WorldWideScience

Sample records for splice variant expression

  1. Alternative splicing variations in mouse CAPS2: differential expression and functional properties of splicing variants

    Directory of Open Access Journals (Sweden)

    Furuichi Teiichi

    2007-04-01

    Full Text Available Abstract Background Ca2+-dependent activator protein 2 (CAPS2/CADPS2 is a secretory vesicle-associated protein involved in the release of neurotrophin. We recently reported that an aberrant, alternatively spliced CAPS2 mRNA that lacks exon 3 (CAPS2Δexon3 is detected in some patients with autism. Splicing variations in mouse CAPS2 and their expression and functions remain unclear. Results In this study, we defined 31 exons in the mouse CAPS2 gene and identified six alternative splicing variants, CAPS2a-f. CAPS2a is an isoform lacking exons 22 and 25, which encode part of the Munc13-1-homologous domain (MHD. CAPS2b lacks exon 25. CAPS2c lacks exons 11 and 22. CAPS2d, 2e, and 2f have C-terminal deletions from exon 14, exon 12, and exon 5, respectively. On the other hand, a mouse counterpart of CAPS2Δexon3 was not detected in the mouse tissues tested. CAPS2b was expressed exclusively in the brain, and the other isoforms were highly expressed in the brain, but also in some non-neural tissues. In the brain, all isoforms showed predominant expression patterns in the cerebellum. In the developing cerebellum, CAPS2b showed an up-regulated expression pattern, whereas the other isoforms exhibited transiently peaked expression patterns. CAPS2 proteins were mostly recovered in soluble fractions, but some were present in membrane fractions, except for CAPS2c and 2f, both of which lack the PH domain, suggesting that the PH domain is important for membrane association. In contrast to CAPS2a and 2b, CAPS2c showed slightly decreased BDNF-releasing activity, which is likely due to the C-terminal truncation of the PH domain in CAPS2c. Conclusion This study indicates that, in mouse, there are six splicing variants of CAPS2 (CAPS2a-f, and that these are subdivided into two groups: a long form containing the C-terminal MHD and a short form lacking the C-terminal MHD. These results demonstrate that the splicing variations correlate with their expression patterns and

  2. RBM20 and RBM24 cooperatively promote the expression of short enh splice variants.

    Science.gov (United States)

    Ito, Jumpei; Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Kuroda, Shun'ichi; Maturana, Andrés D

    2016-07-01

    PDZ-LIM protein ENH1 is a scaffold protein for protein kinases and transcriptional regulators. While ENH1 promotes the hypertrophic growth of cardiomyocytes, its short splice variant (ENH3) prevents the hypertrophic growth. The mechanism underlying the alternative splicing of enh mRNA between ENH short and long isoforms has remained unknown. Here, we found that two splicing factors, RNA-binding motif 20 (RBM20) and RNA-binding motif 24 (RBM24) together promoted the expression of short enh splice variants and bound the 5' intronic region of exon 11 containing an in-phase stop codon. In addition, expression of both RBMs is repressed by hypertrophic stimulations. Collectively, our results suggest that, in healthy conditions, RBM20 and RBM24 cooperate to promote the expression of short ENH isoforms. © 2016 Federation of European Biochemical Societies.

  3. Expression of CD44 splice variants in human primary brain tumors

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Morsink, F.; Keehnen, R. M.; Leenstra, S.; Bosch, D. A.; Pals, S. T.

    1995-01-01

    Expression of CD44, particularly of certain splice variants, has been linked to tumor progression and metastatic potential in a number of different animal and human cancers. Although differential expression of CD44 standard epitopes (CD44s) in human brain tumors has been reported, the expression of

  4. Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Rosenkilde, M M

    2010-01-01

    In humans and non-human primates, the 7TM receptor GPR17 exists in two isoforms differing only by the length of the N-terminus. Of these, only the short isoform has previously been characterized. Hence, we investigated gene expression and ligand-binding profiles of both splice variants and furthe...

  5. A Splice Variant of Bardet-Biedl Syndrome 5 (BBS5 Protein that Is Selectively Expressed in Retina.

    Directory of Open Access Journals (Sweden)

    Susan N Bolch

    Full Text Available Bardet-Biedl syndrome is a complex ciliopathy that usually manifests with some form of retinal degeneration, amongst other ciliary-related deficiencies. One of the genetic causes of this syndrome results from a defect in Bardet-Biedl Syndrome 5 (BBS5 protein. BBS5 is one component of the BBSome, a complex of proteins that regulates the protein composition in cilia. In this study, we identify a smaller molecular mass form of BBS5 as a variant formed by alternative splicing and show that expression of this splice variant is restricted to the retina.Reverse transcription PCR from RNA was used to isolate and identify potential alternative transcripts of Bbs5. A peptide unique to the C-terminus of the BBS5 splice variant was synthesized and used to prepare antibodies that selectively recognized the BBS5 splice variant. These antibodies were used on immunoblots of tissue extracts to determine the extent of expression of the alternative transcript and on tissue slices to determine the localization of expressed protein. Pull-down of fluorescently labeled arrestin1 by immunoprecipitation of the BBS5 splice variant was performed to assess functional interaction between the two proteins.PCR from mouse retinal cDNA using Bbs5-specific primers amplified a unique cDNA that was shown to be a splice variant of BBS5 resulting from the use of cryptic splicing sites in Intron 7. The resulting transcript codes for a truncated form of the BBS5 protein with a unique 24 amino acid C-terminus, and predicted 26.5 kD molecular mass. PCR screening of RNA isolated from various ciliated tissues and immunoblots of protein extracts from these same tissues showed that this splice variant was expressed in retina, but not brain, heart, kidney, or testes. Quantitative PCR showed that the splice variant transcript is 8.9-fold (+/- 1.1-fold less abundant than the full-length transcript. In the retina, the splice variant of BBS5 appears to be most abundant in the connecting cilium

  6. Liver myofibroblasts of murine origins express mesothelin: Identification of novel rat mesothelin splice variants.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available Liver myofibroblasts are specialized effector cells that drive hepatic fibrosis, a hallmark process of chronic liver diseases, leading to progressive scar formation and organ failure. Liver myofibroblasts are increasingly recognized as heterogeneous with regards to their origin, phenotype, and functions. For instance, liver myofibroblasts express cell markers that are universally represented such as, ItgαV and Pdgfrβ, or restricted to a given subpopulation such as, Lrat exclusively expressed in hepatic stellate cells, and Gpm6a in mesothelial cells. To study liver myofibroblasts in vitro, we have previously generated and characterized a SV40-immortalized polyclonal rat activated portal fibroblast cell line called RGF-N2 expressing multiple mesothelin mRNA transcripts. Mesothelin, a cell-surface molecule expressed in normal mesothelial cells and overexpressed in several cancers such as, mesothelioma and cholangiocarcinoma, was recently identified as a key regulator of portal myofibroblast proliferation, and fibrosis progression in the setting of chronic cholestatic liver disease. Here, we identify novel mesothelin splice variants expressed in rat activated portal fibroblasts. RGF-N2 portal fibroblast cDNA was used as template for insertion of hemagglutinin tag consensus sequence into the complete open reading frame of rat mesothelin variant coding sequences by extension PCR. Purified amplicons were subsequently cloned into an expression vector for in vitro translation and transfection in monkey COS7 fibroblasts, before characterization of fusion proteins by immunoblot and immunofluorescence. We show that rat activated portal fibroblasts, hepatic stellate cells, and cholangiocarcinoma cells express wild-type mesothelin and additional splice variants, while mouse activated hepatic stellate cells appear to only express wild-type mesothelin. Notably, rat mesothelin splice variants differ from the wild-type isoform by their protein properties and

  7. Splice variants of enigma homolog, differentially expressed during heart development, promote or prevent hypertrophy.

    Science.gov (United States)

    Yamazaki, Tomoko; Wälchli, Sébastien; Fujita, Toshitsugu; Ryser, Stephan; Hoshijima, Masahiko; Schlegel, Werner; Kuroda, Shun'ichi; Maturana, Andrés D

    2010-06-01

    Proteins with a PDZ (for PSD-95, DLG, ZO-1) and one to three LIM (for Lin11, Isl-1, Mec-3) domains are scaffolding sarcomeric and cytoskeletal elements that form structured muscle fibres and provide for the link to intracellular signalling by selectively associating protein kinases, ion channels, and transcription factors with the mechanical stress-strain sensors. Enigma homolog (ENH) is a PDZ-LIM protein with four splice variants: ENH1 with an N-terminal PDZ domain and three C-terminal LIM domains and ENH2, ENH3, and ENH4 without LIM domains. We addressed the functional role of ENH alternative splicing. We studied the expression of the four ENH isoforms in the heart during development and in a mouse model of heart hypertrophy. All four isoforms are expressed in the heart but the pattern of expression is clearly different between embryonic, neonatal, and adult stages. ENH1 appears as the embryonic isoform, whereas ENH2, ENH3, and ENH4 are predominant in adult heart. Moreover, alternative splicing of ENH was changed following induction of heart hypertrophy, producing an ENH isoform pattern similar to that of neonatal heart. Next, we tested a possible causal role of ENH1 and ENH4 in the development of cardiac hypertrophy. When overexpressed in rat neonatal cardiomyocytes, ENH1 promoted the expression of hypertrophy markers and increased cell volume, whereas, on the contrary, ENH4 overexpression prevented these changes. Antagonistic splice variants of ENH may play a central role in the adaptive changes of the link between mechanical stress-sensing and signalling occurring during embryonic development and/or heart hypertrophy.

  8. Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice.

    Directory of Open Access Journals (Sweden)

    Florian Giesert

    Full Text Available Missense mutations in the leucine-rich repeat kinase 2 gene (LRRK2 are linked to autosomal dominant forms of Parkinson's disease (PD. In order to get insights into the physiological role of Lrrk2, we examined the distribution of Lrrk2 mRNA and different splice variants in the developing murine embryo and the adult brain of Mus musculus. To analyse if the Lrrk2-paralog, Lrrk1, may have redundant functions in PD-development, we also compared Lrrk1 and Lrrk2 expression in the same tissues. Using radioactive in situ hybridization, we found ubiquitous expression of both genes at low level from embryonic stage E9.5 onward, which progressively increased up until birth. The developing central nervous system (CNS displayed no prominent Lrrk2 mRNA signals at these time-points. However, in the entire postnatal brain Lrrk2 became detectable, showing strongest level in the striatum and the cortex of adult mice; Lrrk1 was only detectable in the mitral cell layer of the olfactory bulb. Thus, due to the non-overlapping expression patterns, a redundant function of Lrrk2 and Lrrk1 in the pathogenesis of PD seems to be unlikely. Quantification of Lrrk2 mRNA and protein level in several brain regions by real-time PCR and Western blot verified the striatum and cortex as hotspots of postnatal Lrrk2 expression. Strong expression of Lrrk2 is mainly found in neurons, specifically in the dopamine receptor 1 (DRD1a and 2 (DRD2-positive subpopulations of the striatal medium spiny neurons. Finally, we identified 2 new splice-variants of Lrrk2 in RNA-samples from various adult brain regions and organs: a variant with a skipped exon 5 and a truncated variant terminating in an alternative exon 42a. In order to identify the origin of these two splice variants, we also analysed primary neural cultures independently and found cell-specific expression patterns for these variants in microglia and astrocytes.

  9. Expression of TRAIL-splice variants in gastric carcinomas: identification of TRAIL-γ as a prognostic marker

    International Nuclear Information System (INIS)

    Krieg, Andreas; Mahotka, Csaba; Mersch, Sabrina; Wolf, Nadine; Stoecklein, Nikolas H; Verde, Pablo E; Schulte am Esch, Jan; Heikaus, Sebastian; Gabbert, Helmut E; Knoefel, Wolfram T

    2013-01-01

    TNF-related apoptosis inducing ligand (TRAIL) belongs to the TNF-superfamily that induces apoptotic cell death in a wide range of neoplastic cells in vivo as well as in vitro. We identified two alternative TRAIL-splice variants, i.e. TRAIL-β and TRAIL-γ that are characterized by the loss of their proapoptotic properties. Herein, we investigated the expression and the prognostic values of the TRAIL-splice variants in gastric carcinomas. Real time PCR for amplification of the TRAIL-splice variants was performed in tumour tissue specimens and corresponding normal tissues of 41 consecutive patients with gastric carcinoma. Differences on mRNA-expression levels of the TRAIL-isoforms were compared to histo-pathological variables and correlated with survival data. All three TRAIL-splice variants could be detected in both non-malignant and malignant tissues, irrespective of their histological staging, grading or tumour types. However, TRAIL-β exhibited a higher expression in normal gastric tissue. The proapoptotic TRAIL-α expression was increased in gastric carcinomas when compared to TRAIL-β and TRAIL-γ. In addition, overexpression of TRAIL-γ was associated with a significant higher survival rate. This is the first study that investigated the expression of TRAIL-splice variants in gastric carcinoma tissue samples. Thus, we provide first data that indicate a prognostic value for TRAIL-γ overexpression in this tumour entity

  10. Survivin 2α: a novel Survivin splice variant expressed in human malignancies

    Directory of Open Access Journals (Sweden)

    Honsey Laura E

    2005-03-01

    Full Text Available Abstract Background Survivin and its alternative splice forms are involved in critical cellular processes, including cell division and programmed cell death. Survivin is expressed in the majority of human cancers, but minimally in differentiated normal tissues. Expression levels correlate with tumor aggressiveness and resistance to therapy. Results In the present study, we identify and characterize a novel survivin isoform that we designate survivin 2α. Structurally, the transcript consists of 2 exons: exon 1 and exon 2, as well as a 3' 197 bp region of intron 2. Acquisition of a new in-frame stop codon within intron 2 results in an open reading frame of 225 nucleotides, predicting a truncated 74 amino acid protein. Survivin 2α is expressed at high levels in several malignant cell lines and primary tumors. Functional assays show that survivin 2α attenuates the anti-apoptotic activity of survivin. Subcellular localization and immunoprecipitation of survivin 2α suggests a physical interaction with survivin. Conclusion We characterized a novel survivin splice variant that we designated survivin 2α. We hypothesize that survivin 2α can alter the anti-apoptotic functions of survivin in malignant cells. Thus survivin 2α may be useful as a therapeutic tool in sensitizing chemoresistant tumor cells to chemotherapy.

  11. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation.

    Science.gov (United States)

    Martinez-Ruiz, Gustavo U; Victoria-Acosta, Georgina; Vazquez-Santillan, Karla I; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Ceballos-Cancino, Gisela; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2014-01-01

    Smac-α is a mitochondrial protein that, during apoptosis, is translocated to the cytoplasm, where it negatively regulates members of the inhibitor of apoptosis (IAP) family via the IAP-binding motif (IBM) contained within its amino-terminus. Here, we describe a new alternative splice variant from Smac gene, which we have named Smac-ε. Smac-ε lacks both an IBM and a mitochondrial-targeting signal (MTS) element. Smac-ε mRNA exhibits a tissue-specific expression pattern in healthy human tissues as well as in several cancer cell lines. The steady-state levels of endogenous Smac-ε protein is regulated by the proteasomal pathway. When ectopically expressed, this isoform presents a cytosolic localization and is unable to associate with or to regulate the expression of X-linked Inhibitor of apoptosis protein, the best-studied member of IAP family. Nevertheless, over-expression of Smac-ε increases mammosphere formation. Whole genome expression analyses from these mammospheres show activation of several pro-survival and growth pathways, including Estrogen-Receptor signaling. In conclusion, our results support the functionality of this new Smac isoform.

  12. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Yang, Yi; Shahabuddin, Syed; Litvin, Judith; Safadi, Fayez; Rogers, Thomas J

    2004-09-01

    Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.

  13. Expression of Human CAR Splicing Variants in BAC-Transgenic Mice

    OpenAIRE

    Zhang, Yu-Kun Jennifer; Lu, Hong; Klaassen, Curtis D.

    2012-01-01

    The nuclear receptor constitutive androstane receptor (CAR) is a key regulator for drug metabolism in liver. Human CAR (hCAR) transcripts are subjected to alternative splicing. Some hCAR splicing variants (SVs) have been shown to encode functional proteins by reporter assays. However, in vivo research on the activity of these hCAR SVs has been impeded by the absence of a valid model. This study engineered an hCAR-BAC-transgenic (hCAR-TG) mouse model by integrating the 8.5-kbp hCAR gene as wel...

  14. Effects of eccentric cycling exercise on IGF-I splice variant expression in the muscles of young and elderly people

    DEFF Research Database (Denmark)

    Hameed, M.; Toft, A.D.; Harridge, S.D.

    2008-01-01

    Recovery from micro damage resulting from intensive exercise has been shown to take longer in older muscles. To investigate the factors that may contribute to muscle repair, we have studied the expression of two splice variants of the insulin-like growth factor-I (IGF-I) gene. IGF-IEa and mechano...... damage-inducing exercise and is differentially regulated compared with IGF-IEa Udgivelsesdato: 2008/8...

  15. Species-Specific Expression of Full-Length and Alternatively Spliced Variant Forms of CDK5RAP2.

    Directory of Open Access Journals (Sweden)

    John S Y Park

    Full Text Available CDK5RAP2 is one of the primary microcephaly genes that are associated with reduced brain size and mental retardation. We have previously shown that human CDK5RAP2 exists as a full-length form (hCDK5RAP2 or an alternatively spliced variant form (hCDK5RAP2-V1 that is lacking exon 32. The equivalent of hCDK5RAP2-V1 has been reported in rat and mouse but the presence of full-length equivalent hCDK5RAP2 in rat and mouse has not been examined. Here, we demonstrate that rat expresses both a full length and an alternatively spliced variant form of CDK5RAP2 that are equivalent to our previously reported hCDK5RAP2 and hCDK5RAP2-V1, repectively. However, mouse expresses only one form of CDK5RAP2 that is equivalent to the human and rat alternatively spliced variant forms. Knowledge of this expression of different forms of CDK5RAP2 in human, rat and mouse is essential in selecting the appropriate model for studies of CDK5RAP2 and primary microcephaly but our findings further indicate the evolutionary divergence of mouse from the human and rat species.

  16. Identification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant.

    Directory of Open Access Journals (Sweden)

    Douglas A Schober

    Full Text Available Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant. Transcriptional evidence for this splice variant was confirmed by RNA-Seq and RT-PCR experiments performed from human donor brain prefrontal cortices. We detected a human upstream exon indicating the translation of the mature longer M4 receptor transcript. The predicted size for the longer two-exon M4 receptor splice variant with the additional 155 amino acid N-terminal extension, designated M4L is 69.7 kDa compared to the 53 kDa canonical single exon M4 receptor (M4S. Western blot analysis from a mammalian overexpression system, and saturation radioligand binding with [3H]-NMS (N-methyl-scopolamine demonstrated the expression of this new splice variant. Comparative pharmacological characterization between the M4L and M4S receptors revealed that both the orthosteric and allosteric binding sites for both receptors were very similar despite the addition of an N-terminal extension.

  17. Identification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant.

    Science.gov (United States)

    Schober, Douglas A; Croy, Carrie H; Ruble, Cara L; Tao, Ran; Felder, Christian C

    2017-01-01

    Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon) that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant. Transcriptional evidence for this splice variant was confirmed by RNA-Seq and RT-PCR experiments performed from human donor brain prefrontal cortices. We detected a human upstream exon indicating the translation of the mature longer M4 receptor transcript. The predicted size for the longer two-exon M4 receptor splice variant with the additional 155 amino acid N-terminal extension, designated M4L is 69.7 kDa compared to the 53 kDa canonical single exon M4 receptor (M4S). Western blot analysis from a mammalian overexpression system, and saturation radioligand binding with [3H]-NMS (N-methyl-scopolamine) demonstrated the expression of this new splice variant. Comparative pharmacological characterization between the M4L and M4S receptors revealed that both the orthosteric and allosteric binding sites for both receptors were very similar despite the addition of an N-terminal extension.

  18. Differential expression and functional characterization of luteinizing hormone receptor splice variants in human luteal cells: implications for luteolysis.

    Science.gov (United States)

    Dickinson, Rachel E; Stewart, Alan J; Myers, Michelle; Millar, Robert P; Duncan, W Colin

    2009-06-01

    The human LH receptor (LHR) plays a key role in luteal function and the establishment of pregnancy through its interaction with the gonadotropins LH and human chorionic gonadotropin. We previously identified four splice variants of the LHR in human luteinized granulosa cells (LGCs) and corpora lutea (CL). Real-time quantitative PCR revealed that expression of the full-length LHR (LHRa) and the most truncated form (LHRd) changed significantly in CL harvested at different stages of the ovarian cycle (P < 0.01, ANOVA). LHRa expression was reduced in the late luteal CL (P < 0.05). Conversely, an increase in LHRd expression was observed in the late luteal CL (P < 0.01). Chronic manipulation of human chorionic gonadotropin in LGC primary cultures supported the in vivo findings. LHRd encodes a protein lacking the transmembrane and carboxyl terminal domains. COS-7 cells expressing LHRd were unable to produce cAMP in response to LH stimulation. COS-7 cells coexpressing LHRd and LHRa also failed to generate cAMP in response to LH, suggesting that this truncated form has a negative effect on the signaling of LHRa. Immunofluorescence staining of LGC and COS-7 cells implied that there is a reduction in cell surface expression of LHRa when LHRd is present. Overall, these results imply expression of LHR splice variants is regulated in the human CL. Furthermore, during functional luteolysis a truncated variant could modulate the cell surface expression and activity of full-length LHR.

  19. Novel splice variant CAR 4/6 of the coxsackie adenovirus receptor is differentially expressed in cervical carcinogenesis.

    Science.gov (United States)

    Dietel, Marit; Häfner, Norman; Jansen, Lars; Dürst, Matthias; Runnebaum, Ingo B

    2011-06-01

    The coxsackie adenovirus receptor (CAR) is a component of the tight junction complex and involved in cell adhesion. Loss of CAR expression can affect cell adhesion which in the context of carcinogenesis may influence both invasion and metastatic spread. Functional inactivation of CAR may also result from the interaction with its soluble isoforms. To relate alterations of CAR expression to tumor progression, we aimed to establish a highly specific real-time PCR protocol for quantification of all splice variants. In the process of cloning, we identified a novel splice variant termed CAR4/6 that lacked exon 5 but retained exon 6 encoding the transmembrane domain. Localization of CAR4/6 in the cell membrane was confirmed by ectopic expression in HT1080 cells. Expression analyses using cDNA arrays revealed that most normal tissues, including those of the female genital tract, express full-length CAR (CAR6/7) but not CAR4/6. Differential expression of both CAR splice variants was validated in microdissected epithelia (n = 66) derived from normal cervical ectodermal tissue, high-grade cervical intraepithelial neoplasia (CIN2/3) and invasive squamous cervical carcinoma. CAR4/6 was not expressed in normal cervical tissue but in 42% of CIN2/3 and in most cervical carcinomas (p < 0.001). In contrast, CAR6/7 was detected in all of the microdissected samples. As for CAR4/6 expression levels of CAR6/7 were significantly lower in normal tissue as compared with CIN2/3 and cancer (p < 0.01). Ectopic expression of CAR4/6 in different cell lines enhanced the proliferative and invasive properties indicating a possible role in cancer progression.

  20. A TIMP-1 splice variant transcript: Possible role in regulation of TIMP-1 expression

    DEFF Research Database (Denmark)

    Friesgaard Øbro, Nina; Lademann, Ulrik; Birkenkamp-Demtröder, Karin

    2008-01-01

    A splice variant of tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA lacking exon 2 (TIMP-1-v2) has been identified in human cancer cells and in colorectal and breast cancer tumors. The purpose of this study was (1) to study the level of full length TIMP-1 and TIMP-1-v2 transcripts...... relative to full length TIMP-1 was higher in normal compared to tumor tissue. Translation of TIMP-1-v2 to protein was analyzed in CHO cells. In this system, no TIMP-1-v2 protein was produced. Thus, the variant transcript seems to be an untranslated mRNA. These findings suggest that alternative splicing...... in colorectal tumors; (2) to investigate if TIMP-1-v2 is translated to protein. Full length TIMP-1 and TIMP-1-v2 mRNA levels were compared between colorectal tumors and normal mucosa by Q-PCR. Both full length TIMP-1 and TIMP-1-v2 transcripts were upregulated in tumor tissue. However, the level of TIMP-1-v2...

  1. The Survivin −31 Snp in Human Colorectal Cancer Correlates with Survivin Splice Variant Expression and Improved Overall Survival

    Directory of Open Access Journals (Sweden)

    Anna G. Antonacopoulou

    2010-01-01

    Full Text Available Background: Survivin is involved in the regulation of cell division and survival, two key processes in cancer. The majority of studies on survivin in colorectal cancer (CRC have focused on protein expression and less is known about the expression of survivin splicing variants or survivin gene polymorphisms in CRC. In the present study, the mRNA levels of the five known isoforms of survivin as well as survivin protein were assessed in matched normal and neoplastic colorectal tissue. Moreover, the 9386C/T and −31G/C polymorphisms were investigated.

  2. RAGE splicing variants in mammals.

    Science.gov (United States)

    Sterenczak, Katharina Anna; Nolte, Ingo; Murua Escobar, Hugo

    2013-01-01

    The receptor for advanced glycation end products (RAGE) is a multiligand receptor of environmental stressors which plays key roles in pathophysiological processes, including immune/inflammatory disorders, Alzheimer's disease, diabetic arteriosclerosis, tumorigenesis, and metastasis. Besides the full-length RAGE protein in humans nearly 20 natural occurring RAGE splicing variants were described on mRNA and protein level. These naturally occurring isoforms are characterized by either N-terminally or C-terminally truncations and are discussed as possible regulators of the full-length RAGE receptor either by competitive ligand binding or by displacing the full-length protein in the membrane. Accordingly, expression deregulations of the naturally occurring isoforms were supposed to have significant effect on RAGE-mediated disorders. Thereby the soluble C-truncated RAGE isoforms present in plasma and tissues are the mostly focused isoforms in research and clinics. Deregulations of the circulating levels of soluble RAGE forms were reported in several RAGE-associated pathological disorders including for example atherosclerosis, diabetes, renal failure, Alzheimer's disease, and several cancer types. Regarding other mammalian species, the canine RAGE gene showed high similarities to the corresponding human structures indicating RAGE to be evolutionary highly conserved between both species. Similar to humans the canine RAGE showed a complex and extensive splicing activity leading to a manifold pattern of RAGE isoforms. Due to the similarities seen in several canine and human diseases-including cancer-comparative structural and functional analyses allow the development of RAGE and ligand-specific therapeutic approaches beneficial for human and veterinary medicine.

  3. Splicing variants of porcine synphilin-1

    DEFF Research Database (Denmark)

    Larsen, Knud Erik; Madsen, Lone Bruhn; Farajzadeh, Leila

    2015-01-01

    %) and to mouse (84%) synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing variants and a novel...... splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation....... with α-synuclein in LBs. The aim of this study was to isolate and characterize porcine synphilin-1 and isoforms hereof with the future perspective to use the pig as a model for Parkinson's disease. The porcine SNCAIP cDNA was cloned by reverse transcriptase PCR. The spatial expression of SNCAIP mRNA...

  4. MDS shows a higher expression of hTERT and alternative splice variants in unactivated T-cells.

    Science.gov (United States)

    Dong, Wen; Wu, Lei; Sun, Houfang; Ren, Xiubao; Epling-Burnette, Pearlie K; Yang, Lili

    2016-11-01

    Telomere instability and telomerase reactivation are believed to play an important role in the development of myelodysplastic syndromes (MDS). Abnormal enzymatic activity of human telomerase reverse transcriptase (hTERT), and its alternative splice variants have been reported to account for deregulated telomerase function in many cancers. In this study, we aim to compare the differences in expression of hTERT and hTERT splice variants, as well as telomere length and telomerase activity in unstimulated T-cells between MDS subgroups and healthy controls. Telomere length in MDS cases was significantly shorter than controls (n = 20, pMDS using World Health Organization classification (WHO subgroups versus control: RARS, p= 0.009; RCMD, p=0.0002; RAEB1/2, p=0.004, respectively) and the International Prognostic Scoring System (IPSS subgroups: Low+Int-1, pMDS patients (n=20) had significantly higher telomerase activity (p=0.002), higher total hTERT mRNA levels (p=0.001) and hTERT α+β- splice variant expression (pMDS (r=0.58, p=0.007). This data is in sharp contrast to data published previously by our group showing a reduction in telomerase and hTERT mRNA in MDS T-cells after activation. In conclusion, this study provides additional insight into hTERT transcript patterns and activity in peripheral T-cells of MDS patients. Additional studies are necessary to better understand the role of this pathway in MDS development and progression.

  5. Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition.

    Science.gov (United States)

    Willemse, Hermia; Theodoratos, Angelo; Smith, Paul N; Dulhunty, Angela F

    2016-02-01

    The skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(-)RyR1 ratio. The results suggest that the reduced expression of ASI(-)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(-) RyR1, having a higher gain of in Ca(2+) release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.

  6. Menstrual endometrial cells from women with endometriosis demonstrate increased adherence to peritoneal cells and increased expression of CD44 splice variants.

    Science.gov (United States)

    Griffith, Jason S; Liu, Ya-Guang; Tekmal, Rajeshwar R; Binkley, Peter A; Holden, Alan E C; Schenken, Robert S

    2010-04-01

    We previously demonstrated that adherence of endometrial epithelial (EECs) and stromal cells (ESCs) to peritoneal mesothelial cells (PMCs) is partly regulated by ESC/EEC CD44 interactions with PMC associated hyaluronan. CD44, a transmembrane glycoprotein and major ligand for hyaluronan, has numerous splice variants which may impact hyaluronan binding. Here, we assessed whether ESCs and EECs from women with endometriosis demonstrate increased adherence to PMCs and examined CD44 splice variants' potential role in this process. In vitro study. Academic medical center. Fertility patients with and without endometriosis. Menstrual endometrium was collected from women with and without endometriosis confirmed surgically. The adherence of ESC/EECs to PMCs was measured. The ESC/EEC CD44 splice variants were assessed using dot-blot analysis. The ESCs and EECs from women with endometriosis demonstrated increased adherence to PMCs. The predominant CD44 splice variants expressed by ESCs and EECs from women with and without endometriosis were v3, v6, v7, v8, v9, and v10. The ESCs and EECs from women with endometriosis were more likely to express v6, v7, v8, and v9. Increased eutopic endometrial-PMC adherence and CD44 splice variant expression may contribute to the histogenesis of endometriotic lesions. Elucidation of factors controlling this expression may lead to novel endometriosis therapies. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Expression of Kir7.1 and a Novel Kir7.1 Splice Variant in Native Human Retinal Pigment Epithelium

    OpenAIRE

    Yang, Dongli; Swaminathan, Anuradha; Zhang, Xiaoming; Hughes, Bret A.

    2007-01-01

    Previous studies on bovine retinal pigment epithelium (RPE) established that Kir7.1 channels compose this epithelium’s large apical membrane K+ conductance. The purpose of this study was to determine whether Kir7.1 and potential Kir7.1 splice variants are expressed in native adult human RPE and, if so, to determine their function and how they are generated. RT-PCR analysis indicated that human RPE expresses full-length Kir7.1 and a novel Kir7.1 splice variant, designated Kir7.1S. Analysis of ...

  8. Effects of eccentric cycling exercise on IGF-I splice variant expression in the muscles of young and elderly people

    DEFF Research Database (Denmark)

    Hameed, M.; Toft, A.D.; Harridge, S.D.

    2008-01-01

    to give the same relative increases in oxygen uptake (VO2max) and heart rate in young and old subjects. Muscle biopsy samples were obtained from the quadriceps muscle before and 2 1/4 h after completion of the exercise bout and were analyzed for IGF-IEa and MGF mRNA levels using real-time quantitative PCR......Recovery from micro damage resulting from intensive exercise has been shown to take longer in older muscles. To investigate the factors that may contribute to muscle repair, we have studied the expression of two splice variants of the insulin-like growth factor-I (IGF-I) gene. IGF-IEa and mechano...

  9. Analysis of the expression of SDF-1 splicing variants in human colorectal cancer and normal mucosa tissues.

    Science.gov (United States)

    Allami, Risala Hussain; Graf, Claudine; Martchenko, Ksenia; Voss, Beatrice; Becker, Marc; Berger, Martin R; Galle, Peter R; Theobald, Matthias; Wehler, Thomas C; Schimanski, Carl C

    2016-03-01

    C-X-C motif chemokine ligand 12 (CXCL12), also termed stromal cell-derived factor-1 (SDF-1) is a small protein 8-14 kDa in length that is expressed as six isoforms, consisting of SDF-1α, SDF-1β, SDF-1γ, SDF-1δ, SDF-1ε and SDF-1θ. All six isoforms are encoded by the single CXCL12 gene on chromosome 10. This gene regulates leukocyte trafficking and is variably expressed in a number of normal and cancer tissues. The potential role of the novel CXCL12 splice variants as components of the CXCR4 axis in cancer development is not fully understood. The present study aimed to analyze the expression profile of the various SDF-1 isoforms and SDF-1 polymorphisms, and the association with the clinicopathological features and overall survival of patients with colorectal cancer (CRC). SDF-1 polymorphism analysis was performed using restriction fragment length polymorphism (RFLP) analysis in 73 histologically confirmed human CRC tissue samples at various stages of disease. The expression pattern of the SDF-1 isoforms was analyzed by reverse transcription-polymerase chain reaction in 40 histologically confirmed human CRC tissue samples obtained at various stages of disease, as well as in matched adjacent normal mucosa samples. The presence of the CXCL12 gene polymorphism rs1801157 demonstrated an association with local progression of the primary tumor, as indicated by the T stage. The frequency of the GG genotype was slightly increased in patients with stage 3 and 4 tumors (78.0%) compared with the incidence of the GA/AA genotype (69.5%; P=0.067). The expression of SDF-1β was associated with the presence of metastases (P=0.0656) and the expression of SDF-1γ was significantly associated with tumor size (P=0.0423). The present study is the first to analyze the association between the expression profile of the chemokine CXCL12 splice variants in human CRC tissues and their clinical relevance. The present results reveal that the CXCL12 G801A polymorphism is a low

  10. Anti-inflammatory properties and expression in selected organs of canine interleukin-1β splice variant 1.

    Science.gov (United States)

    Kiczak, L; Wałecka-Zacharska, E; Bania, J; Sambor, I; Stefaniak, T; Dzięgiel, P; Zacharski, M; Tomaszek, A; Rybińska, I; Pasławska, U

    2015-10-15

    The IL-1β gene can be also be spliced with the intron 4 retention; the result is a IL-1β splice variant 1 (IL-1βsv1), which was significantly up-regulated in failing myocardium of dogs suffering from chronic degenerative valvular disease (CDVD). Expression of IL-1βsv1 was assessed, at both RNA and protein levels, in organs affected by heart failure, namely, kidneys, liver, and lungs from 35 dogs suffering chronic degenerative valvular disease (CDVD) and in 20 disease free control dogs. IL-1βsv1 RNA was detected in the dogs from both groups. In the CDVD group, the highest RNA and protein IL-1βsv1 levels were observed in lungs, followed, in that order, by the liver and kidneys. IL-1βsv1 protein was found in the cytoplasm of hepatocytes and IL-1βsv1-overexpressing DH82 cells. In lungs, IL-1βsv1 was localized in the cytoplasm and in the nuclei of bronchiolar epithelial and smooth-muscle cells. Cytoplasmic and nuclear IL-1βsv1 expression was observed in macrophages, and a strong nuclear signal was detected in epithelial cells of the alveolar sacs. Following lipopolysaccharide (LPS) stimulation, overexpression of IL-1βsv1 in DH82 cells decreased the pro-inflammatory response. Our results indicate that IL-1βsv1 is constitutively expressed in both normal tissues and in tissues from cases of heart failure. The presence of IL-1βsv1 in tissues exposed to invading agents and its anti-inflammatory activity in DH82 cells may point to its immunomodulatory role in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Study of the Expression of Survivin & Its Splice Variants; ΔEx3, 2b and 3b as Diagnostic Molecular Markers in Breast Cancer

    Directory of Open Access Journals (Sweden)

    E Babaei

    2009-07-01

    Full Text Available Introduction: Survivin is a new member of the Inhibitor Apotosis Protein family (IAP which plays an important role in the regulation of both cell cycle and apoptosis. Its distinct expression in tumor cells as compared to normal adult cells introduces Survivin as the fourth transcriptom demonstrated in tumors. Breast cancer is the most common malignancy among women and scientist`s efforts to classify it has lead to various molecular subtypes and controversial results. Because of the high prevalence of these tumors and lack of suitable molecular markers for diagnosis and prognosis, there are ongoing efforts to find molecular markers which can distinguish nontumoral from tumor tissues. In this study we evaluate the potential usefulness of Survivin and its splice variants ΔEx3, 2b and 3b as molecular markers in breast cancer. Methods: We studied 18 tumor and 17 non tumor adjacent tissues. Transcription levels were measured by Semiquantitative Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR and normalized by ß2m as an internal control. Results: 1Survivin and its splice variants; Δex3, 2b and 3b showed differentially higher expression levels in tumors than adjacent normal tissues. 2 The expression levels of Survivin, Survivin-ΔEx3 and Survivin-3b were significantly correlated with the type of tumors. 3 Survivin-2b was expressed in a few samples. 4 Survivin-3b was detected only in tumor samples. Also, our results showed that ΔEx3 variant can be introduced as a dominant expressed variant in breast cancer. Conclusion: Our data indicated that the expression of Survivin, Survivin ∆Ex3 and especially, Survivin-3b were correlated with cancerous nature of tumors and Survivin-∆Ex3 was the most common expressed variant in breast carcinomas. These results besides confirming the potential usefulness of Survivin and its splice variants as molecular markers in breast cancer, demonstrated the role of the gene and its splice variants, especially 3b

  12. Over-expression of the splice variant of CONSTANS enhances the in vitro synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    2017-10-01

    Full Text Available Eco-friendly biosynthetic approach for silver nanoparticles production using plant extracts is an exciting advancement in bio- nanotechnology and has been successfully attempted in more than 41 plant species. However, an established model plant system for unravelling the biochemical pathways of silver nanoparticle (AgNPs production is lacking. Here we have shown in Arabidopsis thaliana a genetic model plant and in its misexpressing lines of splice variant CONSTANS (COβ for the silver nanoparticle biosynthesis in vitro. Employing the biochemical, spectroscopic, Transmission Electron Microscopy (TEM, Raman spectroscopy, Nuclear Magnetic Resonance (NMR and powder x-rays diffraction (Powder XRD methods and using selected mutants and over- expressing line of Arabidopsis thaliana involved in sugar homeostasis. Additionally, a comparative analysis of AgNPs synthesis using different transgenic lines of Arabidopsis was explored. Here we have shown that plant extract of COβ and gi-100 (mutant line of GIGANTEA showed the highest potential of nanoparticle production as comparable to Col-0 and over- expressing line of GIGANTEA (35SGi. Silver nanoparticles production in the Arabidopsis not only opens up a possibility of using molecular genetics tool to understand the biochemical pathways, but also could address the mechanism behind different shapes of AgNPs produced using plant extracts.

  13. Systematic Identification of Genes Required for Expression of Androgen Receptor Splice Variants

    Science.gov (United States)

    2016-08-01

    It has several advantages over the existing ones and one of them is the ability to make a very large number (tenth of thousands) of gene knockouts...each of reporters in LNCaP and CWR22Rv1 cells, respectively. See Task 2 To identify genes required for the full length AR or AR3, we took advantage of...splicing, and are important determinants of mRNA export , localization, translation, and stability [28]. Several members of this family have been

  14. Selective expression of a splice variant of decay-accelerating factor in c-erbB-2-positive mammary carcinoma cells showing increased transendothelial invasiveness

    International Nuclear Information System (INIS)

    Brandt, Burkhard; Mikesch, Jan-Hendrik; Simon, Ronald; Roetger, Antje; Kemming, Dirk; Schier, Katrin; Sauter, Guido; Buerger, Horst

    2005-01-01

    By differential-display-PCR a subclone of the SK-BR-3 cell line with high in vitro transendothelial invasiveness was identified to express increased levels of a new alternative splice variant of decay-accelerating factor (DAF). DAF seems to play an important role in some malignant tumours since on the one hand the expression of complement inhibitors on the surface of tumour cells prevents the accumulation of complement factors and in consequence cell lysis. On the other hand, DAF has been identified as a ligand for the CD97 surface receptor which induces cell migration. Immunofluorescence procedures, Western blot analyses, and cDNA clone sequencing were employed to confirm the expression of DAF restricted to invasive tumour cells. Using a radioactive RNA-in situ hybridisation on freshly frozen tissue microarrays and RT-PCR on native tumour tissue, the expression of alternative spliced DAF mRNA was demonstrated in invasive breast cancer. Due to the fact that it could thereby not be detected in normal mammary tissues, it has to be confirmed in larger studies that the DAF splice variant might be a specific tumour marker for invasive breast cancer

  15. Identification of the thiamin pyrophosphokinase gene in rainbow trout: Characteristic structure and expression of seven splice variants in tissues and cell lines and during embryo development

    Science.gov (United States)

    Yuge, Shinya; Richter, Catherine A.; Wright-Osment, Maureen K.; Nicks, Diane; Saloka, Stephanie K.; Tillitt, Donald E.; Li, Weiming

    2012-01-01

    Thiamin pyrophosphokinase (TPK) converts thiamin to its active form, thiamin diphosphate. In humans, TPK expression is down-regulated in some thiamin deficiency related syndrome, and enhanced during pregnancy. Rainbow trout are also vulnerable to thiamin deficiency in wild life and are useful models for thiamin metabolism research. We identified the tpk gene transcript including seven splice variants in the rainbow trout. Almost all cell lines and tissues examined showed co-expression of several tpk splice variants including a potentially major one at both mRNA and protein levels. However, relative to other tissues, the longest variant mRNA expression was predominant in the ovary and abundant in embryos. During embryogenesis, total tpk transcripts increased abruptly in early development, and decreased to about half of the peak shortly after hatching. In rainbow trout, the tpk transcript complex is ubiquitously expressed for all tissues and cells examined, and its increase in expression could be important in the early-middle embryonic stages. Moreover, decimated tpk expression in a hepatoma cell line relative to hepatic and gonadal cell lines appears to be consistent with previously reported down-regulation of thiamin metabolism in cancer.

  16. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, Torben; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... mellitus (NIDDM) and 20 normal control subjects were analyzed for the relative expression of insulin receptor mRNA variants in a novel assay using fluorescence-labeled primers and subsequent analysis on an automated DNA sequencer. In subgroups of patients and control subjects, insulin binding and tyrosine...

  17. Expression of interleukin 4, interleukin 4 splice variants and interferon gamma mRNA in calves experimentally infected with Fasciola hepatica.

    Science.gov (United States)

    Waldvogel, A S; Lepage, M-F; Zakher, A; Reichel, M P; Eicher, R; Heussler, V T

    2004-01-01

    Interleukin 4 (IL-4) is expected to play a dominant role in the development of T helper (Th) 2 cells. Th2 immune responses with expression of relatively large amounts of interleukin 4 (IL-4) but little interferon gamma (IFN-gamma) are characteristic for chronic helminth infections. But no information is available about IL4 expression during early Fasciola hepatica (F. hepatica) infections in cattle. Therefore, we investigated F. hepatica specific IL-4 and IFN-gamma mRNA expression in peripheral blood mononuclear cells (PBMCs) from calves experimentally infected with F. hepatica. Cells were collected prior to infection and on post-inoculation days (PIDs) 10, 28 and 70. Interestingly, PBMCs responded to stimulation with F. hepatica secretory-excretory products (FhSEP) already on PID 10 and expressed high amounts of IL-4 but not of IFN-gamma mRNA suggesting that F. hepatica induced a Th2 biased early immune response which was not restricted to the site of infection. Later in infection IL-4 mRNA expression decreased whereas IFN-gamma mRNA expression increased slightly. Isolated lymph node cells (LNCs) stimulated with FhSEP and, even more importantly, non-stimulated LN tissue samples indicated highly polarized Th2 type immune responses in the draining (hepatic) lymph node, but not in the retropharyngeal lymph node. During preliminary experiments, two splice variants of bovine IL-4 mRNA, boIL-4delta2 and boIL-4delta3, were detected. Since a human IL-4delta2 was assumed to act as competitive inhibitor of IL-4, it was important to know whether expression of these splice variants of bovine IL-4 have a regulatory function during an immune response to infection with F. hepatica. Indeed, IL-4 splice variants could be detected in a number of samples, but quantitative analysis did not yield any clue to their function. Therefore, the significance of bovine IL-4 splice variants remains to be determined.

  18. HE4 Transcription- and Splice Variants-Specific Expression in Endometrial Cancer and Correlation with Patient Survival

    Directory of Open Access Journals (Sweden)

    Shi-Wen Jiang

    2013-11-01

    Full Text Available We investigated the HE4 variant-specific expression patterns in various normal tissues as well as in normal and malignant endometrial tissues. The relationships between mRNA variants and age, body weight, or survival are analyzed. ICAT-labeled normal and endometrial cancer (EC tissues were analyzed with multidimensional liquid chromatography followed by tandem mass spectrometry. Levels of HE4 mRNA variants were measured by real-time PCR. Mean mRNA levels were compared among 16 normal endometrial samples, 14 grade 1 and 14 grade 3 endometrioid EC, 15 papillary serous EC, and 14 normal human tissue samples. The relationship between levels of HE4 variants and EC patient characteristics was analyzed with the use of Pearson correlation test. We found that, although all five HE4 mRNA variants are detectable in normal tissue samples, their expression is highly tissue-specific, with epididymis, trachea, breast and endometrium containing the highest levels. HE4-V0, -V1, and -V3 are the most abundant variants in both normal and malignant tissues. All variants are significantly increased in both endometrioid and papillary serous EC, with higher levels observed in grade 3 endometrioid EC. In the EC group, HE4-V1, -V3, and -V4 levels inversely correlate with EC patient survival, whereas HE4-V0 levels positively correlate with age. HE4 variants exhibit tissue-specific expression, suggesting that each variant may exert distinct functions in normal and malignant cells. HE4 levels appear to correlate with EC patient survival in a variant-specific manner. When using HE4 as a biomarker for EC management, the effects of age should be considered.

  19. Expression of a splice variant of the platelet-activating factor receptor transcript 2 in various human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ibtissam Youlyouz

    2002-01-01

    Full Text Available Platelet-activating factor receptor (PAF-R transcripts were analysed by reverse transcriptase-polymerase chain reaction in five human cancer cell lines derived from the breast (BT20, SKBR3 and T47D cells, the pancreas (Miapaca cells and the bladder (5637 cells in order to confirm the existence of a splice variant of the PAF-R transcript 2. After cloning and sequencing, we confirmed its existence in all cell lines. It consisted of the PAF-R transcript 2 lengthening with 82 nucleotides from the 3' end of exon 1 of the PAF-R gene. The role of this elongated form of the tissue-type PAF-R transcript in cell physiology remains to be elucidated.

  20. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    Energy Technology Data Exchange (ETDEWEB)

    Li, YanHua, E-mail: liyanhua.1982@aliyun.com [Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014 (China); Li, AiHua [Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing 404100 (China); Yang, Z.Q. [Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2016-09-09

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  1. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    International Nuclear Information System (INIS)

    Li, YanHua; Li, AiHua; Yang, Z.Q.

    2016-01-01

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  2. Splice Variants of the Castor WRI1 Gene Upregulate Fatty Acid and Oil Biosynthesis When Expressed in Tobacco Leaves.

    Science.gov (United States)

    Ji, Xia-Jie; Mao, Xue; Hao, Qing-Ting; Liu, Bao-Ling; Xue, Jin-Ai; Li, Run-Zhi

    2018-01-05

    The plant-specific WRINKLED1 (WRI1) is a member of the AP2/EREBP class of transcription factors that positively regulate oil biosynthesis in plant tissues. Limited information is available for the role of WRI1 in oil biosynthesis in castor bean ( Ricinus connunis L.), an important industrial oil crop. Here, we report the identification of two alternatively spliced transcripts of RcWRI1 , designated as RcWRI1-A and RcWRI1-B . The open reading frames of RcWRI1-A (1341 bp) and RcWRI1-B (1332 bp) differ by a stretch of 9 bp, such that the predicted RcWRI1-B lacks the three amino acid residues "VYL" that are present in RcWRI1-A. The RcWRI1-A transcript is present in flowers, leaves, pericarps and developing seeds, while the RcWRI1-B mRNA is only detectable in developing seeds. When the two isoforms were individually introduced into an Arabidopsis wri1-1 loss-of-function mutant, total fatty acid content was almost restored to the wild-type level, and the percentage of the wrinkled seeds was largely reduced in the transgenic lines relative to the wri1-1 mutant line. Transient expression of each RcWRI1 splice isoform in N. benthamiana leaves upregulated the expression of the WRI1 target genes, and consequently increased the oil content by 4.3-4.9 fold when compared with the controls, and RcWRI1-B appeared to be more active than RcWRI1-A . Both RcWRI1-A and RcWRI1-B can be used as a key transcriptional regulator to enhance fatty acid and oil biosynthesis in leafy biomass.

  3. Cloning and expression of a zebrafish SCN1B ortholog and identification of a species-specific splice variant

    Directory of Open Access Journals (Sweden)

    Slat Emily A

    2007-07-01

    Full Text Available Abstract Background Voltage-gated Na+ channel β1 (Scn1b subunits are multi-functional proteins that play roles in current modulation, channel cell surface expression, cell adhesion, cell migration, and neurite outgrowth. We have shown previously that β1 modulates electrical excitability in vivo using a mouse model. Scn1b null mice exhibit spontaneous seizures and ataxia, slowed action potential conduction, decreased numbers of nodes of Ranvier in myelinated axons, alterations in nodal architecture, and differences in Na+ channel α subunit localization. The early death of these mice at postnatal day 19, however, make them a challenging model system to study. As a first step toward development of an alternative model to investigate the physiological roles of β1 subunits in vivo we cloned two β1-like subunit cDNAs from D. rerio. Results Two β1-like subunit mRNAs from zebrafish, scn1ba_tv1 and scn1ba_tv2, arise from alternative splicing of scn1ba. The deduced amino acid sequences of Scn1ba_tv1 and Scn1ba_tv2 are identical except for their C-terminal domains. The C-terminus of Scn1ba_tv1 contains a tyrosine residue similar to that found to be critical for ankyrin association and Na+ channel modulation in mammalian β1. In contrast, Scn1ba_tv2 contains a unique, species-specific C-terminal domain that does not contain a tyrosine. Immunohistochemical analysis shows that, while the expression patterns of Scn1ba_tv1 and Scn1ba_tv2 overlap in some areas of the brain, retina, spinal cord, and skeletal muscle, only Scn1ba_tv1 is expressed in optic nerve where its staining pattern suggests nodal expression. Both scn1ba splice forms modulate Na+ currents expressed by zebrafish scn8aa, resulting in shifts in channel gating mode, increased current amplitude, negative shifts in the voltage dependence of current activation and inactivation, and increases in the rate of recovery from inactivation, similar to the function of mammalian β1 subunits. In

  4. Expressiveness of basic Splice

    NARCIS (Netherlands)

    J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe study a simple software architecture, in which application processes are coordinated by writing into and reading from a global set. This architecture underlies Splice, which is developed and used at the company Hollandse Signaalapparaten. Our approach is distinguished by viewing the

  5. Differential expression of P-type ATPases in intestinal epithelial cells: Identification of putative new atp1a1 splice-variant

    International Nuclear Information System (INIS)

    Rocafull, Miguel A.; Thomas, Luz E.; Barrera, Girolamo J.; Castillo, Jesus R. del

    2010-01-01

    P-type ATPases are membrane proteins that couple ATP hydrolysis with cation transport across the membrane. Ten different subtypes have been described. In mammalia, 15 genes of P-type ATPases from subtypes II-A, II-B and II-C, that transport low-atomic-weight cations (Ca 2+ , Na + , K + and H + ), have been reported. They include reticulum and plasma-membrane Ca 2+ -ATPases, Na + /K + -ATPase and H + /K + -ATPases. Enterocytes and colonocytes show functional differences, which seem to be partially due to the differential expression of P-type ATPases. These enzymes have 9 structural motifs, being the phosphorylation (E) and the Mg 2+ ATP-binding (H) motifs the most preserved. These structural characteristics permitted developing a Multiplex-Nested-PCR (MN-PCR) for the simultaneous identification of different P-type ATPases. Thus, using MN-PCR, seven different cDNAs were cloned from enterocytes and colonocytes, including SERCA3, SERCA2, Na + /K + -ATPase α1-isoform, H + /K + -ATPase α2-isoform, PMCA1, PMCA4 and a cDNA-fragment that seems to be a new cassette-type splice-variant of the atp1a1 gen. PMCA4 in enterocytes and H + /K + -ATPase α2-isoform in colonocytes were differentially expressed. This cell-specific expression pattern is related with the distinctive enterocyte and colonocyte functions.

  6. Expression of an IKKgamma splice variant determines IRF3 and canonical NF-kappaB pathway utilization in ssRNA virus infection.

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2009-11-01

    Full Text Available Single stranded RNA (ssRNA virus infection activates the retinoic acid inducible gene I (RIG-I- mitochondrial antiviral signaling (MAVS complex, a complex that coordinates the host innate immune response via the NF-kappaB and IRF3 pathways. Recent work has shown that the IkappaB kinase (IKKgamma scaffolding protein is the final common adapter protein required by RIG-I.MAVS to activate divergent rate-limiting kinases downstream controlling the NF-kappaB and IRF3 pathways. Previously we discovered a ubiquitous IKKgamma splice-variant, IKKgammaDelta, that exhibits distinct signaling properties.We examined the regulation and function of IKKgamma splice forms in response to ssRNA virus infection, a condition that preferentially induces full length IKKgamma-WT mRNA expression. In IKKgammaDelta-expressing cells, we found increased viral translation and cytopathic effect compared to those expressing full length IKKgamma-WT. IKKgammaDelta fails to support viral-induced IRF3 activation in response to ssRNA infections; consequently type I IFN production and the induction of anti-viral interferon stimulated genes (ISGs are significantly attenuated. By contrast, ectopic RIG-I.MAVS or TNFalpha-induced canonical NF-kappaB activation is preserved in IKKgammaDelta expressing cells. Increasing relative levels of IKKgamma-WT to IKKgammaDelta (while keeping total IKKgamma constant results in increased type I IFN expression. Conversely, overexpressing IKKgammaDelta (in a background of constant IKKgamma-WT expression shows IKKgammaDelta functions as a dominant-negative IRF3 signaling inhibitor. IKKgammaDelta binds both IKK-alpha and beta, but not TANK and IKKepsilon, indicating that exon 5 encodes an essential TANK binding domain. Finally, IKKgammaDelta displaces IKKgammaWT from MAVS explaining its domainant negative effect.Relative endogenous IKKgammaDelta expression affects cellular selection of inflammatory/anti-viral pathway responses to ssRNA viral infection.

  7. Transformer 2β homolog (Drosophila) (TRA2B) Regulates Protein Kinase C δI (PKCδI) Splice Variant Expression during 3T3L1 Preadipocyte Cell Cycle*

    Science.gov (United States)

    Patel, Rekha S.; Carter, Gay; Cooper, Denise R.; Apostolatos, Hercules; Patel, Niketa A.

    2014-01-01

    Obesity is characterized by adipocyte hyperplasia and hypertrophy. We previously showed that PKCδ expression is dysregulated in obesity (Carter, G., Apostolatos, A., Patel, R., Mathur, A., Cooper, D., Murr, M., and Patel, N. A. (2013) ISRN Obes. 2013, 161345). Using 3T3L1 preadipocytes, we studied adipogenesis in vitro and showed that expression of PKCδ splice variants, PKCδI and PKCδII, have different expression patterns during adipogenesis (Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D. R., You, M., Bisht, K. S., and Patel, N. A. (2013) J. Biol. Chem. 288, 26834–26846). Here, we evaluated the role of PKCδI splice variant during adipogenesis. Our results indicate that PKCδI expression level is high in preadipocytes and decreasing PKCδI accelerated terminal differentiation. Our results indicate that PKCδI is required for mitotic clonal expansion of preadipocytes. We next evaluated the splice factor regulating the expression of PKCδI during 3T3L1 adipogenesis. Our results show TRA2B increased PKCδI expression. To investigate the molecular mechanism, we cloned a heterologous splicing PKCδ minigene and showed that inclusion of PKCδ exon 9 is increased by TRA2B. Using mutagenesis and a RNA-immunoprecipitation assay, we evaluated the binding of Tra2β on PKCδI exon 9 and show that its association is required for PKCδI splicing. These results provide a better understanding of the role of PKCδI in adipogenesis. Determination of this molecular mechanism of alternative splicing presents a novel therapeutic target in the management of obesity and its co-morbidities. PMID:25261467

  8. Osteopontin splice variants are differential predictors of breast cancer treatment responses

    OpenAIRE

    Zduniak, Krzysztof; Agrawal, Anil; Agrawal, Siddarth; Hossain, Md Monir; Ziolkowski, Piotr; Weber, Georg F.

    2016-01-01

    Background Osteopontin is a marker for breast cancer progression, which in previous studies has also been associated with resistance to certain anti-cancer therapies. It is not known which splice variants may mediate treatment resistance. Methods Here we analyze the association of osteopontin variant expression before treatment, differentiated according to immunohistochemistry with antibodies to exon 4 and to the osteopontin-c splice junction respectively, with the ensuing therapy responses i...

  9. Detection and Quantization of the Expression of Two mu-Opioid Receptor Splice Variants mRNA (hMOR-1A and hMOR-1O in Peripheral Blood Lymphocytes of Long-Term Abstinent Former Opioid Addicts

    Directory of Open Access Journals (Sweden)

    N Vousooghi, Pharm

    2012-05-01

    Full Text Available

    Background and Objectives

    The mu-Opioid receptor (MOR exerts a critical role on effects of opiodis. The objective of this study is to find a peripheral bio-marker in addiction studies through quantization of the expression of two MOR splice variants mRNA (hMOR-1A and hMOR-1O in peripheral blood lymphocytes (PBLs of long-term abstinent former opioids addicts.

    Methods

    In this case-control study, case and control people were male and divided in two groups: people who gave up addiction to opioids (case and healthy individuals without history of addiction (control. The mRNA expression in PBLs of participants was detected and measured by real-time Polymerase Chain Reaction (PCR using SYBR Green Dye.

    Results

    The hMOR-1A mRNA expression in PBLs of abstinent group was significantly reduced and reached to 0.33 of the control group (p<0.001. Similar results were obtained for the other splice variant with the mRNA expression of hMOR-1O in PBLs of abstinent group reaching to 0.38 of that of the control group (p < 0.001.

    Conclusion

    mRNA expression deficiency of two mu-opioid receptor splice variants, hMOR-1A and nMOR-1O, seams to be a risk factor making individuals vulnerable to drug addiction. Based on this analysis measuring the amount of mRNA expression of these two splice variants in PBLs can serve as a peripheral bio-marker for detecting people at risk.

  10. Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Claire Jackson

    2013-01-01

    Full Text Available Overexpression of human epidermal growth factor receptor (HER-2 occurs in 20–30% of breast cancers and confers survival and proliferative advantages on the tumour cells making HER-2 an ideal therapeutic target for drugs like Herceptin. Continued delineation of tumour biology has identified splice variants of HER-2, with contrasting roles in tumour cell biology. For example, the splice variant 16HER-2 (results from exon 16 skipping increases transformation of cancer cells and is associated with treatment resistance; conversely, Herstatin (results from intron 8 retention and p100 (results from intron 15 retention inhibit tumour cell proliferation. This review focuses on the potential clinical implications of the expression and coexistence of HER-2 splice variants in cancer cells in relation to breast cancer progression and drug resistance. “Individualised” strategies currently guide breast cancer management; in accordance, HER-2 splice variants may prove valuable as future prognostic and predictive factors, as well as potential therapeutic targets.

  11. Androgen Receptor Splice Variants and Resistance to Taxane Chemotherapy

    Science.gov (United States)

    2016-10-01

    report. Inventions, patent applications, and/or licenses Nothing to report. Others Nothing to report. 7. Participants & Other... Brand LJ et al: Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res

  12. Characterization of TTN Novex Splicing Variants across Species and the Role of RBM20 in Novex-Specific Exon Splicing

    Directory of Open Access Journals (Sweden)

    Zhilong Chen

    2018-02-01

    Full Text Available Titin (TTN is a major disease-causing gene in cardiac muscle. Titin (TTN contains 363 exons in human encoding various sizes of TTN protein due to alternative splicing regulated mainly by RNA binding motif 20 (RBM20. Three isoforms of TTN protein are produced by mutually exclusive exons 45 (Novex 1, 46 (Novex 2, and 48 (Novex 3. Alternatively splicing in Novex isoforms across species and whether Novex isoforms are associated with heart disease remains completely unknown. Cross-species exon comparison with the mVISTA online tool revealed that exon 45 is more highly conserved across all species than exons 46 and 48. Importantly, a conserved region between exons 47 and 48 across species was revealed for the first time. Reverse transcript polymerase chain reaction (RT-PCR and DNA sequencing confirmed a new exon named as 48′ in Novex 3. In addition, with primer pairs for Novex 1, a new truncated form preserving introns 44 and 45 was discovered. We discovered that Novex 2 is not expressed in the pig, mouse, and rat with Novex 2 primer pairs. Unexpectedly, three truncated forms were identified. One TTN variant with intron 46 retention is mainly expressed in the human and frog heart, another variant with co-expression of exons 45 and 46 exists predominantly in chicken and frog heart, and a third with retention of introns 45 and 46 is mainly expressed in pig, mouse, rat, and chicken. Using Rbm20 knockout rat heart, we revealed that RBM20 is not a splicing regulator of Novex variants. Furthermore, the expression levels of Novex variants in human hearts with cardiomyopathies suggested that Novexes 2 and 3 could be associated with dilated cardiomyopathy (DCM and/or arrhythmogenic right ventricular cardiomyopathy (ARVC. Taken together, our study reveals that splicing diversity of Novex exons across species and Novex variants might play a role in cardiomyopathy.

  13. Early diagnostic value of survivin and its alternative splice variants in breast cancer

    International Nuclear Information System (INIS)

    Khan, Salma; Bennit, Heather Ferguson; Turay, David; Perez, Mia; Mirshahidi, Saied; Yuan, Yuan; Wall, Nathan R

    2014-01-01

    The inhibitor of apoptosis (IAP) protein Survivin and its splice variants are differentially expressed in breast cancer tissues. Our previous work showed Survivin is released from tumor cells via small membrane-bound vesicles called exosomes. We, therefore, hypothesize that analysis of serum exosomal Survivin and its splice variants may provide a novel biomarker for early diagnosis of breast cancer. We collected sera from forty breast cancer patients and ten control patients who were disease free for 5 years after treatment. In addition, twenty-three paired breast cancer tumor tissues from those same 40 patients were analyzed for splice variants. Serum levels of Survivin were analyzed using ELISA and exosomes were isolated from this serum using the commercially available ExoQuick kit, with subsequent Western blots and immunohistochemistry performed. Survivin levels were significantly higher in all the breast cancer samples compared to controls (p < 0.05) with exosome amounts significantly higher in cancer patient sera compared to controls (p < 0.01). While Survivin and Survivin-∆Ex3 splice variant expression and localization was identical in serum exosomes, differential expression of Survivin-2B protein existed in the exosomes. Similarly, Survivin and Survivin-∆Ex3 proteins were the predominant forms detected in all of the breast cancer tissues evaluated in this study, whereas a more variable expression of Survivin-2B level was found at different cancer stages. In this study we show for the first time that like Survivin, the Survivin splice variants are also exosomally packaged in the breast cancer patients’ sera, mimicking the survivin splice variant pattern that we also report in breast cancer tissues. Differential expression of exosomal-Survivin, particularly Survivin-2B, may serve as a diagnostic and/or prognostic marker, a “liquid biopsy” if you will, in early breast cancer patients. Furthermore, a more thorough understanding of the role of this

  14. Two new splice variants in porcine PPARGC1A

    Directory of Open Access Journals (Sweden)

    Peelman Luc J

    2008-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A is a coactivator with a vital and central role in fat and energy metabolism. It is considered to be a candidate gene for meat quality in pigs and is involved in the development of obesity and diabetes in humans. How its many functions are regulated, is however still largely unclear. Therefore a transcription profile of PPARGC1A in 32 tissues and 4 embryonic developmental stages in the pig was constructed by screening its cDNA for possible splice variants with exon-spanning primers. Findings This led to the discovery of 2 new splice variants in the pig, which were subsequently also detected in human tissues. In these variants, exon 8 was either completely or partly (the last 66 bp were conserved spliced out, potentially coding for a much shorter protein of respectively 337 and 359 amino acids (aa, of which the first 291 aa would be the same compared to the complete protein (796 aa. Conclusion Considering the functional domains of the PPARGC1A protein, it is very likely these splice variants considerably affect the function of the protein and alternative splicing could be one of the mechanisms by which the diverse functions of PPARGC1A are regulated.

  15. 1-alpha,25-Dihydroxyvitamin D3up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis.

    Science.gov (United States)

    Noda, Seiko; Yamada, Asako; Nakaoka, Kanae; Goseki-Sone, Masae

    2017-10-01

    Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation, and development. The principal function of vitamin D in calcium homeostasis is to increase the absorption of calcium from the intestine, and the level of alkaline phosphatase (ALP) activity, a differentiation marker for intestinal epithelial cells, is regulated by vitamin D. Intestinal-type ALP is expressed at a high concentration in the brush border membrane of intestinal epithelial cells, and is known to be affected by several kinds of nutrients. Recent reviews have highlighted the importance of intestinal-type ALP in gut homeostasis. Intestinal-type ALP controls bacterial endotoxin-induced inflammation by dephosphorylating lipopolysaccharide and is a gut mucosal defense factor. In this study, we investigated the influence of vitamin D on the expression of 2 types of alternative mRNA variants encoding the human alkaline phosphatase, intestinal (ALPI) gene in human Caco-2 cells as an in vitro model of the small intestinal epithelium. After treatment with 1-alpha,25-dihydroxyvitamin D 3 , the biologically active form of vitamin D 3 , there were significant increases in the ALP activities of Caco-2 cells. Inhibitor and thermal inactivation experiments showed that the increased ALP had properties of intestinal-type ALP. Reverse transcription-polymerase chain reaction analysis revealed that expression of the 2 types of alternative mRNA variants from the ALPI gene was markedly enhanced by vitamin D in Caco-2 cells. In conclusion, these findings agree with the hypothesis: vitamin D up-regulated the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells; vitamin D may be an important regulator of ALPI gene expression in gut homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Antisense experiments demonstrate an exon 4 minus splice variant mRNA as the basis for expression of tNOX, a cancer-specific cell surface protein.

    Science.gov (United States)

    Tang, Xiaoyu; Morré, D James; Morré, Dorothy M

    2007-01-01

    A novel hydroquinone and NADH oxidase with protein disulfide-thiol interchange activity (designated ENOX2 or tNOX), associated exclusively with the outer leaflet of the plasma membrane at the surface of cancer cells and in sera of cancer patients, is absent from the surface of noncancer cells and from sera from healthy individuals. Transfection of HeLa (human cervical carcinoma) cells with antisense oligonucleotides and measurement of mRNA levels by real-time quantitative PCR and growth and drug response by in vitro cytotoxicity assays were combined to demonstrate encoding of a cancer-specific and growth-related cell surface protein, tNOX, via an exon 4 minus splice variant. tNOX mRNA levels of HeLa cells were determined following transfection with antisense relative to control cells transfected with Lipofectamine using the cycle threshold method normalized for GAPDH mRNA. Antisense to tNOX exon 4 mRNA blocked generation of full-length tNOX mRNA but not of exon 4 minus mRNA. Antisense to exon 5 mRNA inhibited the production of exon 4 minus mRNA and full-length tNOX mRNA. Scrambled antisense to exon 5 mRNA was without effect. Antisense to exon 5 mRNA decreased the amount of tNOX protein on the surface of cancer cells. As a control, antisense-mediated downregulation of exon 5 minus mRNA of tNOX also was demonstrated as detected using exon 4/exon 6 primers. Exon 5 antisense blocked the cell surface expression of tNOX whereas exon 4 antisense was without effect. In contrast to nontransfected HeLa cells, cells transfected with exon 5 antisense were not inhibited by the green tea catechin, (-)-epigallocatechin-3-gallate. A relationship of tNOX to unregulated growth of cancer cells was provided by data where growth of HeLa cells was inhibited by transfection with the exon 5 antisense oligonucleotides. Growth inhibition was followed by apoptosis in greater than 70% of the transfected cells.

  17. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant

    Science.gov (United States)

    Sun, Shihua; Sprenger, Cynthia C.T.; Vessella, Robert L.; Haugk, Kathleen; Soriano, Kathryn; Mostaghel, Elahe A.; Page, Stephanie T.; Coleman, Ilsa M.; Nguyen, Holly M.; Sun, Huiying; Nelson, Peter S.; Plymate, Stephen R.

    2010-01-01

    Progression of prostate cancer following castration is associated with increased androgen receptor (AR) expression and signaling despite AR blockade. Recent studies suggest that these activities are due to the generation of constitutively active AR splice variants, but the mechanisms by which these splice variants could mediate such effects are not fully understood. Here we have identified what we believe to be a novel human AR splice variant in which exons 5, 6, and 7 are deleted (ARv567es) and demonstrated that this variant can contribute to cancer progression in human prostate cancer xenograft models in mice following castration. We determined that, in human prostate cancer cell lines, ARv567es functioned as a constitutively active receptor, increased expression of full-length AR (ARfl), and enhanced the transcriptional activity of AR. In human xenografts, human prostate cancer cells transfected with ARv567es cDNA formed tumors that were resistant to castration. Furthermore, the ratio of ARv567es to ARfl expression within the xenografts positively correlated with resistance to castration. Importantly, we also detected ARv567es frequently in human prostate cancer metastases. In summary, these data indicate that constitutively active AR splice variants can contribute to the development of castration-resistant prostate cancers and may serve as biomarkers for patients who are likely to suffer from early recurrence and are candidates for therapies directly targeting the AR rather than ligand. PMID:20644256

  18. Osteopontin splice variants are differential predictors of breast cancer treatment responses.

    Science.gov (United States)

    Zduniak, Krzysztof; Agrawal, Anil; Agrawal, Siddarth; Hossain, Md Monir; Ziolkowski, Piotr; Weber, Georg F

    2016-07-11

    Osteopontin is a marker for breast cancer progression, which in previous studies has also been associated with resistance to certain anti-cancer therapies. It is not known which splice variants may mediate treatment resistance. Here we analyze the association of osteopontin variant expression before treatment, differentiated according to immunohistochemistry with antibodies to exon 4 and to the osteopontin-c splice junction respectively, with the ensuing therapy responses in 119 Polish breast cancer patients who presented between 1995 and 2008. We found from Cox hazard models, logrank test and Wilcoxon test that osteopontin exon 4 was associated with a favorable response to tamoxifen, but a poor response to chemotherapy with CMF (cyclophosphamide, methotrexate, fluorouracil). Osteopontin-c is prognostic, but falls short of being a significant predictor for sensitivity to treatment. The addition of osteopontin splice variant immunohistochemistry to standard pathology work-ups has the potential to aid decision making in breast cancer treatment.

  19. Osteopontin splice variants are differential predictors of breast cancer treatment responses

    International Nuclear Information System (INIS)

    Zduniak, Krzysztof; Agrawal, Anil; Agrawal, Siddarth; Hossain, Md Monir; Ziolkowski, Piotr; Weber, Georg F.

    2016-01-01

    Osteopontin is a marker for breast cancer progression, which in previous studies has also been associated with resistance to certain anti-cancer therapies. It is not known which splice variants may mediate treatment resistance. Here we analyze the association of osteopontin variant expression before treatment, differentiated according to immunohistochemistry with antibodies to exon 4 and to the osteopontin-c splice junction respectively, with the ensuing therapy responses in 119 Polish breast cancer patients who presented between 1995 and 2008. We found from Cox hazard models, logrank test and Wilcoxon test that osteopontin exon 4 was associated with a favorable response to tamoxifen, but a poor response to chemotherapy with CMF (cyclophosphamide, methotrexate, fluorouracil). Osteopontin-c is prognostic, but falls short of being a significant predictor for sensitivity to treatment. The addition of osteopontin splice variant immunohistochemistry to standard pathology work-ups has the potential to aid decision making in breast cancer treatment

  20. Width of gene expression profile drives alternative splicing.

    Directory of Open Access Journals (Sweden)

    Daniel Wegmann

    Full Text Available Alternative splicing generates an enormous amount of functional and proteomic diversity in metazoan organisms. This process is probably central to the macromolecular and cellular complexity of higher eukaryotes. While most studies have focused on the molecular mechanism triggering and controlling alternative splicing, as well as on its incidence in different species, its maintenance and evolution within populations has been little investigated. Here, we propose to address these questions by comparing the structural characteristics as well as the functional and transcriptional profiles of genes with monomorphic or polymorphic splicing, referred to as MS and PS genes, respectively. We find that MS and PS genes differ particularly in the number of tissues and cell types where they are expressed.We find a striking deficit of PS genes on the sex chromosomes, particularly on the Y chromosome where it is shown not to be due to the observed lower breadth of expression of genes on that chromosome. The development of a simple model of evolution of cis-regulated alternative splicing leads to predictions in agreement with these observations. It further predicts the conditions for the emergence and the maintenance of cis-regulated alternative splicing, which are both favored by the tissue specific expression of splicing variants. We finally propose that the width of the gene expression profile is an essential factor for the acquisition of new transcript isoforms that could later be maintained by a new form of balancing selection.

  1. CD44 splice variants as prognostic markers in colorectal cancer

    NARCIS (Netherlands)

    Wielenga, V. J.; van der Voort, R.; Mulder, J. W.; Kruyt, P. M.; Weidema, W. F.; Oosting, J.; Seldenrijk, C. A.; van Krimpen, C.; Offerhaus, G. J.; Pals, S. T.

    1998-01-01

    BACKGROUND: Splice variants of CD44 play a causal role in the metastatic spread of pancreatic carcinoma in the rat. In previous studies we have shown that homologues of these CD44 isoforms (CD44v6) are overexpressed during colorectal tumorigenesis in man and that CD44v6 overexpression is associated

  2. Molecular characterization of the α-subunit of Na⁺/K⁺ ATPase from the euryhaline barnacle Balanus improvisus reveals multiple genes and differential expression of alternative splice variants.

    Directory of Open Access Journals (Sweden)

    Ulrika Lind

    Full Text Available The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU up to fully marine conditions (35 PSU and is regarded as one of few truly brackish-water species. Na⁺/K⁺ ATPase (NAK has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO2 levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions.

  3. Analysis of Maxi-K alpha subunit splice variants in human myometrium

    Directory of Open Access Journals (Sweden)

    Morrison John J

    2004-09-01

    Full Text Available Abstract Background Large-conductance, calcium-activated potassium (Maxi-K channels are implicated in the modulation of human uterine contractions and myometrial Ca2+ homeostasis. However, the regulatory mechanism(s governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset. Methods Myometrial biopsies were obtained at hysterectomy (non-pregnant, NP, and at Caesarean section, at elective (pregnant not-in-labour, PNL and intrapartum (pregnant in-labour, PL procedures. RNA was extracted from all biopsies and quantitative real-time RT-PCR was used to investigate for possible differential expression of the Maxi-K alpha subunit, and that of its splice variants, between these functionally-distinct myometrial tissue sets. Results RT-PCR analysis identified the presence of a 132 bp and an 87 bp spliced exon of the Maxi-K alpha subunit in all three myometrial tissue sets. Quantitative real-time PCR indicated a decrease in the expression of the Maxi-K alpha subunit with labour onset. While there was no change in the proportion of Maxi-K alpha subunits expressing the 87 bp spliced exon, the proportion of alpha subunits expressing the 132 bp spliced exon was significantly increased with labour onset, compared to both non-pregnant and pregnant not-in-labour tissues. An increased proportion of 132 bp exon-containing alpha subunit variants with labour onset is of interest, as channels expressing this spliced exon have decreased calcium and voltage sensitivities. Conclusions Our findings suggest that decreased Maxi-K alpha subunit mRNA expression in human myometrium at

  4. Splice variants of porcine PPHLN1 encoding periphilin-1

    DEFF Research Database (Denmark)

    Larsen, Knud Erik; Momeni, Jamal; Farajzadeh, Leila

    2017-01-01

    splice variants hereof. RT-PCR cloning using oligonucleotide primers derived from in silico sequences resulted in three PPHLN1 transcripts: a full-length mRNA and two transcript variant resulting in shorter proteins. The longest encoded periphilin-1, consisting of 373 amino acids, displays a high......The periphilin-1 protein is encoded by the PPHLN1 gene. Periphilin-1 is found in the cornified cell envelope during the terminal differentiation of keratinocyte at the outer layer of epidermis. In the current study we report on the cloning and characterization of the porcine PPHLN1 cDNA and two...... homology to the human periphilin-1 protein coded by the transcript variant 2 (91%). A shorter transcript variant (PPHLN1Sp1) contains a 1065-codon ORF, which is consistent with that of the authentic PPHLN1, but lacks a region of 57 bp spanning exon 7. Hence, the encoded polypeptide periphilin-1Sp1 consists...

  5. Splice Expression Variation Analysis (SEVA) for Inter-tumor Heterogeneity of Gene Isoform Usage in Cancer.

    Science.gov (United States)

    Afsari, Bahman; Guo, Theresa; Considine, Michael; Florea, Liliana; Kagohara, Luciane T; Stein-O'Brien, Genevieve L; Kelley, Dylan; Flam, Emily; Zambo, Kristina D; Ha, Patrick K; Geman, Donald; Ochs, Michael F; Califano, Joseph A; Gaykalova, Daria A; Favorov, Alexander V; Fertig, Elana J

    2018-01-12

    Current bioinformatics methods to detect changes in gene isoform usage in distinct phenotypes compare the relative expected isoform usage in phenotypes. These statistics model differences in isoform usage in normal tissues, which have stable regulation of gene splicing. Pathological conditions, such as cancer, can have broken regulation of splicing that increases the heterogeneity of the expression of splice variants. Inferring events with such differential heterogeneity in gene isoform usage requires new statistical approaches. We introduce Splice Expression Variability Analysis (SEVA) to model increased heterogeneity of splice variant usage between conditions (e.g., tumor and normal samples). SEVA uses a rank-based multivariate statistic that compares the variability of junction expression profiles within one condition to the variability within another. Simulated data show that SEVA is unique in modeling heterogeneity of gene isoform usage, and benchmark SEVA's performance against EBSeq, DiffSplice, and rMATS that model differential isoform usage instead of heterogeneity. We confirm the accuracy of SEVA in identifying known splice variants in head and neck cancer and perform cross-study validation of novel splice variants. A novel comparison of splice variant heterogeneity between subtypes of head and neck cancer demonstrated unanticipated similarity between the heterogeneity of gene isoform usage in HPV-positive and HPV-negative subtypes and anticipated increased heterogeneity among HPV-negative samples with mutations in genes that regulate the splice variant machinery. These results show that SEVA accurately models differential heterogeneity of gene isoform usage from RNA-seq data. SEVA is implemented in the R/Bioconductor package GSReg. bahman@jhu.edu, ejfertig@jhmi.edu. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Characterization of cryptic splicing in germline PTEN intronic variants in Cowden syndrome.

    Science.gov (United States)

    Chen, Hannah Jinlian; Romigh, Todd; Sesock, Kaitlin; Eng, Charis

    2017-10-01

    Germline mutations in the tumor-suppressor gene PTEN predispose to subsets of Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, and autism. Evidence-based classification of PTEN variants as either deleterious or benign is urgently needed for accurate molecular diagnosis and gene-informed genetic counseling. We studied 34 different germline PTEN intronic variants from 61 CS patients, characterized their PTEN mRNA processing, and analyzed PTEN expression and downstream readouts of P-AKT and P-ERK1/2. While we found that many mutations near splice junctions result in exon skipping, we also identified the presence of cryptic splicing that resulted in premature termination or a shift in isoform usage. PTEN protein expression is significantly lower in the group with splicing changes while P-AKT, but not P-ERK1/2, is significantly increased. Our observations of these PTEN intronic variants should contribute to the determination of pathogenicity of PTEN intronic variants and aid in genetic counseling. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  7. ISVASE: identification of sequence variant associated with splicing event using RNA-seq data.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Yu, Jun; Hu, Songnian

    2017-06-28

    Exon recognition and splicing precisely and efficiently by spliceosome is the key to generate mature mRNAs. About one third or a half of disease-related mutations affect RNA splicing. Software PVAAS has been developed to identify variants associated with aberrant splicing by directly using RNA-seq data. However, it bases on the assumption that annotated splicing site is normal splicing, which is not true in fact. We develop the ISVASE, a tool for specifically identifying sequence variants associated with splicing events (SVASE) by using RNA-seq data. Comparing with PVAAS, our tool has several advantages, such as multi-pass stringent rule-dependent filters and statistical filters, only using split-reads, independent sequence variant identification in each part of splicing (junction), sequence variant detection for both of known and novel splicing event, additional exon-exon junction shift event detection if known splicing events provided, splicing signal evaluation, known DNA mutation and/or RNA editing data supported, higher precision and consistency, and short running time. Using a realistic RNA-seq dataset, we performed a case study to illustrate the functionality and effectiveness of our method. Moreover, the output of SVASEs can be used for downstream analysis such as splicing regulatory element study and sequence variant functional analysis. ISVASE is useful for researchers interested in sequence variants (DNA mutation and/or RNA editing) associated with splicing events. The package is freely available at https://sourceforge.net/projects/isvase/ .

  8. Splice variants of perlucin from Haliotis laevigata modulate the crystallisation of CaCO3.

    Directory of Open Access Journals (Sweden)

    Tanja Dodenhof

    Full Text Available Perlucin is one of the proteins of the organic matrix of nacre (mother of pearl playing an important role in biomineralisation. This nacreous layer can be predominately found in the mollusc lineages and is most intensively studied as a compound of the shell of the marine Australian abalone Haliotis laevigata. A more detailed analysis of Perlucin will elucidate some of the still unknown processes in the complex interplay of the organic/inorganic compounds involved in the formation of nacre as a very interesting composite material not only from a life science-based point of view. Within this study we discovered three unknown Perlucin splice variants of the Australian abalone H. laevigata. The amplified cDNAs vary from 562 to 815 base pairs and the resulting translation products differ predominantly in the absence or presence of a varying number of a 10 mer peptide C-terminal repeat. The splice variants could further be confirmed by matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF MS analysis as endogenous Perlucin, purified from decalcified abalone shell. Interestingly, we observed that the different variants expressed as maltose-binding protein (MBP fusion proteins in E. coli showed strong differences in their influence on precipitating CaCO3 and that these differences might be due to a splice variant-specific formation of large protein aggregates influenced by the number of the 10 mer peptide repeats. Our results are evidence for a more complex situation with respect to Perlucin functional regulation by demonstrating that Perlucin splice variants modulate the crystallisation of calcium carbonate. The identification of differentially behaving Perlucin variants may open a completely new perspective for the field of nacre biomineralisation.

  9. Mediation of buprenorphine analgesia by a combination of traditional and truncated mu opioid receptor splice variants.

    Science.gov (United States)

    Grinnell, Steven G; Ansonoff, Michael; Marrone, Gina F; Lu, Zhigang; Narayan, Ankita; Xu, Jin; Rossi, Grace; Majumdar, Susruta; Pan, Ying-Xian; Bassoni, Daniel L; Pintar, John; Pasternak, Gavril W

    2016-10-01

    Buprenorphine has long been classified as a mu analgesic, although its high affinity for other opioid receptor classes and the orphanin FQ/nociceptin ORL1 receptor may contribute to its other actions. The current studies confirmed a mu mechanism for buprenorphine analgesia, implicating several subsets of mu receptor splice variants. Buprenorphine analgesia depended on the expression of both exon 1-associated traditional full length 7 transmembrane (7TM) and exon 11-associated truncated 6 transmembrane (6TM) MOR-1 variants. In genetic models, disruption of delta, kappa1 or ORL1 receptors had no impact on buprenorphine analgesia, while loss of the traditional 7TM MOR-1 variants in an exon 1 knockout (KO) mouse markedly lowered buprenorphine analgesia. Loss of the truncated 6TM variants in an exon 11 KO mouse totally eliminated buprenorphine analgesia. In distinction to analgesia, the inhibition of gastrointestinal transit and stimulation of locomotor activity were independent of truncated 6TM variants. Restoring expression of a 6TM variant with a lentivirus rescued buprenorphine analgesia in an exon 11 KO mouse that still expressed the 7TM variants. Despite a potent and robust stimulation of (35) S-GTPγS binding in MOR-1 expressing CHO cells, buprenorphine failed to recruit β-arrestin-2 binding at doses as high as 10 µM. Buprenorphine was an antagonist in DOR-1 expressing cells and an inverse agonist in KOR-1 cells. Buprenorphine analgesia is complex and requires multiple mu receptor splice variant classes but other actions may involve alternative receptors. © 2016 Wiley Periodicals, Inc.

  10. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Jin Woo Choi

    2011-03-01

    Full Text Available Although ARS-interacting multifunctional protein 2 (AIMP2, also named as MSC p38 was first found as a component for a macromolecular tRNA synthetase complex, it was recently discovered to dissociate from the complex and work as a potent tumor suppressor. Upon DNA damage, AIMP2 promotes apoptosis through the protective interaction with p53. However, it was not demonstrated whether AIMP2 was indeed pathologically linked to human cancer. In this work, we found that a splicing variant of AIMP2 lacking exon 2 (AIMP2-DX2 is highly expressed by alternative splicing in human lung cancer cells and patient's tissues. AIMP2-DX2 compromised pro-apoptotic activity of normal AIMP2 through the competitive binding to p53. The cells with higher level of AIMP2-DX2 showed higher propensity to form anchorage-independent colonies and increased resistance to cell death. Mice constitutively expressing this variant showed increased susceptibility to carcinogen-induced lung tumorigenesis. The expression ratio of AIMP2-DX2 to normal AIMP2 was increased according to lung cancer stage and showed a positive correlation with the survival of patients. Thus, this work identified an oncogenic splicing variant of a tumor suppressor, AIMP2/p38, and suggests its potential for anti-cancer target.

  11. Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity.

    Science.gov (United States)

    Muda, Marco; He, Chaomei; Martini, Paolo G V; Ferraro, Tania; Layfield, Sharon; Taylor, Deanne; Chevrier, Colette; Schweickhardt, Rene; Kelton, Christie; Ryan, Peter L; Bathgate, Ross A D

    2005-08-01

    LGR7 and LGR8 are G protein-coupled receptors that belong to the leucine-rich repeat-containing G-protein coupled receptor (LGR) family, including the thyroid-stimulating hormone (TSH), LH and FSH receptors. LGR7 and LGR8 stimulate cAMP production upon binding of the cognate ligands, relaxin and insulin-like peptide 3 (INSL3), respectively. We cloned several novel splice variants of both LGR7 and LGR8 and analysed the function of four variants. LGR7.1 is a truncated receptor, including only the N-terminal region of the receptor and two leucine rich repeats. In contrast, LGR7.2, LGR7.10 and LGR 8.1 all contain an intact seven transmembrane domain and most of the extracellular region, lacking only one or two exons in the ectodomain. Our analysis demonstrates that although LGR7.10 and LGR8.1 are expressed at the cell surface, LGR7.2 is predominantly retained within cells and LGR7.1 is partially secreted. mRNA expression analysis revealed that several variants are co-expressed in various tissues. None of these variants were able to stimulate cAMP production following relaxin or INSL3 treatment. Unexpectedly, we did not detect any direct specific relaxin or INSL3 binding on any of the splice variants. The large number of receptor splice variants identified suggests an unforeseen complexity in the physiology of this novel hormone-receptor system.

  12. VEGF Spliced Variants: Possible Role of Anti-Angiogenesis Therapy

    Directory of Open Access Journals (Sweden)

    Caroline Hilmi

    2012-01-01

    Full Text Available Angiogenesis has been targeted in retinopathies, psoriasis, and a variety of cancers (colon, breast, lung, and kidney. Among these tumour types, clear cell renal cell carcinomas (RCCs are the most vascularized tumours due to mutations of the von Hippel Lindau gene resulting in HIF-1 alpha stabilisation and overexpression of Vascular Endothelial Growth Factor (VEGF. Surgical nephrectomy remains the most efficient curative treatment for patients with noninvasive disease, while VEGF targeting has resulted in varying degrees of success for treating metastatic disease. VEGF pre-mRNA undergoes alternative splicing generating pro-angiogenic isoforms. However, the recent identification of novel splice variants of VEGF with anti-angiogenic properties has provided some insight for the lack of current treatment efficacy. Here we discuss an explanation for the relapse to anti-angiogenesis treatment as being due to either an initial or acquired resistance to the therapy. We also discuss targeting angiogenesis via SR (serine/arginine-rich proteins implicated in VEGF splicing.

  13. Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle.

    Science.gov (United States)

    Huang, J M; Wang, Z Y; Ju, Z H; Wang, C F; Li, Q L; Sun, T; Hou, Q L; Hang, S Q; Hou, M H; Zhong, J F

    2011-12-21

    Bovine lactoferrin (bLF) is a member of the transferrin family; it plays an important role in the innate immune response. We identified novel splice variants of the bLF gene in mastitis-infected and healthy cows. Reverse transcription-polymerase chain reaction (RT-PCR) and clone sequencing analysis were used to screen the splice variants of the bLF gene in the mammary gland, spleen and liver tissues. One main transcript corresponding to the bLF reference sequence was found in three tissues in both healthy and mastitis-infected cows. Quantitative real-time PCR analysis showed that the expression levels of the LF gene's main transcript were not significantly different in tissues from healthy versus mastitis-infected cows. However, the new splice variant, LF-AS2, which has the exon-skipping alternative splicing pattern, was only identified in mammary glands infected with Staphylococcus aureus. Sequencing analysis showed that the new splice variant was 251 bp in length, including exon 1, part of exon 2, part of exon 16, and exon 17. We conclude that bLF may play a role in resistance to mastitis through alternative splicing mechanisms.

  14. Alternative splicing of the cardiac sodium channel creates multiple variants of mutant T1620K channels.

    Directory of Open Access Journals (Sweden)

    Stefan Walzik

    2011-04-01

    Full Text Available Alternative splicing creates several Na(v1.5 transcripts in the mammalian myocardium and in various other tissues including brain, dorsal root ganglia, breast cancer cells as well as neuronal stem cell lines. In total nine Na(v1.5 splice variants have been discovered. Four of them, namely Na(v1.5a, Na(v1.5c, Na(v1.5d, and Na(v1.5e, generate functional channels in heterologous expression systems. The significance of alternatively spliced transcripts for cardiac excitation, in particular their role in SCN5A channelopathies, is less well understood. In the present study, we systematically investigated electrophysiological properties of mutant T1620K channels in the background of all known functional Na(v1.5 splice variants in HEK293 cells. This mutation has been previously associated with two distinct cardiac excitation disorders: with long QT syndrome type 3 (LQT3 and isolated cardiac conduction disease (CCD. When investigating the effect of the T1620K mutation, we noticed similar channel defects in the background of hNa(v1.5, hNa(v1.5a, and hNa(v1.5c. In contrast, the hNa(v1.5d background produced differential effects: In the mutant channel, some gain-of-function features did not emerge, whereas loss-of-function became more pronounced. In case of hNa(v1.5e, the neonatal variant of hNa(v1.5, both the splice variant itself as well as the corresponding mutant channel showed electrophysiological properties that were distinct from the wild-type and mutant reference channels, hNa(v1.5 and T1620K, respectively. In conclusion, our data show that alternative splicing is a mechanism capable of generating a variety of functionally distinct wild-type and mutant hNa(v1.5 channels. Thus, the cellular splicing machinery is a potential player affecting genotype-phenotype correlations in SCN5A channelopathies.

  15. Alternative splice variants of the human PD-1 gene

    DEFF Research Database (Denmark)

    Nielsen, Christian; Ohm-Laursen, Line; Barington, Torben

    2005-01-01

    PD-1 is an immunoregulatory receptor expressed on the surface of activated T cells, B cells, and monocytes. We describe four alternatively spliced PD-1 mRNA transcripts (PD-1Deltaex2, PD-1Deltaex3, PD-1Deltaex2,3, and PD-1Deltaex2,3,4) in addition to the full length isoform. PD-1Deltaex2 and PD-1...

  16. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Yasumichi [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp [Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Tanaka, Hiroki [Department of Legal Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Torimoto, Yoshihiro [Oncology Center, Asahikawa Medical University Hospital, Hokkaido 078-8510 (Japan); Ohtake, Takaaki; Kohgo, Yutaka [Department of Gastroenterology, International University of Health and Welfare Hospital, Tochigi 329-2763 (Japan)

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  17. Development of a novel splice array platform and its application in the identification of alternative splice variants in lung cancer

    Directory of Open Access Journals (Sweden)

    Gomez-Roman Javier

    2010-06-01

    Full Text Available Abstract Background Microarrays strategies, which allow for the characterization of thousands of alternative splice forms in a single test, can be applied to identify differential alternative splicing events. In this study, a novel splice array approach was developed, including the design of a high-density oligonucleotide array, a labeling procedure, and an algorithm to identify splice events. Results The array consisted of exon probes and thermodynamically balanced junction probes. Suboptimal probes were tagged and considered in the final analysis. An unbiased labeling protocol was developed using random primers. The algorithm used to distinguish changes in expression from changes in splicing was calibrated using internal non-spliced control sequences. The performance of this splice array was validated with artificial constructs for CDC6, VEGF, and PCBP4 isoforms. The platform was then applied to the analysis of differential splice forms in lung cancer samples compared to matched normal lung tissue. Overexpression of splice isoforms was identified for genes encoding CEACAM1, FHL-1, MLPH, and SUSD2. None of these splicing isoforms had been previously associated with lung cancer. Conclusions This methodology enables the detection of alternative splicing events in complex biological samples, providing a powerful tool to identify novel diagnostic and prognostic biomarkers for cancer and other pathologies.

  18. Functional diversity of human protein kinase splice variants marks significant expansion of human kinome

    Directory of Open Access Journals (Sweden)

    Anamika Krishanpal

    2009-12-01

    Full Text Available Abstract Background Protein kinases are involved in diverse spectrum of cellular processes. Availability of draft version of the human genomic data in the year 2001 enabled recognition of repertoire of protein kinases. However, over the years the human genomic data is being refined and the current release of human genomic data has helped us to recognize a larger repertoire of over 900 human protein kinases represented mainly by splice variants. Results Many of these identified protein kinases are alternatively spliced products. Interestingly, some of the human kinase splice variants appear to be significantly diverged in terms of their functional properties as represented by incorporation or absence of one or more domains. Many sets of protein kinase splice variants have substantially different domain organization and in a few sets of splice variants kinase domains belong to different subfamilies of kinases suggesting potential participation in different signal transduction pathways. Conclusions Addition or deletion of a domain between splice variants of multi-domain kinases appears to be a means of generating differences in the functional features of otherwise similar kinases. It is intriguing that marked sequence diversity within the catalytic regions of some of the splice variant kinases result in kinases belonging to different subfamilies. These human kinase splice variants with different functions might contribute to diversity of eukaryotic cellular signaling.

  19. TRPA5, an Ankyrin Subfamily Insect TRP Channel, is Expressed in Antennae of Cydia pomonella (Lepidoptera: Tortricidae) in Multiple Splice Variants.

    Science.gov (United States)

    Cattaneo, Alberto Maria; Bengtsson, Jonas Martin; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Rota-Stabelli, Omar; Salvagnin, Umberto; Bassoli, Angela; Witzgall, Peter; Anfora, Gianfranco

    2016-01-01

    Transient receptor potential (TRP) channels are an ancient family of cation channels, working as metabotropic triggers, which respond to physical and chemical environmental cues. Perception of chemical signals mediate reproductive behaviors and is therefore an important target for sustainable management tactics against the codling moth Cydia pomonella L. (Lepidoptera: Tortricidae). However, olfactory behavior strongly depends on diel periodicity and correlation of chemical with physical cues, like temperature, and physical cues thus essentially contribute to the generation of behavioral response. From an antennal transcriptome generated by next generation sequencing, we characterized five candidate TRPs in the codling moth. The coding DNA sequence of one of these was extended to full length, and phylogenetic investigation revealed it to be orthologous of the TRPA5 genes, reported in several insect genomes as members of the insect TRPA group with unknown function but closely related to the thermal sensor pyrexia Reverse transcription PCR revealed the existence of five alternate splice forms of CpTRPA5. Identification of a novel TRPA and its splice forms in codling moth antennae open for investigation of their possible sensory roles and implications in behavioral responses related to olfaction. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  20. Novel Alternative Splice Variants of Mouse Cdk5rap2.

    Directory of Open Access Journals (Sweden)

    Nadine Kraemer

    Full Text Available Autosomal recessive primary microcephaly (MCPH is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice.

  1. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Sun, Shiqin [College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319 (China); Chen, Xiangmei, E-mail: xm_chen6176@bjmu.edu.cn [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Lu, Fengmin [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2014-04-25

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  2. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    International Nuclear Information System (INIS)

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing; Sun, Shiqin; Chen, Xiangmei; Lu, Fengmin

    2014-01-01

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  3. GPR39 splice variants versus antisense gene LYPD1: expression and regulation in gastrointestinal tract, endocrine pancreas, liver, and white adipose tissue

    DEFF Research Database (Denmark)

    Egerod, Kristoffer L; Holst, Birgitte; Petersen, Pia S

    2007-01-01

    five-transmembrane form, GPR39-1b. The 3' exon of the GPR39 gene overlaps with an antisense gene called LYPD1 (Ly-6/PLAUR domain containing 1). Quantitative RT-PCR analysis demonstrated that GPR39-1a is expressed selectively throughout the gastrointestinal tract, including the liver and pancreas...... important for the expression of GPR39. In vivo experiments in rats demonstrated that GPR39 is up-regulated in adipose tissue during fasting and in response to streptozotocin treatment, although its expression is kept constant in the liver from the same animals. GPR39-1a was expressed in white but not brown...

  4. Identification of a truncated alternative splicing variant of human PPARγ1 that exhibits dominant negative activity

    International Nuclear Information System (INIS)

    Kim, Hyo Jung; Woo, Im Sun; Kang, Eun Sil; Eun, So Young; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Kim, Jin-Hoi; Seo, Han Geuk

    2006-01-01

    We have identified a novel variant of human peroxisome proliferator-activated receptor gamma (hPPARγ), derived from insertion of a novel exon 3'. Insertion leads to the introduction of a premature stop codon, resulting in the formation of a truncated splice variant of PPARγ1 (PPARγ1 tr ). Western blot analysis confirmed the presence of PPARγ1 tr in tumor-derived cell lines. Although PPARγ1 tr interfered with transcriptional activity of wild-type PPARγ1 (PPARγ1 wt ), activity could be rescued by cotransfection with a vector expressing p300. Overexpression of PPARγ1 tr protein in CHO cells greatly enhanced their proliferation and anchorage-independent colony growth on soft agar. These data demonstrate that PPARγ1 tr is an important physiologic isoform of PPARγ that modulates cellular functions of PPARγ1 wt

  5. Tissue-specific alternative splicing and expression of ATP1B2 gene ...

    African Journals Online (AJOL)

    The Na+-K+-ATPase is an essential transport enzyme expressed in all animal tissues, where it generates ion gradients to maintain membrane potential and drive the transport of other solutes. It also balances metabolism and body temperature. In this study, the characterization of three novel bovine ATP1B2 splice variants, ...

  6. Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A.

    Science.gov (United States)

    Ji, Rong; Lee, Clement M; Gonzales, Linda W; Yang, Yi; Aksoy, Mark O; Wang, Ping; Brailoiu, Eugen; Dun, Nae; Hurford, Matthew T; Kelsen, Steven G

    2008-06-01

    Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.

  7. Alternative Splicing Generates Different 5′ UTRs in OCT4B Variants

    OpenAIRE

    Poursani, Ensieh M.; Mehravar, Majid; Shahryari, Alireza; Mowla, Seyed Javad; Mohammad Soltani, Bahram

    2017-01-01

    Background: The human OCT4 gene, responsible for pluripotency and self-renewal of Embryonic Stem (ES) and Embryonic Carcinoma (EC) cells, can generate several transcripts (OCT4A, OCT4B-variant 2, OCT4B-variant 3, OCT4B-variant 5, OCT4B1, OCT4 B2 and OCT4B3) by alternative splicing and alternative promoters. OCT4A that is responsible for ES and EC cell stemness properties is transcribed from a promoter upstream of Exon1a in those cells. The OCT4B group variants (OCT4B-variant2, OCT4B-variant3,...

  8. Benzo[a]pyrene treatment leads to changes in nuclear protein expression and alternative splicing

    Energy Technology Data Exchange (ETDEWEB)

    Yan Chunlan; Wu Wei [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Li Haiyan [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000 (China); Zhang Guanglin [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Duerksen-Hughes, Penelope J. [Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 (United States); Zhu Xinqiang, E-mail: zhuxq@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Yang Jun, E-mail: gastate@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Zhejiang-California International Nanosystems Institute, Hangzhou, Zhejiang 310029 (China)

    2010-04-01

    Benzo[a]pyrene (BaP) is a potent pro-carcinogen generated from the combustion of fossil fuel and cigarette smoke. Previously, using a proteomic approach, we have shown that BaP can induce changes in the expression of many cellular proteins, including transcription regulators. In the present study, using a similar approach, we examined the nuclear protein response to BaP in HeLa cells and found that BaP treatment caused expression changes in many nuclear proteins. Twenty-four of these proteins were successfully identified, several of which are involved in the alternative splicing of mRNA, DNA replication, recombination, and repair. The changed expression levels were further confirmed by immunoblot analysis using specific antibodies for two proteins, Lamin A and mitotic checkpoint protein Bub3. The nuclear localization of these two proteins was also confirmed by confocal microscopy. To determine whether alternative splicing was activated following BaP treatment, we examined Fas and CD44, two genes previously shown to be targets of alternative splicing in respond to DNA damage. While no significant activation of alternative splicing was observed for Fas, CD44 splicing variants were found after BaP treatment. Together, these data show that DNA damage induces dramatic changes in nuclear protein expression, and that alternative splicing might be involved in the cellular response to DNA damage.

  9. Splice variants of the forkhead box protein AFX exhibit dominant negative activity and inhibit AFXalpha-mediated tumor cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Eun Jig Lee

    2008-07-01

    Full Text Available Loss-of-function in the apoptosis-inducing genes is known to facilitate tumorigenesis. AFX (FOXO4, a member of forkhead transcription factors functions as a tumor suppressor and has 2 isoforms, AFXalpha (505 a.a. and AFXzeta (450 a.a.. In human cancer cells, we identified an N-terminally deleted form of AFXalpha (alpha198-505, translated from a downstream start and 2 short N-terminal AFX proteins (90, and 101 a.a. produced by aberrant splicing.We investigated the expression and role of these AFX variants. Cell transduction study revealed that short N-terminal AFX proteins were not stable. Though alpha(198-505 protein expression was detected in the cytoplasm and nucleus, alpha(198-505 expressing cells did not show a nucleocytoplasmic shuttling mediated by PI3 kinase signaling. Whereas, we observed this shuttling in cells expressing either AFXalpha or AFXzeta protein. AFXzeta and alpha(198-505 lost the ability to transactivate BCL6 or suppress cyclin D2 gene expression. These variants did not induce cancer cell death whereas AFXalpha resulted in apoptosis. We found that AFXzeta and alpha(198-505 suppress the AFXalpha stimulation of BCL6 promoter in a dose dependent manner, indicating dominant negative activity. These variants also inhibited AFXalpha induction of apoptosis.Loss of function by aberrant splicing and the dominant negative activity of AFX variants may provide a mechanism for enhanced survival of neoplastic cells.

  10. Human aldehyde dehydrogenase genes: alternatively spliced transcriptional variants and their suggested nomenclature.

    Science.gov (United States)

    Black, William J; Stagos, Dimitrios; Marchitti, Satori A; Nebert, Daniel W; Tipton, Keith F; Bairoch, Amos; Vasiliou, Vasilis

    2009-11-01

    The human aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 genes encoding enzymes critical for NAD(P)-dependent oxidation of endogenous and exogenous aldehydes, including drugs and environmental toxicants. Mutations in ALDH genes are the molecular basis of several disease states (e.g. Sjögren-Larsson syndrome, pyridoxine-dependent seizures, and type II hyperprolinemia) and may contribute to the etiology of complex diseases such as cancer and Alzheimer's disease. The aim of this nomenclature update was to identify splice transcriptional variants principally for the human ALDH genes. Data-mining methods were used to retrieve all human ALDH sequences. Alternatively spliced transcriptional variants were determined based on (i) criteria for sequence integrity and genomic alignment; (ii) evidence of multiple independent cDNA sequences corresponding to a variant sequence; and (iii) if available, empirical evidence of variants from the literature. Alternatively spliced transcriptional variants and their encoded proteins exist for most of the human ALDH genes; however, their function and significance remain to be established. When compared with the human genome, rat and mouse include an additional gene, Aldh1a7, in the ALDH1A subfamily. To avoid confusion when identifying splice variants in various genomes, nomenclature guidelines for the naming of such alternative transcriptional variants and proteins are recommended herein. In addition, a web database (www.aldh.org) has been developed to provide up-to-date information and nomenclature guidelines for the ALDH superfamily.

  11. Molecular characterization of a CpTRIM35-like protein and its splice variants from whitespotted bamboo shark (Chiloscyllium plagiosum)

    International Nuclear Information System (INIS)

    Zhang, Xinshang; Zhao, Heng; Chen, Yeyu; Luo, Huiying; Yao, Bin

    2014-01-01

    Highlights: • A TRIM gene and three splice variants were firstly cloned from elasmobranch fish. • The genes were constitutively expressed with high levels in spleen and kidney. • The gene products were distributed in cytoplasm alone or cytoplasm and nucleus. • As E3 ubiquitin ligases, the proteins differed in immune responses to challenges. - Abstract: The tripartite motif (TRIM) proteins play important roles in a broad range of biological processes, including apoptosis, cell proliferation and innate immunity response. In this study, a TRIM gene and its three splice variants were cloned from an elasmobranch fish—whitespotted bamboo shark (Chiloscyllium plagiosum Bennett). Phylogenetic analysis indicated that the gene was closely related to TRIM35 homologs, thus termed CpTRIM35-like. Deduced CpTRIM35 has a RBCC-PRY/SPRY structure typical of TRIM proteins, and its splice variants (CpTRIM35-1–3) have different truncations at the C-terminus. The gene products were constitutively expressed in adult sharks with the highest levels in spleen and kidney. The different subcellular locations, upregulation upon LPS and poly I:C stimulation, and significant E3 ubiquitin ligase activities suggested their different roles in immune responses as an E3 ubiquitin ligase. This is the first TRIM protein ever characterized in elasmobranch fish

  12. Molecular characterization of a CpTRIM35-like protein and its splice variants from whitespotted bamboo shark (Chiloscyllium plagiosum)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinshang, E-mail: sanmaosound@163.com; Zhao, Heng, E-mail: hengzhao2000@gmail.com; Chen, Yeyu, E-mail: cyyleaf@126.com; Luo, Huiying, E-mail: luohuiying@caas.cn; Yao, Bin, E-mail: binyao@caas.cn

    2014-10-24

    Highlights: • A TRIM gene and three splice variants were firstly cloned from elasmobranch fish. • The genes were constitutively expressed with high levels in spleen and kidney. • The gene products were distributed in cytoplasm alone or cytoplasm and nucleus. • As E3 ubiquitin ligases, the proteins differed in immune responses to challenges. - Abstract: The tripartite motif (TRIM) proteins play important roles in a broad range of biological processes, including apoptosis, cell proliferation and innate immunity response. In this study, a TRIM gene and its three splice variants were cloned from an elasmobranch fish—whitespotted bamboo shark (Chiloscyllium plagiosum Bennett). Phylogenetic analysis indicated that the gene was closely related to TRIM35 homologs, thus termed CpTRIM35-like. Deduced CpTRIM35 has a RBCC-PRY/SPRY structure typical of TRIM proteins, and its splice variants (CpTRIM35-1–3) have different truncations at the C-terminus. The gene products were constitutively expressed in adult sharks with the highest levels in spleen and kidney. The different subcellular locations, upregulation upon LPS and poly I:C stimulation, and significant E3 ubiquitin ligase activities suggested their different roles in immune responses as an E3 ubiquitin ligase. This is the first TRIM protein ever characterized in elasmobranch fish.

  13. Expression microarray analysis reveals alternative splicing of LAMA3 and DST genes in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Li, Ryan; Ochs, Michael F; Ahn, Sun Mi; Hennessey, Patrick; Tan, Marietta; Soudry, Ethan; Gaykalova, Daria A; Uemura, Mamoru; Brait, Mariana; Shao, Chunbo; Westra, William; Bishop, Justin; Fertig, Elana J; Califano, Joseph A

    2014-01-01

    Prior studies have demonstrated tumor-specific alternative splicing events in various solid tumor types. The role of alternative splicing in the development and progression of head and neck squamous cell carcinoma (HNSCC) is unclear. Our study queried exon-level expression to implicate splice variants in HNSCC tumors. We performed a comparative genome-wide analysis of 44 HNSCC tumors and 25 uvulopalatopharyngoplasty (UPPP) tissue samples at an exon expression level. In our comparison we ranked genes based upon a novel score-the Maximum-Minimum Exon Score (MMES)--designed to predict the likelihood of an alternative splicing event occurring. We validated predicted alternative splicing events using quantitative RT-PCR on an independent cohort. After MMES scoring of 17,422 genes, the top 900 genes with the highest scores underwent additional manual inspection of expression patterns in a graphical analysis. The genes LAMA3, DST, VEGFC, SDHA, RASIP1, and TP63 were selected for further validation studies because of a high frequency of alternative splicing suggested in our graphical analysis, and literature review showing their biological relevance and known splicing patterns. We confirmed TP63 as having dominant expression of the short DeltaNp63 isoform in HNSCC tumor samples, consistent with prior reports. Two of the six genes (LAMA3 and DST) validated by quantitative RT-PCR for tumor-specific alternative splicing events (Student's t test, P<0.001). Alternative splicing events of oncologically relevant proteins occur in HNSCC. The number of genes expressing tumor-specific splice variants needs further elucidation, as does the functional significance of selective isoform expression.

  14. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features

    Science.gov (United States)

    Ibáñez-Costa, Alejandro; Gahete, Manuel D.; Rivero-Cortés, Esther; Rincón-Fernández, David; Nelson, Richard; Beltrán, Manuel; de la Riva, Andrés; Japón, Miguel A.; Venegas-Moreno, Eva; Gálvez, Ma Ángeles; García-Arnés, Juan A.; Soto-Moreno, Alfonso; Morgan, Jennifer; Tsomaia, Natia; Culler, Michael D.; Dieguez, Carlos; Castaño, Justo P.; Luque, Raúl M.

    2015-01-01

    Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n = 11) and pituitary adenomas (n = 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas comparedwith normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24–72 h) increased GH and ACTH secretion, Ca2+ and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors. PMID:25737012

  15. Conformations of JNK3α splice variants analyzed by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Park, Ji Young; Yun, Youngjoo; Chung, Ka Young

    2017-03-01

    c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family that regulate apoptosis, inflammation, cytokine production, and metabolism. MAPKs undergo various splicing within their kinase domains. Unlike other MAPKs, JNKs have alternative splicing at the C-terminus, resulting in long and short variants. Functional or conformational effects due to the elongated C-terminal tail in the long splice variants have not been investigated nor has the conformation of the C-terminal tail been analyzed. Here, we analyzed the conformation of the elongated C-terminal tail and investigated conformational differences between long and short splice variants of JNKs using JNK3α2 and JNK3α1 as models. We adopted hydrogen/deuterium exchange mass spectrometry (HDX-MS) to analyze the conformation. HDX-MS revealed that the C-terminal tail is mostly intrinsically disordered, and that the conformation of the kinase domain of JNK3α2 is more dynamic than that of JNK3α1. The different conformation dynamics between long and short splice variants of JNK3α might affect the cellular functions of JNK3. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome

    DEFF Research Database (Denmark)

    Krejsgaard, T; Gjerdrum, L M; Ralfkiaer, E

    2008-01-01

    Sézary syndrome (SS) is an aggressive variant of cutaneous T-cell lymphoma. During disease progression, immunodeficiency develops; however, the underlying molecular and cellular mechanisms are not fully understood. Here, we study the regulatory T cell (Treg) function and the expression of FOXP3...... in SS. We demonstrate that malignant T cells in 8 of 15 patients stain positive with an anti-FOXP3 antibody. Western blotting analysis shows expression of two low molecular splice forms of FOXP3, but not of wild-type (wt) FOXP3. The malignant T cells produce interleukin-10 and TGF-beta and suppress...... the growth of non-malignant T cells. The Treg phenotype and the production of suppressive cytokines are driven by aberrant activation of Jak3 independent of the FOXP3 splice forms. In contrast to wt FOXP3, the low molecular splice forms of FOXP3 have no inhibitory effect on nuclear factor-kappaB (NF...

  17. A method of predicting changes in human gene splicing induced by genetic variants in context of cis-acting elements

    Directory of Open Access Journals (Sweden)

    Hicks Chindo

    2010-01-01

    Full Text Available Abstract Background Polymorphic variants and mutations disrupting canonical splicing isoforms are among the leading causes of human hereditary disorders. While there is a substantial evidence of aberrant splicing causing Mendelian diseases, the implication of such events in multi-genic disorders is yet to be well understood. We have developed a new tool (SpliceScan II for predicting the effects of genetic variants on splicing and cis-regulatory elements. The novel Bayesian non-canonical 5'GC splice site (SS sensor used in our tool allows inference on non-canonical exons. Results Our tool performed favorably when compared with the existing methods in the context of genes linked to the Autism Spectrum Disorder (ASD. SpliceScan II was able to predict more aberrant splicing isoforms triggered by the mutations, as documented in DBASS5 and DBASS3 aberrant splicing databases, than other existing methods. Detrimental effects behind some of the polymorphic variations previously associated with Alzheimer's and breast cancer could be explained by changes in predicted splicing patterns. Conclusions We have developed SpliceScan II, an effective and sensitive tool for predicting the detrimental effects of genomic variants on splicing leading to Mendelian and complex hereditary disorders. The method could potentially be used to screen resequenced patient DNA to identify de novo mutations and polymorphic variants that could contribute to a genetic disorder.

  18. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Directory of Open Access Journals (Sweden)

    Brewster Brooke L

    2010-05-01

    Full Text Available Abstract Background Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs remains a challenge. Methods This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches. Results Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly, BRCA2 c.8972G > A (p.Arg2991His, BRCA2 c.9172A > G (p.Ser3058Gly, and BRCA2 c.9213G > T (p.Glu3071Asp by a minigene assay, revealed no evidence for aberrant splicing. Conclusions These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.

  19. Splicing Express: a software suite for alternative splicing analysis using next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Jose E. Kroll

    2015-11-01

    Full Text Available Motivation. Alternative splicing events (ASEs are prevalent in the transcriptome of eukaryotic species and are known to influence many biological phenomena. The identification and quantification of these events are crucial for a better understanding of biological processes. Next-generation DNA sequencing technologies have allowed deep characterization of transcriptomes and made it possible to address these issues. ASEs analysis, however, represents a challenging task especially when many different samples need to be compared. Some popular tools for the analysis of ASEs are known to report thousands of events without annotations and/or graphical representations. A new tool for the identification and visualization of ASEs is here described, which can be used by biologists without a solid bioinformatics background.Results. A software suite named Splicing Express was created to perform ASEs analysis from transcriptome sequencing data derived from next-generation DNA sequencing platforms. Its major goal is to serve the needs of biomedical researchers who do not have bioinformatics skills. Splicing Express performs automatic annotation of transcriptome data (GTF files using gene coordinates available from the UCSC genome browser and allows the analysis of data from all available species. The identification of ASEs is done by a known algorithm previously implemented in another tool named Splooce. As a final result, Splicing Express creates a set of HTML files composed of graphics and tables designed to describe the expression profile of ASEs among all analyzed samples. By using RNA-Seq data from the Illumina Human Body Map and the Rat Body Map, we show that Splicing Express is able to perform all tasks in a straightforward way, identifying well-known specific events.Availability and Implementation.Splicing Express is written in Perl and is suitable to run only in UNIX-like systems. More details can be found at: http://www.bioinformatics-brazil.org/splicingexpress.

  20. A new splice variant of the major subunit of human asialoglycoprotein receptor encodes a secreted form in hepatocytes.

    Directory of Open Access Journals (Sweden)

    Jia Liu

    Full Text Available BACKGROUND: The human asialoglycoprotein receptor (ASGPR is composed of two polypeptides, designated H1 and H2. While variants of H2 have been known for decades, the existence of H1 variants has never been reported. PRINCIPAL FINDINGS: We identified two splice variants of ASGPR H1 transcripts, designated H1a and H1b, in human liver tissues and hepatoma cells. Molecular cloning of ASGPR H1 variants revealed that they differ by a 117 nucleotide segment corresponding to exon 2 in the ASGPR genomic sequence. Thus, ASGPR variant H1b transcript encodes a protein lacking the transmembrane domain. Using an H1b-specific antibody, H1b protein and a functional soluble ASGPR (sASGPR composed of H1b and H2 in human sera and in hepatoma cell culture supernatant were identified. The expression of ASGPR H1a and H1b in Hela cells demonstrated the different cellular loctions of H1a and H1b proteins at cellular membranes and in intracellular compartments, respectively. In vitro binding assays using fluorescence-labeled sASGPR or the substract ASOR revealed that the presence of sASGPR reduced the binding of ASOR to cells. However, ASOR itself was able to enhance the binding of sASGPR to cells expressing membrane-bound ASGPR. Further, H1b expression is reduced in liver tissues from patients with viral hepatitis. CONCLUSIONS: We conclude that two naturally occurring ASGPR H1 splice variants are produced in human hepatocytes. A hetero-oligomeric complex sASGPR consists of the secreted form of H1 and H2 and may bind to free substrates in circulation and carry them to liver tissue for uptake by ASGPR-expressing hepatocytes.

  1. Targeting of a CCK(2) receptor splice variant with (111)In-labelled cholecystokinin-8 (CCK8) and (111)In-labelled minigastrin.

    NARCIS (Netherlands)

    Laverman, P.; Roosenburg-van Ameijde, S.; Gotthardt, M.; Park, J.; Oyen, W.J.G.; Jong, M. de; Hellmich, M.R.; Rutjes, F.P.J.T.; Delft, F.L. van; Boerman, O.C.

    2008-01-01

    PURPOSE: Radiolabelled cholecystokinin (CCK) and gastrin-derived peptides potentially can be used for peptide receptor radionuclide therapy (PRRT). Recently, a splice variant version of the CCK2R has been identified, designated CCK2i4svR. Constitutive expression of this receptor has been

  2. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array

    Directory of Open Access Journals (Sweden)

    Sugnet Charles

    2006-12-01

    Full Text Available Abstract Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic

  3. Distinct Splice Variants and Pathway Enrichment in the Cell Line Models of Aggressive Human Breast Cancer Subtypes

    Science.gov (United States)

    Menon, Rajasree; Im, Hogune; Zhang, Emma (Yue); Wu, Shiaw-Lin; Chen, Rui; Snyder, Michael; Hancock, William S.; Omenn, Gilbert S.

    2013-01-01

    This study was conducted as a part of the Chromosome-Centric Human Proteome Project (C-HPP) of the Human Proteome Organization. The United States team of C-HPP is focused on characterizing the protein-coding genes in chromosome 17. Despite its small size, chromosome 17 is rich in protein-coding genes, it contains many cancer-associated genes, including BRCA1, ERBB2 (Her2/neu), and TP53. The goal of this study was to examine the splice variants expressed in three ERBB2 expressed breast cancer cell line models of hormone receptor negative breast cancers by integrating RNA-Seq and proteomic mass spectrometry data. The cell-lines represent distinct phenotypic variations subtype: SKBR3 (ERBB2+ (over-expression)/ ER−/PR−; adenocarcinoma), SUM190 (ERBB2+ (over-expression)/ER−/PR−; inflammatory breast cancer) and SUM149 (ERBB2 (low expression) ER−/PR −; inflammatory breast cancer). We identified more than one splice variant for 1167 genes expressed in at least one of the three cancer cell lines. We found multiple variants of genes that are in the signaling pathways downstream of ERBB2 along with variants specific to one cancer cell line compared to the other two cancer cell lines and to normal mammary cells. The overall transcript profiles based on read counts indicated more similarities between SKBR3 and SUM190. The top-ranking Gene Ontology and BioCarta pathways for the cell-line specific variants pointed to distinct key mechanisms including: amino sugar metabolism, caspase activity, and endocytosis in SKBR3; different aspects of metabolism, especially of lipids in SUM190; cell- to-cell adhesion, integrin and ERK1/ERK2 signaling, and translational control in SUM149. The analyses indicated an enrichment in the electron transport chain processes in the ERBB2 over-expressed cell line models; and an association of nucleotide binding, RNA splicing and translation processes with the IBC models, SUM190 and SUM149. Detailed experimental studies on the distinct

  4. Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation.

    Science.gov (United States)

    Li, Chen; Zheng, Lanlan; Zhang, Jingxuan; Lv, Yanxia; Liu, Jianping; Wang, Xuanbin; Palfalvi, Gergo; Wang, Guodong; Zhang, Yonghong

    2017-07-01

    Arabidopsis thaliana LONG HYPOCOTYL5 (HY5) is a positive regulator of the light signaling pathway. The hy5 mutant has an elongated hypocotyl in all light conditions, whereas the hy5 homolog (hyh) mutant has a very weak phenotype, but only in blue light. However, overexpression of HYH rescues the elongated hypocotyl phenotype in the hy5 null mutant. Here, we report the identification of four HYH splicing variants in Arabidopsis. Alternative splicing in the 5' region of the HYH gene occurred such that the proteins encoded by all four HYH variants retained their bZIP domain. In hypocotyl tissue, transcript levels of HYH.2, HYH.3, and HYH.4 were higher than those of HYH.1. Like HY5, all HYH variants were induced by light. Functional analysis of the four HYH variants, based on their abilities to complement the hy5 mutant, indicated that they have similar roles in hypocotyl development, and may function redundantly with HY5. Our results indicate that the bZIP domain in HYH is critical for the function of four variants in the compensation of hy5 mutant in hypocotyl development. Additionally, while HY5/HYH is found in plant species ranging from green algae to flowering plants, the potential alternative splicing events are distinct in different species, with certain HYH variants found with greater frequency in some species than others. Copyright © 2017. Published by Elsevier B.V.

  5. Increased frequency of FBN1 truncating and splicing variants in Marfan syndrome patients with aortic events.

    Science.gov (United States)

    Baudhuin, Linnea M; Kotzer, Katrina E; Lagerstedt, Susan A

    2015-03-01

    Marfan syndrome is a systemic disorder that typically involves FBN1 mutations and cardiovascular manifestations. We investigated FBN1 genotype-phenotype correlations with aortic events (aortic dissection and prophylactic aortic surgery) in patients with Marfan syndrome. Genotype and phenotype information from probands (n = 179) with an FBN1 pathogenic or likely pathogenic variant were assessed. A higher frequency of truncating or splicing FBN1 variants was observed in Ghent criteria-positive patients with an aortic event (n = 34) as compared with all other probands (n = 145) without a reported aortic event (79 vs. 39%; P Marfan syndrome patients with FBN1 truncating and splicing variants.Genet Med 17 3, 177-187.

  6. The CEA/CD3-bispecific antibody MEDI-565 (MT111) binds a nonlinear epitope in the full-length but not a short splice variant of CEA.

    Science.gov (United States)

    Peng, Li; Oberst, Michael D; Huang, Jiaqi; Brohawn, Philip; Morehouse, Chris; Lekstrom, Kristen; Baeuerle, Patrick A; Wu, Herren; Yao, Yihong; Coats, Steven R; Dall'Acqua, William; Damschroder, Melissa; Hammond, Scott A

    2012-01-01

    MEDI-565 (also known as MT111) is a bispecific T-cell engager (BiTE®) antibody in development for the treatment of patients with cancers expressing carcinoembryonic antigen (CEA). MEDI-565 binds CEA on cancer cells and CD3 on T cells to induce T-cell mediated killing of cancer cells. To understand the molecular basis of human CEA recognition by MEDI-565 and how polymorphisms and spliced forms of CEA may affect MEDI-565 activity, we mapped the epitope of MEDI-565 on CEA using mutagenesis and homology modeling approaches. We found that MEDI-565 recognized a conformational epitope in the A2 domain comprised of amino acids 326-349 and 388-410, with critical residues F(326), T(328), N(333), V(388), G(389), P(390), E(392), I(408), and N(410). Two non-synonymous single-nucleotide polymorphisms (SNPs) (rs10407503, rs7249230) were identified in the epitope region, but they are found at low homozygosity rates. Searching the National Center for Biotechnology Information GenBank® database, we further identified a single, previously uncharacterized mRNA splice variant of CEA that lacks a portion of the N-terminal domain, the A1 and B1 domains, and a large portion of the A2 domain. Real-time quantitative polymerase chain reaction analysis of multiple cancers showed widespread expression of full-length CEA in these tumors, with less frequent but concordant expression of the CEA splice variant. Because the epitope was largely absent from the CEA splice variant, MEDI-565 did not bind or mediate T-cell killing of cells solely expressing this form of CEA. In addition, the splice variant did not interfere with MEDI-565 binding or activity when co-expressed with full-length CEA. Thus MEDI-565 may broadly target CEA-positive tumors without regard for expression of the short splice variant of CEA. Together our data suggest that MEDI-565 activity will neither be impacted by SNPs nor by a splice variant of CEA.

  7. Quantification of hTERT Splice Variants in Melanoma by SYBR Green Real-time Polymerase Chain Reaction Indicates a Negative Regulatory Role for the β Deletion Variant

    Directory of Open Access Journals (Sweden)

    Lisa F. Lincz

    2008-10-01

    Full Text Available Telomerase activity is primarily determined by transcriptional regulation of the catalytic subunit, human telomerase reverse transcriptase (hTERT. Several mRNA splice variants for hTERT have been identified, but it is not clear if telomerase activity is determined by the absolute or relative levels of full-length (functional and variant hTERT transcripts. We have developed an SYBR green-based reverse transcription-quantitative polymerase chain reaction assay for the enumeration of the four common hTERT mRNA variants and correlated these with telomerase activity and telomere length in 24 human melanoma cell lines. All except five of the lines expressed four hTERT transcripts, with an overall significant level of co-occurrence between absolute mRNA levels of full-length α+/β+ hTERT and the three splice variants α-/β+, α+/β-, and α-/β-. On average, α+/β+ made up the majority (48.1% of transcripts, followed by α+/β- (44.6%, α-/β- (4.4%, and α-/β+ (2.9%. Telomerase activity ranged from 1 to 247 relative telomerase activity and correlated most strongly with the absolute amount of α+/β+ (R = 0.791, P = .000004 and the relative amount of α+/β- (R = -0.465, P = .022. This study shows that telomerase activity in melanoma cells is best determined by the absolute expression of full-length hTERT mRNA and indicates a role for the hTERT β deletion variant in the negative regulation of enzyme activity.

  8. Evaluation of a 5-tier scheme proposed for classification of sequence variants using bioinformatic and splicing assay data

    DEFF Research Database (Denmark)

    Walker, Logan C; Whiley, Phillip J; Houdayer, Claude

    2013-01-01

    Splicing assays are commonly undertaken in the clinical setting to assess the clinical relevance of sequence variants in disease predisposition genes. A 5-tier classification system incorporating both bioinformatic and splicing assay information was previously proposed as a method to provide...

  9. Scaffold protein enigma homolog activates CREB whereas a short splice variant prevents CREB activation in cardiomyocytes.

    Science.gov (United States)

    Ito, Jumpei; Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Kuroda, Shun'ichi; Maturana, Andrés D

    2015-12-01

    Enigma Homolog (ENH1 or Pdlim5) is a scaffold protein composed of an N-terminal PDZ domain and three LIM domains at the C-terminal end. The enh gene encodes for several splice variants with opposing functions. ENH1 promotes cardiomyocytes hypertrophy whereas ENH splice variants lacking LIM domains prevent it. ENH1 interacts with various Protein Kinase C (PKC) isozymes and Protein Kinase D1 (PKD1). In addition, the binding of ENH1's LIM domains to PKC is sufficient to activate the kinase without stimulation. The downstream events of the ENH1-PKC/PKD1 complex remain unknown. PKC and PKD1 are known to phosphorylate the transcription factor cAMP-response element binding protein (CREB). We tested whether ENH1 could play a role in the activation of CREB. We found that, in neonatal rat ventricular cardiomyocytes, ENH1 interacts with CREB, is necessary for the phosphorylation of CREB at ser133, and the activation of CREB-dependent transcription. On the contrary, the overexpression of ENH3, a LIM-less splice variant, inhibited the phosphorylation of CREB. ENH3 overexpression or shRNA knockdown of ENH1 prevented the CREB-dependent transcription. Our results thus suggest that ENH1 plays an essential role in CREB's activation and dependent transcription in cardiomyocytes. At the opposite, ENH3 prevents the CREB transcriptional activity. In conclusion, these results provide a first molecular explanation to the opposing functions of ENH splice variants. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Cloning, expression and alternative splicing of the novel isoform of hTCP11 gene

    DEFF Research Database (Denmark)

    Ma, Yong-xin; Zhang, Si-zhong; Wu, Qia-qing

    2003-01-01

    To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing.......To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing....

  11. Clinical Relevance of Androgen Receptor Splice Variants in Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Maughan, Benjamin L; Antonarakis, Emmanuel S

    2015-12-01

    Metastatic castration-resistant prostate cancer (mCRPC) currently benefits from a wealth of treatment options, yet still remains lethal in the vast majority of patients. It is becoming increasingly understood that this disease entity continues to evolve over time, acquiring additional and diverse resistance mechanisms with each subsequent therapy used. This dynamic relationship between treatment pressure and disease resistance can be challenging for the managing clinician. The recent discovery of alternate splice variants of the androgen receptor (AR) is one potential mechanism of escape in mCRPC, and recognizing this resistance mechanism might be important for optimal treatment selection for our patients. AR-V7 appears to be the most relevant AR splice variant, and early clinical data suggest that it is a negative prognostic marker in mCRPC. Emerging evidence also suggests that detection of AR-V7 may be associated with resistance to novel hormonal therapy (abiraterone and enzalutamide) but may be compatible with sensitivity to taxane chemotherapy (docetaxel and cabazitaxel). Adding to this complexity is the observation that AR-V7 is a dynamic marker whose status may change across time and depending on selective pressures induced by different therapies. Finally, it is possible that AR-V7 may represent a therapeutic target in mCRPC if drugs can be designed that degrade or inhibit AR splice variants or block their transcriptional activity. Several such agents (including galeterone, EPI-506, and bromodomain/BET inhibitors) are now in clinical development.

  12. Study of USH1 splicing variants through minigenes and transcript analysis from nasal epithelial cells.

    Directory of Open Access Journals (Sweden)

    María José Aparisi

    Full Text Available Usher syndrome type I (USH1 is an autosomal recessive disorder characterized by congenital profound deafness, vestibular areflexia and prepubertal retinitis pigmentosa. The first purpose of this study was to determine the pathologic nature of eighteen USH1 putative splicing variants found in our series and their effect in the splicing process by minigene assays. These variants were selected according to bioinformatic analysis. The second aim was to analyze the USH1 transcripts, obtained from nasal epithelial cells samples of our patients, in order to corroborate the observed effect of mutations by minigenes in patient's tissues. The last objective was to evaluate the nasal ciliary beat frequency in patients with USH1 and compare it with control subjects. In silico analysis were performed using four bioinformatic programs: NNSplice, Human Splicing Finder, NetGene2 and Spliceview. Afterward, minigenes based on the pSPL3 vector were used to investigate the implication of selected changes in the mRNA processing. To observe the effect of mutations in the patient's tissues, RNA was extracted from nasal epithelial cells and RT-PCR analyses were performed. Four MYO7A (c.470G>A, c.1342_1343delAG, c.5856G>A and c.3652G>A, three CDH23 (c.2289+1G>A, c.6049G>A and c.8722+1delG and one PCDH15 (c.3717+2dupTT variants were observed to affect the splicing process by minigene assays and/or transcripts analysis obtained from nasal cells. Based on our results, minigenes are a good approach to determine the implication of identified variants in the mRNA processing, and the analysis of RNA obtained from nasal epithelial cells is an alternative method to discriminate neutral Usher variants from those with a pathogenic effect on the splicing process. In addition, we could observe that the nasal ciliated epithelium of USH1 patients shows a lower ciliary beat frequency than control subjects.

  13. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera.

    Science.gov (United States)

    Démares, Fabien; Drouard, Florian; Massou, Isabelle; Crattelet, Cindy; Lœuillet, Aurore; Bettiol, Célia; Raymond, Valérie; Armengaud, Catherine

    2014-09-01

    Glutamate-gated chloride channels (GluCl) belong to the cys-loop ligand-gated ion channel superfamily and their expression had been described in several invertebrate nervous systems. In the honeybee, a unique gene amel_glucl encodes two alternatively spliced subunits, Amel_GluCl A and Amel_GluCl B. The expression and differential localization of those variants in the honeybee brain had been previously reported. Here we characterized the involvement of each variant in olfactory learning and memory processes, using specific small-interfering RNA (siRNA) targeting each variant. Firstly, the efficacy of the two siRNAs to decrease their targets' expression was tested, both at mRNA and protein levels. The two proteins showed a decrease of their respective expression 24h after injection. Secondly, each siRNA was injected into the brain to test whether or not it affected olfactory memory by using a classical paradigm of conditioning the proboscis extension reflex (PER). Amel_GluCl A was found to be involved only in retrieval of 1-nonanol, whereas Amel_GluCl B was involved in the PER response to 2-hexanol used as a conditioned stimulus or as new odorant. Here for the first time, a differential behavioral involvement of two highly similar GluCl subunits has been characterized in an invertebrate species. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Hypoxia inducible factor 1α gene (HIF-1α splice variants: potential prognostic biomarkers in breast cancer

    Directory of Open Access Journals (Sweden)

    Bonnier Pascal

    2010-07-01

    Full Text Available Abstract Background Hypoxia-inducible factor 1 (HIF-1 is a master transcriptional regulator of genes regulating oxygen homeostasis. The HIF-1 protein is composed of two HIF-1α and HIF-1β/aryl hydrocarbon receptor nuclear translocator (ARNT subunits. The prognostic relevance of HIF-1α protein overexpression has been shown in breast cancer. The impact of HIF-1α alternative splice variant expression on breast cancer prognosis in terms of metastasis risk is not well known. Methods Using real-time quantitative reverse transcription PCR assays, we measured mRNA concentrations of total HIF-1α and 4 variants in breast tissue specimens in a series of 29 normal tissues or benign lesions (normal/benign and 53 primary carcinomas. In breast cancers HIF-1α splice variant levels were compared to clinicopathological parameters including tumour microvessel density and metastasis-free survival. Results HIF-1α isoforms containing a three base pairs TAG insertion between exon 1 and exon 2 (designated HIF-1αTAG and HIF-1α736 mRNAs were found expressed at higher levels in oestrogen receptor (OR-negative carcinomas compared to normal/benign tissues (P = 0.009 and P = 0.004 respectively. In breast carcinoma specimens, lymph node status was significantly associated with HIF-1αTAG mRNA levels (P = 0.037. Significant statistical association was found between tumour grade and HIF-1αTAG (P = 0.048, and total HIF-1α (P = 0.048 mRNA levels. HIF-1αTAG mRNA levels were also inversely correlated with both oestrogen and progesterone receptor status (P = 0.005 and P = 0.033 respectively. Univariate analysis showed that high HIF-1αTAG mRNA levels correlated with shortened metastasis free survival (P = 0.01. Conclusions Our results show for the first time that mRNA expression of a HIF-1αTAG splice variant reflects a stage of breast cancer progression and is associated with a worse prognosis. See commentary: http://www.biomedcentral.com/1741-7015/8/45

  15. The Functional Roles of the MDM2 Splice Variants P2-MDM2-10 and MDM2-∆5 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Johanna Huun

    2017-10-01

    Full Text Available BACKGROUND: MDM2 is a negative regulator of p53 and is upregulated in numerous human cancers. While different MDM2 splice variants have been observed in both normal tissues and malignant cells, their functions are poorly understood. METHODS: We evaluated the effect of MDM2 splice variants by overexpression in MCF-7 cells and analyses of expression of downstream genes (qPCR and Western blot, subcellular localization (immunofluorescence, cell cycle assays (Nucleocounter3000, apoptosis analysis (Annexin V detection, and induction of senescence (β-galactosidase analysis. RESULTS: In a screen for MDM2 splice variants in MCF-7 breast cancer cells, extended with data from healthy leukocytes, we found P2-MDM2-10 and MDM2-Δ5 to be the splice variants expressed at highest levels. Contrasting MDM2 full-length protein, we found normal tissue expression levels of P2-MDM2-10 and MDM2-Δ5 to be highest in individuals harboring the promoter SNP309TT genotype. While we detected no protein product coded for by MDM2-Δ5, the P2-MDM2-10 variant generated a protein markedly more stable than MDM2-FL. Both splice variants were significantly upregulated in stressed cells (P = 4.3 × 10−4 and P = 7.1 × 10−4, respectively. Notably, chemotherapy treatment and overexpression of P2-MDM2-10 or MDM2-Δ5 both lead to increased mRNA levels of the endogenous MDM2-FL (P = .039 and P = .070, respectively but also the proapoptotic gene PUMA (P = .010 and P = .033, respectively, accompanied by induction of apoptosis and repression of senescence. CONCLUSION: We found P2-MDM2-10 and MDM2-Δ5 to have distinct biological functions in breast cancer cells. GENERAL SIGNIFICANCE: Alternative splicing may influence the oncogenic effects of the MDM2 gene.

  16. The Identification of Splice Variants as Molecular Markers in Parkinson’s Disease

    Science.gov (United States)

    2008-09-01

    Purpose: Alternative splicing is responsible for producing several products from a single transcript and can cause pathogenic changes in RNA in...or submitted for publication some of these findings and in addition, are carrying out gene expression studies to localize the aberrant spice

  17. Linc-ROR and its spliced variants 2 and 4 are significantly up-regulated in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Sahebi, Reza; Malakootian, Mahshid; Balalaee, Baharak; Shahryari, Alireza; Khoshnia, Masoud; Abbaszadegan, Mohammad Reza; Moradi, Abdolvahab; Javad Mowla, Seyed

    2016-10-01

    Similar characteristics of molecular pathways between cellular reprogramming events and tumorigenesis have been accentuated in recent years. Reprogramming-related transcription factors, also known as Yamanaka factors (OCT4, SOX2, KLF4, and c-MYC), are also well-known oncogenes promoting cancer initiation, progression, and cellular transformation into cancer stem cells. Long non-coding RNAs (lncRNAs) are a major class of RNA molecules with emerging roles in stem cell pluripotency, cellular reprogramming, cellular transformation, and tumorigenesis. The long intergenic non-coding RNA ROR (lincRNA-ROR, linc-ROR) acts as a regulator of cellular reprograming through sponging miR-145 that normally negatively regulates the expression of the stemness factors NANOG, OCT4, and SOX2. Here, we employed a real-time PCR approach to determine the expression patterns of linc-ROR and its two novel spliced variants (variants 2 and 4) in esophageal squamous cell carcinoma (ESCC). The quantitative real-time RT-PCR results revealed a significant up-regulation of linc-ROR ( P =0.0098) and its variants 2 ( P =0.0250) and 4 ( P =0.0002) in tumor samples of ESCC, compared to their matched non-tumor tissues obtained from the margin of same tumors. Our data also demonstrated a significant up-regulation of variant 4 in high-grade tumor samples, in comparison to the low-grade ones ( P =0.04). Moreover, the ROC curve analysis demonstrated that the variant 4 of ROR has a potential to discriminate between tumor and non-tumor samples ( AUC =0.66, P ROR and its variants 2 and 4 in ESCC tissue samples.

  18. Membrane expression of MRP-1, but not MRP-1 splicing or Pgp expression, predicts survival in patients with ESFT.

    Science.gov (United States)

    Roundhill, E; Burchill, S

    2013-07-09

    Primary Ewing's sarcoma family of tumours (ESFTs) may respond to chemotherapy, although many patients experience subsequent disease recurrence and relapse. The survival of ESFT cells following chemotherapy has been attributed to the development of resistant disease, possibly through the expression of ABC transporter proteins. MRP-1 and Pgp mRNA and protein expression in primary ESFTs was determined by quantitative reverse-transcriptase PCR (RT-qPCR) and immunohistochemistry, respectively, and alternative splicing of MRP-1 by RT-PCR. We observed MRP-1 protein expression in 92% (43 out of 47) of primary ESFTs, and cell membrane MRP-1 was highly predictive of both overall survival (PMRP-1 was detected in primary ESFTs, although the pattern of splicing variants was not predictive of patient outcome, with the exception of loss of exon 9 in six patients, which predicted relapse (P=0.041). Pgp protein was detected in 6% (38 out of 44) of primary ESFTs and was not associated with patient survival. For the first time we have established that cell membrane expression of MRP-1 or loss of exon 9 is predictive of outcome but not the number of splicing events or expression of Pgp, and both may be valuable factors for the stratification of patients for more intensive therapy.

  19. Exon expression and alternatively spliced genes in Tourette Syndrome.

    Science.gov (United States)

    Tian, Yingfang; Liao, Isaac H; Zhan, Xinhua; Gunther, Joan R; Ander, Bradley P; Liu, Dazhi; Lit, Lisa; Jickling, Glen C; Corbett, Blythe A; Bos-Veneman, Netty G P; Hoekstra, Pieter J; Sharp, Frank R

    2011-01-01

    Tourette Syndrome (TS) is diagnosed based upon clinical criteria including motor and vocal tics. We hypothesized that differences in exon expression and splicing might be useful for pathophysiology and diagnosis. To demonstrate exon expression and alternatively spliced gene differences in blood of individuals with TS compared to healthy controls (HC), RNA was isolated from the blood of 26 un-medicated TS subjects and 23 HC. Each sample was run on Affymetrix Human Exon 1.0 ST (HuExon) arrays and on 3' biased U133 Plus 2.0 (HuU133) arrays. To investigate the differentially expressed exons and transcripts, analyses of covariance (ANCOVA) were performed, controlling for age, gender, and batch. Differential alternative splicing patterns between TS and HC were identified using analyses of variance (ANOVA) models in Partek. Three hundred and seventy-six exon probe sets were differentially expressed between TS and HC (raw P |1.2|) that separated TS and HC subjects using hierarchical clustering and Principal Components Analysis. The probe sets predicted TS compared to HC with a >90% sensitivity and specificity using a 10-fold cross-validation. Ninety genes (transcripts) had differential expression of a single exon (raw P < 0.005) and were predicted to be alternatively spliced (raw P < 0.05) in TS compared to HC. These preliminary findings might provide insight into the pathophysiology of TS and potentially provide prognostic and diagnostic biomarkers. However, the findings are tempered by the small sample size and multiple comparisons and require confirmation using PCR or deep RNA sequencing and a much larger patient population. Copyright © 2010 Wiley-Liss, Inc.

  20. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    Science.gov (United States)

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Dandanell, Mette; Steffensen, Ane Y

    2015-01-01

    Pathogenic germline mutations in the BRCA1 gene predispose carriers to early onset breast and ovarian cancer. Clinical genetic screening of BRCA1 often reveals variants with uncertain clinical significance, complicating patient and family management. Therefore, functional examinations are urgently...

  2. Structural and Functional Characterization of Two Alternative Splicing Variants of Mouse Endothelial Cell-Specific Chemotaxis Regulator (ECSCR

    Directory of Open Access Journals (Sweden)

    Yongchang Chang

    2012-04-01

    Full Text Available Endothelial cells (ECs that line the lumen of blood vessels are important players in blood vessel formation, and EC migration is a key component of the angiogenic process. Thus, identification of genes that are specifically or preferentially expressed in vascular ECs and in-depth understanding of their biological functions may lead to discovery of new therapeutic targets. We have previously reported molecular characterization of human endothelial cell-specific molecule 2 (ECSM2/endothelial cell-specific chemotaxis regulator (ECSCR. In the present study, we cloned two mouse full-length cDNAs by RT-PCR, which encode two putative ECSCR isoform precursors with considerable homology to the human ECSCR. Nucleotide sequence and exon-intron junction analyses suggested that they are alternative splicing variants (ECSCR isoform-1 and -2, differing from each other in the first and second exons. Quantitative RT-PCR results revealed that isoform-2 is the predominant form, which was most abundant in heart, lung, and muscles, and moderately abundant in uterus and testis. In contrast, the expression of isoform-1 seemed to be more enriched in testis. To further explore their potential cellular functions, we expressed GFP- and FLAG-tagged ECSCR isoforms, respectively, in an ECSCR deficient cell line (HEK293. Interestingly, the actual sizes of either ECSCR-GFP or -FLAG fusion proteins detected by immunoblotting are much larger than their predicted sizes, suggesting that both isoforms are glycoproteins. Fluorescence microscopy revealed that both ECSCR isoforms are localized at the cell surface, which is consistent with the structural prediction. Finally, we performed cell migration assays using mouse endothelial MS1 cells overexpressing GFP alone, isoform-1-GFP, and isoform-2-GFP, respectively. Our results showed that both isoforms significantly inhibited vascular epidermal growth factor (VEGF-induced cell migration. Taken together, we have provided several lines

  3. A Loss-of-Function Splice Acceptor Variant in IGF2 Is Protective for Type 2 Diabetes.

    Science.gov (United States)

    Mercader, Josep M; Liao, Rachel G; Bell, Avery D; Dymek, Zachary; Estrada, Karol; Tukiainen, Taru; Huerta-Chagoya, Alicia; Moreno-Macías, Hortensia; Jablonski, Kathleen A; Hanson, Robert L; Walford, Geoffrey A; Moran, Ignasi; Chen, Ling; Agarwala, Vineeta; Ordoñez-Sánchez, María Luisa; Rodríguez-Guillen, Rosario; Rodríguez-Torres, Maribel; Segura-Kato, Yayoi; García-Ortiz, Humberto; Centeno-Cruz, Federico; Barajas-Olmos, Francisco; Caulkins, Lizz; Puppala, Sobha; Fontanillas, Pierre; Williams, Amy L; Bonàs-Guarch, Sílvia; Hartl, Chris; Ripke, Stephan; Tooley, Katherine; Lane, Jacqueline; Zerrweck, Carlos; Martínez-Hernández, Angélica; Córdova, Emilio J; Mendoza-Caamal, Elvia; Contreras-Cubas, Cecilia; González-Villalpando, María E; Cruz-Bautista, Ivette; Muñoz-Hernández, Liliana; Gómez-Velasco, Donaji; Alvirde, Ulises; Henderson, Brian E; Wilkens, Lynne R; Le Marchand, Loic; Arellano-Campos, Olimpia; Riba, Laura; Harden, Maegan; Gabriel, Stacey; Abboud, Hanna E; Cortes, Maria L; Revilla-Monsalve, Cristina; Islas-Andrade, Sergio; Soberon, Xavier; Curran, Joanne E; Jenkinson, Christopher P; DeFronzo, Ralph A; Lehman, Donna M; Hanis, Craig L; Bell, Graeme I; Boehnke, Michael; Blangero, John; Duggirala, Ravindranath; Saxena, Richa; MacArthur, Daniel; Ferrer, Jorge; McCarroll, Steven A; Torrents, David; Knowler, William C; Baier, Leslie J; Burtt, Noel; González-Villalpando, Clicerio; Haiman, Christopher A; Aguilar-Salinas, Carlos A; Tusié-Luna, Teresa; Flannick, Jason; Jacobs, Suzanne B R; Orozco, Lorena; Altshuler, David; Florez, Jose C

    2017-11-01

    Type 2 diabetes (T2D) affects more than 415 million people worldwide, and its costs to the health care system continue to rise. To identify common or rare genetic variation with potential therapeutic implications for T2D, we analyzed and replicated genome-wide protein coding variation in a total of 8,227 individuals with T2D and 12,966 individuals without T2D of Latino descent. We identified a novel genetic variant in the IGF2 gene associated with ∼20% reduced risk for T2D. This variant, which has an allele frequency of 17% in the Mexican population but is rare in Europe, prevents splicing between IGF2 exons 1 and 2. We show in vitro and in human liver and adipose tissue that the variant is associated with a specific, allele-dosage-dependent reduction in the expression of IGF2 isoform 2. In individuals who do not carry the protective allele, expression of IGF2 isoform 2 in adipose is positively correlated with both incidence of T2D and increased plasma glycated hemoglobin in individuals without T2D, providing support that the protective effects are mediated by reductions in IGF2 isoform 2. Broad phenotypic examination of carriers of the protective variant revealed no association with other disease states or impaired reproductive health. These findings suggest that reducing IGF2 isoform 2 expression in relevant tissues has potential as a new therapeutic strategy for T2D, even beyond the Latin American population, with no major adverse effects on health or reproduction. © 2017 by the American Diabetes Association.

  4. The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor.

    Science.gov (United States)

    Sharina, Iraida G; Martin, Emil

    2017-01-20

    Nitric oxide (NO)-dependent signaling is critical to many cellular functions and physiological processes. Soluble guanylyl cyclase (sGC) acts as an NO receptor and mediates the majority of NO functions. The signaling between NO and sGC is strongly altered by reactive oxygen and nitrogen species. Recent Advances: Besides NO scavenging, sGC is affected by oxidation/loss of sGC heme, oxidation, or nitrosation of cysteine residues and phosphorylation. Apo-sGC or sGC containing oxidized heme is targeted for degradation. sGC transcription and the stability of sGC mRNA are also affected by oxidative stress. Studies cited in this review suggest the existence of compensatory processes that adapt cellular processes to diminished sGC function under conditions of short-term or moderate oxidative stress. Alternative splicing of sGC transcripts is discussed as a mechanism with the potential to both enhance and reduce sGC function. The expression of α1 isoform B, a functional and stable splice variant of human α1 sGC subunit, is proposed as one of such compensatory mechanisms. The expression of dysfunctional splice isoforms is discussed as a contributor to decreased sGC function in vascular disease. Targeting the process of sGC splicing may be an important approach to maintain the composition of sGC transcripts that are expressed in healthy tissues under normal conditions. Emerging new strategies that allow for targeted manipulations of RNA splicing offer opportunities to use this approach as a preventive measure and to control the composition of sGC splice isoforms. Rational management of expressed sGC splice forms may be a valuable complementary treatment strategy for existing sGC-directed therapies. Antioxid. Redox Signal. 26, 122-136.

  5. Cytoplasmic tethering of a RING protein RBCK1 by its splice variant lacking the RING domain

    International Nuclear Information System (INIS)

    Yoshimoto, Nobuo; Tatematsu, Kenji; Koyanagi, Tomoyoshi; Okajima, Toshihide; Tanizawa, Katsuyuki; Kuroda, Shun'ichi

    2005-01-01

    RBCC protein interacting with PKC 1 (RBCK1) is a transcription factor belonging to the RING-IBR protein family and has been shown to shuttle between the nucleus and cytoplasm, possessing both the nuclear export and localization signals within its amino acid sequence. RBCK2, lacking the C-terminal half of RBCK1 including the RING-IBR domain, has also been identified as an alternative splice variant of RBCK1. RBCK2 shows no transcriptional activity and instead it represses the transcriptional activity of RBCK1. Here, we show that RBCK2 is present usually in the cytoplasm containing two Leu-rich regions that presumably serve as a nuclear export signal (NES). Moreover, an NES-disrupted RBCK1 that is mostly localized within the nucleus is translocated to the cytoplasm when coexpressed with RBCK2, suggesting that RBCK2 serves as a cytoplasmic tethering protein for RBCK1. We propose a novel and general function of RING-lacking splice variants of RING proteins to control the intracellular localization and functions of the parental RING proteins by forming a hetero-oligomeric complex

  6. RNA Analysis as a Tool to Determine Clinically Relevant Gene Fusions and Splice Variants.

    Science.gov (United States)

    Teixidó, Cristina; Giménez-Capitán, Ana; Molina-Vila, Miguel Ángel; Peg, Vicente; Karachaliou, Niki; Rodríguez-Capote, Alejandra; Castellví, Josep; Rosell, Rafael

    2018-04-01

    - Technologic advances have contributed to the increasing relevance of RNA analysis in clinical oncology practice. The different genetic aberrations that can be screened with RNA include gene fusions and splice variants. Validated methods of identifying these alterations include fluorescence in situ hybridization, immunohistochemistry, reverse transcription-polymerase chain reaction, and next-generation sequencing, which can provide physicians valuable information on disease and treatment of cancer patients. - To discuss the standard techniques available and new approaches for the identification of gene fusions and splice variants in cancer, focusing on RNA analysis and how analytic methods have evolved in both tissue and liquid biopsies. - This is a narrative review based on PubMed searches and the authors' own experiences. - Reliable RNA-based testing in tissue and liquid biopsies can inform the diagnostic process and guide physicians toward the best treatment options. Next-generation sequencing methodologies permit simultaneous assessment of molecular alterations and increase the number of treatment options available for cancer patients.

  7. Fusion gene and splice variant analyses in liquid biopsies of lung cancer patients.

    Science.gov (United States)

    Aguado, Cristina; Giménez-Capitán, Ana; Karachaliou, Niki; Pérez-Rosado, Ana; Viteri, Santiago; Morales-Espinosa, Daniela; Rosell, Rafael

    2016-10-01

    Obtaining a biopsy of solid tumors requires invasive procedures that strongly limit patient compliance. In contrast, a blood extraction is safe, can be performed at many time points during the course disease and encourages appropriate therapy modifications, potentially improving the patient's clinical outcome and quality of life. Fusion of the tyrosine kinase genes anaplastic lymphoma kinase ( ALK ), C-ROS oncogen 1 ( ROS 1 ), rearranged during transfection ( RET ) and neurotrophic tyrosine kinase 1 ( NTRK1 ) occur in 1-5% of lung adenocarcinomas and constitute therapeutic targets for tyrosine kinase inhibitors. In addition, a MET splicing variant of exon 14, has been reported in 2-4% of lung adenocarcinoma and recent studies suggests that targeted therapies inhibiting MET signaling would be beneficial for patients with this alteration. In this review, we will summarize the new techniques recently developed to detect ALK , RET , ROS and NTRK1 fusions and MET exon 14 splicing variant in liquid biopsy using plasma, serum, circulating tumor cells (CTCs), platelets and exosomes as starting material.

  8. Constitutive homo- and hetero-oligomerization of TbetaRII-B, an alternatively spliced variant of the mouse TGF-beta type II receptor

    DEFF Research Database (Denmark)

    Krishnaveni, Manda S; Hansen, Jakob Lerche; Seeger, Werner

    2006-01-01

    , but the oligomerization pattern and dynamics of TbetaRII splice variants in live cells has not been demonstrated thus far. Using co-immunoprecipitation and bioluminescence resonance energy transfer (BRET), we demonstrate that the mouse TbetaRII receptor splice variant TbetaRII-B is capable of forming ligand...

  9. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  10. Expression of CD44 variants in human inflammatory synovitis

    Energy Technology Data Exchange (ETDEWEB)

    Hale, L.P. [Duke Univ. Medical Center, Durham, NC (United States); Haynes, B.F.; McCachren, S. [Duke Univ. Arthritis Center, Durham, NC (United States)

    1995-11-01

    The cell surface hyaluronate receptor CD44 has previously been shown to have immunomodulatory activity and to be upregulated in inflammatory synovitis. Since these findings were reported, the genomic structure of CD44 has been delineated, and multiple splice variants have been described. Therefore, we determined which CD44 variant exons are present during inflammatory synovitis by a combination of Northern blot analysis and reverse transcription followed by polymerase chain reaction amplification of synovial RNA. Immunohistochemical staining was used to define the sites of expression of individual v6 and v9 exons in synovial tissue. The standard (S) or hematopoietic isoform, CD44S, was the predominant form of CD44 expressed in synovium and was expressed by most cell types. Other isoforms, containing alternatively spliced exons in the proximal extracellular domain, were found by RT-PCR, but at lower levels than CD44S. The second most prevalent form was CD44E, which has an insertion of three exons (v8-v10) in the proximal extracellular domain. Immunohistochemical studies showed that reactivity with v9-specific antibodies was primarily in macrophages, particularly those in the synovial lining layer. CD44 exon v6, previously reported to be important in immune activation and in epithelial tumor metastasis, was also expressed in synovial lining cells and in occasional synovial interstitial cells. The presence of CD44 variants containing v9 in rheumatoid synovial macrophages may be important in the adhesion and activation of mononuclear phagocytes in the synovium and, thus, may be a target for novel antiinflammatory therapies in the future. The role of CD44 isoforms in cellular adhesion, immune activation, and joint erosion in inflammatory synovitis deserves further study. 7 figs., 2 tabs., 56 refs.

  11. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy.

    Science.gov (United States)

    Liu, Vincent Wing Sun; Yau, Wing Lung; Tam, Chun Wai; Yao, Kwok-Ming; Shiu, Stephen Yuen Wing

    2017-05-31

    A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin ( IL ) -6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT₁ receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.

  12. Requirement of a novel splicing variant of human histone deacetylase 6 for TGF-{beta}1-mediated gene activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yan [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Nguyen, Hong T. [Graduate Program in Biomedical Sciences, Tulane School of Medicine, New Orleans, LA 70112 (United States); Lasky, Joseph A. [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Cao, Subing [Graduate Program in Biomedical Sciences, Tulane School of Medicine, New Orleans, LA 70112 (United States); Li, Cui [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Xiangya Hospital, Central South University, Hunan 41008 (China); Hu, Jiyao; Guo, Xinyue; Burow, Matthew E. [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Shan, Bin, E-mail: bshan@tulane.edu [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States)

    2010-02-19

    Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of {alpha}-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-{beta}1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against {alpha}-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-{beta}1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.

  13. OCA2 splice site variant in German Spitz dogs with oculocutaneous albinism.

    Science.gov (United States)

    Caduff, Madleina; Bauer, Anina; Jagannathan, Vidhya; Leeb, Tosso

    2017-01-01

    We investigated a German Spitz family where the mating of a black male to a white female had yielded three puppies with an unexpected light brown coat color, lightly pigmented lips and noses, and blue eyes. Combined linkage and homozygosity analysis based on a fully penetrant monogenic autosomal recessive mode of inheritance identified a critical interval of 15 Mb on chromosome 3. We obtained whole genome sequence data from one affected dog, three wolves, and 188 control dogs. Filtering for private variants revealed a single variant with predicted high impact in the critical interval in LOC100855460 (XM_005618224.1:c.377+2T>G LT844587.1:c.-45+2T>G). The variant perfectly co-segregated with the phenotype in the family. We genotyped 181 control dogs with normal pigmentation from diverse breeds including 22 unrelated German Spitz dogs, which were all homozygous wildtype. Comparative sequence analyses revealed that LOC100855460 actually represents the 5'-end of the canine OCA2 gene. The CanFam 3.1 reference genome assembly is incorrect and separates the first two exons from the remaining exons of the OCA2 gene. We amplified a canine OCA2 cDNA fragment by RT-PCR and determined the correct full-length mRNA sequence (LT844587.1). Variants in the OCA2 gene cause oculocutaneous albinism type 2 (OCA2) in humans, pink-eyed dilution in mice, and similar phenotypes in corn snakes, medaka and Mexican cave tetra fish. We therefore conclude that the observed oculocutaneous albinism in German Spitz is most likely caused by the identified variant in the 5'-splice site of the first intron of the canine OCA2 gene.

  14. OCA2 splice site variant in German Spitz dogs with oculocutaneous albinism.

    Directory of Open Access Journals (Sweden)

    Madleina Caduff

    Full Text Available We investigated a German Spitz family where the mating of a black male to a white female had yielded three puppies with an unexpected light brown coat color, lightly pigmented lips and noses, and blue eyes. Combined linkage and homozygosity analysis based on a fully penetrant monogenic autosomal recessive mode of inheritance identified a critical interval of 15 Mb on chromosome 3. We obtained whole genome sequence data from one affected dog, three wolves, and 188 control dogs. Filtering for private variants revealed a single variant with predicted high impact in the critical interval in LOC100855460 (XM_005618224.1:c.377+2T>G LT844587.1:c.-45+2T>G. The variant perfectly co-segregated with the phenotype in the family. We genotyped 181 control dogs with normal pigmentation from diverse breeds including 22 unrelated German Spitz dogs, which were all homozygous wildtype. Comparative sequence analyses revealed that LOC100855460 actually represents the 5'-end of the canine OCA2 gene. The CanFam 3.1 reference genome assembly is incorrect and separates the first two exons from the remaining exons of the OCA2 gene. We amplified a canine OCA2 cDNA fragment by RT-PCR and determined the correct full-length mRNA sequence (LT844587.1. Variants in the OCA2 gene cause oculocutaneous albinism type 2 (OCA2 in humans, pink-eyed dilution in mice, and similar phenotypes in corn snakes, medaka and Mexican cave tetra fish. We therefore conclude that the observed oculocutaneous albinism in German Spitz is most likely caused by the identified variant in the 5'-splice site of the first intron of the canine OCA2 gene.

  15. Cloning and characterization of human RTVP-1b, a novel splice variant of RTVP-1 in glioma cells

    International Nuclear Information System (INIS)

    Xiang Cunli; Sarid, Ronit; Cazacu, Simona; Finniss, Susan; Lee, Hae-Kyung; Ziv-Av, Amotz; Mikkelsen, Tom; Brodie, Chaya

    2007-01-01

    Here, we report the cloning and characterization of RTVP-1b, a novel splice variant of human RTVP-1, which was isolated from the U87 glioma cell line. Sequence analysis revealed that RTVP-1b contains an additional 71 base exon between exons 2 and 3 that is missing in RTVP-1, leading to a frame-shift and a different putative protein. The deduced protein was 237 amino acids in length, sharing the N-terminal 141 amino acids with RTVP-1. RT-PCR analysis demonstrated that RTVP-1b was expressed in a wide range of tissues and that its expression was different from that of RTVP-1. In contrast, RTVP-1 and RTVP-1b showed similar patterns of expression in astrocytic tumors; highly expressed in glioblastomas as compared to normal brains, low-grade astrocytomas and anaplastic oligodendrogliomas. Overexpression of RTVP-1b increased glioma cell proliferation but did not affect cell migration. Our results suggest that RTVP-1b represents a potential prognostic marker and therapeutic target in gliomas

  16. Splice variants of the SWR1-type nucleosome remodeling factor Domino have distinct functions during Drosophila melanogaster oogenesis.

    Science.gov (United States)

    Börner, Kenneth; Becker, Peter B

    2016-09-01

    SWR1-type nucleosome remodeling factors replace histone H2A by variants to endow chromatin locally with specialized functionality. In Drosophila melanogaster a single H2A variant, H2A.V, combines functions of mammalian H2A.Z and H2A.X in transcription regulation and the DNA damage response. A major role in H2A.V incorporation for the only SWR1-like enzyme in flies, Domino, is assumed but not well documented in vivo. It is also unclear whether the two alternatively spliced isoforms, DOM-A and DOM-B, have redundant or specialized functions. Loss of both DOM isoforms compromises oogenesis, causing female sterility. We systematically explored roles of the two DOM isoforms during oogenesis using a cell type-specific knockdown approach. Despite their ubiquitous expression, DOM-A and DOM-B have non-redundant functions in germline and soma for egg formation. We show that chromatin incorporation of H2A.V in germline and somatic cells depends on DOM-B, whereas global incorporation in endoreplicating germline nurse cells appears to be independent of DOM. By contrast, DOM-A promotes the removal of H2A.V from stage 5 nurse cells. Remarkably, therefore, the two DOM isoforms have distinct functions in cell type-specific development and H2A.V exchange. © 2016. Published by The Company of Biologists Ltd.

  17. Differential regulation of iPLA2beta splice variants by in vitro ischemia in C2C12 myotubes

    DEFF Research Database (Denmark)

    Poulsen, K. A.; Kolko, M.; Lambert, I. H.

    2006-01-01

    In this study we investigated the activity, expression and regulation of iPLA2 during ischemia in mouse C2C12 myotubes. Here, we show that in vitro ischemia, i.e. oxygen deprivation and glucose starvation, induces an iPLA2 activity that is totally reversed by siRNA knock down of iPLA2£], indicating...... preferential activation of iPLA2£]. The activity of the native iPLA2£] tetramer has in humans been proposed to be negatively regulated by interactions with catalytic inactive splice variants of the full-length protein. These variants, characterized by the presence exon 9a, have however not been identified...... of this transcript would be a C-terminally truncated î50 kDa protein lacking the catalytic site. qPCR indicated that, while the total iPLA2£] mRNA level in C2C12 myotubes increased weakly within 1-2 hours of in vitro ischemia, the transcript containing the mouse exon 9a was rapidly down regulated. In addition...

  18. Expression of VEGF111and other VEGF-A variants in the rat uterus is correlated with stage of pregnancy.

    Science.gov (United States)

    Whittington, Camilla M; Danastas, Kevin; Grau, Georges E; Murphy, Christopher R; Thompson, Michael B

    2017-02-01

    Vascular endothelial growth factor A is a major mediator of angiogenesis, a critically important process in vertebrate growth and development as well as pregnancy. Here we report for the first time the expression of a rare and unusually potent splice variant, VEGF 111 , in vivo in mammals. This variant has previously only been found in mammals in cultured human cells exposed to genotoxic agents. Our discovery of VEGF 111 in the uterus of both a eutherian (rat) and a marsupial (fat-tailed dunnart) suggests that the splice variant may be common to all mammals. As VEGF 111 is also expressed in the uterus of at least one lineage of lizards, the expression of this splice variant may be a widespread amniote phenomenon. We measured expression of VEGF 111 and two major VEGF-A splice variants in the uterus of pregnant rats, showing that the three variants show different expression patterns across pregnancy. Our results suggest that viviparous mammals possess a precisely regulated milieu of VEGF isoforms producing the angiogenesis required for successful pregnancy. The discovery of VEGF 111 in rat uterus paves the way for the development of in vivo models of VEGF 111 activity in a highly tractable laboratory animal, and is particularly significant in the context of early pregnancy loss and cancer research.

  19. The soluble form of the EIAV receptor encoded by an alternative splicing variant inhibits EIAV infection of target cells.

    Science.gov (United States)

    Lin, Yue-Zhi; Yang, Fei; Zhang, Shu-Qin; Sun, Liu-Ke; Wang, Xue-Feng; Du, Cheng; Zhou, Jian-Hua

    2013-01-01

    Equine lentivirus receptor 1 (ELR1) has been identified as the sole receptor for equine infectious anemia virus (EIAV) and is a member of the tumor necrosis factor receptor (TNFR) superfamily. In addition to the previously described membrane-associated form of ELR1, two other major alternative splicing variant mRNAs were identified in equine monocyte-derived macrophages (eMDMs). One major spliced species (ELR1-IN) contained an insertion of 153 nt, which resulted in a premature stop codon situated 561 nt upstream of the predicted membrane spanning domain. The other major species (ELR1-DE) has a deletion of 109 nt that causes a shift of the open reading frame and generates a stop codon 312 nt downstream. Because ELR1-DE presumably encodes a peptide of a mere 23 residues, only ELR1-IN was further analyzed. The expression of a soluble form of ELR1 (sELR1) by ELR1-IN was confirmed by Western blot and immunofluorescence analyses. Similar to ELR1, the transcription level of ELR1-IN varied among individual horses and at different time points in the same individuals. The ratio of ELR1-IN mRNA species to ELR1 mRNA was approximately 1∶2.5. Pre-incubation of the recombinant sELR1 with EIAV significantly inhibited EIAV infection in equine macrophages, the primary in vivo target cell of the virus. Fetal equine dermal (FED) cells are susceptible to EIAV in vitro, and the replication of EIAV in FED cells transiently transfected with ELR1-IN was markedly reduced when compared with replication in cells transfected with the empty vector. Finally, the expression levels of both forms of the EIAV receptor were significantly regulated by infection with this virus. Taken together, our data indicate that sELR1 acts as a secreted cellular factor that inhibits EIAV infection in host cells.

  20. The soluble form of the EIAV receptor encoded by an alternative splicing variant inhibits EIAV infection of target cells.

    Directory of Open Access Journals (Sweden)

    Yue-Zhi Lin

    Full Text Available Equine lentivirus receptor 1 (ELR1 has been identified as the sole receptor for equine infectious anemia virus (EIAV and is a member of the tumor necrosis factor receptor (TNFR superfamily. In addition to the previously described membrane-associated form of ELR1, two other major alternative splicing variant mRNAs were identified in equine monocyte-derived macrophages (eMDMs. One major spliced species (ELR1-IN contained an insertion of 153 nt, which resulted in a premature stop codon situated 561 nt upstream of the predicted membrane spanning domain. The other major species (ELR1-DE has a deletion of 109 nt that causes a shift of the open reading frame and generates a stop codon 312 nt downstream. Because ELR1-DE presumably encodes a peptide of a mere 23 residues, only ELR1-IN was further analyzed. The expression of a soluble form of ELR1 (sELR1 by ELR1-IN was confirmed by Western blot and immunofluorescence analyses. Similar to ELR1, the transcription level of ELR1-IN varied among individual horses and at different time points in the same individuals. The ratio of ELR1-IN mRNA species to ELR1 mRNA was approximately 1∶2.5. Pre-incubation of the recombinant sELR1 with EIAV significantly inhibited EIAV infection in equine macrophages, the primary in vivo target cell of the virus. Fetal equine dermal (FED cells are susceptible to EIAV in vitro, and the replication of EIAV in FED cells transiently transfected with ELR1-IN was markedly reduced when compared with replication in cells transfected with the empty vector. Finally, the expression levels of both forms of the EIAV receptor were significantly regulated by infection with this virus. Taken together, our data indicate that sELR1 acts as a secreted cellular factor that inhibits EIAV infection in host cells.

  1. Functional Characterization of NIPBL Physiological Splice Variants and Eight Splicing Mutations in Patients with Cornelia de Lange Syndrome

    Directory of Open Access Journals (Sweden)

    María E. Teresa-Rodrigo

    2014-06-01

    Full Text Available Cornelia de Lange syndrome (CdLS is a congenital developmental disorder characterized by distinctive craniofacial features, growth retardation, cognitive impairment, limb defects, hirsutism, and multisystem involvement. Mutations in five genes encoding structural components (SMC1A, SMC3, RAD21 or functionally associated factors (NIPBL, HDAC8 of the cohesin complex have been found in patients with CdLS. In about 60% of the patients, mutations in NIPBL could be identified. Interestingly, 17% of them are predicted to change normal splicing, however, detailed molecular investigations are often missing. Here, we report the first systematic study of the physiological splicing of the NIPBL gene, that would reveal the identification of four new splicing isoforms ΔE10, ΔE12, ΔE33,34, and B’. Furthermore, we have investigated nine mutations affecting splice-sites in the NIPBL gene identified in twelve CdLS patients. All mutations have been examined on the DNA and RNA level, as well as by in silico analyses. Although patients with mutations affecting NIPBL splicing show a broad clinical variability, the more severe phenotypes seem to be associated with aberrant transcripts resulting in a shift of the reading frame.

  2. Alternative splicing of TGF-betas and their high-affinity receptors T beta RI, T beta RII and T beta RIII (betaglycan) reveal new variants in human prostatic cells.

    Science.gov (United States)

    Konrad, Lutz; Scheiber, Jonas A; Völck-Badouin, Elke; Keilani, Marcel M; Laible, Leslie; Brandt, Heidrun; Schmidt, Ansgar; Aumüller, Gerhard; Hofmann, Rainer

    2007-09-11

    The transforming growth factors (TGF)-beta, TGF-beta1, TGF-beta2 and TGF-beta 3, and their receptors [T beta RI, T beta RII, T beta R III (betaglycan)] elicit pleiotropic functions in the prostate. Although expression of the ligands and receptors have been investigated, the splice variants have never been analyzed. We therefore have analyzed all ligands, the receptors and the splice variants T beta RIB, T beta RIIB and TGF-beta 2B in human prostatic cells. Interestingly, a novel human receptor transcript T beta RIIC was identified, encoding additional 36 amino acids in the extracellular domain, that is expressed in the prostatic cancer cells PC-3, stromal hPCPs, and other human tissues. Furthermore, the receptor variant T beta RIB with four additional amino acids was identified also in human. Expression of the variant T beta RIIB was found in all prostate cell lines studied with a preferential localization in epithelial cells in some human prostatic glands. Similarly, we observed localization of T beta RIIC and TGF-beta 2B mainly in the epithelial cells with a preferential localization of TGF-beta 2B in the apical cell compartment. Whereas in the androgen-independent hPCPs and PC-3 cells all TGF-beta ligands and receptors are expressed, the androgen-dependent LNCaP cells failed to express all ligands. Additionally, stimulation of PC-3 cells with TGF-beta2 resulted in a significant and strong increase in secretion of plasminogen activator inhibitor-1 (PAI-1) with a major participation of T beta RII. In general, expression of the splice variants was more heterogeneous in contrast to the well-known isoforms. The identification of the splice variants T beta RIB and the novel isoform T beta RIIC in man clearly contributes to the growing complexity of the TGF-beta family.

  3. Alternative splicing of TGF-betas and their high-affinity receptors TβRI, TβRII and TβRIII (betaglycan reveal new variants in human prostatic cells

    Directory of Open Access Journals (Sweden)

    Brandt Heidrun

    2007-09-01

    Full Text Available Abstract Background The transforming growth factors (TGF-β, TGF-β1, TGF-β2 and TGF-β3, and their receptors [TβRI, TβRII, TβRIII (betaglycan] elicit pleiotropic functions in the prostate. Although expression of the ligands and receptors have been investigated, the splice variants have never been analyzed. We therefore have analyzed all ligands, the receptors and the splice variants TβRIB, TβRIIB and TGF-β2B in human prostatic cells. Results Interestingly, a novel human receptor transcript TβRIIC was identified, encoding additional 36 amino acids in the extracellular domain, that is expressed in the prostatic cancer cells PC-3, stromal hPCPs, and other human tissues. Furthermore, the receptor variant TβRIB with four additional amino acids was identified also in human. Expression of the variant TβRIIB was found in all prostate cell lines studied with a preferential localization in epithelial cells in some human prostatic glands. Similarly, we observed localization of TβRIIC and TGF-β2B mainly in the epithelial cells with a preferential localization of TGF-β2B in the apical cell compartment. Whereas in the androgen-independent hPCPs and PC-3 cells all TGF-β ligands and receptors are expressed, the androgen-dependent LNCaP cells failed to express all ligands. Additionally, stimulation of PC-3 cells with TGF-β2 resulted in a significant and strong increase in secretion of plasminogen activator inhibitor-1 (PAI-1 with a major participation of TβRII. Conclusion In general, expression of the splice variants was more heterogeneous in contrast to the well-known isoforms. The identification of the splice variants TβRIB and the novel isoform TβRIIC in man clearly contributes to the growing complexity of the TGF-β family.

  4. IGF1 mRNA splicing variants in Liaoning cashmere goat: identification, characterization, and transcriptional patterns in skin and visceral organs.

    Science.gov (United States)

    Bai, Wen L; Yin, Rong H; Yin, Rong L; Wang, Jiao J; Jiang, Wu Q; Luo, Guang B; Zhao, Zhi H

    2013-01-01

    Insulin-like growth factor I (IGF1) is a member of the insulin superfamily. It performs important roles in the proliferation and differentiation of skin cell and control of hair cycles and is thought to be a potential candidate gene for goat cashmere traits. In this work, we isolated and characterized three kinds of IGF1 mRNA splicing variants from the liver of Liaoning Cashmere goat, and the expression characterization of the IGF1 mRNA splicing variants were investigated in skin and other tissues of Liaoning cashmere goat. The sequencing results indicated that the classes 1w, 1, and 2 of IGF1 cDNAs in Liaoning cashmere goat, each included an open reading frame encoding the IGF1 precursor protein. The deduced amino acid sequences of the three IGF1 precursor proteins differed only in their NH2-terminal leader peptides. Through removal of the signal peptide and extension peptide, the three IGF1 mRNA splicing variants (classes 1w, 1, and 2) resulted in the same mature IGF1 protein in Liaoning cashmere goat. In skin tissue of Liaoning cashmere goat, class 1 and class 2 were detected in all stages of hair follicle cycling, and they had the highest transcription level at anagen, and then early anagen; whereas at telogen both classes 1 and 2 had the lowest expression in mRNA level, but the class 1 appears to be relatively more abundant than class 2 in skin tissue of Liaoning cashmere goat. However, the class 1w transcript was not detected in the skin tissues. Three classes of IGF1 mRNA were transcribed in a variety of tissues, including heart, brain, spleen, lung, kidney, liver, and skeletal muscle, but class 1 IGF1 mRNA was more abundant than classes 1w and 2 in the investigated tissues.

  5. MYC Regulates α6 Integrin Subunit Expression and Splicing Under Its Pro-Proliferative ITGA6A Form in Colorectal Cancer Cells.

    Science.gov (United States)

    Groulx, Jean-François; Boudjadi, Salah; Beaulieu, Jean-François

    2018-02-03

    The α6 integrin subunit ( ITGA6 ) pre-mRNA undergoes alternative splicing to form two splicing variants, named ITGA6A and ITGA6B. In primary human colorectal cancer cells, the levels of both ITGA6 and β4 integrin subunit (ITGB4) subunits of the α6β4 integrin are increased. We previously found that the upregulation of ITGA6 is a direct consequence of the increase of the pro-proliferative ITGA6A variant. However, the mechanisms that control ITGA6 expression and splicing into the ITGA6A variant over ITGA6B in colorectal cancer cells remain poorly understood. Here, we show that the promoter activity of the ITGA6 gene is regulated by MYC. Pharmacological inhibition of MYC activity with the MYC inhibitor (MYCi) 10058-F4 or knockdown of MYC expression by short hairpin RNA (shRNA) both lead to a decrease in ITGA6 and ITGA6A levels in colorectal cancer cells, while overexpression of MYC enhances ITGA6 promoter activity. We also found that MYC inhibition decreases the epithelial splicing regulatory protein 2 (ESRP2) splicing factor at both the mRNA and protein levels. Chromatin immunoprecipitation revealed that the proximal promoter sequences of ITGA6 and ESRP2 were occupied by MYC and actively transcribed in colorectal cancer cells. Furthermore, expression studies in primary colorectal tumors and corresponding resection margins confirmed that the up-regulation of the ITGA6A subunit can be correlated with the increase in MYC and ESRP2 . Taken together, our results demonstrate that the proto-oncogene MYC can regulate the promoter activation and splicing of the ITGA6 integrin gene through ESRP2 to favor the production of the pro-proliferative ITGA6A variant in colorectal cancer cells.

  6. Dynamic Phosphorylation of the Myocyte Enhancer Factor 2Cα1 Splice Variant Promotes Skeletal Muscle Regeneration and Hypertrophy.

    Science.gov (United States)

    Baruffaldi, Fiorenza; Montarras, Didier; Basile, Valentina; De Feo, Luca; Badodi, Sara; Ganassi, Massimo; Battini, Renata; Nicoletti, Carmine; Imbriano, Carol; Musarò, Antonio; Molinari, Susanna

    2017-03-01

    The transcription factor MEF2C (Myocyte Enhancer Factor 2C) plays an established role in the early steps of myogenic differentiation. However, the involvement of MEF2C in adult myogenesis and in muscle regeneration has not yet been systematically investigated. Alternative splicing of mammalian MEF2C transcripts gives rise to two mutually exclusive protein variants: MEF2Cα2 which exerts a positive control of myogenic differentiation, and MEF2Cα1, in which the α1 domain acts as trans-repressor of the MEF2C pro-differentiation activity itself. However, MEF2Cα1 variants are persistently expressed in differentiating cultured myocytes, suggesting a role in adult myogenesis. We found that overexpression of both MEF2Cα1/α2 proteins in a mouse model of muscle injury promotes muscle regeneration and hypertrophy, with each isoform promoting different stages of myogenesis. Besides the ability of MEF2Cα2 to increase differentiation, we found that overexpressed MEF2Cα1 enhances both proliferation and differentiation of primary myoblasts, and activates the AKT/mTOR/S6K anabolic signaling pathway in newly formed myofibers. The multiple activities of MEF2Cα1 are modulated by phosphorylation of Ser98 and Ser110, two amino acid residues located in the α1 domain of MEF2Cα1. These specific phosphorylations allow the interaction of MEF2Cα1 with the peptidyl-prolyl isomerase PIN1, a regulator of MEF2C functions. Overall, in this study we established a novel regulatory mechanism in which the expression and the phosphorylation of MEF2Cα1 are critically required to sustain the adult myogenesis. The described molecular mechanism will represent a new potential target for the development of therapeutical strategies to treat muscle-wasting diseases. Stem Cells 2017;35:725-738. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  7. Neuronal fast activating and meningeal silent modulatory BK channel splice variants cloned from rat

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Jansen-Olesen, Inger; Olesen, Jes

    2011-01-01

    and RCK2 (4 aa at SS1) and upstream of the calcium "bowl" (27 aa at SS4). Two other truncated variants, X2(92) and X2(188), lacking the intracellular C-terminal (stop downstream of S6), were cloned from cerebral vascular/meningeal tissue. They appear non-functional as no current expression was observed...

  8. TUMOR-SPECIFIC EXPRESSION AND ALTERNATIVE SPLICING OF THE COL6A3 GENE IN PANCREATIC CANCER

    Science.gov (United States)

    Arafat, Hwyda; Lazar, Melissa; Salem, Khalifa; Chipitsyna, Galina; Gong, Qiaoke; Pan, Te-Cheng; Zhang, Rui-Zhu; Yeo, Charles J.; Chu, Mon-Li

    2011-01-01

    Introduction Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease in which a prominent desmoplastic reaction is a defining characteristic. Fibrillar collagens, such as collagen I and to a lesser extent, collagen III and V comprise the majority of this stromal fibrosis. Type VI collagen (COL6) forms a microfibrillar network associated with type I collagen fibrils. The expression of COL6 has been linked to inflammation and survival. Importantly, tumor-specific alternative splicing in COL6A3 has been identified in several cancers by genome exon arrays. We evaluated the expression and localization of COL6A3 in PDA and premalignant lesions and explored the presence of alternative splicing events. Methods We analyzed paired PDA-normal (n=18), IPMN (n=5), pancreatic cystadenoma (n=5), and eight PDA cell lines with RT-PCR, using unique primers that identify total COL6A3 gene and alternative splicing sites in several of its exons. Western blot analysis and immunohistochemistry were used to analyze the expression levels and localization of COL6A3 protein in the different lesions, and in two animal models of PDA. Results COL6A3 protein levels were significantly upregulated in 77% of the paired PDA-adjacent tissue examined. COL6A3 was mainly present in the desmoplastic stroma of PDA, with high deposition around the malignant ducts and in between the sites of stromal fatty infiltration. Analysis of the COL6A3 splice variants showed tumor-specific consistent inclusion of exons 3 and 6 in 17 of the 18 (94%) paired PDA-adjacent tissues. Inclusion of exon 4 was exclusively tumor-specific, with barely detectable expression in the adjacent tissues. IPMN and pancreatic cystadenomas showed no expression of any of the examined exons. Total COL6A3 mRNA and exon 6 were identified in six PDA cell lines, but only two cell lines (MIA PACA-2 and ASPC-1) expressed exons 3 and 4. In both the xenograft and transgenic models of PDA, COL6A3 immunoreactivity was present in the stroma

  9. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Surget S

    2013-12-01

    Full Text Available Sylvanie Surget,1,2 Marie P Khoury,1,2 Jean-Christophe Bourdon1,21Dundee Cancer Centre, 2Jacqui Wood Cancer Centre, Ninewells Hospital, University of Dundee, Dundee, UKAbstract: Thirty-five years of research on p53 gave rise to more than 68,000 articles and reviews, but did not allow the uncovering of all the mysteries that this major tumor suppressor holds. How p53 handles the different signals to decide the appropriate cell fate in response to a stress and its implication in tumorigenesis and cancer progression remains unclear. Nevertheless, the uncovering of p53 isoforms has opened new perspectives in the cancer research field. Indeed, the human TP53 gene encodes not only one but at least twelve p53 protein isoforms, which are produced in normal tissues through alternative initiation of translation, usage of alternative promoters, and alternative splicing. In recent years, it became obvious that the different p53 isoforms play an important role in regulating cell fate in response to different stresses in normal cells by differentially regulating gene expression. In cancer cells, abnormal expression of p53 isoforms contributes actively to cancer formation and progression, regardless of TP53 mutation status. They can also be associated with response to treatment, depending on the cell context. The determination of p53 isoform expression and p53 mutation status helps to define different subtypes within a particular cancer type, which would have different responses to treatment. Thus, the understanding of the regulation of p53 isoform expression and their biological activities in relation to the cellular context would constitute an important step toward the improvement of the diagnostic, prognostic, and predictive values of p53 in cancer treatment. This review aims to summarize the involvement of p53 isoforms in cancer and to highlight novel potential therapeutic targets.Keywords: p53, isoforms, p63, p73, alternative splicing, cancer

  10. ASC-J9 Suppresses Castration-Resistant Prostate Cancer Growth through Degradation of Full-length and Splice Variant Androgen Receptors

    Directory of Open Access Journals (Sweden)

    Shinichi Yamashita

    2012-01-01

    Full Text Available Early studies suggested androgen receptor (AR splice variants might contribute to the progression of prostate cancer (PCa into castration resistance. However, the therapeutic strategy to target these AR splice variants still remains unresolved. Through tissue survey of tumors from the same patients before and after castration resistance, we found that the expression of AR3, a major AR splice variant that lacks the AR ligand-binding domain, was substantially increased after castration resistance development. The currently used antiandrogen, Casodex, showed little growth suppression in CWR22Rv1 cells. Importantly, we found that AR degradation enhancer ASC-J9 could degrade both full-length (fAR and AR3 in CWR22Rv1 cells as well as in C4-2 and C81 cells with addition of AR3. The consequences of such degradation of both fAR and AR3 might then result in the inhibition of AR transcriptional activity and cell growth in vitro. More importantly, suppression of AR3 specifically by short-hairpin AR3 or degradation of AR3 by ASC-J9 resulted in suppression of AR transcriptional activity and cell growth in CWR22Rv1-fARKD (fAR knockdown cells in which DHT failed to induce, suggesting the importance of targeting AR3. Finally, we demonstrated the in vivo therapeutic effects of ASC-J9 by showing the inhibition of PCa growth using the xenografted model of CWR22Rv1 cells orthotopically implanted into castrated nude mice with undetectable serum testosterone. These results suggested that targeting both fAR- and AR3-mediated PCa growth by ASC-J9 may represent the novel therapeutic approach to suppress castration-resistant PCa. Successful clinical trials targeting both fAR and AR3 may help us to battle castration-resistant PCa in the future.

  11. Genomic organization and splicing variants of a peptidylglycine alpha-hydroxylating monooxygenase from sea anemones

    DEFF Research Database (Denmark)

    Williamson, M; Hauser, F; Grimmelikhuijzen, C J

    2000-01-01

    the structure of its gene (CP1). CP1 is >12 kb in size and contains 15 exons and 14 introns. The last coding exon (exon 15) contains a stop codon, leaving no room for PAL and, thereby, for a bifunctional PAM enzyme as in mammals. Furthermore, we found a CP1 splicing variant (CP1-B) that contains exon-9 instead...... of PHM are conserved between CP1-A, -B and the PHM part of rat PAM. Furthermore, eight introns in CP1 occur in the same positions and have the same intron phasing as eight introns in the rat PAM gene, showing that the sea anemone PHM is not only structurally, but also evolutionarily related to the PHM......Cnidarians are primitive animals that use neuropeptides as their transmitters. All the numerous cnidarian neuropeptides isolated, so far, have a carboxy-terminal amide group that is essential for their actions. This strongly suggests that alpha-amidating enzymes are essential for the functioning...

  12. Biological impact of the TSH-beta splice variant in health and disease

    Directory of Open Access Journals (Sweden)

    John R. Klein

    2014-04-01

    Full Text Available Thyroid stimulating hormone (TSH, a glycoprotein hormone composed of alpha and beta chains, is produced by thryrotrope cells of the anterior pituitary. Within the conventional endocrine loop, pituitary-derived TSH binds to receptors in the thyroid, resulting in the release of the thyroid hormones thyroxine (T4 and triiodothyronine (T3. T4 and T3 in turn regulate nearly every aspect of mammalian physiology, including basal metabolism, growth and development, and mood and cognition. Although TSH-beta has been known for years to be produced by cells of the immune system, the significance of that has remained largely unclear. Recently, a splice variant of TSH-beta (TSH-beta-v, which consists of a truncated but biologically functional portion of the native form of TSH-beta, was shown to be produced by bone marrow cells and peripheral blood leukocytes, particularly cells of the myeloid/monocyte lineage. In contrast, full-length native TSH-beta is minimally produced by cells of the immune system. The present article will describe the discovery of the TSH-beta-v and will discuss its potential role in immunity and autoimmunity, inflammation, and bone remodeling.

  13. Splicing-Mediated Autoregulation Modulates Rpl22p Expression in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jason Gabunilas

    2016-04-01

    Full Text Available In Saccharomyces cerevisiae, splicing is critical for expression of ribosomal protein genes (RPGs, which are among the most highly expressed genes and are tightly regulated according to growth and environmental conditions. However, knowledge of the precise mechanisms by which RPG pre-mRNA splicing is regulated on a gene-by-gene basis is lacking. Here we show that Rpl22p has an extraribosomal role in the inhibition of splicing of the RPL22B pre-mRNA transcript. A stem loop secondary structure within the intron is necessary for pre-mRNA binding by Rpl22p in vivo and splicing inhibition in vivo and in vitro and can rescue splicing inhibition in vitro when added in trans to splicing reactions. Splicing inhibition by Rpl22p may be partly attributed to the reduction of co-transcriptional U1 snRNP recruitment to the pre-mRNA at the RPL22B locus. We further demonstrate that the inhibition of RPL22B pre-mRNA splicing contributes to the down-regulation of mature transcript during specific stress conditions, and provide evidence hinting at a regulatory role for this mechanism in conditions of suppressed ribosome biogenesis. These results demonstrate an autoregulatory mechanism that fine-tunes the expression of the Rpl22 protein and by extension Rpl22p paralog composition according to the cellular demands for ribosome biogenesis.

  14. Splicing-Mediated Autoregulation Modulates Rpl22p Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gabunilas, Jason; Chanfreau, Guillaume

    2016-04-01

    In Saccharomyces cerevisiae, splicing is critical for expression of ribosomal protein genes (RPGs), which are among the most highly expressed genes and are tightly regulated according to growth and environmental conditions. However, knowledge of the precise mechanisms by which RPG pre-mRNA splicing is regulated on a gene-by-gene basis is lacking. Here we show that Rpl22p has an extraribosomal role in the inhibition of splicing of the RPL22B pre-mRNA transcript. A stem loop secondary structure within the intron is necessary for pre-mRNA binding by Rpl22p in vivo and splicing inhibition in vivo and in vitro and can rescue splicing inhibition in vitro when added in trans to splicing reactions. Splicing inhibition by Rpl22p may be partly attributed to the reduction of co-transcriptional U1 snRNP recruitment to the pre-mRNA at the RPL22B locus. We further demonstrate that the inhibition of RPL22B pre-mRNA splicing contributes to the down-regulation of mature transcript during specific stress conditions, and provide evidence hinting at a regulatory role for this mechanism in conditions of suppressed ribosome biogenesis. These results demonstrate an autoregulatory mechanism that fine-tunes the expression of the Rpl22 protein and by extension Rpl22p paralog composition according to the cellular demands for ribosome biogenesis.

  15. Sequence Analysis of In Vivo-Expressed HIV-1 Spliced RNAs Reveals the Usage of New and Unusual Splice Sites by Viruses of Different Subtypes.

    Science.gov (United States)

    Vega, Yolanda; Delgado, Elena; de la Barrera, Jorge; Carrera, Cristina; Zaballos, Ángel; Cuesta, Isabel; Mariño, Ana; Ocampo, Antonio; Miralles, Celia; Pérez-Castro, Sonia; Álvarez, Hortensia; López-Miragaya, Isabel; García-Bodas, Elena; Díez-Fuertes, Francisco; Thomson, Michael M

    2016-01-01

    HIV-1 RNAs are generated through a complex splicing mechanism, resulting in a great diversity of transcripts, which are classified in three major categories: unspliced, singly spliced (SS), and doubly spliced (DS). Knowledge on HIV-1 RNA splicing in vivo and by non-subtype B viruses is scarce. Here we analyze HIV-1 RNA splice site usage in CD4+CD25+ lymphocytes from HIV-1-infected individuals through pyrosequencing. HIV-1 DS and SS RNAs were amplified by RT-PCR in 19 and 12 samples, respectively. 13,108 sequences from HIV-1 spliced RNAs, derived from viruses of five subtypes (A, B, C, F, G), were identified. In four samples, three of non-B subtypes, five 3' splice sites (3'ss) mapping to unreported positions in the HIV-1 genome were identified. Two, designated A4i and A4j, were used in 22% and 25% of rev RNAs in two viruses of subtypes B and A, respectively. Given their close proximity (one or two nucleotides) to A4c and A4d, respectively, they could be viewed as variants of these sites. Three 3'ss, designated A7g, A7h, and A7i, located 20, 32, and 18 nucleotides downstream of A7, respectively, were identified in a subtype C (A7g, A7h) and a subtype G (A7i) viruses, each in around 2% of nef RNAs. The new splice sites or variants of splice sites were associated with the usual sequence features of 3'ss. Usage of unusual 3'ss A4d, A4e, A5a, A7a, and A7b was also detected. A4f, previously identified in two subtype C viruses, was preferentially used by rev RNAs of a subtype C virus. These results highlight the great diversity of in vivo splice site usage by HIV-1 RNAs. The fact that four of five newly identified splice sites or variants of splice sites were detected in non-subtype B viruses allows anticipating an even greater diversity of HIV-1 splice site usage than currently known.

  16. Comparative in vitro and in silico analyses of variants in splicing regions of BRCA1 and BRCA2 genes and characterization of novel pathogenic mutations.

    Science.gov (United States)

    Colombo, Mara; De Vecchi, Giovanna; Caleca, Laura; Foglia, Claudia; Ripamonti, Carla B; Ficarazzi, Filomena; Barile, Monica; Varesco, Liliana; Peissel, Bernard; Manoukian, Siranoush; Radice, Paolo

    2013-01-01

    Several unclassified variants (UVs) have been identified in splicing regions of disease-associated genes and their characterization as pathogenic mutations or benign polymorphisms is crucial for the understanding of their role in disease development. In this study, 24 UVs located at BRCA1 and BRCA2 splice sites were characterized by transcripts analysis. These results were used to evaluate the ability of nine bioinformatics programs in predicting genetic variants causing aberrant splicing (spliceogenic variants) and the nature of aberrant transcripts. Eleven variants in BRCA1 and 8 in BRCA2, including 8 not previously characterized at transcript level, were ascertained to affect mRNA splicing. Of these, 16 led to the synthesis of aberrant transcripts containing premature termination codons (PTCs), 2 to the up-regulation of naturally occurring alternative transcripts containing PTCs, and one to an in-frame deletion within the region coding for the DNA binding domain of BRCA2, causing the loss of the ability to bind the partner protein DSS1 and ssDNA. For each computational program, we evaluated the rate of non-informative analyses, i.e. those that did not recognize the natural splice sites in the wild-type sequence, and the rate of false positive predictions, i.e., variants incorrectly classified as spliceogenic, as a measure of their specificity, under conditions setting sensitivity of predictions to 100%. The programs that performed better were Human Splicing Finder and Automated Splice Site Analyses, both exhibiting 100% informativeness and specificity. For 10 mutations the activation of cryptic splice sites was observed, but we were unable to derive simple criteria to select, among the different cryptic sites predicted by the bioinformatics analyses, those actually used. Consistent with previous reports, our study provides evidences that in silico tools can be used for selecting splice site variants for in vitro analyses. However, the latter remain mandatory for

  17. Clinical significance of intronic variants in BRAF inhibitor resistant melanomas with altered BRAF transcript splicing

    OpenAIRE

    Pupo, Gulietta M.; Boyd, Suzanah C.; Fung, Carina; Carlino, Matteo S.; Menzies, Alexander M.; Pedersen, Bernadette; Johansson, Peter; Hayward, Nicholas K.; Kefford, Richard F.; Scolyer, Richard A.; Long, Georgina V.; Rizos, Helen

    2017-01-01

    Alternate BRAF splicing is the most common mechanism of acquired resistance to BRAF inhibitor treatment in melanoma. Recently, alternate BRAF exon 4?8 splicing was shown to involve an intronic mutation, located 51 nucleotides upstream of BRAF exon 9 within a predicted splicing branch point. This intronic mutation was identified in a single cell line but has not been examined in vivo. Herein we demonstrate that in three melanomas biopsied from patients with acquired resistance to BRAF inhibito...

  18. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Enrique, E-mail: ealvarez@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M. [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  19. Splicing Express: a software suite for alternative splicing analysis using next-generation sequencing data

    OpenAIRE

    Kroll, Jose E.; Kim, Jihoon; Ohno-Machado, Lucila; de Souza, Sandro J.

    2015-01-01

    Motivation. Alternative splicing events (ASEs) are prevalent in the transcriptome of eukaryotic species and are known to influence many biological phenomena. The identification and quantification of these events are crucial for a better understanding of biological processes. Next-generation DNA sequencing technologies have allowed deep characterization of transcriptomes and made it possible to address these issues. ASEs analysis, however, represents a challenging task especially when many dif...

  20. Splice-mediated Variants of Proteins (SpliVaP) - data and characterization of changes in signatures among protein isoforms due to alternative splicing.

    Science.gov (United States)

    Floris, Matteo; Orsini, Massimiliano; Thanaraj, Thangavel Alphonse

    2008-10-02

    It is often the case that mammalian genes are alternatively spliced; the resulting alternate transcripts often encode protein isoforms that differ in amino acid sequences. Changes among the protein isoforms can alter the cellular properties of proteins. The effect can range from a subtle modulation to a complete loss of function. (i) We examined human splice-mediated protein isoforms (as extracted from a manually curated data set, and from a computationally predicted data set) for differences in the annotation for protein signatures (Pfam domains and PRINTS fingerprints) and we characterized the differences & their effects on protein functionalities. An important question addressed relates to the extent of protein isoforms that may lack any known function in the cell. (ii) We present a database that reports differences in protein signatures among human splice-mediated protein isoform sequences. (i) Characterization: The work points to distinct sets of alternatively spliced genes with varying degrees of annotation for the splice-mediated protein isoforms. Protein molecular functions seen to be often affected are those that relate to: binding, catalytic, transcription regulation, structural molecule, transporter, motor, and antioxidant; and the processes that are often affected are nucleic acid binding, signal transduction, and protein-protein interactions. Signatures are often included/excluded and truncated in length among protein isoforms; truncation is seen as the predominant type of change. Analysis points to the following novel aspects: (a) Analysis using data from the manually curated Vega indicates that one in 8.9 genes can lead to a protein isoform of no "known" function; and one in 18 expressed protein isoforms can be such an "orphan" isoform; the corresponding numbers as seen with computationally predicted ASD data set are: one in 4.9 genes and one in 9.8 isoforms. (b) When swapping of signatures occurs, it is often between those of same functional

  1. Cardiac CRFR1 Expression Is Elevated in Human Heart Failure and Modulated by Genetic Variation and Alternative Splicing

    Science.gov (United States)

    Lewis, Kathy A.; Perrin, Marilyn H.; Sweet, Wendy E.; Moravec, Christine S.; Tang, W. H. Wilson; Huising, Mark O.; Troughton, Richard W.; Cameron, Vicky A.

    2016-01-01

    Corticotropin-releasing factor (CRF) and the CRF-related peptides, urocortin (Ucn)-1, Ucn2, and Ucn3 signal through receptors CRFR1 and CRFR2 to restore homeostasis in response to stress. The Ucns exert potent cardioprotective effects and may have clinical utility in heart failure. To explore the activity of this system in the heart, we measured the levels of myocardial gene expression of the CRF/Ucn family of ligands/receptors and investigated genetic variation and alternative splicing of CRFR1 in 110 heart failure patients and 108 heart donors. Using quantitative real-time PCR, we detected CRFR1, CRFR2, CRF, Ucn1, Ucn2, and Ucn3 in all samples. CRFR2α was the most abundant receptor and Ucn3 the most abundant ligand, both in patients and donors. Compared with donors, cardiac expression of CRFR1, CRF, and Ucn3 was higher (P heart failure and may contribute to the activation of the CRF/Ucn system in these patients. A common variant within the CRFR1 gene and a novel CRFR1 splice variant may modulate CRFR1 expression and signaling. PMID:27754786

  2. Cardiac CRFR1 Expression Is Elevated in Human Heart Failure and Modulated by Genetic Variation and Alternative Splicing.

    Science.gov (United States)

    Pilbrow, Anna P; Lewis, Kathy A; Perrin, Marilyn H; Sweet, Wendy E; Moravec, Christine S; Tang, W H Wilson; Huising, Mark O; Troughton, Richard W; Cameron, Vicky A

    2016-12-01

    Corticotropin-releasing factor (CRF) and the CRF-related peptides, urocortin (Ucn)-1, Ucn2, and Ucn3 signal through receptors CRFR1 and CRFR2 to restore homeostasis in response to stress. The Ucns exert potent cardioprotective effects and may have clinical utility in heart failure. To explore the activity of this system in the heart, we measured the levels of myocardial gene expression of the CRF/Ucn family of ligands/receptors and investigated genetic variation and alternative splicing of CRFR1 in 110 heart failure patients and 108 heart donors. Using quantitative real-time PCR, we detected CRFR1, CRFR2, CRF, Ucn1, Ucn2, and Ucn3 in all samples. CRFR2α was the most abundant receptor and Ucn3 the most abundant ligand, both in patients and donors. Compared with donors, cardiac expression of CRFR1, CRF, and Ucn3 was higher (P heart failure and may contribute to the activation of the CRF/Ucn system in these patients. A common variant within the CRFR1 gene and a novel CRFR1 splice variant may modulate CRFR1 expression and signaling.

  3. In1-ghrelin, a splice variant of ghrelin gene, is associated with the evolution and aggressiveness of human neuroendocrine tumors: Evidence from clinical, cellular and molecular parameters

    Science.gov (United States)

    Gahete, Manuel D.; Ramos-Levi, Ana; Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Serrano-Somavilla, Ana; Adrados, Magdalena; Culler, Michael D.; Castaño, Justo P.; Marazuela, Mónica

    2015-01-01

    Ghrelin system comprises a complex family of peptides, receptors (GHSRs), and modifying enzymes [e.g. ghrelin-O-acyl-transferase (GOAT)] that control multiple pathophysiological processes. Aberrant alternative splicing is an emerging cancer hallmark that generates altered proteins with tumorigenic capacity. Indeed, In1-ghrelin and truncated-GHSR1b splicing variants can promote development/progression of certain endocrine-related cancers. Here, we determined the expression levels of key ghrelin system components in neuroendocrine tumor (NETs) and explored their potential functional role. Twenty-six patients with NETs were prospectively/retrospectively studied [72 samples from primary and metastatic tissues (30 normal/42 tumors)] and clinical data were obtained. The role of In1-ghrelin in aggressiveness was studied in vitro using NET cell lines (BON-1/QGP-1). In1-ghrelin, GOAT and GHSR1a/1b expression levels were elevated in tumoral compared to normal/adjacent tissues. Moreover, In1-ghrelin, GOAT, and GHSR1b expression levels were positively correlated within tumoral, but not within normal/adjacent samples, and were higher in patients with progressive vs. with stable/cured disease. Finally, In1-ghrelin increased aggressiveness (e.g. proliferation/migration) of NET cells. Altogether, our data strongly suggests a potential implication of ghrelin system in the pathogenesis and/or clinical outcome of NETs, and warrant further studies on their possible value for the future development of molecular biomarkers with diagnostic/prognostic/therapeutic value. PMID:26124083

  4. A CaV1.1 Ca2+ channel splice variant with high conductance and voltage-sensitivity alters EC coupling in developing skeletal muscle.

    Science.gov (United States)

    Tuluc, Petronel; Molenda, Natalia; Schlick, Bettina; Obermair, Gerald J; Flucher, Bernhard E; Jurkat-Rott, Karin

    2009-01-01

    The Ca(2+) channel alpha(1S) subunit (Ca(V)1.1) is the voltage sensor in skeletal muscle excitation-contraction (EC) coupling. Upon membrane depolarization, this sensor rapidly triggers Ca(2+) release from internal stores and conducts a slowly activating Ca(2+) current. However, this Ca(2+) current is not essential for skeletal muscle EC coupling. Here, we identified a Ca(V)1.1 splice variant with greatly distinct current properties. The variant of the CACNA1S gene lacking exon 29 was expressed at low levels in differentiated human and mouse muscle, and up to 80% in myotubes. To test its biophysical properties, we deleted exon 29 in a green fluorescent protein (GFP)-tagged alpha(1S) subunit and expressed it in dysgenic (alpha(1S)-null) myotubes. GFP-alpha(1S)Delta 29 was correctly targeted into triads and supported skeletal muscle EC coupling. However, the Ca(2+) currents through GFP-alpha(1S)Delta 29 showed a 30-mV left-shifted voltage dependence of activation and a substantially increased open probability, giving rise to an eightfold increased current density. This robust Ca(2+) influx contributed substantially to the depolarization-induced Ca(2+) transient that triggers contraction. Moreover, deletion of exon 29 accelerated current kinetics independent of the auxiliary alpha(2)delta-1 subunit. Thus, characterizing the Ca(V)1.1 Delta 29 splice variant revealed the structural bases underlying the specific gating properties of skeletal muscle Ca(2+) channels, and it suggests the existence of a distinct mode of EC coupling in developing muscle.

  5. Characterization of splice variants of the genes encoding human mitochondrial HMG-CoA lyase and HMG-CoA synthase, the main enzymes of the ketogenesis pathway.

    Science.gov (United States)

    Puisac, Beatriz; Ramos, Mónica; Arnedo, María; Menao, Sebastián; Gil-Rodríguez, María Concepción; Teresa-Rodrigo, María Esperanza; Pié, Angeles; de Karam, Juan Carlos; Wesselink, Jan-Jaap; Giménez, Ignacio; Ramos, Feliciano J; Casals, Nuria; Gómez-Puertas, Paulino; Hegardt, Fausto G; Pié, Juan

    2012-04-01

    The genes HMGCS2 and HMGCL encode the two main enzymes for ketone-body synthesis, mitochondrial HMG-CoA synthase and HMG-CoA lyase. Here, we identify and describe possible splice variants of these genes in human tissues. We detected an alternative transcript of HMGCS2 carrying a deletion of exon 4, and two alternative transcripts of HMGCL with deletions of exons 5 and 6, and exons 5, 6 and 7, respectively. All splice variants maintained the reading frame. However, Western blot studies and overexpression measurements in eukaryotic or prokaryotic cell models did not reveal HL or mHS protein variants. Both genes showed a similar distribution of the inactive variants in different tissues. Surprisingly, the highest percentages were found in tissues where almost no ketone bodies are synthesized: heart, skeletal muscle and brain. Our results suggest that alternative splicing might coordinately block the two main enzymes of ketogenesis in specific human tissues.

  6. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  7. Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease

    Directory of Open Access Journals (Sweden)

    Erik van der Wal

    2017-06-01

    Full Text Available The most common variant causing Pompe disease is c.-32-13T>G (IVS1 in the acid α-glucosidase (GAA gene, which weakens the splice acceptor of GAA exon 2 and induces partial and complete exon 2 skipping. It also allows a low level of leaky wild-type splicing, leading to a childhood/adult phenotype. We hypothesized that cis-acting splicing motifs may exist that could be blocked using antisense oligonucleotides (AONs to promote exon inclusion. To test this, a screen was performed in patient-derived primary fibroblasts using a tiling array of U7 small nuclear RNA (snRNA-based AONs. This resulted in the identification of a splicing regulatory element in GAA intron 1. We designed phosphorodiamidate morpholino oligomer-based AONs to this element, and these promoted exon 2 inclusion and enhanced GAA enzyme activity to levels above the disease threshold. These results indicate that the common IVS1 GAA splicing variant in Pompe disease is subject to negative regulation, and inhibition of a splicing regulatory element using AONs is able to restore canonical GAA splicing and endogenous GAA enzyme activity.

  8. Splice Variants of the Human ZC3H14 Gene Generate Multiple Isoforms of a Zinc Finger Polyadenosine RNA Binding Protein

    Science.gov (United States)

    Leung, Sara W.; Apponi, Luciano H.; Cornejo, Omar E.; Kitchen, Chad M.; Valentini, Sandro R.; Pavlath, Grace K.; Dunham, Christine M.; Corbett, Anita H.

    2009-01-01

    The human ZC3H14 gene encodes an evolutionarily conserved Cys3His zinc finger protein that binds specifically to polyadenosine RNA and is thus postulated to modulate post-transcriptional gene expression. Expressed sequence tag data predicts multiple splice variants of both human and mouse ZC3H14. Analysis of ZC3H14 expression in both human cell lines and mouse tissues confirms the presence of multiple alternatively spliced transcripts. Although all of these transcripts encode protein isoforms that contain the conserved C-terminal zinc finger domain, suggesting that they could all bind to polyadenosine RNA, they differ in other functionally important domains. Most of the alternative transcripts encode closely related proteins (termed isoform 1, 2, 3, and 3short) that differ primarily in the inclusion of three small exons, 9, 10, and 11, resulting in predicted protein isoforms ranging from 82 to 64 kDa. Each of these closely related isoforms contains predicted classical nuclear localization signals (cNLS) within exons 7 and 11. Consistent with the presence of these putative nuclear targeting signals, these ZC3H14 isoforms are all localized to the nucleus. In contrast, an additional transcript encodes a smaller protein (34 kDa) with an alternative first exon (isoform 4). Consistent with the absence of the predicted cNLS motifs located in exons 7 and 11, ZC3H14 isoform 4 is localized to the cytoplasm. Both EST data and experimental data suggest that this variant is enriched in testes and brain. Using an antibody that detects endogenous ZC3H14 isoforms 1-3 reveals localization of these isoforms to nuclear speckles. These speckles co-localize with the splicing factor, SC35, suggesting a role for nuclear ZC3H14 in mRNA processing. Taken together, these results demonstrate that multiple transcripts encoding several ZC3H14 isoforms exist in vivo. Both nuclear and cytoplasmic ZC3H14 isoforms could have distinct effects on gene expression mediated by the common Cys3His zinc

  9. Global profiling of alternative splicing events and gene expression regulated by hnRNPH/F.

    Science.gov (United States)

    Wang, Erming; Aslanzadeh, Vahid; Papa, Filomena; Zhu, Haiyan; de la Grange, Pierre; Cambi, Franca

    2012-01-01

    In this study, we have investigated the global impact of heterogeneous nuclear Ribonuclear Protein (hnRNP) H/F-mediated regulation of splicing events and gene expression in oligodendrocytes. We have performed a genome-wide transcriptomic analysis at the gene and exon levels in Oli-neu cells treated with siRNA that targets hnRNPH/F compared to untreated cells using Affymetrix Exon Array. Gene expression levels and regulated exons were identified with the GenoSplice EASANA algorithm. Bioinformatics analyses were performed to determine the structural properties of G tracts that correlate with the function of hnRNPH/F as enhancers vs. repressors of exon inclusion. Different types of alternatively spliced events are regulated by hnRNPH/F. Intronic G tracts density, length and proximity to the 5' splice site correlate with the hnRNPH/F enhancer function. Additionally, 6% of genes are differently expressed upon knock down of hnRNPH/F. Genes that regulate the transition of oligodendrocyte progenitor cells to oligodendrocytes are differentially expressed in hnRNPH/F depleted Oli-neu cells, resulting in a decrease of negative regulators and an increase of differentiation-inducing regulators. The changes were confirmed in developing oligodendrocytes in vivo. This is the first genome wide analysis of splicing events and gene expression regulated by hnRNPH/F in oligodendrocytes and the first report that hnRNPH/F regulate genes that are involved in the transition from oligodendrocyte progenitor cells to oligodendrocytes.

  10. The plethora of PMCA isoforms: Alternative splicing and differential expression.

    Science.gov (United States)

    Krebs, Joachim

    2015-09-01

    In this review the four different genes of the mammalian plasma membrane calcium ATPase (PMCA) and their spliced isoforms are discussed with respect to their tissue distribution, their differences during development and their importance for regulating Ca²⁺ homeostasis under different conditions. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A mild form of SLC29A3 disorder: a frameshift deletion leads to the paradoxical translation of an otherwise noncoding mRNA splice variant.

    Directory of Open Access Journals (Sweden)

    Alexandre Bolze

    Full Text Available We investigated two siblings with granulomatous histiocytosis prominent in the nasal area, mimicking rhinoscleroma and Rosai-Dorfman syndrome. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous frameshift deletion in SLC29A3, which encodes human equilibrative nucleoside transporter-3 (hENT3. Germline mutations in SLC29A3 have been reported in rare patients with a wide range of overlapping clinical features and inherited disorders including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, and Faisalabad histiocytosis. With the exception of insulin-dependent diabetes and mild finger and toe contractures in one sibling, the two patients with nasal granulomatous histiocytosis studied here displayed none of the many SLC29A3-associated phenotypes. This mild clinical phenotype probably results from a remarkable genetic mechanism. The SLC29A3 frameshift deletion prevents the expression of the normally coding transcripts. It instead leads to the translation, expression, and function of an otherwise noncoding, out-of-frame mRNA splice variant lacking exon 3 that is eliminated by nonsense-mediated mRNA decay (NMD in healthy individuals. The mutated isoform differs from the wild-type hENT3 by the modification of 20 residues in exon 2 and the removal of another 28 amino acids in exon 3, which include the second transmembrane domain. As a result, this new isoform displays some functional activity. This mechanism probably accounts for the narrow and mild clinical phenotype of the patients. This study highlights the 'rescue' role played by a normally noncoding mRNA splice variant of SLC29A3, uncovering a new mechanism by which frameshift mutations can be hypomorphic.

  12. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells.

    Science.gov (United States)

    Shafi, Ayesha A; Putluri, Vasanta; Arnold, James M; Tsouko, Efrosini; Maity, Suman; Roberts, Justin M; Coarfa, Cristian; Frigo, Daniel E; Putluri, Nagireddy; Sreekumar, Arun; Weigel, Nancy L

    2015-10-13

    Metastatic prostate cancer (PCa) is primarily an androgen-dependent disease, which is treated with androgen deprivation therapy (ADT). Tumors usually develop resistance (castration-resistant PCa [CRPC]), but remain androgen receptor (AR) dependent. Numerous mechanisms for AR-dependent resistance have been identified including expression of constitutively active AR splice variants lacking the hormone-binding domain. Recent clinical studies show that expression of the best-characterized AR variant, AR-V7, correlates with resistance to ADT and poor outcome. Whether AR-V7 is simply a constitutively active substitute for AR or has novel gene targets that cause unique downstream changes is unresolved. Several studies have shown that AR activation alters cell metabolism. Using LNCaP cells with inducible expression of AR-V7 as a model system, we found that AR-V7 stimulated growth, migration, and glycolysis measured by ECAR (extracellular acidification rate) similar to AR. However, further analyses using metabolomics and metabolic flux assays revealed several differences. Whereas AR increased citrate levels, AR-V7 reduced citrate mirroring metabolic shifts observed in CRPC patients. Flux analyses indicate that the low citrate is a result of enhanced utilization rather than a failure to synthesize citrate. Moreover, flux assays suggested that compared to AR, AR-V7 exhibits increased dependence on glutaminolysis and reductive carboxylation to produce some of the TCA (tricarboxylic acid cycle) metabolites. These findings suggest that these unique actions represent potential therapeutic targets.

  13. FGF14 N-Terminal Splice Variants Differentially Modulate Nav1.2 and Nav1.6-Encoded Sodium Channels

    Science.gov (United States)

    Laezza, Fernanda; Lampert, Angelika; Kozel, Marie A.; Gerber, Benjamin R.; Rush, Anthony M.; Nerbonne, Jeanne M.; Waxman, Stephen G.; Dib-Hajj, Sulayman D.; Ornitz, David M.

    2009-01-01

    The Intracellular Fibroblast Growth Factor (iFGF) subfamily includes four members (FGFs 11–14) of the structurally related FGF superfamily. Previous studies showed that the iFGFs interact directly with the pore-forming (α) subunits of voltage-gated sodium (Nav) channels and regulate the functional properties of sodium channel currents. Sequence heterogeneity among the iFGFs is thought to confer specificity to this regulation. Here, we demonstrate that the two N-terminal alternatively spliced FGF14 variants, FGF14-1a and FGF14-1b, differentially regulate currents produced by Nav1.2-and Nav1.6 channels. FGF14-1b, but not FGF14-1a, attenuates both Nav1.2 and Nav1.6 current densities. In contrast, co-expression of an FGF14 mutant, lacking the N-terminus, increased Nav1.6 current densities. In neurons, both FGF14-1a and FGF14-1b localized at the axonal initial segment, and deletion of the N-terminus abolished this localization. Thus, the FGF14 N-terminus is required for targeting and functional regulation of Nav channels, suggesting an important function for FGF14 alternative splicing in regulating neuronal excitability. PMID:19465131

  14. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    Science.gov (United States)

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  15. Alcoholism and Alternative Splicing of Candidate Genes

    Directory of Open Access Journals (Sweden)

    Toshikazu Sasabe

    2010-03-01

    Full Text Available Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.

  16. Kinetic and structural characterization of an alternatively spliced variant of human mitochondrial 5'(3')-deoxyribonucleotidase

    Czech Academy of Sciences Publication Activity Database

    Pachl, Petr; Fábry, Milan; Veverka, Václav; Brynda, Jiří; Řezáčová, Pavlína

    2015-01-01

    Roč. 30, č. 1 (2015), 63-68 ISSN 1475-6366 R&D Projects: GA ČR GA203/09/0820; GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : 5'(3')-deoxyribonucleotidase * alternative splicing * crystal structure * hydrolase * mitochondria Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.428, year: 2015

  17. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells.

    Science.gov (United States)

    Krause, William C; Shafi, Ayesha A; Nakka, Manjula; Weigel, Nancy L

    2014-09-01

    Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Global profiling of alternative splicing events and gene expression regulated by hnRNPH/F.

    Directory of Open Access Journals (Sweden)

    Erming Wang

    Full Text Available In this study, we have investigated the global impact of heterogeneous nuclear Ribonuclear Protein (hnRNP H/F-mediated regulation of splicing events and gene expression in oligodendrocytes. We have performed a genome-wide transcriptomic analysis at the gene and exon levels in Oli-neu cells treated with siRNA that targets hnRNPH/F compared to untreated cells using Affymetrix Exon Array. Gene expression levels and regulated exons were identified with the GenoSplice EASANA algorithm. Bioinformatics analyses were performed to determine the structural properties of G tracts that correlate with the function of hnRNPH/F as enhancers vs. repressors of exon inclusion. Different types of alternatively spliced events are regulated by hnRNPH/F. Intronic G tracts density, length and proximity to the 5' splice site correlate with the hnRNPH/F enhancer function. Additionally, 6% of genes are differently expressed upon knock down of hnRNPH/F. Genes that regulate the transition of oligodendrocyte progenitor cells to oligodendrocytes are differentially expressed in hnRNPH/F depleted Oli-neu cells, resulting in a decrease of negative regulators and an increase of differentiation-inducing regulators. The changes were confirmed in developing oligodendrocytes in vivo. This is the first genome wide analysis of splicing events and gene expression regulated by hnRNPH/F in oligodendrocytes and the first report that hnRNPH/F regulate genes that are involved in the transition from oligodendrocyte progenitor cells to oligodendrocytes.

  19. A naturally occurring Lgr4 splice variant encodes a soluble antagonist useful for demonstrating the gonadal roles of Lgr4 in mammals.

    Directory of Open Access Journals (Sweden)

    Pei-Jen Hsu

    Full Text Available Leucine-rich repeat containing G protein-coupled receptor 4 (LGR4 promotes the Wnt signaling through interaction with R-spondins or norrin. Using PCR amplification from rat ovarian cDNAs, we identified a naturally occurring Lgr4 splice variant encoding only the ectodomain of Lgr4, which was named Lgr4-ED. Lgr4-ED can be detected as a secreted protein in the extracts from rodent and bovine postnatal gonads, suggesting conservation of Lgr4-ED in mammals. Recombinant Lgr4-ED purified from the conditioned media of transfected 293T cells was found to dose-dependently inhibit the LGR4-mediated Wnt signaling induced by RSPO2 or norrin, suggesting that it is capable of ligand absorption and could have a potential role as an antagonist. Intraperitoneal injection of purified recombinant Lgr4-ED into newborn mice was found to significantly decrease the testicular expression of estrogen receptor alpha and aquaporin 1, which is similar to the phenotype found in Lgr4-null mice. Administration of recombinant Lgr4-ED to superovulated female rats can also decrease the expression of estrogen receptor alpha, aquaporin 1, LH receptor and other key steroidogenic genes as well as bring about the suppression of progesterone production. Thus, these findings suggest that endogenously expressed Lgr4-ED may act as an antagonist molecule and help to fine-tune the R-spondin/norrin-mediated Lgr4-Wnt signaling during gonadal development.

  20. Alternative mRNA Splicing in the Pathogenesis of Obesity

    Directory of Open Access Journals (Sweden)

    Chi-Ming Wong

    2018-02-01

    Full Text Available Alternative mRNA splicing is an important mechanism in expansion of proteome diversity by production of multiple protein isoforms. However, emerging evidence indicates that only a limited number of annotated protein isoforms by alternative splicing are detected, and the coding sequence of alternative splice variants usually is only slightly different from that of the canonical sequence. Nevertheless, mis-splicing is associated with a large array of human diseases. Previous reviews mainly focused on hereditary and somatic mutations in cis-acting RNA sequence elements and trans-acting splicing factors. The importance of environmental perturbations contributed to mis-splicing is not assessed. As significant changes in exon skipping and splicing factors expression levels are observed with diet-induced obesity, this review focuses on several well-known alternatively spliced metabolic factors and discusses recent advances in the regulation of the expressions of splice variants under the pathophysiological conditions of obesity. The potential of targeting the alternative mRNA mis-splicing for obesity-associated diseases therapies will also be discussed.

  1. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    International Nuclear Information System (INIS)

    White, Eric S.; Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Muro, Andres F.

    2010-01-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-β, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten -/- fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten -/- cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten -/- cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  2. BmCHSA-2b, a Lepidoptera specific alternative splicing variant of epidermal chitin synthase, is required for pupal wing development in Bombyx mori.

    Science.gov (United States)

    Xu, Guanfeng; Zhang, Jie; Lyu, Hao; Liu, Jia; Ding, Yang; Feng, Qili; Song, Qisheng; Zheng, Sichun

    2017-08-01

    Insect chitin synthase A (CHSA) is an epidermis-specific enzyme that plays an essential role in insect development. In this study, the function and regulation of CHSA-2b, an alternative splicing variant of Bombxy mori CHSA that is discovered only in Lepidopteran insects, were investigated. Analysis of mRNA level showed that BmCHSA-2b was responsive to 20-hydroxyecdysone (20E) in pupal wing unlike BmCHSA-2a, which shares almost the identical sequence as BmCHSA-2b except the first 31 amino acids, suggesting that the expression of these two alternative splicing variants is driven by different promoters of CHSA gene. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed that BmCHSA-2b was up-regulated in the wing of mid-pupa unlike BmCHSA-2a, which was up-regulated in epidermis and wing disc at the beginning and end of pupal stage. Further analysis reveals that the up-regulations of BmCHSA-2a and BmCHSA-2b in pupal wing were consistent with the increase of chitin content and wing area at the same stages, respectively. Furthermore, the higher transcription level of BmCHSA-2b in the mid-pupal wing of male than that in female was consistent with the chitin content of pupal wing between genders. Injection of double-stranded RNAs of BmCHSA-2b resulted in the decrease in the area and chitin content of the wing, and irregular and crimpled vein. All these results together suggest that B. mori evolves an extra promoter in CHSA gene to activate BmCHSA-2b expression in the wing of mid-pupal stage in response to 20E, and BmCHSA-2b is required for the wing development in the mid-pupa of B. mori. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterization of BRCA1 and BRCA2 splicing variants: a collaborative report by ENIGMA consortium members

    DEFF Research Database (Denmark)

    Thomassen, Mads; Blanco, Ana; Montagna, Marco

    2012-01-01

    Mutations in BRCA1 and BRCA2 predispose carriers to early onset breast and ovarian cancer. A common problem in clinical genetic testing is interpretation of variants with unknown clinical significance. The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortiu...

  4. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation.

    Science.gov (United States)

    Sebastian, Soji; Faralli, Hervé; Yao, Zizhen; Rakopoulos, Patricia; Palii, Carmen; Cao, Yi; Singh, Kulwant; Liu, Qi-Cai; Chu, Alphonse; Aziz, Arif; Brand, Marjorie; Tapscott, Stephen J; Dilworth, F Jeffrey

    2013-06-01

    Alternate splicing contributes extensively to cellular complexity by generating protein isoforms with divergent functions. However, the role of alternate isoforms in development remains poorly understood. Mef2 transcription factors are essential transducers of cell signaling that modulate differentiation of many cell types. Among Mef2 family members, Mef2D is unique, as it undergoes tissue-specific splicing to generate a muscle-specific isoform. Since the ubiquitously expressed (Mef2Dα1) and muscle-specific (Mef2Dα2) isoforms of Mef2D are both expressed in muscle, we examined the relative contribution of each Mef2D isoform to differentiation. Using both in vitro and in vivo models, we demonstrate that Mef2D isoforms act antagonistically to modulate differentiation. While chromatin immunoprecipitation (ChIP) sequencing analysis shows that the Mef2D isoforms bind an overlapping set of genes, only Mef2Dα2 activates late muscle transcription. Mechanistically, the differential ability of Mef2D isoforms to activate transcription depends on their susceptibility to phosphorylation by protein kinase A (PKA). Phosphorylation of Mef2Dα1 by PKA provokes its association with corepressors. Conversely, exon switching allows Mef2Dα2 to escape this inhibitory phosphorylation, permitting recruitment of Ash2L for transactivation of muscle genes. Thus, our results reveal a novel mechanism in which a tissue-specific alternate splicing event has evolved that permits a ubiquitously expressed transcription factor to escape inhibitory signaling for temporal regulation of gene expression.

  5. Global Gene Expression Profiling and Alternative Splicing Events during the Chondrogenic Differentiation of Human Cartilage Endplate-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Jin Shang

    2015-01-01

    Full Text Available Low back pain (LBP is a very prevalent disease and degenerative disc diseases (DDDs usually account for the LBP. However, the pathogenesis of DDDs is complicated and difficult to elucidate. Alternative splicing is a sophisticated regulatory process which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. In addition, the cartilage endplate-derived stem cells have been discovered and identified by our research group. In this paper, we continue to investigate gene expression profiling and alternative splicing events during chondrogenic differentiation of cartilage endplate-derived stem cells. We adopted Affymetrix Human Transcriptome Array 2.0 (HTA 2.0 to compare the transcriptional and splicing changes between the control and differentiated samples. RT-PCR and quantitative PCR are used to validate the microarray results. The GO and KEGG pathway analysis was also performed. After bioinformatics analysis of the data, we detected 1953 differentially expressed genes. In terms of alternative splicing, the Splicing Index algorithm was used to select alternatively spliced genes. We detected 4411 alternatively spliced genes. GO and KEGG pathway analysis also revealed several functionally involved biological processes and signaling pathways. To our knowledge, this is the first study to investigate the alternative splicing mechanisms in chondrogenic differentiation of stem cells on a genome-wide scale.

  6. Regulation of Translational Efficiency by Disparate 5′-UTRs of PPARγ Splice Variants

    Directory of Open Access Journals (Sweden)

    Shawn McClelland

    2009-01-01

    Full Text Available The PPAR-γ gene encodes for at least 7 unique transcripts due to alternative splicing of five exons in the 5′-untranslated region (UTR. The translated region is encoded by exons 1–6, which are identical in all isoforms. This study investigated the role of the 5′-UTR in regulating the efficiency with which the message is translated to protein. A coupled in vitro transcription-translation assay demonstrated that PPAR-γ1, -γ2, and -γ5 are efficiently translated, whereas PPAR-γ4 and -γ7 are poorly translated. An in vivo reporter gene assay using each 5′-UTR upstream of the firefly luciferase gene showed that the 5′-UTRs for PPAR-γ1, -γ2, and -γ4 enhanced translation, whereas the 5′-UTRs for PPAR-γ5 and -γ7 inhibited translation. Models of RNA secondary structure, obtained by the mfold software, were used to explain the mechanism of regulation by each 5′-UTR. In general, it was found that the translational efficiency was inversely correlated with the stability of the mRNA secondary structure, the presence of base-pairing in the consensus Kozak sequence, the number of start codons in the 5′-UTR, and the length of the 5′-UTR. A better understanding of posttranscriptional regulation of translation will allow modulation of protein levels without altering transcription.

  7. A stochastic model of gene expression including splicing events

    OpenAIRE

    Penim, Flávia Alexandra Mendes

    2014-01-01

    Tese de mestrado, Bioinformática e Biologia Computacional, Universidade de Lisboa, Faculdade de Ciências, 2014 Proteins carry out the great majority of the catalytic and structural work within an organism. The RNA templates used in their synthesis determines their identity, and this is dictated by which genes are transcribed. Therefore, gene expression is the fundamental determinant of an organism’s nature. The main objective of this thesis was to develop a stochastic computational model a...

  8. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Hitoshi [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Natsume, Atsushi, E-mail: anatsume@med.nagoya-u.ac.jp [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Iwami, Kenichiro; Ohka, Fumiharu [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae [Department of Biomolecular Engineering, Tokyo Institute of Technology Graduate School of Bioscience and Biotechnology, Yokohama (Japan); Ito, Kengo [National Center for Geriatrics and Gerontology, Aichi (Japan); Saito, Kiyoshi [Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Sugita, Sachi; Hoshino, Tsuneyoshi [MICRON Inc.Medical Facilities Support Department, Aichi (Japan); Wakabayashi, Toshihiko [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan)

    2013-03-29

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas.

  9. Re-fraction: a machine learning approach for deterministic identification of protein homologues and splice variants in large-scale MS-based proteomics.

    Science.gov (United States)

    Yang, Pengyi; Humphrey, Sean J; Fazakerley, Daniel J; Prior, Matthew J; Yang, Guang; James, David E; Yang, Jean Yee-Hwa

    2012-05-04

    A key step in the analysis of mass spectrometry (MS)-based proteomics data is the inference of proteins from identified peptide sequences. Here we describe Re-Fraction, a novel machine learning algorithm that enhances deterministic protein identification. Re-Fraction utilizes several protein physical properties to assign proteins to expected protein fractions that comprise large-scale MS-based proteomics data. This information is then used to appropriately assign peptides to specific proteins. This approach is sensitive, highly specific, and computationally efficient. We provide algorithms and source code for the current version of Re-Fraction, which accepts output tables from the MaxQuant environment. Nevertheless, the principles behind Re-Fraction can be applied to other protein identification pipelines where data are generated from samples fractionated at the protein level. We demonstrate the utility of this approach through reanalysis of data from a previously published study and generate lists of proteins deterministically identified by Re-Fraction that were previously only identified as members of a protein group. We find that this approach is particularly useful in resolving protein groups composed of splice variants and homologues, which are frequently expressed in a cell- or tissue-specific manner and may have important biological consequences.

  10. A novel splice variant in the N-propeptide of COL5A1 causes an EDS phenotype with severe kyphoscoliosis and eye involvement.

    Directory of Open Access Journals (Sweden)

    Sofie Symoens

    Full Text Available BACKGROUND: The Ehlers-Danlos Syndrome (EDS is a heritable connective tissue disorder characterized by hyperextensible skin, joint hypermobility and soft tissue fragility. The classic subtype of EDS is caused by mutations in one of the type V collagen genes (COL5A1 and COL5A2. Most mutations affect the type V collagen helical domain and lead to a diminished or structurally abnormal type V collagen protein. Remarkably, only two mutations were reported to affect the extended, highly conserved N-propeptide domain, which plays an important role in the regulation of the heterotypic collagen fibril diameter. We identified a novel COL5A1 N-propeptide mutation, resulting in an unusual but severe classic EDS phenotype and a remarkable splicing outcome. METHODOLOGY/PRINCIPAL FINDINGS: We identified a novel COL5A1 N-propeptide acceptor-splice site mutation (IVS6-2A>G, NM_000093.3_c.925-2A>G in a patient with cutaneous features of EDS, severe progressive scoliosis and eye involvement. Two mutant transcripts were identified, one with an exon 7 skip and one in which exon 7 and the upstream exon 6 are deleted. Both transcripts are expressed and secreted into the extracellular matrix, where they can participate in and perturb collagen fibrillogenesis, as illustrated by the presence of dermal collagen cauliflowers. Determination of the order of intron removal and computational analysis showed that simultaneous skipping of exons 6 and 7 is due to the combined effect of delayed splicing of intron 7, altered pre-mRNA secondary structure, low splice site strength and possibly disturbed binding of splicing factors. CONCLUSIONS/SIGNIFICANCE: We report a novel COL5A1 N-propeptide acceptor-splice site mutation in intron 6, which not only affects splicing of the adjacent exon 7, but also causes a splicing error of the upstream exon 6. Our findings add further insights into the COL5A1 splicing order and show for the first time that a single COL5A1 acceptor-splice site

  11. Identification of Splice Variants, Targeted MicroRNAs and Functional Single Nucleotide Polymorphisms of the BOLA-DQA2 Gene in Dairy Cattle

    Science.gov (United States)

    Hou, Qinlei; Huang, Jinming; Ju, Zhihua; Li, Qiuling; Li, Liming; Wang, Changfa; Sun, Tao; Wang, Lingling; Hou, Minghai

    2012-01-01

    Major histocompatibility complex, class II, DQ alpha 2, also named BOLA-DQA2, belongs to the Bovine Leukocyte Antigen (BOLA) class II genes which are involved in the immune response. To explore the variability of the BOLA-DQA2 gene and resistance to mastitis in cows, the splice variants (SV), targeted microRNAs (miRNAs), and single nucleotide polymorphisms (SNPs) were identified in this study. A new SV (BOLA-DQA2-SV1) lacking part of exon 3 (195 bp) and two 3′-untranslated regions (UTR) (52 bp+167 bp) of the BOLA-DQA2 gene was found in the healthy and mastitis-infected mammary gland tissues. Four of 13 new SNPs and multiple nucleotide polymorphisms resulted in amino acid changes in the protein and SNP (c. +1283 C>T) may affect the binding to the seed sequence of bta-miR-2318. Further, we detected the relative expressions of two BOLA-DQA2 transcripts and five candidated microRNAs binding to the 3′-UTR of two transcripts in the mammary gland tissues in dairy cattle by using the quantitative real-time polymerase chain reaction. The result showed that expression of the BOLA-DQA2-SV1 mRNA was significantly upregulated 2.67-fold (pmastitis-infected mammary tissues (n=5) compared with the healthy mammary gland mammary tissues (n=5). Except for bta-miR-1777a, miRNA expression (bta-miR-296, miR-2430, and miR-671) was upregulated 1.75 to 2.59-fold (pmastitis cows. Our findings reveal that BOLA-DQA2-SV1 may play an important role in the mastitis resistance in dairy cattle. Whether the SNPs affect the structure of the BOLA-DQA2 gene or association with mastitis resistance is unknown and warrants further investigation. PMID:22084936

  12. MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies

    Science.gov (United States)

    Trabzuni, Daniah; Wray, Selina; Vandrovcova, Jana; Ramasamy, Adaikalavan; Walker, Robert; Smith, Colin; Luk, Connie; Gibbs, J. Raphael; Dillman, Allissa; Hernandez, Dena G.; Arepalli, Sampath; Singleton, Andrew B.; Cookson, Mark R.; Pittman, Alan M.; de Silva, Rohan; Weale, Michael E.; Hardy, John; Ryten, Mina

    2012-01-01

    The MAPT (microtubule-associated protein tau) locus is one of the most remarkable in neurogenetics due not only to its involvement in multiple neurodegenerative disorders, including progressive supranuclear palsy, corticobasal degeneration, Parksinson's disease and possibly Alzheimer's disease, but also due its genetic evolution and complex alternative splicing features which are, to some extent, linked and so all the more intriguing. Therefore, obtaining robust information regarding the expression, splicing and genetic regulation of this gene within the human brain is of immense importance. In this study, we used 2011 brain samples originating from 439 individuals to provide the most reliable and coherent information on the regional expression, splicing and regulation of MAPT available to date. We found significant regional variation in mRNA expression and splicing of MAPT within the human brain. Furthermore, at the gene level, the regional distribution of mRNA expression and total tau protein expression levels were largely in agreement, appearing to be highly correlated. Finally and most importantly, we show that while the reported H1/H2 association with gene level expression is likely to be due to a technical artefact, this polymorphism is associated with the expression of exon 3-containing isoforms in human brain. These findings would suggest that contrary to the prevailing view, genetic risk factors for neurodegenerative diseases at the MAPT locus are likely to operate by changing mRNA splicing in different brain regions, as opposed to the overall expression of the MAPT gene. PMID:22723018

  13. Characterization of human FHL2 transcript variants and gene expression regulation in hepatocellular carcinoma.

    Science.gov (United States)

    Ng, Chor-Fung; Zhou, Wayne Jun-Wei; Ng, Patrick Kwok-Shing; Li, Man-Shan; Ng, Yuen-Keng; Lai, Paul Bo-San; Tsui, Stephen Kwok-Wing

    2011-07-15

    The four-and-a-half LIM protein 2 (FHL2) was originally identified to be expressed abundantly in the heart, as well as in a wide range of tissues demonstrated in various studies. The human FHL2 gene expresses different transcripts which are known to differ only in the 5'UTR region. However, little is known about the functional role of the different variants and the mechanism of gene regulation. In the present study, we characterized the different alternative spliced transcripts of FHL2 by in silico analysis and RT-PCR analysis. A novel transcript variant was identified. The FHL2 gene produces transcripts by different 5' exons, which may be responsible for tissue-specific regulation. To study the mechanism of FHL2 gene regulation, the potential promoter region was investigated. We have identified a functional promoter region upstream of the transcription start site. Deletion mutation analysis of 5' flanking region showed that the fragment from -138 to +292 bp have positive regulatory effect. We identified the binding sites of Pax-5/ZF5 in this region and found that Pax-5 and ZF5 expression in HCC samples had a significant positive correlation with FHL2 expression, suggesting a possible role for these transcription factors in the regulation of FHL2 expression. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Alternative splice variant of the thiazide-sensitive NaCl cotransporter

    DEFF Research Database (Denmark)

    Tutakhel, Omar A Z; Jeleń, Sabina; Valdez-Flores, Marco

    2016-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) is an important pharmacological target in the treatment of hypertension. Human SLC12A3 gene, encoding NCC, gives rise to three isoforms. Only the 3(rd) isoform has been extensively investigated. The aim of the present study was, therefore, to establ......The thiazide-sensitive NaCl cotransporter (NCC) is an important pharmacological target in the treatment of hypertension. Human SLC12A3 gene, encoding NCC, gives rise to three isoforms. Only the 3(rd) isoform has been extensively investigated. The aim of the present study was, therefore...... in comparison to NCC3. Mimicking a constitutively active phosphorylation site at residue 811 (S811D) in NCC1 further augmented Na(+) transport, while a non-phosphorylatable variant (S811A) of NCC1 prevented this enhanced response. Analysis of human urinary exosomes demonstrated that water loading in human......Cl reabsorption and could, therefore, play an important role in blood pressure regulation....

  15. A Splice Variant of ASC Regulates IL-1β Release and Aggregates Differently from Intact ASC

    Directory of Open Access Journals (Sweden)

    Kazuhiko Matsushita

    2009-01-01

    Full Text Available The apoptosis-associated speck-like protein containing a caspase recruit domain (ASC is involved in apoptosis and innate immunity and is a major adaptor molecule responsible for procaspase-1 activation. ASC mRNA is encoded by three exons: exons 1 and 3 encode a pyrin domain (PYD and caspase recruit domain (CARD, respectively, and exon 2 encodes a proline and glycine-rich (PGR domain. Here, we identified a variant ASC protein (vASC lacking the PGR domain that was smaller than full length ASC (fASC derived from fully transcribed mRNA and searched for differences in biochemical and biological nature. Both fASC and vASC were found to activate procaspase-1 to a similar degree, but the efficiency of IL-1β excretion was significantly higher for vASC. There was also a marked structural difference observed in the fibrous aggregates formed by fASC and vASC. These results suggest that although the PGR domain is dispensable for procaspase-1 activation, it plays an important role in the regulation of the molecular structure and activity of ASC.

  16. Identification of Differentially Expressed K-Ras Transcript Variants in Patients With Leiomyoma.

    Science.gov (United States)

    Zolfaghari, Nooshin; Shahbazi, Shirin; Torfeh, Mahnaz; Khorasani, Maryam; Hashemi, Mehrdad; Mahdian, Reza

    2017-10-01

    Molecular studies have demonstrated a wide range of gene expression variations in uterine leiomyoma. The rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase (RAS/RAF/MAPK) is the crucial cellular pathway in transmitting external signals into nucleus. Deregulation of this pathway contributes to excessive cell proliferation and tumorigenesis. The present study aims to investigate the expression profile of the K-Ras transcripts in tissue samples from patients with leiomyoma. The patients were leiomyoma cases who had no mutation in mediator complex subunit 12 ( MED12) gene. A quantitative approach has been applied to determine the difference in the expression of the 2 main K-Ras messenger RNA (mRNA) variants. The comparison between gene expression levels in leiomyoma and normal myometrium group was performed using relative expression software tool. The expression of K-Ras4B gene was upregulated in leiomyoma group ( P = .016), suggesting the involvement of K-Ras4B in the disease pathogenesis. Pairwise comparison of the K-Ras4B expression between each leiomyoma tissue and its matched adjacent normal myometrium revealed gene upregulation in 68% of the cases. The expression of K-Ras4A mRNA was relatively upregulated in leiomyoma group ( P = .030). In addition, the mean expression of K-Ras4A gene in leiomyoma tissues relative to normal samples was 4.475 (95% confidence interval: 0.10-20.42; standard error: 0.53-12.67). In total, 58% of the cases showed more than 2-fold increase in K-Ras4A gene expression. Our results demonstrated increased expression of both K-Ras mRNA splicing variants in leiomyoma tissue. However, the ultimate result of KRAS expression on leiomyoma development depends on the overall KRAS isoform balance and, consequently, on activated signaling pathways.

  17. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    White, Eric S., E-mail: docew@umich.edu [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI (United States); Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B. [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI (United States); Ritzenthaler, Jeffrey D.; Roman, Jesse [Department of Medicine, University of Louisville School of Medicine, Louisville, KY (United States); Muro, Andres F. [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2010-10-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-{beta}, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten{sup -/-} fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten{sup -/-} cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten{sup -/-} cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  18. Investigation of tissue-specific human orthologous alternative splice events in pig

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Jørgensen, Claus Bøttcher; Salicio, Susanna Cirera

    2010-01-01

    Alternative splicing of pre-mRNA can contribute to differences between tissues or cells either by regulating gene expression or creating proteins with various functions encoded by one gene. The number of investigated alternative splice events in pig has so far been limited. In this study we have ...... in preservation of open reading frame are indicative of a functional significance of the splice variants of the gene....

  19. Expression of the Hippocampal NMDA Receptor GluN1 Subunit and Its Splicing Isoforms in Schizophrenia: Postmortem Study

    Czech Academy of Sciences Publication Activity Database

    Vrajová, M.; Šťastný, František; Horáček, J.; Lochman, J.; Šerý, O.; Peková, S.; Klaschka, Jan; Höschl, C.

    2010-01-01

    Roč. 35, č. 7 (2010), s. 994-1002 ISSN 0364-3190 Grant - others:GA MZd(CZ) NR9324 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10300504 Keywords : schizophrenia * hippocampus * GluN1 subunit of NMDA receptor * splice variants * laterality Subject RIV: FL - Psychiatry, Sexuology Impact factor: 2.608, year: 2010

  20. Revealing the Determinants of Widespread Alternative Splicing Perturbation in Cancer

    Directory of Open Access Journals (Sweden)

    Yongsheng Li

    2017-10-01

    Full Text Available It is increasingly appreciated that alternative splicing plays a key role in generating functional specificity and diversity in cancer. However, the mechanisms by which cancer mutations perturb splicing remain unknown. Here, we developed a network-based strategy, DrAS-Net, to investigate more than 2.5 million variants across cancer types and link somatic mutations with cancer-specific splicing events. We identified more than 40,000 driver variant candidates and their 80,000 putative splicing targets deregulated in 33 cancer types and inferred their functional impact. Strikingly, tumors with splicing perturbations show reduced expression of immune system-related genes and increased expression of cell proliferation markers. Tumors harboring different mutations in the same gene often exhibit distinct splicing perturbations. Further stratification of 10,000 patients based on their mutation-splicing relationships identifies subtypes with distinct clinical features, including survival rates. Our work reveals how single-nucleotide changes can alter the repertoires of splicing isoforms, providing insights into oncogenic mechanisms for precision medicine.

  1. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    Directory of Open Access Journals (Sweden)

    Giuseppe Fiume

    2016-11-01

    Full Text Available The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03% of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7% and 698 downregulated (54.3% RNAs. In K562 cells, 1959 (3.1% of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7% and 906 downregulated (46.3%. Only 137 transcripts (0.22% were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  2. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.

    Science.gov (United States)

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-11-07

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  3. Tissue Restricted Splice Junctions Originate Not Only from Tissue-Specific Gene Loci, but Gene Loci with a Broad Pattern of Expression.

    Directory of Open Access Journals (Sweden)

    Matthew S Hestand

    Full Text Available Cellular mechanisms that achieve protein diversity in eukaryotes are multifaceted, including transcriptional components such as RNA splicing. Through alternative splicing, a single protein-coding gene can generate multiple mRNA transcripts and protein isoforms, some of which are tissue-specific. We have conducted qualitative and quantitative analyses of the Bodymap 2.0 messenger RNA-sequencing data from 16 human tissue samples and identified 209,363 splice junctions. Of these, 22,231 (10.6% were not previously annotated and 21,650 (10.3% were expressed in a tissue-restricted pattern. Tissue-restricted alternative splicing was found to be widespread, with approximately 65% of expressed multi-exon genes containing at least one tissue-specific splice junction. Interestingly, we observed many tissue-specific splice junctions not only in genes expressed in one or a few tissues, but also from gene loci with a broad pattern of expression.

  4. Acute hypoxia stress induced abundant differential expression genes and alternative splicing events in heart of tilapia.

    Science.gov (United States)

    Xia, Jun Hong; Li, Hong Lian; Li, Bi Jun; Gu, Xiao Hui; Lin, Hao Ran

    2018-01-10

    Hypoxia is one of the critical environmental stressors for fish in aquatic environments. Although accumulating evidences indicate that gene expression is regulated by hypoxia stress in fish, how genes undergoing differential gene expression and/or alternative splicing (AS) in response to hypoxia stress in heart are not well understood. Using RNA-seq, we surveyed and detected 289 differential expressed genes (DEG) and 103 genes that undergo differential usage of exons and splice junctions events (DUES) in heart of a hypoxia tolerant fish, Nile tilapia, Oreochromis niloticus following 12h hypoxic treatment. The spatio-temporal expression analysis validated the significant association of differential exon usages in two randomly selected DUES genes (fam162a and ndrg2) in 5 tissues (heart, liver, brain, gill and spleen) sampled at three time points (6h, 12h, and 24h) under acute hypoxia treatment. Functional analysis significantly associated the differential expressed genes with the categories related to energy conservation, protein synthesis and immune response. Different enrichment categories were found between the DEG and DUES dataset. The Isomerase activity, Oxidoreductase activity, Glycolysis and Oxidative stress process were significantly enriched for the DEG gene dataset, but the Structural constituent of ribosome and Structural molecule activity, Ribosomal protein and RNA binding protein were significantly enriched only for the DUES genes. Our comparative transcriptomic analysis reveals abundant stress responsive genes and their differential regulation function in the heart tissues of Nile tilapia under acute hypoxia stress. Our findings will facilitate future investigation on transcriptome complexity and AS regulation during hypoxia stress in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The N2-Src neuronal splice variant of C-Src has altered SH3 domain ligand specificity and a higher constitutive activity than N1-Src

    OpenAIRE

    Keenan, Sarah; Lewis, Philip A.; Wetherill, Sarah J.; Dunning, Christopher J.R.; Evans, Gareth J.O.

    2015-01-01

    N2-Src is a poorly understood neuronal splice variant of the ubiquitous C-Src tyrosine kinase, containing a 17 amino acid insert in its Src homology 3 (SH3) domain. To characterise the properties of N2-Src we directly compared its SH3 domain specificity and kinase activity with C- and N1-Src in vitro. N2- and N1-Src had a similar low affinity for the phosphorylation of substrates containing canonical C-Src SH3 ligands and synaptophysin, an established neuronal substrate for C-Src. N2-Src also...

  6. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  7. Alternative Splicing in Lung Cancer

    OpenAIRE

    Pio, Ruben; Montuenga, Luis M.

    2009-01-01

    Abstract: Alterations in alternative splicing affect essential biologic processes and are the basis for a number of pathologic conditions, including cancer. In this review we will summarize the evidence supporting the relevance of alternative splicing in lung cancer. An example that illustrates this relevance is the altered balance between Bcl-xL and Bcl-xS, two splice variants of the apoptosis regulator Bcl-x. Splice modifications in cancer-related genes can be associated ...

  8. ulfasQTL: an ultra-fast method of composite splicing QTL analysis.

    Science.gov (United States)

    Yang, Qian; Hu, Yue; Li, Jun; Zhang, Xuegong

    2017-01-25

    Alternative splicing plays important roles in many regulatory processes and diseases in human. Many genetic variants contribute to phenotypic differences in gene expression and splicing that determine variations in human traits. Detecting genetic variants that affect splicing phenotypes is essential for understanding the functional impact of genetic variations on alternative splicing. For many situations, the key phenotype is the relative splicing ratios of alternative isoforms rather than the expression values of individual isoforms. Splicing quantitative trait loci (sQTL) analysis methods have been proposed for detecting associations of genetic variants with the vectors of isoform splicing ratios of genes. We call this task as composite sQTL analysis. Existing methods are computationally intensive and cannot scale up for whole genome analysis. We developed an ultra-fast method named ulfasQTL for this task based on a previous method sQTLseekeR. It transforms tests of splicing ratios of multiple genes to a matrix form for efficient computation, and therefore can be applied for sQTL analysis at whole-genome scales at the speed thousands times faster than the existing method. We tested ulfasQTL on the data from the GEUVADIS project and compared it with an existing method. ulfasQTL is a very efficient tool for composite splicing QTL analysis and can be applied on whole-genome analysis with acceptable time.

  9. Splice isoforms of phosducin-like protein control the expression of heterotrimeric G proteins.

    Science.gov (United States)

    Gao, Xueli; Sinha, Satyabrata; Belcastro, Marycharmain; Woodard, Catherine; Ramamurthy, Visvanathan; Stoilov, Peter; Sokolov, Maxim

    2013-09-06

    Heterotrimeric G proteins play an essential role in cellular signaling; however, the mechanism regulating their synthesis and assembly remains poorly understood. A line of evidence indicates that the posttranslational processing of G protein β subunits begins inside the protein-folding chamber of the chaperonin containing t-complex protein 1. This process is facilitated by the ubiquitously expressed phosducin-like protein (PhLP), which is thought to act as a CCT co-factor. Here we demonstrate that alternative splicing of the PhLP gene gives rise to a transcript encoding a truncated, short protein (PhLPs) that is broadly expressed in human tissues but absent in mice. Seeking to elucidate the function of PhLPs, we expressed this protein in the rod photoreceptors of mice and found that this manipulation caused a dramatic translational and posttranslational suppression of rod heterotrimeric G proteins. The investigation of the underlying mechanism revealed that PhLPs disrupts the folding of Gβ and the assembly of Gβ and Gγ subunits, events normally assisted by PhLP, by forming a stable and apparently inactive tertiary complex with CCT preloaded with nascent Gβ. As a result, the cellular levels of Gβ and Gγ, which depends on Gβ for stability, decline. In addition, PhLPs evokes a profound and rather specific down-regulation of the Gα transcript, leading to a complete disappearance of the protein. This study provides the first evidence of a generic mechanism, whereby the splicing of the PhLP gene could potentially and efficiently regulate the cellular levels of heterotrimeric G proteins.

  10. Single nucleotide polymorphisms and domain/splice variants modulate assembly and elastomeric properties of human elastin. Implications for tissue specificity and durability of elastic tissue.

    Science.gov (United States)

    Miao, Ming; Reichheld, Sean E; Muiznieks, Lisa D; Sitarz, Eva E; Sharpe, Simon; Keeley, Fred W

    2017-05-01

    Polymeric elastin provides the physiologically essential properties of extensibility and elastic recoil to large arteries, heart valves, lungs, skin and other tissues. Although the detailed relationship between sequence, structure and mechanical properties of elastin remains a matter of investigation, data from both the full-length monomer, tropoelastin, and smaller elastin-like polypeptides have demonstrated that variations in protein sequence can affect both polymeric assembly and tensile mechanical properties. Here we model known splice variants of human tropoelastin (hTE), assessing effects on shape, polymeric assembly and mechanical properties. Additionally we investigate effects of known single nucleotide polymorphisms in hTE, some of which have been associated with later-onset loss of structural integrity of elastic tissues and others predicted to affect material properties of elastin matrices on the basis of their location in evolutionarily conserved sites in amniote tropoelastins. Results of these studies show that such sequence variations can significantly alter both the assembly of tropoelastin monomers into a polymeric network and the tensile mechanical properties of that network. Such variations could provide a temporal- or tissue-specific means to customize material properties of elastic tissues to different functional requirements. Conversely, aberrant splicing inappropriate for a tissue or developmental stage or polymorphisms affecting polymeric assembly could compromise the functionality and durability of elastic tissues. To our knowledge, this is the first example of a study that assesses the consequences of known polymorphisms and domain/splice variants in tropoelastin on assembly and detailed elastomeric properties of polymeric elastin. © 2016 Wiley Periodicals, Inc.

  11. High affinity complexes of pannexin channels and L-type calcium channel splice-variants in human lung: Possible role in clevidipine-induced dyspnea relief in acute heart failure.

    Science.gov (United States)

    Dahl, Gerhard P; Conner, Gregory E; Qiu, Feng; Wang, Junjie; Spindler, Edward; Campagna, Jason A; Larsson, H Peter

    2016-08-01

    Clevidipine, a dihydropyridine (DHP) analogue, lowers blood pressure (BP) by inhibiting l-type calcium channels (CaV1.2; gene CACNA1C) predominantly located in vascular smooth muscle (VSM). However, clinical observations suggest that clevidipine acts by a more complex mechanism. Clevidipine more potently reduces pulmonary vascular resistance (PVR) than systemic vascular resistance and its spectrum of effects on PVR are not shared by other DHPs. Clevidipine has potent spasmolytic effects in peripheral arteries at doses that are sub-clinical for BP lowering and, in hypertensive acute heart failure, clevidipine, but not other DHPs, provides dyspnea relief, partially independent of BP reduction. These observations suggest that a molecular variation in CaV1.2 may exist which confers unique pharmacology to different DHPs. We sequenced CACNA1C transcripts from human lungs and measured their affinity for clevidipine. Human lung tissue contains CACNA1C mRNA with many different splice variations. CaV1.2 channels with a specific combination of variable exons showed higher affinity for clevidipine, well below the concentration associated with BP reduction. Co-expression with pannexin 1 further increased the clevidipine affinity for this CaV1.2 splice variant. A high-affinity splice variant of CaV1.2 in combination with pannexin 1 could underlie the selective effects of clevidipine on pulmonary arterial pressure and on dyspnea. Clevidipine lowers blood pressure by inhibiting calcium channels in vascular smooth muscle. In patients with acute heart failure, clevidipine was shown to relieve breathing problems. This was only partially related to the blood pressure lowering actions of clevidipine and not conferred by another calcium channel inhibitor. We here found calcium channel variants in human lung that are more selectively inhibited by clevidipine, especially when associated with pannexin channels. This study gives a possible mechanism for clevidipine's relief of breathing

  12. tRNA splicing

    OpenAIRE

    Abelson, John; Trotta, Christopher R.; Li, Hong

    1998-01-01

    Introns interrupt the continuity of many eukaryal genes, and therefore their removal by splicing is a crucial step in gene expression. Interestingly, even within Eukarya there are at least four splicing mechanisms. mRNA splicing in the nucleus takes place in two phosphotransfer reactions on a complex and dynamic machine, the spliceosome. This reaction is related in mechanism to the two self-splicing mechanisms for Group 1 and Group 2 introns. In fact the Group 2 introns are spliced by an iden...

  13. Differential gene expression and alternative splicing between diploid and tetraploid watermelon.

    Science.gov (United States)

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A; Vajja, Venkata G; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K; Levi, Amnon; Wehner, Todd; Reddy, Umesh K

    2015-03-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. A Splice Region Variant in LDLR Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease

    DEFF Research Database (Denmark)

    Gretarsdottir, Solveig; Helgason, Hannes; Helgadottir, Anna

    2015-01-01

    Through high coverage whole-genome sequencing and imputation of the identified variants into a large fraction of the Icelandic population, we found four independent signals in the low density lipoprotein receptor gene (LDLR) that associate with levels of non-high density lipoprotein cholesterol (...... that disrupt the LDL receptor can lower non-HDL-C and protect against CAD....... (non-HDL-C) and coronary artery disease (CAD). Two signals are novel with respect to association with non-HDL-C and are represented by non-coding low frequency variants (between 2-4% frequency), the splice region variant rs72658867-A in intron 14 and rs17248748-T in intron one. These two novel...... associations were replicated in three additional populations. Both variants lower non-HDL-C levels (rs72658867-A, non-HDL-C effect = -0.44 mmol/l, Padj = 1.1 × 10⁻⁸⁰ and rs17248748-T, non-HDL-C effect = -0.13 mmol/l, Padj = 1.3 × 10⁻¹²) and confer protection against CAD (rs72658867-A, OR = 0.76 and Padj = 2...

  15. Specific-detection of clinical samples, systematic functional investigations, and transcriptome analysis reveals that splice variant MUC4/Y contributes to the malignant progression of pancreatic cancer by triggering malignancy-related positive feedback loops signaling.

    Science.gov (United States)

    Zhu, Yi; Zhang, Jing-Jing; Xie, Kun-Ling; Tang, Jie; Liang, Wen-Biao; Zhu, Rong; Zhu, Yan; Wang, Bin; Tao, Jin-Qiu; Zhi, Xiao-Fei; Li, Zheng; Gao, Wen-Tao; Jiang, Kui-Rong; Miao, Yi; Xu, Ze-Kuan

    2014-11-04

    MUC4 plays important roles in the malignant progression of human pancreatic cancer. But the huge length of MUC4 gene fragment restricts its functional and mechanism research. As one of its splice variants, MUC4/Y with coding sequence is most similar to that of the full-length MUC4 (FL-MUC4), together with alternative splicing of the MUC4 transcript has been observed in pancreatic carcinomas but not in normal pancreas. So we speculated that MUC4/Y might be involved in malignant progression similarly to FL-MUC4, and as a research model of MUC4 in pancreatic cancer. The conjecture was confirmed in the present study. MUC4/Y expression was detected by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) using gene-specific probe in the clinic samples. The effects of MUC4/Y were observed by serial in vitro and in vivo experiments based on stable over-expressed cell model. The underlying mechanisms were investigated by sequence-based transcriptome analysis and verified by qRT-PCR, Western blot and enzyme-linked immunosorbent assays. The detection of clinical samples indicates that MUC4/Y is significantly positive-correlated with tumor invasion and distant metastases. Based on stable forced-expressed pancreatic cancer PANC-1 cell model, functional studies show that MUC4/Y enhances malignant activity in vitro and in vivo, including proliferation under low-nutritional-pressure, resistance to apoptosis, motility, invasiveness, angiogenesis, and distant metastasis. Mechanism studies indicate the novel finding that MUC4/Y triggers malignancy-related positive feedback loops for concomitantly up-regulating the expression of survival factors to resist adverse microenvironment and increasing the expression of an array of cytokines and adhesion molecules to affect the tumor milieu. In light of the enormity of the potential regulatory circuitry in cancer afforded by MUC4 and/or MUC4/Y, repressing MUC4 transcription, inhibiting post

  16. Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells.

    Science.gov (United States)

    Butkytė, Stasė; Čiupas, Laurynas; Jakubauskienė, Eglė; Vilys, Laurynas; Mocevicius, Paulius; Kanopka, Arvydas; Vilkaitis, Giedrius

    2016-01-01

    An abundant class of intronic microRNAs (miRNAs) undergoes atypical Drosha-independent biogenesis in which the spliceosome governs the excision of hairpin miRNA precursors, called mirtrons. Although nearly 500 splicing-dependent miRNA candidates have been recently predicted via bioinformatic analysis of human RNA-Seq datasets, only a few of them have been experimentally validated. The detailed mechanism of miRNA processing by the splicing machinery and the roles of mirtronic miRNAs in cancer are yet to be uncovered. We experimentally examined whether biogenesis of certain miRNAs is under a splicing control by analyzing their expression levels in response to alterations in the 5'- and 3'-splice sites of a series of intron-containing minigenes carrying appropriate miRNAs. The expression levels of the miRNAs processed from mirtrons were determined by quantitative real-time PCR in five digestive tract (pancreas PANC-1, SU.86.86, T3M4, stomach KATOIII, colon HCT116) and two excretory system (kidney CaKi-1, 786-O) carcinoma cell lines as well as in pancreatic, stomach, and colorectal tumors. Transiently expressed SRSF1 and SRSF2 splicing factors were quantified by western blotting in the nuclear fractions of HCT116 cells. We found that biogenesis of the human hsa-miR-1227-3p, hsa-miR-1229-3p, and hsa-miR-1236-3p is splicing-dependent; therefore, these miRNAs can be assigned to the class of miRNAs processed by a non-canonical mirtron pathway. The expression analysis revealed a differential regulation of human mirtronic miRNAs in various cancer cell lines and tumors. In particular, hsa-miR-1229-3p is selectively upregulated in the pancreatic and stomach cancer cell lines derived from metastatic sites. Compared with the healthy controls, the expression of hsa-miR-1226-3p was significantly higher in stomach tumors but extensively downregulated in colorectal tumors. Furthermore, we provided evidence that overexpression of SRSF1 or SRSF2 can upregulate the processing of

  17. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation.

    Science.gov (United States)

    Park, Seung Kuk; Jeong, Sunjoo

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNA was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kuk; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNA was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms.

  19. Human AZU-1 gene, variants thereof and expressed gene products

    Science.gov (United States)

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  20. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  1. Novel female-specific trans-spliced and alternative splice forms of dsx in the silkworm Bombyx mori.

    Science.gov (United States)

    Duan, Jianping; Xu, Hanfu; Wang, Feng; Ma, Sanyuan; Zha, Xingfu; Guo, Huizhen; Zhao, Ping; Xia, Qingyou

    2013-02-15

    The Bombyx mori doublesex gene (Bmdsx) plays an important role in somatic sexual development. Its pre-mRNA splices in a sex-specific manner to generate two female-specific and one male-specific splice forms. The present study investigated six novel dsx variants generated by trans-splicing between female dsx transcripts and two additional novel genes, dsr1 and dsr2. Expression analysis indicated that Bmdsx-dsr1 represented splicing noise, whereas dsr2, which trans-spliced with dsx to generate five variants, regulated the expression of the female-specific B. mori dsx transcript Bmdsx(F)s. We unexpectedly found a novel exon 2n insertion during Bmdsx transcription, which did not influence the validity of the novel protein, BmDSX(F3). Ectopic expression of BmDSX(F3) repressed the pheromone-binding protein gene and the testis-specific gene A2 in males, and activated of the storage protein 1 gene. Our findings suggest that trans-splicing is a novel regulatory function of Bmdsx, which participates in female sexual development by regulating the expression of three BmDSX(F) proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Tissue-specific alternative splicing and expression of ATP1B2 gene

    African Journals Online (AJOL)

    user6

    2012-05-15

    May 15, 2012 ... provide some useful information for further studies into the function of the bovine ATP1B2 gene. Alternative splicing (AS) is recognized as the major contributor to protein diversity from limited gene pool. ATP1B2-AS2 was the splice of intron retention found from ATP1B2 in liver, kidney, muscle and.

  3. An engineered U1 small nuclear RNA rescues splicing-defective coagulation F7 gene expression in mice

    Science.gov (United States)

    Balestra, D; Faella, A; Margaritis, P; Cavallari, N; Pagani, F; Bernardi, F; Arruda, V R; Pinotti, M

    2014-01-01

    Background The ability of the spliceosomal small nuclear RNA U1 (U1snRNA) to rescue pre-mRNA splicing impaired by mutations makes it an attractive therapeutic molecule. Coagulation factor deficiencies due to splicing mutations are relatively frequent and could therefore benefit from this strategy. However, the effects of U1snRNAs in vivo remain unknown. Objectives To assess the rescue of the F7 c.859+5G>A splicing mutation (FVII+5A), causing severe human factor VII (hFVII) deficiency, by the modified U1snRNA+5a (U1+5a) in a murine model. Methods Mice expressing the human F7 c.859+5G>A mutant were generated following liver-directed expression by plasmid or recombinant adeno-associated viral (AAV) vector administration. The rescue of the splice-site defective pre-mRNA by U1+5a was monitored in liver and plasma through hFVII-specific assays. Results Injection of plasmids encoding the U1+5a rescued plasma hFVII levels, which increased from undetectable to ∼8.5% of those obtained with the wild-type hFVII plasmid control. To assess long-term effects, mice were injected with low and high doses of two AAV vectors encoding the FVII+5A splice site mutant as template to be corrected by U1+5a. This strategy resulted in hFVII plasma levels of 3.9 ± 0.8 or 23.3 ± 5.1 ng mL−1 in a dose-dependent manner, corresponding in patients to circulating FVII levels of ∼1–4.5% of normal. Moreover, in both experimental models, we also detected correctly spliced hFVII transcripts and hFVII-positive cells in liver cells. Conclusions Here we provide the first in vivo proof-of-principle of the rescue of the expression of a splicing-defective F7 mutant by U1snRNAs, thus highlighting their therapeutic potential in coagulation disorders. PMID:24738135

  4. An engineered U1 small nuclear RNA rescues splicing defective coagulation F7 gene expression in mice.

    Science.gov (United States)

    Balestra, D; Faella, A; Margaritis, P; Cavallari, N; Pagani, F; Bernardi, F; Arruda, V R; Pinotti, M

    2014-02-01

    The ability of the spliceosomal small nuclear RNA U1 (U1snRNA) to rescue pre-mRNA splicing impaired by mutations makes it an attractive therapeutic molecule. Coagulation factor deficiencies due to splicing mutations are relatively frequent and could therefore benefit from this strategy. However, the effects of U1snRNAs in vivo remain unknown. To assess the rescue of the F7 c.859+5G>A splicing mutation (FVII+5A), causing severe human factor VII (hFVII) deficiency, by the modified U1snRNA+5a (U1+5a) in a murine model. Mice expressing the human F7 c.859+5G>A mutant were generated following liver-directed expression by plasmid or recombinant adeno-associated viral (AAV) vector administration. The rescue of the splice-site defective pre-mRNA by U1+5a was monitored in liver and plasma through hFVII-specific assays. Injection of plasmids encoding the U1+5a rescued plasma hFVII levels, which increased from undetectable to ~8.5% of those obtained with the wild-type hFVII plasmid control. To assess long-term effects, mice were injected with low and high doses of two AAV vectors encoding the FVII+5A splice site mutant as template to be corrected by U1+5a. This strategy resulted in hFVII plasma levels of 3.9 ± 0.8 or 23.3 ± 5.1 ng mL⁻¹ in a dose-dependent manner, corresponding in patients to circulating FVII levels of ~1-4.5% of normal. Moreover, in both experimental models, we also detected correctly spliced hFVII transcripts and hFVII-positive cells in liver cells. Here we provide the first in vivo proof of-principle of the rescue of the expression of a splicing-defective F7 mutant by U1snRNAs, thus highlighting their therapeutic potential in coagulation disorders.

  5. Cell-Type-Specific Splicing of Piezo2 Regulates Mechanotransduction

    Directory of Open Access Journals (Sweden)

    Marcin Szczot

    2017-12-01

    Full Text Available Summary: Piezo2 is a mechanically activated ion channel required for touch discrimination, vibration detection, and proprioception. Here, we discovered that Piezo2 is extensively spliced, producing different Piezo2 isoforms with distinct properties. Sensory neurons from both mice and humans express a large repertoire of Piezo2 variants, whereas non-neuronal tissues express predominantly a single isoform. Notably, even within sensory ganglia, we demonstrate the splicing of Piezo2 to be cell type specific. Biophysical characterization revealed substantial differences in ion permeability, sensitivity to calcium modulation, and inactivation kinetics among Piezo2 splice variants. Together, our results describe, at the molecular level, a potential mechanism by which transduction is tuned, permitting the detection of a variety of mechanosensory stimuli. : Szczot et al. find that the mechanoreceptor Piezo2 is extensively alternatively spliced, generating multiple distinct isoforms. Their findings indicate that these splice products have specific tissue and cell type expression patterns and exhibit differences in receptor properties. Keywords: Piezo, touch, sensation, ion-channel, splicing

  6. Expression and alternative splicing of the cyclin-dependent kinase inhibitor-3 gene in human cancer.

    Science.gov (United States)

    Cress, W Douglas; Yu, Peng; Wu, Jie

    2017-10-01

    The cyclin-dependent kinase inhibitor-3 (CDKN3) gene encodes a dual-specificity protein tyrosine phosphatase that dephosphorylates CDK1/CDK2 and other proteins. CDKN3 is often overexpressed in human cancer, and this overexpression correlates with reduced survival in several types of cancer. CDKN3 transcript variants and mutations have also been reported. The mechanism of CDKN3 overexpression and the role of CDKN3 transcript variants in human cancer are not entirely clear. Here, we review the literature and provide additional data to assess the correlation of CDKN3 expression with patient survival. Besides the full-length CDKN3 encoding transcript and a major transcript that skips exon 2 express in normal and cancer cells, minor aberrant transcript variants have been reported. Aberrant CDKN3 transcripts were postulated to encode dominant-negative inhibitors of CDKN3 as an explanation for overexpression of the perceived tumor suppressor gene in human cancer. However, while CDKN3 is often overexpressed in human cancer, aberrant CDKN3 transcripts occur infrequently and at lower levels. CDKN3 mutations and copy number alternation are rare in human cancer, implying that neither loss of CDKN3 activity nor constitutive gain of CDKN3 expression offer an advantage to tumorigenesis. Recently, it was found that CDKN3 transcript and protein levels fluctuate during the cell cycle, peaking in mitosis. Given that rapidly growing tumors have more mitotic cells, the high level of mitotic CDKN3 expression is the most plausible mechanism of frequent CDKN3 overexpression in human cancer. This finding clarifies the mechanism of CDKN3 overexpression in human cancer and questions the view of CDKN3 as a tumor suppressor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner.

    Science.gov (United States)

    Rezania, S; Kammerer, S; Li, C; Steinecker-Frohnwieser, B; Gorischek, A; DeVaney, T T J; Verheyen, S; Passegger, C A; Tabrizi-Wizsy, N Ghaffari; Hackl, H; Platzer, D; Zarnani, A H; Malle, E; Jahn, S W; Bauernhofer, T; Schreibmayer, W

    2016-08-12

    Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K(+) channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235-402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer.

  8. Molecular cloning, mRNA expression and alternative splicing of a ryanodine receptor gene from the citrus whitefly, Dialeurodes citri (Ashmead).

    Science.gov (United States)

    Yuan, Guo-Rui; Wang, Ke-Yi; Mou, Xing; Luo, Ruo-Yu; Dou, Wei; Wang, Jin-Jun

    2017-10-01

    Insect ryanodine receptors are the main targets of diamide insecticides that have highly selective insecticidal activity but are less toxic to mammals. Therefore, these insecticides are ideal for pest control. Ryanodine receptors (RyRs) play a critical role in Ca 2+ signaling in muscle and non-muscle cells. In this study, we cloned the complete cDNA (DcRyR) of the RyR from the citrus whitefly, Dialeurodes citri, a serious pest of citrus orchards in China. The open reading frame of RyR is 15,378bp long and encodes a protein with 5126 amino acids with a computed molecular weight of 579.523kDa. DcRyR shows a high amino acid sequence identity to RyRs from other insects (76%-95%) and low identity to those from nematodes and mammals (44%-52%). DcRyR shares many features of insect and vertebrate RyRs, including a MIR domain, two RIH domains, three SPRY domains, four copies of RyR repeat domain, RIH-associated domain at the N-terminus, two consensus calcium-binding EF-hands and six transmembrane domains at the C-terminus. The expression of DcRyR mRNA was the highest in the nymphs and lowest in eggs; DcRyR mRNA was 1.85-fold higher in the nymphs than in the eggs. Among the tissues, DcRyR mRNA expression was 4.18- and 4.02-fold higher in the adult head and thorax than in the abdomen. DcRyR had three alternative splice sites and the splice variants showed body part-specific expression and were developmentally regulated. These results may help investigate target-based resistance to diamide insecticides in D. citri. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    Science.gov (United States)

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.

  10. Variants affecting exon skipping contribute to complex traits.

    Directory of Open Access Journals (Sweden)

    Younghee Lee

    Full Text Available DNA variants that affect alternative splicing and the relative quantities of different gene transcripts have been shown to be risk alleles for some Mendelian diseases. However, for complex traits characterized by a low odds ratio for any single contributing variant, very few studies have investigated the contribution of splicing variants. The overarching goal of this study is to discover and characterize the role that variants affecting alternative splicing may play in the genetic etiology of complex traits, which include a significant number of the common human diseases. Specifically, we hypothesize that single nucleotide polymorphisms (SNPs in splicing regulatory elements can be characterized in silico to identify variants affecting splicing, and that these variants may contribute to the etiology of complex diseases as well as the inter-individual variability in the ratios of alternative transcripts. We leverage high-throughput expression profiling to 1 experimentally validate our in silico predictions of skipped exons and 2 characterize the molecular role of intronic genetic variations in alternative splicing events in the context of complex human traits and diseases. We propose that intronic SNPs play a role as genetic regulators within splicing regulatory elements and show that their associated exon skipping events can affect protein domains and structure. We find that SNPs we would predict to affect exon skipping are enriched among the set of SNPs reported to be associated with complex human traits.

  11. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis.

    Science.gov (United States)

    Kwon, Young-Ju; Park, Mi-Jeong; Kim, Sang-Gyu; Baldwin, Ian T; Park, Chung-Mo

    2014-05-19

    The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5' splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress

  12. Expression analysis of an evolutionarily conserved alternative splicing factor, Sfrs10, in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Devi Krishna Priya Karunakaran

    Full Text Available Age-related macular degeneration (AMD is the most common cause of blindness in the elderly population. Hypoxic stress created in the micro-environment of the photoreceptors is thought to be the underlying cause that results in the pathophysiology of AMD. However, association of AMD with alternative splicing mediated gene regulation is not well explored. Alternative Splicing is one of the primary mechanisms in humans by which fewer protein coding genes are able to generate a vast proteome. Here, we investigated the expression of a known stress response gene and an alternative splicing factor called Serine-Arginine rich splicing factor 10 (Sfrs10. Sfrs10 is a member of the serine-arginine (SR rich protein family and is 100% identical at the amino acid level in most mammals. Immunoblot analysis on retinal extracts from mouse, rat, and chicken showed a single immunoreactive band. Further, immunohistochemistry on adult mouse, rat and chicken retinae showed pan-retinal expression. However, SFRS10 was not detected in normal human retina but was observed as distinct nuclear speckles in AMD retinae. This is in agreement with previous reports that show Sfrs10 to be a stress response gene, which is upregulated under hypoxia. The difference in the expression of Sfrs10 between humans and lower mammals and the upregulation of SFRS10 in AMD is further reflected in the divergence of the promoter sequence between these species. Finally, SFRS10+ speckles were independent of the SC35+ SR protein speckles or the HSF1+ stress granules. In all, our data suggests that SFRS10 is upregulated and forms distinct stress-induced speckles and might be involved in AS of stress response genes in AMD.

  13. Transforming growth factor-β1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation

    International Nuclear Information System (INIS)

    Han Fei; Gilbert, James R.; Harrison, Gerald; Adams, Christopher S.; Freeman, Theresa; Tao Zhuliang; Zaka, Raihana; Liang Hongyan; Williams, Charlene; Tuan, Rocky S.; Norton, Pamela A.; Hickok, Noreen J.

    2007-01-01

    Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-β1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-β1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-β1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-β1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression

  14. Aberrant and alternative splicing in skeletal system disease.

    Science.gov (United States)

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy. © 2013 Elsevier B.V. All rights reserved.

  15. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain.

    Directory of Open Access Journals (Sweden)

    Helen M Wise

    Full Text Available Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42 with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle.

  16. Cloning, expression, purification and characterization of tryptophan hydroxylase variants

    DEFF Research Database (Denmark)

    Boesen, Jane

    in the anion exchange, indicating that the protein still exists in different oligomer forms. This was also observed in the gel filtration. Variants of both hTPH1 and hTPH2 containing the regulatory domain or parts of it were constructed and tested for expression in Escherichia coli as well as solubility....... It was observed that changes in the amino acid sequence of the regulatory domain by point mutations or truncations in the N-terminal had a huge impact on the solubility of the protein and caused the protein to be insoluble. The regulatory domain of human TPH1 (rhTPH1), and two fusion proteins of rhTPH1 fused...... to the green fluorescent protein (GFP) in the C-terminal and the glutathione S-transferase (GST) in the N-terminal, respectively, were expressed in a soluble form. The purification trials of the variants containing the regulatory domain showed that a high salt concentration was necessary to stabilize...

  17. The neurogenetics of alternative splicing.

    Science.gov (United States)

    Vuong, Celine K; Black, Douglas L; Zheng, Sika

    2016-05-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain.

  18. Thorough in silico and in vitro cDNA analysis of 21 putative BRCA1 and BRCA2 splice variants and a complex tandem duplication in BRCA2 allowing the identification of activated cryptic splice donor sites in BRCA2 exon 11.

    Science.gov (United States)

    Baert, Annelot; Machackova, Eva; Coene, Ilse; Cremin, Carol; Turner, Kristin; Portigal-Todd, Cheryl; Asrat, Marie Jill; Nuk, Jennifer; Mindlin, Allison; Young, Sean; MacMillan, Andree; Van Maerken, Tom; Trbusek, Martin; McKinnon, Wendy; Wood, Marie E; Foulkes, William D; Santamariña, Marta; de la Hoya, Miguel; Foretova, Lenka; Poppe, Bruce; Vral, Anne; Rosseel, Toon; De Leeneer, Kim; Vega, Ana; Claes, Kathleen B M

    2018-04-01

    For 21 putative BRCA1 and BRCA2 splice site variants, the concordance between mRNA analysis and predictions by in silico programs was evaluated. Aberrant splicing was confirmed for 12 alterations. In silico prediction tools were helpful to determine for which variants cDNA analysis is warranted, however, predictions for variants in the Cartegni consensus region but outside the canonical sites, were less reliable. Learning algorithms like Adaboost and Random Forest outperformed the classical tools. Further validations are warranted prior to implementation of these novel tools in clinical settings. Additionally, we report here for the first time activated cryptic donor sites in the large exon 11 of BRCA2 by evaluating the effect at the cDNA level of a novel tandem duplication (5' breakpoint in intron 4; 3' breakpoint in exon 11) and of a variant disrupting the splice donor site of exon 11 (c.6841+1G > C). Additional sites were predicted, but not activated. These sites warrant further research to increase our knowledge on cis and trans acting factors involved in the conservation of correct transcription of this large exon. This may contribute to adequate design of ASOs (antisense oligonucleotides), an emerging therapy to render cancer cells sensitive to PARP inhibitor and platinum therapies. © 2017 Wiley Periodicals, Inc.

  19. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    Science.gov (United States)

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner

    International Nuclear Information System (INIS)

    Rezania, S.; Kammerer, S.; Li, C.; Steinecker-Frohnwieser, B.; Gorischek, A.; DeVaney, T. T. J.; Verheyen, S.; Passegger, C. A.; Tabrizi-Wizsy, N. Ghaffari; Hackl, H.; Platzer, D.; Zarnani, A. H.; Malle, E.; Jahn, S. W.; Bauernhofer, T.; Schreibmayer, W.

    2016-01-01

    Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K + channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235–402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer. The online

  1. Expression of full-length and splice forms of FoxP3 in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ryder, L R; Woetmann, A; Madsen, H O

    2010-01-01

    OBJECTIVE: The aim of our study was to compare the presence of full-length and alternative splice forms of FoxP3 mRNA in CD4 cells from rheumatoid arthritis (RA) patients and healthy controls. METHODS: A quantitative real-time polymerase chain reaction (QRT-PCR) method was used to measure the amo...

  2. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators

    International Nuclear Information System (INIS)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K.; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G.

    2004-01-01

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues

  3. Expression and distribution of spastin and spliced variants in glioblastomas and human glioblastoma cell lines

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.; Dráberová, Eduarda; Liu, S.P.; Sládková, Vladimíra; Solowska, J.; De Chaderevian, J.P.; Legido, A.; Mork, S.; Baas, P.; Dráber, Pavel

    2010-01-01

    Roč. 69, č. 5 (2010), s. 536-537 ISSN 0022-3069. [Annual Meeting of the American-Association-of-Neuropathologists /86./. 10.06.10-13.06.10, Phidadelphia] Institutional research plan: CEZ:AV0Z50520514

  4. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer

    Science.gov (United States)

    2012-09-01

    also observe the co-expression of the Erg and Fli1 genes in both endo- thelial and mesodermal tissues, including urogenital tract and precartilaginous... urogenital regions [11]. All of the expression studies were carried out by using RT-PCR or in situ hybridization. How- ever, the protein expression and...negative for ERG. The ERG MAb did not show cross reactivity to FLI-1 in LNCaP cells infected with a FLI-1 adenovirus expression vector (Fig 1A

  5. A novel splice variant of the stem cell marker LGR5/GPR49 is correlated with the risk of tumor-related death in soft-tissue sarcoma patients

    International Nuclear Information System (INIS)

    Rot, Swetlana; Taubert, Helge; Bache, Matthias; Greither, Thomas; Würl, Peter; Eckert, Alexander W; Schubert, Johannes; Vordermark, Dirk; Kappler, Matthias

    2011-01-01

    The human leucine-rich, repeat-containing G protein-coupled receptor (LGR) 5, also called GPR49, is a marker of stem cells in adult intestinal epithelium, stomach and hair follicles. LGR5/GPR49 is overexpressed in tumors of the colon, ovary and liver and in basal cell carcinomas. Moreover, an expression in skeletal muscle tissues was also detected. However, there has been no investigation regarding the expression and function of LGR5/GPR49 in soft-tissue sarcomas (STS) yet. Seventy-seven frozen tumor samples from adult STS patients were studied using quantitative real-time TaqMan™ PCR analysis. The mRNA levels of wild type LGR5/GPR49 and a newly identified splice variant of LGR5/GPR49 lacking exon 5 (that we called GPR49Δ5) were quantified. A low mRNA expression level of GPR49Δ5, but not wild type LGR5/GPR49, was significantly correlated with a poor prognosis for the disease-associated survival of STS patients (RR = 2.6; P = 0.026; multivariate Cox's regression hazard analysis). Furthermore, a low mRNA expression level of GPR49Δ5 was associated with a shorter recurrence-free survival (P = 0.043). However, tumor onset in patients with a lower expression level of GPR49Δ5 mRNA occurred 7.5 years later (P = 0.04) than in patients with a higher tumor level of GPR49Δ5 mRNA. An attenuated mRNA level of the newly identified transcript variant GPR49Δ5 is a negative prognostic marker for disease-associated and recurrence-free survival in STS patients. Additionally, a lower GPR49Δ5 mRNA level is associated with a later age of tumor onset. A putative role of GPR49Δ5 expression in tumorigenesis and tumor progression of soft tissue sarcomas is suggested

  6. Identification and characterization of novel ERC-55 interacting proteins: evidence for the existence of several ERC-55 splicing variants; including the cytosolic ERC-55-C.

    Science.gov (United States)

    Ludvigsen, Maja; Jacobsen, Christian; Maunsbach, Arvid B; Honoré, Bent

    2009-12-01

    ERC-55, encoded from RCN2, is localized in the ER and belongs to the CREC protein family. ERC-55 is involved in various diseases and abnormal cell behavior, however, the function is not well defined and it has controversially been reported to interact with a cytosolic protein, the vitamin D receptor. We have used a number of proteomic techniques to further our functional understanding of ERC-55. By affinity purification, we observed interaction with a large variety of proteins, including those secreted and localized outside of the secretory pathway, in the cytosol and also in various organelles. We confirm the existence of several ERC-55 splicing variants including ERC-55-C localized in the cytosol in association with the cytoskeleton. Localization was verified by immunoelectron microscopy and sub-cellular fractionation. Interaction of lactoferrin, S100P, calcyclin (S100A6), peroxiredoxin-6, kininogen and lysozyme with ERC-55 was further studied in vitro by SPR experiments. Interaction of S100P requires [Ca(2+)] of approximately 10(-7) M or greater, while calcyclin interaction requires [Ca(2+)] of >10(-5) M. Interaction with peroxiredoxin-6 is independent of Ca(2+). Co-localization of lactoferrin, S100P and calcyclin with ERC-55 in the perinuclear area was analyzed by fluorescence confocal microscopy. The functional variety of the interacting proteins indicates a broad spectrum of ERC-55 activities such as immunity, redox homeostasis, cell cycle regulation and coagulation.

  7. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression

    NARCIS (Netherlands)

    Wielenga, V. J.; Heider, K. H.; Offerhaus, G. J.; Adolf, G. R.; van den Berg, F. M.; Ponta, H.; Herrlich, P.; Pals, S. T.

    1993-01-01

    Specific CD44 variant glycoproteins are overexpressed at particular stages of colorectal tumor progression. Some variants of the CD44 glycoprotein without exon v6 sequences appear at the earliest stage of tumorigenesis, i.e., in early adenomas. Expression of variants containing exon v6 sequences is

  8. Differences in exon expression and alternatively spliced genes in blood of multiple sclerosis compared to healthy control subjects.

    Science.gov (United States)

    Tian, Yingfang; Apperson, Michelle L; Ander, Bradley P; Liu, Dazhi; Stomova, Boryana S; Jickling, Glen C; Enriquez, Richelle; Agius, Mark A; Sharp, Frank R

    2011-01-01

    Using whole genome exon microarrays 120 exons were differentially expressed between medication-free multiple sclerosis (MS) subjects in remission and healthy control subjects (HS) (p|1.2|). These exons differentiated MS from HS using cluster analyses, principal components analyses (PCAs) and cross-validation. In addition, 340 genes (transcripts) were predicted to be alternatively spliced in MS compared to HS. These findings may provide insight into the pathophysiology of MS and potentially provide prognostic and diagnostic biomarkers. However, given that multiple comparisons were performed on a very small sample, these preliminary findings require confirmation using a much larger independent cohort. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Integrated analysis of differential expression and alternative splicing of non-small cell lung cancer based on RNA sequencing.

    Science.gov (United States)

    Li, Zulei; Zhao, Kai; Tian, Hui

    2017-08-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with high morbidity and mortality rates. Numerous diagnosis and treatment methods have been proposed, and the prognosis of NSCLC has improved to a certain extent. However, the mechanisms of NSCLC remain largely unknown, and additional studies are required. In the present study, the RNA sequencing dataset of NSCLC was downloaded from the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). The clean reads obtained from the raw data were mapped to the University of California Santa Cruz human genome (hg19), based on TopHat, and were assembled into transcripts via Cufflink. The differential expression (DE) and differential alternative splicing (DAS) genes were screened out through Cuffdiff and rMATS, respectively. The significantly enriched gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes pathways were obtained through the Database of Annotation, Visualization and Integrated Discovery (DAVID). Different numbers of DE and DAS genes were identified in different types of NSCLC samples, but a number of common functions and pathways were obtained, including biological processes associated with abnormal immune and cell activity. GO terms and pathways associated with substance metabolism, including the insulin signaling pathway and oxidative phosphorylation, were enriched in DAS genes rather than DE genes. Integrated analysis of differential expression and alternative splicing may be helpful in understanding the mechanisms of NSCLC, in addition to its early diagnosis and treatment.

  10. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor.

    Science.gov (United States)

    Pinto, Antonella; Malacrida, Beatrice; Oieni, Jacopo; Serafini, Melania Maria; Davin, Annalisa; Galbiati, Valentina; Corsini, Emanuela; Racchi, Marco

    2015-06-01

    Dehydroepiandrosterone (DHEA) is thought to be an anti-glucocorticoid hormone known to be fully functional in young people but deficient in aged humans. Our previous data suggest that DHEA not only counteracts the effect of cortisol on RACK1 expression, a protein required both for the correct functioning of immune cells and for PKC-dependent pathway activation, but also modulates the inhibitory effect of cortisol on LPS-induced cytokine production. The purpose of this study was to investigate the effect of DHEA on the splicing mechanism of the human glucocorticoid receptor (GR). The THP1 monocytic cell line was used as a cellular model. Cytokine production was measured by specific elisa. Western blot and real-time RT-PCR were used, where appropriate, to determine the effect of DHEA on GRs, serine/arginine-rich proteins (SRp), and RACK1 protein and mRNA. Small-interfering RNA was used to down-regulate GRβ. DHEA induced a dose-related up-regulation of GRβ and GRβ knockdown completely prevented DHEA-induced RACK1 expression and modulation of cytokine release. Moreover, we showed that DHEA influenced the expression of some components of the SRps found within the spliceosome, the main regulators of the alternative splicing of the GR gene. These data contribute to our understanding of the mechanism of action of DHEA and its effect on the immune system and as an anti-glucocorticoid agent. © 2015 The British Pharmacological Society.

  11. Roles of viral and cellular proteins in the expression of alternatively spliced HTLV-1 pX mRNAs

    International Nuclear Information System (INIS)

    Princler, Gerald L.; Julias, John G.; Hughes, Stephen H.; Derse, David

    2003-01-01

    The human T cell leukemia virus type 1 (HTLV-1) genome contains a cluster of at least five open reading frames (ORFs) near the 3' terminus within the pX region. The pX ORFs are encoded by mono- or bicistronic mRNAs that are generated by alternative splicing. The various pX mRNAs result from skipping of the internal exon (2-exon versus 3-exon isofoms) or from the utilization of alternative splice acceptor sites in the terminal exon. The Rex and Tax proteins, encoded by ORFs X-III and X-IV, have been studied intensively and are encoded by the most abundant of the alternative 3-exon mRNAs. The protein products of the other pX ORFs have not been detected in HTLV-1-infected cell lines and the levels of the corresponding mRNAs have not been accurately established. We have used real-time RT-PCR with splice-site specific primers to accurately measure the levels of individual pX mRNA species in chronically infected T cell lines. We have asked whether virus regulatory proteins or ectopic expression of cellular factors influence pX mRNA splicing in cells that were transfected with HTLV-1 provirus clones. In chronically infected cell lines, the pX-tax/rex mRNA was present at 500- to 2500-fold higher levels than the pX-tax-orfII mRNA and at approximately 1000-fold higher levels than pX-rex-orfI mRNA. Chronically infected cell lines that contain numerous defective proviruses expressed 2-exon forms of pX mRNAs at significantly higher levels compared to cell lines that contain a single full-length provirus. Cells transfected with provirus expression plasmids expressed similar relative amounts of 3-exon pX mRNAs but lower levels of 2-exon mRNA forms compared to cells containing a single, full-length provirus. The pX mRNA expression patterns were nearly identical in cells transfected with wild-type, Tax-minus, or Rex-minus proviruses. Cotransfection of cells with HTLV-1 provirus in combination with SF2/ASF expression plasmid resulted in a relative increase in pX-tax/rex m

  12. Roles of viral and cellular proteins in the expression of alternatively spliced HTLV-1 pX mRNAs.

    Science.gov (United States)

    Princler, Gerald L; Julias, John G; Hughes, Stephen H; Derse, David

    2003-12-05

    The human T cell leukemia virus type 1 (HTLV-1) genome contains a cluster of at least five open reading frames (ORFs) near the 3' terminus within the pX region. The pX ORFs are encoded by mono- or bicistronic mRNAs that are generated by alternative splicing. The various pX mRNAs result from skipping of the internal exon (2-exon versus 3-exon isofoms) or from the utilization of alternative splice acceptor sites in the terminal exon. The Rex and Tax proteins, encoded by ORFs X-III and X-IV, have been studied intensively and are encoded by the most abundant of the alternative 3-exon mRNAs. The protein products of the other pX ORFs have not been detected in HTLV-1-infected cell lines and the levels of the corresponding mRNAs have not been accurately established. We have used real-time RT-PCR with splice-site specific primers to accurately measure the levels of individual pX mRNA species in chronically infected T cell lines. We have asked whether virus regulatory proteins or ectopic expression of cellular factors influence pX mRNA splicing in cells that were transfected with HTLV-1 provirus clones. In chronically infected cell lines, the pX-tax/rex mRNA was present at 500- to 2500-fold higher levels than the pX-tax-orfII mRNA and at approximately 1000-fold higher levels than pX-rex-orfI mRNA. Chronically infected cell lines that contain numerous defective proviruses expressed 2-exon forms of pX mRNAs at significantly higher levels compared to cell lines that contain a single full-length provirus. Cells transfected with provirus expression plasmids expressed similar relative amounts of 3-exon pX mRNAs but lower levels of 2-exon mRNA forms compared to cells containing a single, full-length provirus. The pX mRNA expression patterns were nearly identical in cells transfected with wild-type, Tax-minus, or Rex-minus proviruses. Cotransfection of cells with HTLV-1 provirus in combination with SF2/ASF expression plasmid resulted in a relative increase in pX-tax/rex m

  13. Molecular characteristics, mRNA expression, and alternative splicing of a ryanodine receptor gene in the oriental fruit fly, Bactrocera dorsalis (Hendel.

    Directory of Open Access Journals (Sweden)

    Guo-Rui Yuan

    Full Text Available Ryanodine receptors (RyRs are a distinct class of ligand-gated channels controlling the release of calcium from intracellular stores. The emergence of diamide insecticides, which selectively target insect RyRs, has promoted the study of insect RyRs. In the present study, the full-length RyR cDNA (BdRyR was cloned and characterized from the oriental fruit fly, Bactrocera dorsalis (Hendel, a serious pest of fruits and vegetables throughout East Asia and the Pacific Rim. The cDNA of BdRyR contains a 15,420-bp open reading frame encoding 5,140 amino acids with a predicted molecular weight of 582.4 kDa and an isoelectric point of 5.38. BdRyR shows a high level of amino acid sequence identity (78 to 97% to other insect RyR isoforms. All common structural features of the RyRs are present in the BdRyR, including a well-conserved C-terminal domain containing consensus calcium-binding EF-hands and six transmembrane domains, and a large N-terminal domain. Quantitative real-time PCR analyses revealed that BdRyR was expressed at the lowest and highest levels in egg and adult, respectively, and that the BdRyR expression levels in the third instar larva, pupa and adult were 166.99-, 157.56- and 808.56-fold higher, respectively, than that in the egg. Among different adult body parts, the highest expression level was observed in the thorax compared with the head and abdomen. In addition, four alternative splice sites were identified in the BdRyR gene, with the first, ASI, being located in the central part of the predicted second spore lysis A/RyR domain. Diagnostic PCR analyses revealed that alternative splice variants were generated not only in a tissue-specific manner but also in a developmentally regulated manner. These results lay the foundation for further understanding the structural and functional properties of BdRyR, and the molecular mechanisms for target site resistance in B. dorsalis.

  14. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones

    NARCIS (Netherlands)

    Highley, J. Robin; Kirby, Janine; Jansweijer, Joeri A.; Webb, Philip S.; Hewamadduma, Channa A.; Heath, Paul R.; Higginbottom, Adrian; Raman, Rohini; Ferraiuolo, Laura; Cooper-Knock, Johnathan; McDermott, Christopher J.; Wharton, Stephen B.; Shaw, Pamela J.; Ince, Paul G.

    2014-01-01

    Loss of nuclear TDP-43 characterizes sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether (1) RNA splicing dysregulation is present in lower motor neurones in ALS and in a motor

  15. Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Mark Schütte

    Full Text Available BACKGROUND: Aspergillus fumigatus is a common airborne fungal pathogen for humans. It frequently causes an invasive aspergillosis (IA in immunocompromised patients with poor prognosis. Potent antifungal drugs are very expensive and cause serious adverse effects. Their correct application requires an early and specific diagnosis of IA, which is still not properly achievable. This work aims to a specific detection of A. fumigatus by immunofluorescence and the generation of recombinant antibodies for the detection of A. fumigatus by ELISA. RESULTS: The A. fumigatus antigen Crf2 was isolated from a human patient with proven IA. It is a novel variant of a group of surface proteins (Crf1, Asp f9, Asp f16 which belong to the glycosylhydrolase family. Single chain fragment variables (scFvs were obtained by phage display from a human naive antibody gene library and an immune antibody gene library generated from a macaque immunized with recombinant Crf2. Two different selection strategies were performed and shown to influence the selection of scFvs recognizing the Crf2 antigen in its native conformation. Using these antibodies, Crf2 was localized in growing hyphae of A. fumigatus but not in spores. In addition, the antibodies allowed differentiation between A. fumigatus and related Aspergillus species or Candida albicans by immunofluorescence microscopy. The scFv antibody clones were further characterized for their affinity, the nature of their epitope, their serum stability and their detection limit of Crf2 in human serum. CONCLUSION: Crf2 and the corresponding recombinant antibodies offer a novel approach for the early diagnostics of IA caused by A. fumigatus.

  16. Neuronal AChE splice variants and their non-hydrolytic functions: redefining a target of AChE inhibitors?

    OpenAIRE

    Zimmermann, M

    2013-01-01

    AChE enzymatic inhibition is a core focus of pharmacological intervention in Alzheimer's disease (AD). Yet, AChE has also been ascribed non-hydrolytic functions, which seem related to its appearance in various isoforms. Neuronal AChE presents as a tailed form (AChE-T) predominantly found on the neuronal synapse, and a facultatively expressed readthough form (AChE-R), which exerts short to medium-term protective effects. Notably, this latter form is also found in the periphery. While these non...

  17. Alternative Splicing of NOX4 in the Failing Human Heart

    Directory of Open Access Journals (Sweden)

    Zoltán V. Varga

    2017-11-01

    Full Text Available Increased oxidative stress is a major contributor to the development and progression of heart failure, however, our knowledge on the role of the distinct NADPH oxidase (NOX isoenzymes, especially on NOX4 is controversial. Therefore, we aimed to characterize NOX4 expression in human samples from healthy and failing hearts. Explanted human heart samples (left and right ventricular, and septal regions were obtained from patients suffering from heart failure of ischemic or dilated origin. Control samples were obtained from donor hearts that were not used for transplantation. Deep RNA sequencing of the cardiac transcriptome indicated extensive alternative splicing of the NOX4 gene in heart failure as compared to samples from healthy donor hearts. Long distance PCR analysis with a universal 5′-3′ end primer pair, allowing amplification of different splice variants, confirmed the presence of the splice variants. To assess translation of the alternatively spliced transcripts we determined protein expression of NOX4 by using a specific antibody recognizing a conserved region in all variants. Western blot analysis showed up-regulation of the full-length NOX4 in ischemic cardiomyopathy samples and confirmed presence of shorter isoforms both in control and failing samples with disease-associated expression pattern. We describe here for the first time that NOX4 undergoes extensive alternative splicing in human hearts which gives rise to the expression of different enzyme isoforms. The full length NOX4 is significantly upregulated in ischemic cardiomyopathy suggesting a role for NOX4 in ROS production during heart failure.

  18. Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A.

    Science.gov (United States)

    Guerriero, Gea; Spadiut, Oliver; Kerschbamer, Christine; Giorno, Filomena; Baric, Sanja; Ezcurra, Inés

    2012-10-01

    Cellulose synthase (CesA) genes constitute a complex multigene family with six major phylogenetic clades in angiosperms. The recently sequenced genome of domestic apple, Malus×domestica, was mined for CesA genes, by blasting full-length cellulose synthase protein (CESA) sequences annotated in the apple genome against protein databases from the plant models Arabidopsis thaliana and Populus trichocarpa. Thirteen genes belonging to the six angiosperm CesA clades and coding for proteins with conserved residues typical of processive glycosyltransferases from family 2 were detected. Based on their phylogenetic relationship to Arabidopsis CESAs, as well as expression patterns, a nomenclature is proposed to facilitate further studies. Examination of their genomic organization revealed that MdCesA8-A is closely linked and co-oriented with WDR53, a gene coding for a WD40 repeat protein. The WDR53 and CesA8 genes display conserved collinearity in dicots and are partially co-expressed in the apple xylem. Interestingly, the presence of a bicistronic WDR53-CesA8A transcript was detected in phytoplasma-infected phloem tissues of apple. The bicistronic transcript contains a spliced intergenic sequence that is predicted to fold into hairpin structures typical of internal ribosome entry sites, suggesting its potential cap-independent translation. Surprisingly, the CesA8A cistron is alternatively spliced and lacks the zinc-binding domain. The possible roles of WDR53 and the alternatively spliced CESA8 variant during cellulose biosynthesis in M.×domestica are discussed.

  19. Identifying a Neuromedin U Receptor 2 Splice Variant and Determining Its Roles in the Regulation of Signaling and Tumorigenesis In Vitro.

    Directory of Open Access Journals (Sweden)

    Ting-Yu Lin

    Full Text Available Neuromedin U (NMU activates two G protein-coupled receptors, NMUR1 and NMUR2; this signaling not only controls many physiological responses but also promotes tumorigenesis in diverse tissues. We recently identified a novel truncated NMUR2 derived by alternative splicing, namely NMUR2S, from human ovarian cancer cDNA. Sequence analysis, cell surface ELISA and immunocytochemical staining using 293T cells indicated that NMUR2S can be expressed well on the cell surface as a six-transmembrane protein. Receptor pull-down and fluorescent resonance energy transfer assays demonstrated that NMUR1, NMUR2 and this newly discovered NMUR2S can not only form homomeric complexes but also heteromeric complexes with each other. Although not activated by NMU itself, functional assay in combination with receptor quantification and radio-ligand binding in 293T cells indicated that NMUR2S does not alter the translocation and stability of NMUR1 or NMUR2, but rather effectively dampens their signaling by blocking their NMU binding capability through receptor heterodimerization. We further demonstrated that NMU signaling is significantly up-regulated in human ovarian cancers, whereas expression of NMUR2S can block endogenous NMU signaling and further lead to suppression of proliferation in SKOV-3 ovarian cancer cells. In contrast, in monocytic THP-1 cells that express comparable levels of NMUR1 and NMUR2S, depletion of NMUR2S restored both the signaling and effect of NMU. Thus, these results not only reveal the presence of previously uncharacterized heteromeric relationships among NMU receptors but also provide NMUR2S as a potential therapeutic target for the future treatment of NMU signaling-mediated cancers.

  20. The neurogenetics of alternative splicing

    OpenAIRE

    Vuong, Celine K.; Black, Douglas L.; Zheng, Sika

    2016-01-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that r...

  1. Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression.

    Science.gov (United States)

    de Bruin, Ruben G; Shiue, Lily; Prins, Jurriën; de Boer, Hetty C; Singh, Anjana; Fagg, W Samuel; van Gils, Janine M; Duijs, Jacques M G J; Katzman, Sol; Kraaijeveld, Adriaan O; Böhringer, Stefan; Leung, Wai Y; Kielbasa, Szymon M; Donahue, John P; van der Zande, Patrick H J; Sijbom, Rick; van Alem, Carla M A; Bot, Ilze; van Kooten, Cees; Jukema, J Wouter; Van Esch, Hilde; Rabelink, Ton J; Kazan, Hilal; Biessen, Erik A L; Ares, Manuel; van Zonneveld, Anton Jan; van der Veer, Eric P

    2016-03-31

    A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function.

  2. Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression

    Science.gov (United States)

    de Bruin, Ruben G.; Shiue, Lily; Prins, Jurriën; de Boer, Hetty C.; Singh, Anjana; Fagg, W. Samuel; van Gils, Janine M.; Duijs, Jacques M. G. J.; Katzman, Sol; Kraaijeveld, Adriaan O.; Böhringer, Stefan; Leung, Wai Y.; Kielbasa, Szymon M.; Donahue, John P.; van der Zande, Patrick H.J.; Sijbom, Rick; van Alem, Carla M. A.; Bot, Ilze; van Kooten, Cees; Jukema, J. Wouter; Van Esch, Hilde; Rabelink, Ton J.; Kazan, Hilal; Biessen, Erik A. L.; Ares Jr., Manuel; van Zonneveld, Anton Jan; van der Veer, Eric P.

    2016-01-01

    A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function. PMID:27029405

  3. The Mouse-Specific Splice Variant mRAGE_v4 Encodes a Membrane-Bound RAGE That Is Resistant to Shedding and Does Not Contribute to the Production of Soluble RAGE

    Science.gov (United States)

    Liu, Jaron; Bertolotti, Matteo; Fritz, Günter; Bianchi, Marco E.; Raucci, Angela

    2016-01-01

    The receptor for advanced glycation end-products (RAGE) is involved in the onset and progression of several inflammatory diseases. The RAGE primary transcript undergoes numerous alternative splicing (AS) events, some of which are species-specific. Here, we characterize the mouse-specific mRAGE_v4 splice variant, which is conserved in rodents and absent in primates. mRAGE_v4 derives from exon 9 skipping and encodes a receptor (M-RAGE) that lacks 9 amino acids between the transmembrane and the immunoglobulin (Ig) domains. RNA-Seq data confirm that in mouse lung mRAGE_v4 is the most abundant RAGE mRNA isoform after mRAGE, which codes for full-length RAGE (FL-RAGE), while in heart all RAGE variants are almost undetectable. The proteins M-RAGE and FL-RAGE are roughly equally abundant in mouse lung. Contrary to FL-RAGE, M-RAGE is extremely resistant to shedding because it lacks the peptide motif recognized by both ADAM10 and MMP9, and does not contribute significantly to soluble cRAGE formation. Thus, a cassette exon in RAGE corresponds to a specific function of the RAGE protein–the ability to be shed. Given the differences in RAGE AS variants between rodents and humans, caution is due in the interpretation of results obtained in mouse models of RAGE-dependent human pathologies. PMID:27655137

  4. Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer

    DEFF Research Database (Denmark)

    Nielsen, Karsten Bork; Sørensen, Suzette; Cartegni, Luca

    2007-01-01

    The idea that point mutations in exons may affect splicing is intriguing and adds an additional layer of complexity when evaluating their possible effects. Even in the best-studied examples, the molecular mechanisms are not fully understood. Here, we use patient cells, model minigenes, and in vit...

  5. Alternative splicing and differential expression of the islet autoantigen IGRP between pancreas and thymus contributes to immunogenicity of pancreatic islets but not diabetogenicity in humans

    NARCIS (Netherlands)

    de Jong, V. Martijn; Abreu, Joana R. F.; Verrijn Stuart, Annemarie A.; van der Slik, Arno R.; Verhaeghen, Katrijn; Engelse, Marten A.; Blom, Bianca; Staal, Frank J. T.; Gorus, Frans K.; Roep, Bart O.

    2013-01-01

    Thymic expression of self-antigens during T-lymphocyte development is believed to be crucial for preventing autoimmunity. It has been suggested that G6PC2, the gene encoding islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), is differentially spliced between pancreatic

  6. Alternate splicing of transcripts shape macrophage response to Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Haroon Kalam

    2017-03-01

    Full Text Available Transcriptional reprogramming of macrophages upon Mycobacterium tuberculosis (Mtb infection is widely studied; however, the significance of alternate splicing (AS in shaping cellular responses to mycobacterial infections is not yet appreciated. Alternate splicing can influence transcript stability or structure, function and localization of corresponding proteins thereby altering protein stoichiometry and physiological consequences. Using comprehensive analysis of a time-series RNA-seq data obtained from human macrophages infected with virulent or avirulent strains of Mtb, we show extensive remodeling of alternate splicing in macrophage transcriptome. The global nature of this regulation was evident since genes belonging to functional classes like trafficking, immune response, autophagy, redox and metabolism showed marked departure in the pattern of splicing in the infected macrophages. The systemic perturbation of splicing machinery in the infected macrophages was apparent as genes involved at different stages of spliceosome assembly were also regulated at the splicing level. Curiously there was a considerable increase in the expression of truncated/non-translatable variants of several genes, specifically upon virulent infections. Increased expression of truncated transcripts correlated with a decline in the corresponding protein levels. We verified the physiological relevance for one such candidate gene RAB8B; whose truncated variant gets enriched in H37Rv infected cells. Upon tweaking relative abundance of longer or shorter variants of RAB8B transcripts by specialized transduction, mycobacterial targeting to lysosomes could be promoted or blocked respectively, which also resulted in corresponding changes in the bacterial survival. Our results show RAB8B recruitment to the mycobacterial phagosomes is required for phagosome maturation. Thus the abundance of truncated RAB8B variant helps virulent Mtb survival by limiting the RAB8B levels in the

  7. New insights into the genomic organization and splicing of the doublesex gene, a terminal regulator of sexual differentiation in the silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Jianping Duan

    Full Text Available Sex-determination mechanisms differ among organisms. The primary mechanism is diverse, whereas the terminal regulator is relatively-conserved. We analyzed the transcripts of the Bombyx mori doublesex gene (Bmdsx, and reported novel results concerning the genomic organization and expression of Bmdsx. Bmdsx consists of nine exons and eight introns, of which two exons are novel and have not been reported previously. Bmdsx transcripts are spliced to generate seventeen alternatively-spliced forms and eleven putative trans-spliced variants. Thirteen of the alternatively-spliced forms and five of the putative trans-spliced forms are reported here for the first time. Sequence analysis predicts that ten female-specific, six male-specific splice forms and one splice form found in males and females will result in four female-specific, two male-specific Dsx proteins and one Dsx protein common to males and females. The Dsx proteins are expected to be functional and regulate downstream target genes. Some of the predicted Dsx proteins are described here for the first time. Therefore the expression of the dsx gene in B. mori results in a variety of cis- and trans-spliced transcripts and multiple Dsx proteins. These findings show that in B. mori there is a complicated pattern of dsx splicing, and that the regulation of splicing and sex-specific functions of lepidopteran dsx have evolved complexity.

  8. The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer

    Directory of Open Access Journals (Sweden)

    Ball Richard Y

    2010-07-01

    Full Text Available Abstract Background Dietary or therapeutic interventions to counteract the loss of PTEN expression could contribute to the prevention of prostate carcinogenesis or reduce the rate of cancer progression. In this study, we investigate the interaction between sulforaphane, a dietary isothiocyanate derived from broccoli, PTEN expression and gene expression in pre malignant prostate tissue. Results We initially describe heterogeneity in expression of PTEN in non-malignant prostate tissue of men deemed to be at risk of prostate cancer. We subsequently use the mouse prostate-specific PTEN deletion model, to show that sulforaphane suppresses transcriptional changes induced by PTEN deletion and induces additional changes in gene expression associated with cell cycle arrest and apoptosis in PTEN null tissue, but has no effect on transcription in wild type tissue. Comparative analyses of changes in gene expression in mouse and human prostate tissue indicate that similar changes can be induced in humans with a broccoli-rich diet. Global analyses of exon expression demonstrated that sulforaphane interacts with PTEN deletion to modulate alternative gene splicing, illustrated through a more detailed analysis of DMBT1 splicing. Conclusion To our knowledge, this is the first report of how diet may perturb changes in transcription induced by PTEN deletion, and the effects of diet on global patterns of alternative gene splicing. The study exemplifies the complex interaction between diet, genotype and gene expression, and the multiple modes of action of small bioactive dietary components.

  9. Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult.

    Directory of Open Access Journals (Sweden)

    Cristina Rodríguez-Suárez

    Full Text Available BACKGROUND: The wild barley Hordeum chilense Roem. et Schult. is a valuable source of genes for increasing carotenoid content in wheat. Tritordeums, the amphiploids derived from durum or common wheat and H. chilense, systematically show higher values of yellow pigment colour and carotenoid content than durum wheat. Phytoene synthase 1 gene (Psy1 is considered a key step limiting the carotenoid biosynthesis, and the correlation of Psy1 transcripts accumulation and endosperm carotenoid content has been demonstrated in the main grass species. METHODOLOGY/PRINCIPAL FINDINGS: We analyze the variability of Psy1 alleles in three lines of H. chilense (H1, H7 and H16 representing the three ecotypes described in this species. Moreover, we analyze Psy1 expression in leaves and in two seed developing stages of H1 and H7, showing mRNA accumulation patterns similar to those of wheat. Finally, we identify thirty-six different transcripts forms originated by alternative splicing of the 5' UTR and/or exons 1 to 5 of Psy1 gene. Transcripts function is tested in a heterologous complementation assay, revealing that from the sixteen different predicted proteins only four types (those of 432, 370, 364 and 271 amino acids, are functional in the bacterial system. CONCLUSIONS/SIGNIFICANCE: The large number of transcripts originated by alternative splicing of Psy1, and the coexistence of functional and non functional forms, suggest a fine regulation of PSY activity in H. chilense. This work is the first analysis of H. chilense Psy1 gene and the results reported here are the bases for its potential use in carotenoid enhancement in durum wheat.

  10. The connection between splicing and cancer

    OpenAIRE

    Srebrow, Anabella; Kornblihtt, Alberto Rodolfo

    2017-01-01

    Alternative splicing is a crucial mechanism for generating protein diversity. Different splice variants of a given protein can display different and even antagonistic biological functions. Therefore, appropriate control of their synthesis is required to assure the complex orchestration of cellular processes within multicellular organisms. Mutations in cisacting splicing elements or changes in the activity of regulatory proteins that compromise the accuracy of either constitutive or alternativ...

  11. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars K.

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been con...... and Pseudomonas putida. The new Gfp variants should be useful for in situ studies of temporal gene expression....

  12. Widening the mutation spectrum of EVC and EVC2: ectopic expression of Weyer variants in NIH 3T3 fibroblasts disrupts Hedgehog signaling.

    Science.gov (United States)

    Valencia, Maria; Lapunzina, Pablo; Lim, Derek; Zannolli, Raffaella; Bartholdi, Deborah; Wollnik, Bernd; Al-Ajlouni, Othman; Eid, Suhair S; Cox, Helen; Buoni, Sabrina; Hayek, Joseph; Martinez-Frias, Maria L; Antonio, Perez-Aytes; Temtamy, Samia; Aglan, Mona; Goodship, Judith A; Ruiz-Perez, Victor L

    2009-12-01

    Autosomal recessive Ellis-van Creveld syndrome and autosomal dominant Weyer acrodental dysostosis are allelic conditions caused by mutations in EVC or EVC2. We performed a mutation screening study in 36 EvC cases and 3 cases of Weyer acrodental dysostosis, and identified pathogenic changes either in EVC or in EVC2 in all cases. We detected 40 independent EVC/EVC2 mutations of which 29 were novel changes in Ellis-van Creveld cases and 2 were novel mutations identified in Weyer pedigrees. Of interest one EvC patient had a T>G nucleotide substitution in intron 7 of EVC (c.940-150T>G), which creates a new donor splice site and results in the inclusion of a new exon. The T>G substitution is at nucleotide +5 of the novel 5' splice site. The three Weyer mutations occurred in the final exon of EVC2 (exon 22), suggesting that specific residues encoded by this exon are a key part of the protein. Using murine versions of EVC2 exon 22 mutations we demonstrate that the expression of a Weyer variant, but not the expression of a truncated protein that mimics an Ellis-van Creveld syndrome mutation, impairs Hedgehog signal transduction in NIH 3T3 cells in keeping with its dominant effect.

  13. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    Selden, R.F.; Wagner, T.E.; Blethen, S.; Yun, J.S.; Rowe, M.E.; Goodman, H.M.

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  14. Splicing factor transformer-2β (Tra2β regulates the expression of regulator of G protein signaling 4 (RGS4 gene and is induced by morphine.

    Directory of Open Access Journals (Sweden)

    Shu-Jing Li

    Full Text Available Regulator of G protein signaling 4 (RGS4 is a critical modulator of G protein-coupled receptor (GPCR-mediated signaling and plays important roles in many neural process and diseases. Particularly, drug-induced alteration in RGS4 protein levels is associated with acute and chronic effects of drugs of abuse. However, the precise mechanism underlying the regulation of RGS4 expression is largely unknown. Here, we demonstrated that the expression of RGS4 gene was subject to regulation by alternative splicing of the exon 6. Transformer-2β (Tra2β, an important splicing factor, bound to RGS4 mRNA and increased the relative level of RGS4-1 mRNA isoform by enhancing the inclusion of exon 6. Meanwhile, Tra2β increased the expression of full-length RGS4 protein. In rat brain, Tra2β was co-localized with RGS4 in multiple opioid action-related brain regions. In addition, the acute and chronic morphine treatment induced alteration in the expression level of Tra2β in rat locus coerulus (LC in parallel to that of RGS4 proteins. It suggests that induction of this splicing factor may contribute to the change of RGS4 level elicited by morphine. Taken together, the results provide the evidence demonstrating the function of Tra2β as a new mediator in opioid-induced signaling pathway via regulating RGS4 expression.

  15. Construction of the Coding Sequence of the Transcription Variant 2 of the Human Renalase Gene and Its Expression in the Prokaryotic System

    Directory of Open Access Journals (Sweden)

    Alexei E. Medvedev

    2013-06-01

    Full Text Available Renalase is a recently discovered protein, involved in regulation of blood pressure in humans and animals. Although several splice variants of human renalase mRNA transcripts have been recognized, only one protein product, hRenalase1, has been found so far. In this study, we have used polymerase chain reaction (PCR-based amplification of individual exons of the renalase gene and their joining for construction of full-length hRenalase2 coding sequence followed by expression of hRenalase2 as a polyHis recombinant protein in Escherichia coli cells. To date this is the first report on synthesis and purification of hRenalase2. Applicability of this approach was verified by constructing hRenalase1 coding sequence, its sequencing and expression in E. coli cells. hRenalase1 was used for generation of polyclonal antiserum in sheep. Western blot analysis has shown that polyclonal anti-renalase1 antibodies effectively interact with the hRenalase2 protein. The latter suggests that some functions and expression patterns of hRenalase1 documented by antibody-based data may be attributed to the presence of hRenalase2. The realized approach may be also used for construction of coding sequences of various (especially weakly expressible genes, their transcript variants, etc.

  16. The Expression and Regulation of the Cell Adhesion Molecule CD44 in Human Breast Cancer

    National Research Council Canada - National Science Library

    Ge, Lisheng

    1997-01-01

    ... alternative splicing signals of CD44 variant exons as control elements in CEPT. In our colon cancer metastasis to liver model, we developed dual modulation vectors to increase tissue-specific expression of cytosine deaminase (CD...

  17. Multiple common variants for celiac disease influencing immune gene expression

    OpenAIRE

    MCMANUS, ROSS; KELLEHER, DERMOT

    2010-01-01

    PUBLISHED We performed a second-generation genome-wide association study of 4,533 individuals with celiac disease (cases) and 10,750 control subjects. We genotyped 113 selected SNPs with P(GWAS) < 10(-4) and 18 SNPs from 14 known loci in a further 4,918 cases and 5,684 controls. Variants from 13 new regions reached genome-wide significance (P(combined) < 5 x 10(-8)); most contain genes with immune functions (BACH2, CCR4, CD80, CIITA-SOCS1-CLEC16A, ICOSLG and ZMIZ1), with ETS1, RUNX3, THEMI...

  18. Titin Diversity—Alternative Splicing Gone Wild

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2010-01-01

    Full Text Available Titin is an extremely large protein found in highest concentrations in heart and skeletal muscle. The single mammalian gene is expressed in multiple isoforms as a result of alternative splicing. Although titin isoform expression is controlled developmentally and in a tissue specific manner, the vast number of potential splicing pathways far exceeds those described in any other alternatively spliced gene. Over 1 million human splice pathways for a single individual can be potentially derived from the PEVK region alone. A new splicing pattern for the human cardiac N2BA isoform type has been found in which the PEVK region includes only the N2B type exons. The alterations in splicing and titin isoform expression in human heart disease provide impetus for future detailed study of the splicing mechanisms for this giant protein.

  19. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma.

    Directory of Open Access Journals (Sweden)

    Justina McEvoy

    Full Text Available Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191 was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma.

  20. Analysis of MDM2 and MDM4 Single Nucleotide Polymorphisms, mRNA Splicing and Protein Expression in Retinoblastoma

    Science.gov (United States)

    McEvoy, Justina; Ulyanov, Anatoly; Brennan, Rachel; Wu, Gang; Pounds, Stanley; Zhang, Jinghui; Dyer, Michael A.

    2012-01-01

    Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX) and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191) was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma. PMID:22916154

  1. A Phase Variant of Azospirillum lipoferum Lacks a Polar Flagellum and Constitutively Expresses Mechanosensing Lateral Flagella

    Science.gov (United States)

    Alexandre, Gladys; Rohr, René; Bally, René

    1999-01-01

    Flagellation of a nonswimming variant of the mixed flagellated bacterium Azospirillum lipoferum 4B was characterized by electron microscopy, and polyclonal antibodies were raised against polar and lateral flagellins. The variant cells lacked a polar flagellum due to a defect in flagellin synthesis and constitutively expressed lateral flagella. The variant cells were able to respond to conditions that restricted the rotation of lateral flagella by producing more lateral flagella, suggesting that the lateral flagella, as well as the polar flagellum, are mechanosensing. PMID:10508112

  2. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei

    NARCIS (Netherlands)

    Zomerdijk, J. C.; Ouellette, M.; ten Asbroek, A. L.; Kieft, R.; Bommer, A. M.; Clayton, C. E.; Borst, P.

    1990-01-01

    The variant-specific surface glycoprotein (VSG) gene 221 of Trypanosoma brucei is transcribed as part of a 60 kb expression site (ES). We have identified the promoter controlling this multigene transcription unit by the use of 221 chromosome-enriched DNA libraries and VSG gene 221 expression site

  3. New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria

    OpenAIRE

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars Kongsbak; Bjørn, Sara Petersen; Givskov, Michael; Molin, Søren

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been constructed by the addition of short peptide sequences to the C-terminal end of intact Gfp. This rendered the Gfp susceptible to the action of indigenous housekeeping proteases, resulting in protein variant...

  4. Cloning and expression of a cDNA covering the complete coding region of the P32 subunit of human pre-mRNA splicing factor SF2

    DEFF Research Database (Denmark)

    Honoré, B; Madsen, Peder; Rasmussen, H H

    1993-01-01

    We have cloned and expressed a cDNA encoding the 32-kDa subunit (P32) of the human pre-mRNA splicing factor, SF2. This cDNA extends beyond the 5'-end of a previously reported cDNA [Krainer et al., Cell 66 (1991) 383-394]. Importantly, our fragment includes an ATG start codon which was absent from...

  5. Splicing up” drug discovery. Cell-Based Expression and Screening of Genetically-Encoded Libraries of Backbone Cyclized Polypeptides

    Science.gov (United States)

    Sancheti, Harshkumar; Camarero, Julio A.

    2012-01-01

    The present paper reviews the use of protein splicing for the biosynthesis of backbone cyclic polypeptides. This general method allows the in vivo and in vitro biosynthesis of cyclic polypeptides using recombinant DNA expression techniques. Biosynthetic access to backbone cyclic peptides opens the possibility to generate cell-based combinatorial libraries that can be screened inside living cells for their ability to attenuate or inhibit cellular processes thus providing a new way for finding therapeutic agents. PMID:19628015

  6. Identification of Common Genetic Variation That Modulates Alternative Splicing

    OpenAIRE

    Hull, Jeremy; Campino, Susana; Rowlands, Kate; Chan, Man-Suen; Copley, Richard R; Taylor, Martin S; Rockett, Kirk; Elvidge, Gareth; Keating, Brendan; Knight, Julian; Kwiatkowski, Dominic

    2007-01-01

    Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by nat...

  7. Impaired RNA splicing of 5'-regulatory sequences of the astroglial glutamate transporter EAAT2 in human astrocytoma

    NARCIS (Netherlands)

    Münch, C.; Penndorf, A.; Schwalenstöcker, B.; Troost, D.; Ludolph, A. C.; Ince, P.; Meyer, T.

    2001-01-01

    A loss of the glutamate transporter EAAT2 has been reported in the neoplastic transformation of astrocytic cells and astrocytoma. The RNA expression of EAAT2 and five 5'-regulatory splice variants was investigated to identify alterations of the post-transcriptional EAAT2 gene regulation in human

  8. Tissue-specific alternative splicing and expression of ATP1B2 gene

    African Journals Online (AJOL)

    user6

    2012-05-15

    May 15, 2012 ... The Na+-K+-ATPase is an essential transport enzyme expressed in all animal tissues, where it generates ion gradients to maintain membrane potential and drive the transport of other solutes. It also balances metabolism and body temperature. In this study, the characterization of three novel bovine ...

  9. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Grarup, Niels; Moltke, Ida; Andersen, Mette K

    2018-01-01

    We have identified a variant in ADCY3 (encoding adenylate cyclase 3) associated with markedly increased risk of obesity and type 2 diabetes in the Greenlandic population. The variant disrupts a splice acceptor site, and carriers have decreased ADCY3 RNA expression. Additionally, we observe...... an enrichment of rare ADCY3 loss-of-function variants among individuals with type 2 diabetes in trans-ancestry cohorts. These findings provide new information on disease etiology relevant for future treatment strategies....

  10. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays).

    Science.gov (United States)

    Wang, Guifeng; Zhong, Mingyu; Wang, Jiajia; Zhang, Jushan; Tang, Yuanping; Wang, Gang; Song, Rentao

    2014-03-01

    The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses.

  11. AtRTD2: A Reference Transcript Dataset for accurate quantification of alternative splicing and expression changes in Arabidopsis thaliana RNA-seq data

    KAUST Repository

    Zhang, Runxuan

    2016-05-06

    Background Alternative splicing is the major post-transcriptional mechanism by which gene expression is regulated and affects a wide range of processes and responses in most eukaryotic organisms. RNA-sequencing (RNA-seq) can generate genome-wide quantification of individual transcript isoforms to identify changes in expression and alternative splicing. RNA-seq is an essential modern tool but its ability to accurately quantify transcript isoforms depends on the diversity, completeness and quality of the transcript information. Results We have developed a new Reference Transcript Dataset for Arabidopsis (AtRTD2) for RNA-seq analysis containing over 82k non-redundant transcripts, whereby 74,194 transcripts originate from 27,667 protein-coding genes. A total of 13,524 protein-coding genes have at least one alternatively spliced transcript in AtRTD2 such that about 60% of the 22,453 protein-coding, intron-containing genes in Arabidopsis undergo alternative splicing. More than 600 putative U12 introns were identified in more than 2,000 transcripts. AtRTD2 was generated from transcript assemblies of ca. 8.5 billion pairs of reads from 285 RNA-seq data sets obtained from 129 RNA-seq libraries and merged along with the previous version, AtRTD, and Araport11 transcript assemblies. AtRTD2 increases the diversity of transcripts and through application of stringent filters represents the most extensive and accurate transcript collection for Arabidopsis to date. We have demonstrated a generally good correlation of alternative splicing ratios from RNA-seq data analysed by Salmon and experimental data from high resolution RT-PCR. However, we have observed inaccurate quantification of transcript isoforms for genes with multiple transcripts which have variation in the lengths of their UTRs. This variation is not effectively corrected in RNA-seq analysis programmes and will therefore impact RNA-seq analyses generally. To address this, we have tested different genome

  12. Deep sequence analysis of non-small cell lung cancer: Integrated analysis of gene expression, alternative splicing, and single nucleotide variations in lung adenocarcinomas with and without oncogenic KRAS mutations

    Directory of Open Access Journals (Sweden)

    Krishna R Kalari

    2012-02-01

    Full Text Available KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC, and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes, alternate splicing (259 genes and SNV-related changes (65 genes in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFkB, ERK1/2 and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene-gene connections within the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFkB, ERK1/2 and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.

  13. Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations

    International Nuclear Information System (INIS)

    Kalari, Krishna R.; Rossell, David; Necela, Brian M.; Asmann, Yan W.; Nair, Asha

    2012-01-01

    KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene–gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.

  14. A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets.

    Science.gov (United States)

    Adamia, Sophia; Haibe-Kains, Benjamin; Pilarski, Patrick M; Bar-Natan, Michal; Pevzner, Samuel; Avet-Loiseau, Herve; Lode, Laurence; Verselis, Sigitas; Fox, Edward A; Burke, John; Galinsky, Ilene; Dagogo-Jack, Ibiayi; Wadleigh, Martha; Steensma, David P; Motyckova, Gabriela; Deangelo, Daniel J; Quackenbush, John; Stone, Richard; Griffin, James D

    2014-03-01

    Despite new treatments, acute myeloid leukemia (AML) remains an incurable disease. More effective drug design requires an expanded view of the molecular complexity that underlies AML. Alternative splicing of RNA is used by normal cells to generate protein diversity. Growing evidence indicates that aberrant splicing of genes plays a key role in cancer. We investigated genome-wide splicing abnormalities in AML and based on these abnormalities, we aimed to identify novel potential biomarkers and therapeutic targets. We used genome-wide alternative splicing screening to investigate alternative splicing abnormalities in two independent AML patient cohorts [Dana-Farber Cancer Institute (DFCI) (Boston, MA) and University Hospital de Nantes (UHN) (Nantes, France)] and normal donors. Selected splicing events were confirmed through cloning and sequencing analysis, and than validated in 193 patients with AML. Our results show that approximately 29% of expressed genes genome-wide were differentially and recurrently spliced in patients with AML compared with normal donors bone marrow CD34(+) cells. Results were reproducible in two independent AML cohorts. In both cohorts, annotation analyses indicated similar proportions of differentially spliced genes encoding several oncogenes, tumor suppressor proteins, splicing factors, and heterogeneous-nuclear-ribonucleoproteins, proteins involved in apoptosis, cell proliferation, and spliceosome assembly. Our findings are consistent with reports for other malignances and indicate that AML-specific aberrations in splicing mechanisms are a hallmark of AML pathogenesis. Overall, our results suggest that aberrant splicing is a common characteristic for AML. Our findings also suggest that splice variant transcripts that are the result of splicing aberrations create novel disease markers and provide potential targets for small molecules or antibody therapeutics for this disease. ©2013 AACR

  15. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  16. Codon-Optimized Luciola Italica Luciferase Variants for Mammalian Gene Expression in Culture and in Vivo

    Directory of Open Access Journals (Sweden)

    Casey A. Maguire

    2012-01-01

    Full Text Available Luciferases have proven to be useful tools in advancing our understanding of biologic processes. Having a multitude of bioluminescent reporters with different properties is highly desirable. We characterized codon-optimized thermostable green- and red-emitting luciferase variants from the Italian firefly Luciola italica for mammalian gene expression in culture and in vivo. Using lentivirus vectors to deliver and stably express these luciferases in mammalian cells, we showed that both variants displayed similar levels of activity and protein half-lives as well as similar light emission kinetics and higher stability compared to the North American firefly luciferase. Further, we characterized the red-shifted variant for in vivo bioluminescence imaging. Intramuscular injection of tumor cells stably expressing this variant into nude mice yielded a robust luciferase activity. Light emission peaked at 10 minutes post-D-luciferin injection and retained > 60% of signal at 1 hour. Similarly, luciferase activity from intracranially injected glioma cells expressing the red-shifted variant was readily detected and used as a marker to monitor tumor growth over time. Overall, our characterization of these codon-optimized luciferases lays the groundwork for their further use as bioluminescent reporters in mammalian cells.

  17. Li-Fraumeni syndrome with simultaneous osteosarcoma and liver cancer: Increased expression of a CD44 variant isoform after chemotherapy

    International Nuclear Information System (INIS)

    Yoshida, Go J; Kuroda, Tatsuo; Fuchimoto, Yasushi; Osumi, Tomoo; Shimada, Hiroyuki; Hosaka, Seiichi; Morioka, Hideo; Mukai, Makio; Masugi, Yohei; Sakamoto, Michiie

    2012-01-01

    Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome that is commonly associated with a germline mutation in the tumor suppressor gene p53. Loss of p53 results in increased expression of CD44, a cancer stem cell (CSC) marker, which is involved in the scavenging of reactive oxygen species (ROS). Here, we report a change in the expression of a CD44 variant isoform (CD44v8-10) in an 8-year-old female LFS patient with osteosarcoma and atypical liver cancer after chemotherapy. The patient visited a clinic with a chief complaint of chronic pain in a bruise on her right knee. Magnetic resonance imaging (MRI) raised the possibility of a bone malignancy. Biochemical testing also revealed significantly elevated levels of AFP, which strongly suggested the existence of a primary malignancy in the liver. MRI imaging showed the simultaneous development of osteosarcoma and liver cancer, both of which were confirmed upon biopsy. Combined therapy with surgical resection after chemotherapy was successful in this patient. Regardless of the absence of a familial history of hereditary cancer, a germline mutation in p53 was identified (a missense mutation defined as c.722 C>T, p.Ser241Phe). To better understand the cancer progression and response to treatment, immunohistochemical (IHC) analysis of biopsy specimens obtained before and after chemotherapy was performed using a specific antibody against CD44v8-10. This case demonstrates the ectopic up-regulation of CD44v8-10 in a biopsy sample obtained after cytotoxic chemotherapy, which confers high levels of oxidative stress on cancer cells. Because the alternative splicing of CD44 is tightly regulated epigenetically, it is possible that micro-environmental stress resulting from chemotherapy caused the ectopic induction of CD44v8-10 in vivo

  18. Unique features of Myf-5 in turtles: nucleotide deletion, alternative splicing, and unusual expression pattern.

    Science.gov (United States)

    Ohya, Yoshie Kawashima; Usuda, Ryo; Kuraku, Shigehiro; Nagashima, Hiroshi; Kuratani, Shigeru

    2006-01-01

    Turtles characteristically possess a bony shell and show an extensive reduction of the trunk muscles. To gain insight into the evolution of this animal group, we focused on the underlying mechanism of the turtle-specific developmental pattern associated with the somitic mesoderm, which differentiates into both skeleton and muscle. We isolated Myf-5, a member of the myogenic-transcription-factor-encoding gene family expressed in the myotome, from the Chinese soft-shelled turtle Pelodiscus sinensis. We detected a deletion of 12 sequential nucleotides in P. sinensis Myf-5 (PsMyf-5), which appears to be shared by the turtle group. The expression pattern of PsMyf-5 in P. sinensis embryos differed from those of its orthologs in other amniotes, especially in the hypaxial region of the flank. We also identified two isoforms of the PsMyf-5 protein, a normal form similar to those of other vertebrates, and a short form produced by a translational frameshift. The short PsMyf-5 showed weaker myogenic activity in cultured cells than that of the normal protein, although the tissue distribution of the two isoforms overlapped perfectly. We propose that the unusual features of PsMyf-5 may be related to the unique developmental patterns of this animal group, and constitute one of the molecular bases for their evolutionary origin.

  19. Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI expression in liver and association with lipid levels in a population-based study

    Directory of Open Access Journals (Sweden)

    Barrett-Connor Elizabeth

    2010-01-01

    Full Text Available Abstract Background Several studies have noted that genetic variants of SCARB1, a lipoprotein receptor involved in reverse cholesterol transport, are associated with serum lipid levels in a sex-dependent fashion. However, the mechanism underlying this gene by sex interaction has not been explored. Methods We utilized both epidemiological and molecular methods to study how estrogen and gene variants interact to influence SCARB1 expression and lipid levels. Interaction between 35 SCARB1 haplotype-tagged polymorphisms and endogenous estradiol levels was assessed in 498 postmenopausal Caucasian women from the population-based Rancho Bernardo Study. We further examined associated variants with overall and SCARB1 splice variant (SR-BI and SR-BII expression in 91 human liver tissues using quantitative real-time PCR. Results Several variants on a haplotype block spanning intron 11 to intron 12 of SCARB1 showed significant gene by estradiol interaction affecting serum lipid levels, the strongest for rs838895 with HDL-cholesterol (p = 9.2 × 10-4 and triglycerides (p = 1.3 × 10-3 and the triglyceride:HDL cholesterol ratio (p = 2.7 × 10-4. These same variants were associated with expression of the SR-BI isoform in a sex-specific fashion, with the strongest association found among liver tissue from 52 young women Conclusions Estrogen and SCARB1 genotype may act synergistically to regulate expression of SCARB1 isoforms and impact serum levels of HDL cholesterol and triglycerides. This work highlights the importance of considering sex-dependent effects of gene variants on serum lipid levels.

  20. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida

    2014-01-01

    of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...

  1. Cloning and expression of a novel human profilin variant, profilin II

    DEFF Research Database (Denmark)

    Honoré, B; Madsen, Peder; Andersen, A H

    1993-01-01

    We have isolated a 1.7 kbp cDNA encoding a 140 amino acid protein (15.1 kDa, pI 5.91) with a high sequence similarity (62%) to human profilin (profilin I). We have termed this variant profilin II. Northern blot analysis showed that profilin II is highly expressed in brain, skeletal muscle...

  2. GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: a pilot study.

    Science.gov (United States)

    Tian, Yingfang; Gunther, Joan R; Liao, Isaac H; Liu, Dazhi; Ander, Bradley P; Stamova, Boryana S; Lit, Lisa; Jickling, Glen C; Xu, Huichun; Zhan, Xinhua; Sharp, Frank R

    2011-03-24

    Tourette syndrome (TS) is a complex childhood neurodevelopmental disorder characterized by motor and vocal tics. Recently, altered numbers of GABAergic-parvalbumin (PV) and cholinergic interneurons were observed in the basal ganglia of individuals with TS. Thus, we postulated that gamma-amino butyric acid (GABA)- and acetylcholine (ACh)-related genes might be associated with the pathophysiology of TS. Total RNA isolated from whole blood of 26 un-medicated TS subjects and 23 healthy controls (HC) was processed on Affymetrix Human Exon 1.0 ST arrays. Data were analyzed to identify genes whose expression correlated with tic severity in TS, and to identify genes differentially spliced in TS compared to HC subjects. Many genes (3627) correlated with tic severity in TS (p genes were significantly over-represented. Moreover, several GABA and ACh-related genes were predicted to be alternatively spliced in TS compared to HC including GABA receptors GABRA4 and GABRG1, the nicotinic ACh receptor CHRNA4 and cholinergic differentiation factor (CDF). This pilot study suggests that at least some of these GABA- and ACh-related genes observed in blood that correlate with tics or are alternatively spliced are involved in the pathophysiology of TS and tics. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Association of breast cancer risk with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Adoue, Véronique

    2016-01-01

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional....../or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating...... in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage...

  4. Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer

    International Nuclear Information System (INIS)

    Park, Won Cheol; Kim, Hak-Ryul; Kang, Dong Baek; Ryu, Jae-Suk; Choi, Keum-Ha; Lee, Gyeong-Ok; Yun, Ki Jung; Kim, Keun Young; Park, Raekil; Yoon, Kwon-Ha; Cho, Ji-Hyun; Lee, Young-Jin; Chae, Soo-Cheon; Park, Min-Cheol; Park, Do-Sim

    2016-01-01

    Serine/arginine-rich splicing factors (SRSFs) and HNRNPA1 have oncogenic properties. However, their proteomic expressions and practical priority in gastric cancer (GC) and colorectal cancer (CRC) are mostly unknown. To apply SFs in clinics, effective marker selection and characterization of properties in the target organ are essential. We concurrently analyzed SRSF1, 3, and 5–7, and HNRNPA1, together with the conventional tumor marker carcinoembryonic antigen (CEA), in stomach and colorectal tissue samples (n = 420) using semiquantitative immunoblot, subcellular fractionation, and quantitative real-time polymerase chain reaction methods. In the semiquantitative immunoblot analysis, HNRNPA1 and SRSF7 levels were significantly higher in GC than in gastric normal mucosa, and SRSF7 levels were higher in intestinal-type compared with diffuse-type of gastric adenocarcinoma. Of the SFs, only HNRNPA1 presented greater than 50 % upregulation (cancer/normal mucosa > 2-fold) incidences and CEA-comparable, acceptable (>70 %) detection accuracy (74 %) for GC. All SF protein levels were significantly higher in CRC than in colorectal normal mucosa, and HNRNPA1 levels were higher in low-stage CRC compared with high-stage CRC. Among the SFs, HNRNPA1 and SRSF3 presented the two highest upregulation incidences (88 % and 74 %, respectively) and detection accuracy (90 % and 84 %, respectively) for CRC. The detection accuracy of HNRNPA1 was comparable to that of CEA in low (≤ II)-stage CRC but was inferior to that of CEA in high (>II)-stage CRC. Extranuclear distributions of HNRNPA1 and SRSF6 (cytosol/microsome) differed from those of other SRSFs (membrane/organelle) in both cancers. In an analysis of the six SF mRNAs, all mRNAs presented unacceptable detection accuracies (≤70 %) in both cancers, and all mRNAs except SRSF6 were disproportionate to the corresponding protein levels in GC. Our results provide a comprehensive insight into the six SF expression profiles in GC and

  5. Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes

    Directory of Open Access Journals (Sweden)

    Ulrich F. Müller

    2017-01-01

    Full Text Available Group I intron ribozymes occur naturally as cis-splicing ribozymes, in the form of introns that do not require the spliceosome for their removal. Instead, they catalyze two consecutive trans-phosphorylation reactions to remove themselves from a primary transcript, and join the two flanking exons. Designed, trans-splicing variants of these ribozymes replace the 3′-portion of a substrate with the ribozyme’s 3′-exon, replace the 5′-portion with the ribozyme’s 5′-exon, or insert/remove an internal sequence of the substrate. Two of these designs have been evolved experimentally in cells, leading to variants of group I intron ribozymes that splice more efficiently, recruit a cellular protein to modify the substrate’s gene expression, or elucidate evolutionary pathways of ribozymes in cells. Some of the artificial, trans-splicing ribozymes are promising as tools in therapy, and as model systems for RNA evolution in cells. This review provides an overview of the different types of trans-splicing group I intron ribozymes that have been generated, and the experimental evolution systems that have been used to improve them.

  6. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements

    Energy Technology Data Exchange (ETDEWEB)

    Velden, Yme U. van der; Kleibeuker, Wendy; Harwig, Alex; Klaver, Bep; Siteur-van Rijnstra, Esther; Frankin, Esmay; Berkhout, Ben; Das, Atze T., E-mail: a.t.das@amc.uva.nl

    2016-01-15

    Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication. - Highlights: • Different approaches to encode additional proteins in the HIV-1 genome were tested. • IRES translation elements are incompatible with efficient HIV-1 replication. • Ubiquitin and 2A fusion protein approaches allow efficient HIV-1 replication. • Doxycycline-controlled HIV-1 variants that encode all viral proteins were developed. • Nef stimulates HIV-rtTA replication in primary cells and human immune system mice.

  7. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements

    International Nuclear Information System (INIS)

    Velden, Yme U. van der; Kleibeuker, Wendy; Harwig, Alex; Klaver, Bep; Siteur-van Rijnstra, Esther; Frankin, Esmay; Berkhout, Ben; Das, Atze T.

    2016-01-01

    Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication. - Highlights: • Different approaches to encode additional proteins in the HIV-1 genome were tested. • IRES translation elements are incompatible with efficient HIV-1 replication. • Ubiquitin and 2A fusion protein approaches allow efficient HIV-1 replication. • Doxycycline-controlled HIV-1 variants that encode all viral proteins were developed. • Nef stimulates HIV-rtTA replication in primary cells and human immune system mice.

  8. Over-expression of SR-cyclophilin, an interaction partner of nuclear pinin, releases SR family splicing factors from nuclear speckles

    International Nuclear Information System (INIS)

    Lin, C.-L.; Leu, Steve; Lu, M.-C.; Ouyang Pin

    2004-01-01

    Pre-mRNA splicing takes place within a dynamic ribonucleoprotein particle called the spliceosome and occurs in an ordered pathway. Although it is known that spliceosome consists of five small nuclear RNAs and at least 50 proteins, little is known about how the interaction among the proteins changes during splicing. Here we identify that SR-cyp, a Moca family of nuclear cyclophilin, interacts and colocalizes with nuclear pinin (pnn), a SR-related protein involving in pre-mRNA splicing. Nuclear pnn interacts with SR-cyp via its C-terminal RS domain. Upon SR-cyp over-expression, however, the subnuclear distribution of nuclear pnn is altered, resulting in its redistribution from nuclear speckles to a diffuse nucleoplasmic form. The diffuse subnuclear distribution of nuclear pnn is not due to epitope masking, accelerated protein turnover or post-translational modification. Furthermore, we find that SR-cyp regulates the subnuclear distribution of other SR family proteins, including SC35 and SRm300, in a similar manner as it does on nuclear pnn. This result is significant because it suggests that SR-cyp plays a general role in modulating the distribution pattern of SR-like and SR proteins, similar to that of Clk (cdc2-like kinase)/STY on SR family splicing factors. SR-cyp might direct its effect via either alteration of protein folding/conformation or of protein-protein interaction and thus may add another control level of regulation of SR family proteins and modification of their functions

  9. Molecular Characterization, mRNA Expression and Alternative Splicing of Ryanodine Receptor Gene in the Brown Citrus Aphid, Toxoptera citricida (Kirkaldy

    Directory of Open Access Journals (Sweden)

    Ke-Yi Wang

    2015-07-01

    Full Text Available Ryanodine receptors (RyRs play a critical role in regulating the release of intracellular calcium, which enables them to be effectively targeted by the two novel classes of insecticides, phthalic acid diamides and anthranilic diamides. However, less information is available about this target site in insects, although the sequence and structure information of target molecules are essential for designing new control agents of high selectivity and efficiency, as well as low non-target toxicity. Here, we provided sufficient information about the coding sequence and molecular structures of RyR in T. citricida (TciRyR, an economically important pest. The full-length TciRyR cDNA was characterized with an open reading frame of 15,306 nucleotides, encoding 5101 amino acid residues. TciRyR was predicted to embrace all the hallmarks of ryanodine receptor, typically as the conserved C-terminal domain with consensus calcium-biding EF-hands (calcium-binding motif and six transmembrane domains, as well as a large N-terminal domain. qPCR analysis revealed that the highest mRNA expression levels of TciRyR were observed in the adults, especially in the heads. Alternative splicing in TciRyR was evidenced by an alternatively spliced exon, resulting from intron retention, which was different from the case of RyR in Myzus persicae characterized with no alternative splicing events. Diagnostic PCR analysis indicated that the splicing of this exon was not only regulated in a body-specific manner but also in a stage-dependent manner. Taken together, these results provide useful information for new insecticide design and further insights into the molecular basis of insecticide action.

  10. Evaluation of Parkinson disease risk variants as expression-QTLs.

    Directory of Open Access Journals (Sweden)

    Jeanne C Latourelle

    Full Text Available The recent Parkinson Disease GWAS Consortium meta-analysis and replication study reports association at several previously confirmed risk loci SNCA, MAPT, GAK/DGKQ, and HLA and identified a novel risk locus at RIT2. To further explore functional consequences of these associations, we investigated modification of gene expression in prefrontal cortex brain samples of pathologically confirmed PD cases (N = 26 and controls (N = 24 by 67 associated SNPs in these 5 loci. Association between the eSNPs and expression was evaluated using a 2-degrees of freedom test of both association and difference in association between cases and controls, adjusted for relevant covariates. SNPs at each of the 5 loci were tested for cis-acting effects on all probes within 250 kb of each locus. Trans-effects of the SNPs on the 39,122 probes passing all QC on the microarray were also examined. From the analysis of cis-acting SNP effects, several SNPs in the MAPT region show significant association to multiple nearby probes, including two strongly correlated probes targeting the gene LOC644246 and the duplicated genes LRRC37A and LRRC37A2, and a third uncorrelated probe targeting the gene DCAKD. Significant cis-associations were also observed between SNPs and two probes targeting genes in the HLA region on chromosome 6. Expanding the association study to examine trans effects revealed an additional 23 SNP-probe associations reaching statistical significance (p<2.8 × 10(-8 including SNPs from the SNCA, MAPT and RIT2 regions. These findings provide additional context for the interpretation of PD associated SNPs identified in recent GWAS as well as potential insight into the mechanisms underlying the observed SNP associations.

  11. Evaluation of Parkinson disease risk variants as expression-QTLs.

    Science.gov (United States)

    Latourelle, Jeanne C; Dumitriu, Alexandra; Hadzi, Tiffany C; Beach, Thomas G; Myers, Richard H

    2012-01-01

    The recent Parkinson Disease GWAS Consortium meta-analysis and replication study reports association at several previously confirmed risk loci SNCA, MAPT, GAK/DGKQ, and HLA and identified a novel risk locus at RIT2. To further explore functional consequences of these associations, we investigated modification of gene expression in prefrontal cortex brain samples of pathologically confirmed PD cases (N = 26) and controls (N = 24) by 67 associated SNPs in these 5 loci. Association between the eSNPs and expression was evaluated using a 2-degrees of freedom test of both association and difference in association between cases and controls, adjusted for relevant covariates. SNPs at each of the 5 loci were tested for cis-acting effects on all probes within 250 kb of each locus. Trans-effects of the SNPs on the 39,122 probes passing all QC on the microarray were also examined. From the analysis of cis-acting SNP effects, several SNPs in the MAPT region show significant association to multiple nearby probes, including two strongly correlated probes targeting the gene LOC644246 and the duplicated genes LRRC37A and LRRC37A2, and a third uncorrelated probe targeting the gene DCAKD. Significant cis-associations were also observed between SNPs and two probes targeting genes in the HLA region on chromosome 6. Expanding the association study to examine trans effects revealed an additional 23 SNP-probe associations reaching statistical significance (p<2.8 × 10(-8)) including SNPs from the SNCA, MAPT and RIT2 regions. These findings provide additional context for the interpretation of PD associated SNPs identified in recent GWAS as well as potential insight into the mechanisms underlying the observed SNP associations.

  12. Long-Range Modulation of PAG1 Expression by 8q21 Allergy Risk Variants

    Science.gov (United States)

    Vicente, Cristina T.; Edwards, Stacey L.; Hillman, Kristine M.; Kaufmann, Susanne; Mitchell, Hayley; Bain, Lisa; Glubb, Dylan M.; Lee, Jason S.; French, Juliet D.; Ferreira, Manuel A.R.

    2015-01-01

    The gene(s) whose expression is regulated by allergy risk variants is unknown for many loci identified through genome-wide association studies. Addressing this knowledge gap might point to new therapeutic targets for allergic disease. The aim of this study was to identify the target gene(s) and the functional variant(s) underlying the association between rs7009110 on chromosome 8q21 and allergies. Eight genes are located within 1 Mb of rs7009110. Multivariate association analysis of publicly available exon expression levels from lymphoblastoid cell lines (LCLs) identified a significant association between rs7009110 and the expression of a single gene, PAG1 (p = 0.0017), 732 kb away. Analysis of histone modifications and DNase I hypersensitive sites in LCLs identified four putative regulatory elements (PREs) in the region. Chromosome conformation capture confirmed that two PREs interacted with the PAG1 promoter, one in allele-specific fashion. To determine whether these PREs were functional, LCLs were transfected with PAG1 promoter-driven luciferase reporter constructs. PRE3 acted as a transcriptional enhancer for PAG1 exclusively when it carried the rs2370615:C allergy predisposing allele, a variant in complete linkage disequilibrium with rs7009110. As such, rs2370615, which overlaps RelA transcription factor (TF) binding in LCLs and was found to disrupt Foxo3a binding to PRE3, represents the putative functional variant in this locus. Our studies suggest that the risk-associated allele of rs2370615 predisposes to allergic disease by increasing PAG1 expression, which might promote B cell activation and have a pro-inflammatory effect. Inhibition of PAG1 expression or function might have therapeutic potential for allergic diseases. PMID:26211970

  13. Alternative splicing and extensive RNA editing of human TPH2 transcripts.

    Directory of Open Access Journals (Sweden)

    Maik Grohmann

    Full Text Available Brain serotonin (5-HT neurotransmission plays a key role in the regulation of mood and has been implicated in a variety of neuropsychiatric conditions. Tryptophan hydroxylase (TPH is the rate-limiting enzyme in the biosynthesis of 5-HT. Recently, we discovered a second TPH isoform (TPH2 in vertebrates, including man, which is predominantly expressed in brain, while the previously known TPH isoform (TPH1 is primarly a non-neuronal enzyme. Overwhelming evidence now points to TPH2 as a candidate gene for 5-HT-related psychiatric disorders. To assess the role of TPH2 gene variability in the etiology of psychiatric diseases we performed cDNA sequence analysis of TPH2 transcripts from human post mortem amygdala samples obtained from individuals with psychiatric disorders (drug abuse, schizophrenia, suicide and controls. Here we show that TPH2 exists in two alternatively spliced variants in the coding region, denoted TPH2a and TPH2b. Moreover, we found evidence that the pre-mRNAs of both splice variants are dynamically RNA-edited in a mutually exclusive manner. Kinetic studies with cell lines expressing recombinant TPH2 variants revealed a higher activity of the novel TPH2B protein compared with the previously known TPH2A, whereas RNA editing was shown to inhibit the enzymatic activity of both TPH2 splice variants. Therefore, our results strongly suggest a complex fine-tuning of central nervous system 5-HT biosynthesis by TPH2 alternative splicing and RNA editing. Finally, we present molecular and large-scale linkage data evidencing that deregulated alternative splicing and RNA editing is involved in the etiology of psychiatric diseases, such as suicidal behaviour.

  14. C-terminal splice variants of P/Q-type Ca2+ channel CaV2.1 α1 subunits are differentially regulated by Rab3-interacting molecule proteins.

    Science.gov (United States)

    Hirano, Mitsuru; Takada, Yoshinori; Wong, Chee Fah; Yamaguchi, Kazuma; Kotani, Hiroshi; Kurokawa, Tatsuki; Mori, Masayuki X; Snutch, Terrance P; Ronjat, Michel; De Waard, Michel; Mori, Yasuo

    2017-06-02

    Voltage-dependent Ca 2+ channels (VDCCs) mediate neurotransmitter release controlled by presynaptic proteins such as the scaffolding proteins Rab3-interacting molecules (RIMs). RIMs confer sustained activity and anchoring of synaptic vesicles to the VDCCs. Multiple sites on the VDCC α 1 and β subunits have been reported to mediate the RIMs-VDCC interaction, but their significance is unclear. Because alternative splicing of exons 44 and 47 in the P/Q-type VDCC α 1 subunit Ca V 2.1 gene generates major variants of the Ca V 2.1 C-terminal region, known for associating with presynaptic proteins, we focused here on the protein regions encoded by these two exons. Co-immunoprecipitation experiments indicated that the C-terminal domain (CTD) encoded by Ca V 2.1 exons 40-47 interacts with the α-RIMs, RIM1α and RIM2α, and this interaction was abolished by alternative splicing that deletes the protein regions encoded by exons 44 and 47. Electrophysiological characterization of VDCC currents revealed that the suppressive effect of RIM2α on voltage-dependent inactivation (VDI) was stronger than that of RIM1α for the Ca V 2.1 variant containing the region encoded by exons 44 and 47. Importantly, in the Ca V 2.1 variant in which exons 44 and 47 were deleted, strong RIM2α-mediated VDI suppression was attenuated to a level comparable with that of RIM1α-mediated VDI suppression, which was unaffected by the exclusion of exons 44 and 47. Studies of deletion mutants of the exon 47 region identified 17 amino acid residues on the C-terminal side of a polyglutamine stretch as being essential for the potentiated VDI suppression characteristic of RIM2α. These results suggest that the interactions of the Ca V 2.1 CTD with RIMs enable Ca V 2.1 proteins to distinguish α-RIM isoforms in VDI suppression of P/Q-type VDCC currents. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. HOLLYWOOD: a comparative relational database of alternative splicing.

    Science.gov (United States)

    Holste, Dirk; Huo, George; Tung, Vivian; Burge, Christopher B

    2006-01-01

    RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information about the splicing of orthologous genes in different species, we have developed the Hollywood system. This database was built upon genomic annotation of splicing patterns of known genes derived from spliced alignment of complementary DNAs (cDNAs) and expressed sequence tags, and links features such as splice site sequence and strength, exonic splicing enhancers and silencers, conserved and non-conserved patterns of splicing, and cDNA library information for inferred alternative exons. Hollywood was implemented as a relational database and currently contains comprehensive information for human and mouse. It is accompanied by a web query tool that allows searches for sets of exons with specific splicing characteristics or splicing regulatory element composition, or gives a graphical or sequence-level summary of splicing patterns for a specific gene. A streamlined graphical representation of gene splicing patterns is provided, and these patterns can alternatively be layered onto existing information in the UCSC Genome Browser. The database is accessible at http://hollywood.mit.edu.

  16. A DNMT3B alternatively spliced exon and encoded peptide are novel biomarkers of human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Sailesh Gopalakrishna-Pillai

    Full Text Available A major obstacle in human stem cell research is the limited number of reagents capable of distinguishing pluripotent stem cells from partially differentiated or incompletely reprogrammed derivatives. Although human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs express numerous alternatively spliced transcripts, little attention has been directed at developing splice variant-encoded protein isoforms as reagents for stem cell research. In this study, several genes encoding proteins involved in important signaling pathways were screened to detect alternatively spliced transcripts that exhibited differential expression in pluripotent stem cells (PSCs relative to spontaneously differentiated cells (SDCs. Transcripts containing the alternatively spliced exon 10 of the de novo DNA methyltransferase gene, DNMT3B, were identified that are expressed in PSCs. To demonstrate the utility and superiority of splice variant specific reagents for stem cell research, a peptide encoded by DNMT3B exon 10 was used to generate an antibody, SG1. The SG1 antibody detects a single DNMT3B protein isoform that is expressed only in PSCs but not in SDCs. The SG1 antibody is also demonstrably superior to other antibodies at distinguishing PSCs from SDCs in mixed cultures containing both pluripotent stem cells and partially differentiated derivatives. The tightly controlled down regulation of DNMT3B exon 10 containing transcripts (and exon 10 encoded peptide upon spontaneous differentiation of PSCs suggests that this DNMT3B splice isoform is characteristic of the pluripotent state. Alternatively spliced exons, and the proteins they encode, represent a vast untapped reservoir of novel biomarkers that can be used to develop superior reagents for stem cell research and to gain further insight into mechanisms controlling stem cell pluripotency.

  17. DBATE: database of alternative transcripts expression.

    Science.gov (United States)

    Bianchi, Valerio; Colantoni, Alessio; Calderone, Alberto; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2013-01-01

    The use of high-throughput RNA sequencing technology (RNA-seq) allows whole transcriptome analysis, providing an unbiased and unabridged view of alternative transcript expression. Coupling splicing variant-specific expression with its functional inference is still an open and difficult issue for which we created the DataBase of Alternative Transcripts Expression (DBATE), a web-based repository storing expression values and functional annotation of alternative splicing variants. We processed 13 large RNA-seq panels from human healthy tissues and in disease conditions, reporting expression levels and functional annotations gathered and integrated from different sources for each splicing variant, using a variant-specific annotation transfer pipeline. The possibility to perform complex queries by cross-referencing different functional annotations permits the retrieval of desired subsets of splicing variant expression values that can be visualized in several ways, from simple to more informative. DBATE is intended as a novel tool to help appreciate how, and possibly why, the transcriptome expression is shaped. DATABASE URL: http://bioinformatica.uniroma2.it/DBATE/.

  18. Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.

    Science.gov (United States)

    Kiuchi, Shizuka; Ikeshita, Shunji; Miyatake, Yukiko; Kasahara, Masanori

    2015-02-01

    Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. Its intractable natures are attributed to high robustness in tumor cells for their survival. We demonstrate here that pancreatic cancer cells (PCCs) with an epithelial phenotype upregulate cell surface expression of CD44 variant 9 (CD44v9), an important cancer stem cell marker, during the mitotic phases of the cell cycle. Of five human CD44(+) PCC lines examined, three cell lines, PCI-24, PCI-43 and PCI-55, expressed E-cadherin and CD44 variants, suggesting that they have an epithelial phenotype. By contrast, PANC-1 and MIA PaCa-2 cells expressed vimentin and ZEB1, suggesting that they have a mesenchymal phenotype. PCCs with an epithelial phenotype upregulated cell surface expression of CD44v9 in prophase, metaphase, anaphase and telophase and downregulated CD44v9 expression in late-telophase, cytokinesis and interphase. Sorted CD44v9-negative PCI-55 cells resumed CD44v9 expression when they re-entered the mitotic stage. Interestingly, CD44v9(bright) mitotic cells expressed multidrug resistance protein 1 (MDR1) intracellularly. Upregulated expression of CD44v9 and MDR1 might contribute to the intractable nature of PCCs with high proliferative activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The β2-microglobulin-free heterodimerization of rhesus monkey MHC class I A with its normally spliced variant reduces the ubiquitin-dependent degradation of MHC class I A.

    Science.gov (United States)

    Dai, Zheng-Xi; Zhang, Gao-Hong; Zhang, Xi-He; Xia, Hou-Jun; Li, Shao-You; Zheng, Yong-Tang

    2012-03-01

    The MHC class I (MHC I) molecules play a pivotal role in the regulation of immune responses by presenting antigenic peptides to CTLs and by regulating cytolytic activities of NK cells. In this article, we show that MHC I A in rhesus macaques can be alternatively spliced, generating a novel MHC I A isoform (termed "MHC I A-sv1") devoid of α(3) domain. Despite the absence of β2-microglobulin (β2m), the MHC I A-sv1 proteins reached the cell surface of K562-transfected cells as endoglycosidase H-sensitive glycoproteins that could form disulfide-bonded homodimers. Cycloheximide-based protein chase experiments showed that the MHC I A-sv1 proteins were more stable than the full-length MHC I A in transiently or stably transfected cell lines. Of particular interest, our studies demonstrated that MHC I A-sv1 could form β2m-free heterodimers with its full-length protein in mammalian cells. The formation of heterodimers was accompanied by a reduction in full-length MHC I A ubiquitination and consequent stabilization of the protein. Taken together, these results demonstrated that MHC I A-sv1 and MHC I A can form a novel heterodimeric complex as a result of the displacement of β2m and illustrated the relevance of regulated MHC I A protein degradation in the β2m-free heterodimerization-dependent control, which may have some implications for the MHC I A splice variant in the fine tuning of classical MHC I A/TCR and MHC I A/killer cell Ig-like receptor interactions.

  20. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy

    2010-01-01

    OBJECTIVE: Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the cy...

  1. Genomic organization, splice variants and expression of CGM1, a CD66-related member of the carcinoembryonic antigen gene family

    NARCIS (Netherlands)

    Nagel, G.; Grunert, F.; Kuijpers, T. W.; Watt, S. M.; Thompson, J.; Zimmermann, W.

    1993-01-01

    The tumor marker carcinoembryonic antigen (CEA) belongs to a family of proteins which are composed of one immunoglobulin variable domain and a varying number of immunoglobulin constant-like domains. Most of the membrane-bound members, which are anchored either by a glycosylphosphatidylinositol

  2. The emerging role of alternative splicing in senescence and aging.

    Science.gov (United States)

    Deschênes, Mathieu; Chabot, Benoit

    2017-10-01

    Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Identification, cloning, and expression of human estrogen receptor-α36, a novel variant of human estrogen receptor-α66

    International Nuclear Information System (INIS)

    Wang Zhaoyi; Zhang Xintian; Shen Peng; Loggie, Brian W.; Chang Yunchao; Deuel, Thomas F.

    2005-01-01

    The identification and subsequent cloning of the 66-kDa human estrogen receptor (here termed hER-α66), its 46-kDa splice variant hER-α46, and the closely related hER-β have had a profound impact on the generation of new understanding of estrogen-mediated functions and led to progress in diagnosis and treatment of human breast cancer. However, a persistent problem has been that not all findings previously reported in estrogen-stimulated cell proliferation can be explained through the known properties of the different estrogen receptors described. As the consequence of a search for alternative mechanisms to account for these different findings, we have now identified, cloned, and expressed in HEK 293 cells a previously unrecognized 36-kDa variant of hER-α66, termed hER-α36. hER-α36 differs from hER-α66 since it lacks both transcriptional activation domains (AF-1 and AF-2) but it retains the DNA-binding domain, and partial dimerization and ligand-binding domains of hER-α66. It also contains three myristoylation sites postulated to direct ER-α36 to the plasma membrane. It is concluded that ER-α36 is a unique variant of ER-α66; ER-α36 is predicted to function as a dominant-negative effector of hER-α66-mediated estrogen-responsive gene pathways and has the potential to trigger membrane-initiated mitogenic estrogen signaling

  4. Selection of Highly Expressed Gene Variants in Escherichia coli Using Translationally Coupled Antibiotic Selection Markers

    DEFF Research Database (Denmark)

    Rennig, Maja; Daley, Daniel O.; Nørholm, Morten H. H.

    2018-01-01

    Strategies to select highly expressed variants of a protein coding sequence are usually based on trial-and-error approaches, which are time-consuming and expensive. We address this problem using translationally coupled antibiotic resistance markers. The system requires that the target gene can...... be fused at the 3'-end with a translational coupling element and an antibiotic resistance gene. Highly expressed target genes can then be selected using a fast and simple whole cell survival assay in the presence of high antibiotic concentrations. Herein we show that the system can be used to select highly...

  5. Localization and expression of histone H2A variants during mouse oogenesis and preimplantation embryo development.

    Science.gov (United States)

    Wu, B J; Dong, F L; Ma, X S; Wang, X G; Lin, F; Liu, H L

    2014-08-07

    Epigenetic modifications of the genome, such as histone H2A variants, ensure appropriate gene activation or silencing during oogenesis and preimplantation embryo development. We examined global localization and expression of the histone H2A variants, including H2A.Bbd, H2A.Z and H2A.X, during mouse oogenesis and preimplantation embryo development. Immunocytochemistry with specific antibodies against various histone H2A variants showed their localization and changes during oogenesis and preimplantation development. H2A.Bbd and H2A.Z were almost absent from nuclei of growing oocytes (except 5-day oocyte), whereas H2A.X was deposited in nuclei throughout oogenesis and in preimplantation embryos. In germinal vesicle (GV) oocyte chromatin, H2A.Bbd was detected as a weak signal, whereas no fluorescent signal was detected in GV breakdown (GVBD) or metaphase II (MII) oocytes; H2A.Z showed intense signals in chromatin of GV, GVBD and MII oocytes. H2A. Bbd showed very weak signals in both pronucleus and 2-cell embryo nuclei, but intense signals were detected in nuclei from 4-cell embryo to blastula. The H2A.Z signal was absent from pronucleus to morula chromatin, whereas a fluorescent signal was detected in blastula nuclei. Our results suggest that histone H2A variants are probably involved in reprogramming of genomes during oocyte meiosis or after fertilization.

  6. Genetic variants alter T-bet binding and gene expression in mucosal inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Katrina Soderquest

    2017-02-01

    Full Text Available The polarization of CD4+ T cells into distinct T helper cell lineages is essential for protective immunity against infection, but aberrant T cell polarization can cause autoimmunity. The transcription factor T-bet (TBX21 specifies the Th1 lineage and represses alternative T cell fates. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs that may be causative for autoimmune diseases. The majority of these polymorphisms are located within non-coding distal regulatory elements. It is considered that these genetic variants contribute to disease by altering the binding of regulatory proteins and thus gene expression, but whether these variants alter the binding of lineage-specifying transcription factors has not been determined. Here, we show that SNPs associated with the mucosal inflammatory diseases Crohn's disease, ulcerative colitis (UC and celiac disease, but not rheumatoid arthritis or psoriasis, are enriched at T-bet binding sites. Furthermore, we identify disease-associated variants that alter T-bet binding in vitro and in vivo. ChIP-seq for T-bet in individuals heterozygous for the celiac disease-associated SNPs rs1465321 and rs2058622 and the IBD-associated SNPs rs1551398 and rs1551399, reveals decreased binding to the minor disease-associated alleles. Furthermore, we show that rs1465321 is an expression quantitative trait locus (eQTL for the neighboring gene IL18RAP, with decreased T-bet binding associated with decreased expression of this gene. These results suggest that genetic polymorphisms may predispose individuals to mucosal autoimmune disease through alterations in T-bet binding. Other disease-associated variants may similarly act by modulating the binding of lineage-specifying transcription factors in a tissue-selective and disease-specific manner.

  7. The group A streptococcal collagen-like protein 1, Scl1, mediates biofilm formation by targeting the EDA-containing variant of cellular fibronectin expressed in wounded tissue

    Science.gov (United States)

    Oliver-Kozup, Heaven; Martin, Karen H.; Schwegler-Berry, Diane; Green, Brett J.; Betts, Courtney; Shinde, Arti V.; Van De Water, Livingston; Lukomski, Slawomir

    2012-01-01

    Summary Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen-like protein-1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA-containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C-C′ loop region recognized by the α9β1 integrin. The extracellular 2-D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization. PMID:23217101

  8. Molecular interplay between T-Antigen and splicing factor, arginine/serine-rich 1 (SRSF1) controls JC virus gene expression in glial cells.

    Science.gov (United States)

    Craigie, Michael; Regan, Patrick; Otalora, Yolanda-Lopez; Sariyer, Ilker Kudret

    2015-11-24

    Human polyomavirus JCV is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease characterized by lytic infection of glial cells in the central nervous system. PML is seen primarily in immunosuppressed patients and is mainly classified as an AIDS-defining disease. In addition to structural capsid proteins, JCV encodes multiple regulatory proteins, including T-antigen and agnoprotein, which are required for functional lytic infection. Previous studies have suggested that molecular interaction between viral proteins and host factors play an important role in reactivation of JCV and progression of the viral life cycle in glial cells. Recently, serine/arginine rich splicing factor 1 (SRSF1), a cellular alternative splicing factor, was identified as a strong negative regulator of JCV in glial cells. SRSF1 inhibits JCV gene expression and viral replication by directly interacting with viral promoter sequences. Here, we have investigated possible impact of JCV regulatory proteins, T-antigen and agnoprotein, on SRSF1-mediated suppression of JCV gene expression in glial cells. Reporter gene analysis has suggested that T-antigen rescues viral transcriptional suppression mediated by SRSF1. Further analyses have revealed that T-antigen promotes viral gene expression by suppressing SRSF1 gene transcription in glial cells. A subsequent ChIP analysis revealed that T-antigen associates with the promoter region of SRSF1 to induce the transcriptional suppression. These findings have revealed a molecular interplay between cellular SRSF1 and viral T-antigen in controlling JCV gene expression, and may suggest a novel mechanism of JCV reactivation in patients who are at risk of developing PML.

  9. The exon 38-containing ARHGEF11 splice isoform is differentially expressed and is required for migration and growth in invasive breast cancer cells.

    Science.gov (United States)

    Itoh, Masahiko; Radisky, Derek C; Hashiguchi, Masaaki; Sugimoto, Hiroyuki

    2017-11-03

    Breast cancer invasion involves the loss of cell-cell junctions and acquisition of an invasive, migratory phenotype, and breast cancer cells of the basal intrinsic subtype are more invasive and metastatic than breast cancer cells of other subtypes. ARHGEF11 is a RhoGEF that was previously shown to bind to the tight junction protein ZO-1 at perijunctional actomyosin ring (PJAR), a network of cortically organized actin and myosin filaments associated with junctional complexes that regulates cell-cell adhesion and polarization. We show here that ARHGEF11 shows splice isoform expression that differs according to the intrinsic subtype of breast cancer cells and that controls their invasive phenotype. Luminal subtype breast cancer cells express the isoform of ARHGEF11 lacking exon 38 (38-), which binds to ZO-1 at PJAR and is necessary for formation and maintenance of cell-cell junctions. Basal subtype breast cancer cells express the isoform of ARHGEF11 containing exon 38 (38+), which does not bind to ZO-1 and which drives cell migration and motility. Depletion of ARHGEF11 in basal subtype breast cancer cells is sufficient to alter cell morphology from a mesenchymal stellate form with extensive cell protrusions to a cobblestone-like epithelial form, and to suppress growth and survival both in vitro and in vivo . These findings show that the expression of the particular splice isoform of ARHGEF11 is critically linked to the malignant phenotype of breast cancer cells, identifying ARHGEF11 exon 38(+) as a biomarker and target for therapy of breast cancer.

  10. hnRNP F directs formation of an exon 4 minus variant of tumor-associated NADH oxidase (ENOX2).

    Science.gov (United States)

    Tang, Xiaoyu; Kane, Vanessa D; Morré, Dorothy M; Morré, D James

    2011-11-01

    HUVEC or mouse 3T3 cells infected with SV-40 generate within 3 to 5 days post-infection an ENOX2 species corresponding to the exon-4 minus splice variant of a tumor-associated NADH oxidase (ENOX2 or tNOX) expressed at the cancer cell surface. This study was to seek evidence for splicing factors that might direct formation of the exon 4 minus ENOX2 splice variant. To determine if silencing of ENOX2 exon 4 occurs because of motifs located in exon 4, transfections were performed on MCF-10A (mammary non-cancer), BT-20 (mammary cancer), and HeLa (cervical cancer) cells using a GFP minigene construct containing either a constitutively spliced exon (albumin exon 2) or the alternatively spliced ENOX2 exon 4 between the two GFP halves. Removal of exon 4 from the processed RNA of the GFP minigene construct occurred with HeLa and to a lesser extent with BT-20 but not in non-cancer MCF-10A cells. The Splicing Rainbow Program was used to identify all of the possible hnRNPs binding sites of exon 4 of ENOX2. There are 8 Exonic Splicing Silencers (ESSs) for hnRNP binding in the exon 4 sequences. Each of these sites were mutated by site-directed mutagenesis to test if any were responsible for the splicing skip. Results showed MutG75 ESS mutation changed the GFP expression which is a sign of splicing silence, while other mutations did not. As MutG75 changed the ESS binding site for hnRNP F, this result suggests that hnRNP F directs formation of the exon 4 minus variant of ENOX2.

  11. Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption

    Directory of Open Access Journals (Sweden)

    Marta A Ślimak

    2014-01-01

    Full Text Available The CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3 and β4 nicotinic acetylcholine receptor (nAChR subunits, has been linked to nicotine dependence. The habenulo-interpeduncular (Hb-IPN tract is particularly enriched in α3β4 nAChRs. We recently showed that modulation of these receptors in the medial habenula (MHb in mice altered nicotine consumption. Given that β4 is rate-limiting for receptor activity and that single nucleotide polymorphisms (SNPs in CHRNB4 have been linked to altered risk of nicotine dependence in humans, we were interested in determining the contribution of allelic variants of β4 to nicotine receptor activity in the MHb. We screened for missense SNPs with allele frequencies > 0.0005 and introduced the corresponding substitutions in Chrnb4. Fourteen variants were analyzed by co-expression with α3. We found that β4A90I and β4T374I variants, previously shown to associate with reduced risk of smoking, and an additional variant β4D447Y, significantly increased nicotine-evoked current amplitudes, while β4R348C, the mutation most frequently encountered in sporadic amyotrophic lateral sclerosis (sALS, showed reduced nicotine currents. We employed lentiviruses to express β4 or β4 variants in the MHb. Immunoprecipitation studies confirmed that β4 lentiviral-mediated expression leads to specific upregulation of α3β4 but not β2 nAChRs in the Mhb. Mice injected with the β4-containing virus showed pronounced aversion to nicotine as previously observed in transgenic Tabac mice overexpressing Chrnb4 at endogenous sites including the MHb. Habenular expression of the β4 gain-of-function allele T374I also resulted in strong aversion, while transduction with the β4 loss-of function allele R348C failed to induce nicotine aversion. Altogether, these data confirm the critical role of habenular β4 in nicotine consumption, and identify specific SNPs in CHRNB4 that modify nicotine-elicited currents and alter nicotine

  12. Variants of CD36 gene and their association with CD36 protein expression in platelets

    Science.gov (United States)

    Xu, Xianguo; Liu, Ying; Hong, Xiaozhen; Chen, Shu; Ma, Kairong; Lan, Xiaofei; Ying, Yanling; He, Ji; Zhu, Faming; Lv, Hangjun

    2014-01-01

    Background The relationship between CD36 expression level in platelets and polymorphism of the CD36 gene still needs to be explored. Here, we investigated polymorphisms of the CD36 gene and CD36 expression level in platelets in the Chinese Han population. Materials and methods A total of 477 samples were sequenced for exons 2 to 14 of the CD36 gene using a polymerase chain reaction sequence-based typing method. In 192 of these individuals the expression levels of CD36 antigen were analysed by flow cytometry. The genotype-phenotype relationship in platelets was analysed. Results A total of 22 variants of the CD36 gene were identified, of which five variants (111 A>T, 681 C>A, 1172–1183 del12b, 1236 delT and 1395 A>C) were novel variations, and nine were also found in single nucleotide polymorphism database (dbSNP) but had not been confirmed in individuals with CD36 deficiency. Two variants (329–332 delAC and 1228–1239 del12bp) in the coding region are the most frequent mutations in the Chinese population. Type II CD36 deficiency was identified in seven of 192 individuals, giving a frequency of 3.6%. Individuals with CD36 variations or wild-type genotypes both showed CD36 antigen negative, low-level and high-level expression patterns in platelets. The frequency of the nt-132 A>C polymorphism in the 5′-UTR is relatively high in the Chinese population (0.3516): the expression of CD36 was lower in individuals with nt-132 A>C than in those with the wild-type genotype. Discussion The distribution of CD36 gene variants in the Chinese population is different from that previously reported. The levels of expression of CD36 antigen in platelets are not determined directly by the genotypes of the CD36 coding region. This suggests that the molecular basis of type II CD36 deficiency may be derived from combined effects of coding region and potential cis-regulatory elements in the 5′-UTR of the CD36 gene. PMID:24960640

  13. BRCA1 Exon 11, a CERES (Composite Regulatory Element of Splicing Element Involved in Splice Regulation

    Directory of Open Access Journals (Sweden)

    Claudia Tammaro

    2014-07-01

    Full Text Available Unclassified variants (UV of BRCA1 can affect normal pre-mRNA splicing. Here, we investigate the UV c.693G>A, a “silent” change in BRCA1 exon 11, which we have found induces aberrant splicing in patient carriers and in vitro. Using a minigene assay, we show that the UV c.693G>A has a strong effect on the splicing isoform ratio of BRCA1. Systematic site-directed mutagenesis of the area surrounding the nucleotide position c.693G>A induced variable changes in the level of exon 11 inclusion/exclusion in the mRNA, pointing to the presence of a complex regulatory element with overlapping enhancer and silencer functions. Accordingly, protein binding analysis in the region detected several splicing regulatory factors involved, including SRSF1, SRSF6 and SRSF9, suggesting that this sequence represents a composite regulatory element of splicing (CERES.

  14. Genotype-based test in mapping cis-regulatory variants from allele-specific expression data.

    Directory of Open Access Journals (Sweden)

    Jean Francois Lefebvre

    Full Text Available Identifying and understanding the impact of gene regulatory variation is of considerable importance in evolutionary and medical genetics; such variants are thought to be responsible for human-specific adaptation and to have an important role in genetic disease. Regulatory variation in cis is readily detected in individuals showing uneven expression of a transcript from its two allelic copies, an observation referred to as allelic imbalance (AI. Identifying individuals exhibiting AI allows mapping of regulatory DNA regions and the potential to identify the underlying causal genetic variant(s. However, existing mapping methods require knowledge of the haplotypes, which make them sensitive to phasing errors. In this study, we introduce a genotype-based mapping test that does not require haplotype-phase inference to locate regulatory regions. The test relies on partitioning genotypes of individuals exhibiting AI and those not expressing AI in a 2×3 contingency table. The performance of this test to detect linkage disequilibrium (LD between a potential regulatory site and a SNP located in this region was examined by analyzing the simulated and the empirical AI datasets. In simulation experiments, the genotype-based test outperforms the haplotype-based tests with the increasing distance separating the regulatory region from its regulated transcript. The genotype-based test performed equally well with the experimental AI datasets, either from genome-wide cDNA hybridization arrays or from RNA sequencing. By avoiding the need of haplotype inference, the genotype-based test will suit AI analyses in population samples of unknown haplotype structure and will additionally facilitate the identification of cis-regulatory variants that are located far away from the regulated transcript.

  15. A Genetic Variant in the Distal Enhancer Region of the Human Renin Gene Affects Renin Expression.

    Directory of Open Access Journals (Sweden)

    Yasukazu Makino

    Full Text Available The high heritability of plasma renin activity was confirmed in recent investigations. A variation located near the strong enhancer of the human renin gene (REN, C-5312T, has been shown to have different transcription activity levels depending on its allele: the 5312T allele shows transcription levels that are 45% greater than those of the 5312C allele. The purpose of this study was to confirm the hypothesis that variations in the enhancer region of the REN gene are involved in regulating renal expression of renin.Sixty-four subjects with biopsy-proven renal diseases were included in this study (male/female: 35/29, age 41.9 ± 20.9 years, SBP/DBP 123.1 ± 23.7/73.4 ± 14.8 mmHg, s-Cr 0.93 ± 0.63 mg/dl. A genetic variant of REN, C-5312T, was assayed by PCR-RFLP and the TaqMan method. Total RNAs from a small part of the renal cortex were reverse-transcribed and amplified for REN and GAPDH with a real-time PCR system.Logarithmically transformed expression values of the relative ratio of REN to GAPDH (10-3 were as follows (mean ± SE: CC (26 cases, 0.016 ± 0.005; CT (33 cases, 0.047 ± 0.021 (p = 0.41 vs. CC; TT (5 cases, 0.198 ± 0.194 (p = 0.011 vs. CC, p < 0.031 vs. CT. Thus, significant differences in REN expression were observed among the genetic variants.The results suggest that variants in the enhancer region of the human renin gene have an effect on the expression levels of renin in renal tissue; this observation is in good accordance with the results of the transcriptional assay.

  16. CTNNB1, AXIN1 and APC expression analysis of different medulloblastoma variants

    Directory of Open Access Journals (Sweden)

    Roseli da Silva

    2013-01-01

    Full Text Available OBJECTIVES: We investigated four components of the Wnt signaling pathway in medulloblastomas. Medulloblastoma is the most common type of malignant pediatric brain tumor, and the Wnt signaling pathway has been shown to be activated in this type of tumor. METHODS: Sixty-one medulloblastoma cases were analyzed for β-catenin gene (CTNNB1 mutations, β-catenin protein expression via immunostaining and Wnt signaling pathway-related gene expression. All data were correlated with histological subtypes and patient clinical information. RESULTS: CTNNB1 sequencing analysis revealed that 11 out of 61 medulloblastomas harbored missense mutations in residues 32, 33, 34 and 37, which are located in exon 3. These mutations alter the glycogen synthase kinase-3β phosphorylation sites, which participate in β-catenin degradation. No significant differences were observed between mutation status and histological medulloblastoma type, patient age and overall or progression-free survival times. Nuclear β-catenin accumulation, which was observed in 27.9% of the cases, was not associated with the histological type, CTNNB1 mutation status or tumor cell dissemination. The relative expression levels of genes that code for proteins involved in the Wnt signaling pathway (CTNNB1, APC, AXIN1 and WNT1 were also analyzed, but no significant correlations were found. In addition, large-cell variant medulloblastomas presented lower relative CTNNB1 expression as compared to the other tumor variants. CONCLUSIONS: A small subset of medulloblastomas carry CTNNB1 mutations with consequent nuclear accumulation of β-catenin. The Wnt signaling pathway plays a role in classic, desmoplastic and extensive nodularity medulloblastoma variants but not in large-cell medulloblastomas.

  17. Transcriptome sequencing of a large human family identifies the impact of rare noncoding variants.

    Science.gov (United States)

    Li, Xin; Battle, Alexis; Karczewski, Konrad J; Zappala, Zach; Knowles, David A; Smith, Kevin S; Kukurba, Kim R; Wu, Eric; Simon, Noah; Montgomery, Stephen B

    2014-09-04

    Recent and rapid human population growth has led to an excess of rare genetic variants that are expected to contribute to an individual's genetic burden of disease risk. To date, much of the focus has been on rare protein-coding variants, for which potential impact can be estimated from the genetic code, but determining the impact of rare noncoding variants has been more challenging. To improve our understanding of such variants, we combined high-quality genome sequencing and RNA sequencing data from a 17-individual, three-generation family to contrast expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) within this family to eQTLs and sQTLs within a population sample. Using this design, we found that eQTLs and sQTLs with large effects in the family were enriched with rare regulatory and splicing variants (minor allele frequency impact of rare noncoding variants. We found that distance to the transcription start site, evolutionary constraint, and epigenetic annotation were considerably more informative for predicting the impact of rare variants than for predicting the impact of common variants. These results highlight that rare noncoding variants are important contributors to individual gene-expression profiles and further demonstrate a significant capability for genomic annotation to predict the impact of rare noncoding variants. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Identification of Alternative Splicing and Fusion Transcripts in Non-Small Cell Lung Cancer by RNA Sequencing.

    Science.gov (United States)

    Hong, Yoonki; Kim, Woo Jin; Bang, Chi Young; Lee, Jae Cheol; Oh, Yeon-Mok

    2016-04-01

    Lung cancer is the most common cause of cancer related death. Alterations in gene sequence, structure, and expression have an important role in the pathogenesis of lung cancer. Fusion genes and alternative splicing of cancer-related genes have the potential to be oncogenic. In the current study, we performed RNA-sequencing (RNA-seq) to investigate potential fusion genes and alternative splicing in non-small cell lung cancer. RNA was isolated from lung tissues obtained from 86 subjects with lung cancer. The RNA samples from lung cancer and normal tissues were processed with RNA-seq using the HiSeq 2000 system. Fusion genes were evaluated using Defuse and ChimeraScan. Candidate fusion transcripts were validated by Sanger sequencing. Alternative splicing was analyzed using multivariate analysis of transcript sequencing and validated using quantitative real time polymerase chain reaction. RNA-seq data identified oncogenic fusion genes EML4-ALK and SLC34A2-ROS1 in three of 86 normal-cancer paired samples. Nine distinct fusion transcripts were selected using DeFuse and ChimeraScan; of which, four fusion transcripts were validated by Sanger sequencing. In 33 squamous cell carcinoma, 29 tumor specific skipped exon events and six mutually exclusive exon events were identified. ITGB4 and PYCR1 were top genes that showed significant tumor specific splice variants. In conclusion, RNA-seq data identified novel potential fusion transcripts and splice variants. Further evaluation of their functional significance in the pathogenesis of lung cancer is required.

  19. Alternative Splicing in Neurogenesis and Brain Development

    Directory of Open Access Journals (Sweden)

    Chun-Hao Su

    2018-02-01

    Full Text Available Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  20. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels

    NARCIS (Netherlands)

    Deelen, Patrick; Zhernakova, Daria V.; de Haan, Mark; van der Sijde, Marijke; Bonder, Marc Jan; Karjalainen, Juha; van der Velde, K. Joeri; Abbott, Kristin M.; Fu, Jingyuan; Wijmenga, Cisca; Sinke, Richard J.; Swertz, Morris A.; Franke, Lude

    2015-01-01

    Background: RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq

  1. Constitutive expression of active microbial transglutaminase in Escherichia coli and comparative characterization to a known variant.

    Science.gov (United States)

    Javitt, Gabe; Ben-Barak-Zelas, Zohar; Jerabek-Willemsen, Moran; Fishman, Ayelet

    2017-02-28

    Microbial transglutaminase (mTG) is a robust enzyme catalyzing the formation of an isopeptide bond between glutamine and lysine residues. It has found use in food applications, pharmaceuticals, textiles, and biomedicine. Overexpression of soluble and active mTG in E. coli has been limited due to improper protein folding and requirement for proteolytic cleavage of the pro-domain. Furthermore, to integrate mTG more fully industrially and academically, thermostable and solvent-stable variants may be imperative. A novel expression system constitutively producing active mTG was designed. Wild-type (WT) mTG and a S2P variant had similar expression levels, comparable to previous studies. Kinetic constants were determined by a glutamate dehydrogenase-coupled assay, and the S2P variant showed an increased affinity and a doubled enzyme efficiency towards Z-Gln-Gly. The melting temperature (T m ) of the WT was determined by intrinsic fluorescence measurements to be 55.8 ± 0.1 °C and of the S2P variant to be 56.3 ± 0.4 °C and 45.5 ± 0.1 °C, showing a moderately different thermostability profile. Stability in water miscible organic solvents was determined for both the WT and S2P variant. Of the solvents tested, incubation of mTG in isopropanol for 24 h at 4 °C showed the strongest stabilizing effect with mTG retaining 61 and 72% activity for WT and S2P respectively in 70% isopropanol. Both enzymes also showed an increased initial activity in the presence of organic solvents with the highest activity increase in 40% DMSO. Nevertheless, both enzymes were inactivated in 70% of all organic solvents tested. A constitutive expression system of active mTG in E. coli without downstream proteolytic cleavage processing was used for overexpression and characterization. High throughput techniques for testing thermostability and kinetics were useful in streamlining analysis and could be used in the future for quickly identifying beneficial mutants. Hitherto untested

  2. Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci.

    Science.gov (United States)

    Hulur, Imge; Gamazon, Eric R; Skol, Andrew D; Xicola, Rosa M; Llor, Xavier; Onel, Kenan; Ellis, Nathan A; Kupfer, Sonia S

    2015-02-27

    Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with diseases of the colon including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). However, the functional role of many of these SNPs is largely unknown and tissue-specific resources are lacking. Expression quantitative trait loci (eQTL) mapping identifies target genes of disease-associated SNPs. This study provides a comprehensive eQTL map of distal colonic samples obtained from 40 healthy African Americans and demonstrates their relevance for GWAS of colonic diseases. 8.4 million imputed SNPs were tested for their associations with 16,252 expression probes representing 12,363 unique genes. 1,941 significant cis-eQTL, corresponding to 122 independent signals, were identified at a false discovery rate (FDR) of 0.01. Overall, among colon cis-eQTL, there was significant enrichment for GWAS variants for IBD (Crohn's disease [CD] and ulcerative colitis [UC]) and CRC as well as type 2 diabetes and body mass index. ERAP2, ADCY3, INPP5E, UBA7, SFMBT1, NXPE1 and REXO2 were identified as target genes for IBD-associated variants. The CRC-associated eQTL rs3802842 was associated with the expression of C11orf93 (COLCA2). Enrichment of colon eQTL near transcription start sites and for active histone marks was demonstrated, and eQTL with high population differentiation were identified. Through the comprehensive study of eQTL in the human colon, this study identified novel target genes for IBD- and CRC-associated genetic variants. Moreover, bioinformatic characterization of colon eQTL provides a tissue-specific tool to improve understanding of biological differences in diseases between different ethnic groups.

  3. ROS1 gene rearrangement and expression of splice isoforms in lung cancer, diagnosed by a novel quantitative RT-PCR assay

    Directory of Open Access Journals (Sweden)

    Kalla C

    2016-07-01

    Full Text Available Successful treatment of lung cancer (NSCLC patients with ROS1 inhibitors depends on the accurate diagnosis of ROS1 gene rearrangements. The approved FISH tests are low-throughput assays difficult to use in daily diagnostic practice. Immunohistochemistry is currently discussed as screening test. We aimed to devise an alternative, sensitive diagnostic test for the rearrangement of ROS1 and to investigate upregulated ROS1 gene expression as potential target in NSCLC. We developed a qRT-PCR assay adapted to RNA isolated from FFPE material and applied it to 695 NSCLC specimens. The reliability to detect ROS1 rearrangements was evidenced by comparison with FISH and immunohistochemistry. qRT-PCR analysis detected unbalanced ROS1 expression indicative of gene rearrangement in 5 (0.7% and expression of non-rearranged ROS1 transcripts in 65 (9.6% of 680 interpretable tumors. In comparison with FISH, qRT-PCR accurately typed 99% of 5 rearranged and 121 non-rearranged tumors. Immunohistochemistry detected ROS1 protein expression in 7/8 tumors with gene fusions and 6/35 NSCLC with transcriptional upregulation. To elucidate RNA processing, 12 NSCLC were examined by systematic RT-PCR and sequence analysis. In all 12 NSCLC analyzed, up-regulated gene expression independent of translocation was associated with aberrant expression of fetal transcript isoforms identified here. We conclude that our qRT-PCR assay reliably diagnoses and distinguishes ROS1 rearrangements and expression of non-rearranged transcripts. Immunostaining is a suitable screening tool, but re-examination of ROS1 protein expressing cases by qRT-PCR/FISH is compulsory. The expression of ROS1 splice isoforms – shown here for the first time - may be relevant for ROS1 inhibitor therapy in NSCLC.

  4. Transgenic Expression of Human APOL1 Risk Variants in Podocytes Induces Kidney Disease in Mice

    Science.gov (United States)

    Beckerman, Pazit; Bi-Karchin, Jing; Park, Ae Seo Deok; Qiu, Chengxiang; Dummer, Patrick D.; Soomro, Irfana; Boustany-Kari, Carine M.; Pullen, Steven S.; Miner, Jeffrey H.; Hu, Chien-An A.; Rohacs, Tibor; Inoue, Kazunori; Ishibe, Shuta; Saleem, Moin A.; Palmer, Matthew B.; Cuervo, Ana Maria; Kopp, Jeffrey B.; Susztak, Katalin

    2017-01-01

    African-Americans have an increased risk of developing chronic and end-stage kidney disease, with much of it attributed to two common genetic variants in the APOL1 gene, termed G1 and G2. Direct evidence demonstrating that these APOL1 risk alleles are pathogenic is still lacking as the APOL1 gene is only present in some primates and humans; thus experimental proof of causality of these risk alleles for renal disease has been challenging. Here, we generated mice with podocyte-specific inducible expression of the APOL1 reference allele (termed G0) or each of the risk alleles (G1 or G2). We show that mice with podocyte-specific expression of either APOL1 risk allele, but not the G0 allele, develop functional (albuminuria, azotemia), structural (foot process effacement and glomerulosclerosis) and molecular (gene expression) changes that closely resemble the human kidney disease. Disease development was cell-type specific, and likely reversible, and the severity correlated with the level of expression of the risk allele. We further found that expression of the APOL1 risk alleles interferes with endosomal trafficking and blocks autophagic flux, leading ultimately to inflammatory-mediated podocyte death and glomerular scarring. In summary, this is the first in vivo demonstration that expression of APOL1 risk alleles are causal for altered podocyte function and glomerular disease. PMID:28218918

  5. Co-dominant expression of the HLA-G gene and various forms of alternatively spliced HLA-G mRNA in human first trimester trophoblast

    DEFF Research Database (Denmark)

    Hviid, T V; Møller, C; Sørensen, S

    1998-01-01

    Genes may be silenced at the transcriptional level by 'genomic imprinting' in such a way that only one of the parental alleles is expressed. Imprinting may be tissue-specific and in some cases it seems also to be time-dependent during development. The phenomenon has been studied in pre- and post-...... investigated the different alternatively spliced forms of HLA-G mRNA in first trimester trophoblast and found the full-length transcript to be the far most abundant....... Transcription (RT) Polymerase Chain Reaction (PCR) products of HLA-G mRNA to examine the expression of maternal and paternal alleles. Our results demonstrate that HLA-G is co-dominantly expressed in first trimester trophoblast cells. A "new" non-synonymous base substitution in exon 4 was detected. We also......Genes may be silenced at the transcriptional level by 'genomic imprinting' in such a way that only one of the parental alleles is expressed. Imprinting may be tissue-specific and in some cases it seems also to be time-dependent during development. The phenomenon has been studied in pre- and post...

  6. Genome-wide association between DNA methylation and alternative splicing in an invertebrate

    Directory of Open Access Journals (Sweden)

    Flores Kevin

    2012-09-01

    Full Text Available Abstract Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee and Nasonia vitripennis (jewel wasp analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice

  7. Characterization of the Ala62Pro polymorphic variant of human cytochrome P450 1A1 using recombinant protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Heon; Kang, Sukmo [College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul (Korea, Republic of); Dong, Mi Sook [School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Park, Jung-Duck [College of Medicine, Chung-Ang University, Seoul (Korea, Republic of); Park, Jinseo; Rhee, Sangkee [College of Agriculture of Life Science, Seoul National University, Seoul (Korea, Republic of); Ryu, Doug-Young, E-mail: dyryu@snu.ac.kr [College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul (Korea, Republic of)

    2015-06-15

    Cytochrome P450 (CYP) 1A1 is a heme-containing enzyme involved in detoxification of hydrophobic pollutants. Its Ala62Pro variant has been identified previously. Ala62 is located in α-helix A of CYP1A1. Residues such as Pro and Gly are α-helix breakers. In this study, the Ala62Pro variant was characterized using heterologous expression. E. coli expressing the Ala62Pro variant, and the purified variant protein, had lower CYP (i.e. holoenzyme) contents than their wild-type (WT) equivalents. The CYP variant from E. coli and mammalian cells exhibited lower 7-ethoxyresorufin O-dealkylation (EROD) and benzo[a]pyrene hydroxylation activities than the WT. Enhanced supplementation of a heme precursor during E. coli culture did not increase CYP content in E. coli expressing the variant, but did for the WT. As for Ala62Pro, E. coli expressing an Ala62Gly variant had a lower CYP content than the WT counterpart, but substitution of Ala62 with α-helix-compatible residues such as Ser and Val partially recovered the level of CYP produced. Microsomes from mammalian cells expressing Ala62Pro and Ala62Gly variants exhibited lower EROD activities than those expressing the WT or Ala62Val variant. A region harboring α-helix A has interactions with another region containing heme-interacting residues. Site-directed mutagenesis analyses suggest the importance of interactions between the two regions on holoenzyme expression. Together, these findings suggest that the Ala62Pro substitution leads to changes in protein characteristics and function of CYP1A1 via structural disturbance of the region where the residue is located. - Highlights: • Ala62 is located in α-helix A of the carcinogen-metabolizing enzyme CYP1A1. • Pro acts as an α-helix breaker. • A variant protein of CYP1A1, Ala62Pro, had lower heme content than the wild-type. • The variant of CYP1A1 had lower enzyme activities than the wild-type.

  8. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    OpenAIRE

    Bonomi, Serena; Gallo, Stefania; Catillo, Morena; Pignataro, Daniela; Biamonti, Giuseppe; Ghigna, Claudia

    2013-01-01

    Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer ...

  9. Alteration of introns in a hyaluronan synthase 1 (HAS1 minigene convert Pre-mRNA [corrected] splicing to the aberrant pattern in multiple myeloma (MM: MM patients harbor similar changes.

    Directory of Open Access Journals (Sweden)

    Jitra Kriangkum

    Full Text Available Aberrant pre-mRNA splice variants of hyaluronan synthase 1 (HAS1 have been identified in malignant cells from cancer patients. Bioinformatic analysis suggests that intronic sequence changes can underlie aberrant splicing. Deletions and mutations were introduced into HAS1 minigene constructs to identify regions that can influence aberrant intronic splicing, comparing the splicing pattern in transfectants with that in multiple myeloma (MM patients. Introduced genetic variations in introns 3 and 4 of HAS1 as shown here can promote aberrant splicing of the type detected in malignant cells from MM patients. HAS1Vd is a novel intronic splice variant first identified here. HAS1Vb, an intronic splice variant previously identified in patients, skips exon 4 and utilizes the same intron 4 alternative 3'splice site as HAS1Vd. For transfected constructs with unaltered introns 3 and 4, HAS1Vd transcripts are readily detectable, frequently to the exclusion of HAS1Vb. In contrast, in MM patients, HAS1Vb is more frequent than HAS1Vd. In the HAS1 minigene, combining deletion in intron 4 with mutations in intron 3 leads to a shift from HAS1Vd expression to HAS1Vb expression. The upregulation of aberrant splicing, exemplified here by the expression of HAS1Vb, is shown here to be influenced by multiple genetic changes in intronic sequences. For HAS1Vb, this includes enhanced exon 4 skipping and increased usage of alternative 3' splice sites. Thus, the combination of introduced mutations in HAS1 intron3 with introduced deletions in HAS1 intron 4 promoted a shift to an aberrant splicing pattern previously shown to be clinically significant. Most MM patients harbor genetic variations in intron 4, and as shown here, nearly half harbor recurrent mutations in HAS1 intron 3. Our work suggests that aberrant intronic HAS1 splicing in MM patients may rely on intronic HAS1 deletions and mutations that are frequent in MM patients but absent from healthy donors.

  10. Alternative 3' acceptor site in the exon 2 of human PAX8 gene resulting in the expression of unknown mRNA variant found in thyroid hemiagenesis and some types of cancers.

    Science.gov (United States)

    Szczepanek-Parulska, Ewelina; Szaflarski, Witold; Piątek, Katarzyna; Budny, Bartłomiej; Jaszczyńska-Nowinka, Karolina; Biczysko, Maciej; Wierzbicki, Tomasz; Skrobisz, Jerzy; Zabel, Maciej; Ruchała, Marek

    2013-01-01

    PAX8 gene encodes one of the transcription factors engaged in the regulation of proper development of thyroid gland as well as Müllerian and renal/upper urinary tracts. So far, six alternatively spliced transcripts were reported, however, sequences of only four were deposited in the NCBI database. Here, we evaluate a fragment of a novel variant of PAX8 mRNA formed by an alternative 3' acceptor site located in the second exon. The molecular outcome encompasses extension of the 5' untranslated region of exon two by 97 nucleotides as is evident from mRNA. This new insert may impair binding of mRNA to the ribosome and in consequence significantly decrease expression of the PAX8 protein. Here, we show for the first time that the novel insert in exon two might be associated with congenital thyroid hemiagenesis and influence development of different types of cancer.

  11. Impaired elastic-fiber assembly by fibroblasts from patients with either Morquio B disease or infantile GM1-gangliosidosis is linked to deficiency in the 67-kD spliced variant of beta-galactosidase.

    Science.gov (United States)

    Hinek, A; Zhang, S; Smith, A C; Callahan, J W

    2000-07-01

    We have previously shown that intracellular trafficking and extracellular assembly of tropoelastin into elastic fibers is facilitated by the 67-kD elastin-binding protein identical to an enzymatically inactive, alternatively spliced variant of beta-galactosidase (S-Gal). In the present study, we investigated elastic-fiber assembly in cultures of dermal fibroblasts from patients with either Morquio B disease or GM1-gangliosidosis who bore different mutations of the beta-galactosidase gene. We found that fibroblasts taken from patients with an adult form of GM1-gangliosidosis and from patients with an infantile form, carrying a missense mutations in the beta-galactosidase gene-mutations that caused deficiency in lysosomal beta-galactosidase but not in S-Gal-assembled normal elastic fibers. In contrast, fibroblasts from two cases of infantile GM1-gangliosidosis that bear nonsense mutations of the beta-galactosidase gene, as well as fibroblasts from four patients with Morquio B who had mutations causing deficiency in both forms of beta-galactosidase, did not assemble elastic fibers. We also demonstrated that S-Gal-deficient fibroblasts from patients with either GM1-gangliosidosis or Morquio B can acquire the S-Gal protein, produced by coculturing of Chinese hamster ovary cells permanently transected with S-Gal cDNA, resulting in improved deposition of elastic fibers. The present study provides a novel and natural model validating functional roles of S-Gal in elastogenesis and elucidates an association between impaired elastogenesis and the development of connective-tissue disorders in patients with Morquio B disease and in patients with an infantile form of GM1-gangliosidosis.

  12. Myosin-binding Protein C Compound Heterozygous Variant Effect on the Phenotypic Expression of Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Rafael, Julianny Freitas; Cruz, Fernando Eugênio Dos Santos; Carvalho, Antônio Carlos Campos de; Gottlieb, Ilan; Cazelli, José Guilherme; Siciliano, Ana Paula; Dias, Glauber Monteiro

    2017-04-01

    Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease caused by mutations in genes encoding sarcomere proteins. It is the major cause of sudden cardiac death in young high-level athletes. Studies have demonstrated a poorer prognosis when associated with specific mutations. The association between HCM genotype and phenotype has been the subject of several studies since the discovery of the genetic nature of the disease. This study shows the effect of a MYBPC3 compound variant on the phenotypic HCM expression. A family in which a young man had a clinical diagnosis of HCM underwent clinical and genetic investigations. The coding regions of the MYH7, MYBPC3 and TNNT2 genes were sequenced and analyzed. The proband present a malignant manifestation of the disease, and is the only one to express HCM in his family. The genetic analysis through direct sequencing of the three main genes related to this disease identified a compound heterozygous variant (p.E542Q and p.D610H) in MYBPC3. A family analysis indicated that the p.E542Q and p.D610H alleles have paternal and maternal origin, respectively. No family member carrier of one of the variant alleles manifested clinical signs of HCM. We suggest that the MYBPC3-biallelic heterozygous expression of p.E542Q and p.D610H may cause the severe disease phenotype seen in the proband. Resumo A cardiomiopatia hipertrófica (CMH) é uma doença autossômica dominante causada por mutações em genes que codificam as proteínas dos sarcômeros. É a principal causa de morte súbita cardíaca em atletas jovens de alto nível. Estudos têm demonstrado um pior prognóstico associado a mutações específicas. A associação entre genótipo e fenótipo em CMH tem sido objeto de diversos estudos desde a descoberta da origem genética dessa doença. Este trabalho apresenta o efeito de uma mutação composta em MYBPC3 na expressão fenotípica da CMH. Uma família na qual um jovem tem o diagnóstico clínico de CMH foi

  13. Physiological relation between respiration activity and heterologous expression of selected benzoylformate decarboxylase variants in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Pohl Martina

    2010-10-01

    Full Text Available Abstract Background The benzoylformate decarboxylase (BFD from Pseudomonas putida is a biotechnologically interesting biocatalyst. It catalyses the formation of chiral 2-hydroxy ketones, which are important building blocks for stereoselective syntheses. To optimise the enzyme function often the amino acid composition is modified to improve the performance of the enzyme. So far it was assumed that a relatively small modification of the amino acid composition of a protein does not significantly influence the level of expression or media requirements. To determine, which effects these modifications might have on cultivation and product formation, six different BFD-variants with one or two altered amino acids and the wild type BFD were expressed in Escherichia coli SG13009 pKK233-2. The oxygen transfer rate (OTR as parameter for growth and metabolic activity of the different E. coli clones was monitored on-line in LB, TB and modified PanG mineral medium with the Respiratory Activity MOnitoring System (RAMOS. Results Although the E. coli clones were genetically nearly identical, the kinetics of their metabolic activity surprisingly differed in the standard media applied. Three different types of OTR curves could be distinguished. Whereas the first type (clones expressing Leu476Pro-Ser181Thr or Leu476Pro had typical OTR curves, the second type (clones expressing the wild type BFD, Ser181Thr or His281Ala showed an early drop of OTR in LB and TB medium and a drastically reduced maximum OTR in modified PanG mineral medium. The third type (clone expressing Leu476Gln behaved variable. Depending on the cultivation conditions, its OTR curve was similar to the first or the second type. It was shown, that the kinetics of the metabolic activity of the first type depended on the concentration of thiamine, which is a cofactor of BFD, in the medium. It was demonstrated that the cofactor binding strength of the different BFD-variants correlated with the differences

  14. Transgenic mouse lines expressing rat AH receptor variants - A new animal model for research on AH receptor function and dioxin toxicity mechanisms

    International Nuclear Information System (INIS)

    Pohjanvirta, Raimo

    2009-01-01

    Han/Wistar (Kuopio; H/W) rats are exceptionally resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity mainly because of their mutated aryl hydrocarbon receptor (AHR) gene. In H/W rats, altered splicing of the AHR mRNA generates two AHR proteins: deletion (DEL) and insertion (INS) variants, with the INS isoform being predominantly expressed. To gain further insight into their functional properties, cDNAs of these and rat wild-type (rWT) isoform were transferred into C57BL/6J-derived mice by microinjection. The endogenous mouse AHR was eliminated by selective crossing with Ahr-null mice. A single mouse line was obtained for each of the three constructs. The AHR mRNA levels in tissues were generally close to those of C57BL/6 mice in INS and DEL mice and somewhat higher in rWT mice; in testis, however, all 3 constructs exhibited marked overexpression. The transgenic mouse lines were phenotypically normal except for increased testis weight. Induction of drug-metabolizing enzymes by TCDD occurred similarly to that in C57BL/6 mice, but there tended to be a correlation with AHR concentrations, especially in testis. In contrast to C57BL/6 mice, the transgenics did not display any major gender difference in susceptibility to the acute lethality and hepatotoxicity of TCDD; rWT mice were highly sensitive, DEL mice moderately resistant and INS mice highly resistant. Co-expression of mouse AHR and rWT resulted in augmented sensitivity to TCDD and abolished the natural resistance of female C57BL/6 mice, whereas mice co-expressing mouse AHR and INS were resistant. Thus, these transgenic mouse lines provide a novel promising tool for molecular studies on dioxin toxicity and AHR function.

  15. Alternative Splicing Profile and Sex-Preferential Gene Expression in the Female and Male Pacific Abalone Haliotis discus hannai.

    Science.gov (United States)

    Kim, Mi Ae; Rhee, Jae-Sung; Kim, Tae Ha; Lee, Jung Sick; Choi, Ah-Young; Choi, Beom-Soon; Choi, Ik-Young; Sohn, Young Chang

    2017-03-09

    In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone.

  16. PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells

    Directory of Open Access Journals (Sweden)

    Ge Changhui

    2010-04-01

    Full Text Available Abstract Background PCBP1 (or alpha CP1 or hnRNP E1, a member of the PCBP family, is widely expressed in many human tissues and involved in regulation of transcription, transportation process, and function of RNA molecules. However, the role of PCBP1 in CD44 variants splicing still remains elusive. Results We found that enforced PCBP1 expression inhibited CD44 variants expression including v3, v5, v6, v8, and v10 in HepG2 cells, and knockdown of endogenous PCBP1 induced these variants splicing. Invasion assay suggested that PCBP1 played a negative role in tumor invasion and re-expression of v6 partly reversed the inhibition effect by PCBP1. A correlation of PCBP1 down-regulation and v6 up-regulation was detected in primary HCC tissues. Conclusions We first characterized PCBP1 as a negative regulator of CD44 variants splicing in HepG2 cells, and loss of PCBP1 in human hepatic tumor contributes to the formation of a metastatic phenotype.

  17. TransAtlasDB: an integrated database connecting expression data, metadata and variants

    Science.gov (United States)

    Adetunji, Modupeore O; Lamont, Susan J; Schmidt, Carl J

    2018-01-01

    Abstract High-throughput transcriptome sequencing (RNAseq) is the universally applied method for target-free transcript identification and gene expression quantification, generating huge amounts of data. The constraint of accessing such data and interpreting results can be a major impediment in postulating suitable hypothesis, thus an innovative storage solution that addresses these limitations, such as hard disk storage requirements, efficiency and reproducibility are paramount. By offering a uniform data storage and retrieval mechanism, various data can be compared and easily investigated. We present a sophisticated system, TransAtlasDB, which incorporates a hybrid architecture of both relational and NoSQL databases for fast and efficient data storage, processing and querying of large datasets from transcript expression analysis with corresponding metadata, as well as gene-associated variants (such as SNPs) and their predicted gene effects. TransAtlasDB provides the data model of accurate storage of the large amount of data derived from RNAseq analysis and also methods of interacting with the database, either via the command-line data management workflows, written in Perl, with useful functionalities that simplifies the complexity of data storage and possibly manipulation of the massive amounts of data generated from RNAseq analysis or through the web interface. The database application is currently modeled to handle analyses data from agricultural species, and will be expanded to include more species groups. Overall TransAtlasDB aims to serve as an accessible repository for the large complex results data files derived from RNAseq gene expression profiling and variant analysis. Database URL: https://modupeore.github.io/TransAtlasDB/ PMID:29688361

  18. Organic anion transporter 2 transcript variant 1 shows broad ligand selectivity when expressed in multiple cell lines.

    Science.gov (United States)

    Hotchkiss, Adam G; Berrigan, Liam; Pelis, Ryan M

    2015-01-01

    Organic anion transporter 2 (OAT2) is likely important for renal and hepatic drug elimination. Three variants of the OAT2 peptide sequence have been described - OAT2 transcript variant 1 (OAT2-tv1), OAT2 transcript variant 2 (OAT2-tv2), and OAT2 transcript variant 3 (OAT2-tv3). Early studies helping to define the ligand selectivity of OAT2 failed to identify the variant used, and the studies used several heterologous expression systems. In preliminary studies using OAT2-tv1, we failed to observe transport of several previously identified substrates, leading us to speculate that ligand selectivity of OAT2 differs with variant and/or heterologous expression system. The purpose was to further investigate the ligand selectivity of the OAT2 variants expressed in multiple cell types. We cloned OAT2-tv1 and OAT2-tv2, but were unsuccessful at amplifying mRNA for OAT2-tv3 from human kidney. OAT2-tv1 and OAT2-tv2 were individually expressed in human embryonic kidney (HEK), Madin-Darby canine kidney (MDCK), or Chinese hamster ovary (CHO) cells. mRNA for OAT2-tv1 and OAT2-tv2 was demonstrated in each cell type transfected with the respective construct, indicating their expression. OAT2-tv1 trafficked to the plasma membrane of all three cell types, but OAT2-tv2 did not. OAT2-tv1 transported penciclovir in all three cell types, but failed to transport para-aminohippurate, succinate, glutarate, estrone-3-sulfate, paclitaxel or dehydroepiandrosterone sulfate - previously identified substrates of OAT2-tv2. Not surprising given its lack of plasma membrane expression, OAT2-tv2 failed to transport any of the organic solutes examined, including penciclovir. Penciclovir transport by OAT2-tv1 was sensitive to large (e.g., cyclosporine A) and small (e.g., allopurinol) organic compounds, as well as organic anions, cations and neutral compounds, highlighting the multiselectivity of OAT2-tv1. The potencies with which indomethacin, furosemide, cyclosporine A and cimetidine inhibited OAT2-tv1

  19. Identification and Characterization of Two Novel Spliced Genes Located in the orf47-orf46-orf45 Gene Locus of Kaposi's Sarcoma-Associated Herpesvirus

    OpenAIRE

    Chang, Pey-Jium; Hung, Chien-Hui; Wang, Shie-Shan; Tsai, Ping-Hsin; Shih, Ying-Ju; Chen, Li-Yu; Huang, Hsiao-Yun; Wei, Ling-Huei; Yen, Ju-Bei; Lin, Chun-Liang; Chen, Lee-Wen

    2014-01-01

    The orf47-orf46-orf45 gene cluster of Kaposi's sarcoma-associated herpesvirus (KSHV) is known to serially encode glycoprotein L (gL), uracil DNA glycosylase, and a viral tegument protein. Here, we identify two novel mRNA variants, orf47/45-A and orf47/45-B, alternatively spliced from a tricistronic orf47-orf46-orf45 mRNA that is expressed in the orf47-orf46-orf45 gene locus during the early stages of viral reactivation. The spliced gene products, ORF47/45-A and ORF47/45-B, consist of only a p...

  20. Functional characterisation of an intron retaining K+ transporter of barley reveals intron-mediated alternate splicing

    KAUST Repository

    Shahzad, K.

    2015-01-01

    Intron retention in transcripts and the presence of 5 and 3 splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K+ transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K+ uptake restored growth in medium containing hygromycin in the presence of different concentrations of K+ and mediated hypersensitivity to Na+. HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K+ and Na+ concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  1. Alternative Splicing of the RAGE Cytoplasmic Domain Regulates Cell Signaling and Function

    Science.gov (United States)

    Jules, Joel; Maiguel, Dony; Hudson, Barry I.

    2013-01-01

    The Receptor for Advanced Glycation End-products (RAGE) is a multi-ligand receptor present on most cell types. Upregulation of RAGE is seen in a number of pathological states including, inflammatory and vascular disease, dementia, diabetes and various cancers. We previously demonstrated that alternative splicing of the RAGE gene is an important mechanism which regulates RAGE signaling through the production of soluble ligand decoy isoforms. However, no studies have identified any alternative splice variants within the intracellular region of RAGE, a region critical for RAGE signaling. Herein, we have cloned and characterized a novel splice variant of RAGE that has a truncated intracellular domain (RAGEΔICD). RAGEΔICD is prevalent in both human and mouse tissues including lung, brain, heart and kidney. Expression of RAGEΔICD in C6 glioma cells impaired RAGE-ligand induced signaling through various MAP kinase pathways including ERK1/2, p38 and SAPK/JNK. Moreover, RAGEΔICD significantly affected tumor cell properties through altering cell migration, invasion, adhesion and viability in C6 glioma cells. Furthermore, C6 glioma cells expressing RAGEΔICD exhibited drastic inhibition on tumorigenesis in soft agar assays. Taken together, these data indicate that RAGEΔICD represents a novel endogenous mechanism to regulate RAGE signaling. Significantly, RAGEΔICD could play an important role in RAGE related disease states through down regulation of RAGE signaling. PMID:24260107

  2. Depolarization-mediated regulation of alternative splicing

    Directory of Open Access Journals (Sweden)

    Alok eSharma

    2011-12-01

    Full Text Available Alternative splicing in eukaryotes plays an important role in regulating gene expression by selectively including alternative exons. A wealth of information has been accumulated that explains how alternative exons are selected in a developmental stage- or tissue-specific fashion. However, our knowledge of how cells respond to environmental changes to alter alternative splicing is very limited. For example, although a number of alternative exons have been shown to be regulated by calcium level alterations, the underlying mechanisms are not well understood. As calcium signaling in neurons plays a crucial role in essential neuronal functions such as learning and memory formation, it is important to understand how this process is regulated at every level in gene expression. The significance of the dynamic control of alternative splicing in response to changes of calcium levels has been largely unappreciated. In this communication, we will summarize the recent advances in calcium signaling-mediated alternative splicing that have provided some insights into the important regulatory mechanisms. In addition to describing the cis-acting RNA elements on the pre-mRNA molecules that respond to changes of intracellular calcium levels, we will summarize how splicing regulators change and affect alternative splicing in this process. We will also discuss a novel mode of calcium-mediated splicing regulation at the level of chromatin structure and transcription.

  3. Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors.

    Directory of Open Access Journals (Sweden)

    Nadine Norton

    Full Text Available Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes and ScriptSeq whole transcriptome protocols respectively, p<2x10(-16. Specifically for lincRNAs, we observed superb Pearson correlation (0.988 between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads. Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol

  4. Pax258 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain

    Directory of Open Access Journals (Sweden)

    Peter eFabian

    2015-07-01

    Full Text Available Paired box transcription factors play important role in development and tissue morphogenesis. The number of Pax homologs varies among species studied so far, due to genome and gene duplications that have affected PAX family to a great extent. Based on sequence similarity and functional domains, four Pax classes have been identified in chordates, namely Pax1/9, Pax2/5/8, Pax3/7 and Pax4/6. Numerous splicing events have been reported mainly for Pax2/5/8 and Pax6 genes. Of significant interest are those events that lead to Pax proteins with presumed novel properties, such as altered DNA-binding or transcriptional activity. In the current study, a thorough analysis of Pax2/5/8 splicing events from cephalochordate and vertebrates was performed. We focused more on Pax2/5/8 and Pax6 splicing events in which the paired domain is involved. Three new splicing events were identified in Oryzias latipes, one of which seems to be conserved in Acanthomorphata. Using representatives from deuterostome and protostome phyla, a comparative analysis of the Pax6 exon-intron structure of the paired domain was performed, during an attempt to estimate the time of appearance of the Pax6(5a mRNA isoform. As shown in our analysis, this splicing event is absent in basal chordates and is characteristic of Gnathostomata. Moreover, expression pattern of alternative spliced variants was compared between basal chordates and fish species. In summary, our data indicate expansion of alternative mRNA variants in paired box region of Pax2/5/8 and Pax6 genes during the course of vertebrate evolution.

  5. Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors

    Directory of Open Access Journals (Sweden)

    Orth Angela

    2009-04-01

    Full Text Available Abstract Background N-methyl-D-aspartate receptors (NMDARs are the most complex of ionotropic glutamate receptors (iGluRs. Subunits of this subfamily assemble into heteromers, which – depending on the subunit combination – may display very different pharmacological and electrophysiological properties. The least studied members of the NMDAR family, the NR3 subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity. Results Here, we have investigated whether the NR3B subunit is capable of assembly with each of the eight functional NR1 splice variants, and whether the resulting receptors share the unique functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were insensitive to glutamate and block by Mg2+. Surprisingly, amplitudes of agonist-induced currents showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers. Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b variants – possibly via disturbing the "proton shield" of NR1b splice variants. Conclusion While functional assembly could be demonstrated for all combinations, not all of the specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B excitatory glycine receptors.

  6. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sofie eVan Rossom

    2012-07-01

    Full Text Available DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine-nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2 to 6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human HEK293T cells. Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

  7. Resolving deconvolution ambiguity in gene alternative splicing

    Directory of Open Access Journals (Sweden)

    Hubbell Earl

    2009-08-01

    Full Text Available Abstract Background For many gene structures it is impossible to resolve intensity data uniquely to establish abundances of splice variants. This was empirically noted by Wang et al. in which it was called a "degeneracy problem". The ambiguity results from an ill-posed problem where additional information is needed in order to obtain an unique answer in splice variant deconvolution. Results In this paper, we analyze the situations under which the problem occurs and perform a rigorous mathematical study which gives necessary and sufficient conditions on how many and what type of constraints are needed to resolve all ambiguity. This analysis is generally applicable to matrix models of splice variants. We explore the proposal that probe sequence information may provide sufficient additional constraints to resolve real-world instances. However, probe behavior cannot be predicted with sufficient accuracy by any existing probe sequence model, and so we present a Bayesian framework for estimating variant abundances by incorporating the prediction uncertainty from the micro-model of probe responsiveness into the macro-model of probe intensities. Conclusion The matrix analysis of constraints provides a tool for detecting real-world instances in which additional constraints may be necessary to resolve splice variants. While purely mathematical constraints can be stated without error, real-world constraints may themselves be poorly resolved. Our Bayesian framework provides a generic solution to the problem of uniquely estimating transcript abundances given additional constraints that themselves may be uncertain, such as regression fit to probe sequence models. We demonstrate the efficacy of it by extensive simulations as well as various biological data.

  8. Alternative Splicing of P/Q-Type Ca2+ Channels Shapes Presynaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Agnes Thalhammer

    2017-07-01

    Full Text Available Alternative splicing of pre-mRNAs is prominent in the mammalian brain, where it is thought to expand proteome diversity. For example, alternative splicing of voltage-gated Ca2+ channel (VGCC α1 subunits can generate thousands of isoforms with differential properties and expression patterns. However, the impact of this molecular diversity on brain function, particularly on synaptic transmission, which crucially depends on VGCCs, is unclear. Here, we investigate how two major splice isoforms of P/Q-type VGCCs (Cav2.1[EFa/b] regulate presynaptic plasticity in hippocampal neurons. We find that the efficacy of P/Q-type VGCC isoforms in supporting synaptic transmission is markedly different, with Cav2.1[EFa] promoting synaptic depression and Cav2.1[EFb] synaptic facilitation. Following a reduction in network activity, hippocampal neurons upregulate selectively Cav2.1[EFa], the isoform exhibiting the higher synaptic efficacy, thus effectively supporting presynaptic homeostatic plasticity. Therefore, the balance between VGCC splice variants at the synapse is a key factor in controlling neurotransmitter release and presynaptic plasticity.

  9. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA.

    Directory of Open Access Journals (Sweden)

    Stephen H Munroe

    Full Text Available The α-thyroid hormone receptor gene (TRα codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3' end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30 located downstream of the alternative 3'splice site of TRα2 mRNA and antisense to the 3'UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing.

  10. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA

    Science.gov (United States)

    Munroe, Stephen H.; Morales, Christopher H.; Duyck, Tessa H.; Waters, Paul D.

    2015-01-01

    The α-thyroid hormone receptor gene (TRα) codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3’ end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30) located downstream of the alternative 3’splice site of TRα2 mRNA and antisense to the 3’UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing. PMID:26368571

  11. Analysis of a bovine herpesvirus 1 protein encoded by an alternatively spliced latency related (LR) RNA that is abundantly expressed in latently infected neurons.

    Science.gov (United States)

    Sinani, Devis; Liu, Yilin; Jones, Clinton

    2014-09-01

    The bovine herpes virus 1 (BoHV-1) encoded latency-related RNA (LR-RNA) is abundantly expressed in latently infected sensory neurons. A LR mutant virus with three stop codons at the amino-terminus of ORF2 does not reactivate from latency or replicate efficiently in certain tissues. ORF2 inhibits apoptosis, interacts with Notch1 or Notch3, and interferes with Notch mediated signaling. Alternative splicing of LR-RNA in trigeminal ganglia yields transcripts that have the potential to encode a protein containing most of ORF2 sequences and parts of other coding sequences located within the LR gene. In this study, we determined that an ORF2 protein fused with reading frame B (15d ORF) was more stable in transfected cells. ORF2 and the 15d ORF stimulated neurite formation in mouse neuroblastoma cells, interfered with Notch3 mediated trans-activation, and had similar DNA binding properties. Increased stability of the 15d ORF is predicted to enhance the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Proteomic analysis reveals differential protein expression in variants of papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Yasemin Ucal

    2017-12-01

    Full Text Available Introduction: Fine Needle Aspiration Biopsy (FNAB allows the cytological differentiation of benign and malignant thyroid nodules. However, the method itself is not adequate in determining some cases. For example, the diagnosis of Follicular Variant Papillary Thyroid Carcinoma (FV-PTC can be challenging. In the current study we investigate the protein profiles of FV-PTC and classical variant PTC (CV-PTC with no lymph node metastasis and compare it with benign thyroid tissue. Method: We used CV-PTC (n = 6, FV-PTC (n = 6 and benign thyroid tissues (n = 6 to prepare tissue lysates. Proteins from each group were trypsin and lys-C digested. The samples were analyzed on a Q Exactive Orbitrap mass spectrometer. Results: We identified 2560 proteins across all 18 specimens. Protein profiles revealed that there was no clear distinction between benign and FV-PTC samples. However, further examination of our data showed that proteins in energy metabolism have altered in FV-PTC. Proteomic pathway analysis showed marked alteration of the actin cytoskeleton proteins, especially several members of Arp2/3 complex were significantly increased in CV-PTC. We made the novel observation that IQGAP1 protein was significantly increased in CV-PTC, whereas IQGAP2 protein was highly expressed in FV-PTC lesions, suggesting differential roles of IQGAP proteins in thyroid pathology. Conclusion: In the present study, mass spectrometry based label free quantification approach was applied to investigate the protein profiles of FV-PTC, CV-PTC and benign thyroid tissues. This study pointed out that actin cytoskeleton proteins, IQGAP proteins and changes in energy metabolism play predominant roles in thyroid pathology. Keywords: Papillary thyroid carcinoma, IQGAP, Proteomics, Mass spectrometry

  13. Fertility Defects in Mice Expressing the L68Q Variant of Human Cystatin C

    Science.gov (United States)

    Whelly, Sandra; Serobian, Gaiane; Borchardt, Clinton; Powell, Jonathan; Johnson, Seethal; Hakansson, Katarina; Lindstrom, Veronica; Abrahamson, Magnus; Grubb, Anders; Cornwall, Gail A.

    2014-01-01

    Hereditary cystatin C amyloid angiopathy is an autosomal dominant disorder in which a variant form of cystatin C (L68Q) readily forms amyloid deposits in cerebral arteries in affected individuals resulting in early death. L68Q protein deposits in human cystatin C amyloid angiopathy patients have also been found in tissues outside of the brain including the testis, suggesting possible effects on fertility. Heterozygous transgenic mice (L68Q) that express the human L68Q variant of cystatin C under the control of the mouse cystatin C promoter were unable to generate offspring, suggesting the presence of L68Q cystatin C amyloid affected sperm function. In vitro studies showed that epididymal spermatozoa from L68Q mice were unable to fertilize oocytes and exhibited poor sperm motility. Furthermore, spermatozoa from L68Q mice exhibited reduced cell viability compared with wild type (WT) spermatozoa and often were detected in large agglutinated clumps. Examination of the epididymal fluid and spermatozoa from L68Q mice showed increased levels and distinct forms of cystatin C amyloid that were not present in WT mice. The addition of epididymal fluid from L68Q mice to WT spermatozoa resulted in a recapitulation of the L68Q phenotype in that WT spermatozoa showed reduced cell viability and motility compared with WT spermatozoa incubated in epididymal fluid from WT mice. L68Q epididymal fluid that was depleted of cystatin C amyloids, however, did not impair the motility of WT spermatozoa. Taken together these studies suggest that amyloids in the epididymal fluid can be cytotoxic to the maturing spermatozoa resulting in male infertility. PMID:24500719

  14. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Kuchenbaeker, Karoline B

    2017-01-01

    PURPOSE: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BR...

  15. An in vivo genetic screen for genes involved in spliced leader trans-splicing indicates a crucial role for continuous de novo spliced leader RNP assembly.

    Science.gov (United States)

    Philippe, Lucas; Pandarakalam, George C; Fasimoye, Rotimi; Harrison, Neale; Connolly, Bernadette; Pettitt, Jonathan; Müller, Berndt

    2017-08-21

    Spliced leader (SL) trans-splicing is a critical element of gene expression in a number of eukaryotic groups. This process is arguably best understood in nematodes, where biochemical and molecular studies in Caenorhabditis elegans and Ascaris suum have identified key steps and factors involved. Despite this, the precise details of SL trans-splicing have yet to be elucidated. In part, this is because the systematic identification of the molecules involved has not previously been possible due to the lack of a specific phenotype associated with defects in this process. We present here a novel GFP-based reporter assay that can monitor SL1 trans-splicing in living C. elegans. Using this assay, we have identified mutants in sna-1 that are defective in SL trans-splicing, and demonstrate that reducing function of SNA-1, SNA-2 and SUT-1, proteins that associate with SL1 RNA and related SmY RNAs, impairs SL trans-splicing. We further demonstrate that the Sm proteins and pICln, SMN and Gemin5, which are involved in small nuclear ribonucleoprotein assembly, have an important role in SL trans-splicing. Taken together these results provide the first in vivo evidence for proteins involved in SL trans-splicing, and indicate that continuous replacement of SL ribonucleoproteins consumed during trans-splicing reactions is essential for effective trans-splicing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  17. Identification of common genetic variation that modulates alternative splicing.

    Directory of Open Access Journals (Sweden)

    Jeremy Hull

    2007-06-01

    Full Text Available Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs. In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron-exon boundary, although the distance between these SNPs and the intron-exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function.

  18. Expression of a LINE-1 endonuclease variant in gastric cancer: its association with clinicopathological parameters

    International Nuclear Information System (INIS)

    Wang, Gangshi; Wu, Benyan; Wang, Mengwei; Gao, Jie; Huang, Haili; Tian, Yu; Xue, Liyan; Wang, Weihua; You, Weidi; Lian, Hongwei; Duan, Xiaojian

    2013-01-01

    -specific PCR. BLASTP program analysis revealed that GCRG213p peptide shared 83.0% alignment with the C-terminal region of L1 endonuclease (L1-EN). GCRG213p sequence possesses the important residues that compose the conserved features of L1-EN. GCRG213p could be a variant of L1-EN, a functional member of L1-EN family. Overexpression of GCRG213p is common in both primary gastric cancer and lymph node metastasis. These findings provide evidence of somatic L1 expression in gastric cancer, and its potential consequences in the form of tumor

  19. Thyroid hormone receptor isoform expression in livers of critically ill patients

    NARCIS (Netherlands)

    Thijssen-Timmer, Daphne C.; Peeters, Robin P.; Wouters, Pieter; Weekers, Frank; Visser, Theo J.; Fliers, Eric; Wiersinga, Wilmar M.; Bakker, Onno; Berghe, Greet Van Den

    2007-01-01

    OBJECTIVE: The THRA gene encodes two isoforms of the thyroid hormone receptor (TR), TRalpha1 and TRalpha2. The ratio of these splice variants could have a marked influence on T3-regulated gene expression, especially during illness. DESIGN: We studied the expression of the isoforms TRbeta1, TRalpha1,

  20. Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells.

    Science.gov (United States)

    Zhou, Rui; Park, Juw Won; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Zavala, Kathryn; Sea, Jessica L; Lu, Zhi-Xiang; Xu, Jianzhong; Adams, John S; Xing, Yi; Hewison, Martin

    2017-01-25

    Traditionally recognized as an RNA splicing regulator, heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC1/C2) can also bind to double-stranded DNA and function in trans as a vitamin D response element (VDRE)-binding protein. As such, hnRNPC1/C2 may couple transcription induced by the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH) 2 D) with subsequent RNA splicing. In MG63 osteoblastic cells, increased expression of the 1,25(OH) 2 D target gene CYP24A1 involved immunoprecipitation of hnRNPC1/C2 with CYP24A1 chromatin and RNA. Knockdown of hnRNPC1/C2 suppressed expression of CYP24A1, but also increased expression of an exon 10-skipped CYP24A1 splice variant; in a minigene model the latter was attenuated by a functional VDRE in the CYP24A1 promoter. In genome-wide analyses, knockdown of hnRNPC1/C2 resulted in 3500 differentially expressed genes and 2232 differentially spliced genes, with significant commonality between groups. 1,25(OH) 2 D induced 324 differentially expressed genes, with 187 also observed following hnRNPC1/C2 knockdown, and a further 168 unique to hnRNPC1/C2 knockdown. However, 1,25(OH) 2 D induced only 10 differentially spliced genes, with no overlap with differentially expressed genes. These data indicate that hnRNPC1/C2 binds to both DNA and RNA and influences both gene expression and RNA splicing, but these actions do not appear to be linked through 1,25(OH) 2 D-mediated induction of transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Directory of Open Access Journals (Sweden)

    Hudler Petra

    2009-10-01

    Full Text Available Abstract Background Loss of DNA mismatch repair (MMR in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC. Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Methods Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. Results The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Conclusion Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  2. Expression pattern of the AHP gene family from Arabidopsis thaliana and organ specific alternative splicing in the AHP5 gene

    Czech Academy of Sciences Publication Activity Database

    Hradilová, Jana; Brzobohatý, Břetislav

    2007-01-01

    Roč. 51, č. 2 (2007), s. 257-267 ISSN 0006-3134 Grant - others:GA MŠk(CZ) LN00A081; GA AV ČR(CZ) IAA600040612 Program:LN; IA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Arabidopsis two component systems * gene expression analysis * real time RT-PCR Subject RIV: BO - Biophysics Impact factor: 1.259, year: 2007

  3. Alternative exon usage creates novel transcript variants of tumor suppressor SHREW-1 gene with differential tissue expression profile

    Directory of Open Access Journals (Sweden)

    Petra A. B. Klemmt

    2016-11-01

    Full Text Available Shrew-1, also called AJAP1, is a transmembrane protein associated with E-cadherin-mediated adherence junctions and a putative tumor suppressor. Apart from its interaction with β-catenin and involvement in E-cadherin internalization, little structure or function information exists. Here we explored shrew-1 expression during postnatal differentiation of mammary gland as a model system. Immunohistological analyses with antibodies against either the extracellular or the cytoplasmic domains of shrew-1 consistently revealed the expression of full-length shrew-1 in myoepithelial cells, but only part of it in luminal cells. While shrew-1 localization remained unaltered in myoepithelial cells, nuclear localization occurred in luminal cells during lactation. Based on these observations, we identified two unknown shrew-1 transcript variants encoding N-terminally truncated proteins. The smallest shrew-1 protein lacks the extracellular domain and is most likely the only variant present in luminal cells. RNA analyses of human tissues confirmed that the novel transcript variants of shrew-1 exist in vivo and exhibit a differential tissue expression profile. We conclude that our findings are essential for the understanding and interpretation of future functional and interactome analyses of shrew-1 variants.

  4. Alternative Splicing of FOXP3-Virtue and Vice.

    Science.gov (United States)

    Mailer, Reiner K W

    2018-01-01

    FOXP3 is the lineage-defining transcription factor of CD4+ CD25+ regulatory T cells. While many aspects of its regulation, interaction, and function are conserved among species, alternatively spliced FOXP3 isoforms are expressed only in human cells. This review summarizes current knowledge about alternative splicing of FOXP3 and the specific functions of FOXP3 isoforms in health and disease. Future perspectives in research and the therapeutic potential of manipulating alternative splicing of FOXP3 are discussed.

  5. Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts

    Science.gov (United States)

    2010-01-01

    Background Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by ERBB2 (HER-2/neu) oncogene expression. Results The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of ERBB2-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of ERBB2. The relative expression balance between AS variants from 3 genes was differentially modulated by ERBB2 in this model system. Conclusions In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts

  6. spliceR

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Porse, Bo Torben; Sandelin, Albin

    2014-01-01

    RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternative splicing...

  7. A common genetic variant within SCN10A modulates cardiac SCN5A expression

    NARCIS (Netherlands)

    van den Boogaard, Malou; Smemo, Scott; Burnicka-Turek, Ozanna; Arnolds, David E.; van de Werken, Harmen J. G.; Klous, Petra; McKean, David; Muehlschlegel, Jochen D.; Moosmann, Julia; Toka, Okan; Yang, Xinan H.; Koopmann, Tamara T.; Adriaens, Michiel E.; Bezzina, Connie R.; de Laat, Wouter; Seidman, Christine; Seidman, J. G.; Christoffels, Vincent M.; Nobrega, Marcelo A.; Barnett, Phil; Moskowitz, Ivan P.

    2014-01-01

    Variants in SCN10A, which encodes a voltage-gated sodium channel, are associated with alterations of cardiac conduction parameters and the cardiac rhythm disorder Brugada syndrome; however, it is unclear how SCN10A variants promote dysfunctional cardiac conduction. Here we showed by high-resolution

  8. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  9. Salt-Sensitive Hypertension and Cardiac Hypertrophy in Transgenic Mice Expressing a Corin Variant Identified in African Americans

    Science.gov (United States)

    Wang, Wei; Cui, Yujie; Shen, Jianzhong; Jiang, Jingjing; Chen, Shenghan; Peng, Jianhao; Wu, Qingyu

    2012-01-01

    African Americans represent a high risk population for salt-sensitive hypertension and heart disease but the underlying mechanism remains unclear. Corin is a cardiac protease that regulates blood pressure by activating natriuretic peptides. A corin gene variant (T555I/Q568P) was identified in African Americans with hypertension and cardiac hypertrophy. In this study, we test the hypothesis that the corin variant contributes to the hypertensive and cardiac hypertrophic phenotype in vivo. Transgenic mice were generated to express wild-type or T555I/Q568P variant corin in the heart under the control of α-myosin heavy chain promoter. The mice were crossed into a corin knockout background to create KO/TgWT and KO/TgV mice that expressed WT or variant corin, respectively, in the heart. Functional studies showed that KO/TgV mice had significantly higher levels of pro-atrial natriuretic peptide in the heart compared with that in control KO/TgWT mice, indicating that the corin variant was defective in processing natriuretic peptides in vivo. By radiotelemetry, corin KO/TgV mice were found to have hypertension that was sensitive to dietary salt loading. The mice also developed cardiac hypertrophy at 12–14 months of age when fed a normal salt diet or at a younger age when fed a high salt diet. The phenotype of salt-sensitive hypertension and cardiac hypertrophy in KO/TgV mice closely resembles the pathological findings in African Americans who carry the corin variant. The results indicate that corin defects may represent an important mechanism in salt-sensitive hypertension and cardiac hypertrophy in African Americans. PMID:22987923

  10. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-04-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of /sup 125/I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of /sup 125/I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen.

  11. Human renal carcinoma expresses two messages encoding a parathyroid hormone-like peptide: Evidence for the alternative splicing of a single-copy gene

    International Nuclear Information System (INIS)

    Thiede, M.A.; Strewler, G.J.; Nissenson, R.A.; Rosenblatt, M.; Rodan, G.A.

    1988-01-01

    A peptide secreted by tumors associated with the clinical syndrome of humoral hypercalcemia of malignancy was recently purified from human renal carcinoma cell line 786-0. The N-terminal amino acid sequence of this peptide has considerable similarity with those of parathyroid hormone (PTH) and of peptides isolated from human breast and lung carcinoma (cell line BEN). In this study the authors obtained the nucleotide sequence of a 1595-base cDNA complementary to mRNA encoding the PTH-like peptide produced by 786-0 cells. The cDNA contains an open reading frame encoding a leader sequence of 36 amino acids and a 139-residue peptide, in which 8 of the first 13 residues are identical to the N terminus of PTH. Through the first 828 bases the sequence of this cDNA is identical with one recently isolated from a BEN cell cDNA library; however, beginning with base 829 the sequences diverge, shortening the open reading frame by 2 amino acids. Differential RNA blot analysis revealed that 786-0 cells express two major PTH-like peptide mRNAs with different 3' untranslated sequences, one of which hybridizes with the presently described sequence and the other one with that reported for the BEN cell PTH-like peptide cDNA. Primer-extension analysis of 786-0 poly(A) + RNA together with Southern blot analysis of human DNA confirmed the presence of a single-copy gene coding for multiple mRNAs through alternate splicing. In addition, the 3' untranslated sequence of the cDNA described here has significant similarity to the c-myc protooncogene

  12. Expression Profile of Three Splicing Factors in Pleural Cells Based on the Underlying Etiology and Its Clinical Values in Patients with Pleural Effusion

    Directory of Open Access Journals (Sweden)

    A-Lum Han

    2018-02-01

    Full Text Available Splicing factors (SFs are involved in oncogenesis or immune modulation, the common underlying processes giving rise to pleural effusion (PE. The expression profiles of three SFs (HNRNPA1, SRSF1, and SRSF3 and their clinical values have never been assessed in PE. The three SFs (in pellets of PE and conventional tumor markers were analyzed using PE samples in patients with PE (N = 336. The sum of higher–molecular weight (Mw forms of HNRNPA1 (Sum-HMws-HNRNPA1 and SRSF1 (Sum-HMws-SRSF1 and SRSF3 levels were upregulated in malignant PE (MPE compared to benign PE (BPE; they were highest in cytology-positive MPE, followed by tuberculous PE and parapneumonic PE. Meanwhile, the lowest-Mw HNRNPA1 (LMw-HNRNPA1 and SRSF1 (LMw-SRSF1 levels were not upregulated in MPE. Sum-HMws-HNRNPA1, Sum-HMws-SRSF1, and SRSF3, but neither LMw-HNRNPA1 nor LMw-SRSF1, showed positive correlations with cancer cell percentages in MPE. The detection accuracy for MPE was high in the order of carcinoembryonic antigen (CEA, 85%, Sum-HMws-HNRNPA1 (76%, Sum-HMws-SRSF1 (68%, SRSF3, cytokeratin-19 fragments (CYFRA 21-1, LMw-HNRNPA1, and LMw-SRSF1. Sum-HMws-HNRNPA1 detected more than half of the MPE cases that were undetected by cytology and CEA. Sum-HMws-HNRNPA1, but not other SFs or conventional tumor markers, showed an association with longer overall survival among patients with MPE receiving chemotherapy. Our results demonstrated different levels of the three SFs with their Mw-specific profiles depending on the etiology of PE. We suggest that Sum-HMws-HNRNPA1 is a supplementary diagnostic marker for MPE and a favorable prognostic indicator for patients with MPE receiving chemotherapy.

  13. Metabotropic glutamate receptor 1 splice variants mGluR1a and mGluR1b combine in mGluR1a/b dimers in vivo

    Czech Academy of Sciences Publication Activity Database

    Techlovská, Šárka; Chambers, Jayne Nicole; Dvořáková, Michaela; Petralia, R.S.; Wang, Y.X.; Hájková, Alena; Franková, Daniela; Prezeau, L.; Blahoš, Jaroslav

    2014-01-01

    Roč. 86, November (2014), s. 329-326 ISSN 0028-3908 R&D Projects: GA ČR GAP303/12/2408 Institutional support: RVO:68378050 Keywords : Glutamate receptors * GPCR * alternative splicing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.106, year: 2014

  14. The BRCA1 alternative splicing variant delta14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells

    Czech Academy of Sciences Publication Activity Database

    Ševčík, J.; Falk, Martin; Kleiblová, P.; Lhota, F.; Štefančíková, L.; Janatová, M.; Weiterová, Lenka; Lukášová, Emilie; Kozubek, Stanislav; Pohlreich, P.; Kleibl, Z.

    2012-01-01

    Roč. 24, č. 5 (2012), s. 1023-1030 ISSN 0898-6568 R&D Projects: GA AV ČR(CZ) IAA500040802 Institutional research plan: CEZ:AV0Z50040702 Keywords : BRCA1 * alternative splicing * DNA repair Subject RIV: BO - Biophysics Impact factor: 4.304, year: 2012

  15. Genome-wide data-mining of candidate human splice translational efficiency polymorphisms (STEPs and an online database.

    Directory of Open Access Journals (Sweden)

    Christopher A Raistrick

    2010-10-01

    Full Text Available Variation in pre-mRNA splicing is common and in some cases caused by genetic variants in intronic splicing motifs. Recent studies into the insulin gene (INS discovered a polymorphism in a 5' non-coding intron that influences the likelihood of intron retention in the final mRNA, extending the 5' untranslated region and maintaining protein quality. Retention was also associated with increased insulin levels, suggesting that such variants--splice translational efficiency polymorphisms (STEPs--may relate to disease phenotypes through differential protein expression. We set out to explore the prevalence of STEPs in the human genome and validate this new category of protein quantitative trait loci (pQTL using publicly available data.Gene transcript and variant data were collected and mined for candidate STEPs in motif regions. Sequences from transcripts containing potential STEPs were analysed for evidence of splice site recognition and an effect in expressed sequence tags (ESTs. 16 publicly released genome-wide association data sets of common diseases were searched for association to candidate polymorphisms with HapMap frequency data. Our study found 3324 candidate STEPs lying in motif sequences of 5' non-coding introns and further mining revealed 170 with transcript evidence of intron retention. 21 potential STEPs had EST evidence of intron retention or exon extension, as well as population frequency data for comparison.Results suggest that the insulin STEP was not a unique example and that many STEPs may occur genome-wide with potentially causal effects in complex disease. An online database of STEPs is freely accessible at http://dbstep.genes.org.uk/.

  16. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function.

    Directory of Open Access Journals (Sweden)

    Fernando Aprile-Garcia

    Full Text Available The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln by arginine (Arg substitution at codon 460 of the purinergic P2X7 receptor (P2X7R has been associated with mood disorders. No change in function (loss or gain has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations.

  17. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function.

    Science.gov (United States)

    Aprile-Garcia, Fernando; Metzger, Michael W; Paez-Pereda, Marcelo; Stadler, Herbert; Acuña, Matías; Liberman, Ana C; Senin, Sergio A; Gerez, Juan; Hoijman, Esteban; Refojo, Damian; Mitkovski, Mišo; Panhuysen, Markus; Stühmer, Walter; Holsboer, Florian; Deussing, Jan M; Arzt, Eduardo

    2016-01-01

    The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations.

  18. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Je-Hyuk Lee

    2009-11-01

    Full Text Available Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells.

  19. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Science.gov (United States)

    Lee, Je-Hyuk; Park, In-Hyun; Gao, Yuan; Li, Jin Billy; Li, Zhe; Daley, George Q; Zhang, Kun; Church, George M

    2009-11-01

    Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS) cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells.

  20. Expression of long non-coding RNAs in autoimmunity and linkage to enhancer function and autoimmune disease risk genetic variants.

    Science.gov (United States)

    Aune, T M; Crooke, P S; Patrick, A E; Tossberg, J T; Olsen, N J; Spurlock, C F

    2017-07-01

    Genome-wide association studies have identified numerous genetic variants conferring autoimmune disease risk. Most of these genetic variants lie outside protein-coding genes hampering mechanistic explorations. Numerous mRNAs are also differentially expressed in autoimmune disease but their regulation is also unclear. The majority of the human genome is transcribed yet its biologic significance is incompletely understood. We performed whole genome RNA-sequencing [RNA-seq] to categorize expression of mRNAs, known and novel long non-coding RNAs [lncRNAs] in leukocytes from subjects with autoimmune disease and identified annotated and novel lncRNAs differentially expressed across multiple disorders. We found that loci transcribing novel lncRNAs were not randomly distributed across the genome but co-localized with leukocyte transcriptional enhancers, especially super-enhancers, and near genetic variants associated with autoimmune disease risk. We propose that alterations in enhancer function, including lncRNA expression, produced by genetics and environment, change cellular phenotypes contributing to disease risk and pathogenesis and represent attractive therapeutic targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. cis-Expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue.

    Directory of Open Access Journals (Sweden)

    Lenora W M Loo

    Full Text Available Genome-wide association studies (GWAS have identified 19 risk variants associated with colorectal cancer. As most of these risk variants reside outside the coding regions of genes, we conducted cis-expression quantitative trait loci (cis-eQTL analyses to investigate possible regulatory functions on the expression of neighboring genes. Forty microsatellite stable and CpG island methylator phenotype-negative colorectal tumors and paired adjacent normal colon tissues were used for genome-wide SNP and gene expression profiling. We found that three risk variants (rs10795668, rs4444235 and rs9929218, using near perfect proxies rs706771, rs11623717 and rs2059252, respectively were significantly associated (FDR q-value ≤0.05 with expression levels of nearby genes (<2 Mb up- or down-stream. We observed an association between the low colorectal cancer risk allele (A for rs10795668 at 10p14 and increased expression of ATP5C1 (q = 0.024 and between the colorectal cancer high risk allele (C for rs4444235 at 14q22.2 and increased expression of DLGAP5 (q = 0.041, both in tumor samples. The colorectal cancer low risk allele (A for rs9929218 at 16q22.1 was associated with a significant decrease in expression of both NOL3 (q = 0.017 and DDX28 (q = 0.046 in the adjacent normal colon tissue samples. Of the four genes, DLGAP5 and NOL3 have been previously reported to play a role in colon carcinogenesis and ATP5C1 and DDX28 are mitochondrial proteins involved in cellular metabolism and division, respectively. The combination of GWAS findings, prior functional studies, and the cis-eQTL analyses described here suggest putative functional activities for three of the colorectal cancer GWAS identified risk loci as regulating the expression of neighboring genes.

  2. Mechanism of alternative splicing and its regulation.

    Science.gov (United States)

    Wang, Yan; Liu, Jing; Huang, B O; Xu, Yan-Mei; Li, Jing; Huang, Lin-Feng; Lin, Jin; Zhang, Jing; Min, Qing-Hua; Yang, Wei-Ming; Wang, Xiao-Zhong

    2015-03-01

    Alternative splicing of precursor mRNA is an essential mechanism to increase the complexity of gene expression, and it plays an important role in cellular differentiation and organism development. Regulation of alternative splicing is a complicated process in which numerous interacting components are at work, including cis-acting elements and trans-acting factors, and is further guided by the functional coupling between transcription and splicing. Additional molecular features, such as chromatin structure, RNA structure and alternative transcription initiation or alternative transcription termination, collaborate with these basic components to generate the protein diversity due to alternative splicing. All these factors contributing to this one fundamental biological process add up to a mechanism that is critical to the proper functioning of cells. Any corruption of the process may lead to disruption of normal cellular function and the eventuality of disease. Cancer is one of those diseases, where alternative splicing may be the basis for the identification of novel diagnostic and prognostic biomarkers, as well as new strategies for therapy. Thus, an in-depth understanding of alternative splicing regulation has the potential not only to elucidate fundamental biological principles, but to provide solutions for various diseases.

  3. Thermopriming Triggers Splicing Memory in Arabidopsis

    KAUST Repository

    Ling, Yu

    2018-02-20

    Abiotic and biotic stresses limit crop productivity. Exposure to a non-lethal stress, referred to as priming, can allow plants to survive subsequent and otherwise lethal conditions; the priming effect persists even after a prolonged stress-free period. However, the molecular mechanisms underlying priming are not fully understood. Here, we investigated the molecular basis of heat shock memory and the role of priming in Arabidopsisthaliana. Comprehensive analysis of transcriptome-wide changes in gene expression and alternative splicing in primed and non-primed plants revealed that alternative splicing functions as a novel component of heat shock memory. We show that priming of plants with a non-lethal heat stress results in de-repression of splicing after a second exposure to heat stress. By contrast, non-primed plants showed significant repression of splicing. These observations link ‘splicing memory’ to the ability of plants to survive subsequent and otherwise lethal heat stress. This newly discovered priming-induced splicing memory may represent a general feature of heat stress responses in plants and other organisms as many of the key components of heat shock responses are conserved among eukaryotes. Furthermore, this finding could facilitate the development of novel approaches to improve plant survival under extreme heat stress.

  4. Characterization of the first honeybee Ca²⁺ channel subunit reveals two novel species- and splicing-specific modes of regulation of channel inactivation.

    Science.gov (United States)

    Cens, Thierry; Rousset, Matthieu; Collet, Claude; Raymond, Valérie; Démares, Fabien; Quintavalle, Annabelle; Bellis, Michel; Le Conte, Yves; Chahine, Mohamed; Charnet, Pierre

    2013-07-01

    The honeybee is a model system to study learning and memory, and Ca(2+) signals play a key role in these processes. We have cloned, expressed, and characterized the first honeybee Ca(2+) channel subunit. We identified two splice variants of the Apis CaVβ Ca(2+) channel subunit (Am-CaVβ) and demonstrated expression in muscle and neurons. Although AmCaVβ shares with vertebrate CaVβ subunits the SH3 and GK domains, it beholds a unique N terminus that is alternatively spliced in the first exon to produce a long (a) and short (b) variant. When expressed with the CaV2 channels both, AmCaVβa and AmCaVβb, increase current amplitude, shift the voltage-sensitivity of the channel, and slow channel inactivation as the vertebrate CaVβ2a subunit does. However, as opposed to CaVβ2a, slow inactivation induced by Am-CaVβa was insensitive to palmitoylation but displayed a unique PI3K sensitivity. Inactivation produced by the b variant was PI3K-insensitive but staurosporine/H89-sensitive. Deletion of the first exon suppressed the sensitivity to PI3K inhibitors, staurosporine, or H89. Recording of Ba(2+) currents in Apis neurons or muscle cells evidenced a sensitivity to PI3K inhibitors and H89, suggesting that both AmCaVβ variants may be important to couple cell signaling to Ca(2+) entry in vivo. Functional interactions with phospho-inositide and identification of phosphorylation sites in AmCaVβa and AmCaVβb N termini, respectively, suggest that AmCaVβ splicing promoted two novel and alternative modes of regulation of channel activity with specific signaling pathways. This is the first description of a splicing-dependent kinase switch in the regulation of Ca(2+) channel activity by CaVβ subunit.

  5. SpliceDetector: a software for detection of alternative splicing events in human and model organisms directly from transcript IDs.

    Science.gov (United States)

    Baharlou Houreh, Mandana; Ghorbani Kalkhajeh, Payam; Niazi, Ali; Ebrahimi, Faezeh; Ebrahimie, Esmaeil

    2018-03-22

    In eukaryotes, different combinations of exons lead to multiple transcripts with various functions in protein level, in a process called alternative splicing (AS). Unfolding the complexity of functional genomics through genome-wide profiling of AS and determining the altered ultimate products provide new insights for better understanding of many biological processes, disease progress as well as drug development programs to target harmful splicing variants. The current available tools of alternative splicing work with raw data and include heavy computation. In particular, there is a shortcoming in tools to discover AS events directly from transcripts. Here, we developed a Windows-based user-friendly tool for identifying AS events from transcripts without the need to any advanced computer skill or database download. Meanwhile, due to online working mode, our application employs the updated SpliceGraphs without the need to any resource updating. First, SpliceGraph forms based on the frequency of active splice sites in pre-mRNA. Then, the presented approach compares query transcript exons to SpliceGraph exons. The tool provides the possibility of statistical analysis of AS events as well as AS visualization compared to SpliceGraph. The developed application works for transcript sets in human and model organisms.

  6. The antagonistic effect of antipsychotic drugs on a HEK293 cell line stably expressing human alpha(1A1)-adrenoceptors

    DEFF Research Database (Denmark)

    Nourian, Zahra; Mulvany, Michael J; Nielsen, Karsten Bork

    2008-01-01

    Antipsychotic drugs often cause orthostatic hypotension, probably through antagonist action on resistance vessel alpha(1A)-adrenoceptors. Here we have tested this possibility directly using cells transfected with a relevant human alpha(1A)-adrenoceptor splice variant. To determine a splice variant...... a cell line stably expressing a functional form of this splice variant. The expression of recombinant alpha(1A1)-adrenoceptor subtype was confirmed by Western immunoblot analysis, and its functionality demonstrated using a Fura-2 assay by a rise in intracellular calcium concentration ([Ca(2+)](i)) when...... human alpha(1A1)-adrenoceptors in competition binding studies confirmed much higher antagonist affinity of sertindole and risperidone than haloperidol for these receptors. In summary, it can be concluded that there is an approximately 10-fold higher adrenoceptor affinity of risperidone and sertindole...

  7. A study of alternative splicing in the pig

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Cirera Salicio, Susanna; Gilchrist, Michael J.

    2010-01-01

    BACKGROUND: Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs) provide evidence of a great number of possible...... alternative isoforms. With the EST resource for the domestic pig now containing more than one million porcine ESTs, it is possible to identify alternative splice forms of the individual transcripts in this species from the EST data with some confidence. RESULTS: The pig EST data generated by the Sino...... transcripts with expression patterns matching those of the EST data. The remaining four genes had tissue-restricted expression of alternative spliced transcripts. Five out of the 16 splice events that were experimentally verified were found to be putative pig specific. CONCLUSIONS: In accordance with human...

  8. Stress-Induced Isoforms of MDM2 and MDM4 Correlate with High-Grade Disease and an Altered Splicing Network in Pediatric Rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Aishwarya G. Jacob

    2013-09-01

    Full Text Available Pediatric rhabdomyosarcoma (RMS is a morphologically and genetically heterogeneous malignancy commonly classified into three histologic subtypes, namely, alveolar, embryonal, and anaplastic. An issue that continues to challenge effective RMS patient prognosis is the dearth of molecular markers predictive of disease stage irrespective of tumor subtype. Our study involving a panel of 70 RMS tumors has identified specific alternative splice variants of the oncogenes Murine Double Minute 2 (MDM2 and MDM4 as potential biomarkers for RMS. Our results have demonstrated the strong association of genotoxic-stress inducible splice forms MDM2-ALT1 (91.6% Intergroup Rhabdomyosarcoma Study Group stage 4 tumors and MDM4-ALT2 (90.9% MDM4-ALT2-positive T2 stage tumors with high-risk metastatic RMS. Moreover, MDM2-ALT1-positive metastatic tumors belonged to both the alveolar (50% and embryonal (41.6% subtypes, making this the first known molecular marker for high-grade metastatic disease across the most common RMS subtypes. Furthermore, our results show that MDM2-ALT1 expression can function by directly contribute to metastatic behavior and promote the invasion of RMS cells through a matrigel-coated membrane. Additionally, expression of both MDM2-ALT1 and MDM4-ALT2 increased anchorage-independent cell-growth in soft agar assays. Intriguingly, we observed a unique coordination in the splicing of MDM2-ALT1 and MDM4-ALT2 in approximately 24% of tumor samples in a manner similar to genotoxic stress response in cell lines. To further explore splicing network alterations with possible relevance to RMS disease, we used an exon microarray approach to examine stress-inducible splicing in an RMS cell line (Rh30 and observed striking parallels between stress-responsive alternative splicing and constitutive splicing in RMS tumors.

  9. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    Energy Technology Data Exchange (ETDEWEB)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx [Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México (Mexico); Hidalgo-Miranda, Alfredo, E-mail: ahidalgo@inmegen.gob.mx [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); Romero-Córdoba, Sandra Lorena, E-mail: sromero_cordoba@hotmail.com [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); and others

    2016-01-15

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  10. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    International Nuclear Information System (INIS)

    Zacapala-Gómez, Ana Elvira; Del Moral-Hernández, Oscar; Villegas-Sepúlveda, Nicolás; Hidalgo-Miranda, Alfredo; Romero-Córdoba, Sandra Lorena

    2016-01-01

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  11. Expression defect size among unclassified MLH1 variants determines pathogenicity in Lynch syndrome diagnosis

    DEFF Research Database (Denmark)

    Hinrichsen, Inga; Brieger, Angela; Trojan, Jörg

    2013-01-01

    Lynch syndrome is caused by a germline mutation in a mismatch repair gene, most commonly the MLH1 gene. However, one third of the identified alterations are missense variants with unclear clinical significance. The functionality of these variants can be tested in the laboratory, but the results...... cannot be used for clinical diagnosis. We therefore aimed to establish a laboratory test that can be applied clinically....

  12. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing.

    Science.gov (United States)

    Juan, Wen Chun; Roca, Xavier; Ong, S Tiong

    2014-01-01

    Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3' end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.

  13. Dyslexia risk variant rs600753 is linked with dyslexia-specific differential allelic expression of DYX1C1

    Directory of Open Access Journals (Sweden)

    Bent Müller

    2018-02-01

    Full Text Available Abstract An increasing number of genetic variants involved in dyslexia development were discovered during the last years, yet little is known about the molecular functional mechanisms of these SNPs. In this study we investigated whether dyslexia candidate SNPs have a direct, disease-specific effect on local expression levels of the assumed target gene by using a differential allelic expression assay. In total, 12 SNPs previously associated with dyslexia and related phenotypes were suitable for analysis. Transcripts corresponding to four SNPs were sufficiently expressed in 28 cell lines originating from controls and a family affected by dyslexia. We observed a significant effect of rs600753 on expression levels of DYX1C1 in forward and reverse sequencing approaches. The expression level of the rs600753 risk allele was increased in the respective seven cell lines from members of the dyslexia family which might be due to a disturbed transcription factor binding sites. When considering our results in the context of neuroanatomical dyslexia-specific findings, we speculate that this mechanism may be part of the pathomechanisms underlying the dyslexia-specific brain phenotype. Our results suggest that allele-specific DYX1C1 expression levels depend on genetic variants of rs600753 and contribute to dyslexia. However, these results are preliminary and need replication.

  14. Dyslexia risk variant rs600753 is linked with dyslexia-specific differential allelic expression of DYX1C1.

    Science.gov (United States)

    Müller, Bent; Boltze, Johannes; Czepezauer, Ivonne; Hesse, Volker; Wilcke, Arndt; Kirsten, Holger

    2018-02-19

    An increasing number of genetic variants involved in dyslexia development were discovered during the last years, yet little is known about the molecular functional mechanisms of these SNPs. In this study we investigated whether dyslexia candidate SNPs have a direct, disease-specific effect on local expression levels of the assumed target gene by using a differential allelic expression assay. In total, 12 SNPs previously associated with dyslexia and related phenotypes were suitable for analysis. Transcripts corresponding to four SNPs were sufficiently expressed in 28 cell lines originating from controls and a family affected by dyslexia. We observed a significant effect of rs600753 on expression levels of DYX1C1 in forward and reverse sequencing approaches. The expression level of the rs600753 risk allele was increased in the respective seven cell lines from members of the dyslexia family which might be due to a disturbed transcription factor binding sites. When considering our results in the context of neuroanatomical dyslexia-specific findings, we speculate that this mechanism may be part of the pathomechanisms underlying the dyslexia-specific brain phenotype. Our results suggest that allele-specific DYX1C1 expression levels depend on genetic variants of rs600753 and contribute to dyslexia. However, these results are preliminary and need replication.

  15. Local binary pattern variants-based adaptive texture features analysis for posed and nonposed facial expression recognition

    Science.gov (United States)

    Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki

    2017-09-01

    Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.

  16. Vitamin D and alternative splicing of RNA.

    Science.gov (United States)

    Zhou, Rui; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Xu, Jianzhong; Adams, John S; Hewison, Martin

    2015-04-01

    The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Expression of p89c-Mybex9b, an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells

    International Nuclear Information System (INIS)

    Manzotti, G; Mariani, S A; Corradini, F; Bussolari, R; Cesi, V; Vergalli, J; Ferrari-Amorotti, G; Fragliasso, V; Soliera, A R; Cattelani, S; Raschellà, G; Holyoake, T L; Calabretta, B

    2012-01-01

    The c-Myb gene encodes the p75 c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is p c-Mybex9b , which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of p c-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of p c-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75 c-Myb , p c-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of p c-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of p c-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34 + cells, without affecting the levels of p75 c-Myb . Together, these studies indicate that expression of the low-abundance p c-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells

  18. Multiset splicing systems.

    Science.gov (United States)

    Dassow, Jürgen; Vaszil, György

    2004-01-01

    We consider splicing systems reflecting two important aspects of the behaviour of DNA molecules in nature or in laboratory experiments which so far have not been studied in the literature. We examine the effect of splicing rules applied to finite multisets of words using sequential and different types of parallel derivation strategies and compare the sets of words or sets of multisets which can be obtained.

  19. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frédéric Pontvianne

    2010-11-01

    Full Text Available In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1. Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis.

  20. Co-occurring expression and methylation QTLs allow detection of common causal variants and shared biological mechanisms.

    Science.gov (United States)

    Pierce, Brandon L; Tong, Lin; Argos, Maria; Demanelis, Kathryn; Jasmine, Farzana; Rakibuz-Zaman, Muhammad; Sarwar, Golam; Islam, Md Tariqul; Shahriar, Hasan; Islam, Tariqul; Rahman, Mahfuzar; Yunus, Md; Kibriya, Muhammad G; Chen, Lin S; Ahsan, Habibul

    2018-02-23

    Inherited genetic variation affects local gene expression and DNA methylation in humans. Most expression quantitative trait loci (cis-eQTLs) occur at the same genomic location as a methylation QTL (cis-meQTL), suggesting a common causal variant and shared mechanism. Using DNA and RNA from peripheral blood of Bangladeshi individuals, here we use co-localization methods to identify eQTL-meQTL pairs likely to share a causal variant. We use partial correlation and mediation analyses to identify >400 of these pairs showing evidence of a causal relationship between expression and methylation (i.e., shared mechanism) with many additional pairs we are underpowered to detect. These co-localized pairs are enriched for SNPs showing opposite associations with expression and methylation, although many SNPs affect multiple CpGs in opposite directions. This work demonstrates the pervasiveness of co-regulated expression and methylation in the human genome. Applying this approach to other types of molecular QTLs can enhance our understanding of regulatory mechanisms.

  1. Morphine-induced MOR-1X and ASF/SF2 Expressions Are Independent of Transcriptional Regulation: Implications for MOR-1X Signaling.

    Science.gov (United States)

    Regan, Patrick M; Sariyer, Ilker K; Langford, T Dianne; Datta, Prasun K; Khalili, Kamel

    2016-07-01

    Recently, multiple μ-opioid receptor (MOR) isoforms have been identified that originate from a single gene, OPRM1; however, both their regulation and their functional significance are poorly characterized. The objectives of this study were to decipher, first, the regulation of alternatively spliced μ-opioid receptor isoforms and the spliceosome components that determine splicing specificity and, second, the signaling pathways utilized by particular isoforms both constitutively and following agonist binding. Our studies demonstrated that the expression of a particular splice variant, MOR-1X, was up-regulated by morphine, and this coincided with an increase in the essential splicing factor ASF/SF2. Structural comparison of this isoform to the prototypical variant MOR-1 revealed that the unique distal portion of the C-terminal domain contains additional phosphorylation sites, whereas functional comparison found distinct signaling differences, particularly in the ERK and p90 RSK pathways. Additionally, MOR-1X expression significantly reduced Bax expression and mitochondrial dehydrogenase activity, suggesting a unique functional consequence for MOR-1X specific signaling. Collectively, these findings suggest that alternative splicing of the MOR is altered by exogenous opioids, such as morphine, and that individual isoforms, such as MOR-1X, mediate unique signal transduction with distinct functional consequence. Furthermore, we have identified for the first time a potential mechanism that involves the essential splicing factor ASF/SF2 through which morphine regulates splicing specificity of the MOR encoding gene, OPRM1. © 2015 Wiley Periodicals, Inc.

  2. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    Directory of Open Access Journals (Sweden)

    Reyka G. Jayasinghe

    2018-04-01

    Full Text Available Summary: For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. : Jayasinghe et al. identify nearly 2,000 splice-site-creating mutations (SCMs from over 8,000 tumor samples across 33 cancer types. They provide a more accurate interpretation of previously mis-annotated mutations, highlighting the importance of integrating data types to understand the functional and the clinical implications of splicing mutations in human disease. Keywords: splicing, RNA, mutations of clinical relevance

  3. SPA: a probabilistic algorithm for spliced alignment.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because they use ad hoc scoring models that cannot correctly trade off the likelihoods of various sequencing errors against the probabilities of different gene structures. Here we develop a Bayesian probabilistic approach to cDNA-to-genome alignment. Gene structures are assigned prior probabilities based on the lengths of their introns and exons, and based on the sequences at their splice boundaries. A likelihood model for sequencing errors takes into account the rates at which misincorporation, as well as insertions and deletions of different lengths, occurs during sequencing. The parameters of both the prior and likelihood model can be automatically estimated from a set of cDNAs, thus enabling our method to adapt itself to different organisms and experimental procedures. We implemented our method in a fast cDNA-to-genome alignment program, SPA, and applied it to the FANTOM3 dataset of over 100,000 full-length mouse cDNAs and a dataset of over 20,000 full-length human cDNAs. Comparison with the results of four other mapping programs shows that SPA produces alignments of significantly higher quality. In particular, the quality of the SPA alignments near splice boundaries and SPA's mapping of the 5' and 3' ends of the cDNAs are highly improved, allowing for more accurate identification of transcript starts and ends, and accurate identification of subtle splice variations. Finally, our splice boundary analysis on the human dataset suggests the existence of a novel non

  4. An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, Kelly V.; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D.; Clauser, Karl R.; Tabb, David L.; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P.; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A.; Perou, Charles M.; Chen, Xian; Davies, Sherri R.; Maher, Christopher A.; Kinsinger, Christopher R.; Rodland, Karen D.; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R. Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D.; Liebler, Daniel C.; Carr, Steven A.; Payne, Samuel; Ellis, Matthew J.; Fenyő, David

    2015-12-02

    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations and splice variants identified in cancer cells are translated. Herein we therefore describe a proteogenomic data integration tool (QUILTS) and illustrate its application to whole genome, transcriptome and global MS peptide sequence datasets generated from a pair of luminal and basal-like breast cancer patient derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS process replicates. Despite over thirty sample replicates, only about 10% of all SNV (somatic and germline) were detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNV without a detectable mRNA transcript were also observed demonstrating the transcriptome coverage was also incomplete (~80%). In contrast to germ-line variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than the luminal tumor raising the possibility of differential translation or protein degradation effects. In conclusion, the QUILTS program integrates DNA, RNA and peptide sequencing to assess the degree to which somatic mutations are translated and therefore biologically active. By identifying gaps in sequence coverage QUILTS benchmarks current technology and assesses progress towards whole cancer proteome and transcriptome analysis.

  5. SQSTM1 splice site mutation in distal myopathy with rimmed vacuoles.

    Science.gov (United States)

    Bucelli, Robert C; Arhzaouy, Khalid; Pestronk, Alan; Pittman, Sara K; Rojas, Luisa; Sue, Carolyn M; Evilä, Anni; Hackman, Peter; Udd, Bjarne; Harms, Matthew B; Weihl, Conrad C

    2015-08-25

    To identify the genetic etiology and characterize the clinicopathologic features of a novel distal myopathy. We performed whole-exome sequencing on a family with an autosomal dominant distal myopathy and targeted exome sequencing in 1 patient with sporadic distal myopathy, both with rimmed vacuolar pathology. We also evaluated the pathogenicity of identified mutations using immunohistochemistry, Western blot analysis, and expression studies. Sequencing identified a likely pathogenic c.1165+1 G>A splice donor variant in SQSTM1 in the affected members of 1 family and in an unrelated patient with sporadic distal myopathy. Affected patients had late-onset distal lower extremity weakness, myopathic features on EMG, and muscle pathology demonstrating rimmed vacuoles with both TAR DNA-binding protein 43 and SQSTM1 inclusions. The c.1165+1 G>A SQSTM1 variant results in the expression of 2 alternatively spliced SQSTM1 proteins: 1 lacking the C-terminal PEST2 domain and another lacking the C-terminal ubiquitin-associated (UBA) domain, both of which have distinct patterns of cellular and skeletal muscle localization. SQSTM1 is an autophagic adaptor that shuttles aggregated and ubiquitinated proteins to the autophagosome for degradation via its C-terminal UBA domain. Similar to mutations in VCP, dominantly inherited mutations in SQSTM1 are now associated with rimmed vacuolar myopathy, Paget disease of bone, amyotrophic lateral sclerosis, and frontotemporal dementia. Our data further suggest a pathogenic connection between the disparate phenotypes. © 2015 American Academy of Neurology.

  6. Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells.

    Science.gov (United States)

    Wu, Liang; Zhang, Xiaolong; Zhao, Zhikun; Wang, Ling; Li, Bo; Li, Guibo; Dean, Michael; Yu, Qichao; Wang, Yanhui; Lin, Xinxin; Rao, Weijian; Mei, Zhanlong; Li, Yang; Jiang, Runze; Yang, Huan; Li, Fuqiang; Xie, Guoyun; Xu, Liqin; Wu, Kui; Zhang, Jie; Chen, Jianghao; Wang, Ting; Kristiansen, Karsten; Zhang, Xiuqing; Li, Yingrui; Yang, Huanming; Wang, Jian; Hou, Yong; Xu, Xun

    2015-01-01

    Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in cervical carcinomas. Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers, but virally induced tumors have not been studied. HeLa is a well characterized HPV+ cervical cancer cell line. We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a customized microwell chip. Using this method, we successfully amplified full-length transcripts of 669 single HeLa S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing. Based on these data, we obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative splicing and fusions. Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell level. By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B and IRF1 known to interact with HPV viral proteins. Our results reveal the heterogeneity of a virus-infected cell line. It not only provides a transcriptome characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq analysis of virally infected cells and cancers.

  7. Novel brain expression of ClC-1 chloride channels and enrichment of CLCN1 variants in epilepsy.

    Science.gov (United States)

    Chen, Tim T; Klassen, Tara L; Goldman, Alica M; Marini, Carla; Guerrini, Renzo; Noebels, Jeffrey L

    2013-03-19

    To explore the potential contribution of genetic variation in voltage-gated chloride channels to epilepsy, we analyzed CLCN family (CLCN1-7) gene variant profiles in individuals with complex idiopathic epilepsy syndromes and determined the expression of these channels in human and murine brain. We used parallel exomic sequencing of 237 ion channel subunit genes to screen individuals with a clinical diagnosis of idiopathic epilepsy and evaluate the distribution of missense variants in CLCN genes in cases and controls. We examined regional expression of CLCN1 in human and mouse brain using reverse transcriptase PCR, in situ hybridization, and Western immunoblotting. We found that in 152 individuals with sporadic epilepsy of unknown origin, 96.7% had at least one missense variant in the CLCN genes compared with 28.2% of 139 controls. Nonsynonymous single nucleotide polymorphisms in the "skeletal" chloride channel gene CLCN1 and in CLCN2, a putative human epilepsy gene, were detected in threefold excess in cases relative to controls. Among these, we report a novel de novo CLCN1 truncation mutation in a patient with pharmacoresistant generalized seizures and a dystonic writer's cramp without evidence of variants in other channel genes linked to epilepsy. Molecular localization revealed the unexpectedly widespread presence of CLCN1 mRNA transcripts and the ClC-1 subunit protein in human and murine brain, previously believed absent in neurons. Our findings support a possible comorbid contribution of the "skeletal" chloride channel ClC-1 to the regulation of brain excitability and the need for further elucidation of the roles of CLCN genes in neuronal network excitability disorders.

  8. Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal

    Directory of Open Access Journals (Sweden)

    Macmaster Suzanne

    2002-06-01

    Full Text Available Abstract Background Non-invasive autofluorescent reporters have revolutionized lineage labeling in an array of different organisms. In recent years green fluorescent protein (GFP from the bioluminescent jellyfish Aequoria Victoria has gained popularity in mouse transgenic and gene targeting regimes 1. It offers several advantages over conventional gene-based reporters, such as lacZ and alkaline phosphatase, in that its visualization does not require a chromogenic substrate and can be realized in vivo. We have previously demonstrated the utility and developmental neutrality of enhanced green fluorescent protein (EGFP in embryonic stem (ES cells and mice 2. Results In this study we have used embryonic stem (ES cell-mediated transgenesis to test the enhanced cyan fluorescent protein (ECFP and enhanced yellow fluorescent protein (EYFP, two mutant and spectrally distinct color variants of wild type (wt GFP. We have also tested DsRed1, the novel red fluorescent protein reporter recently cloned from the Discostoma coral by virtue of its homology to GFP. To this end, we have established lines of ES cells together with viable and fertile mice having widespread expression of either the ECFP or EYFP GFP-variant reporters. However, we were unable to generate equivalent DsRed1 lines, suggesting that DsRed1 is not developmentally neutral or that transgene expression cannot be sustained constitutively. Balanced (diploid diploid and polarized (tetraploid diploid chimeras comprising combinations of the ECFP and EYFP ES cells and/or embryos, demonstrate that populations of cells expressing each individual reporter can be distinguished within a single animal. Conclusions GFP variant reporters are unique in allowing non-invasive multi-spectral visualization in live samples. The ECFP and EYFP-expressing transgenic ES cells and mice that we have generated provide sources of cells and tissues for combinatorial, double-tagged recombination experiments, chimeras or

  9. Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor

    Science.gov (United States)

    Richter, Anni; Barman, Adriana; Wüstenberg, Torsten; Soch, Joram; Schanze, Denny; Deibele, Anna; Behnisch, Gusalija; Assmann, Anne; Klein, Marieke; Zenker, Martin; Seidenbecher, Constanze; Schott, Björn H.

    2017-01-01

    Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2) availability in the striatum, and the DRD2 TaqIA (rs1800497) and C957T (rs6277) genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI) in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of addiction memory. PMID

  10. Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

    Science.gov (United States)

    Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. Transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese supero...

  11. Universal Alternative Splicing of Noncoding Exons

    DEFF Research Database (Denmark)

    Deveson, Ira W; Brunck, Marion E; Blackburn, James

    2018-01-01

    The human transcriptome is so large, diverse, and dynamic that, even after a decade of investigation by RNA sequencing (RNA-seq), we have yet to resolve its true dimensions. RNA-seq suffers from an expression-dependent bias that impedes characterization of low-abundance transcripts. We performed......, indicative of regulation by a deeply conserved splicing code. We propose that noncoding exons are functionally modular, with alternative splicing generating an enormous repertoire of potential regulatory RNAs and a rich transcriptional reservoir for gene evolution....

  12. Aberrant splicing in transgenes containing introns, exons, and V5 epitopes: lessons from developing an FSHD mouse model expressing a D4Z4 repeat with flanking genomic sequences.

    Science.gov (United States)

    Ansseau, Eugénie; Domire, Jacqueline S; Wallace, Lindsay M; Eidahl, Jocelyn O; Guckes, Susan M; Giesige, Carlee R; Pyne, Nettie K; Belayew, Alexandra; Harper, Scott Q

    2015-01-01

    The DUX4 gene, encoded within D4Z4 repeats on human chromosome 4q35, has recently emerged as a key factor in the pathogenic mechanisms underlying Facioscapulohumeral muscular dystrophy (FSHD). This recognition prompted development of animal models expressing the DUX4 open reading frame (ORF) alone or embedded within D4Z4 repeats. In the first published model, we used adeno-associated viral vectors (AAV) and strong viral control elements (CMV promoter, SV40 poly A) to demonstrate that the DUX4 cDNA caused dose-dependent toxicity in mouse muscles. As a follow-up, we designed a second generation of DUX4-expressing AAV vectors to more faithfully genocopy the FSHD-permissive D4Z4 repeat region located at 4q35. This new vector (called AAV.D4Z4.V5.pLAM) contained the D4Z4/DUX4 promoter region, a V5 epitope-tagged DUX4 ORF, and the natural 3' untranslated region (pLAM) harboring two small introns, DUX4 exons 2 and 3, and the non-canonical poly A signal required for stabilizing DUX4 mRNA in FSHD. AAV.D4Z4.V5.pLAM failed to recapitulate the robust pathology of our first generation vectors following delivery to mouse muscle. We found that the DUX4.V5 junction sequence created an unexpected splice donor in the pre-mRNA that was preferentially utilized to remove the V5 coding sequence and DUX4 stop codon, yielding non-functional DUX4 protein with 55 additional residues on its carboxyl-terminus. Importantly, we further found that aberrant splicing could occur in any expression construct containing a functional splice acceptor and sequences resembling minimal splice donors. Our findings represent an interesting case study with respect to AAV.D4Z4.V5.pLAM, but more broadly serve as a note of caution for designing constructs containing V5 epitope tags and/or transgenes with downstream introns and exons.

  13. Aberrant splicing in transgenes containing introns, exons, and V5 epitopes: lessons from developing an FSHD mouse model expressing a D4Z4 repeat with flanking genomic sequences.

    Directory of Open Access Journals (Sweden)

    Eugénie Ansseau

    Full Text Available The DUX4 gene, encoded within D4Z4 repeats on human chromosome 4q35, has recently emerged as a key factor in the pathogenic mechanisms underlying Facioscapulohumeral muscular dystrophy (FSHD. This recognition prompted development of animal models expressing the DUX4 open reading frame (ORF alone or embedded within D4Z4 repeats. In the first published model, we used adeno-associated viral vectors (AAV and strong viral control elements (CMV promoter, SV40 poly A to demonstrate that the DUX4 cDNA caused dose-dependent toxicity in mouse muscles. As a follow-up, we designed a second generation of DUX4-expressing AAV vectors to more faithfully genocopy the FSHD-permissive D4Z4 repeat region located at 4q35. This new vector (called AAV.D4Z4.V5.pLAM contained the D4Z4/DUX4 promoter region, a V5 epitope-tagged DUX4 ORF, and the natural 3' untranslated region (pLAM harboring two small introns, DUX4 exons 2 and 3, and the non-canonical poly A signal required for stabilizing DUX4 mRNA in FSHD. AAV.D4Z4.V5.pLAM failed to recapitulate the robust pathology of our first generation vectors following delivery to mouse muscle. We found that the DUX4.V5 junction sequence created an unexpected splice donor in the pre-mRNA that was preferentially utilized to remove the V5 coding sequence and DUX4 stop codon, yielding non-functional DUX4 protein with 55 additional residues on its carboxyl-terminus. Importantly, we further found that aberrant splicing could occur in any expression construct containing a functional splice acceptor and sequences resembling minimal splice donors. Our findings represent an interesting case study with respect to AAV.D4Z4.V5.pLAM, but more broadly serve as a note of caution for designing constructs containing V5 epitope tags and/or transgenes with downstream introns and exons.

  14. Expression and imprinting of DIO3 and DIO3OS genes in Holstein ...

    Indian Academy of Sciences (India)

    In this study, the five splice variants of DIO3OS were identified in Holstein cattle and had complex, tissue-specific expression patterns observed in eight tissues, including heart, liver, spleen, lung, kidney, muscle, fat and brain. In the G+C rich region, upstream from the cattle DIO3 gene, there were three small conserved ...

  15. The function and developmental expression of alternatively spliced isoforms of amphioxus and Xenopus laevis Pax2/5/8 genes: revealing divergence at the invertebrate to vertebrate transition

    Czech Academy of Sciences Publication Activity Database

    Short, S.; Kozmik, Zbyněk; Holland, L. Z.

    2012-01-01

    Roč. 318, č. 7 (2012), s. 555-571 ISSN 1552-5007 R&D Projects: GA ČR GAP305/10/2141; GA MŠk LH12047 Grant - others:NSF(US) MCB 06-20019 Institutional research plan: CEZ:AV0Z50520514 Keywords : Pax2/5/8 * alternative splicing * eye development * amphioxus * Xenopus laevis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.123, year: 2012

  16. Plasmodium falciparum parasites expressing pregnancy-specific variant surface antigens adhere strongly to the choriocarcinoma cell line BeWo

    DEFF Research Database (Denmark)

    Haase, Rikke N; Megnekou, Rosette; Lundquist, Maja

    2006-01-01

    Placenta-sequestering Plasmodium falciparum parasites causing pregnancy-associated malaria express pregnancy-specific variant surface antigens (VSA(PAM)). We report here that VSA(PAM)-expressing patient isolates adhere strongly to the choriocarcinoma cell line BeWo and that the BeWo line can...... be used to efficiently select for VSA(PAM) expression in vitro....

  17. Expression of Caspase-1 Gene Transcript Variant mRNA in Peripheral Blood Mononuclear Cells of Patients with Primary Gout in Different TCM Syndromes

    Directory of Open Access Journals (Sweden)

    Wan-Tai Dang

    2015-01-01

    Full Text Available A large number of studies have shown that cysteinyl aspartate specific protease-1 (CASP1 played an important role in the inflammatory response of primary gout, but the decreased expression of different CASP1 transcript variant could inhibit the activation of IL-1β. Our study mainly analyzed the expression level and function of CASP1 gene transcript variant mRNA in peripheral blood mononuclear cells of patients with gout in different TCM syndromes. The expression of CASP1 gene transcript variant and IL-1β mRNA in PBMCs were detected in patients with PG [acute phase (AP: 44 cases; nonacute phase (NAP: 52 cases] and healthy controls (HC: 30 cases by reverse transcription-polymerase chain reaction and/or real-time quantitative polymerase chain reaction. The expressions of plasma IL-1β in patients with PG and HC were detected by enzyme-linked immunosorbent assay. Dysregulated expression of the CASP1 gene and its transcript variant, plasma proinflammatory cytokines in all patients with primary gout in different TCM syndromes, correlation analysis showed that there was negative correlation between the expression of CASP1-gamma gene transcript variant mRNA and IL-1β protein in APPG group. The study suggested that CASP1 gene and its transcript variant may play a critical role in the inflammatory response of patients with PG in different phases and TCM syndromes.

  18. Gene trap mutagenesis of hnRNP A2/B1: a cryptic 3' splice site in the neomycin resistance gene allows continued expression of the disrupted cellular gene

    Directory of Open Access Journals (Sweden)

    DeGregori James V

    2003-01-01

    Full Text Available Abstract Background Tagged sequence mutagenesis is a process for constructing libraries of sequenced insertion mutations in embryonic stem cells that can be transmitted into the mouse germline. To better predict the functional consequences of gene entrapment on cellular gene expression, the present study characterized the effects of a U3Neo gene trap retrovirus inserted into an intron of the hnRNP A2/B1 gene. The mutation was selected for analysis because it occurred in a highly expressed gene and yet did not produce obvious phenotypes following germline transmission. Results Sequences flanking the integrated gene trap vector in 1B4 cells were used to isolate a full-length cDNA whose predicted amino acid sequence is identical to the human A2 protein at all but one of 341 amino acid residues. hnRNP A2/B1 transcripts extending into the provirus utilize a cryptic 3' splice site located 28 nucleotides downstream of the neomycin phosphotransferase start codon. The inserted Neo sequence and proviral poly(A site function as an 3' terminal exon that is utilized to produce hnRNP A2/B1-Neo fusion transcripts, or skipped to produce wild-type hnRNP A2/B1 transcripts. This results in only a modest disruption of hnRNPA2/B1 gene expression. Conclusions Expression of the occupied hnRNP A2/B1 gene and utilization of the viral poly(A site are consistent with an exon definition model of pre-mRNA splicing. These results reveal a mechanism by which U3 gene trap vectors can be expressed without disrupting cellular gene expression, thus suggesting ways to improve these vectors for gene trap mutagenesis.

  19. A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression.

    Directory of Open Access Journals (Sweden)

    Kerstin B Meyer

    2011-07-01

    Full Text Available Genetic mapping studies have identified multiple cancer susceptibility regions at chromosome 8q24, upstream of the MYC oncogene. MYC has been widely presumed as the regulated target gene, but definitive evidence functionally linking these cancer regions with MYC has been difficult to obtain. Here we examined candidate functional variants of a haplotype block at 8q24 encompassing the two independent risk alleles for prostate and breast cancer, rs620861 and rs13281615. We used the mapping of DNase I hypersensitive sites as a tool to prioritise regions for further functional analysis. This approach identified rs378854, which is in complete linkage disequilibrium (LD with rs620861, as a novel functional prostate cancer-specific genetic variant. We demonstrate that the risk allele (G of rs378854 reduces binding of the transcription factor YY1 in vitro. This factor is known to repress global transcription in prostate cancer and is a candidate tumour suppressor. Additional experiments showed that the YY1 binding site is occupied in vivo in prostate cancer, but not breast cancer cells, consistent with the observed cancer-specific effects of this single nucleotide polymorphism (SNP. Using chromatin conformation capture (3C experiments, we found that the region surrounding rs378854 interacts with the MYC and PVT1 promoters. Moreover, expression of the PVT1 oncogene in normal prostate tissue increased with the presence of the risk allele of rs378854, while expression of MYC was not affected. In conclusion, we identified a new functional prostate cancer risk variant at the 8q24 locus, rs378854 allele G, that reduces binding of the YY1 protein and is associated with increased expression of PVT1 located 0.5 Mb downstream.

  20. Identification of human-specific transcript variants induced by DNA insertions in the human genome.

    Science.gov (United Stat