in normal mesothelial cells and overexpressed in several cancers such as, mesothelioma and cholangiocarcinoma, was recently identified as a key regulator of portal myofibroblast proliferation, and fibrosis progression in the setting of chronic cholestatic liver disease. Here, we identify novel mesothelin splice variants expressed in rat activated portal fibroblasts. RGF-N2 portal fibroblast cDNA was used as template for insertion of hemagglutinin tag consensus sequence into the complete open reading frame of rat mesothelin variant coding sequences by extension PCR. Purified amplicons were subsequently cloned into an expression vector for in vitro translation and transfection in monkey COS7 fibroblasts, before characterization of fusion proteins by immunoblot and immunofluorescence. We show that rat activated portal fibroblasts, hepatic stellate cells, and cholangiocarcinoma cells express wild-type mesothelin and additional splice variants, while mouse activated hepatic stellate cells appear to only express wild-type mesothelin. Notably, rat mesothelin splice variants differ from the wild-type isoform by their protein properties and

  2. Tracking the evolution of alternatively spliced exons within the Dscam family

    Directory of Open Access Journals (Sweden)

    Vision Todd J

    2006-02-01

    Full Text Available Abstract Background The Dscam gene in the fruit fly, Drosophila melanogaster, contains twenty-four exons, four of which are composed of tandem arrays that each undergo mutually exclusive alternative splicing (4, 6, 9 and 17, potentially generating 38,016 protein isoforms. This degree of transcript diversity has not been found in mammalian homologs of Dscam. We examined the molecular evolution of exons within this gene family to locate the point of divergence for this alternative splicing pattern. Results Using the fruit fly Dscam exons 4, 6, 9 and 17 as seed sequences, we iteratively searched sixteen genomes for homologs, and then performed phylogenetic analyses of the resulting sequences to examine their evolutionary history. We found homologs in the nematode, arthropod and vertebrate genomes, including homologs in several vertebrates where Dscam had not been previously annotated. Among these, only the arthropods contain homologs arranged in tandem arrays indicative of mutually exclusive splicing. We found no homologs to these exons within the Arabidopsis, yeast, tunicate or sea urchin genomes but homologs to several constitutive exons from fly Dscam were present within tunicate and sea urchin. Comparing the rate of turnover within the tandem arrays of the insect taxa (fruit fly, mosquito and honeybee, we found the variants within exons 4 and 17 are well conserved in number and spatial arrangement despite 248–283 million years of divergence. In contrast, the variants within exons 6 and 9 have undergone considerable turnover since these taxa diverged, as indicated by deeply branching taxon-specific lineages. Conclusion Our results suggest that at least one Dscam exon array may be an ancient duplication that predates the divergence of deuterostomes from protostomes but that there is no evidence for the presence of arrays in the common ancestor of vertebrates. The different patterns of conservation and turnover among the Dscam exon arrays

  3. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  4. Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression.

    Science.gov (United States)

    de Bruin, Ruben G; Shiue, Lily; Prins, Jurriën; de Boer, Hetty C; Singh, Anjana; Fagg, W Samuel; van Gils, Janine M; Duijs, Jacques M G J; Katzman, Sol; Kraaijeveld, Adriaan O; Böhringer, Stefan; Leung, Wai Y; Kielbasa, Szymon M; Donahue, John P; van der Zande, Patrick H J; Sijbom, Rick; van Alem, Carla M A; Bot, Ilze; van Kooten, Cees; Jukema, J Wouter; Van Esch, Hilde; Rabelink, Ton J; Kazan, Hilal; Biessen, Erik A L; Ares, Manuel; van Zonneveld, Anton Jan; van der Veer, Eric P

    2016-03-31

    A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function.

  5. Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression

    Science.gov (United States)

    de Bruin, Ruben G.; Shiue, Lily; Prins, Jurriën; de Boer, Hetty C.; Singh, Anjana; Fagg, W. Samuel; van Gils, Janine M.; Duijs, Jacques M. G. J.; Katzman, Sol; Kraaijeveld, Adriaan O.; Böhringer, Stefan; Leung, Wai Y.; Kielbasa, Szymon M.; Donahue, John P.; van der Zande, Patrick H.J.; Sijbom, Rick; van Alem, Carla M. A.; Bot, Ilze; van Kooten, Cees; Jukema, J. Wouter; Van Esch, Hilde; Rabelink, Ton J.; Kazan, Hilal; Biessen, Erik A. L.; Ares Jr., Manuel; van Zonneveld, Anton Jan; van der Veer, Eric P.

    2016-01-01

    A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function. PMID:27029405

  6. Alteration of introns in a hyaluronan synthase 1 (HAS1 minigene convert Pre-mRNA [corrected] splicing to the aberrant pattern in multiple myeloma (MM: MM patients harbor similar changes.

    Directory of Open Access Journals (Sweden)

    Jitra Kriangkum

    Full Text Available Aberrant pre-mRNA splice variants of hyaluronan synthase 1 (HAS1 have been identified in malignant cells from cancer patients. Bioinformatic analysis suggests that intronic sequence changes can underlie aberrant splicing. Deletions and mutations were introduced into HAS1 minigene constructs to identify regions that can influence aberrant intronic splicing, comparing the splicing pattern in transfectants with that in multiple myeloma (MM patients. Introduced genetic variations in introns 3 and 4 of HAS1 as shown here can promote aberrant splicing of the type detected in malignant cells from MM patients. HAS1Vd is a novel intronic splice variant first identified here. HAS1Vb, an intronic splice variant previously identified in patients, skips exon 4 and utilizes the same intron 4 alternative 3'splice site as HAS1Vd. For transfected constructs with unaltered introns 3 and 4, HAS1Vd transcripts are readily detectable, frequently to the exclusion of HAS1Vb. In contrast, in MM patients, HAS1Vb is more frequent than HAS1Vd. In the HAS1 minigene, combining deletion in intron 4 with mutations in intron 3 leads to a shift from HAS1Vd expression to HAS1Vb expression. The upregulation of aberrant splicing, exemplified here by the expression of HAS1Vb, is shown here to be influenced by multiple genetic changes in intronic sequences. For HAS1Vb, this includes enhanced exon 4 skipping and increased usage of alternative 3' splice sites. Thus, the combination of introduced mutations in HAS1 intron3 with introduced deletions in HAS1 intron 4 promoted a shift to an aberrant splicing pattern previously shown to be clinically significant. Most MM patients harbor genetic variations in intron 4, and as shown here, nearly half harbor recurrent mutations in HAS1 intron 3. Our work suggests that aberrant intronic HAS1 splicing in MM patients may rely on intronic HAS1 deletions and mutations that are frequent in MM patients but absent from healthy donors.

  7. Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids

    DEFF Research Database (Denmark)

    Chin, Joanna Y; Kuan, Jean Y; Lonkar, Pallavi S

    2008-01-01

    Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian...... DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent...... cells via site-specific binding and creation of altered helical structures that provoke DNA repair. We have designed a series of triplex-forming PNAs that can specifically bind to sequences in the human beta-globin gene. We demonstrate here that these PNAs, when cotransfected with recombinatory donor...

  8. Cell-Type-Specific Splicing of Piezo2 Regulates Mechanotransduction

    Directory of Open Access Journals (Sweden)

    Marcin Szczot

    2017-12-01

    Full Text Available Summary: Piezo2 is a mechanically activated ion channel required for touch discrimination, vibration detection, and proprioception. Here, we discovered that Piezo2 is extensively spliced, producing different Piezo2 isoforms with distinct properties. Sensory neurons from both mice and humans express a large repertoire of Piezo2 variants, whereas non-neuronal tissues express predominantly a single isoform. Notably, even within sensory ganglia, we demonstrate the splicing of Piezo2 to be cell type specific. Biophysical characterization revealed substantial differences in ion permeability, sensitivity to calcium modulation, and inactivation kinetics among Piezo2 splice variants. Together, our results describe, at the molecular level, a potential mechanism by which transduction is tuned, permitting the detection of a variety of mechanosensory stimuli. : Szczot et al. find that the mechanoreceptor Piezo2 is extensively alternatively spliced, generating multiple distinct isoforms. Their findings indicate that these splice products have specific tissue and cell type expression patterns and exhibit differences in receptor properties. Keywords: Piezo, touch, sensation, ion-channel, splicing

  9. Molecular Basis of Transcription-Coupled Pre-mRNA Capping

    NARCIS (Netherlands)

    Martinez-Rucobo, Fuensanta W.; Kohler, Rebecca; van de Waterbeemd, Michiel|info:eu-repo/dai/nl/412537761; Heck, Albert J R|info:eu-repo/dai/nl/105189332; Hemann, Matthias; Herzog, Franz; Stark, Holger; Cramer, Patrick

    2015-01-01

    Capping is the first step in pre-mRNA processing, and the resulting 5'-RNA cap is required for mRNA splicing, export, translation, and stability. Capping is functionally coupled to transcription by RNA polymerase (Pol) II, but the coupling mechanism remains unclear. We show that efficient binding of

  10. Discovery of CTCF-sensitive Cis-spliced fusion RNAs between adjacent genes in human prostate cells.

    Science.gov (United States)

    Qin, Fujun; Song, Zhenguo; Babiceanu, Mihaela; Song, Yansu; Facemire, Loryn; Singh, Ritambhara; Adli, Mazhar; Li, Hui

    2015-02-01

    Genes or their encoded products are not expected to mingle with each other unless in some disease situations. In cancer, a frequent mechanism that can produce gene fusions is chromosomal rearrangement. However, recent discoveries of RNA trans-splicing and cis-splicing between adjacent genes (cis-SAGe) support for other mechanisms in generating fusion RNAs. In our transcriptome analyses of 28 prostate normal and cancer samples, 30% fusion RNAs on average are the transcripts that contain exons belonging to same-strand neighboring genes. These fusion RNAs may be the products of cis-SAGe, which was previously thought to be rare. To validate this finding and to better understand the phenomenon, we used LNCaP, a prostate cell line as a model, and identified 16 additional cis-SAGe events by silencing transcription factor CTCF and paired-end RNA sequencing. About half of the fusions are expressed at a significant level compared to their parental genes. Silencing one of the in-frame fusions resulted in reduced cell motility. Most out-of-frame fusions are likely to function as non-coding RNAs. The majority of the 16 fusions are also detected in other prostate cell lines, as well as in the 14 clinical prostate normal and cancer pairs. By studying the features associated with these fusions, we developed a set of rules: 1) the parental genes are same-strand-neighboring genes; 2) the distance between the genes is within 30kb; 3) the 5' genes are actively transcribing; and 4) the chimeras tend to have the second-to-last exon in the 5' genes joined to the second exon in the 3' genes. We then randomly selected 20 neighboring genes in the genome, and detected four fusion events using these rules in prostate cancer and non-cancerous cells. These results suggest that splicing between neighboring gene transcripts is a rather frequent phenomenon, and it is not a feature unique to cancer cells.

  11. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS, leading to programmed cell death in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Hanoch Goldshmidt

    2010-01-01

    Full Text Available Trypanosomes are parasites that cycle between the insect host (procyclic form and mammalian host (bloodstream form. These parasites lack conventional transcription regulation, including factors that induce the unfolded protein response (UPR. However, they possess a stress response mechanism, the spliced leader RNA silencing (SLS pathway. SLS elicits shut-off of spliced leader RNA (SL RNA transcription by perturbing the binding of the transcription factor tSNAP42 to its cognate promoter, thus eliminating trans-splicing of all mRNAs. Induction of endoplasmic reticulum (ER stress in procyclic trypanosomes elicits changes in the transcriptome similar to those induced by conventional UPR found in other eukaryotes. The mechanism of up-regulation under ER stress is dependent on differential stabilization of mRNAs. The transcriptome changes are accompanied by ER dilation and elevation in the ER chaperone, BiP. Prolonged ER stress induces SLS pathway. RNAi silencing of SEC63, a factor that participates in protein translocation across the ER membrane, or SEC61, the translocation channel, also induces SLS. Silencing of these genes or prolonged ER stress led to programmed cell death (PCD, evident by exposure of phosphatidyl serine, DNA laddering, increase in reactive oxygen species (ROS production, increase in cytoplasmic Ca(2+, and decrease in mitochondrial membrane potential, as well as typical morphological changes observed by transmission electron microscopy (TEM. ER stress response is also induced in the bloodstream form and if the stress persists it leads to SLS. We propose that prolonged ER stress induces SLS, which serves as a unique death pathway, replacing the conventional caspase-mediated PCD observed in higher eukaryotes.

  12. Survivin 2α: a novel Survivin splice variant expressed in human malignancies

    Directory of Open Access Journals (Sweden)

    Honsey Laura E

    2005-03-01

    Full Text Available Abstract Background Survivin and its alternative splice forms are involved in critical cellular processes, including cell division and programmed cell death. Survivin is expressed in the majority of human cancers, but minimally in differentiated normal tissues. Expression levels correlate with tumor aggressiveness and resistance to therapy. Results In the present study, we identify and characterize a novel survivin isoform that we designate survivin 2α. Structurally, the transcript consists of 2 exons: exon 1 and exon 2, as well as a 3' 197 bp region of intron 2. Acquisition of a new in-frame stop codon within intron 2 results in an open reading frame of 225 nucleotides, predicting a truncated 74 amino acid protein. Survivin 2α is expressed at high levels in several malignant cell lines and primary tumors. Functional assays show that survivin 2α attenuates the anti-apoptotic activity of survivin. Subcellular localization and immunoprecipitation of survivin 2α suggests a physical interaction with survivin. Conclusion We characterized a novel survivin splice variant that we designated survivin 2α. We hypothesize that survivin 2α can alter the anti-apoptotic functions of survivin in malignant cells. Thus survivin 2α may be useful as a therapeutic tool in sensitizing chemoresistant tumor cells to chemotherapy.

  13. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees.

    Science.gov (United States)

    Foret, Sylvain; Kucharski, Robert; Pellegrini, Matteo; Feng, Suhua; Jacobsen, Steven E; Robinson, Gene E; Maleszka, Ryszard

    2012-03-27

    In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense non-protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis.

  14. Ire1 Has Distinct Catalytic Mechanisms for XBP1/HAC1 Splicing and RIDD

    Directory of Open Access Journals (Sweden)

    Arvin B. Tam

    2014-11-01

    Full Text Available An evolutionarily conserved unfolded protein response (UPR component, IRE1, cleaves XBP1/HAC1 introns in order to generate spliced mRNAs that are translated into potent transcription factors. IRE1 also cleaves endoplasmic-reticulum-associated RNAs leading to their decay, an activity termed regulated IRE1-dependent decay (RIDD; however, the mechanism by which IRE1 differentiates intron cleavage from RIDD is not well understood. Using in vitro experiments, we found that IRE1 has two different modes of action: XBP1/HAC1 is cleaved by IRE1 subunits acting cooperatively within IRE1 oligomers, whereas a single subunit of IRE1 performs RIDD without cooperativity. Furthermore, these distinct activities can be separated by complementation of catalytically inactive IRE1 RNase and mutations at oligomerization interfaces. Using an IRE1 RNase inhibitor, STF-083010, selective inhibition of XBP1 splicing indicates that XBP1 promotes cell survival, whereas RIDD leads to cell death, revealing modulation of IRE1 activities as a drug-development strategy.

  15. Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching

    Directory of Open Access Journals (Sweden)

    Kole Ryszard

    2011-10-01

    Full Text Available Abstract Background Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds. Methods Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25. Results It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer. Conclusion This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.

  16. RNA Analysis as a Tool to Determine Clinically Relevant Gene Fusions and Splice Variants.

    Science.gov (United States)

    Teixidó, Cristina; Giménez-Capitán, Ana; Molina-Vila, Miguel Ángel; Peg, Vicente; Karachaliou, Niki; Rodríguez-Capote, Alejandra; Castellví, Josep; Rosell, Rafael

    2018-04-01

    - Technologic advances have contributed to the increasing relevance of RNA analysis in clinical oncology practice. The different genetic aberrations that can be screened with RNA include gene fusions and splice variants. Validated methods of identifying these alterations include fluorescence in situ hybridization, immunohistochemistry, reverse transcription-polymerase chain reaction, and next-generation sequencing, which can provide physicians valuable information on disease and treatment of cancer patients. - To discuss the standard techniques available and new approaches for the identification of gene fusions and splice variants in cancer, focusing on RNA analysis and how analytic methods have evolved in both tissue and liquid biopsies. - This is a narrative review based on PubMed searches and the authors' own experiences. - Reliable RNA-based testing in tissue and liquid biopsies can inform the diagnostic process and guide physicians toward the best treatment options. Next-generation sequencing methodologies permit simultaneous assessment of molecular alterations and increase the number of treatment options available for cancer patients.

  17. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-10-01

    Full Text Available Objective Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase (AXL gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form in equine skeletal muscle to gain insight(s into the role of each alternative transcript during exercise. Methods We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR, and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR. Results Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3 and immunoglobin (Ig domain was different between two alternative isoforms. Conclusion It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s and significance of the alternative splicing isoforms in race horse skeletal muscle.

  18. Differences in exon expression and alternatively spliced genes in blood of multiple sclerosis compared to healthy control subjects.

    Science.gov (United States)

    Tian, Yingfang; Apperson, Michelle L; Ander, Bradley P; Liu, Dazhi; Stomova, Boryana S; Jickling, Glen C; Enriquez, Richelle; Agius, Mark A; Sharp, Frank R

    2011-01-01

    Using whole genome exon microarrays 120 exons were differentially expressed between medication-free multiple sclerosis (MS) subjects in remission and healthy control subjects (HS) (p|1.2|). These exons differentiated MS from HS using cluster analyses, principal components analyses (PCAs) and cross-validation. In addition, 340 genes (transcripts) were predicted to be alternatively spliced in MS compared to HS. These findings may provide insight into the pathophysiology of MS and potentially provide prognostic and diagnostic biomarkers. However, given that multiple comparisons were performed on a very small sample, these preliminary findings require confirmation using a much larger independent cohort. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Leader-to-leader splicing is required for efficient production and accumulation of polyomavirus late mRNAs.

    OpenAIRE

    Adami, G R; Marlor, C W; Barrett, N L; Carmichael, G G

    1989-01-01

    Polyomavirus late mRNA molecules contain multiple, tandem copies of a noncoding 57-base "late leader" exon at their 5' ends. This exon is encoded only once in the genome. Leader multiplicity arises from leader-leader splicing in giant primary transcripts, which are the result of multiple circuits of the viral genome by RNA polymerase II. We have been interested in learning more about the role of the leader exon in late viral gene expression. We recently showed that an abbreviated-leader mutan...

  20. The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer

    Directory of Open Access Journals (Sweden)

    Ball Richard Y

    2010-07-01

    Full Text Available Abstract Background Dietary or therapeutic interventions to counteract the loss of PTEN expression could contribute to the prevention of prostate carcinogenesis or reduce the rate of cancer progression. In this study, we investigate the interaction between sulforaphane, a dietary isothiocyanate derived from broccoli, PTEN expression and gene expression in pre malignant prostate tissue. Results We initially describe heterogeneity in expression of PTEN in non-malignant prostate tissue of men deemed to be at risk of prostate cancer. We subsequently use the mouse prostate-specific PTEN deletion model, to show that sulforaphane suppresses transcriptional changes induced by PTEN deletion and induces additional changes in gene expression associated with cell cycle arrest and apoptosis in PTEN null tissue, but has no effect on transcription in wild type tissue. Comparative analyses of changes in gene expression in mouse and human prostate tissue indicate that similar changes can be induced in humans with a broccoli-rich diet. Global analyses of exon expression demonstrated that sulforaphane interacts with PTEN deletion to modulate alternative gene splicing, illustrated through a more detailed analysis of DMBT1 splicing. Conclusion To our knowledge, this is the first report of how diet may perturb changes in transcription induced by PTEN deletion, and the effects of diet on global patterns of alternative gene splicing. The study exemplifies the complex interaction between diet, genotype and gene expression, and the multiple modes of action of small bioactive dietary components.

  1. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure.

    Science.gov (United States)

    Gelfman, Sahar; Cohen, Noa; Yearim, Ahuvi; Ast, Gil

    2013-05-01

    DNA methylation is known to regulate transcription and was recently found to be involved in exon recognition via cotranscriptional splicing. We recently observed that exon-intron architectures can be grouped into two classes: one with higher GC content in exons compared to the flanking introns, and the other with similar GC content in exons and introns. The first group has higher nucleosome occupancy on exons than introns, whereas the second group exhibits weak nucleosome marking of exons, suggesting another type of epigenetic marker distinguishes exons from introns when GC content is similar. We find different and specific patterns of DNA methylation in each of the GC architectures; yet in both groups, DNA methylation clearly marks the exons. Exons of the leveled GC architecture exhibit a significantly stronger DNA methylation signal in relation to their flanking introns compared to exons of the differential GC architecture. This is accentuated by a reduction of the DNA methylation level in the intronic sequences in proximity to the splice sites and shows that different epigenetic modifications mark the location of exons already at the DNA level. Also, lower levels of methylated CpGs on alternative exons can successfully distinguish alternative exons from constitutive ones. Three positions at the splice sites show high CpG abundance and accompany elevated nucleosome occupancy in a leveled GC architecture. Overall, these results suggest that DNA methylation affects exon recognition and is influenced by the GC architecture of the exon and flanking introns.

  2. Multiphasic and Dynamic Changes in Alternative Splicing during Induction of Pluripotency Are Coordinated by Numerous RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Benjamin Cieply

    2016-04-01

    Full Text Available Alternative splicing (AS plays a critical role in cell fate transitions, development, and disease. Recent studies have shown that AS also influences pluripotency and somatic cell reprogramming. We profiled transcriptome-wide AS changes that occur during reprogramming of fibroblasts to pluripotency. This analysis revealed distinct phases of AS, including a splicing program that is unique to transgene-independent induced pluripotent stem cells (iPSCs. Changes in the expression of AS factors Zcchc24, Esrp1, Mbnl1/2, and Rbm47 were demonstrated to contribute to phase-specific AS. RNA-binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS during reprogramming by different RNA-binding proteins. Ectopic expression of Esrp1 enhanced reprogramming, in part by modulating the AS of the epithelial specific transcription factor Grhl1. These data represent a comprehensive temporal analysis of the dynamic regulation of AS during the acquisition of pluripotency.

  3. A Role for SMN Exon 7 Splicing in the Selective Vulnerability of Motor Neurons in Spinal Muscular Atrophy

    Science.gov (United States)

    Ruggiu, Matteo; McGovern, Vicki L.; Lotti, Francesco; Saieva, Luciano; Li, Darrick K.; Kariya, Shingo; Monani, Umrao R.; Burghes, Arthur H. M.

    2012-01-01

    Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by homozygous loss of the Survival Motor Neuron 1 (SMN1) gene. In the absence of SMN1, inefficient inclusion of exon 7 in transcripts from the nearly identical SMN2 gene results in ubiquitous SMN decrease but selective motor neuron degeneration. Here we investigated whether cell type-specific differences in the efficiency of exon 7 splicing contribute to the vulnerability of SMA motor neurons. We show that normal motor neurons express markedly lower levels of full-length SMN mRNA from SMN2 than do other cells in the spinal cord. This is due to inefficient exon 7 splicing that is intrinsic to motor neurons under normal conditions. We also find that SMN depletion in mammalian cells decreases exon 7 inclusion through a negative feedback loop affecting the splicing of its own mRNA. This mechanism is active in vivo and further decreases the efficiency of exon 7 inclusion specifically in motor neurons of severe-SMA mice. Consistent with expression of lower levels of full-length SMN, we find that SMN-dependent downstream molecular defects are exacerbated in SMA motor neurons. These findings suggest a mechanism to explain the selective vulnerability of motor neurons to loss of SMN1. PMID:22037760

  4. Identification of a splicing coactivator gene that affects the production of ochratoxin a in Aspergillus carbonarius

    Directory of Open Access Journals (Sweden)

    Lígia Uno Lunardi

    2009-11-01

    Full Text Available Ochratoxin A is a mycotoxin produced by some fungi species. Among them, Aspergillus carbonarius is considered a powerful producer. Genes involved in the ochratoxin A biosynthesis pathway have been identified in some producer species. However, there are few studies that purpose to identify these genes in A. carbonarius. The use of insertion mutants to identify genes associated with certain properties has been increased in the literature. In this work, the region of T-DNA integration was investigated in one A. carbonarius ochratoxin-defective mutant previously obtained by Agrobacterium tumefaciens-mediated transformation, in order to find an association between interrupted gene and the biosynthesis of ochratoxin A. The integration occurred in a gene that possibly encodes a splicing coactivator protein. The analysis of the relative expression of the splicing coativator gene from A. carbonarius wild type strain in four different media showed high correlation between the transcript levels and the ochratoxin A production.A ocratoxina A é uma micotoxina frequentemente encontrada em uma grande variedade de produtos alimentares e apresenta efeitos nefrotóxicos e potencial carcinogênico para animais e humanos. É naturalmente produzida por algumas espécies fúngicas, como Aspergillus carbonarius, que é considerado um potente produtor. Apesar disso, o número de estudos que visam identificar genes que são essenciais para a biossíntese de ocratoxina em A. carbonarius é ainda reduzido. Um mutante de A. carbonarius com baixa produção de ocratoxina A previamente obtido por transformação mediada por Agrobacterium tumefaciens foi investigado com o objetivo de encontrar uma associação entre o gene interrompido e a biossíntese desta micotoxina. Os resultados mostraram a ocorrência de uma junção não exata entre o T-DNA e o DNA genômico do fungo durante o evento de integração. A integração do T-DNA no genoma do mutante T188 provocou dele

  5. Method of predicting Splice Sites based on signal interactions

    Directory of Open Access Journals (Sweden)

    Deogun Jitender S

    2006-04-01

    Full Text Available Abstract Background Predicting and proper ranking of canonical splice sites (SSs is a challenging problem in bioinformatics and machine learning communities. Any progress in SSs recognition will lead to better understanding of splicing mechanism. We introduce several new approaches of combining a priori knowledge for improved SS detection. First, we design our new Bayesian SS sensor based on oligonucleotide counting. To further enhance prediction quality, we applied our new de novo motif detection tool MHMMotif to intronic ends and exons. We combine elements found with sensor information using Naive Bayesian Network, as implemented in our new tool SpliceScan. Results According to our tests, the Bayesian sensor outperforms the contemporary Maximum Entropy sensor for 5' SS detection. We report a number of putative Exonic (ESE and Intronic (ISE Splicing Enhancers found by MHMMotif tool. T-test statistics on mouse/rat intronic alignments indicates, that detected elements are on average more conserved as compared to other oligos, which supports our assumption of their functional importance. The tool has been shown to outperform the SpliceView, GeneSplicer, NNSplice, Genio and NetUTR tools for the test set of human genes. SpliceScan outperforms all contemporary ab initio gene structural prediction tools on the set of 5' UTR gene fragments. Conclusion Designed methods have many attractive properties, compared to existing approaches. Bayesian sensor, MHMMotif program and SpliceScan tools are freely available on our web site. Reviewers This article was reviewed by Manyuan Long, Arcady Mushegian and Mikhail Gelfand.

  6. Identification of a truncated alternative splicing variant of human PPARγ1 that exhibits dominant negative activity

    International Nuclear Information System (INIS)

    Kim, Hyo Jung; Woo, Im Sun; Kang, Eun Sil; Eun, So Young; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Kim, Jin-Hoi; Seo, Han Geuk

    2006-01-01

    We have identified a novel variant of human peroxisome proliferator-activated receptor gamma (hPPARγ), derived from insertion of a novel exon 3'. Insertion leads to the introduction of a premature stop codon, resulting in the formation of a truncated splice variant of PPARγ1 (PPARγ1 tr ). Western blot analysis confirmed the presence of PPARγ1 tr in tumor-derived cell lines. Although PPARγ1 tr interfered with transcriptional activity of wild-type PPARγ1 (PPARγ1 wt ), activity could be rescued by cotransfection with a vector expressing p300. Overexpression of PPARγ1 tr protein in CHO cells greatly enhanced their proliferation and anchorage-independent colony growth on soft agar. These data demonstrate that PPARγ1 tr is an important physiologic isoform of PPARγ that modulates cellular functions of PPARγ1 wt

  7. Prenatal diagnosis and a donor splice site mutation in fibrillin in a family with Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, M.; Vandemark, N.; Wang, M.; Han, J.; Rao, V.H. (Univ. of Nebraska Medical Center, Omaha (United States)); Velinov, M.; Tsipouras, P. (Univ. of Connecticut Health Sciences Center, Farmington (United States)); Wargowski, D.; Becker, J.; Robertson, W.; Droste, S. (Univ. of Wisconsin, Madison (United States))

    1993-08-01

    The Marfan syndrome, an autosomal dominant connective tissue disorder, is manifested by abnormalities in the cardiovascular, skeletal, and ocular systems. Recently, fibrillin, an elastic-associated microfibrillar glycoprotein, has been linked to the Marfan syndrome, and fibrillin mutations in affected individuals have been documented. In this study, genetic linkage analysis with fibrillin-specific markers was used to establish the prenatal diagnosis in an 11-wk-gestation fetus in a four-generation Marfan kindred. At birth, skeletal changes suggestive of the Marfan syndrome were observed. Reverse transcription-PCR amplification of the fibrillin gene mRNA detected a deletion of 123 bp in one allele in affected relatives. This deletion corresponds to an exon encoding an epidermal growth factor-like motif. Examination of genomic DNA showed a G[yields]C transversion at the +1 consensus donor splice site. 45 refs., 7 figs.

  8. Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3

    Directory of Open Access Journals (Sweden)

    Kandul Nikolai P

    2009-10-01

    Full Text Available Abstract Background Alternative splicing (AS of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs in the Drosophila RNA-binding Bruno-3 (Bru-3 gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion We found that large introns can promote AS via exon-skipping and exon turnover during

  9. WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    Full Text Available Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.

  10. Splice isoforms of phosducin-like protein control the expression of heterotrimeric G proteins.

    Science.gov (United States)

    Gao, Xueli; Sinha, Satyabrata; Belcastro, Marycharmain; Woodard, Catherine; Ramamurthy, Visvanathan; Stoilov, Peter; Sokolov, Maxim

    2013-09-06

    Heterotrimeric G proteins play an essential role in cellular signaling; however, the mechanism regulating their synthesis and assembly remains poorly understood. A line of evidence indicates that the posttranslational processing of G protein β subunits begins inside the protein-folding chamber of the chaperonin containing t-complex protein 1. This process is facilitated by the ubiquitously expressed phosducin-like protein (PhLP), which is thought to act as a CCT co-factor. Here we demonstrate that alternative splicing of the PhLP gene gives rise to a transcript encoding a truncated, short protein (PhLPs) that is broadly expressed in human tissues but absent in mice. Seeking to elucidate the function of PhLPs, we expressed this protein in the rod photoreceptors of mice and found that this manipulation caused a dramatic translational and posttranslational suppression of rod heterotrimeric G proteins. The investigation of the underlying mechanism revealed that PhLPs disrupts the folding of Gβ and the assembly of Gβ and Gγ subunits, events normally assisted by PhLP, by forming a stable and apparently inactive tertiary complex with CCT preloaded with nascent Gβ. As a result, the cellular levels of Gβ and Gγ, which depends on Gβ for stability, decline. In addition, PhLPs evokes a profound and rather specific down-regulation of the Gα transcript, leading to a complete disappearance of the protein. This study provides the first evidence of a generic mechanism, whereby the splicing of the PhLP gene could potentially and efficiently regulate the cellular levels of heterotrimeric G proteins.

  11. MAISTAS: a tool for automatic structural evaluation of alternative splicing products.

    KAUST Repository

    Floris, Matteo

    2011-04-15

    MOTIVATION: Analysis of the human genome revealed that the amount of transcribed sequence is an order of magnitude greater than the number of predicted and well-characterized genes. A sizeable fraction of these transcripts is related to alternatively spliced forms of known protein coding genes. Inspection of the alternatively spliced transcripts identified in the pilot phase of the ENCODE project has clearly shown that often their structure might substantially differ from that of other isoforms of the same gene, and therefore that they might perform unrelated functions, or that they might even not correspond to a functional protein. Identifying these cases is obviously relevant for the functional assignment of gene products and for the interpretation of the effect of variations in the corresponding proteins. RESULTS: Here we describe a publicly available tool that, given a gene or a protein, retrieves and analyses all its annotated isoforms, provides users with three-dimensional models of the isoform(s) of his/her interest whenever possible and automatically assesses whether homology derived structural models correspond to plausible structures. This information is clearly relevant. When the homology model of some isoforms of a gene does not seem structurally plausible, the implications are that either they assume a structure unrelated to that of the other isoforms of the same gene with presumably significant functional differences, or do not correspond to functional products. We provide indications that the second hypothesis is likely to be true for a substantial fraction of the cases. AVAILABILITY: http://maistas.bioinformatica.crs4.it/.

  12. Targeting GH-1 splicing as a novel pharmacological strategy for growth hormone deficiency type II.

    Science.gov (United States)

    Miletta, Maria Consolata; Flück, Christa E; Mullis, Primus-E

    2017-01-15

    Isolated growth hormone deficiency type II (IGHD II) is a rare genetic splicing disorder characterized by reduced growth hormone (GH) secretion and short stature. It is mainly caused by autosomal dominant-negative mutations within the growth hormone gene (GH-1) which results in missplicing at the mRNA level and the subsequent loss of exon 3, producing the 17.5-kDa GH isoform: a mutant and inactive GH protein that reduces the stability and the secretion of the 22-kDa GH isoform, the main biologically active GH form. At present, patients suffering from IGHD II are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent the toxic effects of the 17.5-kDa mutant on the pituitary gland, which may eventually lead to other hormonal deficiencies. As the severity of the disease inversely correlates with the 17.5-kDa/22-kDa ratio, increasing the inclusion of exon 3 is expected to ameliorate disease symptoms. This review focuses on the recent advances in experimental and therapeutic strategies applicable to treat IGHD II in clinical and preclinical contexts. Several avenues for alternative IGHD II therapy will be discussed including the use of small interfering RNA (siRNA) and short hairpin RNA (shRNA) constructs that specifically target the exon 3-deleted transcripts as well as the application of histone deacetylase inhibitors (HDACi) and antisense oligonucleotides (AONs) to enhance full-length GH-1 transcription, correct GH-1 exon 3 splicing and manipulate GH pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. FDM: a graph-based statistical method to detect differential transcription using RNA-seq data.

    Science.gov (United States)

    Singh, Darshan; Orellana, Christian F; Hu, Yin; Jones, Corbin D; Liu, Yufeng; Chiang, Derek Y; Liu, Jinze; Prins, Jan F

    2011-10-01

    In eukaryotic cells, alternative splicing expands the diversity of RNA transcripts and plays an important role in tissue-specific differentiation, and can be misregulated in disease. To understand these processes, there is a great need for methods to detect differential transcription between samples. Our focus is on samples observed using short-read RNA sequencing (RNA-seq). We characterize differential transcription between two samples as the difference in the relative abundance of the transcript isoforms present in the samples. The magnitude of differential transcription of a gene between two samples can be measured by the square root of the Jensen Shannon Divergence (JSD*) between the gene's transcript abundance vectors in each sample. We define a weighted splice-graph representation of RNA-seq data, summarizing in compact form the alignment of RNA-seq reads to a reference genome. The flow difference metric (FDM) identifies regions of differential RNA transcript expression between pairs of splice graphs, without need for an underlying gene model or catalog of transcripts. We present a novel non-parametric statistical test between splice graphs to assess the significance of differential transcription, and extend it to group-wise comparison incorporating sample replicates. Using simulated RNA-seq data consisting of four technical replicates of two samples with varying transcription between genes, we show that (i) the FDM is highly correlated with JSD* (r=0.82) when average RNA-seq coverage of the transcripts is sufficiently deep; and (ii) the FDM is able to identify 90% of genes with differential transcription when JSD* >0.28 and coverage >7. This represents higher sensitivity than Cufflinks (without annotations) and rDiff (MMD), which respectively identified 69 and 49% of the genes in this region as differential transcribed. Using annotations identifying the transcripts, Cufflinks was able to identify 86% of the genes in this region as differentially transcribed

  14. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.

    Science.gov (United States)

    Wojtkowiak-Szlachcic, Agnieszka; Taylor, Katarzyna; Stepniak-Konieczna, Ewa; Sznajder, Lukasz J; Mykowska, Agnieszka; Sroka, Joanna; Thornton, Charles A; Sobczak, Krzysztof

    2015-03-31

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of CTG triplet repeats in 3'-untranslated region of DMPK gene. The pathomechanism of DM1 is driven by accumulation of toxic transcripts containing expanded CUG repeats (CUG(exp)) in nuclear foci which sequester several factors regulating RNA metabolism, such as Muscleblind-like proteins (MBNLs). In this work, we utilized very short chemically modified antisense oligonucleotides composed exclusively of locked nucleic acids (all-LNAs) complementary to CUG repeats, as potential therapeutic agents against DM1. Our in vitro data demonstrated that very short, 8- or 10-unit all-LNAs effectively bound the CUG repeat RNA and prevented the formation of CUG(exp)/MBNL complexes. In proliferating DM1 cells as well as in skeletal muscles of DM1 mouse model the all-LNAs induced the reduction of the number and size of CUG(exp) foci and corrected MBNL-sensitive alternative splicing defects with high efficacy and specificity. The all-LNAs had low impact on the cellular level of CUG(exp)-containing transcripts and did not affect the expression of other transcripts with short CUG repeats. Our data strongly indicate that short all-LNAs complementary to CUG repeats are a promising therapeutic tool against DM1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Regulation of Translational Efficiency by Disparate 5′-UTRs of PPARγ Splice Variants

    Directory of Open Access Journals (Sweden)

    Shawn McClelland

    2009-01-01

    Full Text Available The PPAR-γ gene encodes for at least 7 unique transcripts due to alternative splicing of five exons in the 5′-untranslated region (UTR. The translated region is encoded by exons 1–6, which are identical in all isoforms. This study investigated the role of the 5′-UTR in regulating the efficiency with which the message is translated to protein. A coupled in vitro transcription-translation assay demonstrated that PPAR-γ1, -γ2, and -γ5 are efficiently translated, whereas PPAR-γ4 and -γ7 are poorly translated. An in vivo reporter gene assay using each 5′-UTR upstream of the firefly luciferase gene showed that the 5′-UTRs for PPAR-γ1, -γ2, and -γ4 enhanced translation, whereas the 5′-UTRs for PPAR-γ5 and -γ7 inhibited translation. Models of RNA secondary structure, obtained by the mfold software, were used to explain the mechanism of regulation by each 5′-UTR. In general, it was found that the translational efficiency was inversely correlated with the stability of the mRNA secondary structure, the presence of base-pairing in the consensus Kozak sequence, the number of start codons in the 5′-UTR, and the length of the 5′-UTR. A better understanding of posttranscriptional regulation of translation will allow modulation of protein levels without altering transcription.

  16. Convergent origins and rapid evolution of spliced leader trans-splicing in metazoa: insights from the ctenophora and hydrozoa.

    Science.gov (United States)

    Derelle, Romain; Momose, Tsuyoshi; Manuel, Michael; Da Silva, Corinne; Wincker, Patrick; Houliston, Evelyn

    2010-04-01

    Replacement of mRNA 5' UTR sequences by short sequences trans-spliced from specialized, noncoding, spliced leader (SL) RNAs is an enigmatic phenomenon, occurring in a set of distantly related animal groups including urochordates, nematodes, flatworms, and hydra, as well as in Euglenozoa and dinoflagellates. Whether SL trans-splicing has a common evolutionary origin and biological function among different organisms remains unclear. We have undertaken a systematic identification of SL exons in cDNA sequence data sets from non-bilaterian metazoan species and their closest unicellular relatives. SL exons were identified in ctenophores and in hydrozoan cnidarians, but not in other cnidarians, placozoans, or sponges, or in animal unicellular relatives. Mapping of SL absence/presence obtained from this and previous studies onto current phylogenetic trees favors an evolutionary scenario involving multiple origins for SLs during eumetazoan evolution rather than loss from a common ancestor. In both ctenophore and hydrozoan species, multiple SL sequences were identified, showing high sequence diversity. Detailed analysis of a large data set generated for the hydrozoan Clytia hemisphaerica revealed trans-splicing of given mRNAs by multiple alternative SLs. No evidence was found for a common identity of trans-spliced mRNAs between different hydrozoans. One feature found specifically to characterize SL-spliced mRNAs in hydrozoans, however, was a marked adenosine enrichment immediately 3' of the SL acceptor splice site. Our findings of high sequence divergence and apparently indiscriminate use of SLs in hydrozoans, along with recent findings in other taxa, indicate that SL genes have evolved rapidly in parallel in diverse animal groups, with constraint on SL exon sequence evolution being apparently rare.

  17. X-linked Alport syndrome associated with a synonymous p.Gly292Gly mutation alters the splicing donor site of the type IV collagen alpha chain 5 gene.

    Science.gov (United States)

    Fu, Xue Jun; Nozu, Kandai; Eguchi, Aya; Nozu, Yoshimi; Morisada, Naoya; Shono, Akemi; Taniguchi-Ikeda, Mariko; Shima, Yuko; Nakanishi, Koichi; Vorechovsky, Igor; Iijima, Kazumoto

    2016-10-01

    X-linked Alport syndrome (XLAS) is a progressive hereditary nephropathy caused by mutations in the type IV collagen alpha chain 5 gene (COL4A5). Although many COL4A5 mutations have previously been identified, pathogenic synonymous mutations have not yet been described. A family with XLAS underwent mutational analyses of COL4A5 by PCR and direct sequencing, as well as transcript analysis of potential splice site mutations. In silico analysis was also conducted to predict the disruption of splicing factor binding sites. Immunohistochemistry (IHC) of kidney biopsies was used to detect α2 and α5 chain expression. We identified a hemizygous point mutation, c.876A>T, in exon 15 of COL4A5 in the proband and his brother, which is predicted to result in a synonymous amino acid change, p.(Gly292Gly). Transcript analysis showed that this mutation potentially altered splicing because it disrupted the splicing factor binding site. The kidney biopsy of the proband showed lamellation of the glomerular basement membrane (GBM), while IHC revealed negative α5(IV) staining in the GBM and Bowman's capsule, which is typical of XLAS. This is the first report of a synonymous COL4A5 substitution being responsible for XLAS. Our findings suggest that transcript analysis should be conducted for the future correct assessment of silent mutations.

  18. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DEFF Research Database (Denmark)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    2013-01-01

    expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity......The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform...... of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i.e. cerebellum versus heart for differential variation at the gene...

  19. Understanding pre-mRNA splicing through crystallography.

    Science.gov (United States)

    Espinosa, Sara; Zhang, Lingdi; Li, Xueni; Zhao, Rui

    2017-08-01

    Crystallography is a powerful tool to determine the atomic structures of proteins and RNAs. X-ray crystallography has been used to determine the structure of many splicing related proteins and RNAs, making major contributions to our understanding of the molecular mechanism and regulation of pre-mRNA splicing. Compared to other structural methods, crystallography has its own advantage in the high-resolution structural information it can provide and the unique biological questions it can answer. In addition, two new crystallographic methods - the serial femtosecond crystallography and 3D electron crystallography - were developed to overcome some of the limitations of traditional X-ray crystallography and broaden the range of biological problems that crystallography can solve. This review discusses the theoretical basis, instrument requirements, troubleshooting, and exciting potential of these crystallographic methods to further our understanding of pre-mRNA splicing, a critical event in gene expression of all eukaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Stabilized cyclopropane analogs of the splicing inhibitor FD-895.

    Science.gov (United States)

    Villa, Reymundo; Kashyap, Manoj Kumar; Kumar, Deepak; Kipps, Thomas J; Castro, Januario E; La Clair, James J; Burkart, Michael D

    2013-09-12

    Targeting the spliceosome with small molecule inhibitors provides a new avenue to target cancer by intercepting alternate splicing pathways. Although our understanding of alternate mRNA splicing remains poorly understood, it provides an escape pathway for many cancers resistant to current therapeutics. These findings have encouraged recent academic and industrial efforts to develop natural product spliceosome inhibitors, including FD-895 (1a), pladienolide B (1b), and pladienolide D (1c), into next-generation anticancer drugs. The present study describes the application of semisynthesis and total synthesis to reveal key structure-activity relationships for the spliceosome inhibition by 1a. This information is applied to deliver new analogs with improved stability and potent activity at inhibiting splicing in patient derived cell lines.

  1. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    Science.gov (United States)

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cloning, expression and alternative splicing of the novel isoform of hTCP11 gene

    DEFF Research Database (Denmark)

    Ma, Yong-xin; Zhang, Si-zhong; Wu, Qia-qing

    2003-01-01

    To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing.......To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing....

  3. Analysis for Behavior of Reinforcement Lap Splices in Deep Beams

    Directory of Open Access Journals (Sweden)

    Ammar Yaser Ali

    2018-03-01

    Full Text Available The present study includes an experimental and theoretical investigation of reinforced concrete deep beams containing tensile reinforcement lap splices at constant moment zone under static load. The study included two stages: in the first one, an experimental work included testing of eight simply supported RC deep beams having a total length (L = 2000 mm, overall depth (h= 600 mm and width (b = 150 mm. The tested specimens were divided into three groups to study the effect of main variables: lap length, location of splice, internal confinement (stirrups and external confinement (strengthening by CFRP laminates. The experimental results showed that the use of CFRP as external strengthening in deep beam with lap spliced gives best behavior such as increase in stiffness, decrease in deflection, delaying the cracks appearance and reducing the crack width. The reduction in deflection about (14-21 % than the unstrengthened beam and about (5-14 % than the beam with continuous bars near ultimate load. Also, it was observed that the beams with unstrengthened tensile reinforcement lap splices had three types of cracks: flexural, flexural-shear and splitting cracks while the beams with strengthened tensile reinforcement lap splices or continuous bars don’t observe splitting cracks. In the second stage, a numerical analysis of three dimensional finite element analysis was utilized to explore the behavior of the RC deep beams with tensile reinforcement lap splices, in addition to parametric study of many variables. The comparison between the experimental and theoretical results showed reasonable agreement. The average difference of the deflection at service load was less than 5%.

  4. A novel splicing mutation in the V2 vasopressin receptor

    DEFF Research Database (Denmark)

    Kamperis, Konstantinos; Siggaard, C; Herlin, Troels

    2000-01-01

    as clinical investigations comprising a fluid deprivation test and a 1-deamino-8-D-arginine-vasopressin (dDAVP) infusion test in the study subject and his mother. We found a highly unusual, novel, de novo 1447A-->C point mutation (gDNA), involving the invariable splice acceptor of the second intron...... of the gene in both the affected male (hemizygous) and his mother (heterozygous). This mutation is likely to cause aberrant splicing of the terminal intron of the gene, leading to a non-functional AVP receptor. The clinical studies were consistent with such a hypothesis, as the affected subject had a severe...

  5. Response of alternative splice isoforms of OsRad9 gene from Oryza sativa to environmental stress.

    Science.gov (United States)

    Li, Rui; Wang, Wenguo; Li, Fosheng; Wang, Qingwei; Wang, Shenghua; Xu, Ying; Chen, Fang

    2017-07-14

    Rad9 protein plays an important role in cell-cycle checkpoint signal transduction in human and yeast cells, but knowledge about Rad9 in plants is limited. This study reports that the Rad9 gene of rice can generate the transcript products OsRad9.1 and OsRad9.2 through alternative splicing. OsRad9.1, with all nine exons, is the main cell-cycle checkpoint protein involved in the response of rice to genotoxic stresses (ultraviolet radiation and antibiotic stress), environmental stresses (drought, salt, and heavy metal stress), and auxin stimuli (2,4-D, IAA, and IBA). Meanwhile, transcript isoform OsRad9.2, which lost exon7 and exon8, showed different preferential stimulation effects on these stresses and pollen development duration. These results might indicat that besides the monitoring and repair of DNA damage, Rad9 might involve in the development of pollen.

  6. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei

    International Nuclear Information System (INIS)

    Lorkovic, Zdravko J.; Hilscher, Julia; Barta, Andrea

    2008-01-01

    SR proteins are multidomain splicing factors which are important for spliceosome assembly and for regulation of alternative splicing. In mammalian nuclei these proteins localise to speckles from where they are recruited to transcription sites. By using fluorescent protein fusion technology and different experimental approaches it has been shown that Arabidopsis SR proteins, in addition to diffuse nucleoplasmic staining, localise into an irregular nucleoplasmic network resembling speckles in mammalian cells. As Arabidopsis SR proteins fall into seven conserved sub-families we investigated co-localisation of members of the different sub-families in transiently transformed tobacco protoplast. Here we demonstrate the new finding that members of different SR protein sub-families localise into distinct populations of nuclear speckles with no, partial or complete co-localisation. This is particularly interesting as we also show that these proteins do interact in a yeast two-hybrid assay as well as in pull-down and in co-immunopreciptiation assays. Our data raise the interesting possibility that SR proteins are partitioned into distinct populations of nuclear speckles to allow a more specific recruitment to the transcription/pre-mRNA processing sites of particular genes depending on cell type and developmental stage

  7. A Splice Defect in the EDA Gene in Dogs with an X-Linked Hypohidrotic Ectodermal Dysplasia (XLHED) Phenotype.

    Science.gov (United States)

    Waluk, Dominik P; Zur, Gila; Kaufmann, Ronnie; Welle, Monika M; Jagannathan, Vidhya; Drögemüller, Cord; Müller, Eliane J; Leeb, Tosso; Galichet, Arnaud

    2016-09-08

    X-linked hypohidrotic ectodermal dysplasia (XLHED) caused by variants in the EDA gene represents the most common ectodermal dysplasia in humans. We investigated three male mixed-breed dogs with an ectodermal dysplasia phenotype characterized by marked hypotrichosis and multifocal complete alopecia, almost complete absence of sweat and sebaceous glands, and altered dentition with missing and abnormally shaped teeth. Analysis of SNP chip genotypes and whole genome sequence data from the three affected dogs revealed that the affected dogs shared the same haplotype on a large segment of the X-chromosome, including the EDA gene. Unexpectedly, the whole genome sequence data did not reveal any nonsynonymous EDA variant in the affected dogs. We therefore performed an RNA-seq experiment on skin biopsies to search for changes in the transcriptome. This analysis revealed that the EDA transcript in the affected dogs lacked 103 nucleotides encoded by exon 2. We speculate that this exon skipping is caused by a genetic variant located in one of the large introns flanking this exon, which was missed by whole genome sequencing with the illumina short read technology. The altered EDA transcript splicing most likely causes the observed ectodermal dysplasia in the affected dogs. These dogs thus offer an excellent opportunity to gain insights into the complex splicing processes required for expression of the EDA gene, and other genes with large introns. Copyright © 2016 Waluk et al.

  8. A Splice Defect in the EDA Gene in Dogs with an X-Linked Hypohidrotic Ectodermal Dysplasia (XLHED Phenotype

    Directory of Open Access Journals (Sweden)

    Dominik P. Waluk

    2016-09-01

    Full Text Available X-linked hypohidrotic ectodermal dysplasia (XLHED caused by variants in the EDA gene represents the most common ectodermal dysplasia in humans. We investigated three male mixed-breed dogs with an ectodermal dysplasia phenotype characterized by marked hypotrichosis and multifocal complete alopecia, almost complete absence of sweat and sebaceous glands, and altered dentition with missing and abnormally shaped teeth. Analysis of SNP chip genotypes and whole genome sequence data from the three affected dogs revealed that the affected dogs shared the same haplotype on a large segment of the X-chromosome, including the EDA gene. Unexpectedly, the whole genome sequence data did not reveal any nonsynonymous EDA variant in the affected dogs. We therefore performed an RNA-seq experiment on skin biopsies to search for changes in the transcriptome. This analysis revealed that the EDA transcript in the affected dogs lacked 103 nucleotides encoded by exon 2. We speculate that this exon skipping is caused by a genetic variant located in one of the large introns flanking this exon, which was missed by whole genome sequencing with the illumina short read technology. The altered EDA transcript splicing most likely causes the observed ectodermal dysplasia in the affected dogs. These dogs thus offer an excellent opportunity to gain insights into the complex splicing processes required for expression of the EDA gene, and other genes with large introns.

  9. ISVASE: identification of sequence variant associated with splicing event using RNA-seq data.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Yu, Jun; Hu, Songnian

    2017-06-28

    Exon recognition and splicing precisely and efficiently by spliceosome is the key to generate mature mRNAs. About one third or a half of disease-related mutations affect RNA splicing. Software PVAAS has been developed to identify variants associated with aberrant splicing by directly using RNA-seq data. However, it bases on the assumption that annotated splicing site is normal splicing, which is not true in fact. We develop the ISVASE, a tool for specifically identifying sequence variants associated with splicing events (SVASE) by using RNA-seq data. Comparing with PVAAS, our tool has several advantages, such as multi-pass stringent rule-dependent filters and statistical filters, only using split-reads, independent sequence variant identification in each part of splicing (junction), sequence variant detection for both of known and novel splicing event, additional exon-exon junction shift event detection if known splicing events provided, splicing signal evaluation, known DNA mutation and/or RNA editing data supported, higher precision and consistency, and short running time. Using a realistic RNA-seq dataset, we performed a case study to illustrate the functionality and effectiveness of our method. Moreover, the output of SVASEs can be used for downstream analysis such as splicing regulatory element study and sequence variant functional analysis. ISVASE is useful for researchers interested in sequence variants (DNA mutation and/or RNA editing) associated with splicing events. The package is freely available at https://sourceforge.net/projects/isvase/ .

  10. Splice Variants of the Castor WRI1 Gene Upregulate Fatty Acid and Oil Biosynthesis When Expressed in Tobacco Leaves.

    Science.gov (United States)

    Ji, Xia-Jie; Mao, Xue; Hao, Qing-Ting; Liu, Bao-Ling; Xue, Jin-Ai; Li, Run-Zhi

    2018-01-05

    The plant-specific WRINKLED1 (WRI1) is a member of the AP2/EREBP class of transcription factors that positively regulate oil biosynthesis in plant tissues. Limited information is available for the role of WRI1 in oil biosynthesis in castor bean ( Ricinus connunis L.), an important industrial oil crop. Here, we report the identification of two alternatively spliced transcripts of RcWRI1 , designated as RcWRI1-A and RcWRI1-B . The open reading frames of RcWRI1-A (1341 bp) and RcWRI1-B (1332 bp) differ by a stretch of 9 bp, such that the predicted RcWRI1-B lacks the three amino acid residues "VYL" that are present in RcWRI1-A. The RcWRI1-A transcript is present in flowers, leaves, pericarps and developing seeds, while the RcWRI1-B mRNA is only detectable in developing seeds. When the two isoforms were individually introduced into an Arabidopsis wri1-1 loss-of-function mutant, total fatty acid content was almost restored to the wild-type level, and the percentage of the wrinkled seeds was largely reduced in the transgenic lines relative to the wri1-1 mutant line. Transient expression of each RcWRI1 splice isoform in N. benthamiana leaves upregulated the expression of the WRI1 target genes, and consequently increased the oil content by 4.3-4.9 fold when compared with the controls, and RcWRI1-B appeared to be more active than RcWRI1-A . Both RcWRI1-A and RcWRI1-B can be used as a key transcriptional regulator to enhance fatty acid and oil biosynthesis in leafy biomass.

  11. Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult.

    Directory of Open Access Journals (Sweden)

    Cristina Rodríguez-Suárez

    Full Text Available BACKGROUND: The wild barley Hordeum chilense Roem. et Schult. is a valuable source of genes for increasing carotenoid content in wheat. Tritordeums, the amphiploids derived from durum or common wheat and H. chilense, systematically show higher values of yellow pigment colour and carotenoid content than durum wheat. Phytoene synthase 1 gene (Psy1 is considered a key step limiting the carotenoid biosynthesis, and the correlation of Psy1 transcripts accumulation and endosperm carotenoid content has been demonstrated in the main grass species. METHODOLOGY/PRINCIPAL FINDINGS: We analyze the variability of Psy1 alleles in three lines of H. chilense (H1, H7 and H16 representing the three ecotypes described in this species. Moreover, we analyze Psy1 expression in leaves and in two seed developing stages of H1 and H7, showing mRNA accumulation patterns similar to those of wheat. Finally, we identify thirty-six different transcripts forms originated by alternative splicing of the 5' UTR and/or exons 1 to 5 of Psy1 gene. Transcripts function is tested in a heterologous complementation assay, revealing that from the sixteen different predicted proteins only four types (those of 432, 370, 364 and 271 amino acids, are functional in the bacterial system. CONCLUSIONS/SIGNIFICANCE: The large number of transcripts originated by alternative splicing of Psy1, and the coexistence of functional and non functional forms, suggest a fine regulation of PSY activity in H. chilense. This work is the first analysis of H. chilense Psy1 gene and the results reported here are the bases for its potential use in carotenoid enhancement in durum wheat.

  12. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate