WorldWideScience

Sample records for splenic t-cell proliferation

  1. Immunomodulatory Effects of CP-25 on Splenic T Cells of Rats with Adjuvant Arthritis.

    Science.gov (United States)

    Wang, Yang; Han, Chen-Chen; Cui, Dongqian; Luo, Ting-Ting; Li, Yifan; Zhang, Yuwen; Ma, Yang; Wei, Wei

    2018-02-23

    Rheumatoid arthritis (RA) is an autoimmune disease in which T cells play an important role. Paeoniflorin-6-oxy-benzenesulfonate (CP-25) shows a strong anti-inflammatory and immunomodulatory effect in the joint of adjuvant arthritis (AA) rats, but the role of the spleen function is still unclear. The aim of this study was to research how CP-25 regulated spleen function of AA rats. Male Sprague-Dawley rats were administered with CP-25 (50 mg/kg) orally from day 17 to 29 after immunization. The spleen histopathological changes were analyzed by hematoxylin-eosin staining. G protein-coupled receptor kinases (GRKs) and prostaglandin receptor subtypes (EPs) were screened by Western blot and immunohistochemistry. The co-expression of GRK2 and EP2 as well as GRK2 and EP4 was measured by immunofluorescence and co-immunoprecipitation. The expression of GRK2 and EP4 in splenic T cells was further detected by immunofluorescence. CP-25 was found to relieve the secondary paw swelling, attenuate histopathologic changes, and downregulate GRK2, EP2 and EP4 expression in AA rats. Additionally, CP-25 not only downregulated the co-expression of GRK2 and EP4 but also downregulated GRK2, EP4 expression in splenic T cells of AA rats. From these results, we can infer that CP-25 play an anti-inflammatory and immune function by affecting the function of the splenic T cells.

  2. Human renal tubular epithelial cells suppress alloreactive T cell proliferation.

    Science.gov (United States)

    Demmers, M W H J; Korevaar, S S; Roemeling-van Rhijn, M; van den Bosch, T P P; Hoogduijn, M J; Betjes, M G H; Weimar, W; Baan, C C; Rowshani, A T

    2015-03-01

    Renal tubular epithelial cells (TECs) are one of the main targets of alloreactive T cells during acute rejection. We hypothesize that TECs modulate the outcome of alloimmunity by executing immunosuppressive effects in order to dampen the local inflammation. We studied whether TECs possess immunosuppressive capacities and if indoleamine 2,3-dioxygenase (IDO) might play a role in suppressing T cell alloreactivity. Next, we studied the role of programmed death ligand 1 (PD-L1) and intercellular adhesion molecule-1 (ICAM-1 with regard to TEC-related immunomodulatory effects. CD3/CD28 and alloactivated peripheral blood mononuclear cells were co-cultured with activated TECs. We analysed CD4(+) and CD8(+) T cell proliferation and apoptosis in the absence or presence of IDO inhibitor 1-methyl-L-tryptophan (1-L-MT), anti-PD-L1 and anti-ICAM-1. Further, we examined whether inhibition of T cell proliferation was cell-cell contact-dependent. We found that TECs dose-dependently inhibited CD4(+) and CD8(+) T cell proliferation (Pcell proliferation was only partially restored or failed to restore using 1-L-MT. Activated TECs increased early and late apoptosis of proliferating CD4(+) and CD8(+) T cells; only CD4(+) T cell apoptosis was statistically affected by 1-L-MT. Transwell experiments revealed that TEC-mediated immunosuppression is cell-cell contact-dependent. We found that anti-ICAM-1 affected only CD4(+) T cell apoptosis and not T cell proliferation. Our data show that TECs suppress both CD4(+) and CD8(+) T cell proliferation contact dependently. Interestingly, inhibition of proliferation and enhancement of apoptosis of T cell subsets is differentially regulated by indoleamine 2,3-dioxygenase and ICAM-1, with no evidence for the involvement of PD-L1 in our system. © 2014 British Society for Immunology.

  3. Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse.

    Directory of Open Access Journals (Sweden)

    Marc Bajénoff

    Full Text Available Memory CD8(+ T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m. Memory CD8(+ T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+ T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+ T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+ T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+ T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+ T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+ T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+ T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+ T cells provide a local response by secreting effector molecules around infected cells.

  4. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells

    Energy Technology Data Exchange (ETDEWEB)

    Grygoryev, Dmytro [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Gauny, Stacey [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lasarev, Michael; Ohlrich, Anna [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Kronenberg, Amy [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Turker, Mitchell S., E-mail: turkerm@ohsu.edu [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 (United States)

    2016-06-15

    Highlights: • Densely ionizing forms of space radiation induce mutations in splenic T cells at low fluence. • Large interstitial deletions and discontinuous LOH patterns are radiation signature mutations. • Space radiation mutagenesis suggests a cancer risk from deep space travel. - Abstract: High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing {sup 48}Ti ions (1 GeV/amu, LET = 107 keV/μm), {sup 56}Fe ions (1 GeV/amu, LET = 151 keV/μm) ions, or sparsely ionizing protons (1 GeV, LET = 0.24 keV/μm). The lowest doses for {sup 48}Ti and {sup 56}Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3–5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the {sup 48}Ti and {sup 56}Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.

  5. The clinical significance of T-cells, sIL-2R and TNF in evaluating patients with splenic autotransplantation

    International Nuclear Information System (INIS)

    Wang Haowei; Wu Haorong; Li Juncheng; Wu Jingchang

    2002-01-01

    To study the immunological effects of splenic autotransplantation, forty patients with splenic trauma were divided into two groups equally. One group underwent splenic autotransplantation and another underwent splenectomy. Control group included ten cases. Splenic autotransplantation and splenectomy group were compared with the control group. In the group of splenic autotransplantation, CD3 + , CD4 + , CD8 + , CD4 + /CD8 + dropped and sIL-2R, TNF rose after a week of operation. Then CD3 + , CD4 + , CD8 + , CD4 + /CD8 + rose and sIL-2R, TNF dropped three months later. In the group of splenectomy, CD 3+ , CD4 + , CD8 + and CD4 + /CD8 + dropped persistently, while sIL-2R and TNF rose postoperatively. Result showed splenic autotransplantation can help body to maintain T-cells level and improve the anti-infective ability

  6. Parathyroid hormone dependent T cell proliferation in uremic rats

    DEFF Research Database (Denmark)

    Lewin, E; Ladefoged, Jens; Brandi, L

    1993-01-01

    was normalized. Rat PTH 1-84 stimulated in vitro the PHA-induced proliferation of T cells in a dose dependent manner. This effect was significant in CRF rat lymphocytes, but not in lymphocytes obtained from normal rats. Based upon the present results it is suggested that the secondary hyperparathyroidism...

  7. Malignant T cells exhibit CD45 resistant Stat 3 activation and proliferation in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Krejsgaard, T; Helvad, Rikke; Ralfkiær, Elisabeth

    2010-01-01

    -cell lymphoma (CTCL), the malignant T cells exhibit constitutive activation of the Jak3/Stat3 signalling pathway and uncontrolled proliferation. We show that CD45 expression is down-regulated on malignant T cells when compared to non-malignant T cells established from CTCL skin lesions. Moreover, CD45 cross...

  8. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis.

    Directory of Open Access Journals (Sweden)

    Peris Munyaka

    Full Text Available The cholinergic anti-inflammatory pathway (CAP is based on vagus nerve (VN activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR signaling. Inflammatory bowel disease (IBD patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs and sequential CD4+/CD25-T cell activation in the context of experimental colitis.The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25-T cell co-culture were determined.McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25-T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy.Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD.

  9. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  10. Foxp3+Regulatory T Cell Expression of Keratinocyte Growth Factor Enhances Lung Epithelial Proliferation.

    Science.gov (United States)

    Dial, Catherine F; Tune, Miriya K; Doerschuk, Claire M; Mock, Jason R

    2017-08-01

    Repair of the lung epithelium after injury is a critical component for resolution; however, the processes necessary to drive epithelial resolution are not clearly defined. Published data demonstrate that Foxp3 + regulatory T cells (Tregs) enhance alveolar epithelial proliferation after injury, and Tregs in vitro directly promote type II alveolar epithelial cell (AT2) proliferation, in part by a contact-independent mechanism. Therefore, we sought to determine the contribution of Treg-specific expression of a growth factor that is known to be important in lung repair, keratinocyte growth factor (kgf). The data demonstrate that Tregs express kgf and that Treg-specific expression of kgf regulates alveolar epithelial proliferation during the resolution phase of acute lung injury and in a model of regenerative alveologenesis in vivo. In vitro experiments demonstrate that AT2 cells cocultured with Tregs lacking kgf have decreased rates of proliferation compared with AT2 cells cocultured with wild-type Tregs. Moreover, Tregs isolated from lung tissue and grown in culture express higher levels of two growth factors that are important for lung repair (kgf and amphiregulin) compared with Tregs isolated from splenic tissue. Lastly, Tregs isolated from human lung tissue can be stimulated ex vivo to induce kgf expression. This study reveals mechanisms by which Tregs direct tissue-reparative effects during resolution after acute lung injury, further supporting the emerging role of Tregs in tissue repair.

  11. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection.

    Directory of Open Access Journals (Sweden)

    Catherine Q Nie

    2009-04-01

    Full Text Available Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis.

  12. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection.

    Science.gov (United States)

    Nie, Catherine Q; Bernard, Nicholas J; Norman, M Ursula; Amante, Fiona H; Lundie, Rachel J; Crabb, Brendan S; Heath, William R; Engwerda, Christian R; Hickey, Michael J; Schofield, Louis; Hansen, Diana S

    2009-04-01

    Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis.

  13. Malignant T cells exhibit CD45 resistant Stat3 activation and proliferation in cutaneous

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn Frej; Helvad, Rikke; Ralfkiaer, Elisabeth

    2010-01-01

    -cell lymphoma (CTCL), the malignant T cells exhibit constitutive activation of the Jak3/Stat3 signalling pathway and uncontrolled proliferation. We show that CD45 expression is down-regulated on malignant T cells when compared to non-malignant T cells established from CTCL skin lesions. Moreover, CD45 cross...

  14. Parathyroid hormone dependent T cell proliferation in uremic rats

    DEFF Research Database (Denmark)

    Lewin, E; Ladefoged, Jens; Brandi, L

    1993-01-01

    Chronic renal failure (CRF) is combined with an impairment of the immune system. The T cell may be a target for the action of parathyroid hormone (PTH). Rats with CRF have high blood levels of PTH. Therefore, the present investigation examined some aspects of the T cell function in both normal...

  15. Optimization of the T-cell proliferation assay in fascioliasis using a ...

    African Journals Online (AJOL)

    T-cell proliferation studies are traditionally carried out with radioactive reagents or fluorescent reagents that require measurement with advanced technology instrumentation. We attempted to calibrate the optimal conditions suitable for the use of a non-radioactive assay for the measurement of a T-cell proliferation assay in ...

  16. CD18 is required for optimal lymphopenia-induced proliferation of mouse T cells

    Science.gov (United States)

    Sarin, Ritu

    2012-01-01

    Lymphocyte numbers are tightly regulated; with acute lymphopenia, T cell numbers are reestablished through lymphopenia-induced proliferation. In contrast to the costimulation requirements of antigen-driven proliferation, a number of costimulatory molecules are not required for lymphopenia-induced proliferation. However, the requirement for major histocompatibility complex (MHC)-T cell receptor (TCR) interactions and the enhanced lymphopenia-induced proliferation in T cells with higher TCR affinity argue for a role for surface molecules that contribute to efficient MHC-TCR interactions, in particular adhesion molecules. CD18 is an integrin that contributes to the activation of peripheral and intestinal T cells through adhesive and costimulatory mechanisms. We found that CD18 is required for optimal polyclonal and monoclonal CD4+ T cell lymphopenia-induced proliferation in recombination-activating gene 1-deficient (RAG-1−/−) mice; this requirement persisted over time. Uniquely, the dependency on CD18 in CD4+ T cells is in the rapid proliferation in RAG-1−/− recipients and in the slow homeostatic proliferation in irradiated Balb/c recipients. Consistent with the proposed role for intestinal microbiota in lymphopenia-induced rapid proliferation in RAG−/− mice, we observed a significant reduction in rapid proliferation upon treatment of mice with antibiotics; however, the dependency on CD18 for optimal lymphopenia-induced proliferation persisted. Moreover, the dependency for CD18 is maintained over a wide range of numbers of initially transferred T cells, including a low number of initially transferred T cells, when the drive for proliferation is very strong and proliferation is more rapid. Overall, these data argue for an essential and broad role for CD18 in lymphopenia-induced proliferation. PMID:22821945

  17. Proliferation-linked apoptosis of adoptively transferred T cells after IL-15 administration in macaques.

    Directory of Open Access Journals (Sweden)

    Carolina Berger

    Full Text Available The adoptive transfer of antigen-specific effector T cells is being used to treat human infections and malignancy. T cell persistence is a prerequisite for therapeutic efficacy, but reliably establishing a high-level and durable T cell response by transferring cultured CD8(+ T cells remains challenging. Thus, strategies that promote a transferred high-level T cell response may improve the efficacy of T cell therapy. Lymphodepletion enhances persistence of transferred T cells in mice in part by reducing competition for IL-15, a common γ-chain cytokine that promotes T cell memory, but lymphodepleting regimens have toxicity. IL-15 can be safely administered and has minimal effects on CD4(+ regulatory T cells at low doses, making it an attractive adjunct in adoptive T cell therapy. Here, we show in lymphoreplete macaca nemestrina, that proliferation of adoptively transferred central memory-derived CD8(+ effector T (T(CM/E cells is enhanced in vivo by administering IL-15. T(CM/E cells migrated to memory niches, persisted, and acquired both central memory and effector memory phenotypes regardless of the cytokine treatment. Unexpectedly, despite maintaining T cell proliferation, IL-15 did not augment the magnitude of the transferred T cell response in blood, bone marrow, or lymph nodes. T cells induced to proliferate by IL-15 displayed increased apoptosis demonstrating that enhanced cycling was balanced by cell death. These results suggest that homeostatic mechanisms that regulate T cell numbers may interfere with strategies to augment a high-level T cell response by adoptive transfer of CD8(+ T(CM/E cells in lymphoreplete hosts.

  18. Assessment of Newcastle Disease specific T cell proliferation in different inbred MHC chicken lines

    DEFF Research Database (Denmark)

    Norup, Liselotte Rothmann; Dalgaard, Tina Sørensen; Pedersen, Asger Roer

    2011-01-01

    In this study we have described the establishment of an antigen-specific T cell proliferation assay based on recall stimulation with Newcastle disease (ND) antigen; further, we have described the results obtained after recall stimulation of animals containing different Major Histocompatibility...... Complex (MHC) haplotypes, vaccinated against ND. First optimization of the assay was performed to lower unspecific proliferation and to enhance antigen-specific T cell proliferation. These two issues were achieved using ethylene diamine tetra acetic-acid as stabilizing agent in blood samples...... and autologous immune serum in culture medium. The optimized assay was used to screen chickens with different MHC haplotypes for their ability to perform T cell proliferation. Results showed that the antigen-specific response of CD4+ and CD8+ T cells from B12 chickens was generally low, whereas B13, B130 and B...

  19. CD4 + T cells promote renal cell carcinoma proliferation via modulating YBX1.

    Science.gov (United States)

    Wang, Yong; Wang, Yiting; Xu, Liang; Lu, Xianqi; Fu, Donghe; Su, Jing; Geng, Hua; Qin, Guoxuan; Chen, Ruibing; Quan, Changyi; Niu, Yuanjie; Yue, Dan

    2018-02-01

    Renal cell carcinoma (RCC) is a common urologic tumor and the third leading cause of death among urological tumors. Recent studies demonstrate that RCC tumors are more heavily infiltrated by lymphocytes than other cancers. However, the exact roles played by CD4 + T cells in RCC proliferation remain unknown. In this study, we cocultured RCC cells with CD4 + T cells. Stable knockdown of YBX1 in RCC cells was constructed. The effects of CD4 + T cells, TGFβ1 and YBX1 on RCC cells were investigated using cell viability assays. In situ RCC nude mouse model was used to observe the tumor growth. The potential mechanisms of CD4 + T cells and YBX1 in RCC cells proliferation were explored by qRT-PCR and western blot. Expression of CD4, Foxp3 and TGFβ1 in RCC were quantified by immunohistochemical staining. The results indicated that CD4, Foxp3 and TGFβ1 were significantly up-regulated in RCC tissues. Human clinical sample and in vitro cell lines studies showed that RCC cells had better capacity than its surrounding normal kidney epithelial cells to recruit the CD4 + T cells. In vivo mouse model studies were consistent with the results by in vitro cell lines studies showing infiltrating T cells enhanced RCC cell proliferation. qRT-PCR and western blot exhibited that CD4 + T cells could enhance RCC cell proliferation via activating YBX1/HIF2α signaling pathway. Furthermore, CD4 + T cells functioned through inducing TGFβ1 expression. In a word, infiltrating CD4 + T cells promoted TGFβ1 expression in both RCC and T cells and regulated RCC cells proliferation via modulating TGFβ1/YBX1/ HIF2α signals. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Antibody response to a T-cell-independent antigen is preserved after splenic artery embolization for trauma

    NARCIS (Netherlands)

    Olthof, D. C.; Lammers, A. J. J.; van Leeuwen, E. M. M.; Hoekstra, J. B. L.; ten Berge, I. J. M.; Goslings, J. C.

    2014-01-01

    Splenic artery embolization (SAE) is increasingly being used as a nonoperative management strategy for patients with blunt splenic injury following trauma. The aim of this study was to assess the splenic function of patients who were embolized. A clinical study was performed, with splenic function

  1. The brain microvascular endothelium supports T cell proliferation and has potential for alloantigen presentation.

    Directory of Open Access Journals (Sweden)

    Julie Wheway

    Full Text Available Endothelial cells (EC form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC interact with and support the proliferation of T cells. We found HBEC to express MHC II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4(+ and CD8(+ T cells, which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for neuroimmunological complications of infectious diseases.

  2. Activation and exhaustion of antigen-specific CD8+T cells occur in different splenic compartments during infection with Plasmodium berghei.

    Science.gov (United States)

    Bayarsaikhan, Ganchimeg; Miyakoda, Mana; Yamamoto, Kazuo; Kimura, Daisuke; Akbari, Masoud; Yuda, Masao; Yui, Katsuyuki

    2017-06-01

    The spleen is the major organ in which T cells are primed during infection with malaria parasites. However, little is known regarding the dynamics of the immune responses and their localization within the splenic tissue during malaria infection. We examined murine CD8 + T cell responses during infection with Plasmodium berghei using recombinant parasites expressing a model antigen ovalbumin (OVA) protein and compared the responses with those elicited by Listeria monocytogenes expressing the same antigen. OVA-specific CD8 + T cells were mainly activated in the white pulp of the spleen during malaria infection, as similarly observed during Listeria infection. However, the fates of these activated CD8 + T cells were distinct. During infection with malaria parasites, activated CD8 + T cells preferentially accumulated in the red pulp and/or marginal zone, where cytokine production of OVA-specific CD8 + T cells decreased, and the expression of multiple inhibitory receptors increased. These cells preferentially underwent apoptosis, suggesting that T cell exhaustion mainly occurred in the red pulp and/or marginal zone. However, during Listeria infection, OVA-specific CD8 + T cells only transiently expressed inhibitory receptors in the white pulp and maintained their ability to produce cytokines and become memory cells. These results highlighted the distinct fates of CD8 + T cells during infection with Plasmodium parasites and Listeria, and suggested that activation and exhaustion of specific CD8 + T cells occurred in distinct spleen compartments during infection with malaria parasites. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fang; Chen, Rongjing [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Liu, Baojun [Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Han, Junli; Wang, Haining [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Shen, Gang [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Tao, Jiang, E-mail: taojiang2012@yahoo.cn [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  4. Alkylglycerols modulate the proliferation and differentiation of non-specific agonist and specific antigen-stimulated splenic lymphocytes.

    Directory of Open Access Journals (Sweden)

    Linxi Qian

    Full Text Available Alkylglycerols (AKGs are ether-linked glycerols derived from shark liver oil and found in small amounts in human milk. Previous studies showed that oral AKGs administration significantly increased the immune response in mice. The aim of the present study was to investigate the in vitro immunomodulatory effect of AKGs on stimulating splenic lymphocyte responses. C57BL/6 mice were immunized with hepatitis B surface antigen (HBsAg. Splenic B cells were purified and stimulated with anti-BCR and anti-CD38. Meanwhile, splenic CD4+ T cells were purified and stimulated with anti-CD3 and anti-CD28. For antigen specific stimulation, the purified CD4+ T cells were cocultured with HBsAg -pulsed dendritic cells. The stimulated lymphocytes were treated with different concentrations of AKGs. The cell proliferation was assessed by [3H]-thymidine incorporation assay. The maturation of B cells was assessed by examining the germline (GL transcription of IgG (γ1 mRNA expression, and the surface expressions of CD80/CD86 markers were examined by flow cytometry analysis. Th1/Th2 polarity was assessed by T-BET (Th1/GATA-3 (Th2 flow cytometry assay and by characteristic cytokines ELISA assay (TNF-α and IFN-γ for Th1; IL-4 and IL-10 for Th2. It was found that AKGs significantly increased the BCR/CD38 -stimulated B cell proliferation. The T cell proliferation in response to CD3/CD28 or specific antigen stimulation was also increased by AKGs. The transcriptional level of IgG (γ1 and the expressions of CD80/CD86 molecules were markedly increased by AKGs in BCR/CD38 -stimulated B cells. Meanwhile, the results showed that AKGs increased the expression of T-BET transcriptional factor and the production of Th1 cytokines (TNF-α and IFN-γ upon CD3/CD28 stimulation; whereas, levels of Th2 cytokines (IL-4 and IL-10 were decreased by AKGs. Our study demonstrated that AKGs can modulate immune responses by boosting the proliferation and maturation of murine lymphocytes in vitro.

  5. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Alberto Bosque

    2011-10-01

    Full Text Available Homeostatic proliferation ensures the longevity of central memory T-cells by inducing cell proliferation in the absence of cellular differentiation or activation. This process is governed mainly by IL-7. Central memory T-cells can also be stimulated via engagement of the T-cell receptor, leading to cell proliferation but also activation and differentiation. Using an in vitro model of HIV-1 latency, we have examined in detail the effects of homeostatic proliferation on latently infected central memory T cells. We have also used antigenic stimulation via anti-CD3/anti-CD28 antibodies and established a comparison with a homeostatic proliferation stimulus, to evaluate potential differences in how either treatment affects the dynamics of latent virus populations. First, we show that homeostatic proliferation, as induced by a combination of IL-2 plus IL-7, leads to partial reactivation of latent HIV-1 but is unable to reduce the size of the reservoir in vitro. Second, latently infected cells are able to homeostatically proliferate in the absence of viral reactivation or cell differentiation. These results indicate that IL-2 plus IL-7 may induce a detrimental effect by favoring the maintenance of the latent HIV-1 reservoir. On the other hand, antigenic stimulation efficiently reactivated latent HIV-1 in cultured central memory cells and led to depletion of the latently infected cells via virus-induced cell death.

  6. A genetic and functional relationship between T cells and cellular proliferation in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Guo-Jen Huang

    2010-12-01

    Full Text Available Neurogenesis continues through the adult life of mice in the subgranular zone of the dentate gyrus in the hippocampus, but its function remains unclear. Measuring cellular proliferation in the hippocampus of 719 outbred heterogeneous stock mice revealed a highly significant correlation with the proportions of CD8+ versus CD4+ T lymphocyte subsets. This correlation reflected shared genetic loci, with the exception of the H-2Ea locus that had a dominant influence on T cell subsets but no impact on neurogenesis. Analysis of knockouts and repopulation of TCRα-deficient mice by subsets of T cells confirmed the influence of T cells on adult neurogenesis, indicating that CD4+ T cells or subpopulations thereof mediate the effect. Our results reveal an organismal impact, broader than hitherto suspected, of the natural genetic variation that controls T cell development and homeostasis.

  7. Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Jørgensen, Annette; Nielsen, Mette

    2002-01-01

    The purpose of this study was to characterize the effects of human retinal pigment epithelial (RPE) cells on activated T cells. Activated T cells were cocultured with adult and foetal human RPE cells whereafter apoptosis and proliferation were determined by flow cytometry and (3)H......-Thymidine incorporation assay, respectively. T cells and RPE cells were cultured directly together or in a transwell system for determination of the effect of cell contact. The importance of cell surface molecules was examined by application of a panel of blocking antibodies (CD2, CD18, CD40, CD40L, CD54, CD58...

  8. MHC class I-positive dendritic cells (DC) control CD8 T cell homeostasis in vivo: T cell lymphopenia as a prerequisite for DC-mediated homeostatic proliferation of naive CD8 T cells.

    Science.gov (United States)

    Gruber, Anton; Brocker, Thomas

    2005-07-01

    The sizes of peripheral T cell pools are regulated by competition for environmental signals within a given ecological T cell niche. Cytokines and MHC molecules have been identified as resources for which naive T cells compete to proliferate homeostatically in lymphopenic hosts to fill up their respective compartments. However, it still remains unclear to what extent CD4 and CD8 T cells intercompete for these resources and which role dendritic cells (DC) play in this scenario. Using transgenic mice in which only DC express MHC class I, we demonstrate that this type of APC is sufficient to trigger complete homeostatic proliferation of CD8 T cells in vivo. However, normal numbers of endogenous naive CD4 T cells, but not CD25(+)CD4(+) T regulatory cells, efficiently suppress this expansion in vivo. These findings identify DC as a major resource and a possible target for homeostatic competition between naive CD4 and CD8 T cells.

  9. Influence of age on the proliferation and peripheralization of thymic T cells

    International Nuclear Information System (INIS)

    Hirokawa, K.; Utsuyama, M.; Katsura, Y.; Sado, T.

    1988-01-01

    Bone marrow cells obtained from B10.Thy-1.1 mice (H-2b, Thy-1.1) were injected directly into the thymus of C57BL/6 mice (H-2b,Thy 1.2) of various ages. Thymocyte precursors in the injected donor-bone marrow cells could proliferate in the thymic microenvironment in the following manner: first, preferentially proliferating into the subcapsular cortex; and second, spreading to the whole layer of the cortex, a portion of them gradually moving into the medulla. The proliferation of donor-type thymocytes was most pronounced when intrathymic injection of bone marrow cells (ITB) was performed in newborn mice and especially prominent in week-old mice; it took approximately ten weeks for donor-type thymocytes to finish the whole course of proliferation, differentiation, and emigration to the periphery. When ITB was performed in mice 4 weeks of age and older, the proliferation of donor-type thymocytes was retarded at onset, less pronounced in magnitude, and disappeared earlier. Emigration of donor-type T cells from the thymus to the peripheral lymphoid tissues occurred most rapidly when ITB was performed in newborn mice, and these T cells continued to reside thereafter in the peripheral lymphoid tissues. However, when ITB was performed in mice 4 weeks of age and older, the number of emigrated T cells in the spleen decreased (about a tenth of that in newborn mice) and, moreover, these T cells resided only transiently in the spleen. It was suggested that T cells emigrating from the thymus of mice from newborn to 2 weeks of age are long-lived, whereas those from the thymus in mice 4 weeks of age and older are short-lived. However, when 4-week-old young adult mice were treated by irradiation or hydrocortisone, the thymic capacity was enhanced in terms of proliferation and peripheralization of thymocytes, and emigrated T cells became long-lived

  10. Signals involved in T cell activation. I. Phorbol esters enhance responsiveness but cannot replace intact accessory cells in the induction of mitogen-stimulated T cell proliferation

    International Nuclear Information System (INIS)

    Davis, L.; Lipsky, P.E.

    1985-01-01

    The role of accessory cells (AC) in the initiation of mitogen-induced T cell proliferation was examined by comparing the effect of intact macrophages (M phi) with that of 4-β-phorbol 12-myristate 13-acetate (PMA). In high-density cultures, purified guinea pig T cells failed to proliferate in response to stimulation with phytohemagglutinin (PHA), concanavalin A (Con A), or PMA alone. The addition of M phi to PHA or Con A but not PMA-stimulated cultures restored T cell proliferation. The addition of PMA to high-density T cell cultures stimulated with PHA or Con A also permitted [ 3 H]thymidine incorporation, but was less effective than intact M phi in this regard. This action of PMA was dependent on the small number of Ac contaminating the T cell cultures as evidenced by the finding that PMA could not support mitogen responsiveness of T cells that had been depleted of Ia-bearing cells by panning, even when these cells were cultured at high density. A low-density culture system was used to examine in greater detail the possibility that PMA could completely substitute for M phi in promoting T cells activation. In low-density cultures, mitogen-induced T cell proliferation required intact M phi. These results support a model of T cell activation in which AC play at least two distinct roles. The initiation of the response requires a signal conveyed by an intact M phi, which cannot be provided by either a M phi supernatant factor or PMA. The response can be amplified by additional M phi or M phi supernatant factors. PMA can substitute for M phi in this regard and can provide the signal necessary for amplification of T cell proliferation supported by small numbers of intact AC

  11. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells.

    Science.gov (United States)

    Frigault, Matthew J; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U; Guedan, Sonia; McGettigan, Shannon E; Posey, Avery D; Ang, Sonny; Cooper, Laurence J N; Platt, Jesse M; Johnson, F Brad; Paulos, Chrystal M; Zhao, Yangbing; Kalos, Michael; Milone, Michael C; June, Carl H

    2015-04-01

    This study compared second-generation chimeric antigen receptors (CAR) encoding signaling domains composed of CD28, ICOS, and 4-1BB (TNFRSF9). Here, we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T cells with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to 3 months following a single stimulation through the T-cell receptor (TCR). Sustained numeric expansion was independent of cognate antigen and did not require the addition of exogenous cytokines or feeder cells after a single stimulation of the TCR and CD28. Results from gene array and functional assays linked sustained cytokine secretion and expression of T-bet (TBX21), EOMES, and GATA-3 to the effect. Sustained expression of the endogenous IL2 locus has not been reported in primary T cells. Sustained proliferation was dependent on CAR structure and high expression, the latter of which was necessary but not sufficient. The mechanism involves constitutive signaling through NF-κB, AKT, ERK, and NFAT. The propagated CAR T cells retained a diverse TCR repertoire, and cellular transformation was not observed. The CARs with a constitutive growth phenotype displayed inferior antitumor effects and engraftment in vivo. Therefore, the design of CARs that have a nonconstitutive growth phenotype may be a strategy to improve efficacy and engraftment of CAR T cells. The identification of CARs that confer constitutive or nonconstitutive growth patterns may explain observations that CAR T cells have differential survival patterns in clinical trials. ©2015 American Association for Cancer Research.

  12. Lactobacillus paracasei subsp. paracasei B21060 suppresses human T-cell proliferation.

    Science.gov (United States)

    Peluso, Ilaria; Fina, Daniele; Caruso, Roberta; Stolfi, Carmine; Caprioli, Flavio; Fantini, Massimo Claudio; Caspani, Giorgio; Grossi, Enzo; Di Iorio, Laura; Paone, Francesco Maria; Pallone, Francesco; Monteleone, Giovanni

    2007-04-01

    Recent studies have shown that probiotics are beneficial in T-cell-mediated inflammatory diseases. The molecular mechanism by which probiotics work remains elusive, but accumulating evidence indicates that probiotics can modulate immune cell responses. Since T cells express receptors for bacterial products or components, we examined whether different strains of lactobacilli directly regulate the functions of human T cells. CD4(+) T cells were isolated from blood and intestinal lamina propria (LP) of normal individuals and patients with inflammatory bowel disease (IBD). Mononuclear cells were also isolated from Peyer's patches. Cells were activated with anti-CD3/CD2/CD28 in the presence or absence of Lactobacillus paracasei subsp. paracasei B21060, L. paracasei subsp. paracasei F19, or L. casei subsp. casei DG. Cell proliferation and death, Foxp3, intracellular pH, and cytokine production were evaluated by flow cytometry. We showed that L. paracasei subsp. paracasei B21060 but neither L. paracasei subsp. paracasei F19 nor L. casei subsp. casei DG inhibited blood CD4(+) T-cell growth. This effect was associated with no change in cell survival, expression of Foxp3, or production of gamma interferon, interleukin-4 (IL-4), IL-5, and IL-10. L. paracasei subsp. paracasei B21060-mediated blockade of CD4(+) T-cell proliferation required a viable bacterium and was associated with decreased MCT-1 expression and low intracellular pH. L. paracasei subsp. paracasei B21060 also inhibited the growth of Peyer's patch mononuclear cells, normal lymphocytes, and IBD CD4(+) LP lymphocytes without affecting cytokine production. The data show that L. paracasei subsp. paracasei B21060 blocks T-cell growth, thus suggesting a mechanism by which these probiotics could interfere with T-cell-driven immune responses.

  13. Triptolide Attenuates Endotoxin- and Staphylococcal Exotoxin-Induced T-Cell Proliferation and Production of Cytokines and Chemokines

    National Research Council Canada - National Science Library

    Krakauer, Teresa; Chen, Xin; Howard, O. M; Young, Howard A

    2005-01-01

    ...) and bacterial lipopolysaccharide (LPS). Triptolide, an oxygenated diterpene derived from a traditional Chinese medicinal herb, Tripterygium wilfordii, inhibited SE-stimulated T-cell proliferation (by 98...

  14. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K

    1999-01-01

    cell activation and proliferation has been investigated by using various blockers of IK channels. The Ca(2+)-activated K(+) current in human T cells is shown by the whole-cell voltage-clamp technique to be highly sensitive to clotrimazole, charybdotoxin, and nitrendipine, but not to ketoconazole...

  15. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  16. Direct infection of dendritic cells during chronic viral infection suppresses antiviral T cell proliferation and induces IL-10 expression in CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Carmen Baca Jones

    Full Text Available Elevated levels of systemic IL-10 have been associated with several chronic viral infections, including HCV, EBV, HCMV and LCMV. In the chronic LCMV infection model, both elevated IL-10 and enhanced infection of dendritic cells (DCs are important for viral persistence. This report highlights the relationship between enhanced viral tropism for DCs and the induction of IL-10 in CD4 T cells, which we identify as the most frequent IL-10-expressing cell type in chronic LCMV infection. Here we report that infected CD8αneg DCs express elevated IL-10, induce IL-10 expression in LCMV specific CD4 T cells, and suppress LCMV-specific T cell proliferation. DCs exposed in vivo to persistent LCMV retain the capacity to stimulate CD4 T cell proliferation but induce IL-10 production by both polyclonal and LCMV-specific CD4 T cells. Our study delineates the unique effects of direct infection versus viral exposure on DCs. Collectively these data point to enhanced infection of DCs as a key trigger of the IL-10 induction cascade resulting in maintenance of elevated IL-10 expression in CD4 T cells and inhibition of LCMV-specific CD4 and CD8 T cell proliferation.

  17. Soluble Factors Secreted by T Cells Promote β-Cell Proliferation

    Science.gov (United States)

    Dirice, Ercument; Kahraman, Sevim; Jiang, Wenyu; El Ouaamari, Abdelfattah; De Jesus, Dario F.; Teo, Adrian K.K.; Hu, Jiang; Kawamori, Dan; Gaglia, Jason L.; Mathis, Diane; Kulkarni, Rohit N.

    2014-01-01

    Type 1 diabetes is characterized by infiltration of pancreatic islets with immune cells, leading to insulin deficiency. Although infiltrating immune cells are traditionally considered to negatively impact β-cells by promoting their death, their contribution to proliferation is not fully understood. Here we report that islets exhibiting insulitis also manifested proliferation of β-cells that positively correlated with the extent of lymphocyte infiltration. Adoptive transfer of diabetogenic CD4+ and CD8+ T cells, but not B cells, selectively promoted β-cell proliferation in vivo independent from the effects of blood glucose or circulating insulin or by modulating apoptosis. Complementary to our in vivo approach, coculture of diabetogenic CD4+ and CD8+ T cells with NOD.RAG1−/− islets in an in vitro transwell system led to a dose-dependent secretion of candidate cytokines/chemokines (interleukin-2 [IL-2], IL-6, IL-10, MIP-1α, and RANTES) that together enhanced β-cell proliferation. These data suggest that soluble factors secreted from T cells are potential therapeutic candidates to enhance β-cell proliferation in efforts to prevent and/or delay the onset of type 1 diabetes. PMID:24089508

  18. Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas.

    Science.gov (United States)

    Cuadros, Marta; Dave, Sandeep S; Jaffe, Elaine S; Honrado, Emiliano; Milne, Roger; Alves, Javier; Rodríguez, Jose; Zajac, Magdalena; Benitez, Javier; Staudt, Louis M; Martinez-Delgado, Beatriz

    2007-08-01

    Nodal peripheral T-cell lymphomas (PTCLs) constitute a heterogeneous group of neoplasms, suggesting the existence of molecular differences contributing to their histologic and clinical variability. Initial expression profiling studies of T-cell lymphomas have been inconclusive in yielding clinically relevant insights. We applied DNA microarrays to gain insight into the molecular signatures associated with prognosis. We analyzed the expression profiles of 35 nodal PTCLs (23 PTCLs unspecified and 12 angioimmunoblastic) using two different microarray platforms, the cDNA microarray developed at the Spanish National Cancer Centre and an oligonucleotide microarray. We identified five clusters of genes, the expression of which varied significantly among the samples. Genes in these clusters seemed to be functionally related to different cellular processes such as proliferation, inflammatory response, and T-cell or B-cell lineages. Regardless of the microarray platform used, overexpression of genes in the proliferation signature was associated significantly with shorter survival of patients. This proliferation signature included genes commonly associated with the cell cycle, such as CCNA, CCNB, TOP2A, and PCNA. Moreover the PTCL proliferation signature showed a statistically significant inverse correlation with clusters of the inflammatory response (P < .0001), as well as with the percentage of CD68(+) cells. Our findings indicate that proliferation could be an important factor in evaluating nodal PTCL outcome and may help to define a more aggressive phenotype.

  19. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells

    Science.gov (United States)

    Frigault, Matthew J; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U.; Guedan, Sonia; McGettigan, Shannon E.; Posey, Avery D.; Ang, Sonny; Cooper, Laurence J. N.; Platt, Jesse M.; Johnson, F. Brad; Paulos, Chrystal M; Zhao, Yangbing; Kalos, Michael; Milone, Michael C.; June, Carl H.

    2015-01-01

    This study compared second generation chimeric antigen receptors encoding signaling domains composed of CD28, ICOS and 4-1BB. Here we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T-cell with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to three months following a single stimulation through the TCR. Sustained numeric expansion was independent of cognate antigen and did not require the addition of exogenous cytokines or feeder cells after a single stimulation of the TCR and CD28. Results from gene array and functional assays linked sustained cytokine secretion and expression of T-bet, EOMES and GATA-3 to the effect. Sustained expression of the endogenous IL2 locus has not been reported in primary T cells. Sustained proliferation was dependent on CAR structure and high expression, the latter of which was necessary but not sufficient. The mechanism involves constitutive signaling through NF-kB, Akt, Erk and NFAT. The propagated CAR T cells retained a diverse TCR repertoire and cellular transformation was not observed. The CARs with a constitutive growth phenotype displayed inferior antitumor effects and engraftment in vivo. Therefore the design of CARs that have a non-constitutive growth phenotype may be a strategy to improve efficacy and engraftment of CAR T cells. The identification of CARs that confer constitutive or non-constitutive growth patterns may explain observations that CAR T cells have differential survival patterns in clinical trials. PMID:25600436

  20. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression

    DEFF Research Database (Denmark)

    Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S.

    2017-01-01

    (EAE), show impaired generation of antigen-specific CD8 + T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.......T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR...... engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis...

  1. The Effects of Tacrolimus on T-Cell Proliferation Are Short-Lived: A Pilot Analysis of Immune Function Testing

    Directory of Open Access Journals (Sweden)

    Benjamin L. Laskin, MD, MS

    2017-08-01

    Conclusions. T-cell proliferation is currently not suitable to measure immunosuppression because sample processing diminishes observable effects. Future immune function testing should focus on fresh samples with minimal washing steps. Our results also emphasize the importance of adherence to immunosuppressive treatment, because T-cell proliferation recovered substantially after even brief discontinuation of tacrolimus.

  2. Immunosuppressive Effects ofBryoriasp. (Lichen-Forming Fungus) Extracts via Inhibition of CD8+T-Cell Proliferation and IL-2 Production in CD4+T Cells.

    Science.gov (United States)

    Hwang, Yun-Ho; Lee, Sung-Ju; Kang, Kyung-Yun; Hur, Jae-Seoun; Yee, Sung-Tae

    2017-06-28

    Lichen-forming fungi are known to have various biological activities, such as antioxidant, antimicrobial, antitumor, antiviral, anti-inflammation, and anti proliferative effects. However, the immunosuppressive effects of Bryoria sp. extract (BSE) have not previously been investigated. In this study, the inhibitory activity of BSE on the proliferation of CD8 + T cells and the mixed lymphocytes reaction (MLR) was evaluated in vitro. BSE was non-toxic in spleen cells and suppressed the growth of splenocytes induced by anti-CD3. The suppressed cell population in spleen cells consisted of CD8 + T cells and their proliferation was inhibited by the treatment with BSE. This extract significantly suppressed the IL-2 associated with T cell growth and IFN-γ as the CD8 + T cell marker. Furthermore, BSE reduced the expression of the IL-2 receptor alpha chain (IL-2Rα) on CD8 + T cells and CD86 on dendritic cells by acting as antigen-presenting cells. Finally, the MLR produced by the co-culture of C57BL/6 and MMC-treated BALB/c was suppressed by BSE. IL-2, IFN-γ, and CD69 on CD8 + T cells in MLR condition were inhibited by BSE. These results indicate that BSE inhibits the MLR via the suppression of IL-2Rα expression in CD8 + T cells. BSE has the potential to be developed as an anti-immunosuppression agent for organ transplants.

  3. Peroxisome proliferator-activated receptor γ deficiency in T cells accelerates chronic rejection by influencing the differentiation of CD4+ T cells and alternatively activated macrophages.

    Directory of Open Access Journals (Sweden)

    Xiaofan Huang

    Full Text Available In a previous study, activation of the peroxisome proliferator-activated receptor γ (PPARγ inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ-induced protective effect was unclear.A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12 mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regulatory T cells (Treg were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM.T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival.PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects.

  4. Limit-dilution assay and clonal expansion of all T cells capable of proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.F.; Wilson, A.; Scollay, R.; Shortman, K. (Walter and Eliza Hall Inst. of Medical Research, Parkville (Australia))

    1982-08-13

    A limit-dilution microculture system is presented in which almost all mature T cells, cultured at a level of about 1 cell/well, grow and expand to clones averaging 60,000 cells over an 8-9 day period. Cloning efficiency is 70-100%, so the set of expanded clones is representative of the starting T-cell population. T cells of all Lyt phenotypes form clones of progeny cells. The system involves culture in flat-bottom microtitre trays, in the presence of concanavalin A as the initiating stimulus, together with appropriately irradiated spleen filler cells and a supplementary source of soluble T cell growth factors. The resultant clones may be screened for cytolytic function, as described in the accompanying paper. The system may be used to assay the level of T cells capable of expansion or precursor function (PTL-p) by using (/sup 3/H)TdR uptake as a readout for the presence or absence of proliferating clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of complicating suppressor or helper effects.

  5. Limit-dilution assay and clonal expansion of all T cells capable of proliferation

    International Nuclear Information System (INIS)

    Chen, W.-F.; Wilson, A.; Scollay, R.; Shortman, K.

    1982-01-01

    A limit-dilution microculture system is presented in which almost all mature T cells, cultured at a level of about 1 cell/well, grow and expand to clones averaging 60,000 cells over an 8-9 day period. Cloning efficiency is 70-100%, so the set of expanded clones is representative of the starting T-cell population. T cells of all Lyt phenotypes form clones of progeny cells. The system involves culture in flat-bottom microtitre trays, in the presence of concanavalin A as the initiating stimulus, together with appropriately irradiated spleen filler cells and a supplementary source of soluble T cell growth factors. The resultant clones may be screened for cytolytic function, as described in the accompanying paper. The system may be used to assay the level of T cells capable of expansion or precursor function (PTL-p) by using [ 3 H]TdR uptake as a readout for the presence or absence of proliferating clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of complicating suppressor or helper effects. (Auth.)

  6. CD117+CD44+ Stem T Cells Develop in the Thymus and Potently Suppress T-cell Proliferation by Modulating the CTLA-4 Pathway.

    Science.gov (United States)

    Wei, Yang; Hu, Zhansheng; Gu, Wen; Liu, Gang; Shi, Bingyin; Liu, Enqi; Liu, Tie

    2017-03-09

    CD117 is expressed on double-negative (DN; CD4 - CD8 - ) cells (Nat Rev Immunol 14:529-545; 2014), but whether it is expressed in other stages and its subsequent functions are unclear. We used an improved method of flow cytometry to analyze different populations of thymocytes (Sci Rep 4:5781; 2014). The expression of CD117 and CTLA-4 were directly assayed in the early stage of thymocytes. Flow cytometry was used to analyze different populations of thymocytes, and T-cell proliferation assays, RT-PCR, and real-time RT-PCR were used to characterize the stem cells and examine the function of CD44 + CD117 + cells. In DN cells, CD117 expression was greatest on CD44 + CD25 + cells (DN 2 ), followed by CD44 + CD25 - (DN 1 ), CD44 - CD25 + (DN 3 ), and CD44 - CD25 - (DN 4 ) cells. In thymocytes, CD117 expression was highest in DN cells, followed by single-positive (SP; CD4 or CD8) and double-positive (DP; CD4 + CD8 + ) cells.  Especially, CD117 expression was positively associated with CD44 and CTLA-4 expression. CTLA-4 expression was highest in DN cells, followed by SP and DP cells. CTLA-4 expression was positively associated with CD25, CD44, and Foxp3 expression. CD44 + CD117 + T cells expressed more CTLA-4, which suppressed T-cell proliferation and blocked CTLA-4 to cause antibody-induced T-cell proliferation. These results suggest that CD44 + CD117 + T cells are stem cells and a specific T-cell phenotype that initially develops in the thymus, but they do not progress through DN 3 and DN 4 stages, lack a DP stage, and potently suppress T-cell proliferation and modulate the CTLA-4 pathway.

  7. Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background

    Science.gov (United States)

    2017-01-01

    Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs) the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific “signature” that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU) data, revealing T cell proliferation heterogeneity and specific signatures. PMID:28288157

  8. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  9. Proliferation and apoptosis of lamina propria CD4+ T cells from scid mice with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Bregenholt, S; Reimann, J; Claesson, Mogens Helweg

    1998-01-01

    Scid mice transplanted with low numbers of syngeneic CD4+ T cells, develop a chronic and lethal inflammatory bowel disease (IBD) within 4-6 months. We have used in vivo 5-bromo2-deoxy-uridine (BrdU) labeling to assess the proliferation of lamina propria-derived CD4+ T cells in diseased scid mice....... showed that the apoptotic lamina propria CD4+ T cells were derived from cells having entered the cell cycle within the previous 8 h. These data clearly demonstrate that vigorous CD4+ T cell proliferation and death are involved throughout the course of IBD....

  10. Irradiation of human thymic stromal cells induces a diminution of T cell precursor proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Bertho, J.M.; Van der Meeren, A. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Coulombel, L. [Institut Gustave Roussy, 94 - Villejuif (France)

    1997-03-01

    Very little is known concerning the effects of ionizing radiation on the supportive function of the thymic microenvironment in the regeneration of a fully competent T lymphocyte population after irradiation. The data available suggest that irradiation of the thymus may have short-term effects on the thymus and long-term effects on peripheral blood T lymphocytes. We have recently developed an in vitro model of thymic stromal cell cultures (TSCC). These TSCC contained 30-50% thymic epithelial cells (TEC), 50-70% fibro-blastoid cells (TF), and 1-5% macrophages and dendritic cells. This model was used to study effects of ionizing radiation on human thymic microenvironment. TSCC were irradiated at a dose of 10 Grays (gamma rays, {sup 60}Co source, dose rate 1 Gy/mn) or sham-irradiated. Sorted autologous T cell precursors were seeded onto TSCC 24 hours after irradiation. Proliferation of T cell precursors was assessed by numerating non-adherent cells in the supernatant of TSCC twice a week. Results show that irradiation of TSCC induced a diminution in the number of T cell precursor harvested from the cultures either in the presence or in the absence of interleukin-7 (IL-7) and stem cell factor (SCF). This diminished number of cells harvested appeared as early as day 4, and remained constant during 21-day culture period. The results showed that the number of stromal cells after irradiation remained constant until day 21. We have generated supernatants (SN) from irradiated TSCC in order to test the presence of negative regulators or the decrease of activating factors. Results showed that SN from irradiated TSCC were able to induce a decrease in the number of harvested T cells. Overall, the results provides the first direct demonstration that irradiation of thymic microenvironment induced modifications in its supportive function for T cell precursor proliferation. (N.C.)

  11. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Kopp, Katharina; Krejsgaard, Thorbjørn

    2010-01-01

    The programmed cell death-10 (PDCD10; also known as cerebral cavernous malformation-3 or CCM3) gene encodes an evolutionarily conserved protein associated with cell apoptosis. Mutations in PDCD10 result in cerebral cavernous malformations, an important cause of cerebral hemorrhage. PDCD10...... of cutaneous T-cell lymphoma (Sezary syndrome) patients. PDCD10 is associated with protein phosphatase-2A, a regulator of mitogenesis and apoptosis in malignant T cells. Inhibition of oncogenic signal pathways [Jak3, Notch1, and nuclear factor-¿B (NF-¿B)] partly inhibits the constitutive PDCD10 expression......, whereas an activator of Jak3 and NF-¿B, interleukin-2 (IL-2), enhances PDCD10 expression. Functional data show that PDCD10 depletion by small interfering RNA induces apoptosis and decreases proliferation of the sensitive cells. To our knowledge, these data provide the first functional link between PDCD10...

  12. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice.

    Science.gov (United States)

    Pérès, Eléonore; Blin, Juliana; Ricci, Emiliano P; Artesi, Maria; Hahaut, Vincent; Van den Broeke, Anne; Corbin, Antoine; Gazzolo, Louis; Ratner, Lee; Jalinot, Pierre; Duc Dodon, Madeleine

    2018-03-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization.

  13. Antibody response to a T-cell-independent antigen is preserved after splenic artery embolization for trauma.

    Science.gov (United States)

    Olthof, D C; Lammers, A J J; van Leeuwen, E M M; Hoekstra, J B L; ten Berge, I J M; Goslings, J C

    2014-11-01

    Splenic artery embolization (SAE) is increasingly being used as a nonoperative management strategy for patients with blunt splenic injury following trauma. The aim of this study was to assess the splenic function of patients who were embolized. A clinical study was performed, with splenic function assessed by examining the antibody response to polysaccharide antigens (pneumococcal 23-valent polysaccharide vaccine), B-cell subsets, and the presence of Howell-Jolly bodies (HJB). The data were compared to those obtained from splenectomized patients and healthy controls (HC) who had been included in a previously conducted study. A total of 30 patients were studied: 5 who had proximal SAE, 7 who had distal SAE, 8 who had a splenectomy, and 10 HC. The median vaccine-specific antibody response of the SAE patients (fold increase, 3.97) did not differ significantly from that of the HC (5.29; P = 0.90); however, the median response of the splenectomized patients (2.30) did differ (P = 0.003). In 2 of the proximally embolized patients and none of the distally embolized patients, the ratio of the IgG antibody level postvaccination compared to that prevaccination was <2. There were no significant differences in the absolute numbers of lymphocytes or B-cell subsets between the SAE patients and the HC. HJB were not observed in the SAE patients. The splenic immune function of embolized patients was preserved, and therefore routine vaccination appears not to be indicated. Although the median antibody responses did not differ between the patients who underwent proximal SAE and those who underwent distal SAE, 2 of the 5 proximally embolized patients had insufficient responses to vaccination, whereas none of the distally embolized patients exhibited an insufficient response. Further research should be done to confirm this finding. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, Monica [Department of Medicine III and Transfusion Medicine, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich (Germany); Schmetzer, Helga [Helmholtz Center Munich (Germany); German Research Center for Environmental Health, Munich (Germany); Braeu, Marion; Buhmann, Raymund [Helmholtz Center Munich (Germany); German Research Center for Environmental Health, Munich (Germany); Department of Medicine III and Transfusion Medicine, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich (Germany)

    2016-11-15

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3{sup +}T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP and GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.

  15. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    International Nuclear Information System (INIS)

    Weiler, Monica; Schmetzer, Helga; Braeu, Marion; Buhmann, Raymund

    2016-01-01

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3 + T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP and GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.

  16. Spontaneous T Cell Proliferation: A Physiologic Process to Create and Maintain Homeostatic Balance and Diversity of the Immune System

    Science.gov (United States)

    Min, Booki

    2018-01-01

    Naive T lymphocytes undergo heterogeneous proliferative responses when introduced into lymphopenic hosts, referred to as “homeostatic proliferation” and “spontaneous proliferation.” Spontaneous proliferation is a unique process through which the immune system generates memory phenotype cells with increasing T cell receptors repertoire complexity. Here, the mechanisms that initiate and control spontaneous proliferation are discussed. PMID:29616038

  17. Chalcones from Chinese liquorice inhibit proliferation of T cells and production of cytokines

    DEFF Research Database (Denmark)

    Barfod, Lea; Kemp, Kåre; Hansen, Majbritt

    2002-01-01

    Licochalcone A (LicA), an oxygenated chalcone, has been shown to inhibit the growth of both parasites and bacteria. In this study, we investigated the effect of LicA and four synthetic analogues on the activity of human peripheral blood mononuclear cell proliferation and cytokine production. Four...... out of five chalcones tested inhibited the proliferation of lymphocytes measured by thymidine incorporation and by flow cytometry. The production of pro- and anti-inflammatory cytokines from monocytes and T cells was also inhibited by four of five chalcones. Furthermore, intracellular detection...... of cytokines revealed that the chalcones inhibited the production rather than the release of the cytokines. Taken together, these results indicate that LicA and some analogues may have immunomodulatory effects, and may thus be candidates not only as anti-microbial agents, but also for the treatment of other...

  18. Zizyphus lotus L. (Desf.) modulates antioxidant activity and human T-cell proliferation.

    Science.gov (United States)

    Benammar, Chahid; Hichami, Aziz; Yessoufou, Akadiri; Simonin, Anne-Marie; Belarbi, Meriem; Allali, Hocine; Khan, Naim A

    2010-09-24

    Zizyphus lotus L. (Desf.) also known as Jujube, is a deciduous shrub which belongs to Rhamnaceae family. This plant is used in Algerian traditional medicine for its anti-diabetic, sedative, analgesic, anti-inflammatory and hypoglycaemic activities. In the present study, we determined the concentrations of different vitamins (vitamin A, C and E) and fatty acids in root, stem, leaves, fruit pulp and seed of Zizyphus lotus L. (Desf.) and assessed the effects of their aqueous extracts on antioxidant status and human T-cell proliferation. Aqueous filtrates from different parts, i.e, root, leaf, stem, fruit pulp and seed, of Zizyphus lotus L. (Desf.) were prepared. Vitamin C levels were determined by precipitating with 10% trichloroacetic acid and vitamin A and E were assessed by HPLC. Lipid composition of these extracts was determined by gas-liquid chromatography. Anti-oxidant capacity was evaluated by using anti-radical resistance kit [Kit Radicaux Libres (KRL@; Kirial International SA, Couternon, France)]. T-cell blastogenesis was assessed by the incorporation of 3H-thymidine. IL-2 gene expression was evaluated by RT-qPCR. Our results show that fruit pulp contained higher vitamin A and C contents than other parts of the plant. Furthermore, the fruit pulp was the richest source of linoleic acid (18:2n-6), a precursor of n-6 fatty acids. Fruit seeds possessed higher vitamin C levels than leaves, roots and stem. The leaves were the richest source of vitamin E and linolenic acid (18:3n-3), a precursor of n-3 fatty acids. The antioxidant capacity of the different extracts, measured by KRL@ test, was as follows: pulp Zizyphus lotus L. (Desf.) exerted immunosuppressive effects. Seed extracts exerted the most potent immunosuppressive effects on T cell proliferation and IL-2 mRNA expression. The results of the present study are discussed in the light of their use to modulate the immune-mediated diseases.

  19. Effects of L-arginine and L-lysine mixtures on splenic sympathetic nerve activity and tumor proliferation.

    Science.gov (United States)

    Shen, Jiao; Horii, Yuko; Fujisaki, Yoshiyuki; Nagai, Katsuya

    2009-05-11

    Oral supplementations of L-arginine and L-lysine show tumor inhibition abilities. The splenic sympathetic nerve is involved in central modulation of cellular immunity and suppresses splenic natural killer cell activity in rats. An intravenous administration of a mixture of 10 mM L-arginine and L-lysine decreased splenic sympathetic nerve activity (splenic-SNA). We examined the effect of L-arginine and L-lysine mixtures on splenic-SNA in urethane-anesthetized rats by administration of 1 ml mixtures of 2 mM, 10 mM, and 50 mM L-arginine and L-lysine. We also studied the effect of the above mixtures on human colon cancer cell proliferation in athymic nude mice. An increase in splenic-SNA and tumor volume (2 mM), no effect (10 mM), and a decrease in both values (50 mM) were seen. Bivariate correlation analysis revealed a positive correlation between changes in splenic-SNA and tumor volume, indicating the tumor suppressing ability of weakened splenic-SNA.

  20. Expression of proliferation markers and cell cycle regulators in T cell lymphoproliferative skin disorders.

    Science.gov (United States)

    Gambichler, Thilo; Bischoff, Stefan; Bechara, Falk G; Altmeyer, Peter; Kreuter, Alexander

    2008-02-01

    Abnormal cell proliferation, which results from deregulation of the cell cycle, is fundamental in tumorigenesis. To investigate the expression of proliferation markers and cell cycle regulators in a range of T cell lymphoproliferative skin diseases. We studied skin specimens of 51 patients with parapsoriasis (PP), mycosis fungiodes (MF), or lymphomatoid papulosis (LyP). Immunohistochemistry was performed for Ki-67, proliferating cell nuclear antigen (PCNA), minichromosome maintenance protein 7 (MCM7), and p21. MF with stage IIB-IV and LyP showed a significantly greater number of Ki-67-positive cells than PP (P=0.02 and 0.001) and MF I-IIA (P=0.019 and 0.003), respectively. MCM7 staining revealed significantly higher labeling indices for MF IIB-IV and LyP when compared to PP (P=0.002 and 0.04) and MF I-IIA (P=0.0005 and 0.01), respectively. Compared to PP and MF I-IIA, MF IIB-IV was associated with significantly higher labeling indices for PCNA (P=0.006 and 0.0004). p21 staining was significantly increased in MF IIB-IV and LyP when compared to PP (P=0.006 and 0.003) and MF I-IIA (P=0.003). However, p21 staining was all in all very weak. Ki-67 and PCNA seem to be useful immunohistological parameters for the correlation with the clinical stage of MF. In the differentiation and prognostication of T cell lymphoproliferative skin disorders, MCM7 may serve as a novel biomarker which is, in contrast to Ki-67 and PCNA, stable throughout the cell cycle.

  1. Different Competitive Capacities of Stat4 and Stat6 Deficient CD4+ T Cells during Lymphophenia-Driven Proliferation

    DEFF Research Database (Denmark)

    Sanchez-Guajardo, Vanesa Maria; Borghans, J.A.M.; Marquez, M.-E.

    2005-01-01

    show a proliferation advantage, which is early associated with the expression of an active phospho-Stat4 and the down-regulation of Stat6. Despite these differences, Stat4- and Stat6-deficient T cells reach similar steady state numbers. However, when both Stat4ﰐ/ﰐ and Stat6ﰐ/ﰐ CD4ﰀ T cells...... are coinjected into the same hosts, the Stat6ﰐ/ﰐ cells become dominant and out-compete Stat4ﰐ/ﰐ cells. These findings suggest that cell activation, through the Stat4 pathway and the down-regulation of Stat6, confers to pro-Th1 T cells a slight proliferation advantage that in a competitive situation has major...... late repercussions, because it modifies the final homeostatic equilibrium of the populations and favors the establishment of Th1 CD4ﰀ T cell dominance....

  2. Hoxb4 overexpression in CD4 memory phenotype T cells increases the central memory population upon homeostatic proliferation.

    Directory of Open Access Journals (Sweden)

    Héloïse Frison

    Full Text Available Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation.

  3. In vivo proliferation of naïve and memory influenza-specific CD8(+) T cells

    DEFF Research Database (Denmark)

    Flynn, K J; Riberdy, J M; Christensen, Jan Pravsgaard

    1999-01-01

    The virus-specific CD8(+) T cell response has been analyzed through the development, effector, and recovery phases of primary and secondary influenza pneumonia. Apparently, most, if not all, memory T cells expressing clonotypic receptors that bind a tetrameric complex of influenza nucleoprotein (NP......)(366-374) peptide+H-2D(b) (NPP) are induced to divide during the course of this localized respiratory infection. The replicative phase of the recall response ends about the time that virus can no longer be recovered from the lung, whereas some primary CD8(+)NPP(+) T cells may proliferate for a few more...

  4. Zizyphus lotus L. (Desf. modulates antioxidant activity and human T-cell proliferation

    Directory of Open Access Journals (Sweden)

    Belarbi Meriem

    2010-09-01

    Full Text Available Abstract Background Zizyphus lotus L. (Desf. also known as Jujube, is a deciduous shrub which belongs to Rhamnaceae family. This plant is used in Algerian traditional medicine for its anti-diabetic, sedative, analgesic, anti-inflammatory and hypoglycaemic activities. In the present study, we determined the concentrations of different vitamins (vitamin A, C and E and fatty acids in root, stem, leaves, fruit pulp and seed of Zizyphus lotus L. (Desf. and assessed the effects of their aqueous extracts on antioxidant status and human T-cell proliferation. Methods Aqueous filtrates from different parts, i.e, root, leaf, stem, fruit pulp and seed, of Zizyphus lotus L. (Desf. were prepared. Vitamin C levels were determined by precipitating with 10% trichloroacetic acid and vitamin A and E were assessed by HPLC. Lipid composition of these extracts was determined by gas-liquid chromatography. Anti-oxidant capacity was evaluated by using anti-radical resistance kit [Kit Radicaux Libres (KRL@; Kirial International SA, Couternon, France]. T-cell blastogenesis was assessed by the incorporation of 3H-thymidine. IL-2 gene expression was evaluated by RT-qPCR. Results Our results show that fruit pulp contained higher vitamin A and C contents than other parts of the plant. Furthermore, the fruit pulp was the richest source of linoleic acid (18:2n-6, a precursor of n-6 fatty acids. Fruit seeds possessed higher vitamin C levels than leaves, roots and stem. The leaves were the richest source of vitamin E and linolenic acid (18:3n-3, a precursor of n-3 fatty acids. The antioxidant capacity of the different extracts, measured by KRL@ test, was as follows: pulp Zizyphus lotus L. (Desf. exerted immunosuppressive effects. Conclusion Seed extracts exerted the most potent immunosuppressive effects on T cell proliferation and IL-2 mRNA expression. The results of the present study are discussed in the light of their use to modulate the immune-mediated diseases.

  5. CD4+ FOXP3+ Regulatory T Cells Exhibit Impaired Ability to Suppress Effector T Cell Proliferation in Patients with Turner Syndrome.

    Directory of Open Access Journals (Sweden)

    Young Ah Lee

    Full Text Available We investigated whether the frequency, phenotype, and suppressive function of CD4+ FOXP3+ regulatory T cells (Tregs are altered in young TS patients with the 45,X karyotype compared to age-matched controls.Peripheral blood mononuclear cells from young TS patients (n = 24, 17.4-35.9 years and healthy controls (n = 16 were stained with various Treg markers to characterize their phenotypes. Based on the presence of thyroid autoimmunity, patients were categorized into TS (- (n = 7 and TS (+ (n = 17. Tregs sorted for CD4+ CD25bright were co-cultured with autologous CD4+ CD25- target cells in the presence of anti-CD3 and -CD28 antibodies to assess their suppressive function.Despite a lower frequency of CD4+ T cells in the TS (- and TS (+ patients (mean 30.8% and 31.7%, vs. 41.2%; P = 0.003 and P < 0.001, respectively, both groups exhibited a higher frequency of FOXP3+ Tregs among CD4+ T cells compared with controls (means 1.99% and 2.05%, vs. 1.33%; P = 0.029 and P = 0.004, respectively. There were no differences in the expression of CTLA-4 and the frequency of Tregs expressing CXCR3+, and CCR4+ CCR6+ among the three groups. However, the ability of Tregs to suppress the in vitro proliferation of autologous CD4+ CD25- T cells was significantly impaired in the TS (- and TS (+ patients compared to controls (P = 0.003 and P = 0.041. Meanwhile, both the TS (- and TS (+ groups had lower frequencies of naïve cells (P = 0.001 for both but higher frequencies of effector memory cells (P = 0.004 and P = 0.002 than did the healthy control group.The Tregs of the TS patients could not efficiently suppress the proliferation of autologous effector T cells, despite their increased frequency in peripheral CD4+ T cells.

  6. Long-term regulation of Na,K-ATPase pump during T-cell proliferation.

    Science.gov (United States)

    Karitskaya, Inna; Aksenov, Nikolay; Vassilieva, Irina; Zenin, Valerii; Marakhova, Irina

    2010-09-01

    The aim of the study was to elucidate the mechanism responsible for the proliferation-related regulation of Na,K-ATPase pump. Our data demonstrate that in mitogen-stimulated human blood lymphocytes, enhanced ouabain-sensitive Rb(K) fluxes in the middle/late stage of G(0)/G(1)/S transit are associated with the increased number of Na,K-ATPase pumps expressed at the cell surface (as determined by the [(3)H]ouabain binding). Analysis of total RNA (reverse transcription-polymerase chain reaction) and protein (Western blotting) showed a threefold increase in the level of Na,K-ATPase alpha1-subunit and beta1-subunit mRNAs and significant increase in the Na,K-ATPase alpha1-subunit protein during the first day of mitogen-induced proliferation. The elevated K transport as well as the increased expression of Na,K-ATPase is closely associated with the IL-2-dependent stage of T-cell response. The pharmacological inhibition of IL-2-induced MEK/ERK or JAK/STAT cascades suppressed the IL-2-induced proliferation and reduced the functional and protein expressions of Na,K-ATPase. It is concluded that during the lymphocyte transition from resting stage to proliferation, (1) long-term activation of Na,K-ATPase pump is due to the enhanced expression of Na,K-ATPase protein and mRNA, and (2) the cytokine signaling via the IL-2 receptor is necessary for the cell cycle-associated upregulation of Na,K-ATPase.

  7. 1Protein Energy Malnutrition Impairs Homeostatic Proliferation of Memory CD8 T cells

    Science.gov (United States)

    Iyer, Smita S.; Chatraw, Janel Hart; Tan, Wendy G.; Wherry, E. John; Becker, Todd C.; Ahmed, Rafi; Kapasi, Zoher F.

    2011-01-01

    Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. Here we show that protein energy malnutrition (PEM) induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate-protein (AP) fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV) immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that PEM caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. While antigen-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less-responsive to poly(I:C)-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13 resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals. PMID:22116826

  8. Protein energy malnutrition impairs homeostatic proliferation of memory CD8 T cells.

    Science.gov (United States)

    Iyer, Smita S; Chatraw, Janel Hart; Tan, Wendy G; Wherry, E John; Becker, Todd C; Ahmed, Rafi; Kapasi, Zoher F

    2012-01-01

    Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. In this study, we show that protein-energy malnutrition induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate protein (AP)-fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV)-immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that protein-energy malnutrition caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. Whereas Ag-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less responsive to polyinosinic-polycytidylic acid-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13, resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals.

  9. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion

    OpenAIRE

    Sundrud, Mark S.; Torres, Victor J.; Unutmaz, Derya; Cover, Timothy L.

    2004-01-01

    Recent evidence indicates that the secreted Helicobacter pylori vacuolating toxin (VacA) inhibits the activation of T cells. VacA blocks IL-2 secretion in transformed T cell lines by suppressing the activation of nuclear factor of activated T cells (NFAT). In this study, we investigated the effects of VacA on primary human CD4+ T cells. VacA inhibited the proliferation of primary human T cells activated through the T cell receptor (TCR) and CD28. VacA-treated Jurkat T cells secreted markedly ...

  10. Cyclin D3 regulates proliferation and apoptosis of leukemic T cell lines

    NARCIS (Netherlands)

    Boonen, G.J.J.C.; Oirschot, B.A. van; Diepen, A. van; Mackus, W.J.M.; Verdonck, L.F.; Rijksen, G.; Medema, R.H.

    1999-01-01

    Activation of the T cell receptor in leukemic T cell lines or T cell hybridomas causes growth inhibition. A similar growth inhibition is seen when protein kinase C is activated through addition of phorbol myristate acetate. This inhibition is due to an arrest of cell cycle progression in G1 combined

  11. miR-198 Represses the Proliferation of HaCaT Cells by Targeting Cyclin D2

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2015-07-01

    Full Text Available Background: MiR-198 has been considered as an inhibitor of cell proliferation, invasion, migration and a promoter of apoptosis in most cancer cells, while its effect on non-cancer cells is poorly understood. Methods: The effect of miR-198 transfection on HaCaT cell proliferation was firstly detected using Cell Count Kit-8 and the cell cycle progression was analyzed by flow cytometry. Using bioinformatics analyses and luciferase assay, a new target of miR-198 was searched and identified. Then, the effect of the new target gene of miR-198 on cell proliferation and cell cycle was also detected. Results: Here we showed that miR-198 directly bound to the 3′-UTR of CCND2 mRNA, which was a key regulator in cell cycle progression. Overexpressed miR-198 repressed CCND2 expression at mRNA and protein levels and subsequently led to cell proliferation inhibition and cell cycle arrest in the G1 phase. Transfection ofSiCCND2 in HaCaT cells showed similar inhibitory effects on cell proliferation and cell cycle progression. Conclusion: In conclusion, we have identified that miR-198 inhibited HaCaT cell proliferation by directly targeting CCND2.

  12. Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation.

    Directory of Open Access Journals (Sweden)

    Feng Mei

    Full Text Available Quetiapine (Que, a commonly used atypical antipsychotic drug (APD, can prevent myelin from breakdown without immune attack. Multiple sclerosis (MS, an autoimmune reactive inflammation demyelinating disease, is triggered by activated myelin-specific T lymphocytes (T cells. In this study, we investigated the potential efficacy of Que as an immune-modulating therapeutic agent for experimental autoimmune encephalomyelitis (EAE, a mouse model for MS. Que treatment was initiated on the onset of MOG(35-55 peptide induced EAE mice and the efficacy of Que on modulating the immune response was determined by Flow Cytometry through analyzing CD4(+/CD8(+ populations and the proliferation of effector T cells (CD4(+CD25(- in peripheral immune organs. Our results show that Que dramatically attenuates the severity of EAE symptoms. Que treatment decreases the extent of CD4(+/CD8(+ T cell infiltration into the spinal cord and suppresses local glial activation, thereby diminishing the loss of mature oligodendrocytes and myelin breakdown in the spinal cord of EAE mice. Our results further demonstrate that Que treatment decreases the CD4(+/CD8(+ T cell populations in lymph nodes and spleens of EAE mice and inhibits either MOG(35-55 or anti-CD3 induced proliferation as well as IL-2 production of effector T cells (CD4(+CD25(- isolated from EAE mice spleen. Together, these findings suggest that Que displays an immune-modulating role during the course of EAE, and thus may be a promising candidate for treatment of MS.

  13. IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Release.

    Directory of Open Access Journals (Sweden)

    Julia Siede

    Full Text Available Immunomodulatory Foxp3+ regulatory T cells (Tregs form a heterogeneous population consisting of subsets with different activation states, migratory properties and suppressive functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflammatory settings. Here we report that ST2 expression identifies highly activated Tregs in mice even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid sites, likely mediated by their high expression of several chemokine receptors facilitating tissue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing the Th2 cytokines IL-5 and IL-13 -especially in response to IL-33. Yet, IL-33 is dispensable for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are superior to ST2- Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-33. This higher suppressive capacity is partially mediated by enhanced production and activation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm signals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory therapies.

  14. Chloroquine inhibits T cell proliferation by interfering with IL-2 production and responsiveness

    NARCIS (Netherlands)

    Landewé, R. B.; Miltenburg, A. M.; Verdonk, M. J.; Verweij, C. L.; Breedveld, F. C.; Daha, M. R.; Dijkmans, B. A.

    1995-01-01

    Chloroquine (Chl) is an anti-rheumatic drug that is widely used in the treatment of rheumatoid arthritis (RA). It seems that T cells are important in the pathogenesis of RA, but it is not known whether Chl acts via inhibition of T cell function. We here present evidence that Chl, just like

  15. Inhibition of allogeneic cytotoxic T cell (CD8+) proliferation via polymer-induced Treg (CD4+) cells.

    Science.gov (United States)

    Kang, Ning; Toyofuku, Wendy M; Yang, Xining; Scott, Mark D

    2017-07-15

    T cell-mediated immune rejection remains a barrier to successful transplantation. Polymer-based bioengineering of cells may provide an effective means of preventing allorecognition and the proliferation of cytotoxic (CD8 + ) T lymphocytes (CTL). Using MHC-disparate murine splenocytes modified with succinimidyl valerate activated methoxypoly(ethylene glycol) [SVA-mPEG] polymers, the effects of leukocyte immunocamouflage on CD8 + and CD4 + alloproliferation and T regulatory (Treg) cell induction were assessed in a mixed lymphocyte reaction (MLR) model. Polymer-grafting effectively camouflaged multiple leukocyte markers (MHC class I and II, TCR and CD3) essential for effective allorecognition. Consequent to the polymer-induced immunocamouflage of the cell membrane, both CD8 + and CD4 + T cell alloproliferation were significantly inhibited in a polymer dose-dependent manner. The loss of alloproliferation correlated with the induction of Treg cells (CD4 + CD25 + Foxp3 + ). The Tregs, surprisingly, arose primarily via differentiation of naive, non-proliferating, CD4 + cells. Of biologic importance, the polymer-induced Treg were functional and exhibited potent immunosuppressive activity on allogeneic CTL proliferation. These results suggest that immunocamouflage-mediated attenuation of alloantigen-TCR recognition can prevent the tissue destructive allogeneic CD8 + T cell response, both directly and indirectly, through the generation/differentiation of functional Tregs. Immunocamouflage induced tolerance could be clinically valuable in attenuating T cell-mediated transplant rejection and in the treatment of autoimmune diseases. While our previous studies have demonstrated that polymer-grafting to MHC disparate leukocytes inhibits CD4 + cell proliferation, the effects of PEGylation on the alloproliferation of CD8 + cytotoxic T cells (CTL) was not examined. As shown here, PEGylation of allogeneic leukocytes prevents the generation of the CTL response responsible for acute

  16. MEK kinase 1 is a negative regulator of virus-specific CD8(+) T cells

    DEFF Research Database (Denmark)

    Labuda, Tord; Christensen, Jan Pravsgaard; Rasmussen, Susanne

    2006-01-01

    in the generation of a virus-specific immune response. Mekk1(DeltaKD) mice challenged with vesicular stomatitis virus (VSV) showed a fourfold increase in splenic CD8(+) T cell numbers. In contrast, the number of splenic T cells in infected WT mice was only marginally increased. The CD8(+) T cell expansion in Mekk1...... proliferation, since a significantly higher percentage of virus-specific Mekk1(DeltaKD) CD8(+) T cells incorporated BrdU as compared to virus-specific WT CD8(+) T cells. In contrast, similar levels of apoptosis were detected in Mekk1(DeltaKD) and WT T cells following VSV infection. These results strongly...... suggest that MEKK1 plays a negative regulatory role in the expansion of virus-specific CD8(+) T cells in vivo....

  17. T cell activation and proliferation following acute exercise in human subjects is altered by storage conditions and mitogen selection.

    Science.gov (United States)

    Siedlik, Jacob A; Deckert, Jake A; Benedict, Stephen H; Bhatta, Anuja; Dunbar, Amanda J; Vardiman, John P; Gallagher, Philip M

    2017-07-01

    Recent work investigating exercise induced changes in immunocompetence suggests that some of the ambiguity in the literature is resultant from different cell isolation protocols and mitogen selection. To understand this effect, we compared post-exercise measures of T cell activation and proliferation using two different stimulation methods (costimulation through CD28 or stimulation with phytohaemagglutinin [PHA]). Further, we investigated whether exercise induced changes are maintained when T cell isolation from whole blood is delayed overnight in either a room temperature or chilled (4°C) environment. As expected, an increased proliferation response was observed post-exercise in T cells isolated from whole blood of previously trained individuals immediately after blood collection. Also, cells stimulated with PHA after resting overnight in whole blood were not adversely impacted by the storage conditions. In contrast, allowing cells to rest overnight in whole blood prior to stimulation through CD28, lessened the proliferation observed by cells following exercise rendering both the room temperature and chilled samples closer to the results seen in the control condition. Changes in early markers of activation (CD25), followed a similar pattern, with activation in PHA stimulated cells remaining fairly robust after overnight storage; whereas cell activation following stimulation through CD3+CD28 was disproportionately decreased by the influence of overnight storage. These findings indicate that decisions regarding cell stimulation methods need to be paired with the timeline for T cell isolation from whole blood. These considerations will be especially important for field based studies of immunocompetence where there is a delay in getting whole blood samples to a lab for processing as well as clinical applications where a failure to isolate T cells in a timely manner may result in loss of the response of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Homeostatic proliferation and IL-7R alpha expression do not correlate with enhanced T cell proliferation and protection in chronic mouse malaria.

    Directory of Open Access Journals (Sweden)

    Robin Stephens

    Full Text Available While chronic infection has been shown to enhance protection from disease caused by several pathogens, the mechanisms are not known. The gamma-c family of cytokines IL-7, IL-2, and IL-15 are implicated in homeostatic proliferation, which is thought to maintain T cell memory. However in chronic infection, prolonged antigen exposure itself may contribute to lymphocyte survival. We have previously observed that chronic malaria infection enhances protection to re-infection, as well as enhancing B cell responses. Here, we show that chronic Plasmodium chabaudi malaria infection in mice enhances the expansion of CD4(+ T cells in a second infection, and that this correlates with increased expression of the IL-2/15 Receptor beta (CD122 on memory T cells, as well as increasing IL-2 producers on re-infection. IL-2 has been recently linked to improved secondary proliferation, while the role of IL-7 in maintenance of CD4(+ memory cells has been demonstrated in homeostatic proliferation, but its role in protective memory populations in infectious disease protective has not been fully investigated. Increased IL-7Rα (CD127 expression correlated, as previously reported with increased turnover of CD4 memory cells, however, this was not linked to protection or enhanced response to rechallenge, These data support the idea that antigen or IL-2 production resulting from chronic stimulation may play a role in an enhanced secondary T cell response.

  19. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells

    International Nuclear Information System (INIS)

    Morganroth, G.S.; Chan, L.S.; Weinstein, G.D.; Voorhees, J.J.; Cooper, K.D.

    1991-01-01

    Determination of the cell types proliferating in the dermis of patients with psoriasis should identify those cells experiencing activation or responding to growth factors in the psoriatic dermal milieu. Toward that end, sections of formalin-fixed biopsies obtained from 3H-deoxyuridine (3H-dU)-injected skin of eight psoriatic patients were immunostained, followed by autoradiography. Proliferating dermal cells exhibit silver grains from tritium emissions. The identity of the proliferating cells could then be determined by simultaneous visualization with antibodies specific for various cell types. UCHL1+ (CD45RO+) T cells (recall antigen-reactive helper T-cell subset) constituted 36.6 +/- 3.1% (mean +/- SEM, n = 6) of the proliferating dermal cells in involved skin, whereas Leu 18+ (CD45RA+) T cells (recall antigen naive T-cell subsets) comprised only 8.7 +/- 1.5% (n = 6). The Factor XIIIa+ dermal perivascular dendritic cell subset (24.9 +/- 1.5% of proliferating dermal cells, n = 6) and Factor VIII+ endothelial cells represented the two other major proliferating populations in lesional psoriatic dermis. Differentiated tissue macrophages, identified by phase microscopy as melanophages or by immunostaining with antibodies to Leu M1 (CD15) or myeloid histiocyte antigen, comprised less than 5% of the proliferating population in either skin type. In addition to calculating the relative proportions of these cells to each other as percent, we also determined the density of cells, in cells/mm2 of tissue. The density of proliferating cells within these populations was increased in involved versus uninvolved skin: UCHL1+, 9.0 +/- 1.7 cells/mm2 versus 1.8 +/- 0.6 cells/mm2, p less than 0.01; Factor XIIIa+, 6.0 +/- 0.7 cells/mm2 versus 1.5 +/- 0.5 cells/mm2, p less than 0.01; Factor VIII+, 5.5 +/- 1.4 cells/mm2 versus 0.0 cells/mm2, p less than 0.05

  20. Implications of prostaglandin E2 synthesis and phospholipase C activation in potentiation of T-cell proliferation by LF 1695.

    Science.gov (United States)

    Derrepas, P; Annat, J; Dutartre, P; Pascal, M

    1991-01-01

    Murine spleen cells, T-enriched by nylon wool filtration, proliferate in the presence of a protein kinase C stimulator and a calcium ionophore. Using this cell proliferation system, we show that LF 1695 can potentiate phorbol myristate acetate (PMA) action in the presence of A 23187. This potentiation can be due to PGE2 inhibition since it is found that lipopolysaccharide (LPS) or A 23187 induced PGE2 release from spleen cells is inhibited by LF 1695. Indomethacin and LF 1695 gave similar stimulation of spleen cell proliferation, and exogeneously added PGE2 inhibits this phenomenon. Considering two of the main early components of intracellular signal transduction, LF 1695 induces IP3 release and calcium mobilization. However, the compound is not mitogenic per se. These results show that LF 1695 behaves only as a costimulant for T-cell proliferation.

  1. [Effect of electroacupuncture on differentiation and proliferation of hippocampal nerve stem cells in splenic asthenia pedo-rats].

    Science.gov (United States)

    Zhuo, Yuan-yuan; Yang, Zhuo-xin; Wu, Jia-man

    2011-10-01

    To observe the effect of electroacupuncture (EA) on the differentiation and proliferation of nerve stem cells in the hippocampal dentate gyrus (DG) in splenic asthenia pedo-rats so as to study its central mechanism. A total of 72 SD male rats were randomly assigned to normal control group (n=24), model group (n=24) and EA group (n=24) which were further divided into 7 d, 14 d, 28 d and 49 d time-points (n=6). Splenic asthenia model was established by intraperitoneal injection of reserpine and gavage of Dahuang (Radix et Rhizoma Rhei) fluid. EA was applied to bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) for 20 min, once daily for 7, 14, 28 and 49 days respectively. Brdu, Nestin, glial fibrillary acidic protein (GFAP), and neuron-specific enolase (NSE) expression in the DG of hippocampus were detected by immunohistochemistry double staining. Compared with the normal control group, the numbers of Brdu, Brdu/GFAP, Brdu/NSE Immunoreactive (IR) positive cells in the DG of hippocampus on day 7 and 14, and that of Brdu/Nestin IR-positive cells on day 7 were decreased considerably in the model group (P 0.05). EA of ST 36 and SP 6 can effectively suppress splenic asthenia syndrome-induced decrease of the numbers of Brdu, Brdu/GFAP, Brdu/Nestin and Brdu/NSE IR-positive cells in the DG of hippocampus at the early stage in the splenic asthenia rats, which may contribute to its effect in improving splenic asthenia symptoms in clinic by promoting the proliferation and differentiation of some nerve stem cells in the hippocampus.

  2. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C.P. [Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, University of Leicester, Leicester LE1 9HN (United Kingdom); Chow, S.C., E-mail: chow.sek.chuen@monash.edu [School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan (Malaysia)

    2012-11-15

    The caspase inhibitors, benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) and benzyloxycarbonyl (Cbz)-Ile-Glu (OMe)-Thr-Asp (OMe)-FMK (z-IETD-FMK) at non-toxic doses were found to be immunosuppressive and inhibit human T cell proliferation induced by mitogens and IL-2 in vitro. Both caspase inhibitors were shown to block NF-κB in activated primary T cells, but have little inhibitory effect on the secretion of IL-2 and IFN-γ during T cell activation. However, the expression of IL-2 receptor α-chain (CD25) in activated T cells was inhibited by both z-VAD-FMK and z-IETD-FMK, whereas the expression of the early activated T cell marker, CD69 was unaffected. During primary T cell activation via the antigen receptor, both caspase-8 and caspase-3 were activated and processed to their respective subunits, but neither caspase inhibitors had any effect on the processing of these two caspases. In sharp contrast both caspase inhibitors readily blocked apoptosis and the activation of caspases during FasL-induced apoptosis in activated primary T cells and Jurkat T cells. Collectively, the results demonstrate that both z-VAD-FMK and z-IETD-FMK are immunosuppressive in vitro and inhibit T cell proliferation without blocking the processing of caspase-8 and caspase-3. -- Highlights: ► Caspase-8 and caspase-3 were activated during T cell activation and proliferation. ► T cell proliferation was blocked by caspase inhibitors. ► Caspase activation during T cell proliferation was not block by caspase inhibitors.

  3. Boron Affects Immune Function Through Modulation of Splenic T Lymphocyte Subsets, Cytokine Secretion, and Lymphocyte Proliferation and Apoptosis in Rats.

    Science.gov (United States)

    Jin, Erhui; Li, Shenghe; Ren, Man; Hu, Qianqian; Gu, Youfang; Li, Kui

    2017-08-01

    This study demonstrated the mechanisms of boron effects in a rat model and provided a scientific basis for the rational of boron use. These findings were achieved by investigating the effects of boron (10, 20, 40, 80, 160, 320, and 640 mg/L in drinking water or 1.5, 3, 6, 12, 24, 48, and 96 mg/kg BW) on rat serum immunoglobulins (IgGs), splenic cytokines, lymphocyte subsets, as well as on lymphocyte proliferation and apoptosis. Addition of 20 (3) and 40 (6) mg/L (mg/kg BW) of boron to drinking water significantly increased rat serum IgG concentrations, splenic IFN-γ and IL-4 expression as well as the number of splenic CD3 + , CD4 + and proliferating cell nuclear antigen (PCNA) + cells. Supplementation of drinking water with 40 mg/L (6 mg/kg BW) boron also markedly increased splenic IL-2 expression and the CD4 + /CD8 + cell ratio and reduced splenic CD8 + cell number. Supplementation with 80 mg/L (12 mg/kg BW) boron significantly increased CD3 + and PCNA + cell numbers (P boron markedly reduced the serum IgG concentrations; splenic IL-2 and IL-10 expression; the number of CD3 + , CD4 + and PCNA + cells; and increased the number of splenic CD8 + and caspase-3 + cells and promoted caspase-3 expression in CD3 + cells. In conclusion, these findings suggest that the supplementation of rat drinking water with 20(3) and 40(6) mg/L (mg/kg BW) boron can markedly enhance humoral and cellular immune functions, while boron concentrations above 320 mg/L (48 mg/kg BW) can have an inhibitory effect or even toxicity on immune functions. These results exhibit a U-shaped response characteristic of low and high doses of boron supplementation on immune function and imply that proper boron supplementation in food for humans and animals could be used as an immunity regulator.

  4. Gag-Specific CD4 T Cell Proliferation, Plasmacytoid Dendritic Cells, and Ethnicity in Perinatally HIV-1-Infected Youths: The ANRS-EP38-IMMIP Study.

    Science.gov (United States)

    Scott-Algara, Daniel; Warszawski, Josiane; Chenadec, Jérôme Le; Didier, Céline; Montange, Thomas; Viard, Jean-Paul; Dollfus, Catherine; Avettand-Fenoel, Véronique; Rouzioux, Christine; Blanche, Stéphane; Buseyne, Florence

    2017-01-01

    In perinatally HIV-1-infected youths living in France, we previously reported that Gag-specific CD4 and CD8 T cell proliferation is more frequently detected in patients of black ethnicity than in those of other ethnicities. We observed that black patients had higher levels of dendritic cells (DCs) than other patients. We aimed at studying the association of DC levels with Gag-specific T cell proliferation. The ANRS-EP38-IMMIP study is an observational study of youths aged between 15 and 24 years who were perinatally infected with HIV. A single blood sample was drawn for virological and immunological assays. Data from cART-treated 53 youths with undetectable plasma HIV RNA were analyzed. Gag-specific T cell proliferation was assessed by using a CFSE-based test. Peripheral blood myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) were phenotyped by flow cytometry. Plasma markers were quantified by ELISA or multiplex assays. Logistic regression was used for univariate and multivariate analyses. Patients with Gag-specific CD4 T cell proliferative responses had significantly higher percentages and absolute counts of mDCs and pDCs in the peripheral blood than nonresponding patients. Gag-specific CD4 and CD8 T cell proliferation was associated with lower plasma sCD14 levels. Plasma levels of IFN-α, TRAIL, and chemokines involved in T cell migration to secondary lymphoid organs were not associated with T cell proliferation. Multivariate analysis confirmed the association between Gag-specific CD4 T cell proliferation and pDC levels. In conclusion, DC levels are a robust correlate of the presence of Gag-specific T cell proliferation in successfully treated youths.

  5. Stimulation of hair follicle stem cell proliferation through an IL-1 dependent activation of γδT-cells

    Science.gov (United States)

    Dutta, Abhik; Pincha, Neha; Rana, Isha; Ghosh, Subhasri; Witherden, Deborah; Kandyba, Eve; MacLeod, Amanda; Kobielak, Krzysztof; Havran, Wendy L

    2017-01-01

    The cutaneous wound-healing program is a product of a complex interplay among diverse cell types within the skin. One fundamental process that is mediated by these reciprocal interactions is the mobilization of local stem cell pools to promote tissue regeneration and repair. Using the ablation of epidermal caspase-8 as a model of wound healing in Mus musculus, we analyzed the signaling components responsible for epithelial stem cell proliferation. We found that IL-1α and IL-7 secreted from keratinocytes work in tandem to expand the activated population of resident epidermal γδT-cells. A downstream effect of activated γδT-cells is the preferential proliferation of hair follicle stem cells. By contrast, IL-1α-dependent stimulation of dermal fibroblasts optimally stimulates epidermal stem cell proliferation. These findings provide new mechanistic insights into the regulation and function of epidermal cell–immune cell interactions and into how components that are classically associated with inflammation can differentially influence distinct stem cell niches within a tissue. PMID:29199946

  6. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Ohshima Koichi

    2011-03-01

    Full Text Available Abstract Background Adult T-cell leukemia (ATL is an aggressive malignancy of CD4+ T-cells caused by human T-cell leukemia virus type 1 (HTLV-1. The HTLV-1 bZIP factor (HBZ gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3 as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known. Results Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR, doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2 and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ. Conclusions Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.

  7. Intrathymic proliferation wave essential for Vα14+ natural killer T cell development depends on c-Myc

    OpenAIRE

    Dose, Marei; Sleckman, Barry P.; Han, Jin; Bredemeyer, Andrea L.; Bendelac, Albert; Gounari, Fotini

    2009-01-01

    The molecular requirements for invariant Vα14-bearing natural killer T cells (iNKT) in the thymus are poorly understood. A minute population of ≈500 newly selected CD69+CD24+ stage 0 (ST0) iNKT cells gives rise to ≈100 times more CD44neg/loCD24− stage 1 (ST1) cells, which then generate similar frequencies of CD44hiCD24− stage 2 (ST2) and mature iNKT cells. Although the increased number of ST1 compared with ST0 cells indicates the initiation of a proliferation wave in the very early stages of ...

  8. CD8+CD25+ T cells reduce atherosclerosis in apoE(−/−) mice

    International Nuclear Information System (INIS)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning; Yano, Juliana; Lio, Wai Man; Trinidad, Portia; Honjo, Tomoyuki; Cercek, Bojan; Shah, Prediman K.; Chyu, Kuang-Yuh

    2014-01-01

    Highlights: •The role of a sub-population of CD8 + T cells with suppressor functions was investigated in atherosclerosis. •CD8 + CD25 + T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8 + CD25 + T cells reduced CD4 + T cell proliferation and CD8 + cytotoxic activity in vitro. •Adoptive transfer of CD8 + CD25 + T cells significantly reduced atherosclerosis. •CD8 + CD25 + T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8 + T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8 + CD25 + T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8 + CD25 + T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8 + CD25 + T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8 + CD25 + T cells from apoE(−/−) mice. Depletion of CD8 + CD25 + from total CD8 + T cells rendered higher cytolytic activity of the remaining CD8 + CD25 − T cells. Adoptive transfer of CD8 + CD25 + T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4 + T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8 + CD25 + T cells in experimental atherosclerosis

  9. Antroquinonol Exerts Immunosuppressive Effect on CD8+ T Cell Proliferation and Activation to Resist Depigmentation Induced by H2O2

    OpenAIRE

    Guan, Cuiping; Li, Qingtian; Song, Xiuzu; Xu, Wen; Li, Liuyu; Xu, Aie

    2017-01-01

    Antroquinonol was investigated as antioxidant and inhibition of inflammatory responses. Our study was to evaluate its immunosuppressive effect on CD8+ T cells and protective effect on depigmentation. CD8+ T cells were treated with antroquinonol in vitro, and C57BL/6 mice were treated with antroquinonol with or without H2O2 in vivo for 50 consecutive days. We found antroquinonol could inhibit proliferation of CD8+ T cells and suppress the production of cytokines IL-2 and IFN-γ and T cell activ...

  10. Antroquinonol Exerts Immunosuppressive Effect on CD8+ T Cell Proliferation and Activation to Resist Depigmentation Induced by H2O2

    Directory of Open Access Journals (Sweden)

    Cuiping Guan

    2017-01-01

    Full Text Available Antroquinonol was investigated as antioxidant and inhibition of inflammatory responses. Our study was to evaluate its immunosuppressive effect on CD8+ T cells and protective effect on depigmentation. CD8+ T cells were treated with antroquinonol in vitro, and C57BL/6 mice were treated with antroquinonol with or without H2O2 in vivo for 50 consecutive days. We found antroquinonol could inhibit proliferation of CD8+ T cells and suppress the production of cytokines IL-2 and IFN-γ and T cell activation markers CD69 and CD137 in vitro. H2O2 treatment induced depigmentation and reduced hair follicle length, skin thickness, and tyrosinase expression in vivo. Whereas, antroquinonol obviously ameliorated depigmentation of mice skin and resisted the reduction of hair follicle length, skin thickness, and tyrosinase expression induced by H2O2. Antroquinonol decreased CD8+ T cell infiltration in mice skin, inhibited the production of IL-2 and IFN-γ, and decreased the expression of CXCL10 and CXCR3. Summarily, our data shows antroquinonol inhibits CD8+ T cell proliferation in vitro. It also reduces CD8+ T cell infiltration and proinflammatory cytokine secretion and suppresses the thinning of epidermal layer in vivo. Our findings suggest that antroquinonol exerts immunosuppressive effects on CD8+ T cell proliferation and activation to resist depigmentation induced by H2O2.

  11. Antroquinonol Exerts Immunosuppressive Effect on CD8+ T Cell Proliferation and Activation to Resist Depigmentation Induced by H2O2.

    Science.gov (United States)

    Guan, Cuiping; Li, Qingtian; Song, Xiuzu; Xu, Wen; Li, Liuyu; Xu, Aie

    2017-01-01

    Antroquinonol was investigated as antioxidant and inhibition of inflammatory responses. Our study was to evaluate its immunosuppressive effect on CD8 + T cells and protective effect on depigmentation. CD8 + T cells were treated with antroquinonol in vitro , and C57BL/6 mice were treated with antroquinonol with or without H 2 O 2 in vivo for 50 consecutive days. We found antroquinonol could inhibit proliferation of CD8 + T cells and suppress the production of cytokines IL-2 and IFN- γ and T cell activation markers CD69 and CD137 in vitro . H 2 O 2 treatment induced depigmentation and reduced hair follicle length, skin thickness, and tyrosinase expression in vivo . Whereas, antroquinonol obviously ameliorated depigmentation of mice skin and resisted the reduction of hair follicle length, skin thickness, and tyrosinase expression induced by H 2 O 2 . Antroquinonol decreased CD8 + T cell infiltration in mice skin, inhibited the production of IL-2 and IFN- γ , and decreased the expression of CXCL10 and CXCR3. Summarily, our data shows antroquinonol inhibits CD8 + T cell proliferation in vitro . It also reduces CD8 + T cell infiltration and proinflammatory cytokine secretion and suppresses the thinning of epidermal layer in vivo . Our findings suggest that antroquinonol exerts immunosuppressive effects on CD8 + T cell proliferation and activation to resist depigmentation induced by H 2 O 2 .

  12. Calcium channel antagonist (nifedipine) attenuates Plasmodium berghei-specific T cell immune responses in Balb/C mice.

    Science.gov (United States)

    Moshal, Karni S; Adhikari, Jawahar S; Bist, Kamana; Nair, Unnikrishnan; Dwarakanath, B S; Katyal, Anju; Chandra, Ramesh

    2007-08-01

    Nifedipine and verapamil (Martin et al. Science 1987;235:899-901) are a class of calcium channel blockers involved in the reversal of chloroquine (CQ) drug resistance in CQ-sensitive Plasmodium spp. Nifedipine alters calcium-dependent functions of macrophages and neutrophils during Plasmodium berghei malaria. However, knowledge of nifedipine-induced immunomodulation of T cell functions during P. berghei malaria is still limited. We investigated the effect of nifedipine on the immune status of splenic T cells during P. berghei malaria. The intracellular calcium levels were determined in the FURA-2A/M loaded T cells by spectrofluorometry. Splenic T cell proliferation, phosphatidylserine (PS) externalization, Fas expression and Bcl2/Bax expression were determined by flow cytometry. We report a significant increase in mean percent parasitemia in nifedipine-treated and P. berghei-infected mice. Although nifedipine treatment alone did not affect the resting state free calcium levels in splenic T cells, the rise in intracellular calcium levels of T cells following P. berghei infection was significantly less in nifedipine-treated mice compared to untreated groups at various parasitemia levels. Antigen-specific splenic T cell proliferation and apoptosis was ablated in nifedipine-treated and untreated groups at various parasitemia levels. The study unequivocally reflects the suppression of P. berghei-specific T cell immune responses by nifedipine.

  13. The role of peroxisome proliferator-activated receptor-β/δ in epidermal growth factor-induced HaCaT cell proliferation

    International Nuclear Information System (INIS)

    Liang Pengfei; Jiang Bimei; Yang Xinghua; Xiao Xianzhong; Huang Xu; Long Jianhong; Zhang Pihong; Zhang Minghua; Xiao Muzhang; Xie Tinghong; Huang Xiaoyuan

    2008-01-01

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) expression and activation is involved in the cell proliferation. However, little is known about the role of PPARβ/δ in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPARβ/δ mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPARβ/δ protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPARβ/δ binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPARβ/δ caused selectively inhibition of PPARβ/δ protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPARβ/δ, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPARβ/δ up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPARβ/δ promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPARβ/δ expression in a c-Jun-dependent manner and PPARβ/δ plays a vital role in EGF-stimulated proliferation of HaCaT cells

  14. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    Science.gov (United States)

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  15. Splenic CD8(+) T cells secrete TGF-beta 1 to exert suppression in mice with anterior chamber-associated immune deviation

    NARCIS (Netherlands)

    Jiang, L.Q.; He, H.; Yang, P.Z.; Lin, X.M.; Zhou, H.Y.; Huang, X.K.; Kijlstra, A.

    2009-01-01

    Background CD8(+) regulatory T cells (Treg) have been considered to be involved in a model of ocular-induced tolerance, known as anterior chamber-associated immune deviation (ACAID). The mechanisms of suppression by CD8(+) T cells in ACAID remain only poorly understood. TGF-beta 1 is considered as

  16. 4-1BB signaling activates the t cell factor 1 effector/β-catenin pathway with delayed kinetics via ERK signaling and delayed PI3K/AKT activation to promote the proliferation of CD8+ T Cells.

    Science.gov (United States)

    Lee, Do Y; Choi, Beom K; Lee, Don G; Kim, Young H; Kim, Chang H; Lee, Seung J; Kwon, Byoung S

    2013-01-01

    4-1BB (CD137), an inducible costimulatory molecule, strongly enhances the proliferation and effector function of CD8(+) T cells. Since the serine/threonine kinase, glycogen synthase kinase-3 (GSK-3), is involved in a variety of signaling pathways of cellular proliferation, migration, immune responses, and apoptosis, we examined whether 4-1BB signaling activates GSK-3/β-catenin signaling and downstream transcription factors to enhance the proliferation of CD8(+) T cells. 4-1BB signaling induces rapid activation of ERK and IκB degradation, and shows delayed activation of AKT at 24 h post 4-1BB stimulation on anti-CD3 activated T cells. ERK and AKT signals were required for sustained β-catenin levels by inactivating GSK-3, which was also observed with delayed kinetics after 4-1BB stimulation. As a transcriptional partner of β-catenin, 4-1BB signaling decreased levels of FOXO1 and increased levels of stimulatory TCF1 in CD8(+) T cells at 2-3 days but not at early time points after 4-1BB engagement. The enhanced proliferation of CD8(+) T cells due to 4-1BB signaling was completely abolished by treatment with the TCF1/β-catenin inhibitor quercetin. These results show that 4-1BB signaling enhances the proliferation of activated CD8(+) T cells by activating the TCF1/β-catenin axis via the PI3K/AKT/ERK pathway. As effects of 4-1BB on AKT, FOXO1, β-catenin and GSK-3β showed delayed kinetics it is likely that an intervening molecule induced by 4-1BB and ERK signaling in activated T cells is responsible for these effects. These effects were observed on CD8(+) but not on CD4(+) T cells. Moreover, 4-1BB appeared to be unique among several TNFRs tested in inducing increase in stimulatory over inhibitory TCF-1.

  17. B cell activating factor (BAFF) and a proliferation inducing ligand (APRIL) mediate CD40-independent help by memory CD4 T cells.

    Science.gov (United States)

    Gorbacheva, V; Ayasoufi, K; Fan, R; Baldwin, W M; Valujskikh, A

    2015-02-01

    Donor-reactive memory T cells undermine organ transplant survival and are poorly controlled by immunosuppression or costimulatory blockade. Memory CD4 T cells provide CD40-independent help for the generation of donor-reactive effector CD8 T cells and alloantibodies (alloAbs) that rapidly mediate allograft rejection. The goal of this study was to investigate the role of B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) in alloresponses driven by memory CD4 T cells. The short-term neutralization of BAFF alone or BAFF plus APRIL synergized with anti-CD154 mAb to prolong heart allograft survival in recipients containing donor-reactive memory CD4 T cells. The prolongation was associated with reduction in antidonor alloAb responses and with inhibited reactivation and helper functions of memory CD4 T cells. Additional depletion of CD8 T cells did not enhance the prolonged allograft survival suggesting that donor-reactive alloAbs mediate late graft rejection in these recipients. This is the first report that targeting the BAFF cytokine network inhibits both humoral and cellular immune responses induced by memory CD4 T cells. Our results suggest that reagents neutralizing BAFF and APRIL may be used to enhance the efficacy of CD40/CD154 costimulatory blockade and improve allograft survival in T cell-sensitized recipients. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. Interactive effects of fumonisin B1 and alpha-zearalenol on proliferation and cytokine expression in Jurkat T cells.

    Science.gov (United States)

    Luongo, D; Severino, L; Bergamo, P; De Luna, R; Lucisano, A; Rossi, M

    2006-12-01

    Mycotoxins are secondary metabolites of fungi that grow on various food and feed. These compounds elicit a wide spectrum of toxicological effects, including the capacity to alter normal immune function. Feed commodities are usually contaminated with more than one mycotoxin; however, extensive information on the interaction between concomitantly occurring mycotoxins and the consequence for their toxicity is lacking. In the present study, we examined the effects in vitro of fumonisin B1 (FB1) and alpha-zearalenol (alpha-ZEA), alone or in combination, on the immune function in the human lymphoblastoid Jurkat T cell line. Treatment of cells with increasing concentrations of FB1 resulted in a dose-dependent induction of proliferation. In contrast, alpha-ZEA showed a marked inhibitory effect on cell proliferation, even at very low doses, essentially mediated by apoptosis. In stimulated cells pre-incubated with FB1, the levels of IL-2 and IFN gamma mRNAs were similar to control whereas a reduction of cytokine transcripts was reported following alpha-ZEA treatment. Interestingly, co-administration of mycotoxins resulted in further inhibition of both proliferation and IFN gamma mRNA expression when compared with alpha-ZEA alone. In conclusion, FB1 and alpha-ZEA showed different immunomodulation abilities when individually administered. Combination of mycotoxins resulted instead in interactive effects.

  19. 1,25-dihydroxyvitamin D3 selectively reduces interleukin-2 levels and proliferation of human T cell lines in vitro

    DEFF Research Database (Denmark)

    Müller, K; Odum, Niels; Bendtzen, K

    1993-01-01

    1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) inhibits the proliferation of mitogen-stimulated human mononuclear cells (MNC) as well as the production of a number of proinflammatory cytokines, including interleukin (IL)-1 alpha, IL-6, tumour necrosis factor-alpha, IL-2, interferon-gamma (IFNg......) and lymphotoxin (LT). These effects are most likely mediated via specific vitamin D receptors expressed by monocytes and activated T lymphocytes. In the present study we have evaluated the ability of 1,25-(OH)2D3 to affect proliferation and cytokine production by human T cell lines stimulated by anti-CD3...... antibodies or anti-CD3 plus anti-CD28 antibodies. 1,25-(OH)2D3 selectively reduced the supernatant levels of IL-2, while the IFNg and LT levels were unaffected. This was followed by a time- and dose-dependent reduction in proliferation. Although the expression of high affinity IL-2 receptors (IL-2R) (p75...

  20. Comparison of microglia and infiltrating CD11c+ cells as antigen presenting cells for T cell proliferation and cytokine response

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Løbner, Morten; Cédile, Oriane

    2014-01-01

    (DC) and macrophages infiltrate the CNS during experimental autoimmune encephalomyelitis (EAE). Microglia are not considered to be as effective APC as DC or macrophages. METHODS: In this work we compared the antigen presenting capacity of CD11c+ and CD11c- microglia subsets with infiltrating CD11c......+ APC, which include DC. The microglial subpopulations (CD11c- CD45dim CD11b+ and CD11c+ CD45dim CD11b+) as well as infiltrating CD11c+ CD45high cells were sorted from CNS of C57BL/6 mice with EAE. Sorted cells were characterised by flow cytometry for surface phenotype and by quantitative real-time PCR...... for cytokine expression. They were co-cultured with primed T cells to measure induction of T cell proliferation and cytokine response. RESULTS: The number of CD11c+ microglia cells increased dramatically in EAE. They expressed equivalent levels of major histocompatibility complex and co-stimulatory ligands CD...

  1. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation

    DEFF Research Database (Denmark)

    Skindersø, Mette Elena; Zeuthen, Louise; Pedersen, Susanne Brix

    2009-01-01

    Pseudomonas aeruginosa releases a wide array of toxins and tissue-degrading enzymes. Production of these malicious virulence factors is controlled by interbacterial communication in a process known as quorum sensing. An increasing body of evidence reveals that the bacterial signal molecule N-(3...... article we demonstrate that both OdDHL and PQS decrease the production of interleukin-12 (IL-12) by Escherichia coli lipopolysaccharide-stimulated bone marrow-derived dendritic cells (BM-DCs) without altering their IL-10 release. Moreover, BM-DCs exposed to PQS and OdDHL during antigen stimulation exhibit...... a decreased ability to induce T-cell proliferation in vitro. Collectively, this suggests that OdDHL and PQS change the maturation pattern of stimulated DCs away from a proinflammatory T-helper type I directing response, thereby decreasing the antibacterial activity of the adaptive immune defence. Od...

  2. Reduction of myeloid suppressor cell derived nitric oxide provides a mechanistic basis of lead enhancement of alloreactive CD4+ T cell proliferation

    International Nuclear Information System (INIS)

    Farrer, David G.; Hueber, Sara; Laiosa, Michael D.; Eckles, Kevin G.; McCabe, Michael J.

    2008-01-01

    The persistent environmental toxicant and immunomodulator, lead (Pb), has been proposed to directly target CD4 + T cells. However, our studies suggest that CD4 + T cells are an important functional, yet indirect target. In order to identify the direct target of Pb in the immune system and the potential mechanism of Pb-induced immunotoxicity, myeloid suppressor cells (MSCs) were evaluated for their ability to modulate CD4 + T cell proliferation after Pb exposure. Myeloid suppressor cells regulate the adaptive immune response, in part, by inhibiting the proliferation of CD4 + T cells. It is thought that the mechanism of MSC-dependent regulation involves the release of the bioactive gas, nitric oxide (NO), blocking cell signaling cascades downstream of the IL-2 receptor and thus preventing T cells from entering cell-cycle. In mixed lymphocyte culture (MLC), increasing numbers of MSCs suppressed T cell proliferation in a dose-dependent manner, and this suppression is strikingly abrogated with 5 μM lead (Pb) treatment. The Pb-sensitive MSC population is CD11b + , GR1 + and CD11c - and thus phenotypically consistent with MSCs described in other literature. Inhibition of NO-synthase (NOS), the enzyme responsible for the production of NO, enhanced alloreactive T cell proliferation in MLC. Moreover, Pb attenuated NO production in MLC, and exogenous replacement of NO restored suppression in the presence of Pb. Significantly, MSC from iNOS-/- mice were unable to suppress T cell proliferation. An MSC-derived cell line (MSC-1) also suppressed T cell proliferation in MLC, and Pb disrupted this suppression by attenuating NO production. Additionally, Pb disrupted NO production in MSC-1 cells in response to treatment with interferon-γ (IFN-γ) and LPS or in response to concanavalin A-stimulated splenocytes. However, neither the abundance of protein nor levels of mRNA for the inducible isoform of NOS (iNOS) were altered with Pb treatment. Taken together these data suggest that Pb

  3. Reconstitution of T Cell Proliferation under Arginine Limitation: Activated Human T Cells Take Up Citrulline via L-Type Amino Acid Transporter 1 and Use It to Regenerate Arginine after Induction of Argininosuccinate Synthase Expression

    Directory of Open Access Journals (Sweden)

    Anke Werner

    2017-07-01

    Full Text Available In the tumor microenvironment, arginine is metabolized by arginase-expressing myeloid cells. This arginine depletion profoundly inhibits T cell functions and is crucially involved in tumor-induced immunosuppression. Reconstitution of adaptive immune functions in the context of arginase-mediated tumor immune escape is a promising therapeutic strategy to boost the immunological antitumor response. Arginine can be recycled in certain mammalian tissues from citrulline via argininosuccinate (ASA in a two-step enzymatic process involving the enzymes argininosuccinate synthase (ASS and argininosuccinate lyase (ASL. Here, we demonstrate that anti-CD3/anti-CD28-activated human primary CD4+ and CD8+ T cells upregulate ASS expression in response to low extracellular arginine concentrations, while ASL is expressed constitutively. ASS expression peaked under moderate arginine restriction (20 µM, but no relevant induction was detectable in the complete absence of extracellular arginine. The upregulated ASS correlated with a reconstitution of T cell proliferation upon supplementation of citrulline, while the suppressed production of IFN-γ was refractory to citrulline substitution. In contrast, ASA reconstituted proliferation and cytokine synthesis even in the complete absence of arginine. By direct quantification of intracellular metabolites we show that activated primary human T cells import citrulline but only metabolize it further to ASA and arginine when ASS is expressed in the context of low amounts of extracellular arginine. We then clarify that citrulline transport is largely mediated by the L-type amino acid transporter 1 (LAT1, induced upon human T cell activation. Upon siRNA-mediated knockdown of LAT1, activated T cells lost the ability to import citrulline. These data underline the potential of citrulline substitution as a promising pharmacological way to treat immunosuppression in settings of arginine deprivation.

  4. Indoleamine 2,3-dioxygenase mediates inhibition of virus-specific CD8(+) T cell proliferation by human mesenchymal stromal cells.

    Science.gov (United States)

    Hong, Jian; Hueckelhoven, Angela; Wang, Lei; Schmitt, Anita; Wuchter, Patrick; Tabarkiewicz, Jacek; Kleist, Christian; Bieback, Karen; Ho, Anthony D; Schmitt, Michael

    2016-05-01

    Mesenchymal stromal cells (MSCs) exert broad immunomodulatory functions. We recently demonstrated a strong suppressive effect of MSCs on virus-specific CD8(+) T-cell proliferation. Here, we further explored the underlying mechanism. The role of indoleamine 2,3-dioxygenase (IDO) in inhibition of virus-specific CD8(+) T-cell proliferation by human MSCs was investigated using a mixed lymphocyte peptide culture assay, IDO intracellular staining and IDO inhibition through 1-methyl-DL-tryptophan (1-MT). Moreover, the influence of the number of passages and the seeding density of MSCs on their IDO expression and immunosuppressive ability were investigated. MSCs with low IDO expression exhibited a reduced suppressive effect on both allo-antigen- and cytomegalovirus (CMV)-specific CD8(+) T-cell proliferation. 1-MT could partially abrogate the suppressive effect. MSCs inhibited CMV-specific CD8(+) T-cell proliferation regardless of the number of passages and the seeding density. IDO expression of MSCs was not significantly affected by the number of passages or the seeding density. In addition, the interferon (IFN)-γ level in the culture system was crucial for MSCs to inhibit the proliferation of CMV-specific CD8(+) T cells. MSCs inhibit virus-specific CD8(+) T-cell proliferation through IFN-γ-induced IDO activity, resolving current conflicting reports on this issue and indicating the potential need for prophylaxis and surveillance of virus infection in patients treated with MSCs. In addition, our study makes a contribution to the development of MSC potency assay for clinical use. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning; Yano, Juliana; Lio, Wai Man; Trinidad, Portia; Honjo, Tomoyuki; Cercek, Bojan; Shah, Prediman K.; Chyu, Kuang-Yuh, E-mail: Chyuk@cshs.org

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.

  6. Notch1 is required for hypoxia-induced proliferation, invasion and chemoresistance of T-cell acute lymphoblastic leukemia cells

    Directory of Open Access Journals (Sweden)

    Zou Jie

    2013-01-01

    Full Text Available Abstract Background Notch1 is a potent regulator known to play an oncogenic role in many malignancies including T-cell acute lymphoblastic leukemia (T-ALL. Tumor hypoxia and increased hypoxia-inducible factor-1α (HIF-1α activity can act as major stimuli for tumor aggressiveness and progression. Although hypoxia-mediated activation of the Notch1 pathway plays an important role in tumor cell survival and invasiveness, the interaction between HIF-1α and Notch1 has not yet been identified in T-ALL. This study was designed to investigate whether hypoxia activates Notch1 signalling through HIF-1α stabilization and to determine the contribution of hypoxia and HIF-1α to proliferation, invasion and chemoresistance in T-ALL. Methods T-ALL cell lines (Jurkat, Sup-T1 transfected with HIF-1α or Notch1 small interference RNA (siRNA were incubated in normoxic or hypoxic conditions. Their potential for proliferation and invasion was measured by WST-8 and transwell assays. Flow cytometry was used to detect apoptosis and assess cell cycle regulation. Expression and regulation of components of the HIF-1α and Notch1 pathways and of genes related to proliferation, invasion and apoptosis were assessed by quantitative real-time PCR or Western blot. Results Hypoxia potentiated Notch1 signalling via stabilization and activation of the transcription factor HIF-1α. Hypoxia/HIF-1α-activated Notch1 signalling altered expression of cell cycle regulatory proteins and accelerated cell proliferation. Hypoxia-induced Notch1 activation increased the expression of matrix metalloproteinase-2 (MMP2 and MMP9, which increased invasiveness. Of greater clinical significance, knockdown of Notch1 prevented the protective effect of hypoxia/HIF-1α against dexamethasone-induced apoptosis. This sensitization correlated with losing the effect of hypoxia/HIF-1α on Bcl-2 and Bcl-xL expression. Conclusions Notch1 signalling is required for hypoxia/HIF-1α-induced proliferation

  7. GB virus C infection is associated with altered lymphocyte subset distribution and reduced T cell activation and proliferation in HIV-infected individuals.

    Directory of Open Access Journals (Sweden)

    Jack T Stapleton

    Full Text Available GBV-C infection is associated with prolonged survival and with reduced T cell activation in HIV-infected subjects not receiving combination antiretroviral therapy (cART. The relationship between GBV-C and T cell activation in HIV-infected subjects was examined. HIV-infected subjects on cART with non-detectable HIV viral load (VL or cART naïve subjects were studied. GBV-C VL and HIV VL were determined. Cell surface markers of activation (CD38(+/HLA-DR(+, proliferation (Ki-67+, and HIV entry co-receptor expression (CCR5+ and CXCR4+ on total CD4+ and CD8+ T cells, and on naïve, central memory (CM, effector memory (EM, and effector CD4+ and CD8+ subpopulations were measured by flow cytometry. In subjects with suppressed HIV VL, GBV-C was consistently associated with reduced activation in naïve, CM, EM, and effector CD4+ cells. GBV-C was associated with reduced CD4+ and CD8+ T cell surface expression of activation and proliferation markers, independent of HIV VL classification. GBV-C was also associated with higher proportions of naïve CD4+ and CD8+ T cells, and with lower proportions of EM CD4+ and CD8+ T cells. In conclusion, GBV-C infection was associated with reduced activation of CD4+ and CD8+ T cells in both HIV viremic and HIV RNA suppressed patients. Those with GBV-C infection demonstrated an increased proportion of naive T cells and a reduction in T cell activation and proliferation independent of HIV VL classification, including those with suppressed HIV VL on cART. Since HIV pathogenesis is thought to be accelerated by T cell activation, these results may contribute to prolonged survival among HIV infected individuals co-infected with GBV-C. Furthermore, since cART therapy does not reduce T cell activation to levels seen in HIV-uninfected people, GBV-C infection may be beneficial for HIV-related diseases in those effectively treated with anti-HIV therapy.

  8. Selective loss of T cell functions in different stages of HIV infection. Early loss of anti-CD3-induced T cell proliferation followed by decreased anti-CD3-induced cytotoxic T lymphocyte generation in AIDS-related complex and AIDS

    NARCIS (Netherlands)

    Gruters, R. A.; Terpstra, F. G.; de Jong, R.; van Noesel, C. J.; van Lier, R. A.; Miedema, F.

    1990-01-01

    To investigate the effects of persistant human immunodeficiency virus (HIV) infection on T cell reactivity, functional properties of peripheral blood T cells from HIV-seropositive homosexual men in various stages of infection were studied. T cell activation via CD3 resulting in proliferation and

  9. Hepatitis C virus core protein reduces CD8+T-cell proliferation, perforin production and degranulation but increases STAT5 activation.

    Science.gov (United States)

    Khan, Sarwat Tahsin; Karges, Winston; Cooper, Curtis L; Crawley, Angela M

    2017-12-20

    Clearance of hepatitis C virus (HCV) is dependent on an effective virus-specific CD8 + T-cell response, which is dysfunctional in chronic HCV infection. Dysfunction in bulk or non-HCV-specific CD8 + T-cells in HCV infection has also been observed. This may contribute to observed reductions in immunity to other diseases (e.g. cancer, viral co-infections) in HCV-infected individuals. Evidence suggests that the HCV core protein (found in blood as free protein) may contribute to this impairment. To determine if HCV core contributes to the impairment of effector functions and survival potential of CD8 + T-cells, isolated human CD8 + T-cells from healthy donors were pre-incubated with recombinant HCV core protein for 72 hr and then stimulated in vitro to evaluate proliferation, survival potential and effector functions. Pre-incubation of stimulated CD8 + T-cells with HCV core significantly reduced their proliferation. Perforin production and degranulation were also decreased, but interferon-γ production was unchanged. Additionally, when CD8 + T-cells were treated with serum from HCV + individuals, they produced less perforin than cells treated with healthy serum. Up-regulation of anti-apoptotic Bcl-2 was slightly lower in cells treated with HCV core, but signal transducer and activator of transcription 5 (STAT5) activation was increased, suggesting dysregulation downstream of STAT activation. Our study reveals that HCV core reduces the activity and target lysis-associated functions of CD8 + T-cells. This may contribute to the generalized impairment of CD8 + T-cells observed in HCV infection. These findings provide insight for the design of novel counteractive immune-mediated strategies including the design of effective therapeutic vaccines for use in HCV + individuals. © 2017 John Wiley & Sons Ltd.

  10. Memory phenotype CD4 T cells undergoing rapid, nonburst-like, cytokine-driven proliferation can be distinguished from antigen-experienced memory cells.

    Directory of Open Access Journals (Sweden)

    Souheil-Antoine Younes

    2011-10-01

    Full Text Available Memory phenotype (CD44(bright, CD25(negative CD4 spleen and lymph node T cells (MP cells proliferate rapidly in normal or germ-free donors, with BrdU uptake rates of 6% to 10% per day and Ki-67 positivity of 18% to 35%. The rapid proliferation of MP cells stands in contrast to the much slower proliferation of lymphocytic choriomeningitis virus (LCMV-specific memory cells that divide at rates ranging from <1% to 2% per day over the period from 15 to 60 days after LCMV infection. Anti-MHC class II antibodies fail to inhibit the in situ proliferation of MP cells, implying a non-T-cell receptor (TCR-driven proliferation. Such proliferation is partially inhibited by anti-IL-7Rα antibody. The sequence diversity of TCRβ CDR3 gene segments is comparable among the proliferating and quiescent MP cells from conventional and germ-free mice, implying that the majority of proliferating MP cells have not recently derived from a small cohort of cells that expand through multiple continuous rounds of cell division. We propose that MP cells constitute a diverse cell population, containing a subpopulation of slowly dividing authentic antigen-primed memory cells and a majority population of rapidly proliferating cells that did not arise from naïve cells through conventional antigen-driven clonal expansion.

  11. OX40 and IL-7 play synergistic roles in the homeostatic proliferation of effector memory CD4⁺ T cells.

    Science.gov (United States)

    Yamaki, Satoshi; Ine, Shouji; Kawabe, Takeshi; Okuyama, Yuko; Suzuki, Nobu; Soroosh, Pejman; Mousavi, Seyed Fazlollah; Nagashima, Hiroyuki; Sun, Shu-lan; So, Takanori; Sasaki, Takeshi; Harigae, Hideo; Sugamura, Kazuo; Kudo, Hironori; Wada, Motoshi; Nio, Masaki; Ishii, Naoto

    2014-10-01

    T-cell homeostasis preserves the numbers, the diversity and functional competence of different T-cell subsets that are required for adaptive immunity. Naïve CD4(+) T (TN ) cells are maintained in the periphery via the common γ-chain family cytokine IL-7 and weak antigenic signals. However, it is not clear how memory CD4(+) T-cell subsets are maintained in the periphery and which factors are responsible for the maintenance. To examine the homeostatic mechanisms, CFSE-labeled CD4(+) CD44(high) CD62L(low) effector memory T (TEM ) cells were transferred into sublethally-irradiated syngeneic C57BL/6 mice, and the systemic cell proliferative responses, which can be divided distinctively into fast and slow proliferations, were assessed by CFSE dye dilution. We found that the fast homeostatic proliferation of TEM cells was strictly regulated by both antigen and OX40 costimulatory signals and that the slow proliferation was dependent on IL-7. The simultaneous blockade of both OX40 and IL-7 signaling completely inhibited the both fast and slow proliferation. The antigen- and OX40-dependent fast proliferation preferentially expanded IL-17-producing helper T cells (Th17 cells). Thus, OX40 and IL-7 play synergistic, but distinct roles in the homeostatic proliferation of CD4(+) TEM cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung; Won, Hee Yeon; Kim, Hyo Kyeong; Jeong, Mi- Gyeong [College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Kwang Soo [Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 (United States); Hwang, Eun Sook, E-mail: eshwang@ewha.ac.kr [College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of)

    2016-05-27

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division rates and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. -- Highlights: •T cell division rates are suppressed by chloroquine and amodiaquine treatment. •Chloroquine and amodiaquine potently increased the p21 expression. •The p21 induction is

  13. Fish-oil-derived n-3 PUFAs reduce inflammatory and chemotactic adipokine-mediated cross-talk between co-cultured murine splenic CD8+ T cells and adipocytes.

    Science.gov (United States)

    Monk, Jennifer M; Liddle, Danyelle M; De Boer, Anna A; Brown, Morgan J; Power, Krista A; Ma, David Wl; Robinson, Lindsay E

    2015-04-01

    Obese adipose tissue (AT) inflammation is characterized by dysregulated adipokine production and immune cell accumulation. Cluster of differentiation (CD) 8+ T cell AT infiltration represents a critical step that precedes macrophage infiltration. n-3 (ω-3) Polyunsaturated fatty acids (PUFAs) exert anti-inflammatory effects in obese AT, thereby disrupting AT inflammatory paracrine signaling. We assessed the effect of n-3 PUFAs on paracrine interactions between adipocytes and primary CD8+ T cells co-cultured at the cellular ratio observed in obese AT. C57BL/6 mice were fed either a 3% menhaden fish-oil + 7% safflower oil (FO) diet (wt:wt) or an isocaloric 10% safflower oil (wt:wt) control (CON) for 3 wk, and splenic CD8+ T cells were isolated by positive selection (via magnetic microbeads) and co-cultured with 3T3-L1 adipocytes. Co-cultures were unstimulated (cells alone), T cell receptor stimulated, or lipopolysaccharide (LPS) stimulated for 24 h. In LPS-stimulated co-cultures, FO reduced secreted protein concentrations of interleukin (IL)-6 (-42.6%), tumor necrosis factor α (-67%), macrophage inflammatory protein (MIP) 1α (-52%), MIP-1β (-62%), monocyte chemotactic protein (MCP) 1 (-23%), and MCP-3 (-19%) vs. CON, which coincided with a 74% reduction in macrophage chemotaxis toward secreted chemotaxins in LPS-stimulated FO-enriched co-culture-conditioned media. FO increased mRNA expression of the inflammatory signaling negative regulators monocyte chemoattractant 1-induced protein (Mcpip; +9.3-fold) and suppressor of cytokine signaling 3 (Socs3; +1.7-fold), whereas FO reduced activation of inflammatory transcription factors nuclear transcription factor κB (NF-κB) p65 and signal transducer and activator of transcription 3 (STAT3) by 27% and 33%, respectively. Finally, mRNA expression of the inflammasome components Caspase1 (-36.4%), Nod-like receptor family pyrin domain containing 3 (Nlrp3; -99%), and Il1b (-68.8%) were decreased by FO compared with CON (P

  14. Kaposi's-sarcoma-associated-herpesvirus-activated dendritic cells promote HIV-1 trans-infection and suppress CD4{sup +} T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Qin, Yan; Bai, Lei [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Lan, Ke [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Wang, Jian-Hua, E-mail: Jh_wang@sibs.ac.cn [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China)

    2013-06-05

    Infection of Kaposi's sarcoma-associated herpesvirus (KSHV) is commonly occurred in AIDS patients. KSHV and HIV-1 act cooperatively in regulating infection with each other and in human carcinogenesis. Dendritic cells (DCs), as the pivotal cells in host immunity, may be modulated by both viruses, for immunoevasion and dissemination, therefore, the interaction between DCs and each virus has been a prior focus for pathogenesis elucidation. Here, we assessed the potential effect of KSHV on DC–HIV-1 interaction. We found that KSHV stimulation could promote maturation of monocyte-derived DCs (MDDCs) and impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells, demonstrating the immunosuppression induced by KSHV. More importantly, KSHV-stimulated MDDCs could capture more HIV-1 and efficiently transferred these infectious viruses to Hut/CCR5 T cell line. Our results reveal the novel modulation of DC-mediated HIV-1 dissemination by KSHV, and highlight the importance of studying DC–HIV-1 interaction to elucidate HIV/AIDS pathogenesis. - Highlights: ► KSHV impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells. ► KSHV stimulation matured MDDCs and enhanced HIV-1 endocytosis. ► KSHV stimulated MDDCs increased ICAM-1 expression and tighten contact with T cells. ► KSHV-stimulated MDDCs promoted HIV-1 trans-infection of CD4{sup +} T cells.

  15. Metformin inhibits proliferation and cytotoxicity and induces apoptosis via AMPK pathway in CD19-chimeric antigen receptor-modified T cells

    Directory of Open Access Journals (Sweden)

    Mu Q

    2018-04-01

    Full Text Available Qian Mu,1,2,* Miao Jiang,1,* Yuzhu Zhang,1 Fei Wu,1 Hui Li,1 Wen Zhang,1 Fang Wang,1 Jiang Liu,1 Liang Li,1 Dongshan Wang,3 Wenjuan Wang,1 Shiwu Li,1 Haibo Song,4 Dongqi Tang1 1Gene and Immunotherapy Center, The Second Hospital of Shandong University, Jinan, People’s Republic of China; 2Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 3Health Management Center, The Second Hospital of Shandong University, Jinan, People’s Republic of China; 4Central Research Laboratory, Zibo Maternal and Child Health Hospital, Affiliated to Shandong Academy of Medical Science, Zibo, People’s Republic of China *These authors contributed equally to this work Background: CD19-chimericantigen receptor (CAR modified T cells (CD19-CAR T cells have been well documented to possess potent anti-tumor properties against CD19-expressingleukemia cells. As a traditional medicine, metformin has been widely used to treat type II diabetes mellitus and more recently has become a candidate for the treatment of cancer. However, no report has revealed the direct effect of metformin on CD19-CAR T cell biological function and its underling mechanisms. Purpose: The purpose of this research was to explore the effect of metformin on CD19-CAR T cell biological function and the mechanisms involved. Methods: CD19-CAR T cells proliferation, apoptosis and cytotoxicity were mainly tested by CCK-8 assay, flow cytometry and ELISA. The detection of mechanism primarily used western blot. Bioluminescence imaging is the main application technology of animal studies. Results: In the current study, it was found that metformin inhibited CD19-CAR T cell proliferation and cytotoxicity and induced apoptosis. Furthermore, our study revealed that metformin activated AMPK and suppressed mTOR and HIF1α expression. By using an AMPK inhibitor, compound C, we demonstrated the crucial roles of AMPK in CD19

  16. GM-CSF increases the ability of cultured macrophages to support autologous CD4+ T-cell proliferation in response to Dermatophagoides pteronyssinus and PPD antigen.

    Science.gov (United States)

    Caulfield, J J; Hawrylowicz, C M; Kemeny, D M; Lee, T H

    1997-01-01

    Previous studies have demonstrated an infiltration of monocytes and increased levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the asthmatic lung. To study the possible effects of this cytokine upon the differentiation and function of these newly recruited monocytes, we have developed a model in which monocytes isolated from human peripheral blood were differentiated into macrophages in serum in the presence or absence of GM-CSF. After 7 days, the macrophages increased in size and granularity, had increased phagocytic activity, and expressed various adhesion molecules, CD14 and major histocompatibility complex (MHC) class II. The effects of GM-CSF on antigen presentation by cultured macrophages on the antigen-specific proliferative response of CD4+ T cells to Dermatophagoides pteronyssinus or purified protein derivative of tuberculin and the mitogen phytohaemagglutinin was determined. CD4+ T-cell proliferation was reduced when either antigen was presented by macrophages cultured in serum alone, compared with the values obtained with freshly isolated monocytes. However, CD4+ cell proliferation was comparable to that observed with monocytes when antigen was presented by macrophages which had been pre-cultured with 50 U/ml GM-CSF. CD4+ T-cell proliferation to phytohaemagglutinin was similar when all three populations were used as accessory cells. High numbers of macrophages partially suppressed CD4+ T-cell proliferation in response to antigen presented by monocytes, but there was no significant difference between macrophages cultured in the presence or absence of GM-CSF. This data suggests that GM-CSF directs monocyte differentiation into macrophages with an antigen-presenting, rather than a suppressive, phenotype. Elevated levels of GM-CSF in the asthmatic lung may therefore maintain recently recruited monocytes in an inflammatory and T-cell activating state. Images Figure 2 Figure 3 PMID:9370934

  17. Aggressive Angioimmunoblastic T Cell Lymphomas (AITL) with Soft Tissue Extranodal Mass Varied Histopathological Patterns with Peripheral Blood, Bone Marrow, and Splenic Involvement and Review of Literature.

    Science.gov (United States)

    Mukherjee, Tanushri; Dutta, Rajat; Pramanik, S

    2018-03-01

    Angioimmunoblastic T cell lymphoma (AITL) is a peripheral T cell non-Hodgkin lymphoma with an aggressive fatal course and it has varied clinical presentation with an uncommon presentation when they present as soft tissue masses or when there is spill in the peripheral blood or there are composite lymphomas that are rare presentations. Common presentations include lymphadenopathy, fever and systemic symptoms, hemolytic anemias, skin rashes, and rheumatoid arthritis. The classical histopathology is absence of follicles in lymph nodes with presence of high endothelial venules and the tumor cells of small to medium-sized lymphocytes with pale cytoplasm mixed with reactive T cells. On immunohistochemistry, the cells are positive for CD3, CD4, CD10, BCL2, and CXCL13. In this observational study, the clinicopathologic presentation and the immunohistochemical profile of five cases who initially presented with a soft tissue mass which is an extremely rare presentation of this rare type of non-Hodgkin lymphoma that was diagnosed at our center with peripheral blood and bone marrow involvement and the clinicopathologic presentation, immunohistochemical profile, and response to treatment on follow-up are correlated with the literature review. One case had a fulminant and aggressive course and was fatal within 2 months of diagnosis. The rest of the four cases are on regular chemotherapy and follow-up. Our five cases had presented with soft tissue masses, two in the axillary regio,n two in the hand, and one in the scapular region with an extranodal presentation, and there was associated lymphadenopathy which developed subsequently with classic histomorphology and immunohistochemical findings. The age range was 46-54 years and all five cases were males. Three cases were with anemia (hemoglobin range 6.5-8.0 mg/dl) and all five cases were having peripheral blood plasmacytosis. Histopathology was classic with paracortical involvement with polymorphous population of cells with

  18. miR-20b Inhibits T Cell Proliferation and Activation via NFAT Signaling Pathway in Thymoma-Associated Myasthenia Gravis.

    Science.gov (United States)

    Xin, Yanzhong; Cai, Hongfei; Lu, Tianyu; Zhang, Yan; Yang, Yue; Cui, Youbin

    2016-01-01

    Purpose . We examined the role of miR-20b in development of thymoma-associated myasthenia gravis, especially in T cell proliferation and activation. Materials and Methods . Using qRT-PCR, we assessed expression levels of miR-20b and its target genes in cultured cells and patient samples and examined the proliferation of cultured cells, using MTT cell proliferation assays and flow cytometry based cell cycle analysis. Activation of T cells was determined by both flow cytometry and qRT-PCR of activation-specific marker genes. Results . Expression of miR-20b was downregulated in samples of thymoma tissues and serum from patients with thymoma-associated myasthenia gravis. In addition, T cell proliferation and activation were inhibited by ectopic overexpression of miR-20b, which led to increased T cell proliferation and activation. NFAT5 and CAMTA1 were identified as targets of miR-20b. Expression levels of NFAT5 and CAMTA1 were inhibited by miR-20b expression in cultured cells, and the expression levels of miR-20b and NFAT5/CAMTA1 were inversely correlated in patients with thymoma-associated myasthenia gravis. Conclusion . miR-20b acts as a tumor suppressor in the development of thymoma and thymoma-associated myasthenia gravis. The tumor suppressive function of miR-20b in thymoma could be due to its inhibition of NFAT signaling by repression of NFAT5 and CAMTA1 expression.

  19. Lck/PLCγ control migration and proliferation of interleukin (IL)-2-stimulated T cells via the Rac1 GTPase/glycogen phosphorylase pathway.

    Science.gov (United States)

    Llavero, Francisco; Artaso, Alain; Lacerda, Hadriano M; Parada, Luis A; Zugaza, José L

    2016-11-01

    Recently, we have reported that the IL-2-stimulated T cells activate PKCθ in order to phosphorylate the serine residues of αPIX-RhoGEF, and to switch on the Rac1/PYGM pathway resulting in T cell migration and proliferation. However, the molecular mechanism connecting the activated IL-2-R with the PKCθ/αPIX/Rac1/PYGM pathway is still unknown. In this study, the use of a combined pharmacological and genetic approach identified Lck, a Src family member, as the tyrosine kinase phosphorylating PLCγ leading to Rac1 and PYGM activation in the IL-2-stimulated Kit 225 T cells via the PKCθ/αPIX pathway. The PLCγ tyrosine phosphorylation was required to activate first PKCθ, and then αPIX and Rac1/PYGM. The results presented here delineate a novel signalling pathway ranking equally in importance to the three major pathways controlled by the IL-2-R, i.e. PI3K, Ras/MAPK and JAK/STAT pathways. The overall evidence strongly indicates that the central biological role of the novel IL-2-R/Lck/PLCγ/PKCθ/αPIX/Rac1/PYGM signalling pathway is directly related to the control of fundamental cellular processes such as T cell migration and proliferation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses

    Science.gov (United States)

    Ten Brinke, Anja; Marek-Trzonkowska, Natalia; Mansilla, Maria J.; Turksma, Annelies W.; Piekarska, Karolina; Iwaszkiewicz-Grześ, Dorota; Passerini, Laura; Locafaro, Grazia; Puñet-Ortiz, Joan; van Ham, S. Marieke; Hernandez-Fuentes, Maria P.; Martínez-Cáceres, Eva M.; Gregori, Silvia

    2017-01-01

    Adoptive therapy with regulatory T cells or tolerance-inducing antigen (Ag)-presenting cells is innovative and promising therapeutic approach to control undesired and harmful activation of the immune system, as observed in autoimmune diseases, solid organ and bone marrow transplantation. One of the critical issues to elucidate the mechanisms responsible for success or failure of these therapies and define the specificity of the therapy is the evaluation of the Ag-specific T-cell responses. Several efforts have been made to develop suitable and reproducible assays. Here, we focus on dye-based proliferation assays. We highlight with practical examples the fundamental issues to take into consideration for implementation of an effective and sensitive dye-based proliferation assay to monitor Ag-specific responses in patients. The most critical points were used to design a road map to set up and analyze the optimal assay to assess Ag-specific T-cell responses in patients undergoing different treatments. This is the first step to optimize monitoring of tolerance induction, allowing comparison of outcomes of different clinical studies. The road map can also be applied to other therapeutic interventions, not limited to tolerance induction therapies, in which Ag-specific T-cell responses are relevant such as vaccination approaches and cancer immunotherapy. PMID:29312346

  1. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses

    Directory of Open Access Journals (Sweden)

    Anja Ten Brinke

    2017-12-01

    Full Text Available Adoptive therapy with regulatory T cells or tolerance-inducing antigen (Ag-presenting cells is innovative and promising therapeutic approach to control undesired and harmful activation of the immune system, as observed in autoimmune diseases, solid organ and bone marrow transplantation. One of the critical issues to elucidate the mechanisms responsible for success or failure of these therapies and define the specificity of the therapy is the evaluation of the Ag-specific T-cell responses. Several efforts have been made to develop suitable and reproducible assays. Here, we focus on dye-based proliferation assays. We highlight with practical examples the fundamental issues to take into consideration for implementation of an effective and sensitive dye-based proliferation assay to monitor Ag-specific responses in patients. The most critical points were used to design a road map to set up and analyze the optimal assay to assess Ag-specific T-cell responses in patients undergoing different treatments. This is the first step to optimize monitoring of tolerance induction, allowing comparison of outcomes of different clinical studies. The road map can also be applied to other therapeutic interventions, not limited to tolerance induction therapies, in which Ag-specific T-cell responses are relevant such as vaccination approaches and cancer immunotherapy.

  2. Triterpene Acids from Rose Hip Powder Inhibit Self-antigen- and LPS-induced Cytokine Production and CD4(+) T-cell Proliferation in Human Mononuclear Cell Cultures

    DEFF Research Database (Denmark)

    Saaby, Lasse; Nielsen, Claus Henrik

    2012-01-01

    on the cytokine production and proliferation of CD4(+) T cells and CD19(+) B cells induced by a self-antigen, human thyroglobulin and by lipopolysaccharide in cultures of normal mononuclear cells. The triterpene acid mixture inhibited the production of tumor necrosis factor-a and IL-6 with estimated IC(50) values...... in the range 35-56¿µg/mL, the Th1 cytokines interferon-¿ and IL-2 (IC(50) values 10-20¿µg/mL) and the antiinflammatory cytokine IL-10 (IC(50) values 18-21¿µg/mL). Moreover, the mixture also inhibited CD4(+) T-cell and CD19(+) B-cell proliferation (IC(50) value 22 and 12¿µg/mL, respectively). Together...

  3. Goblet Cell Derived RELM-β Recruits CD4+ T Cells during Infectious Colitis to Promote Protective Intestinal Epithelial Cell Proliferation.

    Science.gov (United States)

    Bergstrom, Kirk S B; Morampudi, Vijay; Chan, Justin M; Bhinder, Ganive; Lau, Jennifer; Yang, Hyungjun; Ma, Caixia; Huang, Tina; Ryz, Natasha; Sham, Ho Pan; Zarepour, Maryam; Zaph, Colby; Artis, David; Nair, Meera; Vallance, Bruce A

    2015-08-01

    Enterohemorrhagic Escherichia coli and related food and waterborne pathogens pose significant threats to human health. These attaching/effacing microbes infect the apical surface of intestinal epithelial cells (IEC), causing severe diarrheal disease. Colonizing the intestinal luminal surface helps segregate these microbes from most host inflammatory responses. Based on studies using Citrobacter rodentium, a related mouse pathogen, we speculate that hosts rely on immune-mediated changes in IEC, including goblet cells to defend against these pathogens. These changes include a CD4+ T cell-dependent increase in IEC proliferation to replace infected IEC, as well as altered production of the goblet cell-derived mucin Muc2. Another goblet cell mediator, REsistin-Like Molecule (RELM)-β is strongly induced within goblet cells during C. rodentium infection, and was detected in the stool as well as serum. Despite its dramatic induction, RELM-β's role in host defense is unclear. Thus, wildtype and RELM-β gene deficient mice (Retnlb-/-) were orally infected with C. rodentium. While their C. rodentium burdens were only modestly elevated, infected Retnlb-/- mice suffered increased mortality and mucosal ulceration due to deep pathogen penetration of colonic crypts. Immunostaining for Ki67 and BrDU revealed Retnlb-/- mice were significantly impaired in infection-induced IEC hyper-proliferation. Interestingly, exposure to RELM-β did not directly increase IEC proliferation, rather RELM-β acted as a CD4+ T cell chemoattractant. Correspondingly, Retnlb-/- mice showed impaired CD4+ T cell recruitment to their infected colons, along with reduced production of interleukin (IL)-22, a multifunctional cytokine that directly increased IEC proliferation. Enema delivery of RELM-β to Retnlb-/- mice restored CD4+ T cell recruitment, concurrently increasing IL-22 levels and IEC proliferation, while reducing mucosal pathology. These findings demonstrate that RELM-β and goblet cells play an

  4. Adipose-derived stem cells were impaired in restricting CD4+T cell proliferation and polarization in type 2 diabetic ApoE-/- mouse.

    Science.gov (United States)

    Liu, Ming-Hao; Li, Ya; Han, Lu; Zhang, Yao-Yuan; Wang, Di; Wang, Zhi-Hao; Zhou, Hui-Min; Song, Ming; Li, Yi-Hui; Tang, Meng-Xiong; Zhang, Wei; Zhong, Ming

    2017-07-01

    Atherosclerosis (AS) is the most common and serious complication of type 2 diabetes mellitus (T2DM) and is accelerated via chronic systemic inflammation rather than hyperglycemia. Adipose tissue is the major source of systemic inflammation in abnormal metabolic state. Pro-inflammatory CD4 + T cells play pivotal role in promoting adipose inflammation. Adipose-derived stem cells (ADSCs) for fat regeneration have potent ability of immunosuppression and restricting CD4 + T cells as well. Whether T2DM ADSCs are impaired in antagonizing CD4 + T cell proliferation and polarization remains unclear. We constructed type 2 diabetic ApoE -/- mouse models and tested infiltration and subgroups of CD4 + T cell in stromal-vascular fraction (SVF) in vivo. Normal/T2DM ADSCs and normal splenocytes with or without CD4 sorting were separated and co-cultured at different scales ex vivo. Immune phenotypes of pro- and anti-inflammation of ADSCs were also investigated. Flow cytometry (FCM) and ELISA were applied in the experiments above. CD4 + T cells performed a more pro-inflammatory phenotype in adipose tissue in T2DM ApoE -/- mice in vivo. Restriction to CD4 + T cell proliferation and polarization was manifested obviously weakened after co-cultured with T2DM ADSCs ex vivo. No obvious distinctions were found in morphology and growth type of both ADSCs. However, T2DM ADSCs acquired a pro-inflammatory immune phenotype, with secreting less PGE2 and expressing higher MHC-II and co-stimulatory molecules (CD40, CD80). Normal ADSCs could also obtain the phenotypic change after cultured with T2DM SVF supernatant. CD4 + T cell infiltration and pro-inflammatory polarization exist in adipose tissue in type 2 diabetic ApoE -/- mice. T2DM ADSCs had impaired function in restricting CD4 + T lymphocyte proliferation and pro-inflammatory polarization due to immune phenotypic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Regulatory T cells generated during cytomegalovirus in vitro stimulation of mononuclear cells from HIV-infected individuals on HAART correlate with decreased lymphocyte proliferation

    International Nuclear Information System (INIS)

    Jesser, Renee D.; Li, Shaobing; Weinberg, Adriana

    2006-01-01

    HIV-infected patients fail to fully recover cell-mediated immunity despite HAART. To identify regulatory factors, we studied the phenotype and function of in vitro cytomegalovirus (CMV)-stimulated T cells from HAART recipients. CFSE-measured proliferation showed CD4 + and CD8 + cells dividing in CMV-stimulated cultures. Compared with healthy controls, CMV-stimulated lymphocytes from HAART recipients had lower 3 H-thymidine incorporation; lower IFNγ and TNFα production; higher CD4 + CD27 - CD28 - and CD8 + CD27 - CD28 - frequencies; lower CD4 + CD25 hi ; and higher FoxP3 expression in CD8 + CD25 hi cells. CMV-specific proliferation correlated with higher IFNγ, TNFα and IL10 levels and higher CD4 + perforin + and CD8 + perforin + frequencies. Decreased proliferation correlated with higher CD4 + CD27 - CD28 - frequencies and TGFβ1 production, which also correlated with each other. Anti-TGFβ1 neutralizing antibodies restored CMV-specific proliferation in a dose-dependent fashion. In HIV-infected subjects, decreased proliferation correlated with higher CMV-stimulated CD8 + CD25 hi frequencies and their FoxP3 expression. These data indicate that FoxP3- and TGFβ1-expressing regulatory T cells contribute to decreased immunity in HAART recipients

  6. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  7. Damage of neuroblastoma cell SH-SY5Y mediated by MPP+ inhibits proliferation of T-cell leukemia Jurkat by co-culture system.

    Science.gov (United States)

    Wang, Fuli; Awan, Umer Farooq; Wang, Yuanyuan; Wang, Luna; Qing, Hong; Ma, Hong; Deng, Yulin

    2014-06-13

    The adaptive immune system has implications in pathology of Parkinson's disease (PD). Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+) for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM) arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2) and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM) induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells.

  8. Damage of Neuroblastoma Cell SH-SY5Y Mediated by MPP+ Inhibits Proliferation of T-Cell Leukemia Jurkat by Co-Culture System

    Directory of Open Access Journals (Sweden)

    Fuli Wang

    2014-06-01

    Full Text Available The adaptive immune system has implications in pathology of Parkinson’s disease (PD. Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+ for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2 and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells.

  9. Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas

    NARCIS (Netherlands)

    Lounnas, Nadia; Rosilio, Célia; Nebout, Marielle; Mary, Didier; Griessinger, Emmanuel; Neffati, Zouhour; Chiche, Johanna; Spits, Hergen; Hagenbeek, Thijs J.; Asnafi, Vahid; Poulsen, Sally-Ann; Supuran, Claudiu T.; Peyron, Jean-François; Imbert, Véronique

    2013-01-01

    The membrane-bound carbonic anhydrase isoforms CAIX and CAXII, underpin a pH-regulating system that enables hypoxic tumor cell survival. Here, we observed for the first time an upregulation of CAXII in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LL) cells. First we showed that CAXII is

  10. Epigallocatechin-3-gallate directly suppresses T cell proliferation through impaired IL-2 utilization and cell cycle progression

    Science.gov (United States)

    Epigallocatechin-3-gallate (EGCG), a bioactive component of green tea, has a variety of health impact. Previously we demonstrated that in vitro EGCG supplementation inhibited T cell response in mouse spleen cells. In the present study, we first extended our in vitro observation to in vivo and confir...

  11. Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 α/β TCR-double positive cells in vitro

    International Nuclear Information System (INIS)

    Nozaki, Hirofumi; Itonori, Saki; Sugita, Mutsumi; Nakamura, Kimihide; Ohba, Kiyoshi; Suzuki, Akemi; Kushi, Yasunori

    2008-01-01

    Interferon (IFN)-γ and interleukin (IL)-4 regulate many types of immune responses. Here we report that acidic glycosphingolipids (AGLs) of Hypsizigus marmoreus and Pleurotus eryngii induced secretion of IFN- γ and IL-4 from T cells in a CD11c-positive cell-dependent manner similar to that of α-galactosylceramide (α-GalCer) and isoglobotriaosylceramide (iGb3), although activated T cells by AGLs showed less secretion of cytokine than those activated by α-GalCer. In addition, stimulation of these mushroom AGLs induced proliferation of NK1.1 α/β TCR-double positive cells in splenocytes. Administration of a mixture of α-GalCer and AGLs affected the stimulation of α-GalCer and generally induced a subtle Th1 bias for splenocytes but induced an extreme Th2 bias for thymocytes. These results suggested that edible mushroom AGLs contribute to immunomodulation

  12. Cytotoxicity and Proliferation Studies with Arsenic in Established Human Cell Lines: Keratinocytes, Melanocytes, Dendritic Cells, Dermal Fibroblasts, Microvascular Endothelial Cells, Monocytes and T-Cells

    Directory of Open Access Journals (Sweden)

    Hari H. P. Cohly

    2003-01-01

    Full Text Available Abstract: Based on the hypothesis that arsenic exposure results in toxicity and mitogenecity, this study examined the dose-response of arsenic in established human cell lines of keratinocytes (HaCaT, melanocytes (1675, dendritic cells (THP-1/A23187, dermal fibroblasts (CRL1904, microvascular endothelial cells (HMEC, monocytes (THP-1, and T cells (Jurkat. Cytotoxicity was determined by incubating THP-1, THP-1+ A23187 and JKT cells in RPMI 1640, 1675 in Vitacell, HMEC in EBM, and dermal fibroblasts and HaCaT in DMEM with 10% fetal bovine serum, 1% streptomycin and penicillin for 72 hrs in 96-well microtiter plates, at 37oC in a 5% CO2 incubator with different concentrations of arsenic using fluorescein diacetate (FDA. Cell proliferation in 96-well plates was determined in cultured cells starved by prior incubation for 24 hrs in 1% FBS and exposed for 72 hours, using the 96 cell titer proliferation solution (Promega assay. Cytotoxicity assays yielded LD50s of 9 μg/mL for HaCaT, 1.5 μg/mL for CRL 1675, 1.5 μg/mL for dendritic cells, 37 μg/mL for dermal fibroblasts, 0.48 μg/mL for HMEC, 50 μg/mL for THP-1 cells and 50 μg/mL for JKT-T cells. The peak proliferation was observed at 6 μg/mL for HaCaT and THP-1 cells, 0.19 μg/mL for CRL 1675, dendritic cells, and HMEC, and 1.5 μg/mL for dermal fibroblasts and Jurkat T cells. These results show that arsenic is toxic at high doses to keratinocytes, fibroblasts, monocytes and T cells, and toxic at lower doses to melanocytes, microvascular endothelial cells and dendritic cells. Proliferation studies showed sub-lethal doses of arsenic to be mitogenic.

  13. The effect of beta-interferon therapy on myelin basic protein-elicited CD4+ T cell proliferation and cytokine production in multiple sclerosis

    DEFF Research Database (Denmark)

    Hedegaard, Chris J; Krakauer, Martin; Bendtzen, Klaus

    2008-01-01

    Interferon (IFN)-beta therapy has well-established clinical benefits in multiple sclerosis (MS), but the underlying modulation of cytokine responses to myelin self-antigens remains poorly understood. We analysed the CD4+ T cell proliferation and cytokine responses elicited by myelin basic protein...... (MBP) and a foreign recall antigen, tetanus toxoid (TT), in mononuclear cell cultures from fourteen MS patients undergoing IFN-beta therapy. The MBP-elicited IFN-gamma-, TNF-alpha- and IL-10 production decreased during therapy (p...

  14. Immunoglobulin production induced in vitro by glucocorticoid hormones: T cell-dependent stimulation of immunoglobulin production without B cell proliferation in cultures of human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Grayson, J.; Dooley, N.J.; Koski, I.R.; Blaese, R.M.

    1981-01-01

    The direct effects of steroid hormones on the production of immunoglobulins and DNA synthesis by human T and B lymphocytes was evaluated in cultures of peripheral blood mononuclear cells. As detected by a reverse hemolytic plaque assay, the addition of 0.1 mM to 10 nM hydrocortisone to lymphocytes in culture in the absence of other stimulants or mitogens, resulted in the dramatic induction of immunoglobulin production with responses comparable to those seen in similar cultures stimulated with pokeweed mitogen. Steroid-stimulated immunoglobulin production was first seen after 48 h and peaked at 8-10 d of culture. The production of IgG, IgA, and IgM was induced following incubation with steroid. Glucocorticoids, but not estrogens or androgens, were capable of mediating this effect, and only compounds with affinity for the glucocorticoid receptor were active. The induction of immunoglobulin production was dependent on both T cells and monocytes; cultures depleted of either cell type did not produce immunoglobulin when stimulated with glucocorticoid hormones. Proliferation of B cells or T cells could not be detected by [/sup 3/H]thymidine incorporation or total cell recovery from steroid-stimulated cultures, even though such cultures demonstrated marked increases in immunoglobulin production. The mechanism responsible for this functional maturation of B cells to become high rate immunoglobulin producing cells is as yet undefined, although it appears to involve more than merely steroid mediated inactivation of suppressor T cells

  15. The Mycobacterium avium subsp. Paratuberculosis protein MAP1305 modulates dendritic cell-mediated T cell proliferation through Toll-like receptor-4

    Science.gov (United States)

    Lee, Su Jung; Noh, Kyung Tae; Kang, Tae Heung; Han, Hee Dong; Shin, Sung Jae; Soh, Byoung Yul; Park, Jung Hee; Shin, Yong Kyoo; Kim, Han Wool; Yun, Cheol-Heui; Park, Won Sun; Jung, In Duk; Park, Yeong-Min

    2014-01-01

    In this study, we show that Mycobacterium avium subsp. Paratuberculosis MAP1305 induces the maturation of bone marrow-derived dendritic cells (BMDCs), a representative antigen presenting cell (APC). MAP1305 protein induces DC maturation and the production of pro-inflammatory cytokines (Interleukin (IL)-6), tumor necrosis factor (TNF)-α, and IL-1β) through Toll like receptor-4 (TLR-4) signaling by directly binding with TLR4. MAP1305 activates the phosphorylation of MAPKs, such as ERK, p38MAPK, and JNK, which is essential for DC maturation. Furthermore, MAP1305-treated DCs transform naïve T cells to polarized CD4+ and CD8+ T cells, thus indicating a key role for this protein in the Th1 polarization of the resulting immune response. Taken together, M. avium subsp. Paratuberculosis MAP1305 is important for the regulation of innate immune response through DC-mediated proliferation of CD4+ and CD8+ T cells. [BMB Reports 2014; 47(2): 115-120] PMID:24393523

  16. A noncognate interaction with anti-receptor antibody-activated helper T cells induces small resting murine B cells to proliferate and to secrete antibody

    DEFF Research Database (Denmark)

    Owens, T

    1988-01-01

    on resting B cells (even in the presence of intact F23.1 antibody), but could induce antibody secretion by anti-Ig-preactivated B cells. Both F23.1+ clones (E9.D4 and 4.35F2) and one F23.1- clone (D2.2) could synergize with supernatants from activated E9.D4 T cells to induce B cell activation. F(ab')2......Culture of small resting allogeneic B cells (of an irrelevant haplotype) with two clones of T helper (Th) cells that were activated by the F23.1 anti-T cell receptor antibody led to the activation of B cells to proliferate and to secrete antibody. Th cell supernatants by themselves had no effect...... fragments of F23.1 induced E9.D4 to activate B cells as efficiently as intact F23.1 and B cell populations that had been incubated with F23.1 were not activated when cultured with E9.D4, although T cells recognized cell-presented F23.1 and were weakly activated. Reduction of the density of F23.1 adsorbed...

  17. CD14+ HLA-DR-/low MDSCs are elevated in the periphery of early-stage breast cancer patients and suppress autologous T cell proliferation.

    Science.gov (United States)

    Speigl, Lisa; Burow, Helen; Bailur, Jithendra Kini; Janssen, Nicole; Walter, Christina-Barbara; Pawelec, Graham; Shipp, Christopher

    2018-04-01

    Despite the recent expansion in the use of immunotherapy for many cancer types, it is still not a standard treatment for breast cancer. Identifying differences in the immune systems of breast cancer patients compared to healthy women might provide insight into potential targets for immunotherapy and thus may assist its clinical implementation. Multi-colour flow cytometry was used to investigate myeloid and lymphoid populations in the peripheral blood of breast cancer patients (n = 40) and in the blood of healthy age-matched women (n = 25). We additionally performed functional testing to identify immune suppressive mechanisms used by circulating CD14+ myeloid cells from breast cancer patients. Our results show that breast cancer patients have significantly elevated frequencies of cells with the monocytic myeloid-derived suppressor cell (mMDSC) phenotype CD14+ HLA-DR-/low compared with healthy women (p < 0.01). We also observed higher levels of earlier differentiated T cells and correspondingly lower levels of T cells in later stages of differentiation (p < 0.05). These disease-associated differences could already be detected in early-stage breast cancer patients in stages 1 and 2 (n = 33 of 40) (p < 0.05). Levels of circulating T cells correlated with certain clinical features and with patient age (p < 0.05). Functional tests showed that CD14+ myeloid cells from breast cancer patients more potently suppressed autologous T cell proliferation than CD14+ cells from healthy women (p < 0.01). Subsequent investigation determined that suppression was mediated in part by reactive oxygen species, because inhibiting this pathway partially restored T cell proliferation (p < 0.01). Our results highlight the potential importance of cells with mMDSC phenotypes in breast cancer, identifiable already at early stages of disease. This may provide a basis for identifying possible new therapeutic targets to enhance anti-cancer immunity.

  18. Low CD4/CD8 T-Cell Ratio Associated with Inflammatory Arthropathy in Human T-Cell Leukemia Virus Type I Tax Transgenic Mice

    Science.gov (United States)

    Ohsugi, Takeo; Kumasaka, Toshio

    2011-01-01

    Background Human T-cell leukemia virus type I (HTLV-1) can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL) as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. Principal Findings By 24 months of age, Tax transgenic mice developed severe arthropathy with a cumulative incidence of 22.8%. The pathological findings of arthropathy in Tax transgenic mice were similar to those seen in human rheumatoid arthritis or mouse models of rheumatoid arthritis, with synovial proliferation and a positive rheumatoid factor. Before the onset of spontaneous arthropathy, young and old Tax transgenic mice were not sensitive to collagen and did not develop arthritis after immunization with type II collagen. The arthropathic Tax transgenic mice showed a significantly decreased proportion of splenic CD4+ T cells, whereas the proportion of splenic CD8+ T cells was increased. Regulatory T cells (CD4+CD25+Foxp3+) were significantly decreased and CD8+ T cells that expressed the chemokine receptor CCR4 (CD8+CCR4+) were significantly increased in arthropathic Tax transgenic mice. The expression of tax mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice. Conclusions Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble those in HAM/TSP patients

  19. Low CD4/CD8 T-cell ratio associated with inflammatory arthropathy in human T-cell leukemia virus type I Tax transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takeo Ohsugi

    Full Text Available BACKGROUND: Human T-cell leukemia virus type I (HTLV-1 can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. PRINCIPAL FINDINGS: By 24 months of age, Tax transgenic mice developed severe arthropathy with a cumulative incidence of 22.8%. The pathological findings of arthropathy in Tax transgenic mice were similar to those seen in human rheumatoid arthritis or mouse models of rheumatoid arthritis, with synovial proliferation and a positive rheumatoid factor. Before the onset of spontaneous arthropathy, young and old Tax transgenic mice were not sensitive to collagen and did not develop arthritis after immunization with type II collagen. The arthropathic Tax transgenic mice showed a significantly decreased proportion of splenic CD4(+ T cells, whereas the proportion of splenic CD8(+ T cells was increased. Regulatory T cells (CD4(+CD25(+Foxp3(+ were significantly decreased and CD8(+ T cells that expressed the chemokine receptor CCR4 (CD8(+CCR4(+ were significantly increased in arthropathic Tax transgenic mice. The expression of tax mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice. CONCLUSIONS: Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble

  20. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun, E-mail: xuejunshao@hotmail.com

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  1. Progranulin promotes tumour necrosis factor-induced proliferation of suppressive mouse CD4⁺ Foxp3⁺ regulatory T cells.

    Science.gov (United States)

    Hu, Ya; Xiao, Haitao; Shi, Tingchen; Oppenheim, Joost J; Chen, Xin

    2014-06-01

    Progranulin (PGRN) is a pleiotropic growth factor with immunosuppressive properties. Recently, it was reported that PGRN was an antagonist of tumour necrosis factor (TNF) receptors, preferentially for TNFR2. However, we and others showed that TNF-TNFR2 interaction was critical for the activation and expansion of functional CD4(+)  Foxp3(+) regulatory T (Treg) cells. We therefore examined the effect of PGRN on the proliferation of naturally occurring murine suppressive Treg cells induced by TNF. Consistent with our previous reports, TNF overcame the hyporesponsiveness of highly purified Treg cells to T-cell receptor stimulation. Furthermore, in the presence of interleukin-2, TNF preferentially stimulated proliferation of Treg cells contained in unfractionated CD4 cells. These effects of TNF on suppressive Treg cells were markedly increased by exogenous PGRN. TNF and TNFR2 interactions are required for this effect of PGRN, because the PGRN by itself did not stimulate Treg cell proliferation. The effect of PGRN on Treg cells was abrogated by antibody against TNFR2, and Treg cells deficient in TNFR2 also failed to respond to PGRN. Furthermore, PGRN also enhanced the proliferative responses of effector T cells to TNF, but to a lesser extent than that of Treg cells, presumably caused by the different levels of TNFR2 expression on these two subsets of CD4 cells. Hence, our data clearly show that PGRN promotes, rather than inhibits, the functional consequence of TNF-TNFR2 interaction on Treg cells. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  2. Pathogen-expanded CD11b+ invariant NKT cells feedback inhibit T cell proliferation via membrane-bound TGF-β1.

    Science.gov (United States)

    Han, Yanmei; Jiang, Zhengping; Chen, Zhubo; Gu, Yan; Liu, Yanfang; Zhang, Xiang; Cao, Xuetao

    2015-04-01

    Natural killer T cells (NKT cells) are effector cells, but also regulator of immune response, which either promote or suppress immune response through production of different cytokines. However, the subsets of NKT cells with definite phenotype and regulatory function need to be further identified. Furthermore, the mechanisms for NKT cells to regulate immune response remain to be fully elucidated. Here we identified CD11b(+) invariant NKT (CD11b(+) iNKT) cells as a new subset of regulatory NKT cells in mouse models with infection. αGalCer:CD1d complex(+)TCRβ(+)NK1.1(+) NKT cells could be categorized to CD11b(+) and CD11b(-) subsets. NKT cells are enriched in liver. During Listeria monocytogenes infection, hepatic CD11b(+) iNKT cells were significantly induced and expanded, with peak expansion on day 8. CD11b(+) iNKT cells were also expanded significantly in spleen and mesenteric lymph nodes. As compared to CD11b(-) iNKT cells, CD11b(+) iNKT cells expressed higher levels of CD27, FasL, B7H1, CD69, and particularly higher level of membrane-bound TGF-β1 (mTGF-β1), but produced less IFN-γ, IL-4, IL-10 and TGF-β1. Hepatic CD11b(+) iNKT cells suppressed antigen-nonspecific and OVA-specific CD4 and CD8 T cell proliferation through mTGF-β1 both in vitro and in vivo, meanwhile, they did not interfere with activation of CD4 T cells and cytotoxicity of the activated CD8 T cells. Thus, we have identified a new subset of pathogen-expanded CD11b(+) invariant NKT cells which can feedback inhibit T cell response through cell-to-cell contact via cell surface (membrane-bound) TGF-β1, especially at the late stage of immune response against infection. CD11b(+) regulatory iNKT cells may contribute to protect host from pathological injure by preventing immune overactivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. CXCL9 Is Important for Recruiting Immune T Cells into the Brain and Inducing an accumulation of the T Cells to the areas of tachyzoite proliferation to prevent reactivation of chronic cerebral infection with Toxoplasma gondii

    Science.gov (United States)

    T cells are required to maintain the latency of chronic infection with Toxoplasma gondii in the brain. In the present study, we examined the role of non-ELR (glutamic acid-leucine-arginine) CXC chemokine CXCL9 for T cell recruitment to prevent reactivation of infection with T. gondii. SCID mice were...

  4. Deletion of muscarinic type 1 acetylcholine receptors alters splenic lymphocyte functions and splenic noradrenaline concentration.

    Science.gov (United States)

    Hainke, Susanne; Wildmann, Johannes; Del Rey, Adriana

    2015-11-01

    The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Increased cellular immune responses and CD4+ T-cell proliferation correlate with reduced plasma viral load in SIV challenged recombinant simian varicella virus - simian immunodeficiency virus (rSVV-SIV vaccinated rhesus macaques

    Directory of Open Access Journals (Sweden)

    Pahar Bapi

    2012-08-01

    Full Text Available Abstract Background An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV vector – simian immunodeficiency virus (SIV envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1. Findings The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals. Immunofluorescent staining and multifunctional assessment of SIV-specific T-cell responses were evaluated in both Experimental and Control vaccinated animal groups. Significant increases in the proliferating CD4+ T-cell population and polyfunctional T-cell responses were observed in all Experimental-vaccinated animals compared with the Control-vaccinated animals. Conclusions Increased CD4+ T-cell proliferation was significantly and inversely correlated with plasma viral load. Increased SIV-specific polyfunctional cytokine responses and increased proliferation of CD4+ T-cell may be crucial to control plasma viral loads in vaccinated and SIVMAC251/CX1 challenged macaques.

  6. B Cells and Programmed Death-Ligand 2 Signaling Are Required for Maximal Interferon-γ Recall Response by Splenic CD4⁺ Memory T Cells of Mice Vaccinated with Mycobacterium tuberculosis Ag85B.

    Science.gov (United States)

    Riccomi, Antonella; Palma, Carla

    2015-01-01

    CD4+ T cells producing interferon-γ are crucial for protection against Mycobacterium tuberculosis infection and are the cornerstone of tuberculosis vaccination and immunological diagnostic assays. Since emerging evidence indicates that B cells can modulate T cell responses to M. tuberculosis infection, we investigated the contribution of B cells in regulating interferon-γ recall response by memory Thelper1 cells specific for Ag85B, a leading candidate for tuberculosis sub-unit vaccines. We found that B cells were able to maximize the reactivation of CD4+ memory T cells and the interferon-γ response against ex vivo antigen recall in spleens of mice vaccinated with Ag85B. B cell-mediated increase of interferon-γ response was particular evident for high interferon-γ producer CD4+ memory T cells, likely because those T cells were required for triggering and amplification of B cell activation. A positive-feedback loop of mutual activation between B cells, not necessarily antigen-experienced but with integral phosphatidylinositol-3 kinase (PI3K) pathway and a peculiar interferon-γ-producing CD4highT cell subset was established. Programed death-ligand 2 (PD-L2), expressed both on B and the highly activated CD4high T cells, contributed to the increase of interferon-γ recall response through a PD1-independent pathway. In B cell-deficient mice, interferon-γ production and activation of Ag85B-specific CD4+ T cells were blunted against ex vivo antigen recall but these responses could be restored by adding B cells. On the other hand, B cells appeared to down-regulate interleukin-22 recall response. Our data point out that nature of antigen presenting cells determines quality and size of T cell cytokine recall responses. Thus, antigen presenting cells, including B cells, deserve to be considered for a better prediction of cytokine responses by peripheral memory T cells specific for M. tuberculosis antigens. We also invite to consider B cells, PD-L2 and PI3K as potential

  7. The self-antigen, thyroglobulin, induces antigen-experienced CD4+ T cells from healthy donors to proliferate and promote production of the regulatory cytokine, interleukin-10, by monocytes

    DEFF Research Database (Denmark)

    Nielsen, Claus H; Galdiers, Marcel P; Hedegaard, Chris J

    2010-01-01

    Thyroglobulin (TG), as autoantigen, induces in vitro proliferation of T and B cells from normal individuals, but the cytokine production differs from that in patients with autoimmune thyroid disease. Here, we investigate whether normal T cells responding to TG are naive, or have previously...... and pathological modes of auto-recognition....

  8. Autoantibodies in autoimmune thyroid disease promote immune complex formation with self antigens and increase B cell and CD4+ T cell proliferation in response to self antigens

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Hegedüs, Laszlo; Leslie, Robert Graham Quinton

    2004-01-01

    B cells are centrally involved as antigen-presenting cells in certain autoimmune diseases. To establish whether autoantibodies form immune complexes (IC) with self-antigens in autoimmune thyroid disease (AITD) and promote B cell uptake of self-antigen, sera from patients with Hashimoto's thyroidi......B cells are centrally involved as antigen-presenting cells in certain autoimmune diseases. To establish whether autoantibodies form immune complexes (IC) with self-antigens in autoimmune thyroid disease (AITD) and promote B cell uptake of self-antigen, sera from patients with Hashimoto......'s thyroiditis (HT), Graves' disease (GD) and healthy controls were incubated with human thyroglobulin (Tg) before adding normal peripheral blood mononuclear cells. The deposition of immunoglobulins and C3 fragments on B cells was then assessed. Inclusion of Tg in serum from HT patients promoted B cell capture...... of Tg by boiling reduced the proliferative responses. The data indicate that anti-Tg antibodies associated with AITD facilitate the formation of complement-activating Tg/anti-Tg complexes, binding of IC to B cells, and the subsequent proliferation of B and T cell subsets. This represents a novel...

  9. Splenic abscesses.

    Science.gov (United States)

    Al-Hajjar, Nadim; Graur, Florin; Hassan, Aboul B; Molnár, Geza

    2002-03-01

    Splenic abscesses are rare entities (autopsy incidence between 0.14-0.7%). The most frequent etiology is the septic emboli seeding from bacterial endocarditis (about 20% of cases) or other septic foci (typhoid fever, malaria, urinary tract infections, osteomielitis, otitis). The treatment of splenic abscesses was until recently splenectomy with antibiotherapy. The actual trends are more conservative (mini invasive or non-invasive) because the immunologic role of the spleen has been better understood over the last year

  10. TNF activity and T cells.

    Science.gov (United States)

    Mehta, Amit K; Gracias, Donald T; Croft, Michael

    2018-01-01

    TNF (tumor necrosis factor) is both a pro-inflammatory and anti-inflammatory cytokine that is central to the development of autoimmune disease, cancer, and protection against infectious pathogens. As well as a myriad other activities, TNF can be a product of T cells and can act on T cells. Here we review old and new data on the importance of TNF produced by T cells and how TNF signaling via TNFR2 may directly impact alternate aspects of T cell biology. TNF can promote the activation and proliferation of naïve and effector T cells, but also can induce apoptosis of highly activated effector T cells, further determining the size of the pathogenic or protective conventional T cell pool. Moreover, TNF can have divergent effects on regulatory T cells. It can both downregulate their suppressive capacity, but also contribute in other instances to their development or accumulation. Biologics that block TNF or stimulate TNFR2 therefore have the potential to strongly modulate the balance between effector T cells and Treg cells which could impact disease in both positive and negative manners. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Infliximab induces clonal expansion of γδ-T cells in Crohn's disease: a predictor of lymphoma risk?

    Directory of Open Access Journals (Sweden)

    Jens Kelsen

    Full Text Available BACKGROUND: Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD, the incidence of hepato-splenic gamma-delta (γδ-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. METHODOLOGY/PRINCIPAL FINDINGS: We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n=20 or adalimumab (Humira®; n=26 using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6% comparable to healthy individuals (mean 2.2%, and 11 CD patients (24% exhibited an increased level of γδ-T cells (5-15%. In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. CONCLUSION/SIGNIFICANCE: CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell

  12. Infliximab induces clonal expansion of γδ-T cells in Crohn's disease: a predictor of lymphoma risk?

    Science.gov (United States)

    Kelsen, Jens; Dige, Anders; Schwindt, Heinrich; D'Amore, Francesco; Pedersen, Finn S; Agnholt, Jørgen; Christensen, Lisbet A; Dahlerup, Jens F; Hvas, Christian L

    2011-03-31

    Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD), the incidence of hepato-splenic gamma-delta (γδ)-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n=20) or adalimumab (Humira®; n=26) using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6%) comparable to healthy individuals (mean 2.2%), and 11 CD patients (24%) exhibited an increased level of γδ-T cells (5-15%). In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell levels may be at an increased risk of developing malignant γδ-T cell lymphomas

  13. The self-antigen, thyroglobulin, induces antigen-experienced CD4+ T cells from healthy donors to proliferate and promote production of the regulatory cytokine, interleukin-10, by monocytes

    DEFF Research Database (Denmark)

    Nielsen, Claus H; Galdiers, Marcel P; Hedegaard, Chris J

    2010-01-01

    Thyroglobulin (TG), as autoantigen, induces in vitro proliferation of T and B cells from normal individuals, but the cytokine production differs from that in patients with autoimmune thyroid disease. Here, we investigate whether normal T cells responding to TG are naive, or have previously...... encountered TG in vivo, using their responses to classic primary and secondary antigens, keyhole limpet haemocyanin (KLH) and tetanus toxoid (TT), respectively, for comparison. While TG elicited T-cell proliferation kinetics typical of a secondary response, the cytokine profile was distinct from that for TT....... Whereas TT induced pro-inflammatory cytokines [interleukin-2 (IL-2)/interferon-gamma (IFN-gamma)/IL-4/IL-5], TG evoked persistent release of the regulatory IL-10. Some donors, however, also responded with late IFN-gamma production, suggesting that the regulation by IL-10 could be overridden. Although...

  14. Natural autoantibodies and complement promote the uptake of a self antigen, human thyroglobulin, by B cells and the proliferation of thyroglobulin-reactive CD4(+) T cells in healthy individuals

    DEFF Research Database (Denmark)

    Nielsen, C H; Leslie, R G; Jepsen, B S

    2001-01-01

    Serum from normal individuals contains substantial amounts of natural antibodies (NA) capable of recognizing self antigens. However, the physiological implications of this autoreactivity remain unclear. We have examined the role of self-reactive NA and complement in mediating the uptake of human...... cells are prerequisites for the proliferation of Tg-reactive CD4(+) T cells, suggesting a novel role for natural autoantibodies and complement in the regulation of autoreactivity under physiological conditions....

  15. Human periodontal ligament stem cells suppress T-cell proliferation via down-regulation of non-classical major histocompatibility complex-like glycoprotein CD1b on dendritic cells.

    Science.gov (United States)

    Shin, C; Kim, M; Han, J-A; Choi, B; Hwang, D; Do, Y; Yun, J-H

    2017-02-01

    Periodontal ligament stem cells (PDLSCs) from the periodontal ligament tissue were recently identified as mesenchymal stem cells (MSCs). The capabilities of PDLSCs in periodontal tissue or bone regeneration have been reported, but their immunomodulatory role in T-cell immune responses via dendritic cells (DCs), known as the most potent antigen-presenting cell, has not been studied. The aim of this study is to understand the immunological function of homogeneous human STRO-1 + CD146 + PDLSCs in DC-mediated T-cell immune responses to modulate the periodontal disease process. We utilized highly purified (> 95%) human STRO-1 + CD146 + PDLSCs and human bone marrow mesenchymal stem cells (BMSCs). Each stem cell was co-cultured with human monocyte-derived DCs in the presence of lipopolysaccharide isolated from Porphyromonas gingivalis, a major pathogenic bacterium responsible for periodontal disease, in vitro to examine the immunological effect of each stem cell on DCs and DC-mediated T-cell proliferation. We discovered that STRO-1 + CD146 + PDLSCs, as well as BMSCs, significantly decreased the level of non-classical major histocompatibility complex glycoprotein CD1b on DCs, resulting in defective T-cell proliferation, whereas most human leukocyte antigens and the co-stimulatory molecules CD80 and CD86 in/on DCs were not significantly affected by the presence of BMSCs or STRO-1 + CD146 + PDLSCs. This study unveiled an immunomodulatory role of STRO-1 + CD146 + PDLSCs in negatively regulating DC-mediated T-cell immune responses, demonstrating their potential to be utilized in promising new stem cell therapies. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. The hookworm tissue inhibitor of metalloproteases (Ac-TMP-1 modifies dendritic cell function and induces generation of CD4 and CD8 suppressor T cells.

    Directory of Open Access Journals (Sweden)

    Carmen Cuéllar

    Full Text Available Hookworm infection is a major cause of disease burden for humans. Recent studies have described hookworm-related immunosuppression in endemic populations and animal models. A Tissue Inhibitor of Metalloproteases (Ac-TMP-1 has been identified as one of the most abundant proteins released by the adult parasite. We investigated the effect of recombinant Ac-TMP-1 on dendritic cell (DC and T cell function. Splenic T cells from C57BL/6 mice injected with Ac-TMP-1 showed reduced proliferation to restimulation with anti CD3 or bystander antigens such as OVA. Incubation of bone marrow-derived DCs with Ac-TMP-1 decreased MHC Class I and, especially, Class II expression but increased CD86 and IL-10 expression. Co-incubation of splenic T cells with DCs pulsed with Ac-TMP-1 induced their differentiation into CD4+ and, particularly, CD8+ CD25+Foxp3+ T cells that expressed IL-10. These cells were able to suppress proliferation of naïve and activated CD4+ T cells by TGF-Beta-dependent (CD4+ suppressors or independent (CD8+ suppressors mechanisms. Priming of DCs with non-hookworm antigens, such as OVA, did not result in the generation of suppressor T cells. These data indicate that Ac-TMP-1 initiates the development of a regulatory response through modifications in DC function and generation of suppressor T cells. This is the first report to propose a role of suppressor CD8+ T cells in gastrointestinal helminthic infections.

  17. Murine neonatal spleen contains natural T and non-T suppressor cells capable of inhibiting adult alloreactive and newborn autoreactive T-cell proliferation.

    Science.gov (United States)

    Hooper, D C; Hoskin, D W; Gronvik, K O; Murgita, R A

    1986-05-01

    The spleen of neonatal mice is known to be a rich source of cells capable of suppressing a variety of immune functions of adult lymphocytes in vitro. From such observations has emerged the concept that the gradual development in ability to express immune functions after birth is due in part to the parallel normal physiological decay of naturally occurring regulatory suppressor cells. There is, however, some confusion in the literature as to the exact nature of the newborn of the newborn inhibitory cell type(s). In contrast to most previous reports which detect only a single type of neonatal suppressor cell, usually a T cell, we show here that newborn spleen harbors both T and non-T inhibitory cells. Both types of suppressor cells could be shown to suppress the proliferative response of adult spleen to alloantigens as well as newborn T cells reacting against self-Ia antigen in the autologous mixed lymphocyte reaction (AMLR). Newborn suppressor T cells were characterized as being non-adherent to Ig-anti-Ig affinity columns, soybean agglutinin receptor negative (SBA-), and susceptible to lysis by anti-T-cell specific antiserum plus complement. Non-T suppressor cells were identified as non-phagocytic, SBA receptor positive (SBA+), and resistant to cytotoxic treatment with anti-T-cell antibodies and complement. The apparent controversy surrounding previous reports as to the T versus non-T nature of newborn suppressor cells can be reconciled by the present observation that both types of inhibitory cells coexist in the spleen. Furthermore, the demonstration that newborn suppressor cells can effectively regulate T-cell proliferative activity mediated by other newborn cells provides more direct support for the contention that such inhibitory cells play a physiological role in controlling immune responsiveness during early ontogeny.

  18. Antigen-specific over-expression of human cartilage glycoprotein 39 on CD4+ CD25+ forkhead box protein 3+ regulatory T cells in the generation of glucose-6-phosphate isomerase-induced arthritis.

    Science.gov (United States)

    Tanaka, Y; Matsumoto, I; Inoue, A; Umeda, N; Takai, C; Sumida, T

    2014-08-01

    Human cartilage gp-39 (HC gp-39) is a well-known autoantigen in rheumatoid arthritis (RA). However, the exact localization, fluctuation and function of HC gp-39 in RA are unknown. Therefore, using a glucose-6-phosphate isomerase (GPI)-induced model of arthritis, we investigated these aspects of HC gp-39 in arthritis. The rise in serum HC gp-39 levels was detected on the early phase of GPI-induced arthritis (day 7) and the HC gp-39 mRNA was increased significantly on splenic CD4(+) T cells on day7, but not on CD11b(+) cells. Moreover, to identify the characterization of HC gp-39(+) CD4(+) T cells, we assessed the analysis of T helper (Th) subsets. As a result, HC gp-39 was expressed dominantly in CD4(+) CD25(+) forkhead box protein 3 (FoxP3)(+) refulatory T cells (T(reg)), but not in Th1, Th2 or Th17 cells. Furthermore, to investigate the effect of HC gp-39 to CD4(+) T cells, T cell proliferation assay and cytokine production from CD4(+) T cells using recombinant HC gp-39 was assessed. We found that GPI-specific T cell proliferation and interferon (IFN)-γ or interleukin (IL)-17 production were clearly suppressed by addition of recombinant HC gp-39. Antigen-specific over-expression of HC gp-39 in splenic CD4(+) CD25(+) FoxP3(+) T(reg) cells occurs in the induction phase of GPI-induced arthritis, and addition of recombinant HC gp-39 suppresses antigen-specific T-cell proliferation and cytokine production, suggesting that HC gp-39 in CD4(+) T cells might play a regulatory role in arthritis. © 2014 British Society for Immunology.

  19. Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly:A randomized double-blind placebo-controlled trial

    Science.gov (United States)

    Background: Zinc is essential for the regulation of immune response. T cell function declines with age. Zinc supplementation has the potential to improve serum zinc concentrations and immunity of nursing home elderly with low serum zinc concentration. Objective: We aimed to determine the effect of ...

  20. E2a/Pbx1 induces the rapid proliferation of stem cell factor-dependent murine pro-T cells that cause acute T-lymphoid or myeloid leukemias in mice.

    Science.gov (United States)

    Sykes, David B; Kamps, Mark P

    2004-02-01

    Oncoprotein E2a/Pbx1 is produced by the t(1;19) chromosomal translocation of human pre-B acute lymphoblastic leukemia. E2a/Pbx1 blocks differentiation of primary myeloid progenitors but, paradoxically, induces apoptosis in established pre-B-cell lines, and no transforming function of E2a/Pbx1 has been reported in cultured lymphoid progenitors. Here, we demonstrate that E2a/Pbx1 induces immortal proliferation of stem cell factor (SCF)-dependent pro-T thymocytes by a mechanism dependent upon both its transactivation and DNA-binding functions. E2a-Pbx1 cooperated with cytokines or activated signaling oncoproteins to induce cell division, as inactivation of conditional E2a/Pbx1 in either factor-dependent pro-T cells or pro-T cells made factor independent by expression of Bcr/Abl resulted in pro-T-cell quiescence, while reactivation of E2a/Pbx1 restored cell division. Infusion of E2a/Pbx1 pro-T cells in mice caused T lymphoblastic leukemia and, unexpectedly, acute myeloid leukemia. The acute lymphoblastic leukemia did not evidence further maturation, suggesting that E2a/Pbx1 establishes an early block in pro-T-cell development that cannot be overcome by marrow or thymic microenvironments. In an E2a/Pbx1 pro-T thymocyte clone that induced only pro-T acute lymphoblastic leukemia, coexpression of Bcr/Abl expanded its leukemic phenotype to include acute myeloid leukemia, suggesting that unique functions of cooperating signaling oncoproteins can influence the lymphoid versus myeloid character of E2a/Pbx1 leukemia and may cooperate with E2a/Pbx1 to dictate the pre-B-cell phenotype of human leukemia containing t(1;19).

  1. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Minoru [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)

    2010-03-26

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cells induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  2. Regulatory CD8+ T cells induced by exposure to all-trans retinoic acid and TGF-β suppress autoimmune diabetes

    International Nuclear Information System (INIS)

    Kishi, Minoru; Yasuda, Hisafumi; Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao

    2010-01-01

    Antigen-specific regulatory CD4 + T cells have been described but there are few reports on regulatory CD8 + T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8 + T cells from 8.3-NOD transgenic mice. CD8 + T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-β, and all-trans retinoic acid (ATRA) for 5 days. CD8 + T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-β and ATRA had low Foxp3 + expression (1.7 ± 0.9% and 3.2 ± 4.5%, respectively). In contrast, CD8 + T cells induced by exposure to IGRP, SpDCs, TGF-β, and ATRA showed the highest expression of Foxp3 + in IGRP-reactive CD8 + T cells (36.1 ± 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8 + T cells cultured with IGRP, SpDCs, TGF-β, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8 + T cells suppressed the proliferation of diabetogenic CD8 + T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-β induces CD8 + Foxp3 + T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  3. Suppressor cell hyperactivity relative to allogeneic lymphocyte proliferation as a manifestation of defective T-T-cell interactions in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Stenina, M.A.; Potapova, A.A.; Biryukov, A.V.; Skripnik, A.Yu.; Cheredeev, A.N.

    1987-01-01

    The authors study the state of immunoregulatory process in patients with systemic lupus erythematosus at the T-T-cell interaction level and seek to test the possibility of the pharmacological modulation of this process. The proliferative activity of mononuclear lymphocytes, extracted from the blood of ten lupus patients, was assessed by measuring the incorporation of tritiated thymidine into cultures stimulated by phytohemagglutinin, concanavalin, and theophylline. The comparative effects of each of these agents on the immunoregulatory and proliferative activity of the lymphocytes are reported

  4. Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte.

    Science.gov (United States)

    Yang, Lubing; Ma, Sihui; Han, Yu; Wang, Yuhan; Guo, Yan; Weng, Qiang; Xu, Meiyu

    2016-05-12

    4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC), two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE) on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells) and T cell subsets (CD4+ and CD8+ T cells), as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B) in cells exposed to PP or PNMC. These effects were associated with a decrease in oxidative stress, as evidenced by changes in OH, SOD, GSH-Px, and MDA levels. The total phenolic content of WPE was 34,800 ± 200 mg gallic acid equivalents/100 g, consisting of at least 16 unique phenols, including ellagitannins, quercetin, valoneic acid dilactone, and gallic acid. Taken together, these results suggest that walnut polyphenols significantly attenuated PP and PNMC-mediated immunotoxicity and improved immune function by inhibiting oxidative stress.

  5. Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte

    Directory of Open Access Journals (Sweden)

    Lubing Yang

    2016-05-01

    Full Text Available 4-pentylphenol (PP and 3-methyl-4-nitrophenol (PNMC, two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells and T cell subsets (CD4+ and CD8+ T cells, as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B in cells exposed to PP or PNMC. These effects were associated with a decrease in oxidative stress, as evidenced by changes in OH, SOD, GSH-Px, and MDA levels. The total phenolic content of WPE was 34,800 ± 200 mg gallic acid equivalents/100 g, consisting of at least 16 unique phenols, including ellagitannins, quercetin, valoneic acid dilactone, and gallic acid. Taken together, these results suggest that walnut polyphenols significantly attenuated PP and PNMC-mediated immunotoxicity and improved immune function by inhibiting oxidative stress.

  6. Heterogeneous effects of histamine on proliferation of lung- and blood-derived T-cell clones from healthy and asthmatic persons

    NARCIS (Netherlands)

    Hol, B. E.; Krouwels, F. H.; Bruinier, B.; Lutter, R.; Bast, A.; Wierenga, E. A.; Jansen, H. M.; Out, T. A.

    1993-01-01

    We have studied the effects of histamine on the proliferation and the intracellular cyclic adenosine monophosphate (cAMP) levels of T-lymphocyte clones (TLC) generated from bronchoalveolar lavage fluid (BALF) or peripheral blood (PB) from healthy and asthmatic persons. TLC from either compartment

  7. An extrafollicular pathway for the generation of effector CD8+ T cells driven by the proinflammatory cytokine, IL-12

    Science.gov (United States)

    Shah, Suhagi; Grotenbreg, Gijsbert M; Rivera, Amariliz; Yap, George S

    2015-01-01

    The proinflammatory cytokine IL-12 drives the generation of terminally differentiated KLRG1+ effector CD8+ T cells. Using a Toxoplasma vaccination model, we delineate the sequence of events that naïve CD8+ T cells undergo to become terminal effectors and the differentiation steps controlled by IL-12. We demonstrate that direct IL-12 signaling on CD8+ T cells is essential for the induction of KLRG1 and IFN-γ, but the subsequent downregulation of CXCR3 is controlled by IL-12 indirectly through the actions of IFN-γ and IFN-γ-inducible chemokines. Differentiation of nascent effectors occurs in an extrafollicular splenic compartment and is driven by late IL-12 production by DCs distinct from the classical CD8α+ DC. Unexpectedly, we also found extensive proliferation of both KLRG1− and KLRG1+ CD8+ T cells in the marginal zone and red pulp, which ceases prior to the final KLRG1Hi CXCR3Lo stage. Our findings highlight the notion of an extrafollicular pathway for effector T cell generation. DOI: http://dx.doi.org/10.7554/eLife.09017.001 PMID:26244629

  8. Natural autoantibodies and complement promote the uptake of a self antigen, human thyroglobulin, by B cells and the proliferation of thyroglobulin-reactive CD4(+) T cells in healthy individuals

    DEFF Research Database (Denmark)

    Nielsen, C H; Leslie, R G; Jepsen, B S

    2001-01-01

    Serum from normal individuals contains substantial amounts of natural antibodies (NA) capable of recognizing self antigens. However, the physiological implications of this autoreactivity remain unclear. We have examined the role of self-reactive NA and complement in mediating the uptake of human...... thyroglobulin (Tg) by human peripheral B cells in reconstituted whole blood. Significant binding of fluorescein isothiocyanate-conjugated-Tg to B cells was observed, and absorption of Tg-reactive antibodies from serum markedly reduced this uptake, as did inactivation of serum complement or blockade...... cells are prerequisites for the proliferation of Tg-reactive CD4(+) T cells, suggesting a novel role for natural autoantibodies and complement in the regulation of autoreactivity under physiological conditions....

  9. Triterpene acids from rose hip powder inhibit self-antigen- and LPS-induced cytokine production and CD4⁺ T-cell proliferation in human mononuclear cell cultures.

    Science.gov (United States)

    Saaby, Lasse; Nielsen, Claus Henrik

    2012-08-01

    A triterpene acid mixture consisting of oleanolic, ursolic and betulinic acid isolated from a standardized rose hip powder (Rosa canina L.) has been shown to inhibit interleukin (IL)-6 release from Mono Mac 6 cells. The present study examined the effects of the triterpene acid mixture on the cytokine production and proliferation of CD4⁺ T cells and CD19⁺ B cells induced by a self-antigen, human thyroglobulin and by lipopolysaccharide in cultures of normal mononuclear cells. The triterpene acid mixture inhibited the production of tumor necrosis factor-α and IL-6 with estimated IC₅₀ values in the range 35-56 µg/mL, the Th1 cytokines interferon-γ and IL-2 (IC₅₀ values 10-20 µg/mL) and the antiinflammatory cytokine IL-10 (IC₅₀ values 18-21 µg/mL). Moreover, the mixture also inhibited CD4⁺ T-cell and CD19⁺ B-cell proliferation (IC₅₀ value 22 and 12 µg/mL, respectively). Together, these data demonstrate that oleanolic, ursolic and betulinic acid are active immunomodulatory constituents of the standardized rose hip powder. However, since the estimated IC₅₀ values are in the µg/mL range, it is questionable whether the content of the triterpene acids in the standardized rose hip powder, alone, can explain the reported clinical effects. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Homeostatic T Cell Expansion to Induce Anti-Tumor Autoimmunity in Breast Cancer

    National Research Council Canada - National Science Library

    Baccala, Roberto

    2007-01-01

    ... that (a) homeostatic T-cell proliferation consistently elicits anti-tumor responses; (b) irradiation is more effective than Tcell depletion by antibodies in inducing anti-tumor responses mediated by homeostatic T-cell proliferation...

  11. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies.

    Science.gov (United States)

    Stanfield, Brent A; Pahar, Bapi; Chouljenko, Vladimir N; Veazey, Ronald; Kousoulas, Konstantin G

    2017-01-23

    We have shown that the live-attenuated HSV-1 VC2 vaccine strain with mutations in glycoprotein K (gK) and the membrane protein UL20 is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. To better understand the immune response generated by vaccination with VC2, we tested its ability to elicit immune responses in rhesus macaques. Vaccinated animals showed no signs of disease and developed increasing HSV-1 and HSV-2 reactive IgG 1 after two booster vaccinations, while IgG subtypes IgG 2 and IgG 3 remained at low to undetectable levels. All vaccinated animals produced high levels of cross protective neutralizing antibodies. Flow cytometry analysis of cells isolated from draining lymph nodes showed that VC2 vaccination stimulated significant increases in plasmablast (CD27 high CD38 high ) and mature memory (CD21 - IgM - ) B cells. T cell analysis on cells isolated from draining lymph node biopsies demonstrated a statistically significant increase in proliferating (Ki67 + ) follicular T helper cells and regulatory CXCR5 + CD8 + cytotoxic T cells. Analysis of plasma isolated two weeks post vaccination showed significant increases in circulating CXCL13 indicating increased germinal center activity. Cells isolated from vaginal biopsy samples collected over the course of the study exhibited vaccination-dependent increases in proliferating (Ki67 + ) CD4 + and CD8 + T cell populations. These results suggest that intramuscular vaccination with the live-attenuated HSV-1 VC2 vaccine strain can stimulate robust IgG 1 antibody responses that persist for >250days post vaccination. In addition, vaccination lead to the maturation of B cells into plasmablast and mature memory B cells, the expansion of follicular T helper cells, and affects in the mucosal immune responses. These data suggest that the HSV VC2 vaccine induces potent immune responses that could help

  12. Artificial intelligence methods for predicting T-cell epitopes.

    Science.gov (United States)

    Zhao, Yingdong; Sung, Myong-Hee; Simon, Richard

    2007-01-01

    Identifying epitopes that elicit a major histocompatibility complex (MHC)-restricted T-cell response is critical for designing vaccines for infectious diseases and cancers. We have applied two artificial intelligence approaches to build models for predicting T-cell epitopes. We developed a support vector machine to predict T-cell epitopes for an MHC class I-restricted T-cell clone (TCC) using synthesized peptide data. For predicting T-cell epitopes for an MHC class II-restricted TCC, we built a shift model that integrated MHC-binding data and data from T-cell proliferation assay against a combinatorial library of peptide mixtures.

  13. Nylon wool purification alters the activation of T cells.

    Science.gov (United States)

    Wohler, Jillian E; Barnum, Scott R

    2009-02-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method.

  14. FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeremy A Sullivan

    2012-02-01

    Full Text Available CD8 T cell responses have three phases: expansion, contraction, and memory. Dynamic alterations in proliferation and apoptotic rates control CD8 T cell numbers at each phase, which in turn dictate the magnitude of CD8 T cell memory. Identification of signaling pathways that control CD8 T cell memory is incomplete. The PI3K/Akt signaling pathway controls cell growth in many cell types by modulating the activity of FOXO transcription factors. But the role of FOXOs in regulating CD8 T cell memory remains unknown. We show that phosphorylation of Akt, FOXO and mTOR in CD8 T cells occurs in a dynamic fashion in vivo during an acute viral infection. To elucidate the potentially dynamic role for FOXO3 in regulating homeostasis of activated CD8 T cells in lymphoid and non-lymphoid organs, we infected global and T cell-specific FOXO3-deficient mice with Lymphocytic Choriomeningitis Virus (LCMV. We found that FOXO3 deficiency induced a marked increase in the expansion of effector CD8 T cells, preferentially in the spleen, by T cell-intrinsic mechanisms. Mechanistically, the enhanced accumulation of proliferating CD8 T cells in FOXO3-deficient mice was not attributed to an augmented rate of cell division, but instead was linked to a reduction in cellular apoptosis. These data suggested that FOXO3 might inhibit accumulation of growth factor-deprived proliferating CD8 T cells by reducing their viability. By virtue of greater accumulation of memory precursor effector cells during expansion, the numbers of memory CD8 T cells were strikingly increased in the spleens of both global and T cell-specific FOXO3-deficient mice. The augmented CD8 T cell memory was durable, and FOXO3 deficiency did not perturb any of the qualitative attributes of memory T cells. In summary, we have identified FOXO3 as a critical regulator of CD8 T cell memory, and therapeutic modulation of FOXO3 might enhance vaccine-induced protective immunity against intracellular pathogens.

  15. FOXO3 Regulates CD8 T Cell Memory by T Cell-Intrinsic Mechanisms

    Science.gov (United States)

    Sullivan, Jeremy A.; Kim, Eui Ho; Plisch, Erin H.; Peng, Stanford L.; Suresh, M.

    2012-01-01

    CD8 T cell responses have three phases: expansion, contraction, and memory. Dynamic alterations in proliferation and apoptotic rates control CD8 T cell numbers at each phase, which in turn dictate the magnitude of CD8 T cell memory. Identification of signaling pathways that control CD8 T cell memory is incomplete. The PI3K/Akt signaling pathway controls cell growth in many cell types by modulating the activity of FOXO transcription factors. But the role of FOXOs in regulating CD8 T cell memory remains unknown. We show that phosphorylation of Akt, FOXO and mTOR in CD8 T cells occurs in a dynamic fashion in vivo during an acute viral infection. To elucidate the potentially dynamic role for FOXO3 in regulating homeostasis of activated CD8 T cells in lymphoid and non-lymphoid organs, we infected global and T cell-specific FOXO3-deficient mice with Lymphocytic Choriomeningitis Virus (LCMV). We found that FOXO3 deficiency induced a marked increase in the expansion of effector CD8 T cells, preferentially in the spleen, by T cell-intrinsic mechanisms. Mechanistically, the enhanced accumulation of proliferating CD8 T cells in FOXO3-deficient mice was not attributed to an augmented rate of cell division, but instead was linked to a reduction in cellular apoptosis. These data suggested that FOXO3 might inhibit accumulation of growth factor-deprived proliferating CD8 T cells by reducing their viability. By virtue of greater accumulation of memory precursor effector cells during expansion, the numbers of memory CD8 T cells were strikingly increased in the spleens of both global and T cell-specific FOXO3-deficient mice. The augmented CD8 T cell memory was durable, and FOXO3 deficiency did not perturb any of the qualitative attributes of memory T cells. In summary, we have identified FOXO3 as a critical regulator of CD8 T cell memory, and therapeutic modulation of FOXO3 might enhance vaccine-induced protective immunity against intracellular pathogens. PMID:22359505

  16. T-cell count

    Science.gov (United States)

    ... count URL of this page: //medlineplus.gov/ency/article/003516.htm T-cell count To use the sharing features on this ... as hepatitis or mononucleosis Lower than normal T-cell levels may be due to: Acute viral infections Aging Cancer Immune system diseases, such as HIV/AIDS ...

  17. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Ingrid; Birnir, Bryndis

    2006-01-01

    ) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between......Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS...... neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4...

  18. CD8+ memory T-cell inflation renders compromised CD4+ T-cell-dependent CD8+ T-cell immunity via naïve T-cell anergy

    Directory of Open Access Journals (Sweden)

    Xu A

    2017-06-01

    Full Text Available Aizhang Xu,1,2 Andrew Freywald,3 Yufeng Xie,4 Zejun Li,5 Jim Xiang1,2 1Cancer Research Cluster, Saskatchewan Cancer Agency, 2Department of Oncology, 3Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada; 4Department of Oncology, First Affiliated Hospital, Soochow University, Suzhou, 5Shanghai Veterinary Research Institute, Shanghai, China Abstract: Whether inflation of CD8+ memory T (mT cells, which is often derived from repeated prime-boost vaccinations or chronic viral infections in the elderly, would affect late CD8+ T-cell immunity is a long-standing paradox. We have previously established an animal model with mT-cell inflation by transferring ConA-stimulated monoclonal CD8+ T cells derived from Ova-specific T-cell-receptor transgenic OTI mice into irradiation-induced lymphopenic B6 mice. In this study, we also established another two animal models with mT-cell inflation by transferring, 1 ConA-stimulated monoclonal CD8+ T cells derived from lymphocytic choriomeningitis virus glycoprotein-specific T-cell-receptor transgenic P14 mice, and 2 ConA-stimulated polyclonal CD8+ T cells derived from B6.1 mice into B6 mice with irradiation-induced lymphopenia. We vaccinated these mice with recombinant Ova-expressing Listeria monocytogenes and Ova-pulsed dendritic cells, which stimulated CD4+ T cell-independent and CD4+ T-cell-dependent CD8+ T-cell responses, respectively, and assessed Ova-specific CD8+ T-cell responses by flow cytometry. We found that Ova-specific CD8+ T-cell responses derived from the latter but not the former vaccination were significantly reduced in mice with CD8+ mT-cell inflation compared to wild-type B6 mice. We determined that naïve CD8+ T cells purified from splenocytes of mice with mT-cell inflation had defects in cell proliferation upon stimulation in vitro and in vivo and upregulated T-cell anergy-associated Itch and GRAIL molecules. Taken together, our data reveal that CD8+ mT-cell inflation renders

  19. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells.

    Science.gov (United States)

    Kamiya, Takahiro; Wong, Desmond; Png, Yi Tian; Campana, Dario

    2018-03-13

    Practical methods are needed to increase the applicability and efficacy of chimeric antigen receptor (CAR) T-cell therapies. Using donor-derived CAR-T cells is attractive, but expression of endogenous T-cell receptors (TCRs) carries the risk for graft-versus-host-disease (GVHD). To remove surface TCRαβ, we combined an antibody-derived single-chain variable fragment specific for CD3ε with 21 different amino acid sequences predicted to retain it intracellularly. After transduction in T cells, several of these protein expression blockers (PEBLs) colocalized intracellularly with CD3ε, blocking surface CD3 and TCRαβ expression. In 25 experiments, median TCRαβ expression in T lymphocytes was reduced from 95.7% to 25.0%; CD3/TCRαβ cell depletion yielded virtually pure TCRαβ-negative T cells. Anti-CD3ε PEBLs abrogated TCRαβ-mediated signaling, without affecting immunophenotype or proliferation. In anti-CD3ε PEBL-T cells, expression of an anti-CD19-41BB-CD3ζ CAR induced cytokine secretion, long-term proliferation, and CD19 + leukemia cell killing, at rates meeting or exceeding those of CAR-T cells with normal CD3/TCRαβ expression. In immunodeficient mice, anti-CD3ε PEBL-T cells had markedly reduced GVHD potential; when transduced with anti-CD19 CAR, these T cells killed engrafted leukemic cells. PEBL blockade of surface CD3/TCRαβ expression is an effective tool to prepare allogeneic CAR-T cells. Combined PEBL and CAR expression can be achieved in a single-step procedure, is easily adaptable to current cell manufacturing protocols, and can be used to target other T-cell molecules to further enhance CAR-T-cell therapies. © 2018 by The American Society of Hematology.

  20. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  1. MiR-143-3p controls TGF-β1-induced cell proliferation and extracellular matrix production in airway smooth muscle via negative regulation of the nuclear factor of activated T cells 1.

    Science.gov (United States)

    Cheng, Wei; Yan, Kun; Xie, Li-Yi; Chen, Feng; Yu, Hong-Chuan; Huang, Yan-Xia; Dang, Cheng-Xue

    2016-10-01

    MicroRNAs (miRNAs) are small noncoding RNAs that function in diverse biological processes. However, little is known about the precise role of microRNAs in the functioning of airway smooth muscle cells (ASMCs). Here, we investigated the potential role and mechanisms of the miR-143 -3p on proliferation and the extracellular matrix (ECM) protein production of ASMCs. We demonstrated that miR-143-3p was aberrantly lower in ASMCs isolated from individuals with asthma than in individuals without asthma. Meanwhile, TGF-β1 caused a marked decrease in a time-dependent manner in miR-143-3p expression in ASMCs from asthmatics. Additionally, the overexpression of miR- 143-3p robustly reduced TGF-β1-induced ASMCs proliferation and downregulated CDK and cyclin expression, whereas the inhibition of miR-143-3p significantly enhanced ASMCs proliferation and upregulated the level of CDKs and cyclins. Re-expression of miR-143-3p attenuated ECM protein deposition reflected as a marked decrease in the expression of type I collagen and fibronectin, whereas miR-143-3p downregulation caused an opposite effect on the expression of type I collagen and fibronectin. Moreover, qRT-PCR and western blot analysis indicated that miR-143-3p negatively regulated the expression of nuclear factor of activated T cells 1 (NFATc1). Subsequent analyses demonstrated that NFATc1 was a direct and functional target of miR-143-3p, which was validated by the dual luciferase reporter assay. Most importantly, the overexpression of NFATc1 effectively reversed the inhibition of miR-143-3p on TGF-β1-induced proliferation, and strikingly abrogated the effect of miR-143-3p on the expression of CDK4 and Cyclin D1. Together, miR-143-3p may function as an inhibitor of asthma airway remodeling by suppressing proliferation and ECM protein deposition in TGF-β1-mediated ASMCs via the negative regulation of NFATc1 signaling, suggesting miR-143-3p as a potential therapeutic target for asthma. Copyright © 2016 Elsevier Ltd

  2. Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis.

    Science.gov (United States)

    Scumpia, Philip O; Delano, Matthew J; Kelly, Kindra M; O'Malley, Kerri A; Efron, Philip A; McAuliffe, Priscilla F; Brusko, Todd; Ungaro, Ricardo; Barker, Tolga; Wynn, James L; Atkinson, Mark A; Reeves, Westley H; Salzler, Michael J Clare; Moldawer, Lyle L

    2006-12-01

    Regulatory T cells (Tregs), including natural CD4+CD25+ Tregs and inducible IL-10 producing T regulatory type 1 (T(R)1) cells, maintain tolerance and inhibit autoimmunity. Recently, increased percentages of Tregs have been observed in the blood of septic patients, and ex vivo-activated Tregs were shown to prevent polymicrobial sepsis mortality. Whether endogenous Tregs contribute to sepsis outcome remains unclear. Polymicrobial sepsis, induced by cecal ligation and puncture, caused an increased number of splenic Tregs compared with sham-treated mice. Splenic CD4+CD25+ T cells from septic mice expressed higher levels of Foxp3 mRNA and were more efficient suppressors of CD4+CD25- T effector cell proliferation. Isolated CD4+ T cells from septic mice displayed increased intracellular IL-10 staining following stimulation, indicating that T(R)1 cells may also be elevated in sepsis. Surprisingly, Ab depletion of total CD4+ or CD4+CD25+ populations did not affect mortality. Furthermore, no difference in survival outcome was found between CD25 or IL-10 null mice and wild-type littermates, indicating that Treg or T(R)1-generated IL-10 are not required for survival. These results demonstrate that, although sepsis causes a relative increase in Treg number and increases their suppressive function, their presence does not contribute significantly to overall survival in this model.

  3. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins

    DEFF Research Database (Denmark)

    Woetmann, Anders; Lovato, Paola; Eriksen, Karsten W

    2007-01-01

    Bacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients....... The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant...... T cells enhance proliferation of the malignant cells in an SE- and MHC class II-dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4(+) T-cell lines also enhance proliferation of the malignant cells. The growth...

  4. Co-targeting aurora kinase with PD-L1 and PI3K abrogates immune checkpoint mediated proliferation in peripheral T-cell lymphoma: a novel therapeutic strategy.

    Science.gov (United States)

    Islam, Shariful; Vick, Eric; Huber, Bryan; Morales, Carla; Spier, Catherine; Cooke, Laurence; Weterings, Eric; Mahadevan, Daruka

    2017-11-21

    Peripheral T-cell non-Hodgkin lymphoma (PTCL) are heterogeneous, rare, and aggressive diseases mostly incurable with current cell cycle therapies. Aurora kinases (AKs) are key regulators of mitosis that drive PTCL proliferation. Alisertib (AK inhibitor) has a response rate ∼30% in relapsed and refractory PTCL (SWOG1108). Since PTCL are derived from CD4 + /CD8 + cells, we hypothesized that Program Death Ligand-1 (PD-L1) expression is essential for uncontrolled proliferation. Combination of alisertib with PI3Kα (MLN1117) or pan-PI3K inhibition (PF-04691502) or vincristine (VCR) was highly synergistic in PTCL cells. Expression of PD-L1 relative to PD-1 is high in PTCL biopsies (∼9-fold higher) and cell lines. Combination of alisertib with pan-PI3K inhibition or VCR significantly reduced PD-L1, NF-κB expression and inhibited phosphorylation of AKT, ERK1/2 and AK with enhanced apoptosis. In a SCID PTCL xenograft mouse model, alisertib displayed high synergism with MLN1117. In a syngeneic PTCL mouse xenograft model alisertib demonstrated tumor growth inhibition (TGI) ∼30%, whilst anti-PD-L1 therapy alone was ineffective. Alisertib + anti-PD-L1 resulted in TGI >90% indicative of a synthetic lethal interaction. PF-04691502 + alisertib + anti-PD-L1 + VCR resulted in TGI 100%. Overall, mice tolerated the treatments well. Co-targeting AK, PI3K and PD-L1 is a rational and novel therapeutic strategy for PTCL.

  5. T-cell costimulation

    DEFF Research Database (Denmark)

    Owens, T

    1996-01-01

    The CD40L molecule expressed by CD4+ regulatory T lymphocytes is known to deliver signals that activate B cells and macrophages. It now appears that CD40L regulates T cells themselves, during both their development and their participation in adaptive immune responses....

  6. Allosuppressor and allohelper T cells in acute and chronic graft-vs-host disease. I. Alloreactive suppressor cells rather than killer T cells appear to be the decisive effector cells in lethal graft-vs.-host disease

    NARCIS (Netherlands)

    Rolink, A. G.; Radaszkiewicz, T.; Pals, S. T.; van der Meer, W. G.; Gleichmann, E.

    1982-01-01

    Splenic T cells from B10 donors were injected into irradiated (B10 x DBA/2)F1 mice. Either 5 or 6 d later, activated donor T cells were recovered from the spleens of these primary F1 (1 degree F1) recipients and transferred to groups of nonirradiated syngeneic F1 (2 degrees F1) recipients. Whereas

  7. Stimulation of adult oligodendrogenesis by myelin-specific T cells

    DEFF Research Database (Denmark)

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke

    2011-01-01

    investigated the effect of myelin-specific T cells on oligodendrocyte formation at sites of axonal damage in the mouse hippocampal dentate gyrus. Infiltrating T cells specific for myelin proteolipid protein stimulated proliferation of chondroitin sulfate NG2-expressing oligodendrocyte precursor cells early...... of calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system....

  8. Understanding and Exploiting the T - Cell Memory

    Directory of Open Access Journals (Sweden)

    Kshipra Chandrashekhar1

    Full Text Available Immunological memory is one of the lesser understood aspects of adaptive immunity which protects organisms from recurrent and persistent attack by pathogens. The central event in the generation of both humoral and cell mediated immune responses is the activation and clonal expansion of T cells. T cell activation is initiated by interaction of the TCR-CD3 complex with processed antigenic peptide bound to either a class I (CD8+cells or class II (CD 4+cells MHC molecule on the surface of antigen presenting cell (APC. On interaction of a naïve T cell with the processed antigen initiates a cascade of events which activates the resting T cell to enter the cell cycle, proliferating and developing into a clone of progeny cells, which differentiate into memory or effector T cells. Memory T cells are generated by antigen interaction and remain long but quiescent in nature, however responding with greater reactivity to a subsequent challenge with the same antigen, generating a secondary response. Memory cells, though in the G0 stage of the cell cycle require a lower level of activation than so naïve cells. A lot of work in this direction can yield a whole lot of interesting findings which will help us develop better vaccines for chronic animal diseases like Tuberculosis, Johne’s disease using suitable animal models. A better understanding of these issues may lead to improvements in the design of vaccines which can be used to generate potent protective T cell memory against pathogens. In the present article various properties of memory T cells along with their implications to vaccine development have been reviewed. [Veterinary World 2010; 3(7.000: 343-345

  9. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    International Nuclear Information System (INIS)

    Doi, Keiko; Fujimoto, Takahiro; Okamura, Tadashi; Ogawa, Masahiro; Tanaka, Yoko; Mototani, Yasumasa; Goto, Motohito; Ota, Takeharu; Matsuzaki, Hiroshi; Kuroki, Masahide; Tsunoda, Toshiyuki; Sasazuki, Takehiko; Shirasawa, Senji

    2012-01-01

    Highlights: ► We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. ► Zfat-deficiency leads to reduction in the number of the peripheral T cells. ► Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. ► Decreased expression of IL-7Rα, IL-2Rα and IL-2 in Zfat-deficient peripheral T cells. ► Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7Rα and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2Rα expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  10. T Cell Responses: Naive to Memory and Everything in Between

    Science.gov (United States)

    Pennock, Nathan D.; White, Jason T.; Cross, Eric W.; Cheney, Elizabeth E.; Tamburini, Beth A.; Kedl, Ross M.

    2013-01-01

    The authors describe the actions that take place in T cells because of their amazing capacity to proliferate and adopt functional roles aimed at clearing a host of an infectious agent. There is a drastic decline in the T cell population once the primary response is over and the infection is terminated. What remains afterward is a population of T…

  11. Sublingual tolerance induction with antigen conjugated to cholera toxin B subunit induces Foxp3+CD25+CD4+ regulatory T cells and suppresses delayed-type hypersensitivity reactions.

    Science.gov (United States)

    Sun, J-B; Cuburu, N; Blomquist, M; Li, B-L; Czerkinsky, C; Holmgren, J

    2006-09-01

    Although sublingual (s.l.) immunotherapy with selected allergens is safe and often effective for treating patients with allergies, knowledge of the immunological mechanisms involved remains limited. Can s.l. administration of antigen (Ag) induce peripheral immunological tolerance and also suppress delayed-type hypersensitivity (DTH) responses? To what extent can s.l.-induced tolerance be explained by the generation of Foxp3+CD25+CD4+ regulatory T cells (T(reg))? This study addressed these questions in mice and compared the relative efficacy of administering ovalbumin (OVA) conjugated to cholera toxin B (CTB) subunit with administration of the same Ag alone. We found that s.l. administration of a single or even more efficiently three repeated 40-mug doses of OVA/CTB conjugate suppressed T-cell proliferative responses to OVA by cervical lymph node (CLN), mesenteric lymph node (MLN) and spleen cells and concurrently strongly increased the frequency of Ag-specific T(reg) in CLN, MLN and spleen and also transforming growth factor-beta (TGF-beta) levels in serum. The CLN and splenic cells from OVA/CTB-treated BALB/c mice efficiently suppressed OVA-specific T-cell receptor (TCR) transgenic (DO11.10) CD25-CD4+ effector T-cell proliferation in vitro. Further, s.l. treatment with OVA/CTB completely suppressed OVA-specific DTH responses in vivo and T-cell proliferative responses in mice immunized subcutaneously with OVA in Freund's complete adjuvant. The intracellular expression of Foxp3 was strongly increased in OVA-specific (KJ1-26+) CD4+ T cells from OVA/CTB-treated mice. Thus, s.l. administration of CTB-conjugated Ag can efficiently induce peripheral T-cell tolerance associated with strong increases in serum TGF-beta levels and in Ag-specific Foxp3+CD25+CD4+ T(reg) cells.

  12. The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT).

    Science.gov (United States)

    Kaplan, Barbara L F; Springs, Alison E B; Kaminski, Norbert E

    2008-09-15

    Cannabidiol (CBD) is a cannabinoid compound derived from Cannabis Sativa that does not possess high affinity for either the CB1 or CB2 cannabinoid receptors. Similar to other cannabinoids, we demonstrated previously that CBD suppressed interleukin-2 (IL-2) production from phorbol ester plus calcium ionophore (PMA/Io)-activated murine splenocytes. Thus, the focus of the present studies was to further characterize the effect of CBD on immune function. CBD also suppressed IL-2 and interferon-gamma (IFN-gamma) mRNA expression, proliferation, and cell surface expression of the IL-2 receptor alpha chain, CD25. While all of these observations support the fact that CBD suppresses T cell function, we now demonstrate that CBD suppressed IL-2 and IFN-gamma production in purified splenic T cells. CBD also suppressed activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) transcriptional activity, which are critical regulators of IL-2 and IFN-gamma. Furthermore, CBD suppressed the T cell-dependent anti-sheep red blood cell immunoglobulin M antibody forming cell (anti-sRBC IgM AFC) response. Finally, using splenocytes derived from CB1(-/-)/CB2(-/-) mice, it was determined that suppression of IL-2 and IFN-gamma and suppression of the in vitro anti-sRBC IgM AFC response occurred independently of both CB1 and CB2. However, the magnitude of the immune response to sRBC was significantly depressed in CB1(-/-)/CB2(-/-) mice. Taken together, these data suggest that CBD suppresses T cell function and that CB1 and/or CB2 play a critical role in the magnitude of the in vitro anti-sRBC IgM AFC response.

  13. [Oxidized low-density lipoprotein modulates differentiation of murine memory CD8+T cell subpopulations].

    Science.gov (United States)

    Zheng, Hua; Lin, Ze-Hang; Zhang, Yan-Mei; Zhou, Chen-Fei; Liu, Xuan; Wu, Sha

    2017-08-20

    To investigate effect of oxidized low-density lipoprotein (ox-LDL) on memory CD8 + T cell subpopulation differentiation in mice with autoimmune diabetes. Cultured splenic CD8 + T cells from pre-diabetic NOD mice isolated with magnetic beads were treated with 30 µg/mL ox-LDL and 10 U/mL interleukin-2 (IL-2) for 24 h and the control cells were treated with IL-2 only. Flow cytometry was used to determine the percentage of splenic CD8 + IFN-γ + T cells, expressions of CD8, CD44 and CD62L on the T cells, and the activation of T cell factor-1 (TCF-1) and STAT-3. The CD127 + memory T cells were purified and transplanted into the pre-diabetic NOD mice via the tail vein, and the blood glucose was recorded weekly and survival time of the mice was monitored. Treatment with ox-LDL significantly reduced islet β cell-specific cytotoxic CD8 + T cells as compared with the control group [(0.7∓0.03)% vs (2.7∓0.14)%, Peffector memory CD8 + T cells (Tem) in the total memory CD8 + T cells was reduced [(10.3∓0.71)% vs (30.3∓1.36)%, Pmemory T cells was significantly increased [(72.3∓3.8)% vs (55.1∓2.61)%, Pmemory T cells in pre-diabetic NOD mice obviously inhibited the increase of blood glucose and prolonged the survival time of the mice (Ptranscriptional factors TCF-1 and phosphorylation of STAT-3, inhibits the formation of effector memory CD8 + T cells with long-term cytotoxicity, but promote the generation of stem cell-like memory CD8 + T cells, which result in suppression of islet β cell-specific effector cytotoxic CD8 + T cell differentiation to lessen autoimmune injury to the islet β cells.

  14. Assessment of splenic function

    NARCIS (Netherlands)

    de Porto, A.P.N.A.; Lammers, A.J.J.; Bennink, R.J.; ten Berge, R.J.M.; Speelman, P.; Hoekstra, J.B.L.

    2010-01-01

    Hyposplenic patients are at risk of overwhelming post-splenectomy infection (OPSI), which carries mortality of up to 70%. Therefore, preventive measures are warranted. However, patients with diminished splenic function are difficult to identify. In this review we discuss immunological,

  15. Postsplenectomy splenic activity.

    Science.gov (United States)

    Orda, R; Barak, J; Baron, J; Spirer, Z; Wiznitzer, T

    1981-01-01

    Evidence of recurring activity of splenic tissue was investigated in patients who had undergone splenectomies. Methods included technetium 99m sulfur colloid scan, serum tuftsin assay, serum immunoglobulin concentration, blood cell counts, and search for Howell-Jolly bodies. Positive scans were observed together with normal levels of tuftsin in 54% of the patients. In 46% of the patients, no splenic activity was detected by scanning and low levels of tuftsin were noticed. The difference in tuftsin levels between the two groups was statistically significant. Howell-Jolly bodies and decreased serum levels of IgM featured all patients. The possible application of combined splenic scan and tuftsin assessment for screening recurring splenic activity in the postsplenectomy population at great risk is suggested. Images Fig. 1. Fig. 2. PMID:7305494

  16. Splenic irradiation before bone marrow transplantation for chronic myeloid leukaemia

    International Nuclear Information System (INIS)

    Gratwohl, A.; Hermans, J.; Biezen, A.V.

    1996-01-01

    A total of 229 patients with chronic myeloid leukaemia (CML) in chronic phase were randomized between 1986 and 1990 to receive or not receive additional splenic irradiation as part of their conditioning prior to bone marrow transplantation (BMT). Both groups, 115 patients with and 114 patients without splenic irradiation, were very similar regarding distribution of age, sex, donor/recipient sex combination, conditioning, graft-versus-host disease (GvHD) prevention method and blood counts at diagnosis or prior to transplant. 135 patients (59%) are alive as of October 1995 with a minimum follow-up of 5 years. 52 patients have relapsed (23%), 26 patients in the irradiated, 26 patients in the non-irradiated group (n.s.) with a relapse incident at 6 years of 28%. The main risk factor for relapse was T-cell depletion as the method for GvHD prevention, and an elevated basophil count in the peripheral blood prior to transplant. Relapse incidence between patients with or without splenic irradiation was no different in patients at high risk for relapse, e.g. patients transplanted with T-cell-depleted marrows (P = n.s.) and in patients with low risk for relapse, e.g. patients transplanted with non-T-cell-depleted transplants and basophil counts 3% basophils in peripheral blood). In this patient group, relapse incidence was 11% at 6 years with splenic irradiation but 32% in the non-irradiated group (P = 0.05). Transplant-related mortality was similar whether patients received splenic irradiation or not. This study suggests an advantage in splenic irradiation prior to transplantation for CML in this subgroup of patients and illustrates the need for tailored therapy. (Author)

  17. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Masakazu, E-mail: masa3k@ucla.edu [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Kim, Patrick Y. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ng, Hwee L. [Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O' Connor, Sean [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Yang, Otto O. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States); AIDS Healthcare Foundation, Los Angeles, CA (United States); Chen, Irvin S.Y. [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States)

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  18. Ectopic expression of anti-HIV-1 shRNAs protects CD8+ T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    International Nuclear Information System (INIS)

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-01-01

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8 + T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8 + T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8 + T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24 Gag in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8 + T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8 + T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8 + T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8 + T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8 + T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8 + T cells from HIV-1 infection suppresses its cytopathic effect

  19. Nocodazole treatment interrupted Brucella abortus invasion in RAW 264.7 cells, and successfully attenuated splenic proliferation with enhanced inflammatory response in mice.

    Science.gov (United States)

    Reyes, Alisha Wehdnesday Bernardo; Hop, Huynh Tan; Arayan, Lauren Togonon; Huy, Tran Xuan Ngoc; Min, Wongi; Lee, Hu Jang; Chang, Hong Hee; Kim, Suk

    2017-02-01

    Brucellosis is one of the most important and widespread zoonosis worldwide responsible for serious economic losses and considerable public health burden. In this study, we investigated the modulatory effect of a microtubule-inhibitor, nocodazole, on B. abortus infection in murine macrophages and in a mouse model. Nocodazole activated macrophages and directly inhibited the growth of Brucella in a dose-dependent manner. Nocodazole increased adhesion but reduced invasion and intracellular growth of Brucella in macrophages although it did not affect co-localization of Brucella with LAMP-1. In addition, nocodazole negatively affected actin polymerization, and weakly activated ERK and p38α but significantly activated JNK in non-infected cells. After subsequent infection, nocodazole weakly inhibited activation of ERK and p38α. For the in vivo tests, nocodazole -treated mice displayed elevated levels of IFN-γ, MCP-1 and IL-10 while Brucella-infected nocodazole -treated mice showed high levels of TNF, IFN-γ, MCP-1, IL-10 and IL-6 as compared to controls. Furthermore, nocodazole treatment reduced inflammation and Brucella proliferation in the spleens of mice. These findings highlight the potential use of nocodazole for the control of brucellosis although further investigations are encouraged to validate its therapeutic use in animal hosts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Subcellular Location of Ovalbumin in Plasmodium berghei Blood Stages Influences the Magnitude of T-Cell Responses

    Science.gov (United States)

    Lin, Jing-Wen; Shaw, Tovah N.; Annoura, Takeshi; Fougère, Aurélie; Bouchier, Pascale; Chevalley-Maurel, Séverine; Kroeze, Hans; Franke-Fayard, Blandine; Janse, Chris J.; Couper, Kevin N.

    2014-01-01

    Model antigens are frequently introduced into pathogens to study determinants that influence T-cell responses to infections. To address whether an antigen's subcellular location influences the nature and magnitude of antigen-specific T-cell responses, we generated Plasmodium berghei parasites expressing the model antigen ovalbumin (OVA) either in the parasite cytoplasm or on the parasitophorous vacuole membrane (PVM). For cytosolic expression, OVA alone or conjugated to mCherry was expressed from a strong constitutive promoter (OVAhsp70 or OVA::mCherryhsp70); for PVM expression, OVA was fused to HEP17/EXP1 (OVA::Hep17hep17). Unexpectedly, OVA expression in OVAhsp70 parasites was very low, but when OVA was fused to mCherry (OVA::mCherryhsp70), it was highly expressed. OVA expression in OVA::Hep17hep17 parasites was strong but significantly less than that in OVA::mCherryhsp70 parasites. These transgenic parasites were used to examine the effects of antigen subcellular location and expression level on the development of T-cell responses during blood-stage infections. While all OVA-expressing parasites induced activation and proliferation of OVA-specific CD8+ T cells (OT-I) and CD4+ T cells (OT-II), the level of activation varied: OVA::Hep17hep17 parasites induced significantly stronger splenic and intracerebral OT-I and OT-II responses than those of OVA::mCherryhsp70 parasites, but OVA::mCherryhsp70 parasites promoted stronger OT-I and OT-II responses than those of OVAhsp70 parasites. Despite lower OVA expression levels, OVA::Hep17hep17 parasites induced stronger T-cell responses than those of OVA::mCherryhsp70 parasites. These results indicate that unconjugated cytosolic OVA is not stably expressed in Plasmodium parasites and, importantly, that its cellular location and expression level influence both the induction and magnitude of parasite-specific T-cell responses. These parasites represent useful tools for studying the development and function of antigen

  1. Evaluation of the potential immunotoxicity of 3-monochloro-1,2-propanediol in Balb/c mice I. Effect on antibody forming cell, mitogen-stimulated lymphocyte proliferation, splenic subset, and natural killer cell activity

    International Nuclear Information System (INIS)

    Lee, Jong Kwon; Byun, Jung A.; Park, Seung Hee; Kim, Hyung Soo; Park, Jae Hyun; Eom, Juno H.; Oh, Hye Young

    2004-01-01

    3-Monochloro-1,2-propanediol (MCPD) is a well-known by-product of acid-hydrolyzed soy sauce during its manufacturing process. MCPD has been reported genotoxic in vitro, and reproductive toxicity and carcinogenicity in rats. However, no previous studies have investigated MCPD-induced alterations in the immune system. In the present study, MCPD was administered by gavage for 14 days at 0, 25, 50, and 100 mg/kg per day to female Balb/c mice. The antibody-mediated immune response to sheep red blood cells (SRBC) was assessed using the antibody-forming cell (AFC) assay, and splenic cell phenotypes were quantified by flow cytometry. Hematological and histopathological changes were assessed. Mitogen-stimulated spleen lymphocyte proliferation and natural killer (NK) cell activity were evaluated. The T-lymphocyte blastogenesis by concanavalin A (Con A) or anti-CD3 and B-lymphocyte blastogenesis by lipopolysaccharide (LPS) were not significantly changed. There were no significant changes in the hematological and histopathological findings of MCPD-treated mice. However, the significant decrease in thymus weight was observed in 100 mg dose group, even though that did not change body weight gain. The cellularities of spleen and thymus were significantly reduced in high-dose group. Exposure to high dose of MCPD decreased the AFC response to SRBC in mice. There was a significant decrease in NK cell activity of mice treated with high dose of MCPD. These results indicate that MCPD could modulate the immune function in Balb/c mice

  2. Increased sensitivity to interferon-alpha in psoriatic T cells

    DEFF Research Database (Denmark)

    Eriksen, Karsten Wessel; Lovato, Paola; Skov, Lone

    2005-01-01

    Psoriasis is a chronic inflammatory skin disease characterized by abnormal epidermal proliferation. Several studies have shown that skin-infiltrating activated T cells and cytokines play a pivotal role during the initiation and maintenance of the disease. Interferon (IFN)-alpha plays an important...... disease characterized by CD8(+)-infiltrating T cells. In this study, we therefore investigate IFN-alpha signaling in T cells isolated from involved skin of psoriatic patients. We show that psoriatic T cells have increased and prolonged responses to IFN-alpha, on the level of signal transducers...... and activators of transcription (STAT) activation, compared with infiltrating T cells from skin of non-psoriatic donors. Functionally, the increased IFN-alpha signaling leads to an increased binding of STAT4 to the IFN-gamma promotor, IFN-gamma production, and inhibition of T cell growth. In contrast, to STAT...

  3. Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor.

    Science.gov (United States)

    Soto, Raymond; Petersen, Charisse; Novis, Camille L; Kubinak, Jason L; Bell, Rickesha; Stephens, W Zac; Lane, Thomas E; Fujinami, Robert S; Bosque, Alberto; O'Connell, Ryan M; Round, June L

    2017-05-23

    Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis. Erdr1 expression was identified by transcriptome analysis to be elevated in splenic T cells from germfree and antibiotic-treated mice. Suppression of Erdr1 depends on detection of circulating microbial products by Toll-like receptors on T cells, and this regulation is conserved in human T cells. Erdr1 was found to function as an autocrine factor to induce apoptosis through caspase 3. Consistent with elevated levels of Erdr1, germfree mice have increased splenic T-cell apoptosis. RNA sequencing of Erdr1-overexpressing cells identified the up-regulation of genes involved in Fas-mediated cell death, and Erdr1 fails to induce apoptosis in Fas-deficient cells. Importantly, forced changes in Erdr1 expression levels dictate the survival of auto-reactive T cells and the clinical outcome of neuro-inflammatory autoimmune disease. Cellular survival is a fundamental feature regulating appropriate immune responses. We have identified a mechanism whereby the host integrates signals from the microbiota to control T-cell apoptosis, making regulation of Erdr1 a potential therapeutic target for autoimmune disease.

  4. T-cell receptor excisional circles, telomere length, proliferation and apoptosis in peripheral blood mononuclear cells of human immunodeficiency virus-infected individuals after 18 months of treatment induced viral suppression

    DEFF Research Database (Denmark)

    Aladdin, H; Katzenstein, T; Dreves, A.-M.

    2003-01-01

    immunodeficiency virus (HIV)-infected individuals followed for 18 months during HAART. Our results show that HAART significantly increased the level of TRECs in CD4+ cells (P = 0.003) after 18 months of almost continuously suppressed HIV-RNA levels. Lymphocyte proliferative responses and apoptosis levels...... in patients were significantly lower and significantly higher, respectively, compared with healthy controls. The proliferative response and apoptosis levels did not change during follow up. Changes in telomere length were observed in CD4+ and in CD8+ T cells. The study demonstrated that HAART induces normal...... TREC levels in the CD4+ T-cell pool. However, the other perturbed functions in T cells indicate that immune reconstitution is incomplete and may need longer viral suppression....

  5. The self-antigen, thyroglobulin, induces antigen-experienced CD4+ T cells from healthy donors to proliferate and promote production of the regulatory cytokine, interleukin-10, by monocytes

    DEFF Research Database (Denmark)

    Nielsen, Claus Kim Hostein; Galdiers, Marcel P; Hedegaard, Chris Juul

    2010-01-01

    . Whereas TT induced pro-inflammatory cytokines [interleukin-2 (IL-2)/interferon-gamma (IFN-gamma)/IL-4/IL-5], TG evoked persistent release of the regulatory IL-10. Some donors, however, also responded with late IFN-gamma production, suggesting that the regulation by IL-10 could be overridden. Although...... monocytes were prime producers of IL-10 in the early TG response, a few IL-10-secreting CD4(+) T cells, primarily with CD45RO(+) memory phenotype, were also detected. Furthermore, T-cell depletion from the mononuclear cell preparation abrogated monocyte IL-10 production. Our findings indicate active...

  6. Splenic epithelial cyst

    International Nuclear Information System (INIS)

    Yousuf, M.; Jalali, U.

    2011-01-01

    Cysts of spleen are rare entities. Congenital splenic cysts are even more uncommon comprising of only 10% of benign non-parasitic cysts. We report a case of 22 years old female who presented with history of 2 years abdominal pain and gradual distension. Ultrasound and computed tomography (CT) both were suggestive of splenic cyst. Laboratory tests show thrombocytopenia with platelets count of 97000 per cubic millimeter and anemia with hemoglobin 8.7 gram per deciliter. Serological tests were negative for parasitic infection. Splenectomy was done and the weight of the spleen was found to be 1.5 kilogram. Histopathological findings are consistent with splenic epithelial cyst. The aetiology, diagnostic modalities and treatment options are discussed in the case report. (author)

  7. Engineering CAR-T cells.

    Science.gov (United States)

    Zhang, Cheng; Liu, Jun; Zhong, Jiang F; Zhang, Xi

    2017-01-01

    Chimeric antigen receptor redirected T cells (CAR-T cells) have achieved inspiring outcomes in patients with B cell malignancies, and are now being investigated in other hematologic malignancies and solid tumors. CAR-T cells are generated by the T cells from patients' or donors' blood. After the T cells are expanded and genetically modified, they are reinfused into the patients. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. In this review, we first discuss the structure and evolution of chimeric antigen receptors. We then report on the tools used for production of CAR-T cells. Finally, we address the challenges posed by CAR-T cells.

  8. Suppression of T cell-induced osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  9. Ageing combines CD4 T cell lymphopenia in secondary lymphoid organs and T cell accumulation in gut associated lymphoid tissue.

    Science.gov (United States)

    Martinet, Kim Zita; Bloquet, Stéphane; Bourgeois, Christine

    2014-01-01

    CD4 T cell lymphopenia is an important T cell defect associated to ageing. Higher susceptibility to infections, cancer, or autoimmune pathologies described in aged individuals is thought to partly rely on T cell lymphopenia. We hypothesize that such diverse effects may reflect anatomical heterogeneity of age related T cell lymphopenia. Indeed, no data are currently available on the impact of ageing on T cell pool recovered from gut associated lymphoid tissue (GALT), a crucial site of CD4 T cell accumulation. Primary, secondary and tertiary lymphoid organs of C57BL/6 animals were analysed at three intervals of ages: 2 to 6 months (young), 10 to 14 months (middle-aged) and 22 to 26 months (old). We confirmed that ageing preferentially impacted CD4 T cell compartment in secondary lymphoid organs. Importantly, a different picture emerged from gut associated mucosal sites: during ageing, CD4 T cell accumulation was progressively developing in colon and small intestine lamina propria and Peyer's patches. Similar trend was also observed in middle-aged SJL/B6 F1 mice. Interestingly, an inverse correlation was detected between CD4 T cell numbers in secondary lymphoid organs and colonic lamina propria of C57BL/6 mice whereas no increase in proliferation rate of GALT CD4 T cells was detected. In contrast to GALT, no CD4 T cell accumulation was detected in lungs and liver in middle-aged animals. Finally, the concomitant accumulation of CD4 T cell in GALT and depletion in secondary lymphoid organs during ageing was detected both in male and female animals. Our data thus demonstrate that T cell lymphopenia in secondary lymphoid organs currently associated to ageing is not sustained in gut or lung mucosa associated lymphoid tissues or non-lymphoid sites such as the liver. The inverse correlation between CD4 T cell numbers in secondary lymphoid organs and colonic lamina propria and the absence of overt proliferation in GALT suggest that marked CD4 T cell decay in secondary

  10. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia

    Science.gov (United States)

    Xu, Yang; Zhang, Ming; Savoldo, Barbara; Metelitsa, Leonid S.; Rodgers, John; Yustein, Jason T.; Neilson, Joel R.

    2016-01-01

    Hypoxia occurs in many pathological conditions, including chronic inflammation and tumors, and is considered to be an inhibitor of T cell function. However, robust T cell responses occur at many hypoxic inflammatory sites, suggesting that functions of some subsets are stimulated under low oxygen conditions. Here, we investigated how hypoxic conditions influence human T cell functions and found that, in contrast to naive and central memory T cells (TN and TCM), hypoxia enhances the proliferation, viability, and cytotoxic action of effector memory T cells (TEM). Enhanced TEM expansion in hypoxia corresponded to high hypoxia-inducible factor 1α (HIF1α) expression and glycolytic activity compared with that observed in TN and TCM. We determined that the glycolytic enzyme GAPDH negatively regulates HIF1A expression by binding to adenylate-uridylate–rich elements in the 3′-UTR region of HIF1A mRNA in glycolytically inactive TN and TCM. Conversely, active glycolysis with decreased GAPDH availability in TEM resulted in elevated HIF1α expression. Furthermore, GAPDH overexpression reduced HIF1α expression and impaired proliferation and survival of T cells in hypoxia, indicating that high glycolytic metabolism drives increases in HIF1α to enhance TEM function during hypoxia. This work demonstrates that glycolytic metabolism regulates the translation of HIF1A to determine T cell responses to hypoxia and implicates GAPDH as a potential mechanism for controlling T cell function in peripheral tissue. PMID:27294526

  11. T cell recognition of rat myelin basic protein as a TCR antagonist inhibits reciprocal activation of antigen-presenting cells and engenders resistance to experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Walker, M R; Mannie, M D

    2001-06-01

    The aim of this study was to assess whether T cell recognition of myelin basic protein (MBP) as a partially antagonistic self antigen regulates the reciprocal activation of professional antigen-presenting cells (APC). This study focused on the rat 3H3 T cell clone that recognized guinea pig (GP) MBP as a full agonist and self rat (R) MBP as a partial agonist. In cultures of 3H3 T cells and splenic APC, the agonist GPMBP elicited several responses by splenic APC, including production of nitric oxide, down-regulation of I-A, induction of B7.1 and B7.2, and prolongation of APC survival. RMBP stimulated a partial increase in production of nitric oxide, partially promoted survival of splenic APC, but did not alter expression of I-A, B7.1, or B7.2 on splenic APC. In the presence ofGPMBP, RMBP antagonized agonist-stimulated induction of B7 molecules, reversed the loss of I-A, and promoted the generation of I-A(+), costimulus-deficient APC. Furthermore, 3H3 T cells cultured with RMBP and irradiated splenocytes reduced the severity of EAE upon adoptive transfer into naive rat recipients subsequently challenged with an encephalitogenic dose of GPMBP/CFA. Overall, this study indicates that T cell receptor antagonism blocks T cell activation, inhibits feedback activation of splenic APC, and promotes T cell-dependent regulatory activities in EAE.

  12. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    NARCIS (Netherlands)

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O'Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J. W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    A "switch'' from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete

  13. T Cell Subset and Stimulation Strength-Dependent Modulation of T Cell Activation by Kv1.3 Blockers.

    Directory of Open Access Journals (Sweden)

    Wai-Ping Fung-Leung

    Full Text Available Kv1.3 is a voltage-gated potassium channel expressed on T cells that plays an important role in T cell activation. Previous studies have shown that blocking Kv1.3 channels in human T cells during activation results in reduced calcium entry, cytokine production, and proliferation. The aim of the present study was to further explore the effects of Kv1.3 blockers on the response of different human T cell subsets under various stimulation conditions. Our studies show that, unlike the immune suppressor cyclosporine A, the inhibitory effect of Kv1.3 blockers was partial and stimulation strength dependent, with reduced inhibitory efficacy on T cells under strengthened anti-CD3/CD28 stimulations. T cell responses to allergens including house dust mites and ragweed were partially reduced by Kv1.3 blockers. The effect of Kv1.3 inhibition was dependent on T cell subsets, with stronger effects on CCR7- effector memory compared to CCR7+ central memory CD4 T cells. Calcium entry studies also revealed a population of CD4 T cells resistant to Kv1.3 blockade. Activation of CD4 T cells was accompanied with an increase in Kv1.3 currents but Kv1.3 transcripts were found to be reduced, suggesting a posttranscriptional mechanism in the regulation of Kv1.3 activities. In summary, Kv1.3 blockers inhibit T cell activation in a manner that is highly dependent on the T cell identity and stimulation strength, These findings suggest that Kv1.3 blockers inhibit T cells in a unique, conditional manner, further refining our understanding of the therapeutic potential of Kv1.3 blockers.

  14. Self-presentation of beryllium by BAL CD4+ T cells: T cell-T cell interactions and their potential role in chronic beryllium disease.

    Science.gov (United States)

    Fontenot, Andrew P; Edwards, David M; Chou, Yuan K; Mack, Douglas G; LaTocha, Dorian; Vandenbark, Arthur A; Burrows, Gregory G

    2006-04-01

    Chronic beryllium disease (CBD) is characterized pathologically by granulomatous inflammation in the lung, composed of a large core of epithelioid cells surrounded by a dense shell of CD4+ T cells. Using beryllium-specific CD4+ T cell lines derived from the bronchoalveolar lavage (BAL) fluid of CBD patients, we show that purified CD4+ T cells produced significant amounts of IFN-gamma and TNF-alpha upon exposure to beryllium in the absence of antigen-presenting cells (APC). However, unlike BAL T cells stimulated by beryllium in the presence of APC, self-presentation by BAL T cells did not induce detectable IL-2 production, and in its absence these activated T cells die from programmed cell death. Resting BAL CD4+ T cells constitutively express high levels of HLA-DP, lymphocyte function-associated antigen 1 (LFA-1) and ICAM-3. When stimulated with beryllium/APC, the adhesion molecule ICAM-1 was up-regulated, as well as several costimulation molecules including CD28, OX-40 (CD134), 4-1-BB (CD137) and B7-1 (CD80). Notably, CD28 was not up-regulated during self-presentation by BAL T cells, and these cells do not express OX-40L, suggesting that lack of appropriate costimulation was responsible for programmed cell death observed upon beryllium self-presentation. Restricting anti-MHC class II mAb completely eliminated beryllium-induced T cell proliferation during self-presentation and significantly reduced IFN-gamma and TNF-alpha production. Our data demonstrate for the first time that self-presentation by BAL T cells in response to beryllium can occur ex vivo, in the absence of professional APC, with a specific dependence on T cell-expressed MHC class II molecules and exogenous IL-2 for survival.

  15. Splenic injury after colonoscopy

    DEFF Research Database (Denmark)

    Petersen, C.R.; Adamsen, S.; Gocht-Jensen, P.

    2008-01-01

    Splenic injury is a rare and serious complication of colonoscopy. The most likely mechanism is tension on the splenocolic ligament and adhesions. Eight cases were identified among claims for compensation submitted to the Danish Patient Insurance Association during the period 1992-2006, seven...

  16. Postcesarean Splenic Torsion

    Directory of Open Access Journals (Sweden)

    Yu-Hui Huang

    2006-09-01

    Conclusion: Splenic torsion is a rare cause of acute abdominal pain during pregnancy or postpartum, and the symptoms vary depending on the degree of torsion. Early involvement of many complementary specialty services enabled early recognition of this rare entity and timely definitive treatment.

  17. Ruptured Splenic Artery Aneurysm

    African Journals Online (AJOL)

    1974-05-04

    May 4, 1974 ... Radiological confirmation of the commonness of the condition found at coeliac angiography,' adds further support for a high autopsy incidence. The unusual preponderance of females with splenic artery aneurysms3.•.• cannot be explained on the basis of aetiology, as they are most often caused by arterio- ...

  18. Viral inoculum dose impacts memory T-cell inflation.

    Science.gov (United States)

    Redeker, Anke; Welten, Suzanne P M; Arens, Ramon

    2014-04-01

    Memory T-cell inflation develops during certain persistent viral infections and is characterized by the accumulation and maintenance of large numbers of effector-memory T cells, albeit with varying degrees in size and phenotype among infected hosts. The underlying mechanisms that control memory T-cell inflation are not yet fully understood. Here, we dissected CMV-specific memory T-cell formation and its connection to the initial infectious dose by varying the inoculum size. After low dose inoculum with mouse CMV, the accumulation of inflationary memory T cells was severely hampered and correlated with reduced reservoirs of latent virus in nonhematopoietic cells and diminished antigen-driven T-cell proliferation. Moreover, lowering of the initial viral dose turned the characteristic effector memory-like inflationary T cells into more central memory-like cells as evidenced by the cell-surface phenotype of CD27(high) , CD62L(+) , CD127(+) , and KLRG1(-) , and by improved secondary expansion potential. These data show the impact of the viral inoculum on the degree of memory T-cell inflation and provide a rationale for the observed variation of human CMV-specific T-cell responses in terms of magnitude and phenotype. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Murine Lung Cancer Increases CD4+ T Cell Apoptosis and Decreases Gut Proliferative Capacity in Sepsis.

    Science.gov (United States)

    Lyons, John D; Mittal, Rohit; Fay, Katherine T; Chen, Ching-Wen; Liang, Zhe; Margoles, Lindsay M; Burd, Eileen M; Farris, Alton B; Ford, Mandy L; Coopersmith, Craig M

    2016-01-01

    Mortality is significantly higher in septic patients with cancer than in septic patients without a history of cancer. We have previously described a model of pancreatic cancer followed by sepsis from Pseudomonas aeruginosa pneumonia in which cancer septic mice have higher mortality than previously healthy septic mice, associated with increased gut epithelial apoptosis and decreased T cell apoptosis. The purpose of this study was to determine whether this represents a common host response by creating a new model in which both the type of cancer and the model of sepsis are altered. C57Bl/6 mice received an injection of 250,000 cells of the lung cancer line LLC-1 into their right thigh and were followed three weeks for development of palpable tumors. Mice with cancer and mice without cancer were then subjected to cecal ligation and puncture and sacrificed 24 hours after the onset of sepsis or followed 7 days for survival. Cancer septic mice had a higher mortality than previously healthy septic mice (60% vs. 18%, p = 0.003). Cancer septic mice had decreased number and frequency of splenic CD4+ lymphocytes secondary to increased apoptosis without changes in splenic CD8+ numbers. Intestinal proliferation was also decreased in cancer septic mice. Cancer septic mice had a higher bacterial burden in the peritoneal cavity, but this was not associated with alterations in local cytokine, neutrophil or dendritic cell responses. Cancer septic mice had biochemical evidence of worsened renal function, but there was no histologic evidence of renal injury. Animals with cancer have a significantly higher mortality than previously healthy animals following sepsis. The potential mechanisms associated with this elevated mortality differ significantly based upon the model of cancer and sepsis utilized. While lymphocyte apoptosis and intestinal integrity are both altered by the combination of cancer and sepsis, the patterns of these alterations vary greatly depending on the models used.

  20. Murine Lung Cancer Increases CD4+ T Cell Apoptosis and Decreases Gut Proliferative Capacity in Sepsis.

    Directory of Open Access Journals (Sweden)

    John D Lyons

    Full Text Available Mortality is significantly higher in septic patients with cancer than in septic patients without a history of cancer. We have previously described a model of pancreatic cancer followed by sepsis from Pseudomonas aeruginosa pneumonia in which cancer septic mice have higher mortality than previously healthy septic mice, associated with increased gut epithelial apoptosis and decreased T cell apoptosis. The purpose of this study was to determine whether this represents a common host response by creating a new model in which both the type of cancer and the model of sepsis are altered.C57Bl/6 mice received an injection of 250,000 cells of the lung cancer line LLC-1 into their right thigh and were followed three weeks for development of palpable tumors. Mice with cancer and mice without cancer were then subjected to cecal ligation and puncture and sacrificed 24 hours after the onset of sepsis or followed 7 days for survival.Cancer septic mice had a higher mortality than previously healthy septic mice (60% vs. 18%, p = 0.003. Cancer septic mice had decreased number and frequency of splenic CD4+ lymphocytes secondary to increased apoptosis without changes in splenic CD8+ numbers. Intestinal proliferation was also decreased in cancer septic mice. Cancer septic mice had a higher bacterial burden in the peritoneal cavity, but this was not associated with alterations in local cytokine, neutrophil or dendritic cell responses. Cancer septic mice had biochemical evidence of worsened renal function, but there was no histologic evidence of renal injury.Animals with cancer have a significantly higher mortality than previously healthy animals following sepsis. The potential mechanisms associated with this elevated mortality differ significantly based upon the model of cancer and sepsis utilized. While lymphocyte apoptosis and intestinal integrity are both altered by the combination of cancer and sepsis, the patterns of these alterations vary greatly depending on

  1. CCL22-specific T Cells

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Munir Ahmad, Shamaila; Hansen, Morten

    2016-01-01

    Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We...... analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from...... the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using...

  2. Splenic artery aneurysm.

    Science.gov (United States)

    Tcbc-Rj, Rui Antônio Ferreira; Ferreira, Myriam Christina Lopes; Ferreira, Daniel Antônio Lopes; Ferreira, André Gustavo Lopes; Ramos, Flávia Oliveira

    2016-01-01

    Splenic artery aneurysms - the most common visceral artery aneurysms - are found most often in multiparous women and in patients with portal hypertension. Indications for treatment of splenic artery aneurysm or pseudoaneurysm include specific symptoms, female gender and childbearing age, presence of portal hypertension, planned liver transplantation, a pseudoaneurysm of any size, and an aneurysm with a diameter of more than 2.5cm. Historically, the treatment of splenic artery aneurysm has been surgical ligation of the splenic artery, ligation of the aneurysm, or aneurysmectomy with or without splenectomy, depending on the aneurysm location. There are other percutaneous interventional techniques. The authors present a case of a splenic artery aneurysm in a 51-year-old woman, detected incidentally. RESUMO Aneurismas da artéria esplênica - os aneurismas arteriais viscerais mais comuns - são encontrados mais frequentemente em mulheres multíparas e em pacientes com hipertensão portal. As indicações para o seu tratamento incluem sintomas específicos, sexo feminino e idade fértil, presença de hipertensão portal, paciente em fila de transplante hepático, um pseudoaneurisma de qualquer tamanho, e um aneurisma com um diâmetro superior a 2,5cm. Historicamente, o tratamento do aneurisma da artéria esplênica tem sido a ligadura cirúrgica da artéria esplênica, a ligadura do aneurisma ou a aneurismectomia, com ou sem esplenectomia, dependendo do local do aneurisma. Existem outras técnicas intervencionistas percutâneas. Os autores apresentam o caso de um aneurisma de artéria esplênica em uma mulher de 51 anos de idade, diagnosticado incidentalmente.

  3. Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice

    International Nuclear Information System (INIS)

    Muto, H; Sakata-Yanagimoto, M; Nagae, G; Shiozawa, Y; Miyake, Y; Yoshida, K; Enami, T; Kamada, Y; Kato, T; Uchida, K; Nanmoku, T; Obara, N; Suzukawa, K; Sanada, M; Nakamura, N; Aburatani, H; Ogawa, S; Chiba, S

    2014-01-01

    TET2 (Ten Eleven Translocation 2) is a dioxygenase that converts methylcytosine (mC) to hydroxymethylcytosine (hmC). TET2 loss-of-function mutations are highly frequent in subtypes of T-cell lymphoma that harbor follicular helper T (Tfh)-cell-like features, such as angioimmunoblastic T-cell lymphoma (30–83%) or peripheral T-cell lymphoma, not otherwise specified (10–49%), as well as myeloid malignancies. Here, we show that middle-aged Tet2 knockdown (Tet2 gt/gt ) mice exhibit Tfh-like cell overproduction in the spleen compared with control mice. The Tet2 knockdown mice eventually develop T-cell lymphoma with Tfh-like features after a long latency (median 67 weeks). Transcriptome analysis revealed that these lymphoma cells had Tfh-like gene expression patterns when compared with splenic CD4-positive cells of wild-type mice. The lymphoma cells showed lower hmC densities around the transcription start site (TSS) and higher mC densities at the regions of the TSS, gene body and CpG islands. These epigenetic changes, seen in Tet2 insufficiency-triggered lymphoma, possibly contributed to predated outgrowth of Tfh-like cells and subsequent lymphomagenesis. The mouse model described here suggests that TET2 mutations play a major role in the development of T-cell lymphoma with Tfh-like features in humans

  4. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Keiko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute of Life Sciences for the Next Generation of Women Scientists, Fukuoka University, Fukuoka (Japan); Fujimoto, Takahiro [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Okamura, Tadashi [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ogawa, Masahiro [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tanaka, Yoko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Mototani, Yasumasa; Goto, Motohito [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ota, Takeharu; Matsuzaki, Hiroshi [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Kuroki, Masahide [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tsunoda, Toshiyuki [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Sasazuki, Takehiko [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Shirasawa, Senji, E-mail: sshirasa@fukuoka-u.ac.jp [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  5. Abatacept (CTLA-4Ig) treatment reduces T cell apoptosis and regulatory T cell suppression in patients with rheumatoid arthritis.

    Science.gov (United States)

    Bonelli, Michael; Göschl, Lisa; Blüml, Stephan; Karonitsch, Thomas; Hirahara, Kiyoshi; Ferner, Elisabeth; Steiner, Carl-Walter; Steiner, Günter; Smolen, Josef S; Scheinecker, Clemens

    2016-04-01

    Abatacept (CTLA-4Ig) blocks CD28-mediated T cell activation by binding to the costimulatory B7 ligands CD80/CD86 on antigen presenting cells. Costimulatory molecules, however, can also be expressed on T cells upon activation. Therefore, the aim of our study was to investigate direct effects of CTLA-4Ig on distinct T cell subsets in RA patients. Phenotypic and functional analyses of CD4(+) T cells, including CD4(+) FoxP3(+) CD25(+) regulatory T cells (Treg), from RA patients were performed before and during CTLA-4Ig therapy. In addition T cells from healthy volunteers were analysed on in vitro culture with CTLA-4Ig or anti-CD80 and anti-CD86 antibodies. Apoptotic DNA fragmentation in CD4(+) and CD4(+) FoxP3(+) T cells was measured by TUNEL staining. We observed an increase in T cells, including Treg cells, after initiation of CTLA-4Ig therapy, which was linked to a downregulation of activation-associated marker molecules and CD95 on CD4(+) T cells and Treg cells. CTLA-4Ig decreased CD95-mediated cell death in vitro in a dose-dependent manner. Functional analysis of isolated Treg cells from RA patients further revealed a diminished suppression of responder T cell proliferation. This was found to be due to CTLA-4Ig-mediated blocking of CD80 and CD86 on responder T cells that led to a diminished susceptibility for Treg cell suppression. CTLA-4Ig therapy in RA patients exerts effects beyond the suppression of T cell activation, which has to be taken into account as an additional mechanism of CTLA-4Ig treatment. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Modification of T-cell antigenic properties of tetanus toxoid by SDS-PAGE separation. Implications for T-cell blotting

    DEFF Research Database (Denmark)

    Christensen, C B; Theander, T G

    1997-01-01

    Using Tetanus Toxoid (TT) as a model antigen the T-cell Blotting method was evaluated. Peripheral blood mononuclear cell (PBMC) cultures were stimulated by blotted nitrocellulose-bound TT or soluble TT. SDS-Poly-Acrylamide-Gel-Electrophoresis separated TT only induced proliferation in 20...... that SDS-PAGE alters the ability of TT to induce T-cell proliferation, possibly due to unpolymerized acrylamide binding to proteins during SDS-PAGE. The use of SDS-PAGE T-cell blotting in the screening for T-cell antigens must therefore be reconsidered. We suggest the use of SDS-Agarose Gel Electrophoresis......% of the PBMC cultures whereas proliferation was induced in 79% of the same cultures offered similar treated TT (except for the PAGE separation). When T-cell blotting was performed with TT separated in a SDS-agarose matrix, proliferation was induced in 80% of donors responding to soluble TT. The results show...

  7. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  8. Self-reactive T cells

    DEFF Research Database (Denmark)

    Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald

    2014-01-01

    -proteins expressed in regulatory immune cells have been reported, especially in patients with cancer. The seemingly lack of tolerance toward such proteins is interesting, as it suggests a regulatory function of self-reactive T (srT) cells, which may be important for the fine tuning of the immune system....... In particular, surprising has been the description of cytotoxic srT cells that are able to eliminate normal regulatory immune cells. Such srT cells may be important as effector cells that suppress regulatory suppressor cells. The current knowledge of the nature and function of srT cells is still limited. Still......, the therapeutic targeting of srT cells offers a novel approach to harness immune-regulatory networks in cancer....

  9. Interleukin-2 promotes antigenic reactivity of rested T cells but prolongs the postactivational refractory phase of activated T cells.

    Science.gov (United States)

    Norris, M S; McConnell, T J; Mannie, M D

    2001-07-10

    IL-2 is a principal autocrine growth factor that promotes T-cell activation and proliferation. However, IL-2 has also been implicated as a key intermediate in the induction and maintenance of self-tolerance in vivo. The purpose of this study was to assess whether the differential regulatory activity of IL-2 was related to the activation status of responder T cells. In cultures of rested myelin basic protein (MBP)-specific T cells, IL-2 not only induced IL-2R alpha but also augmented surface expression of several other activation-associated glycoproteins including OX40, LFA-1, B7.1, B7.2, TCR, and CD4. Pretreatment of T cells with IL-2 also up-regulated subsequent antigen reactivity in assays of MBP-stimulated proliferation and IL-2 production and also promoted proliferative responsiveness to IL-2. In cultures of activated T cells, however, IL-2 inhibited subsequent reactivity to antigen or IL-2 and thereby prolonged a phase of postactivational refractoriness. Exposure of preactivated T cells to IL-2 also inhibited subsequent responses to the mitogenic combination of PMA, ionomycin, and IL-2 without enhancing cell death. These data support the concept that the inhibitory activity of IL-2 is dependent upon the activation status of T cells and is manifest as impaired cell cycle progression in response to a variety of IL-2-dependent stimuli. Copyright 2001 Academic Press.

  10. Coil embolization of the splenic artery: impact on splenic volume.

    Science.gov (United States)

    Preece, Stephen R; Schriber, Stacey M; Choudhury, Kingshuk R; Suhocki, Paul V; Smith, Tony P; Kim, Charles Y

    2014-06-01

    To determine the impact of coil embolization of the splenic artery on splenic volume based on computed tomography (CT) imaging. Splenic artery embolization (SAE) was performed in 148 consecutive patients over an 8-year period in an institutional review board-approved retrospective study. Of these, 60 patients (36 men; mean age, 49 y) had undergone contrast-enhanced CT before and after SAE with a mean time interval of 355 days. Pre- and postembolization splenic volumes were calculated with volume-rendering software. Presence of Howell-Jolly bodies was ascertained on laboratory tests. A trauma control group consisted of 39 patients with splenic laceration and follow-up CT but no splenic intervention. SAE in trauma patients resulted in an insignificant decrease in mean spleen size from 224 cm(3) to 190 cm(3) (P = .222). However, postembolization splenic volume was significantly smaller than follow-up volume in the trauma control group (353 cm(3); P Howell-Jolly bodies after SAE. No patients required repeat embolization or splenectomy. Coil embolization of the splenic artery resulted in a modest but significant decrease in splenic volume when performed distally; proximal embolization resulted in an insignificant volume change. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  11. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2010-11-01

    Full Text Available MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  12. NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Blandine C Mercier

    Full Text Available Pattern recognition receptors (PRR, like Toll-like receptors (TLR and NOD-like receptors (NLR, are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR. This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.

  13. Maintenance of CD8+memory T lymphocytes in the spleen but not in the bone marrow is dependent on proliferation.

    Science.gov (United States)

    Siracusa, Francesco; Alp, Özen Sercan; Maschmeyer, Patrick; McGrath, Mairi; Mashreghi, Mir-Farzin; Hojyo, Shintaro; Chang, Hyun-Dong; Tokoyoda, Koji; Radbruch, Andreas

    2017-11-01

    It is current belief that numbers of CD8 + memory T lymphocytes in the memory phase of an immune response are maintained by homeostatic proliferation. Here, we compare the proliferation of CD8 + memory T lymphocytes, generated by natural infections and by intentional immunization, in spleen and bone marrow (BM). Fifty percent of CD8 + memory T lymphocytes in the spleen are eliminated by cyclophosphamide within 14 days, indicating that numbers of at least 50% of splenic CD8 + memory T lymphocytes are maintained by proliferation. The numbers of CD8 + memory T lymphocytes in the BM, however, were not affected by cyclophosphamide. This stability was independent of circulating CD8 + memory T cells, blocked by FTY720, showing that BM is a privileged site for the maintenance of memory T lymphocytes, as resident cells, resting in terms of proliferation. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.

  14. Impact of developmental lead exposure on splenic factors

    International Nuclear Information System (INIS)

    Kasten-Jolly, Jane; Heo, Yong; Lawrence, David A.

    2010-01-01

    Lead (Pb) is known to alter the functions of numerous organ systems, including the hematopoietic and immune systems. Pb can induce anemia and can lower host resistance to bacterial and viral infections. The anemia is due to Pb's inhibition of hemoglobin synthesis and Pb's induction of membrane changes, leading to early erythrocyte senescence. Pb also increases B-cell activation/proliferation and skews T-cell help (Th) toward Th2 subset generation. The specific mechanisms for many of the Pb effects are, as yet, not completely understood. Therefore, we performed gene expression analysis, via microarray, on RNA from the spleens of developmentally Pb-exposed mice, in order to gain further insight into these Pb effects. Splenic RNA microarray analysis indicated strong up-regulation of genes coding for proteolytic enzymes, lipases, amylase, and RNaseA. The data also showed that Pb affected the expression of many genes associated with innate immunity. Analysis of the microarray results via GeneSifter software indicated that Pb increased apoptosis, B-cell differentiation, and Th2 development. Direct up-regulation by Pb of expression of the gene encoding the heme-regulated inhibitor (HRI) suggested that Pb can decrease erythropoiesis by blocking globin mRNA translation. Pb's high elevation of digestive/catabolizing enzymes could generate immunogenic self peptides. With Pb's potential to induce new self-peptides and to enhance the expression of caspases, cytokines, and other immunomodulators, further evaluation of Pb's involvement in autoimmune phenomena, especially Th2-mediated autoantibody production, and alteration of organ system activities is warranted.

  15. Human T Cell Memory: A Dynamic View

    Directory of Open Access Journals (Sweden)

    Derek C. Macallan

    2017-02-01

    Full Text Available Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy.

  16. Human T Cell Memory: A Dynamic View

    Science.gov (United States)

    Macallan, Derek C.; Borghans, José A. M.; Asquith, Becca

    2017-01-01

    Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy. PMID:28165397

  17. Induction of IL-10- and IFN-gamma-producing T-cell responses by autoreactive T-cells expressing human T-cell leukemia virus type I Tax.

    Science.gov (United States)

    Takatsuka, Natsuko; Hasegawa, Atsuhiko; Takamori, Ayako; Shimizu, Yukiko; Kato, Hirotomo; Ohashi, Takashi; Amagasa, Teruo; Masuda, Takao; Kannagi, Mari

    2009-09-01

    Human T-cell leukemia virus type I (HTLV-I) is associated with adult T-cell leukemia, HTLV-I-associated myelopathy/tropical spastic paraparesis and various autoimmune-like disorders. T-cell immune suppression is also associated with HTLV-I infection. Mechanisms of diverse immune dysregulation in HTLV-I infection are obscure. Here, we investigated a potential link between autoimmunity and immune suppression in HTLV-I infection. G14, an IL-2-dependent HTLV-I-negative CD4(+)CD8(+) T-cell line previously established from an HTLV-I-infected rat, constantly proliferated and produced IFN-gamma. IFN-gamma production by G14 cells was dependent on interactions between CD4 and MHC-II, suggesting that G14 cells recognized self-antigens presented by MHC-II on themselves. To examine immune response to G14 cells, we inoculated G14 cells into syngeneic naive rats. Interestingly, T-cells isolated from these rats vigorously proliferated when stimulated with G14-Tax cells that stably expressed HTLV-I Tax, but not with G14 cells. G14-Tax-mediated T-cell proliferation was abrogated by antibodies to CD80 and CD86 that were up-regulated in G14-Tax cells. T-cells propagated by repetitive G14-Tax cell stimulations in culture with IL-2 expressed CD4, CD25 and cytolytic T lymphocyte-associated antigen 4 (CTLA-4), produced abundant amounts of IL-10 and IFN-gamma in response to G14 cells and suppressed growth of G14 cells mainly through supernatant-mediated mechanisms. Similar IL-10- and IFN-gamma-producing CD4(+)CD25(+)CTLA-4(+) T-cells were predominantly induced in culture of splenocytes from HTLV-I-infected rats following stimulation with G14-Tax cells. These results implied that expression of Tax in the otherwise low immunogenic autoreactive T-cells induced IL-10- and IFN-gamma-producing T-cell responses with regulatory effects against the autoreactive cells. Our findings provide new insights into the complex immune conditions underlying HTLV-I-associated diseases.

  18. Blocking Glycolytic Metabolism Increases Memory T Cells and Antitumor Function | Center for Cancer Research

    Science.gov (United States)

    CD8+ T cells are a major component of the cellular immune response, which is necessary to control a variety of bacterial and viral infections. CD8+ T cells also play a major role in the cell-mediated antitumor immune response. After encountering antigen, naïve CD8+ T cells undergo an extensive period of proliferation and expansion, and differentiate into effector cells and distinct memory T cell subsets. Preclinical studies using adoptive transfer of purified CD8+ T cells have shown that the ability of T cells to proliferate and survive for a long time after transfer is associated with effective antitumor and antiviral responses. Understanding how the formation of long-lived memory T cell subsets is controlled may enable development of more potent immunotherapies against cancer and infectious diseases.

  19. Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis.

    Science.gov (United States)

    Carpenter, Stephen M; Yang, Jason D; Lee, Jinhee; Barreira-Silva, Palmira; Behar, Samuel M

    2017-11-01

    Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice.

  20. Expansion of mycobacterium-reactive gamma delta T cells by a subset of memory helper T cells.

    Science.gov (United States)

    Vila, L M; Haftel, H M; Park, H S; Lin, M S; Romzek, N C; Hanash, S M; Holoshitz, J

    1995-04-01

    Human gamma delta T cells expressing the V gamma 9/V delta 2 T-cell receptor have been previously found to proliferate in response to certain microorganisms and to expand throughout life, presumably because of extrathymic activation by foreign antigens. In vitro expansion of V gamma 9/V delta 2 cells by mycobacteria has been previously shown to be dependent on accessory cells. In order to gain an insight into the mechanisms involved in the expansion of these cells, we have undertaken to identify the peripheral blood subset of cells on which proliferation of V gamma 9/V delta 2 cells in response to mycobacteria is dependent. Contrary to their role in antigen presentation to alpha beta T cells, professional antigen-presenting cells, such as monocytes, B cells, and dendritic cells, were unable to provide the cellular support for the expansion of V gamma 9/V delta 2 cells. Selective depletion of T-cell subsets, as well as the use of highly purified T-cell populations, indicated that the only subset of peripheral blood cells that could expand V gamma 9/V delta 2 cells were CD4+ CD45RO+ CD7- alpha beta T cells. These cells underwent distinct intracellular signaling events after stimulation with the mycobacterial antigen. Expansion of V gamma 9/V delta 2 cells by alpha beta T cells was dependent on cell-cell contact. This is the first evidence that a small subset of the memory helper T-cell population is exclusively responsible for the peripheral expansion of V gamma 9/V delta 2 cells. These data illustrate a unique aspect of antigen recognition by gamma delta T cells and provide new means to study their immune defense role.

  1. VEGF-A promotes IL-17A-producing γδ T cell accumulation in mouse skin and serves as a chemotactic factor for plasmacytoid dendritic cells.

    Science.gov (United States)

    Suzuki, Takahiro; Hirakawa, Satoshi; Shimauchi, Takatoshi; Ito, Taisuke; Sakabe, Jun-ichi; Detmar, Michael; Tokura, Yoshiki

    2014-05-01

    IL-17-producing CD4(+) T (Th17) cells and their cytokines, IL-17A and IL-22, are deeply involved in the pathogenesis of psoriasis by stimulating epidermal keratinocytes to proliferate and to produce cytokines/chemokines and vascular endothelial growth factor (VEGF)-A. Plasmacytoid dendritic cells (pDCs), infiltrating in psoriatic lesions, are known to exacerbate the Th17-mediated pathogenesis of psoriasis. To address the initiative role of VEGF-A in the development of psoriasis and the pDC accumulation. Numerical changes and VEGF receptor 1 (VEGFR1) and VEGFR2 expressions were investigated in skin-infiltrating T cells and pDCs of K14-VEGF-A transgenic (Tg) and wild type (WT) mice. The chemotactic properties of VEGF-A for purified splenic pDCs were also evaluated by real-time chemotaxis assay. By flow cytometry and immunohistochemistry, we observed that the number of dermal IL-17A(+) γδ T cells, but not CD4(+) T cells, was increased in VEGF-A Tg mice, suggesting that the main source of IL-17A was γδ T cells. Moreover, we identified pDCs as 440c(+) cells by immunohistochemistry and as PDCA-1(+)B220(+) cells by flow cytometry, and found that pDCs infiltrated at a higher frequency in VEGF-A Tg than WT mice. pDCs, but not γδ T cells, isolated from the skin expressed VEGFR1 and VEGFR2. Freshly isolated splenic pDCs expressed both receptors after 48-h cultivation. pDCs did not produce cytokines in response to VEGF-A, however, they had a strong velocity of chemotaxis toward VEGF-A at a comparable level to chemerin. These findings suggest that VEGF-A functions as not only a downstream enhancer but also an upstream initiator by chemoattracting pDCs in psoriatic lesions. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Effector and memory CD8+ T cells as seen in immunity to malaria.

    Science.gov (United States)

    Morrot, Alexandre; Zavala, Fidel

    2004-10-01

    Transgenic (Tg) mice carrying a T-cell receptor (TCR) specific for a CD8(+) T-cell epitope expressed in pre-erythrocytic stages of Plasmodium yoelii has proven to be a valuable tool to advance our understanding of this anti-parasite T-cell response, as it occurs in vivo. The visualization of CD8(+) T cells in vivo and ex vivo greatly facilitated research aimed at characterizing basic features of this T-cell response such as the kinetics of differentiation and proliferation and the in vivo antigen presentation. Importantly, this research unveiled the existence of early self-regulatory mechanisms controlling the magnitude of the CD8(+) T-cell response and also identified CD4(+) T cells as critical elements in the development of memory populations. This review discusses our recent research using Tg mice and highlights our progress in understanding the CD8(+) T-cell-mediated immunity against malaria liver stages.

  3. A sub-population of circulating porcine gammadelta T cells can act as professional antigen presenting cells.

    Science.gov (United States)

    Takamatsu, H-H; Denyer, M S; Wileman, T E

    2002-09-10

    A sub-population of circulating porcine gammadelta T cells express cell surface antigens associated with antigen presenting cells (APCs), and are able to take up soluble antigen very effectively. Functional antigen presentation by gammadelta T cells to memory helper T cells was studied by inbred pig lymphocytes immunised with ovalbumin (OVA). After removing all conventional APCs from the peripheral blood of immunised pigs, the remaining lymphocytes still proliferated when stimulated with OVA. When gammadelta T cells were further depleted, OVA specific proliferation was abolished, but reconstitution with gammadelta T cells restored proliferation. The proliferation was blocked by monoclonal antibodies (mAb) against MHC class II or CD4, and by pre-treatment of gammadelta T cells with chloroquine. These results indicate that a sub-population of circulating porcine gammadelta T cells act as APCs and present antigen via MHC class II.

  4. HIV-1 transgenic rats develop T cell abnormalities

    International Nuclear Information System (INIS)

    Reid, William; Abdelwahab, Sayed; Sadowska, Mariola; Huso, David; Neal, Ashley; Ahearn, Aaron; Bryant, Joseph; Gallo, Robert C.; Lewis, George K.; Reitz, Marvin

    2004-01-01

    HIV-1 infection leads to impaired antigen-specific T cell proliferation, increased susceptibility of T cells to apoptosis, progressive impairment of T-helper 1 (Th1) responses, and altered maturation of HIV-1-specific memory cells. We have identified similar impairments in HIV-1 transgenic (Tg) rats. Tg rats developed an absolute reduction in CD4 + and CD8 + T cells able to produce IFN-γ following activation and an increased susceptibility of T cells to activation-induced apoptosis. CD4 + and CD8 + effector/memory (CD45RC - CD62L - ) pools were significantly smaller in Tg rats compared to non-Tg controls, although the converse was true for the naieve (CD45RC + CD62L + ) T cell pool. Our interpretation is that the HIV transgene causes defects in the development of T cell effector function and generation of specific effector/memory T cell subsets, and that activation-induced apoptosis may be an essential factor in this process

  5. The role of CD8+ T cells during allograft rejection

    Directory of Open Access Journals (Sweden)

    V. Bueno

    2002-11-01

    Full Text Available Organ transplantation can be considered as replacement therapy for patients with end-stage organ failure. The percent of one-year allograft survival has increased due, among other factors, to a better understanding of the rejection process and new immunosuppressive drugs. Immunosuppressive therapy used in transplantation prevents activation and proliferation of alloreactive T lymphocytes, although not fully preventing chronic rejection. Recognition by recipient T cells of alloantigens expressed by donor tissues initiates immune destruction of allogeneic transplants. However, there is controversy concerning the relative contribution of CD4+ and CD8+ T cells to allograft rejection. Some animal models indicate that there is an absolute requirement for CD4+ T cells in allogeneic rejection, whereas in others CD4-depleted mice reject certain types of allografts. Moreover, there is evidence that CD8+ T cells are more resistant to immunotherapy and tolerance induction protocols. An intense focal infiltration of mainly CD8+CTLA4+ T lymphocytes during kidney rejection has been described in patients. This suggests that CD8+ T cells could escape from immunosuppression and participate in the rejection process. Our group is primarily interested in the immune mechanisms involved in allograft rejection. Thus, we believe that a better understanding of the role of CD8+ T cells in allograft rejection could indicate new targets for immunotherapy in transplantation. Therefore, the objective of the present review was to focus on the role of the CD8+ T cell population in the rejection of allogeneic tissue.

  6. T-cell exhaustion in tuberculosis: pitfalls and prospects.

    Science.gov (United States)

    Khan, Nargis; Vidyarthi, Aurobind; Amir, Mohammed; Mushtaq, Khurram; Agrewala, Javed Naim

    2017-03-01

    T-cells play an important role in immunity but when these cells are overexposed to specific antigens, their function may decline. This state is usually referred to as exhaustion and the T-cells show reduced proliferation and functions such as cytokine release. T-cell exhaustion has been observed in several cancers as well as in chronic infections such as tuberculosis (TB). In chronic Mycobacterium tuberculosis (Mtb) infection, T-cells may express the exhaustion phenotype and show a progressive loss of secretion of IL-2, IFN-γ and TNF-α. In some cancers and chronic infection models, blocking the exhaustion phenotype can be achieved with the so-called checkpoint inhibitors. This results in tumor control and more effective immunity. However, in the case of TB, the T-cell exhaustion results are quite ambiguous. Hence, there is a need to investigate and explain the contribution of checkpoint at a molecular level to the outcome of events in chronic TB. Such information could help to guide the success of new therapies against chronic TB. This review highlights the mechanism through which T-cells undergo exhaustion and the approaches that can avert such events. This will help to design immunotherapies that can reinvigorate T-cell potency to protect patients from TB.

  7. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  8. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies.

    Science.gov (United States)

    Png, Yi Tian; Vinanica, Natasha; Kamiya, Takahiro; Shimasaki, Noriko; Coustan-Smith, Elaine; Campana, Dario

    2017-11-28

    Effective immunotherapies for T-cell malignancies are lacking. We devised a novel approach based on chimeric antigen receptor (CAR)-redirected T lymphocytes. We selected CD7 as a target because of its consistent expression in T-cell acute lymphoblastic leukemia (T-ALL), including the most aggressive subtype, early T-cell precursor (ETP)-ALL. In 49 diagnostic T-ALL samples (including 14 ETP-ALL samples), median CD7 expression was >99%; CD7 expression remained high at relapse (n = 14), and during chemotherapy (n = 54). We targeted CD7 with a second-generation CAR (anti-CD7-41BB-CD3ζ), but CAR expression in T lymphocytes caused fratricide due to the presence of CD7 in the T cells themselves. To downregulate CD7 and control fratricide, we applied a new method (protein expression blocker [PEBL]), based on an anti-CD7 single-chain variable fragment coupled with an intracellular retention domain. Transduction of anti-CD7 PEBL resulted in virtually instantaneous abrogation of surface CD7 expression in all transduced T cells; 2.0% ± 1.7% were CD7 + vs 98.1% ± 1.5% of mock-transduced T cells (n = 5; P < .0001). PEBL expression did not impair T-cell proliferation, interferon-γ and tumor necrosis factor-α secretion, or cytotoxicity, and eliminated CAR-mediated fratricide. PEBL-CAR T cells were highly cytotoxic against CD7 + leukemic cells in vitro and were consistently more potent than CD7 + T cells spared by fratricide. They also showed strong anti-leukemic activity in cell line- and patient-derived T-ALL xenografts. The strategy described in this study fits well with existing clinical-grade cell manufacturing processes and can be rapidly implemented for the treatment of patients with high-risk T-cell malignancies.

  9. Enhancement of T cell responses as a result of synergy between lower doses of radiation and T cell stimulation.

    Science.gov (United States)

    Spary, Lisa K; Al-Taei, Saly; Salimu, Josephine; Cook, Alexander D; Ager, Ann; Watson, H Angharad; Clayton, Aled; Staffurth, John; Mason, Malcolm D; Tabi, Zsuzsanna

    2014-04-01

    As a side effect of cancer radiotherapy, immune cells receive varying doses of radiation. Whereas high doses of radiation (>10 Gy) can lead to lymphopenia, lower radiation doses (2-4 Gy) represent a valid treatment option in some hematological cancers, triggering clinically relevant immunological changes. Based on our earlier observations, we hypothesized that lower radiation doses have a direct positive effect on T cells. In this study, we show that 0.6-2.4 Gy radiation enhances proliferation and IFN-γ production of PBMC or purified T cells induced by stimulation via the TCR. Radiation with 1.2 Gy also lowered T cell activation threshold and broadened the Th1 cytokine profile. Although radiation alone did not activate T cells, when followed by TCR stimulation, ERK1/2 and Akt phosphorylation increased above that induced by stimulation alone. These changes were followed by an early increase in glucose uptake. Naive (CD45RA(+)) or memory (CD45RA(-)) T cell responses to stimulation were boosted at similar rates by radiation. Whereas increased Ag-specific cytotoxic activity of a CD8(+) T cell line manifested in a 4-h assay (10-20% increase), highly significant (5- to 10-fold) differences in cytokine production were detected in 6-d Ag-stimulation assays of PBMC, probably as a net outcome of death of nonstimulated and enhanced response of Ag-stimulated T cells. T cells from patients receiving pelvic radiation (2.2-2.75 Gy) also displayed increased cytokine production when stimulated in vitro. We report in this study enhanced T cell function induced by synergistic radiation treatment, with potential physiological significance in a wide range of T cell responses.

  10. Is it worth investigating splenic function in patients with celiac disease?

    Science.gov (United States)

    Di Sabatino, Antonio; Brunetti, Laura; Carnevale Maffè, Gabriella; Giuffrida, Paolo; Corazza, Gino Roberto

    2013-01-01

    Celiac disease, an immune-mediated enteropathy induced in genetically susceptible individuals by the ingestion of gluten, is the most frequent disorder associated with splenic hypofunction or atrophy. Defective splenic function affects more than one-third of adult patients with celiac disease, and it may predispose to a higher risk of infections by encapsulated bacteria and thromboembolic and autoimmune complications, particularly when celiac patients have concomitant pre-malignant and malignant complications (refractory celiac disease, ulcerative jejunoileitis and enteropathy-associated T-cell lymphoma). However, the clinical management of patients with celiac disease does not take into account the evaluation of splenic function, and in patients with high degree of hyposplenism or splenic atrophy the prophylactic immunization with specific vaccines against the polysaccharide antigens of encapsulated bacteria is not currently recommended. We critically re-evaluate clinical and diagnostic aspects of spleen dysfunction in celiac disease, and highlight new perspectives in the prophylactic management of infections in this condition. PMID:23613624

  11. Splenic abscess: a rare presentation

    Directory of Open Access Journals (Sweden)

    Mohit Bhatia

    2015-01-01

    Full Text Available Splenic abscess is a rare clinical entity with an incidence of 0.2-0.7% in autopsy-based studies. When untreated, splenic abscess is associated with nearly 100% mortality; in treated patients, the mortality rate is 16.6% during the first 90 days. It mostly occurs in patients with neoplasia, immunodeficiency, trauma, diabetes or splenic infarct. The incidence of splenic abscess is thought to be growing because of the increase in the number of immunocompromised patients who are particularly at risk for this disease and also because of the widespread use of diagnostic modalities. However, the optimal treatment for this remains unclear. We present a case of a 42-year-old man diagnosed with multiloculated splenic abscess and was subjected to splenectomy.

  12. HTLV-1 Alters T Cells for Viral Persistence and Transmission

    Directory of Open Access Journals (Sweden)

    Azusa Tanaka

    2018-03-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 was the first retrovirus to be discovered as a causative agent of adult T-cell leukemia-lymphoma (ATL and chronic inflammatory diseases. Two viral factors, Tax and HTLV-1 bZIP factor (HBZ, are thought to be involved in the leukemogenesis of ATL. Tax expression is frequently lost due to DNA methylation in the promoter region, genetic changes to the tax gene, and deletion of the 5′ long terminal repeat (LTR in approximately half of all ATL cases. On the other hand, HBZ is expressed in all ATL cases. HBZ is known to function in both protein form and mRNA form, and both forms play an important role in the oncogenic process of HTLV-1. HBZ protein has a variety of functions, including the suppression of apoptosis, the promotion of proliferation, and the impairment of anti-viral activity, through the interaction with several host cellular proteins including p300/CBP, Foxp3, and Foxo3a. These functions dramatically modify the transcriptional profiling of host T cells. HBZ mRNA also promotes T cell proliferation and viability. HBZ changes infected T cells to CCR4+TIGIT+CD4+ effector/memory T cells. This unique immunophenotype enables T cells to migrate into various organs and tissues and to survive in vivo. In this review, we summarize how HBZ hijacks the transcriptional networks and immune systems of host T cells to contribute to HTLV-1 pathogenesis on the basis of recent new findings about HBZ and tax.

  13. Theoretical models for T-cell vaccination

    NARCIS (Netherlands)

    Boer, R.J. de; Borghans, J.A.M.

    1995-01-01

    T cell vaccination (TCV) is a term for a whole collection of phenomena in which the injection of T cells provides protection against autoimmunity. Vaccination with T cells has been investigated for several autoimmune diseases, including experimental autoimmune encephalomyelitis, adjuvant

  14. Human T cell derived, cell-bound complement iC3b is integrally involved in T cell activation.

    Science.gov (United States)

    Török, Katalin; Kremlitzka, Mariann; Sándor, Noémi; Tóth, Eszter Angéla; Bajtay, Zsuzsa; Erdei, Anna

    2012-03-30

    Although the complement system is thought to be mainly involved in innate immunity and in the humoral arm of adaptive responses, evidence implicating that complement impacts T cell responses are accumulating recently. The role of the various activation products of the major complement component C3 were mainly studied so far in animal systems, and investigations regarding the effect of different C3-fragments on human T cells are sparse. Here we show that anti-CD3 activated human T lymphocytes derived from the blood and tonsil of healthy individuals produce C3, and the major cleavage fragment that appears on the T cell surface is iC3b. Based on studies carried out in allogenic system we demonstrate that the T cell membrane bound iC3b binds to the CR3 and probably to CR4 receptors expressed on monocyte-derived dendritic cells, and this interaction leads to significantly enhanced T-cell proliferation. Since neither C3aR and nor C3a binding could be detected on the membrane of anti-CD3 activated T cells, our findings indicate that in humans – in contrast to mice – the C3a peptide is most probably not involved directly in the T cell activation process.

  15. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    Science.gov (United States)

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  16. Vitamin E, signalosomes and gene expression in T cells

    Science.gov (United States)

    CD4+T cells from aged humans or mice show significant reductions in IL-2 production upon activation. The resulting decreased proliferation is linked to higher risks of infection in the elderly. Several lines of evidence indicate that intrinsic defects preferentially affecting the naïve subset of CD4...

  17. To investigate the necessity of STRA6 upregulation in T cells during T cell immune responses.

    Directory of Open Access Journals (Sweden)

    Rafik Terra

    Full Text Available Our earlier study revealed that STRA6 (stimulated by retinoic acid gene 6 was up-regulated within 3 h of TCR stimulation. STRA6 is the high-affinity receptor for plasma retinol-binding protein (RBP and mediates cellular vitamin A uptake. We generated STRA6 knockout (KO mice to assess whether such up-regulation was critical for T-cell activation, differentiation and function. STRA6 KO mice under vitamin A sufficient conditions were fertile without apparent anomalies upon visual inspection. The size, cellularity and lymphocyte subpopulations of STRA6 KO thymus and spleen were comparable to those of their wild type (WT controls. KO and WT T cells were similar in terms of TCR-stimulated proliferation in vitro and homeostatic expansion in vivo. Naive KO CD4 cells differentiated in vitro into Th1, Th2, Th17 as well as regulatory T cells in an analogous manner as their WT counterparts. In vivo experiments revealed that anti-viral immune responses to lymphocytic choriomeningitis virus in KO mice were comparable to those of WT controls. We also demonstrated that STRA6 KO and WT mice had similar glucose tolerance. Total vitamin A levels are dramatically lower in the eyes of KO mice as compared to those of WT mice, but the levels in other organs were not significantly affected after STRA6 deletion under vitamin A sufficient conditions, indicating that the eye is the mouse organ most sensitive to the loss of STRA6. Our results demonstrate that 1 in vitamin A sufficiency, the deletion of STRA6 in T cells does no affect the T-cell immune responses so-far tested, including those depend on STAT5 signaling; 2 STRA6-independent vitamin A uptake compensated the lack of STRA6 in lymphoid organs under vitamin A sufficient conditions in mice; 3 STRA6 is critical for vitamin A uptake in the eyes even in vitamin A sufficiency.

  18. Role of γδ T cells in mucosal intranet

    Directory of Open Access Journals (Sweden)

    Masafumi Yamamoto

    1999-01-01

    Full Text Available Intraepithelial γδ T cells appear to be an essential regulatory T cell subset for the induction and regulation of humoral and cellular immune responses in the mucosa-associated tissues. These cells form a mucosal internet and intranet with epithelial cells which lead to a reciprocal regulation for activation and cell growth. Removal of the TORS gene (γδ-/- mice results in a reduction of epithelial cell turnover and downregulates the expression of major histocompatibility complex class II molecules on epithelial cells. Epithelial cells are capable of producing interleukin (IL-7 and stem cell factor which can activate mucosal γδ T cells expressing IL-7R and c-kit. Further, cell surface immunoregulatory molecules expressed on epithelial cells inhibit the proliferation and cytokine synthesis of γδ T cells stimulated via the TOR-OD3 complex. Thus, direct cell-to-cell interactions between mucosal γδ T cells and epithelial cells occur via their secreted cytokines and their cell surface immunoregulatory molecules to maintain the homeostatic regulation of the mucosal immune system. γδ-/- mice possess significantly lower numbers of immunoglobulin A (IgA producing cells in mucosa- associated tissues, including intestinal lamina propria and salivary glands, when compared with normal control mice. Furthermore, the levels of antigen- specific IgA B cell responses in γδ-/- mice decreased when they were immunized orally. Mucosal γδ T cells possess an ability to maintain an IgA response in the presence of systemic tolerance. These results clearly indicate that γδ T cells play an important role in the regulation of antigen-specific mucosal IgA responses. Taken together, a triad mucosal lymphocytes intranet which connects among γδ T cells, αβ T cells and IgA B cells is necessary for the induction and regulation of IgA antibody responses in mucosal areas.

  19. Gallium arsenide exposure impairs splenic B cell accessory function.

    Science.gov (United States)

    Gondre-Lewis, Timothy A; Hartmann, Constance B; Caffrey, Rebecca E; McCoy, Kathleen L

    2003-03-01

    Gallium arsenide (GaAs) is utilized in industries for its semiconductor and optical properties. Chemical exposure of animals systemically suppresses several immune functions. The ability of splenic B cells to activate antigen-specific helper CD4(+) T cell hybridomas was assessed, and various aspects of antigen-presenting cell function were examined. GaAs-exposed murine B cells were impaired in processing intact soluble protein antigens, and the defect was antigen dependent. In contrast, B cells after exposure competently presented peptides to the T cells, which do not require processing. Cell surface expression of major histocompatibility complex (MHC) class II molecules and several costimulatory molecules on splenic B cells, which are critical for helper T cell activation, was not affected by chemical exposure. GaAs exposure also did not influence the stability of MHC class II heterodimers, suggesting that the defect may precede peptide exchange. GaAs-exposed B cells contained a normal level of aspartyl cathepsin activity; however, proteolytic activities of thiol cathepsins B and L were approximately half the control levels. Furthermore, two cleavage fragments of invariant chain, a molecular chaperone of MHC class II molecules, were increased in GaAs-exposed B cells, indicative of defective degradation. Thus, diminished thiol proteolytic activity in B cells may be responsible for their impaired antigen processing and invariant chain degradation, which may contribute to systemic immunosuppression caused by GaAs exposure.

  20. Demonstration of strong enterobacterial reactivity of CD4+CD25- T cells from conventional and germ-free mice which is counter-regulated by CD4+CD25+ T cells

    DEFF Research Database (Denmark)

    Gad, Monika; Pedersen, Anders Elm; Kristensen, Nanna N

    2004-01-01

    Unfractionated CD4+ T cells from the gut-associated lymphoid tissue (GALT) and peripheral lymph nodes are unresponsive when exposed to enterobacterial antigens in vitro. Under similar conditions, CD4+ T cells depleted in vivo or in vitro of CD4+CD25+ T cells proliferate extensively. The CD4+CD25- T...

  1. A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells.

    Science.gov (United States)

    Hunzeker, John T; Elftman, Michael D; Mellinger, Jennifer C; Princiotta, Michael F; Bonneau, Robert H; Truckenmiller, Mary E; Norbury, Christopher C

    2011-01-01

    Protracted psychological stress elevates circulating glucocorticoids, which can suppress CD8(+) T cell-mediated immunity, but the mechanisms are incompletely understood. Dendritic cells (DCs), required for initiating CTL responses, are vulnerable to stress/corticosterone, which can contribute to diminished CTL responses. Cross-priming of CD8(+) T cells by DCs is required for initiating CTL responses against many intracellular pathogens that do not infect DCs. We examined the effects of stress/corticosterone on MHC class I (MHC I) cross-presentation and priming and show that stress/corticosterone-exposed DCs have a reduced ability to cross-present OVA and activate MHC I-OVA(257-264)-specific T cells. Using a murine model of psychological stress and OVA-loaded β(2)-microglobulin knockout "donor" cells that cannot present Ag, DCs from stressed mice induced markedly less Ag-specific CTL proliferation in a glucocorticoid receptor-dependent manner, and endogenous in vivo T cell cytolytic activity generated by cross-presented Ag was greatly diminished. These deficits in cross-presentation/priming were not due to altered Ag donation, Ag uptake (phagocytosis, receptor-mediated endocytosis, or fluid-phase uptake), or costimulatory molecule expression by DCs. However, proteasome activity in corticosterone-treated DCs or splenic DCs from stressed mice was partially suppressed, which limits formation of antigenic peptide-MHC I complexes. In addition, the lymphoid tissue-resident CD11b(-)CD24(+)CD8α(+) DC subset, which carries out cross-presentation/priming, was preferentially depleted in stressed mice. At the same time, CD11b(-)CD24(+)CD8α(-) DC precursors were increased, suggesting a block in development of CD8α(+) DCs. Therefore, glucocorticoid-induced changes in both the cellular composition of the immune system and intracellular protein degradation contribute to impaired CTL priming in stressed mice.

  2. Anti-regulatory T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2017-01-01

    Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host...... responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune...... reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells...

  3. E2a/Pbx1 Induces the Rapid Proliferation of Stem Cell Factor-Dependent Murine Pro-T Cells That Cause Acute T-Lymphoid or Myeloid Leukemias in Mice

    OpenAIRE

    Sykes, David B.; Kamps, Mark P.

    2004-01-01

    Oncoprotein E2a/Pbx1 is produced by the t(1;19) chromosomal translocation of human pre-B acute lymphoblastic leukemia. E2a/Pbx1 blocks differentiation of primary myeloid progenitors but, paradoxically, induces apoptosis in established pre-B-cell lines, and no transforming function of E2a/Pbx1 has been reported in cultured lymphoid progenitors. Here, we demonstrate that E2a/Pbx1 induces immortal proliferation of stem cell factor (SCF)-dependent pro-T thymocytes by a mechanism dependent upon bo...

  4. Incomplete differentiation of antigen-specific CD8 T cells in tumor-draining lymph nodes.

    Science.gov (United States)

    Hargadon, Kristian M; Brinkman, C Colin; Sheasley-O'neill, Stacey L; Nichols, Lisa A; Bullock, Timothy N J; Engelhard, Victor H

    2006-11-01

    CD8 T cells lacking effector activity have been recovered from lymphoid organs of mice and patients with progressing tumors. We explored the basis for lack of effector activity in tumor-bearing mice by evaluating Ag presentation and CD8 T cell function in lymphoid organs over the course of tumor outgrowth. Early after tumor injection, cross-presentation by bone marrow-derived APC was necessary for T cell activation, inducing proliferation and differentiation into IFN-gamma-producing, cytolytic effectors. At later stages of outgrowth, tumor metastasized to draining lymph nodes. Both cross- and direct presentation occurred, but T cell differentiation induced by either modality was incomplete (proliferation without cytokine production). T cells within tumor-infiltrated nodes differentiated appropriately if Ag was presented by activated, exogenous dendritic cells. Thus, activated T cells lacking effector function develop through incomplete differentiation in the lymph nodes of late-stage tumor-bearing mice, rather than through suppression of previously differentiated cells.

  5. Murine T cell activation is regulated by surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide)

    Energy Technology Data Exchange (ETDEWEB)

    Warford, Jordan, E-mail: jordan.warford@dal.ca [Department of Pathology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Doucette, Carolyn D., E-mail: carolyn.doucette@dal.ca [Department of Microbiology and Immunology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Hoskin, David W., E-mail: d.w.hoskin@dal.ca [Department of Pathology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Microbiology and Immunology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Easton, Alexander S., E-mail: alexander.easton@dal.ca [Department of Pathology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Microbiology and Immunology, Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Surgery (Neurosurgery), Dalhousie University, Tupper Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2 (Canada)

    2014-01-10

    Highlights: •Surfen is the first inhibitor of glycosaminoglycan function to be studied in murine T cells. •Surfen reduces T cell proliferation stimulated in vitro and in vivo. •Surfen reduces CD25 expression in T cells activated in vivo but not in vitro. •Surfen increases T cell proliferation when T cell receptor activation is bypassed. •Surfen’s effects are blocked by co-administration of heparin sulfate. -- Abstract: Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) binds to glycosaminoglycans (GAGs) and has been shown to influence their function, and the function of proteoglycans (complexes of GAGs linked to a core protein). T cells synthesize, secrete and express GAGs and proteoglycans which are involved in several aspects of T cell function. However, there are as yet no studies on the effect of GAG-binding agents such as surfen on T cell function. In this study, surfen was found to influence murine T cell activation. Doses between 2.5 and 20 μM produced a graduated reduction in the proliferation of T cells activated with anti-CD3/CD28 antibody-coated T cell expander beads. Surfen (20 mg/kg) was also administered to mice treated with anti-CD3 antibody to activate T cells in vivo. Lymphocytes from surfen-treated mice also showed reduced proliferation and lymph node cell counts were reduced. Surfen reduced labeling with a cell viability marker (7-ADD) but to a much lower extent than its effect on proliferation. Surfen also reduced CD25 (the α-subunit of the interleukin (IL)-2 receptor) expression with no effect on CD69 expression in T cells treated in vivo but not in vitro. When receptor activation was bypassed by treating T cells in vitro with phorbyl myristate acetate (10 ng/ml) and ionomycin (100 ng/ml), surfen treatment either increased proliferation (10 μM) or had no effect (2.5, 5 and 20 μM). In vitro treatment of T cells with surfen had no effect on IL-2 or interferon-γ synthesis and did not alter proliferation of the IL-2 dependent cell

  6. Growth Factor Midkine Promotes T-Cell Activation through Nuclear Factor of Activated T Cells Signaling and Th1 Cell Differentiation in Lupus Nephritis.

    Science.gov (United States)

    Masuda, Tomohiro; Maeda, Kayaho; Sato, Waichi; Kosugi, Tomoki; Sato, Yuka; Kojima, Hiroshi; Kato, Noritoshi; Ishimoto, Takuji; Tsuboi, Naotake; Uchimura, Kenji; Yuzawa, Yukio; Maruyama, Shoichi; Kadomatsu, Kenji

    2017-04-01

    Activated T cells play crucial roles in the pathogenesis of autoimmune diseases, including lupus nephritis (LN). The activation of calcineurin/nuclear factor of activated T cells (NFAT) and STAT4 signaling is essential for T cells to perform various effector functions. Here, we identified the growth factor midkine (MK; gene name, Mdk) as a novel regulator in the pathogenesis of 2,6,10,14-tetramethylpentadecane-induced LN via activation of NFAT and IL-12/STAT4 signaling. Wild-type (Mdk +/+ ) mice showed more severe glomerular injury than MK-deficient (Mdk -/- ) mice, as demonstrated by mesangial hypercellularity and matrix expansion, and glomerular capillary loops with immune-complex deposition. Compared with Mdk -/- mice, the frequency of splenic CD69 + T cells and T helper (Th) 1 cells, but not of regulatory T cells, was augmented in Mdk +/+ mice in proportion to LN disease activity, and was accompanied by skewed cytokine production. MK expression was also enhanced in activated CD4 + T cells in vivo and in vitro. MK induced activated CD4 + T cells expressing CD69 through nuclear activation of NFAT transcription and selectively increased in vitro differentiation of naive CD4 + T cells into Th1 cells by promoting IL-12/STAT4 signaling. These results suggest that MK serves an indispensable role in the NFAT-regulated activation of CD4 + T cells and Th1 cell differentiation, eventually leading to the exacerbation of LN. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Increased bronchial density of CD25+Foxp3+ regulatory T cells in occupational asthma: relationship to current smoking.

    Science.gov (United States)

    Sjåheim, T B; Bjørtuft, Ø; Drabløs, P A; Kongerud, J; Halstensen, T S

    2013-05-01

    To identify activated T cell subset in the asthmatic bronchia, we developed a triple-colour immunohistofluorescence labelling technique on cryo-section to discriminate activated CD4+CD25+ T cells, (effector T cells) from Foxp3+ regulatory T cells (Treg). Additional coexpression of activation and proliferation markers was also examined in situ. Bronchial biopsies were taken from 20 aluminium potroom workers (12 smokers) with asthma (>12% reversibility), 15 non-asthmatic potroom workers (7 smokers) and 10 non-smoking, non-exposed controls. Non-smoking asthmatics had significantly higher subepithelial density of both Tregs, effector T cells, activated (HLA-DR+) CD8+ and activated CD4+ T cells. Moreover, both Tregs, effector T cells and CD8+ T cells proliferated in the non-smoking asthmatics, only. Although smoking asthmatics had no asthma-associated increase in bronchial T cell, both had a significantly increase in effector T cell to Treg ratios. The significantly increased bronchial density of Tregs, effector T cells, proliferative T cells and activated CD8+ T cells in non-smoking asthmatics clearly showed that both the effector T cells and the inhibitory Treg system were activated in asthma. © 2013 The Authors. Scandinavian Journal of Immunology © 2013 Blackwell Publishing Ltd.

  8. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity

    Science.gov (United States)

    Bradley, Jillian H.; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P.; Gregg, Randal K.

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter. When

  9. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity.

    Science.gov (United States)

    Bradley, Jillian H; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P; Gregg, Randal K

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter

  10. Indolent T-cell lymphoproliferative disease of the gastrointestinal tract

    Science.gov (United States)

    Perry, Anamarija M.; Warnke, Roger A.; Hu, Qinglong; Gaulard, Philippe; Copie-Bergman, Christiane; Alkan, Serhan; Wang, Huan-You; Cheng, Jason X.; Bacon, Chris M.; Delabie, Jan; Ranheim, Erik; Kucuk, Can; Hu, XiaoZhou; Weisenburger, Dennis D.

    2013-01-01

    Primary gastrointestinal (GI) T-cell lymphoma is an infrequent and aggressive disease. However, rare indolent clonal T-cell proliferations in the GI tract have been described. We report 10 cases of GI involvement by an indolent T-cell lymphoproliferative disease, including 6 men and 4 women with a median age of 48 years (range, 15-77 years). Presenting symptoms included abdominal pain, diarrhea, vomiting, food intolerance, and dyspepsia. The lesions involved oral cavity, esophagus, stomach, small intestine, and colon. The infiltrates were dense, but nondestructive, and composed of small, mature-appearing lymphoid cells. Eight cases were CD4−/CD8+, 1 was CD4+/CD8−, and another was CD4−/CD8−. T-cell receptor-γ chain gene rearrangement identified a clonal population in all 10 cases. There was no evidence of STAT3 SH2 domain mutation or activation. Six patients received chemotherapy because of an initial diagnosis of peripheral T-cell lymphoma, with little or no response, whereas the other 4 were followed without therapy. After a median follow-up of 38 months (range, 9-175 months), 9 patients were alive with persistent disease and 1 was free of disease. We propose the name “indolent T-LPD of the GI tract” for these lesions that can easily be mistaken for intestinal peripheral T-cell lymphoma, and lead to aggressive therapy. PMID:24009234

  11. Regulation of T cell priming by lymphoid stroma.

    Directory of Open Access Journals (Sweden)

    Omar Khan

    Full Text Available The priming of immune T cells by their interaction with dendritic cells (DCs in lymph nodes (LN, one of the early events in productive adaptive immune responses, occurs on a scaffold of lymphoid stromal cells, which have largely been seen as support cells or sources of chemokines and homeostatic growth factors. Here we show that murine fibroblastic reticular cells (FRCs, isolated from LN of B6 mice, play a more direct role in the immune response by sensing and modulating T cell activation through their upregulation of inducible nitric oxide synthase (iNOS in response to early T cell IFNγ production. Stromal iNOS, which only functions in very close proximity, attenuates responses to inflammatory DC immunization but not to other priming regimens and preferentially affects Th1 cells rather than Th2. The resultant nitric oxide production does not affect T cell-DC coupling or initial calcium signaling, but restricts homotypic T cell clustering, cell cycle progression, and proliferation. Stromal feedback inhibition thus provides basal attenuation of T cell responses, particularly those characterized by strong local inflammatory cues.

  12. Homeostatic T Cell Expansion to Induce Anti-Tumor Antoimmunity in Breast Cancer

    Science.gov (United States)

    2005-04-01

    response by manipulating the composition of the infused T cells; and (c) to potentiate the anti-tumor effect by using T cell survival and proliferation... antineoplastic drugs with tumor vaccines. Cancer Immunol Immunother 52:680 79. Theofilopoulos AN, Dummer W, Kono DH (2001) T cell homeostasis and systemic...recovered were approved by the Institutional Animal Care Committee. 7 days after transfer had undergone one to four cell divisions, with Donor cells no

  13. Remembering One's ID/E-ntity : E/ID Protein Regulation of T Cell Memory

    OpenAIRE

    Omilusik, Kyla D.; Shaw, Laura A.; Goldrath, Ananda W.

    2013-01-01

    Upon infection, CD8+ T cells proliferate and differentiate into armed effector cells capable of eliminating the assaulting pathogen. Although the majority of the antigen-specific T cells will die as the immune response wanes, a few will survive indefinitely to establish the memory population and provide long-lived protection against reinfection. E protein transcription factors and their inhibitors, ID proteins, operate to balance expression of genes that control CD8+ T cell differentiation th...

  14. Cytokine Secreting Microparticles Engineer the Fate and the Effector Functions of T-Cells.

    Science.gov (United States)

    Majedi, Fatemeh S; Hasani-Sadrabadi, Mohammad Mahdi; Kidani, Yoko; Thauland, Timothy J; Moshaverinia, Alireza; Butte, Manish J; Bensinger, Steven J; Bouchard, Louis-S

    2018-02-01

    T-cell immunotherapy is a promising approach for cancer, infection, and autoimmune diseases. However, significant challenges hamper its therapeutic potential, including insufficient activation, delivery, and clonal expansion of T-cells into the tumor environment. To facilitate T-cell activation and differentiation in vitro, core-shell microparticles are developed for sustained delivery of cytokines. These particles are enriched by heparin to enable a steady release of interleukin-2 (IL-2), the major T-cell growth factor, over 10+ d. The controlled delivery of cytokines is used to steer lineage specification of cultured T-cells. This approach enables differentiation of T-cells into central memory and effector memory subsets. It is shown that the sustained release of stromal cell-derived factor 1α could accelerate T-cell migration. It is demonstrated that CD4+ T-cells could be induced to high concentrations of regulatory T-cells through controlled release of IL-2 and transforming growth factor beta. It is found that CD8+ T-cells that received IL-2 from microparticles are more likely to gain effector functions as compared with traditional administration of IL-2. Culture of T-cells within 3D scaffolds that contain IL-2-secreting microparticles enhances proliferation as compared with traditional, 2D approaches. This yield a new method to control the fate of T-cells and ultimately to new strategies for immune therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Aberrant Expression of MHC Class II in Melanoma Attracts Inflammatory Tumor-Specific CD4+ T- Cells, Which Dampen CD8+ T-cell Antitumor Reactivity

    DEFF Research Database (Denmark)

    Donia, Marco; Andersen, Rikke; Kjeldsen, Julie W

    2015-01-01

    populations and correspondingly expanded autologous tumor-infiltrating lymphocytes (TIL), we show how MHC class II expression on melanoma cells associates with strong MHC class II-restricted CD4(+) T-cell responses that are specific for tumors. Notably, we found that tumor-specific CD4(+) T-cell responses...... were dominated by TNF production. TNF reduced CD8(+) T-cell activation in IFNγ-rich environments resembling a tumor site. Conversely, direct CD4(+) T-cell responses had no influence on either the proliferation or viability of melanoma cells. Taken together, our results illustrate a novel immune escape...... mechanism that can be activated by aberrant expression of MHC class II molecules, which by attracting tumor-specific CD4(+) T cells elicit a local inflammatory response dominated by TNF that, in turn, inhibits cytotoxic CD8(+) T-cell responses...

  16. Mechanisms regulating expansion of CD8+ T cells during HIV-1 infection.

    Science.gov (United States)

    Nasi, A; Chiodi, F

    2018-03-01

    Abnormal immune activation and expansion of CD8+ T cells, especially of memory and effector phenotypes, take place during HIV-1 infection, and these abnormal features persist during administration of antiretroviral therapy (ART) to infected patients. The molecular mechanisms for CD8+ T-cell expansion remain poorly characterized. In this article, we review the literature addressing features of CD8+ T-cell immune pathology and present an integrated view on the mechanisms leading to abnormal CD8+ T-cell expansion during HIV-1 infection. The expression of molecules important for directing the homing of CD8+ T cells between the circulation and lymphoid tissues, in particular CCR5 and CXCR3, is increased in CD8+ T cells in circulation and in inflamed tissues during HIV-1 infection; these disturbances in the homing capacity of CD8+ T cells have been linked to increased CD8+ T-cell proliferation. The production of IL-15, a cytokine responsible for physiological proliferation of CD8+ T cells, is increased in lymphoid tissues during HIV-1 infection as result of microbial translocation and severe inflammation. IL-15, and additional inflammatory cytokines, may lead to deregulated proliferation of CD8+ T cells and explain the accumulation of CD8+ T cells in circulation. The decreased capacity of CD8+ T cells to localize to gut-associated lymphoid tissue also contributes to the accumulation of these cells in blood. Control of inflammation, through ART administration during primary HIV-1 infection or therapies aimed at controlling inflammation during HIV-1 infection, is pivotal to prevent abnormal expansion of CD8+ T cells during HIV-1 infection. © 2018 The Association for the Publication of the Journal of Internal Medicine.

  17. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy

    Directory of Open Access Journals (Sweden)

    Hua Li

    2017-04-01

    Full Text Available Abstract Chimeric antigen receptor (CAR T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or “on-target/off-tumor” toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumor-associated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal—curing cancer with high safety, high efficacy, and low cost.

  18. Fish T cells: recent advances through genomics

    Science.gov (United States)

    Laing, Kerry J.; Hansen, John D.

    2011-01-01

    This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.

  19. CT appearance of splenic abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Mariko; Sakai, Kunio [Niigata Univ. (Japan). School of Medicine; Shiina, Makoto; Sasage, Akira; Saito, Akira

    1995-04-01

    CT findings in 13 cases with malignant splenic lesions (7, malignant lymphoma ; 6, metastatic tumor) and 25 cases with non-malignant lesions (9, infarction ; 5, abscess ; 5, cyst ; 3, hematoma ; 1, hemangioma ; 1, sarcoidosis ; 1, lymphangioma) were described. Although CT was useful in localization of splenic lesions, there were usually nonspecific CT findings to each lesion. So CT findings outside the spleen and clinical course were considered to be important for differential diagnosis. (author).

  20. Enhanced transduction and replication of RGD-fiber modified adenovirus in primary T cells.

    Directory of Open Access Journals (Sweden)

    Sadhak Sengupta

    2011-03-01

    Full Text Available Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR. T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD.A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replication-competent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35-45% of splenic T cells were transduced by Ad-RGD.Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary T cells of both murine and human origin.

  1. CD160-Associated CD8 T-Cell Functional Impairment Is Independent of PD-1 Expression

    Science.gov (United States)

    Viganò, Selena; Banga, Riddhima; Bellanger, Florence; Pellaton, Céline; Farina, Alex; Comte, Denis; Harari, Alexandre; Perreau, Matthieu

    2014-01-01

    Expression of co-inhibitory molecules is generally associated with T-cell dysfunction in chronic viral infections such as HIV or HCV. However, their relative contribution in the T-cell impairment remains unclear. In the present study, we have evaluated the impact of the expression of co-inhibitory molecules such as 2B4, PD-1 and CD160 on the functions of CD8 T-cells specific to influenza, EBV and CMV. We show that CD8 T-cell populations expressing CD160, but not PD-1, had reduced proliferation capacity and perforin expression, thus indicating that the functional impairment in CD160+ CD8 T cells may be independent of PD-1 expression. The blockade of CD160/CD160-ligand interaction restored CD8 T-cell proliferation capacity, and the extent of restoration directly correlated with the ex vivo proportion of CD160+ CD8 T cells suggesting that CD160 negatively regulates TCR-mediated signaling. Furthermore, CD160 expression was not up-regulated upon T-cell activation or proliferation as compared to PD-1. Taken together, these results provide evidence that CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression. PMID:25255144

  2. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.

    Science.gov (United States)

    Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J

    2013-01-01

    After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.

  3. Modification of T-cell antigenic properties of tetanus toxoid by SDS-PAGE separation. Implications for T-cell blotting

    DEFF Research Database (Denmark)

    Christensen, C B; Theander, T G

    1997-01-01

    Using Tetanus Toxoid (TT) as a model antigen the T-cell Blotting method was evaluated. Peripheral blood mononuclear cell (PBMC) cultures were stimulated by blotted nitrocellulose-bound TT or soluble TT. SDS-Poly-Acrylamide-Gel-Electrophoresis separated TT only induced proliferation in 20% of the ......Using Tetanus Toxoid (TT) as a model antigen the T-cell Blotting method was evaluated. Peripheral blood mononuclear cell (PBMC) cultures were stimulated by blotted nitrocellulose-bound TT or soluble TT. SDS-Poly-Acrylamide-Gel-Electrophoresis separated TT only induced proliferation in 20......% of the PBMC cultures whereas proliferation was induced in 79% of the same cultures offered similar treated TT (except for the PAGE separation). When T-cell blotting was performed with TT separated in a SDS-agarose matrix, proliferation was induced in 80% of donors responding to soluble TT. The results show...... that SDS-PAGE alters the ability of TT to induce T-cell proliferation, possibly due to unpolymerized acrylamide binding to proteins during SDS-PAGE. The use of SDS-PAGE T-cell blotting in the screening for T-cell antigens must therefore be reconsidered. We suggest the use of SDS-Agarose Gel Electrophoresis...

  4. CD8+ Foxp3+ T cells share developmental and phenotypic features with classical CD4+ Foxp3+ regulatory T cells but lack potent suppressive activity.

    Science.gov (United States)

    Mayer, Christian T; Floess, Stefan; Baru, Abdul Mannan; Lahl, Katharina; Huehn, Jochen; Sparwasser, Tim

    2011-03-01

    "Suppressor T cells" were historically defined within the CD8(+) T-cell compartment and recent studies have highlighted several naturally occurring CD8(+) Foxp3(-) Treg populations. However, the relevance of CD8(+) Foxp3(+) T cells, which represent a minor population in both thymi and secondary lymphoid organs of nonmanipulated mice, remains unclear. We here demonstrate that de novo Foxp3 induction in peripheral CD8(+) Foxp3(-) T cells is counter-regulated by DC-mediated co-stimulation via CD80/CD86. CD8(+) Foxp3(+) T cells fail to develop in TCR-transgenic mice with Rag1(-/-) background, similar to classical CD4(+) Foxp3(+) Tregs. Notably, both naturally occurring and induced CD8(+) Foxp3(+) T cells express bona fide Treg markers including CD25, GITR, CTLA4 and CD103, and show defective IFN-γ production upon restimulation when compared with their CD8(+) Foxp3(-) counterparts. However, utilizing DEREG transgenic mice for the isolation of Foxp3(+) cells by eGFP reporter expression, we demonstrate that induced CD8(+) Foxp3(+) T cells similar to activated CD8(+) Foxp3(-) T cells only mildly suppress T-cell proliferation and IFN-γ production. We therefore categorize CD8(+) Foxp3(+) T cells as a tightly controlled population sharing certain developmental and phenotypic properties with classical CD4(+) Foxp3(+) Tregs, but lacking potent suppressive activity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reactivity of naive CD4+CD25- T cells against gut microflora in healthy mice

    DEFF Research Database (Denmark)

    Gad, Monika; Lundsgaard, Dorthe; Kjellev, Stine

    2006-01-01

    We have previously shown that conventional as well as germ-free CD4+ T cells depleted of CD25+ cells from the gut-associated lymphoid tissue and the periphery proliferate specifically in response to enterobacterial antigen exposure whereas unfractionated CD4+ T cells are not reactive under...

  6. CD4+CD25+ regulatory T cells: I. Phenotype and physiology

    DEFF Research Database (Denmark)

    Holm, Thomas Lindebo; Nielsen, Janne; Claesson, Mogens H

    2004-01-01

    it has become increasingly clear that regulatory CD4+CD25+ T cells (Treg cells) play an important role in the maintenance of immunological self-tolerance, and that this cell subset exerts its function by suppressing the proliferation or function of autoreactive T cells. Based on human and murine...

  7. Superantigen presentation by human retinal pigment epithelial cells to T cells is dependent on CD2-CD58 and CD18-CD54 molecule interactions

    DEFF Research Database (Denmark)

    Jørgensen, A; Junker, N; Kaestel, C G

    2001-01-01

    Human retinal pigment epithelial (RPE) cells are capable of presenting bacterial superantigens (SAg) to T cells in vitro by ligation of MHC class II molecules on RPE cells with the T cell receptor. The purpose of this study was to evaluate the involvement of adhesion molecules in presentation....... Proliferation was measured by (3)H-thymidine incorporation assay. In selected experiments, either RPE or T cells were pre-treated with blocking antibodies specific for cell surface molecules. For comparison, dendritic cells were used as superantigen presenting cells for T cells. This study showed...... that presentation of SEA by RPE cells to resting T cells was dependent on the presence of the molecules CD2, CD58 and CD18, CD54. The cycling status of T cells was decisive, thus resting T cells but not activated T cells were capable to proliferate in response to SEA presentation. Proliferation of T cells induced...

  8. Local and Systemic CD4+ T Cell Exhaustion Reverses with Clinical Resolution of Pulmonary Sarcoidosis

    Directory of Open Access Journals (Sweden)

    Charlene Hawkins

    2017-01-01

    Full Text Available Investigation of the Th1 immune response in sarcoidosis CD4+ T cells has revealed reduced proliferative capacity and cytokine expression upon TCR stimulation. In other disease models, such cellular dysfunction has been associated with a step-wise, progressive loss of T cell function that results from chronic antigenic stimulation. T cell exhaustion is defined by decreased cytokine production upon TCR activation, decreased proliferation, increased expression of inhibitory cell surface receptors, and increased susceptibility to apoptosis. We characterized sarcoidosis CD4+ T cell immune function in systemic and local environments among subjects undergoing disease progression compared to those experiencing disease resolution. Spontaneous and TCR-stimulated Th1 cytokine expression and proliferation assays were performed in 53 sarcoidosis subjects and 30 healthy controls. PD-1 expression and apoptosis were assessed by flow cytometry. Compared to healthy controls, sarcoidosis CD4+ T cells demonstrated reductions in Th1 cytokine expression, proliferative capacity (p<0.05, enhanced apoptosis (p<0.01, and increased PD-1 expression (p<0.001. BAL-derived CD4+ T cells also demonstrated multiple facets of T cell exhaustion (p<0.05. Reversal of CD4+ T cell exhaustion was observed in subjects undergoing spontaneous resolution (p<0.05. Sarcoidosis CD4+ T cells exhibit loss of cellular function during progressive disease that follows the archetype of T cell exhaustion.

  9. Antigen recognition and immunomodulation by gamma delta T cells in bovine tuberculosis.

    Science.gov (United States)

    Rhodes, S G; Hewinson, R G; Vordermeier, H M

    2001-05-01

    This report describes the in vitro proliferative responses of peripheral blood gammadelta T cells to defined mycobacterial protein Ags and the immunomodulatory effect of gammadelta T cells in cattle infected with Mycobacterium bovis. gammadelta T cell responses were specific to M. bovis infection because they were detected in cattle either experimentally or naturally infected with M. bovis, but were not present in uninfected controls. Proliferating gammadelta T cell cultures produced enhanced levels of IFN-gamma and TGF-beta, but not IL-2 in response to the more immunodominant mycobacterial AGS: Depletion of gammadelta T cells from PBMC resulted in an increased Ag-specific proliferation in half the animals tested, indicating a suppressive effect of gammadelta T cells upon other (alphabeta) T cell responses. Because gammadelta T cells constitute a major T cell population in the peripheral blood of cattle, the activities of gammadelta T cells described in this report could make a significant contribution to the immune response in bovine tuberculosis.

  10. Role for Heat Shock Protein 90α in the Proliferation and Migration of HaCaT Cells and in the Deep Second-Degree Burn Wound Healing in Mice

    Science.gov (United States)

    Li, Na; Li, Xiaoqiang; Han, Fei; Su, Linlin; Hu, Dahai

    2014-01-01

    Inflammation, proliferation, and tissue remodeling are essential steps for wound healing. The hypoxic wound microenvironment promotes cell migration through a hypoxia—heat shock protein 90 alpha (Hsp90α)—low density lipoprotein receptor-related protein-1 (LRP-1) autocrine loop. To elucidate the role of this autocrine loop on burn wound healing, we investigated the expression profile of Hsp90α at the edge of burn wounds and found a transient increase in both mRNA and protein levels. Experiments performed with a human keratinocyte cell line—HaCaT also confirmed above results. 17-dimethylaminoethylamino-17demethoxygeldanamycin hydrochloride (17-DMAG), an Hsp90α inhibitor, was used to further evaluate the function of Hsp90α in wound healing. Consistently, topical application of Hsp90α in the early stage of deep second-degree burn wounds led to reduced inflammation and increased tissue granulation, with a concomitant reduction in the size of the wound at each time point tested (pburn wound management. PMID:25111496

  11. Micronutrient supplementation and T-cell mediated immune responses in patients with tuberculosis in Tanzania

    Science.gov (United States)

    Limited studies exist regarding whether incorporating micronutrient supplements during tuberculosis (TB) treatment may improve cell-mediated immune response. We examine the effect of micronutrient supplementation on lymphocyte proliferation response to mycobacteria or T cell mitogens in a randomize...

  12. Peripheral blood lymphocytes from low-grade squamous intraepithelial lesions patients recognize vaccine antigens in the presence of activated dendritic cells, and produced high levels of CD8 + IFNγ + T cells and low levels of IL-2 when induced to proliferate

    Directory of Open Access Journals (Sweden)

    Hernández-Montes Jorge

    2012-05-01

    Full Text Available Abstract Background Most infections with human papillomavirus (HPV are resolved without clinical intervention, but a minority evolves into chronic lesions of distinct grades, including cervical-uterine cancer. It is known that in most cases the immune system mediates elimination of HPV infection. However, the mechanism of immune evasion leading to HPV persistence and development of early cervical lesions is not fully understood. The aim of the present work was to evaluate the potential of peripheral blood leukocytes (PBL from low-grade squamous intraepithelial lesions (LSIL patients to be activated ex-vivo by vaccine antigens, the participation of cytotoxic lymphocytes and regulatory T cells, and to determine the secretion of Th1 and Th2 cytokines mediated by stimulation of T cell receptors. Results We found that PBL from LSIL patients showed a significantly lower proliferation rate to vaccine antigens as compared to that of healthy donors, even though there was not a difference in the presence of antibodies to those antigens in sera from both groups. We did not find differences in either the frequency of CD4 + CD25 + FoxP3+ in PBL, or the levels of IL-4, IL-5 and IL-10 in plasma or conditioned media from PBL incubated with TcR agonists in vitro, between the two groups. However, we detected a lower production of IL-2 and a higher proportion of CD8 + IFNγ + cells in PBL from LSIL patients as compared with PBL from normal donors. We also observed that PBL from patients infected by HPV-16 and −18 were not able to proliferate in the presence of soluble HPV antigens added to the culture; however, a high level of proliferation was attained when these antigens were presented by activated dendritic cells. Conclusions Our results suggest that the immunodeficiency reported in LSIL patients could be due to the inability of specific cytotoxic T lymphocytes that for some unknown reason are present but unable to mount a response when

  13. Aire and T cell development.

    Science.gov (United States)

    Anderson, Mark S; Su, Maureen A

    2011-04-01

    In the thymus, developing T cells that react against self-antigens with high affinity are deleted in the process of negative selection. An essential component of this process is the display of self-antigens, including those whose expression are usually restricted to specific tissues, to developing T cells within the thymus. The Autoimmune Regulator (Aire) gene plays a crucial role in the expression of tissue specific self-antigens within the thymus, and disruption of Aire function results in spontaneous autoimmunity in both humans and mice. Recent advances have been made in our understanding of how Aire influences the expression of thousands of tissue-specific antigens in the thymus. Additional roles of Aire, including roles in chemokine and cytokine expression, have also been revealed. Factors important in the differentiation of Aire-expressing medullary thymic epithelial cells have been defined. Finally, the identity of antigen presenting cells in negative selection, including the role of medullary thymic epithelial cells in displaying tissue specific antigens to T cells, has also been clarified. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Irreversible splenic atrophy following chronic LCMV infection is associated with compromised immunity in mice.

    Science.gov (United States)

    Mbanwi, Achire N; Wang, Chao; Geddes, Kaoru; Philpott, Dana J; Watts, Tania H

    2017-01-01

    Lymphocytic choriomeningitis virus clone 13 (LCMV13) infection of mice is a widely used model for investigating the mechanisms driving persistent viral infection in humans. LCMV13 disrupts splenic architecture early during infection, but this returns to normal within a few weeks. However, the long-term effects of LCMV13 infection on splenic structure have not been reported. Here, we report that persistent infection with LCMV13 results in sustained splenic atrophy that persists for at least 500 days following infection, whereas infection with the acutely infecting LCMV Armstrong is associated with a return to preinfection spleen weights. Splenic atrophy is associated with loss of T, B, and non-B non-T cells, with B cells most significantly affected. These effects were partly ameliorated by anti-NK1.1 or anti-CD8 antibody treatment. Antigen presentation was detectable at the time of contraction of the spleen, but no longer detected at late time points, suggesting that continued antigen presentation is not required to maintain splenic atrophy. Immunity to Salmonella infection and influenza vaccination were decreased after the virus was no longer detected. Thus splenic atrophy following LCMV13 infection is irreversible and may contribute to impaired immunity following clearance of LCMV13. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Local induction of immunosuppressive CD8+ T cells in the gut-associated lymphoid tissues.

    Science.gov (United States)

    Fleissner, Diana; Hansen, Wiebke; Geffers, Robert; Buer, Jan; Westendorf, Astrid M

    2010-10-20

    In contrast to intestinal CD4(+) regulatory T cells (T(regs)), the generation and function of immunomodulatory intestinal CD8(+) T cells is less well defined. To dissect the immunologic mechanisms of CD8(+) T cell function in the mucosa, reactivity against hemagglutinin (HA) expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied. HA-specific CD8(+) T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3(+) and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8(+)Foxp3(+) T cells. Antigen-experienced CD8(+) T cells in this transgenic mouse model suppressed the proliferation of CD8(+) and CD4(+) T cells in vitro. Gene expression analysis of suppressive HA-specific CD8(+) T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4(+) T(reg) subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8(+)Foxp3(+) T cells. We demonstrate that gut specific antigen presentation is sufficient to induce CD8(+) T(regs)in vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.

  16. Circulating rotavirus-specific T cells have a poor functional profile

    International Nuclear Information System (INIS)

    Parra, Miguel; Herrera, Daniel; Jácome, María Fernanda; Mesa, Martha C.; Rodríguez, Luz-Stella; Guzmán, Carolina; Angel, Juana; Franco, Manuel A.

    2014-01-01

    Frequencies of circulating T cells producing IFN-γ, TNF-α, and IL-2, and percentages of T cells proliferating after stimulation with rotavirus (RV), tetanus toxoid, and influenza were evaluated in PBMC derived from healthy adults and children. In addition, the potential anergic state of RV-specific T cells was analyzed by stimulation of PBMC with RV antigen in the presence of three anergy inhibitors (rIL-2, rIL-12, or DGKα-i). The quality and magnitude of RV-T cell responses were significantly lower than those of tetanus toxoid and influenza antigens. RV-CD4 T cell response was enriched in monofunctional IFN-γ + cells, while influenza-CD4 and tetanus toxoid-CD4 T cell responses were enriched in multifunctional T cells. Moreover, rIL-2 – unlike rIL-12 or DGKα-i – increased the frequencies of RV-CD4 TNF-α + , CD4 IFN-γ + , and CD8 IFN-γ + cells. Thus, circulating RV-T cells seem to have a relatively poor functional profile that may be partially reversed in vitro by the addition of rIL-2. - Highlights: • The quality and magnitude of circulating RV-T cell responses are relatively poor. • Circulating RV-CD4 T cells are enriched in monofunctional IFN-γ+ cells. • Treatment with rIL-2 increased the frequencies of cytokine secreting RV-T cells

  17. Local induction of immunosuppressive CD8+ T cells in the gut-associated lymphoid tissues.

    Directory of Open Access Journals (Sweden)

    Diana Fleissner

    Full Text Available BACKGROUND: In contrast to intestinal CD4(+ regulatory T cells (T(regs, the generation and function of immunomodulatory intestinal CD8(+ T cells is less well defined. To dissect the immunologic mechanisms of CD8(+ T cell function in the mucosa, reactivity against hemagglutinin (HA expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied. METHODOLOGY AND PRINCIPAL FINDINGS: HA-specific CD8(+ T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3(+ and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8(+Foxp3(+ T cells. Antigen-experienced CD8(+ T cells in this transgenic mouse model suppressed the proliferation of CD8(+ and CD4(+ T cells in vitro. Gene expression analysis of suppressive HA-specific CD8(+ T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4(+ T(reg subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8(+Foxp3(+ T cells. CONCLUSION AND SIGNIFICANCE: We demonstrate that gut specific antigen presentation is sufficient to induce CD8(+ T(regsin vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.

  18. T-cell immunosenescence and inflammatory response in atomic bomb survivors.

    Science.gov (United States)

    Kusunoki, Yoichiro; Yamaoka, Mika; Kubo, Yoshiko; Hayashi, Tomonori; Kasagi, Fumiyoshi; Douple, Evan B; Nakachi, Kei

    2010-12-01

    In this paper we summarize the long-term effects of A-bomb radiation on the T-cell system and discuss the possible involvement of attenuated T-cell immunity in the disease development observed in A-bomb survivors. Our previous observations on such effects include impaired mitogen-dependent proliferation and IL-2 production, decreases in naive T-cell populations, and increased proportions of anergic and functionally weak memory CD4 T-cell subsets. In addition, we recently found a radiation dose-dependent increase in the percentages of CD25(+)/CD127(-) regulatory T cells in the CD4 T-cell population of the survivors. All these effects of radiation on T-cell immunity resemble effects of aging on the immune system, suggesting that ionizing radiation might direct the T-cell system toward a compromised phenotype and thereby might contribute to an enhanced immunosenescence. Furthermore, there are inverse, significant associations between plasma levels of inflammatory cytokines and the relative number of naïve CD4 T cells, also suggesting that the elevated levels of inflammatory markers found in A-bomb survivors can be ascribed in part to T-cell immunosenescence. We suggest that radiation-induced T-cell immunosenescence may result in activation of inflammatory responses and may be partly involved in the development of aging-associated and inflammation-related diseases frequently observed in A-bomb survivors.

  19. Bone marrow function. I. Peripheral T cells are responsible for the increased auto-antiidiotype response of older mice

    International Nuclear Information System (INIS)

    Kim, Y.T.; Goidl, E.A.; Samarut, C.; Weksler, M.E.; Thorbecke, G.J.; Siskind, G.W.

    1985-01-01

    After immunization with trinitrophenyl (TNP)-Ficoll, mice produced both anti-TNP antibodies and auto-anti-idiotype (auto-anti-Id) antibodies specific for the anti-TNP antibody. Older animals produced more auto-anti-Id than did young animals. When mice were exposed to a normally lethal dose of irradiation while their bone marrow (BM) was partially shielded, they survived and slowly (6 wk) regained immune function, as indicated by the number of nucleated cells in their spleen and the in vitro primary plaque-forming cell (PFC) response of their spleen cells to TNP-treated aminoethylated polyacrylamide beads. Recovery is presumably the result of repopulation of the peripheral lymphoid system by cells originating in the BM. By enzyme-linked immunosorbent assay (ELISA), and by hapten-augmentable PFC assay, the authors show that, after recovery from irradiation with their BM shielded, old animals produce low auto-anti-Id responses, like those of young animals. The transfer of splenic T cells into mice irradiated with their BM shielded provided evidence that the magnitude of the auto-anti-Id response is controlled by the peripheral T cells. Thus, mice that received splenic T cells from aged donors produced high levels of auto-anti-Id while those that received splenic T cells from young donors produce low levels of auto-anti-Id

  20. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  1. Preferentially expanding Vγ1+γδ T cells are associated with protective immunity against Plasmodium infection in mice.

    Science.gov (United States)

    Inoue, Shin-Ichi; Niikura, Mamoru; Asahi, Hiroko; Iwakura, Yoichiro; Kawakami, Yasushi; Kobayashi, Fumie

    2017-04-01

    γδ T cells play a crucial role in controlling malaria parasites. Dendritic cell (DC) activation via CD40 ligand (CD40L)-CD40 signaling by γδ T cells induces protective immunity against the blood-stage Plasmodium berghei XAT (PbXAT) parasites in mice. However, it is unknown which γδ T-cell subset has an effector role and is required to control the Plasmodium infection. Here, using antibodies to deplete TCR Vγ1 + cells, we saw that Vγ1 + γδ T cells were important for the control of PbXAT infection. Splenic Vγ1 + γδ T cells preferentially expand and express CD40L, and both Vγ1 + and Vγ4 + γδ T cells produce IFN-γ during infection. Although expression of CD40L on Vγ1 + γδ T cells is maintained during infection, the IFN-γ positivity of Vγ1 + γδ T cells is reduced in late-phase infection due to γδ T-cell dysfunction. In Plasmodium-infected IFN-γ signaling-deficient mice, DC activation is reduced, resulting in the suppression of γδ T-cell dysfunction and the dampening of γδ T-cell expansion in the late phase of infection. Our data suggest that Vγ1 + γδ T cells represent a major subset responding to PbXAT infection and that the Vγ1 + γδ T-cell response is dependent on IFN-γ-activated DCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  3. IL-15 augments TCR-induced CD4+ T cell expansion in vitro by inhibiting the suppressive function of CD25 High CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Tom L Van Belle

    Full Text Available Due to its critical role in NK cell differentiation and CD8(+ T cell homeostasis, the importance of IL-15 is more firmly established for cytolytic effectors of the immune system than for CD4(+ T cells. The increased levels of IL-15 found in several CD4(+ T cell-driven (auto- immune diseases prompted us to examine how IL-15 influences murine CD4(+ T cell responses to low dose TCR-stimulation in vitro. We show that IL-15 exerts growth factor activity on both CD4(+ and CD8(+ T cells in a TCR-dependent and Cyclosporin A-sensitive manner. In CD4(+ T cells, IL-15 augmented initial IL-2-dependent expansion and once IL-15Rα was upregulated, IL-15 sustained the TCR-induced expression of IL-2/15Rβ, supporting proliferation independently of secreted IL-2. Moreover, IL-15 counteracts CD4(+ T cell suppression by a gradually expanding CD25(HighCD4(+ T cell subset that expresses Foxp3 and originates from CD4(+CD25(+ Tregs. These in vitro data suggest that IL-15 may dramatically strengthen the T cell response to suboptimal TCR-triggering by overcoming an activation threshold set by Treg that might create a risk for autoimmune pathology.

  4. The BMP Pathway Participates in Human Naive CD4+ T Cell Activation and Homeostasis.

    Directory of Open Access Journals (Sweden)

    Víctor G Martínez

    Full Text Available Bone Morphogenetic Proteins (BMPs form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application.

  5. Immune activation induces immortalization of HTLV-1 LTR-Tax transgenic CD4+ T cells.

    Science.gov (United States)

    Swaims, Alison Y; Khani, Francesca; Zhang, Yingyu; Roberts, Arthur I; Devadas, Satish; Shi, Yufang; Rabson, Arnold B

    2010-10-21

    Infection with the human T-cell leukemia virus-1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia/lymphoma (ATL). Although the pathogenesis of these disorders is poorly understood, it involves complex interactions with the host immune system. Activation of infected T cells may play an important role in disease pathogenesis through induction of the oncogenic HTLV-1 Tax transactivator protein. To test this hypothesis, we employed transgenic mice in which Tax is regulated by the HTLV-1 LTR. T-cell receptor stimulation of LTR-Tax CD4(+) T cells induced Tax expression, hyper-proliferation, and immortalization in culture. The transition to cellular immortalization was accompanied by markedly increased expression of the antiapoptotic gene, mcl-1, previously implicated as important in T-cell survival. Immortalized cells exhibited a CD4(+)CD25(+)CD3(-) phenotype commonly observed in ATL. Engraftment of activated LTR-Tax CD4(+) T cells into NOD/Shi-scid/IL-2Rγ null mice resulted in a leukemia-like phenotype with expansion and tissue infiltration of Tax(+), CD4(+) lymphocytes. We suggest that immune activation of infected CD4(+) T cells plays an important role in the induction of Tax expression, T-cell proliferation, and pathogenesis of ATL in HTLV-1-infected individuals.

  6. Radiosensitivity of CD45RO+ memory and CD45RO- naive T cells in culture

    International Nuclear Information System (INIS)

    Uzawa, Akiko; Suzuki, Gen; Nakata, Yukiko; Akashi, Makoto; Ohyama, Harumi; Akanuma, Atsuo

    1994-01-01

    Radiosensitivities of various human T-cell subsets were investigated by a proliferation assay and by a single-cell gel electrophoresis assay. Each T-cell subset was purified using a cell sorter and was induced to proliferate by ionomycin and interleukin 2. Unsorted T cells showed biphasic dose-survival curves, indicating the heterogeneity of T cells in terms of radiosensitivity. Purified CD4 + helper and CD8 + killer T cells showed similar biphasic dose-survival curves. Hence both T-cell subsets were composed of cells of different radiosensitivity. The T-cell subsets belonging to different activation stages such as CD45RO + memory and CD45RO - naive T cells had different dose-survival curves. The former was more radiosensitive than the latter. The high radiosensitivity of CD45RO + cells was also demonstrated by single-cell gel electrophoresis after irradiation. This is the first demonstration that a particular cell surface marker on T cells is correlated with greater radiosensitivity. 27 refs., 7 figs., 1 tab

  7. Prevotella intermedia Stimulates Expansion of Vβ-Specific CD4+ T Cells

    Science.gov (United States)

    Leung, K.-P.; Torres, Barbara A.

    2000-01-01

    Recent evidence suggests that certain periodontal pathogens preferentially stimulate T cells expressing specific variable regions on the β chain (Vβ) of the T-cell receptor, which may indicate the presence of a superantigen. Superantigens are microbial proteins that activate large numbers of CD4+ T cells in a Vβ-specific manner. The purpose of this study was to determine whether Prevotella intermedia, a putative periodontal pathogen, activates populations of specific Vβ on CD4+ T cells. Among the bacterial strains tested, P. intermedia strain 17, a clinical isolate, induced the strongest proliferative response in peripheral blood mononuclear cells. Antibodies raised against whole cells of this organism blocked the proliferative activity. P. intermedia-induced proliferation was T-cell specific and required the presence of antigen-presenting cells. Flow cytometric analysis showed that CD4+ T-cell subsets expressing Vβ8, Vβ12, and Vβ17 expanded in response to P. intermedia strain 17. The ability of P. intermedia to stimulate CD4+-T-cell proliferation was further supported by the production profiles of key T-cell cytokines, gamma interferon and interleukin-2. The data collectively suggest that certain strains of P. intermedia can activate Vβ-specific T cells in a manner similar to that of other known microbial superantigens. PMID:10948175

  8. P21-activated kinase 2 is essential in maintenance of peripheral Foxp3+ regulatory T cells.

    Science.gov (United States)

    Choi, Jinyong; Pease, David Randall; Chen, Siqi; Zhang, Bin; Phee, Hyewon

    2018-01-03

    The p21-activated kinase 2 (Pak2), an effector molecule of the Rho family GTPases Rac and Cdc42, regulates diverse functions of T cells. Previously, we showed that Pak2 is required for development and maturation of T cells in the thymus, including thymus-derived regulatory T (Treg) cells. However, whether Pak2 is required for the functions of various subsets of peripheral T cells, such as naive CD4 and helper T-cell subsets including Foxp3 + Treg cells, is unknown. To determine the role of Pak2 in CD4 T cells in the periphery, we generated inducible Pak2 knockout (KO) mice, in which Pak2 was deleted in CD4 T cells acutely by administration of tamoxifen. Temporal deletion of Pak2 greatly reduced the number of Foxp3 + Treg cells, while minimally affecting the homeostasis of naive CD4 T cells. Pak2 was required for proliferation and Foxp3 expression of Foxp3 + Treg cells upon T-cell receptor and interleukin-2 stimulation, differentiation of in vitro induced Treg cells, and activation of naive CD4 T cells. Together, Pak2 is essential in maintaining the peripheral Treg cell pool by providing proliferation and maintenance signals to Foxp3 + Treg cells. © 2018 The Authors. Immunology Published by John Wiley & Sons Ltd.

  9. Isolated splenic peliosis in an immunocompromised patient

    African Journals Online (AJOL)

    cited by Gushiken1). Isolated splenic peliosis is extremely rare, and most cases are associated with peliosis hepatis. Establishing the incidence of splenic peliosis is difficult, since the condition usually remains asymptomatic or is discovered ...

  10. Recognition of Salmonella by Dectin-1 induces presentation of peptide antigen to type B T cells.

    Science.gov (United States)

    Jackson, Nicola; Compton, Evan; Trowsdale, John; Kelly, Adrian P

    2014-04-01

    Type B T cells recognize peptide-MHC class II (pMHCII) isoforms that are structurally distinct from those recognized by conventional type A T cells. These alternative type B conformers result from peptide loading in the absence of HLA-DM. Type A conformers are more stable than type B pMHCII conformers but bind the same peptide in the same register. Here, we show that interaction of Salmonella Typhimurium with bone marrow derived dendritic cells (BMDCs) isolated from C3H/HeNCr1 mice results in enhanced presentation of peptide Ag to type B T cells. The effect could be mimicked by purified PAMPs, the most potent of which were curdlan and zymosan, β-(1,3)-glucan-containing polymers that are recognized by Dectin-1. Blocking of Dectin-1 with Ab and laminarin inhibited the induction of the type B T-cell response by BMDCs, confirming its role as a PRR for S. Typhimurium. Splenic DCs (sDCs) expressed Dectin-1 but were refractive to the induction of type B responses by S. Typhimurium and curdlan. Type B T cells have been shown to escape thymic tolerance and to transfer pathology in an autoimmune disease model. The induction of type B responses by gram-negative bacteria provides a mechanism by which autoreactive T cells may be produced during infection. © 2014 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Peptide pool immunization and CD8+ T cell reactivity

    DEFF Research Database (Denmark)

    Rasmussen, Susanne B; Harndahl, Mikkel N; Buus, Anette Stryhn

    2013-01-01

    Mice were immunized twice with a pool of five peptides selected among twenty 8-9-mer peptides for their ability to form stable complexes at 37°C with recombinant H-2K(b) (half-lives 10-15h). Vaccine-induced immunity of splenic CD8(+) T cells was studied in a 24h IFNγ Elispot assay. Surprisingly......, IFNγ spot-formation was observed without addition of peptide to the assay culture at 3 weeks and 3 months after immunization. To clarify if IFNγ spot formation in the absence of peptide exposure ex vivo is caused by the peptide-pool per se, mice were immunized with single peptides. Three of the five...... peptides induced normal peptide immunity i.e. the specific T cell reactivity in the Elispot culture was strictly dependent on exposure to the immunizing peptide ex vivo. However, immunization with two of the peptides, a VSV- and a Mycobacterium-derived peptide, resulted in IFNγ spot formation without...

  12. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  13. The Timing of Stimulation and IL-2 Signaling Regulate Secondary CD8 T Cell Responses

    Science.gov (United States)

    Khan, Shaniya H.; Martin, Matthew D.; Starbeck-Miller, Gabriel R.; Xue, Hai-Hui; Harty, John T.; Badovinac, Vladimir P.

    2015-01-01

    Abstract Memory CD8 T cells provide protection to immune hosts by eliminating pathogen-infected cells during re-infection. While parameters influencing the generation of primary (1°) CD8 T cells are well established, the factors controlling the development of secondary (2°) CD8 T cell responses remain largely unknown. Here, we address the mechanisms involved in the generation and development of 2° memory (M) CD8 T cells. We observed that the time at which 1° M CD8 T cells enter into immune response impacts their fate and differentiation into 2° M CD8 T cells. Late-entry of 1° M CD8 T cells into an immune response (relative to the onset of infection) not only facilitated the expression of transcription factors associated with memory formation in 2° effector CD8 T cells, but also influenced the ability of 2° M CD8 T cells to localize within the lymph nodes, produce IL-2, and undergo Ag-driven proliferation. The timing of stimulation of 1° M CD8 T cells also impacted the duration of expression of the high-affinity IL-2 receptor (CD25) on 2° effector CD8 T cells and their sensitivity to IL-2 signaling. Importantly, by blocking or enhancing IL-2 signaling in developing 2° CD8 T cells, we provide direct evidence for the role of IL-2 in controlling the differentiation of Ag-driven 2° CD8 T cell responses. Thus, our data suggest that the process of 1° M to 2° M CD8 T cell differentiation is not fixed and can be manipulated, a notion with relevance for the design of future prime-boost vaccination approaches. PMID:26431533

  14. CP-25 Attenuates the Activation of CD4+ T Cells Stimulated with Immunoglobulin D in Human.

    Science.gov (United States)

    Wu, Yu-Jing; Chen, Heng-Shi; Chen, Wen-Sheng; Dong, Jin; Dong, Xiao-Jie; Dai, Xing; Huang, Qiong; Wei, Wei

    2018-01-01

    Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6'- O -benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4 + T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4 + T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4 + T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr 394 ). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4 + T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr 394 ) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4 + T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.

  15. The role of microfibrillar-associated protein 4 (MFAP4) in the formation and function of splenic compartments during embryonic and adult life

    DEFF Research Database (Denmark)

    Milićević, Novica M; Schmidt, Friederike; Kunz, Natalia

    2016-01-01

    implantation into adult mice in order to obtain information about the role of MFAP4 in the formation of splenic tissue during ontogeny and adult life. The present study shows that MFAP4 is co-localized with laminin in the B- and T-cell zones of the spleen, in addition to capsular and trabecular expression...... regarding the MFAP4 dependency of splenic B-cell maturation....

  16. Phenotype, effector function, and tissue localization of PD-1-expressing human follicular helper T cell subsets

    Directory of Open Access Journals (Sweden)

    Hillsamer Peter

    2011-09-01

    Full Text Available Abstract Background It is well established that PD-1 is expressed by follicular T cells but its function in regulation of human T helper cells has been unclear. We investigated the expression modality and function of PD-1 expressed by human T cells specialized in helping B cells. Results We found that PD-1-expressing T cells are heterogeneous in PD-1 expression. We identified three different PD-1-expressing memory T cell subsets (i.e. PD-1low (+, PD-1medium (++, and PD-1high (+++ cells. PD-1+++ T cells expressed CXCR5 and CXCR4 and were localized in the rim of germinal centers. PD-1+ or PD-1++ cells expressed CCR7 and were present mainly in the T cell area or other parts of the B cell follicles. Utilizing a novel antigen density-dependent magnetic sorting (ADD-MS method, we isolated the three T cell subsets for functional characterization. The germinal center-located PD-1+++ T cells were most efficient in helping B cells and in producing IL-21 and CXCL13. Other PD-1-expressing T cells, enriched with Th1 and Th17 cells, were less efficient than PD-1+++ T cells in these capacities. PD-1+++ T cells highly expressed Ki-67 and therefore appear active in cell activation and proliferation in vivo. IL-2 is a cytokine important for proliferation and survival of the PD-1+++ T cells. In contrast, IL-21, while a major effector cytokine produced by the PD-1-expressing T helper cells, had no function in generation, survival, or proliferation of the PD-1-expressing helper T cells at least in vitro. PD-1 triggering has a suppressive effect on the proliferation and B cell-helping function of PD-1+++ germinal center T cells. Conclusion Our results revealed the phenotype and effector function of PD-1-expressing T helper cell subsets and indicate that PD-1 restrains the B cell-helping function of germinal center-localized T cells to prevent excessive antibody response.

  17. Tracing T cell differentiation by genetic barcoding

    NARCIS (Netherlands)

    Heijst, Jeroen Waltherus Johannes van

    2010-01-01

    Following antigen encounter, activated T cells can give rise to functionally distinct T cell subsets. Understanding how different T cell subsets arise requires technologies that can monitor the developmental potential of single precursor cells (chapter 2). This thesis describes the development and

  18. Splenic irradiation for hairy cell leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Moundhri, A.; Graham, P.H. [St George Hospital, Kogarah, NSW, (Australia). Department of Radiation Oncology

    1997-11-01

    Splenic irradiation in the management of hairy cell leukaemia is previously unreported. A case is presented here to illustrate that splenic irradiation may be a useful addition to systemic therapies. It achieved local splenic and blood picture response and remission similar to splenectomy without any significant toxicity. (authors). 7 refs., 2 figs.

  19. Large primary splenic cyst: A laparoscopic technique.

    LENUS (Irish Health Repository)

    Geraghty, M

    2009-01-01

    Splenic cysts are rare lesions with around 800 cases reported in the world literature. Traditionally splenectomy was the treatment of choice. However, with the recognition of the important immunological function of the spleen, new techniques to preserve splenic function have been developed. This case emphasizes that in selected cases splenic preservation is appropriate.

  20. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    Science.gov (United States)

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840

  1. Splenic conservation in children with splenic injury at Nnewi - South ...

    African Journals Online (AJOL)

    Hitherto, the mode of treatment has been towards resuscitation and splenectomy but over the past one and half decades, the trend moved to conserve. Objective: We therefore review the management of splenic injuries in children over the past ten years as well as highlight management problems. Patients and Methods: ...

  2. FoxP3: A Life beyond Regulatory T Cells

    Science.gov (United States)

    Liu, Yang; Zheng, Pan

    2009-01-01

    This review analyzes the current dogma that FoxP3 functions exclusively in the regulatory T cells (Treg) and that FoxP3+ Treg is indispensable for survival of immune competent mice. We outline evidence that FoxP3 is expressed well beyond Treg and that the FoxP3 mutation in thymic stromal cells causes defective thymopoiesis, which in turn leads to increased homeostatic proliferation. We argue that the lethal autoimmune disease in mice with germline mutation of FoxP3 is due to both lack of Treg and enhanced homeostatic proliferation. PMID:19079616

  3. Gamma interferon-induced T-cell loss in virulent Mycobacterium avium infection.

    Science.gov (United States)

    Flórido, Manuela; Pearl, John E; Solache, Alejandra; Borges, Margarida; Haynes, Laura; Cooper, Andrea M; Appelberg, Rui

    2005-06-01

    Infection by virulent Mycobacterium avium caused progressive severe lymphopenia in C57BL/6 mice due to increased apoptosis rates. T-cell depletion did not occur in gamma interferon (IFN-gamma)-deficient mice which showed increased T-cell numbers and proliferation; in contrast, deficiency in nitric oxide synthase 2 did not prevent T-cell loss. Although T-cell loss was IFN-gamma dependent, expression of the IFN-gamma receptor on T cells was not required for depletion. Similarly, while T-cell loss was optimal if the T cells expressed IFN-gamma, CD8(+) T-cell depletion could occur in the absence of T-cell-derived IFN-gamma. Depletion did not require that the T cells be specific for mycobacterial antigen and was not affected by deficiencies in the tumor necrosis factor receptors p55 or p75, the Fas receptor (CD95), or the respiratory burst enzymes or by forced expression of bcl-2 in hematopoietic cells.

  4. Viral immune evasion due to persistence of activated T cells without effector function.

    Science.gov (United States)

    Zajac, A J; Blattman, J N; Murali-Krishna, K; Sourdive, D J; Suresh, M; Altman, J D; Ahmed, R

    1998-12-21

    We examined the regulation of virus-specific CD8 T cell responses during chronic lymphocytic choriomeningitis virus (LCMV) infection of mice. Our study shows that within the same persistently infected host, different mechanisms can operate to silence antiviral T cell responses; CD8 T cells specific to one dominant viral epitope were deleted, whereas CD8 T cells responding to another dominant epitope persisted indefinitely. These virus-specific CD8 T cells expressed activation markers (CD69(hi), CD44(hi), CD62Llo) and proliferated in vivo but were unable to elaborate any antiviral effector functions. This unresponsive phenotype was more pronounced under conditions of CD4 T cell deficiency, highlighting the importance of CD8- CD4 T cell collaboration in controlling persistent infections. Importantly, in the presence of CD4 T cell help, adequate CD8 effector activity was maintained and the chronic viral infection eventually resolved. The persistence of activated virus-specific CD8 T cells without effector function reveals a novel mechanism for silencing antiviral immune responses and also offers new possibilities for enhancing CD8 T cell immunity in chronically infected hosts.

  5. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Yilin Cao

    Full Text Available T lymphocytes (T cells undergo metabolic reprogramming after activation to provide energy and biosynthetic materials for growth, proliferation and differentiation. Distinct T cell subsets, however, adopt metabolic programs specific to support their needs. As CD4 T cells coordinate adaptive immune responses while CD8 T cells become cytotoxic effectors, we compared activation-induced proliferation and metabolic reprogramming of these subsets. Resting CD4 and CD8 T cells were metabolically similar and used a predominantly oxidative metabolism. Following activation CD8 T cells proliferated more rapidly. Stimulation led both CD4 and CD8 T cells to sharply increase glucose metabolism and adopt aerobic glycolysis as a primary metabolic program. Activated CD4 T cells, however, remained more oxidative and had greater maximal respiratory capacity than activated CD8 T cells. CD4 T cells were also associated with greater levels of ROS and increased mitochondrial content, irrespective of the activation context. CD8 cells were better able, however, to oxidize glutamine as an alternative fuel source. The more glycolytic metabolism of activated CD8 T cells correlated with increased capacity for growth and proliferation, along with reduced sensitivity of cell growth to metabolic inhibition. These specific metabolic programs may promote greater growth and proliferation of CD8 T cells and enhance survival in diverse nutrient conditions.

  6. Murine and bovine γδ T cells enhance innate immunity against Brucella abortus infections.

    Directory of Open Access Journals (Sweden)

    Jerod A Skyberg

    Full Text Available γδ T cells have been postulated to act as a first line of defense against infectious agents, particularly intracellular pathogens, representing an important link between the innate and adaptive immune responses. Human γδ T cells expand in the blood of brucellosis patients and are active against Brucella in vitro. However, the role of γδ T cells in vivo during experimental brucellosis has not been studied. Here we report TCRδ(-/- mice are more susceptible to B. abortus infection than C57BL/6 mice at one week post-infection as measured by splenic colonization and splenomegaly. An increase in TCRγδ cells was observed in the spleens of B. abortus-infected C57BL/6 mice, which peaked at two weeks post-infection and occurred concomitantly with diminished brucellae. γδ T cells were the major source of IL-17 following infection and also produced IFN-γ. Depletion of γδ T cells from C57BL/6, IL-17Rα(-/-, and GMCSF(-/- mice enhanced susceptibility to B. abortus infection although this susceptibility was unaltered in the mutant mice; however, when γδ T cells were depleted from IFN-γ(-/- mice, enhanced susceptibility was observed. Neutralization of γδ T cells in the absence of TNF-α did not further impair immunity. In the absence of TNF-α or γδ T cells, B. abortus-infected mice showed enhanced IFN-γ, suggesting that they augmented production to compensate for the loss of γδ T cells and/or TNF-α. While the protective role of γδ T cells was TNF-α-dependent, γδ T cells were not the major source of TNF-α and activation of γδ T cells following B. abortus infection was TNF-α-independent. Additionally, bovine TCRγδ cells were found to respond rapidly to B. abortus infection upon co-culture with autologous macrophages and could impair the intramacrophage replication of B. abortus via IFN-γ. Collectively, these results demonstrate γδ T cells are important for early protection to B. abortus infections.

  7. Direct inhibition of T-cell responses by the Cryptococcus capsular polysaccharide glucuronoxylomannan.

    Directory of Open Access Journals (Sweden)

    Lauren E Yauch

    2006-11-01

    Full Text Available The major virulence factor of the pathogenic fungi Cryptococcus neoformans and C. gattii is the capsule. Glucuronoxylomannan (GXM, the major component of the capsule, is a high-molecular-weight polysaccharide that is shed during cryptococcosis and can persist in patients after successful antifungal therapy. Due to the importance of T cells in the anticryptococcal response, we studied the effect of GXM on the ability of dendritic cells (DCs to initiate a T-cell response. GXM inhibited the activation of cryptococcal mannoprotein-specific hybridoma T cells and the proliferation of OVA-specific OT-II T cells when murine bone marrow-derived DCs were used as antigen-presenting cells. Inhibition of OT-II T-cell proliferation was observed when either OVA protein or OVA323-339 peptide was used as antigen, indicating GXM did not merely prevent antigen uptake or processing. We found that DCs internalize GXM progressively over time; however, the suppressive effect did not require DCs, as GXM directly inhibited T-cell proliferation induced by anti-CD3 antibody, concanavalin A, or phorbol-12-myristate-13-acetate/ionomycin. Analysis of T-cell viability revealed that the reduced proliferation in the presence of GXM was not the result of increased cell death. GXM isolated from each of the four major cryptococcal serotypes inhibited the proliferation of human peripheral blood mononuclear cells stimulated with tetanus toxoid. Thus, we have defined a new mechanism by which GXM can impart virulence: direct inhibition of T-cell proliferation. In patients with cryptococcosis, this could impair optimal cell-mediated immune responses, thereby contributing to the persistence of cryptococcal infections.

  8. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten

    2016-01-01

    -specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses...

  9. T cell exhaustion and Interleukin 2 downregulation.

    Science.gov (United States)

    Balkhi, Mumtaz Y; Ma, Qiangzhong; Ahmad, Shazia; Junghans, Richard P

    2015-02-01

    T cells reactive to tumor antigens and viral antigens lose their reactivity when exposed to the antigen-rich environment of a larger tumor bed or viral load. Such non-responsive T cells are termed exhausted. T cell exhaustion affects both CD8+ and CD4+ T cells. T cell exhaustion is attributed to the functional impairment of T cells to produce cytokines, of which the most important may be Interleukin 2 (IL2). IL2 performs functions critical for the elimination of cancer cells and virus infected cells. In one such function, IL2 promotes CD8+ T cell and natural killer (NK) cell cytolytic activities. Other functions include regulating naïve T cell differentiation into Th1 and Th2 subsets upon exposure to antigens. Thus, the signaling pathways contributing to T cell exhaustion could be linked to the signaling pathways contributing to IL2 loss. This review will discuss the process of T cell exhaustion and the signaling pathways that could be contributing to T cell exhaustion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of nilotinib on regulatory T cells: the dose matters

    Directory of Open Access Journals (Sweden)

    Chen Baoan

    2010-01-01

    Full Text Available Abstract Background Nilotinib is a tyrosine kinase inhibitor with high target specificity. Here, we characterized the effects of nilotinib for the first time on CD4+CD25+ regulatory T cells (Tregs which regulate anti-tumor/leukemia immune responses. Design and Methods Carboxyfluorescein diacetate succinimidyl ester (CFSE and 5-bromo-2-deoxy -uridine (BrdU were used to assess the proliferation and cell cycle distribution of Tregs. The expression of the transcription factor forkhead box P3 (FoxP3 and the glucocorticoid-induced tumor necrosis factor receptor (GITR were measured by flow cytometry. Western blotting analysis was used to detect the effects of nilotinib on the signal transduction cascade of T-cell receptor (TCR in Tregs. Results Nilotinib inhibited the proliferation and suppressive capacity of Tregs in a dose-dependent manner. However, the production of cytokines secreted by Tregs and CD4+CD25- T cells was only inhibited at high concentrations of nilotinib exceeding the mean therapeutic serum concentrations of the drug in patients. Only high doses of nilotinib arrested both Tregs and CD4+CD25- T cells in the G0/G1 phase and down-regulated the expression of FoxP3 and GITR. In western blotting analysis, nilotinib did not show significant inhibitory effects on TCR signaling events in Tregs and CD4+CD25- T cells. Conclusions These findings indicate that nilotinib does not hamper the function of Tregs at clinical relevant doses, while long-term administration of nilotinib still needs to be investigated.

  11. Primary splenic torsion in a Boston terrier

    International Nuclear Information System (INIS)

    Ohta, H.; Takagi, S.; Murakami, M.; Sasaki, N.; Yoshikawa, M.; Nakamura, K.; Hwang, S.J.; Yamasaki, M.; Takiguchi, M.

    2009-01-01

    A 7-year-old female Boston terrier was referred to Hokkaido University Veterinary Teaching Hospital with a history of hemoglobinuria and anemia for several days. Abdominal radiographs showed splenomegaly, and ultrasonography revealed a hypoechoic splenic parenchyma with interspersed linear echoes consistent with the ultrasonographic appearance of splenic torsion. Ultrasonography and computed tomography (CT) indicated a C-shaped spleen. Exploratory laparotomy confirmed the diagnosis of splenic torsion. A splenectomy was performed, and the dog recovered well without complications. This is the first report of splenic torsion in Boston terriers, and the usefulness of ultrasonographic and CT findings of the splenic torsion was also confirmed

  12. Primary splenic torsion in a Boston terrier.

    Science.gov (United States)

    OHTA, Hiroshi; TAKAGI, Satoshi; MURAKAMI, Masahiro; SASAKI, Noboru; YOSHIKAWA, Muneyoshi; NAKAMURA, Kensuke; HWANG, Shiang-Jyi; YAMASAKI, Masahiro; TAKIGUCHI, Mitsuyoshi

    2009-11-01

    A 7-year-old female Boston terrier was referred to Hokkaido University Veterinary Teaching Hospital with a history of hemoglobinuria and anemia for several days. Abdominal radiographs showed splenomegaly, and ultrasonography revealed a hypoechoic splenic parenchyma with interspersed linear echoes consistent with the ultrasonographic appearance of splenic torsion. Ultrasonography and computed tomography (CT) indicated a C-shaped spleen. Exploratory laparotomy confirmed the diagnosis of splenic torsion. A splenectomy was performed, and the dog recovered well without complications. This is the first report of splenic torsion in Boston terriers, and the usefulness of ultrasonographic and CT findings of the splenic torsion was also confirmed.

  13. Lymphocytic choriomeningitis virus infection is associated with long-standing perturbation of LFA-1 expression on CD8+ T cells

    DEFF Research Database (Denmark)

    Andersson, E C; Christensen, Jan Pravsgaard; Scheynius, A

    1995-01-01

    belonged to the CD8+LFA-1hi subset and, correspondingly, the ligand ICAM-1 was found to be up-regulated on endothelial cells in the inflamed meninges. Preincubation of LCMV-primed donor splenocytes with anti-LFA-1 markedly inhibited the transfer of virus-specific delayed-type hypersensitivity to naive......Flow cytometric analysis of splenocytes from mice infected with lymphocytic choriomeningitis virus revealed marked and long-standing up-regulation of LFA-1 expression on CD8+, but not on CD4+ T cells. Appearance of CD8+ T cells with a changed expression of adhesion molecules reflected polyclonal...... activation and expansion which was demonstrated not to depend on CD4+ T cells or their products. Cell sorting experiments defined virus-specific CTL to be included in this population (LFA-1hiMEL-14lo), but since about 80% of splenic CD8+ T cells have a changed phenotype, extensive bystander activation must...

  14. Memory B and T cells.

    Science.gov (United States)

    Vitetta, E S; Berton, M T; Burger, C; Kepron, M; Lee, W T; Yin, X M

    1991-01-01

    Three remarkable and unique features of the immune system are specificity, diversity, and memory. Immunological memory involves both T and B cells and results in a secondary antibody response that is faster, of higher affinity, and results in the secretion of non-IgM isotypes of Ig. In this review we discuss the properties of memory T and B cells, their specific receptors, and the events which occur both in the nucleus and on the cell surface during generation and activation of these cells. Although memory T and B cells use different mechanisms to elaborate memory, there are a number of interesting analogies: lymphokines vs antibodies and affinity maturation of B cell antigen receptors vs upregulation of adhesion molecules on T cells. Finally, we discuss the importance of these cells in health and disease and suggest what impact additional information about these cells might have on the manipulation of the immune response.

  15. CXCR5+CD8+T cells could induce the death of tumor cells in HBV-related hepatocellular carcinoma.

    Science.gov (United States)

    Jin, Yun; Lang, Cuicui; Tang, Jianzhong; Geng, Jiawei; Song, Haihan K; Sun, Zhiwei; Wang, Jinfeng

    2017-12-01

    The follicular CXCR5 + CD8 + T cells have recently emerged as a critical cell type in mediating peripheral tolerance as well as antiviral immune responses during chronic infections. In this study, we investigated the function of CXCR5 + CD8 + T cells in HBV-related hepatocellular carcinoma patients. Compared to CXCR5 - CD8 + T cells, CXCR5 + CD8 + T cells presented elevated PD-1 expression but reduced Tim-3 and CTLA-4 expression. Upon anti-CD3/CD28 stimulation, CXCR5 + CD8 + T cells demonstrated higher proliferation potency than CXCR5 - CD8 + T cells, especially after PD-1 blockade. CXCR5 + CD8 + T cells also demonstrated significantly higher granzyme B synthesis and release, as well as higher level of degranulation. Tumor cells were more readily eliminated by CXCR5 + CD8 + T cells than by CXCR5 - CD8 + T cells. Interestingly, we found that B cells were more resistant to CXCR5 + CD8 + T cell-mediated killing than tumor cells, possibly through IL-10-mediated protection. In addition, the CXCR5 + CD8 + T cell-mediated cytotoxic effects on tumor cells could be significantly enhanced by PD-L1 blockade. Together, we presented that in patients with in HBV-related hepatocellular carcinoma, CXCR5 + CD8 + T cells could mediate tumor cell death more potently than the CXCR5 - CD8 + T cells in vitro while the autologous B cells were protected. Copyright © 2017. Published by Elsevier B.V.

  16. T cell responses in senior patients with community-acquired pneumonia related to disease severity.

    Science.gov (United States)

    Bian, Lu-Qin; Bi, Ying; Zhou, Shao-Wei; Chen, Zi-Dan; Wen, Jun; Shi, Jin; Mao, Ling; Wang, Ling

    2017-12-01

    Senior individuals older than 65 years of age are at a disproportionally higher risk of developing pneumonia. Impaired capacity to defend against airway infections may be one of the reasons. It is generally believed that weaker regulatory T cell responses may be beneficial to host defense against pathogens. In senior patients with community-acquired bacterial pneumonia, we investigated the frequencies and functions of regulatory T cells. Interestingly, we found that compared to age- and sex-matched healthy controls, senior pneumonia patients presented lower frequencies of Foxp3-expressing and Helios-expressing CD4 + T cells. The quantity of Foxp3 and Helios being expressed, measured by their mRNA transcription levels, was also lower in CD4 + T cells from pneumonia patients. Furthermore, following TCR and TGF-β stimulation, pneumonia patients presented impaired capacity to upregulate Foxp3 and Helios. Functional analyses revealed that CD4 + T cells from pneumonia patients secreted lower amounts of IL-10 and TGF-β, two cytokines critical to regulatory T cell-mediated suppression. Also, the expression of granzyme B and perforin, which were cytolytic molecules potentially utilized by regulatory T cells to mediate the elimination of antigen-presenting cells and effector T cells, were reduced in CD4 + CD25 + T cells from senior pneumonia patients. In addition, the CD4 + CD25 + T cells from senior pneumonia patients presented reduced capacity to suppress effector CD4 + and CD8 + T cell proliferation. Moreover, the value of pneumonia severity index was inversely correlated with several parameters of regulatory T cell function. Together, our results demonstrated that senior pneumonia patients presented a counterintuitive impairment in regulatory T cell responses that was associated with worse prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Downregulation of IL-12 and a novel negative feedback system mediated by CD25+CD4+ T cells

    International Nuclear Information System (INIS)

    Sato, Kojiro; Tateishi, Shoko; Kubo, Kanae; Mimura, Toshihide; Yamamoto, Kazuhiko; Kanda, Hiroko

    2005-01-01

    CD25 + CD4 + regulatory T cells suppress immune responses and are believed to play roles in preventing autoimmune diseases. However, the mechanism(s) underlying the suppression and the regulation of their homeostasis remain to be elucidated. Here we show that these regulatory T cells downregulated CD25 - CD4 + T-cell-mediated production of IL-12 from antigen-presenting cells, which can act as a growth factor for CD25 - CD4 + T cells. We further found that CD25 + CD4 + T cells, despite their well-documented 'anergic' nature, proliferate significantly in vitro only when CD25 - CD4 + T cells are present. Notably, this proliferation was strongly dependent on IL-2 and relatively independent of IL-12. Thus, CD25 + CD4 + T cells suppress CD25 - CD4 + T-cell responses, at least in part, by inhibiting IL-12 production while they themselves can undergo proliferation with the mediation of CD25 - CD4 + T cells in vitro. These results offer a novel negative feedback system involving a tripartite interaction among CD25 + CD4 + and CD25 - CD4 + T cells, and APCs that may contribute to the termination of immune responses

  18. [CD4+ alpha beta T cell and gamma delta T cell responses to BCG in patients with pulmonary tuberculosis--comparison with healthy controls].

    Science.gov (United States)

    Tsukaguchi, K; Okamura, H; Tokuyama, T; Okamoto, Y; Fu, A; Yamamoto, C; Nakaya, M; Kobayashi, A; Yoneda, T; Narita, N

    1997-12-01

    We demonstrated that CD4+ alpha beta (CD4+) and gamma delta T cell subsets from healthy donors had similar effector functions (cytotoxicity and cytokine production) in response to mycobacterial antigens, despite differences in the antigens recognized. To elucidate the pathogenesis of pulmonary tuberculosis, this study was undertaken to compare T cell functions between patients with pulmonary tuberculosis with no complications and healthy controls. Both resting and activated CD4+ and gamma delta T cells from the patient group proliferated in response to live BCG at a significantly lower rate than those from the control group. The cytotoxicity of BCG-pulsed monocytes and IFN-gamma production in both the CD4+ and gamma delta T cells from patients was significantly lower than those of controls. In contrast to IFN-gamma, significantly higher IL-10 production by both CD4+ and gamma delta T cells from patients was detected. The proliferative responses to BCG by CD4+ and gamma delta T cells from patients after antituberculous therapy were partially restored, but remained at lower levels compared with controls. These results suggest that not only a general deterioration in CD4+ and gamma delta T cells effector functions, but also suppressive factors (such as IL-10) might be responsible for the pathogenesis of pulmonary tuberculosis, and that the low response to BCG by both CD4+ and gamma delta T cells in patients with tuberculosis is in part attributable to patient predisposition.

  19. Immunosuppressive Effects of the Traditional Chinese Herb Qu Mai on Human Alloreactive T Cells

    Science.gov (United States)

    Reid-Adam, Jessica; Yang, Nan; Song, Ying; Cravedi, Paolo; Li, Xiu-Min; Heeger, Peter

    2013-01-01

    Current therapies for transplant rejection are sub-optimally effective. In an effort to discover novel immunosuppressants we used cytokine ELISPOT and ELISAs to screen extracts from 53 traditional Chinese herbs for their ability to suppress human alloreactive T cells. We identified a dichloromethane-soluble fraction (QMAD) of Qu Mai (Dianthus superbus) as a candidate. HPLC analysis of QMAD revealed 3 dominant peaks, each with a MW ~600 Daltons and distinct from cyclosporine and rapamycin. When we added QMAD to human mixed lymphocyte cultures, we observed dose-dependent inhibition of proliferation and IFNγ production, by naïve and memory alloreactive T cells, and observed an increased frequency of Foxp3+CD4+ T cells. To address whether QMAD induces regulatory T cells we added QMAD to anti-CD3/CD28-stimulated naïve CD4 T cells and observed a dose-dependent upregulation of Foxp3 associated with new suppressive capacity. Mechanistically, QMAD did not induce T cell IL-10 or TGFβ but blocked T cell AKT phosphorylation, a key signaling nexus required for T cell proliferation and expansion, that simultaneously prevents Foxp3 transcription. Our findings provide novel insight into the anti-inflammatory effects of one traditional Chinese herb, and support the need for continued isolation, characterization and testing of QMAD-derived components as immune suppressants for transplant rejection. PMID:23433080

  20. Bim Regulates Alloimmune-Mediated Vascular Injury Through Effects on T Cell Activation and Death

    Science.gov (United States)

    von Rossum, Anna; Enns, Winnie; Shi, Yu P.; MacEwan, Grace E.; Malekesmaeli, Mehrnoush; Brinkman, Ryan; Choy, Jonathan C.

    2014-01-01

    Objective Bim is a pro-apoptotic Bcl-2 protein known to down-regulate immune responses and to also be required for antigen-induced T cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T cell responses in a model of vascular rejection. Approach and Results Bim was required for proliferation of CD4 and CD8 T cells, and for IL-2 production, in T cells stimulated with alloantigen in vitro. Moreover, a partial reduction in Bim expression was sufficient to attenuate T cell activation whereas a complete elimination of Bim was required to prevent CD4 T cell death in response to cytokine withdrawl. When alloimmune-mediated vascular rejection was examined using an aortic interposition model, there was significantly less intimal thickening in Bim+/−, but not Bim−/−, graft recipients. T cell proliferation in response to allograft arteries was significantly reduced in both Bim+/− and Bim−/− mice, but cell death was attenuated only in Bim−/− animals. Conclusions Bim controls both T cell activation and death in response to alloantigen stimulation. These processes act cooperatively to determine the outcome of immune responses in allograft arteries. PMID:24700126

  1. Bim regulates alloimmune-mediated vascular injury through effects on T-cell activation and death.

    Science.gov (United States)

    von Rossum, Anna; Enns, Winnie; Shi, Yu P; MacEwan, Grace E; Malekesmaeli, Mehrnoush; Brinkman, Ryan; Choy, Jonathan C

    2014-06-01

    Bim is a proapoptotic Bcl-2 protein known to downregulate immune responses and to also be required for antigen-induced T-cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T-cell responses in a model of vascular rejection. Bim was required for proliferation of CD4 and CD8 T cells, and for interleukin-2 production, in T cells stimulated with alloantigen in vitro. Moreover, a partial reduction in Bim expression was sufficient to attenuate T-cell activation, whereas a complete elimination of Bim was required to prevent CD4 T-cell death in response to cytokine withdrawl. When alloimmune-mediated vascular rejection was examined using an aortic interposition model, there was significantly less intimal thickening in Bim(+/-), but not Bim(-/-), graft recipients. T-cell proliferation in response to allograft arteries was significantly reduced in both Bim(+/-) and Bim(-/-) mice, but cell death was attenuated only in Bim(-/-) animals. Bim controls both T-cell activation and death in response to alloantigen stimulation. These processes act cooperatively to determine the outcome of immune responses in allograft arteries. © 2014 American Heart Association, Inc.

  2. Cell-contact-dependent activation of CD4+T cells by adhesion molecules on synovial fibroblasts.

    Science.gov (United States)

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  3. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses.

    Science.gov (United States)

    Kursar, Mischo; Bonhagen, Kerstin; Fensterle, Joachim; Köhler, Anne; Hurwitz, Robert; Kamradt, Thomas; Kaufmann, Stefan H E; Mittrücker, Hans-Willi

    2002-12-16

    CD4+ T cell help is important for the generation of CD8+ T cell responses. We used depleting anti-CD4 mAb to analyze the role of CD4+ T cells for memory CD8+ T cell responses after secondary infection of mice with the intracellular bacterium Listeria monocytogenes, or after boost immunization by specific peptide or DNA vaccination. Surprisingly, anti-CD4 mAb treatment during secondary CD8+ T cell responses markedly enlarged the population size of antigen-specific CD8+ T cells. After boost immunization with peptide or DNA, this effect was particularly profound, and antigen-specific CD8+ T cell populations were enlarged at least 10-fold. In terms of cytokine production and cytotoxicity, the enlarged CD8+ T cell population consisted of functional effector T cells. In depletion and transfer experiments, the suppressive function could be ascribed to CD4+CD25+ T cells. Our results demonstrate that CD4+ T cells control the CD8+ T cell response in two directions. Initially, they promote the generation of a CD8+ T cell responses and later they restrain the strength of the CD8+ T cell memory response. Down-modulation of CD8+ T cell responses during infection could prevent harmful consequences after eradication of the pathogen.

  4. Effects of Al on the splenic immune function and NE in rats.

    Science.gov (United States)

    Hu, Chongwei; Li, Jing; Zhu, Yanzhu; Bai, Chongsheng; Zhang, Jihong; Xia, Shiliang; Li, Yanfei

    2013-12-01

    Norepinephrine (NE) regulates the splenic immune function and it may be related to the effects of Aluminum (Al) on the splenic immune function. Here, the aim of this study was to further explore the effects of aluminum trichloride (AlCl3) on the splenic immune function and its relationship with NE. Forty male Wistar rats were orally exposed to AlCl3 (0, 64.18, 128.36 and 256.72 mg/kg BW) through drinking water for 120 days. The CD3(+), CD4(+), CD8(+) T lymphocytes, the T and B lymphocytes proliferation rates and serum NE concentration were examined. The correlation analysis between splenic immune function and NE were done. The results showed that the CD3(+), CD4(+), CD8(+) T lymphocytes and the T and B lymphocytes proliferation rates decreased and NE concentration increased in AlCl3-treated rats. NE was negatively correlated with proportions of CD3(+), CD4(+) T lymphocytes and T and B lymphocytes proliferation rates, but not correlated with CD8(+) T lymphocytes. The results suggest that AlCl3 suppresses the splenic immune function and NE plays important role in this process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. HER-2 peptides p776 and F7, N-terminal-linked with Ii-Key tetramer (LRMK) help the proliferation of E75-TCR+ cells: The dependency of help on the side chains of LRMK-extended peptide pointed towards the T cell receptor.

    Science.gov (United States)

    Li, Yufeng; Ishiyama, Satoshi; Matsueda, Satoko; Tsuda, Naotake; Ioannides, Constantin G

    2008-06-01

    The objective of this study was to determine whether peptides consisting of the Ii-Key peptide LRMK linked to the N-terminal ends of HER-2 peptides would stimulate the expansion of antigen-specific E75-TCR+CD8+ cells. The peptides tested were N-acetylated and linked to an alpha-amide at the C-terminus; some of the peptides contained epsilon-aminovaleric acid (Ava) between the LRMK and the HER-2 peptide. Of the seven LRMK-HER-2 peptides tested to date, three effectively induced IFN-gamma production by peripheral blood mononuclear cells (PBMCs) from healthy donors and women with ductal carcinoma in situ. A fusion peptide, LRMK-Ava-HER-2(777-789), was more immunogenic than the natural HER-2(777-789) antigen, G89, with regard to IFN-gamma production. In combination with the CD8-activating peptide E75 [HER-2(369-377)] LRMK-p776 and LRMK-Ava-F7 induced the proliferation of E75-TCR(Med+Hi) CD8+ cells to a greater extent than did 1,000 or 5,000 nM of E75 alone, respectively. The induction effects were strongest at 600 nM for LRMK-p776 and 3,000 nM for LRMK-Ava-F7. At 3,000 nM, LRMK-p776 was cytotoxic to PBMCs. LRMK-p776 and F7 had a similar specificity and preferences for binding HLA-DR molecules. The molecular modeling of HLA-DR:LRMK-p776 and HLA-DR:LRMK-Ava-F7 complexes revealed the side chains of the peptides, which pointed towards the T-cell receptor. Differences in side chain orientation introduced by various N-terminal extensions of MHC class II-bound peptides should be important for directing CD4+ cells to stimulate CD8+ cells or for eliminating regulatory T cells in cancer immunotherapy.

  6. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    Science.gov (United States)

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (T EM ), and longer-lived central memory (T CM ) and stem cell memory (T SCM ) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of T CM and T SCM memory cells resulted in phenotypic conversion into T EM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired T EM -associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  7. The Small Rho GTPases Rac1 and Rac2 Are Important for T-Cell Independent Antigen Responses and for Suppressing Switching to IgG2b in Mice.

    Science.gov (United States)

    Gerasimčik, Natalija; He, Minghui; Dahlberg, Carin I M; Kuznetsov, Nikolai V; Severinson, Eva; Westerberg, Lisa S

    2017-01-01

    The Rho GTPases Cdc42, Rac1, and Rac2 coordinate receptor signaling to cell adhesion, migration, and proliferation. Deletion of Rac1 and Rac2 early during B cell development leads to failure in B cell entry into the splenic white pulp. Here, we sought to understand the role of Rac1 and Rac2 in B cell functionality and during the humoral antibody response. To circumvent the migratory deficiency of B cells lacking both Rac1 and Rac2, we took the approach to inducibly delete Rac1 in Rac2 -/- B cells in the spleen (Rac1 B Rac2 -/- B cells). Rac1 B Rac2 -/- mice had normal differentiation of splenic B cell populations, except for a reduction in marginal zone B cells. Rac1 B Rac2 -/- B cells showed normal spreading response on antibody-coated layers, while both Rac2 -/- and Rac1 B Rac2 -/- B cells had reduced homotypic adhesion and decreased proliferative response when compared to wild-type B cells. Upon challenge with the T-cell-independent antigen TNP-conjugated lipopolysaccharide, Rac1 B Rac2 -/- mice showed reduced antibody response. In contrast, in response to the T-cell-dependent antigen sheep red blood cells, Rac1 B Rac2 -/- mice had increased serum titers of IgG1 and IgG2b. During in vitro Ig class switching, Rac1 B Rac2 -/- B cells had elevated germline γ2b transcripts leading to increased Ig class switching to IgG2b. Our data suggest that Rac1 and Rac2 serve an important role in regulation of the B cell humoral immune response and in suppressing Ig class switching to IgG2b.

  8. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo.

    Directory of Open Access Journals (Sweden)

    Yorifumi Satou

    2011-02-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 is the causal agent of a neoplastic disease of CD4+ T cells, adult T-cell leukemia (ATL, and inflammatory diseases including HTLV-1 associated myelopathy/tropical spastic paraparesis, dermatitis, and inflammatory lung diseases. ATL cells, which constitutively express CD25, resemble CD25+CD4+ regulatory T cells (T(reg. Approximately 60% of ATL cases indeed harbor leukemic cells that express FoxP3, a key transcription factor for T(reg cells. HTLV-1 encodes an antisense transcript, HTLV-1 bZIP factor (HBZ, which is expressed in all ATL cases. In this study, we show that transgenic expression of HBZ in CD4+ T cells induced T-cell lymphomas and systemic inflammation in mice, resembling diseases observed in HTLV-1 infected individuals. In HBZ-transgenic mice, CD4+Foxp3+ T(reg cells and effector/memory CD4+ T cells increased in vivo. As a mechanism of increased T(reg cells, HBZ expression directly induced Foxp3 gene transcription in T cells. The increased CD4+Foxp3+ T(reg cells in HBZ transgenic mice were functionally impaired while their proliferation was enhanced. HBZ could physically interact with Foxp3 and NFAT, thereby impairing the suppressive function of T(reg cells. Thus, the expression of HBZ in CD4+ T cells is a key mechanism of HTLV-1-induced neoplastic and inflammatory diseases.

  9. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    Directory of Open Access Journals (Sweden)

    Vita Golubovskaya

    2016-03-01

    Full Text Available This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.; intracellular markers (FOXP3; epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic; and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  10. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy.

    Science.gov (United States)

    Golubovskaya, Vita; Wu, Lijun

    2016-03-15

    This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy--a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4⁺ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8⁺ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4⁺ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  11. Driving CAR T-cells forward

    Science.gov (United States)

    Jackson, Hollie J.; Rafiq, Sarwish; Brentjens, Renier J.

    2017-01-01

    The engineered expression of chimeric antigen receptors (CARs) on the surface of T cells enables the redirection of T-cell specificity. Early clinical trials using CAR T cells for the treatment of patients with cancer showed modest results, but the impressive outcomes of several trials of CD19-targeted CAR T cells in the treatment of patients with B-cell malignancies have generated an increased enthusiasm for this approach. Important lessons have been derived from clinical trials of CD19-specific CAR T cells, and ongoing clinical trials are testing CAR designs directed at novel targets involved in haematological and solid malignancies. In this Review, we discuss these trials and present strategies that can increase the antitumour efficacy and safety of CAR T-cell therapy. Given the fast-moving nature of this field, we only discuss studies with direct translational application currently or soon-to-be tested in the clinical setting. PMID:27000958

  12. T Cell Exhaustion During Persistent Viral Infections

    Science.gov (United States)

    Kahan, Shannon M.; Wherry, E. John; Zajac, Allan J.

    2015-01-01

    Although robust and highly effective anti-viral T cells contribute to the clearance of many acute infections, viral persistence is associated with the development of functionally inferior, exhausted, T cell responses. Exhaustion develops in a step-wise and progressive manner, ranges in severity, and can culminate in the deletion of the anti-viral T cells. This disarming of the response is consequential as it compromises viral control and potentially serves to dampen immune-mediated damage. Exhausted T cells are unable to elaborate typical anti-viral effector functions. They are characterized by the sustained upregulation of inhibitory receptors and display a gene expression profile that distinguishes them from prototypic effector and memory T cell populations. In this review we discuss the properties of exhausted T cells; the virological and immunological conditions that favor their development; the cellular and molecular signals that sustain the exhausted state; and strategies for preventing and reversing exhaustion to favor viral control. PMID:25620767

  13. Asymptomatic memory CD8+ T cells

    Science.gov (United States)

    Khan, Arif Azam; Srivastava, Ruchi; Lopes, Patricia Prado; Wang, Christine; Pham, Thanh T; Cochrane, Justin; Thai, Nhi Thi Uyen; Gutierrez, Lucas; BenMohamed, Lbachir

    2014-01-01

    Generation and maintenance of high quantity and quality memory CD8+ T cells determine the level of protection from viral, bacterial, and parasitic re-infections, and hence constitutes a primary goal for T cell epitope-based human vaccines and immunotherapeutics. Phenotypically and functionally characterizing memory CD8+ T cells that provide protection against herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections, which cause blinding ocular herpes, genital herpes, and oro-facial herpes, is critical for better vaccine design. We have recently categorized 2 new major sub-populations of memory symptomatic and asymptomatic CD8+ T cells based on their phenotype, protective vs. pathogenic function, and anatomical locations. In this report we are discussing a new direction in developing T cell-based human herpes vaccines and immunotherapeutics based on the emerging new concept of “symptomatic and asymptomatic memory CD8+ T cells.” PMID:24499824

  14. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  15. Increased numbers and functional activity of CD56+ T cells in healthy cytomegalovirus positive subjects

    Science.gov (United States)

    Almehmadi, Mazen; Flanagan, Brian F; Khan, Naeem; Alomar, Suliman; Christmas, Stephen E

    2014-01-01

    Human T cells expressing CD56 are capable of tumour cell lysis following activation with interleukin-2 but their role in viral immunity has been less well studied. Proportions of CD56+ T cells were found to be highly significantly increased in cytomegalovirus-seropositive (CMV+) compared with seronegative (CMV−) healthy subjects (9·1 ± 1·5% versus 3·7 ± 1·0%; P < 0·0001). Proportions of CD56+ T cells expressing CD28, CD62L, CD127, CD161 and CCR7 were significantly lower in CMV+ than CMV− subjects but those expressing CD4, CD8, CD45RO, CD57, CD58, CD94 and NKG2C were significantly increased (P < 0·05), some having the phenotype of T effector memory cells. Levels of pro-inflammatory cytokines and CD107a were significantly higher in CD56+ T cells from CMV+ than CMV− subjects following stimulation with CMV antigens. This also resulted in higher levels of proliferation in CD56+ T cells from CMV+ than CMV− subjects. Using Class I HLA pentamers, it was found that CD56+ T cells from CMV+ subjects contained similar proportions of antigen-specific CD8+ T cells to CD56− T cells in donors of several different HLA types. These differences may reflect the expansion and enhanced functional activity of CMV-specific CD56+ memory T cells. In view of the link between CD56 expression and T-cell cytotoxic function, this strongly implicates CD56+ T cells as being an important component of the cytotoxic T-cell response to CMV in healthy carriers. PMID:24433347

  16. Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging.

    Science.gov (United States)

    Gustafson, Claire E; Qi, Qian; Hutter-Saunders, Jessica; Gupta, Sheena; Jadhav, Rohit; Newell, Evan; Maecker, Holden; Weyand, Cornelia M; Goronzy, Jörg J

    2017-01-01

    Aging is associated with an increased susceptibility to infection and a failure to control latent viruses thought to be driven, at least in part, by alterations in CD8 T cell function. The aging T cell repertoire is characterized by an accumulation of effector CD8 T cells, many of which express the negative regulatory receptor CD85j. To define the biological significance of CD85j expression on CD8 T cells and to address the question whether presence of CD85j in older individuals is beneficial or detrimental for immune function, we examined the specific attributes of CD8 T cells expressing CD85j as well as the functional role of CD85j in antigen-specific CD8 T cell responses during immune aging. Here, we show that CD85j is mainly expressed by terminally differentiated effector (TEMRAs) CD8 T cells, which increase with age, in cytomegalovirus (CMV) infection and in males. CD85j + CMV-specific cells demonstrate clonal expansion. However, TCR diversity is similar between CD85j + and CD85j - compartments, suggesting that CD85j does not directly impact the repertoire of antigen-specific cells. Further phenotypic and functional analyses revealed that CD85j identifies a specific subset of CMV-responsive CD8 T cells that coexpress a marker of senescence (CD57) but retain polyfunctional cytokine production and expression of cytotoxic mediators. Blocking CD85j binding enhanced proliferation of CMV-specific CD8 T cells upon antigen stimulation but did not alter polyfunctional cytokine production. Taken together, these data demonstrate that CD85j characterizes a population of "senescent," but not exhausted antigen-specific effector CD8 T cells and indicates that CD85j is an important checkpoint regulator controlling expansion of virus-specific T cells during aging. Inhibition of CD85j activity may be a mechanism to promote stronger CD8 T cell effector responses during immune aging.

  17. Computed tomography of splenic infarcts

    Energy Technology Data Exchange (ETDEWEB)

    Triller, J.; Bona, E.; Barbier, P.

    1985-04-01

    Splenic infarcts are represented by wedge-shaped, oval or linear areas. Haemorrhagic infarcts are characterised by being hyperdense. Disseminated infarction occurs predominantly in myeloproliferative diseases. During the early stages, the infarct appears as an ill-defined hypodense defect, with non-homogeneous contrast enhancement. During the acute and sub-acute stage, the density of the infarct is low and there is no contrast enhancement. During the chronic stage, its density increases and there is slight contrast enhancement. Complications following splenic infarcts, such as abscesses, bleeding and rupture can be demonstrated by CT with great accuracy. Problems in differential diagnosis may occur if there are atypical manifestations of the infarct, with respect to abscess or leukaemic infiltrations.

  18. Complement receptor type 1 (CR1/CD35) expressed on activated human CD4+ T cells contributes to generation of regulatory T cells.

    Science.gov (United States)

    Török, Katalin; Dezső, Balázs; Bencsik, András; Uzonyi, Barbara; Erdei, Anna

    2015-04-01

    The role of complement in the regulation of T cell immunity has been highlighted recently by several groups. We were prompted to reinvestigate the role of complement receptor type 1 (CR1, CD35) [corrected] in human T cells based on our earlier data showing that activated human T cells produce C3 (Torok et al. (2012) [48]) and also by results demonstrating that engagement of Membrane Cofactor Protein (MCP, CD46) induces a switch of anti-CD35-activated [corrected] helper T cells into regulatory T cells (Kemper et al. (2003) [17]). We demonstrate here that co-ligation of CD46 and CD35, [corrected] the two C3b-binding structures present on activated CD4+ human T cells significantly enhances CD25 expression, elevates granzyme B production and synergistically augments cell proliferation. The role of CR1 in the development of the Treg phenotype was further confirmed by demonstrating that its engagement enhances IL-10 production and reduces IFNγ release by the activated CD4+ T cells in the presence of excess IL-2. The functional in vivo relevance of our findings was highlighted by the immunohistochemical staining of tonsils, revealing the presence of CD4/CD35 [corrected] double positive lymphocytes mainly in the inter-follicular regions where direct contact between CD4+ T cells and B lymphocytes occurs. Regarding the in vivo relevance of the complement-dependent generation of regulatory T cells in secondary lymphoid organs we propose a scenario shown in the figure. The depicted process involves the sequential binding of locally produced C3 fragments to CD46 and CD35 [corrected] expressed on activated T cells, which - in the presence of excess IL-2 - leads to the development of Treg cells. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  19. Remembering one's ID/E-ntity: E/ID protein regulation of T cell memory.

    Science.gov (United States)

    Omilusik, Kyla D; Shaw, Laura A; Goldrath, Ananda W

    2013-10-01

    Upon infection, CD8(+) T cells proliferate and differentiate into armed effector cells capable of eliminating the assaulting pathogen. Although the majority of the antigen-specific T cells will die as the immune response wanes, a few will survive indefinitely to establish the memory population and provide long-lived protection against reinfection. E protein transcription factors and their inhibitors, ID proteins, operate to balance expression of genes that control CD8(+) T cell differentiation through this process. Here, we discuss the role of ID2 and ID3 in promoting the generation and survival of effector and memory populations, particularly highlighting their reciprocal roles in shaping the CD8(+) T cell response unique to the inflammatory milieu. We further examine this coordinated control of gene expression in the context of additional transcription factors within the transcriptional network that programs CD8(+) effector and memory T cell differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. CD8 T Cell Sensory Adaptation Dependent on TCR Avidity for Self-Antigens

    DEFF Research Database (Denmark)

    Marquez, M.-E.; Ellmeier, W.; Sanchez-Guajardo, Vanesa Maria

    2005-01-01

    Adaptation of the T cell activation threshold may be one mechanism to control autoreactivity. To investigate its occurrence in vivo, we engineered a transgenic mouse model with increased TCR-dependent excitability by expressing a Zap70 gain-of-function mutant (ZAP-YEEI) in postselection CD8...... thymocytes and T cells. Increased basal phosphorylation of the Zap70 substrate linker for activation of T cells was detected in ZAP-YEEI-bearing CD8 T cells. However, these cells were not activated, but had reduced levels of TCR and CD5. Moreover, they produced lower cytokine amounts and showed faster......-YEEI suggested that signal tuning occurred during thymic maturation. Importantly, although P14 ﰌ ZAP-YEEI peripheral CD8 T cells were reduced in number and showed lower Ag-induced cytokine production and limited lymphopenia-driven proliferation, the peripheral survival/ expansion and Ag responsiveness of HY ﰌ...

  1. Identification of heme oxygenase-1-specific regulatory CD8+ T cells in cancer patients

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Sørensen, Rikke Baek; Brimnes, Marie K

    2009-01-01

    Treg deficiencies are associated with autoimmunity. Conversely, CD4+ and CD8+ Tregs accumulate in the tumor microenvironment and are associated with prevention of antitumor immunity and anticancer immunotherapy. Recently, CD4+ Tregs have been much studied, but little is known about CD8+ Tregs...... and the antigens they recognize. Here, we describe what we believe to be the first natural target for CD8+ Tregs. Naturally occurring HLA-A2-restricted CD8+ T cells specific for the antiinflammatory molecule heme oxygenase-1 (HO-1) were able to suppress cellular immune responses with outstanding efficacy. HO-1......-specific CD8+ T cells were detected ex vivo and in situ among T cells from cancer patients. HO-1-specific T cells isolated from the peripheral blood of cancer patients inhibited cytokine release, proliferation, and cytotoxicity of other immune cells. Notably, the inhibitory effect of HO-1-specific T cells...

  2. Human T cell leukemia virus type I prevents cell surface expression of the T cell receptor through down-regulation of the CD3-gamma, -delta, -epsilon, and -zeta genes

    NARCIS (Netherlands)

    de Waal Malefyt, R.; Yssel, H.; Spits, H.; de Vries, J. E.; Sancho, J.; Terhorst, C.; Alarcon, B.

    1990-01-01

    Infection and transformation by human T cell leukemia virus type I (HTLV-I) up-regulates expression of several inducible genes including those coding for cytokines involved in the proliferation of normal and leukemic T cells. We demonstrate that HTLV-I can also shut off expression of the CD3-gamma,

  3. CD4+IL-21+T cells are correlated with regulatory T cells and IL-21 promotes regulatory T cells survival during HIV infection.

    Science.gov (United States)

    Zhang, Zi-Ning; Bai, Li-Xin; Fu, Ya-Jing; Jiang, Yong-Jun; Shang, Hong

    2017-03-01

    IL-21 enhances T and natural killer cells survival and antiviral functions without promoting T cell activation during HIV infection, which makes it a better adjuvant in anti-HIV immunotherapy. Due to the pleiotropy and redundancy of cytokines, it is vital to have a comprehensive knowledge of the role of IL-21 in the regulation of immune responses. Regulatory T cells (Tregs) play an important role in immune regulation and are a determinant of immune therapeutic efficacy in certain circumstances. In this study, we explored the direct effect of IL-21 on Tregs during HIV infection, which has not been addressed before. Thirty-four HIV treatment-naïve patients were enrolled and the relationship between CD4 + IL-21 + T cells and Tregs were studied. The effects of IL-21 on CD4 + CD25 + CD127 low Tregs' apoptosis, proliferation, and CTLA-4 and TGF-β expression in HIV-infected patients was investigated and compared with the effect of other common γ-chain cytokines. We found the percentage and absolute numbers of CD4 + IL-21 + T cells were positively related to the frequency or absolute numbers of CD4 + CD25 + or CD4 + CD25 + CD127 low Tregs. Compared with the media-alone control, IL-21, IL-7, and IL-15 could significantly reduce apoptosis of Tregs (pHIV infected patients. There were no significant differences of the fold induction of apoptosis, proliferation, or CTLA-4 and TGF-β expression by Tregs from HIV-infected patients and normal controls after IL-21 treatment. In vitro experiment showed that pretreatment with IL-21 significantly enhanced the suppressive effect of Tregs on CD8+ T cells' IFN-γ expression. We conclude that IL-21 promotes the survival and CTLA-4 expression of Tregs and enhanced the suppressive capacity of Tregs during HIV infection. These results broaden the understanding of HIV pathogenesis and provide critical information for HIV interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Interleukin-7-engineered mesenchymal cells: in vitro effects on naive T-cell population.

    Science.gov (United States)

    Sportoletti, Paolo; Del Papa, Beatrice; De Ioanni, Mariangela; Moretti, Lorenzo; Bonifacio, Elisabetta; Lanterna, Vania; Bell, Alain; Fettucciari, Katia; Carnevali, Eugenia; Zei, Tiziana; Falzetti, Franca; Martelli, Massimo F; Tabilio, Antonio; Di Ianni, Mauro

    2006-12-01

    T-cell homeostasis is regulated by several molecules; among these, interleukin (IL)-7 plays an essential role in the survival and homeostatic proliferation of peripheral naive T cells. In a previous study, we investigated whether human mesenchymal stromal cells (MSCs) could be engineered with the IL-7 gene to produce functional level of this cytokine. In the present study, we analyzed the impact of different quantities of IL-7 produced by MSCs on the survival and proliferation of a negative immunoselected naive (CD3(+)/CD45RA(+)) T-cell population. Co-cultivation of peripheral naive T cells with MSCs producing low (16 pg/mL) or high (1000 pg/mL) IL-7 levels or in the presence of exogenous IL-7 (0.01 ng/mL and 100 ng/mL) maintained the CD3(+)/CD45RA(+) naive T-cell phenotype. Chemokine receptor CCR7(+) expression was also maintained among this T-cell population. Naive T-cell molecular characteristics were maintained as assessed by the Vbeta spectratyping complexity score, which showed the maintenance of a broad T-cell repertoire. No Th1 or Th2 differentiation was observed, as assessed by interferon-gamma or IL-4 accumulation. In contrast, only MSCs producing high amounts of IL-7 caused increased activation (CD25 31.2% +/- 12% vs 10% +/- 3.5%; P .05), and the phase S cell cycle (15% vs 6.9%, P > .05). Exogenous IL-7 exhibited no significant effect. In conclusion, we demonstrated that IL-7 produced by MSCs has a dose-independent effect on naive T-cell survival while exerting a dose-dependent effect on activation/proliferation. Due to the continuous production of IL-7 by engineered cells, our system is more efficacious than exogenous IL-7.

  5. REGULATORY T CELLS AND VASECTOMY

    Science.gov (United States)

    Rival, Claudia; Wheeler, Karen; Jeffrey, Sarah; Qiao, Hui; Luu, Brian; Tewalt, Eric F; Engelhard, Victor H; Tardif, Stephen; Hardy, Daniel; del Rio, Roxana; Teuscher, Cory; Tung, Kenneth

    2013-01-01

    CD4+CD25+ regulatory T cells (Tregs) strongly influence the early and late autoimmune responses to meiotic germ cell antigens (MGCA) and the gonadal immunopathology in vasectomized mice. This is supported by the published and recently acquired information presented here. Within 24 hours of unilateral vasectomy (uni-vx) the ipsilateral epididymis undergoes epithelial cell apoptosis followed by necrosis, severe inflammation, and granuloma formation. Unexpectedly, vasectomy alone induced MGCA-specific tolerance. In contrast, uni-vx plus simultaneous Treg depletion resulted in MGCA-specific autoimmune response and bilateral autoimmune orchitis. Both tolerance and autoimmunity were strictly linked to the early epididymal injury. We now discovered that testicular autoimmunity in uni-vx mice did not occur when Treg depletion was delayed by one week. Remarkably, this delayed Treg depletion also prevented tolerance induction. Therefore, tolerance depends on a rapid de novo Treg response to MGCA exposed after vasectomy. Moreover, tolerance was blunted in mice genetically deficient in PD-1 ligand, suggesting the involvement of induced Treg. We conclude that pre-existing natural Treg prevents post-vasectomy autoimmunity, whereas vasectomy-induced Treg maintains post-vasectomy tolerance. We further discovered that vasectomized mice were still resistant to autoimmune orchitis induction for at least 12–16 months; thus, tolerance is long-lasting. Although significant sperm autoantibodies of low titers became detectable in uni-vx mice at seven months, the antibody titers fluctuated over time, suggesting a dynamic “balance” between the autoimmune and tolerance states. Finally, we observed severe epididymal fibrosis and hypo-spermatogenesis at 12 months after uni-vx: findings of highly critical clinical significance. PMID:24080233

  6. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  7. T cell regulation of the thymus-independent antibody response to trinitrophenylated-Brucella abortus (TNP-BA)

    Energy Technology Data Exchange (ETDEWEB)

    Tanay, A.; Strober, S.

    1985-06-01

    The authors have previously observed a reduction of the T cell-dependent primary antibody response to dinitrophenylated keyhole limpet hemocyanin, and an enhancement of the T cell-independent response to trinitrophenylated Brucella abortus (TNP-BA) in BALB/c mice after treatment with total lymphoid irradiation (TLI). To elucidate the relative contribution of T and B cells to the enhanced T cell-independent antibody responses after TLI, a syngeneic primary adoptive transfer system was utilized whereby irradiated hosts were reconstituted with unfractionated spleen cells or a combination of purified T and B cells from TLI-treated and untreated control mice. Antibody responses of purified splenic B cells from TLI-treated BALB/c mice (TLI/B) to TNP-BA were enhanced 10-fold as compared with those of unfractionated (UF) spleen cells or B cells from normal (NL) BALB/c mice (NL/UF and NL/B, respectively). Splenic T cells from normal animals (NL/T) suppressed the anti-TNP-BA response of TLI/B by more than 100-fold. NL/T neither suppressed nor enhanced the response of NL/B. On the other hand, T cells from TLI-treated mice (TLI/T) enhanced by 100-fold the anti-TNP-BA response of NL/B, but neither suppressed nor enhanced the response of TLI/B. Thus, T cells can regulate the T cell-independent antibody response to TNP-BA. However, experimental manipulation of the T and B cell populations is needed to demonstrate the regulatory functions.

  8. A20 Restrains Thymic Regulatory T Cell Development.

    Science.gov (United States)

    Fischer, Julius Clemens; Otten, Vera; Kober, Maike; Drees, Christoph; Rosenbaum, Marc; Schmickl, Martina; Heidegger, Simon; Beyaert, Rudi; van Loo, Geert; Li, Xian Chang; Peschel, Christian; Schmidt-Supprian, Marc; Haas, Tobias; Spoerl, Silvia; Poeck, Hendrik

    2017-10-01

    Maintaining immune tolerance requires the production of Foxp3-expressing regulatory T (T reg ) cells in the thymus. Activation of NF-κB transcription factors is critically required for T reg cell development, partly via initiating Foxp3 expression. NF-κB activation is controlled by a negative feedback regulation through the ubiquitin editing enzyme A20, which reduces proinflammatory signaling in myeloid cells and B cells. In naive CD4 + T cells, A20 prevents kinase RIPK3-dependent necroptosis. Using mice deficient for A20 in T lineage cells, we show that thymic and peripheral T reg cell compartments are quantitatively enlarged because of a cell-intrinsic developmental advantage of A20-deficient thymic T reg differentiation. A20-deficient thymic T reg cells exhibit reduced dependence on IL-2 but unchanged rates of proliferation and apoptosis. Activation of the NF-κB transcription factor RelA was enhanced, whereas nuclear translocation of c-Rel was decreased in A20-deficient thymic T reg cells. Furthermore, we found that the increase in T reg cells in T cell-specific A20-deficient mice was already observed in CD4 + single-positive CD25 + GITR + Foxp3 - thymic T reg cell progenitors. T reg cell precursors expressed high levels of the tumor necrosis factor receptor superfamily molecule GITR, whose stimulation is closely linked to thymic T reg cell development. A20-deficient T reg cells efficiently suppressed effector T cell-mediated graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, suggesting normal suppressive function. Holding thymic production of natural T reg cells in check, A20 thus integrates T reg cell activity and increased effector T cell survival into an efficient CD4 + T cell response. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. NY-ESO-1- and survivin-specific T-cell responses in the peripheral blood from patients with glioma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Poiret, Thomas; Persson, Oscar

    2018-01-01

    (n = 38 samples) protein expression in tumor specimens. T-cells from peripheral blood were stimulated with TAAs (synthetic peptides) in IL-2 and IL-7, or using a combination of IL-2, IL-15 and IL-21. CD4+ and CD8+ T-cells were tested for antigen-specific proliferation by flow cytometry, and IFN...

  10. Lymphadenopathy driven by TCR-Vγ8Vδ1 T-cell expansion in FAS-related autoimmune lymphoproliferative syndrome

    NARCIS (Netherlands)

    Vavassori, Stefano; Galson, Jacob D; Trück, Johannes; van den Berg, Anke; Tamminga, Rienk Y J; Magerus-Chatinet, Aude; Pellé, Olivier; Camenisch Gross, Ulrike; Marques Maggio, Ewerton; Prader, Seraina; Opitz, Lennart; Nüesch, Ursina; Mauracher, Andrea; Volkmer, Benjamin; Speer, Oliver; Suda, Luzia; Röthlisberger, Benno; Zimmermann, Dieter Robert; Müller, Rouven; Diepstra, Arjan; Visser, Lydia; Haralambieva, Eugenia; Neven, Bénédicte; Rieux-Laucat, Frédéric; Pachlopnik Schmid, Jana

    2017-01-01

    FAS-dependent apoptosis in Vδ1 T cells makes the latter possible culprits for the lymphadenopathy observed in patients with FAS mutations.Rapamycin and methylprednisolone resistance should prompt clinicians to look for Vδ1 T cell proliferation in ALPS-FAS patients.

  11. IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection

    OpenAIRE

    Younes, Souheil-Antoine; Freeman, Michael L.; Mudd, Joseph C.; Shive, Carey L.; Reynaldi, Arnold; Panigrahi, Soumya; Estes, Jacob D.; Deleage, Claire; Lucero, Carissa; Anderson, Jodi; Schacker, Timothy W.; Davenport, Miles P.; McCune, Joseph M.; Hunt, Peter W.; Lee, Sulggi A.

    2016-01-01

    In HIV-1–infected patients, increased numbers of circulating CD8+ T cells are linked to increased risk of morbidity and mortality. Here, we identified a bystander mechanism that promotes CD8 T cell activation and expansion in untreated HIV-1–infected patients. Compared with healthy controls, untreated HIV-1–infected patients have an increased population of proliferating, granzyme B+, CD8+ T cells in circulation. Vβ expression and deep sequencing of CDR3 revealed that in untreated HIV-1 infect...

  12. Age dependent differences in the kinetics of γδ T cells after influenza vaccination.

    Directory of Open Access Journals (Sweden)

    Ulrik Stervbo

    Full Text Available Immunosenescence is a hallmark of the aging immune system and is considered the main cause of a reduced vaccine efficacy in the elderly. Although γδ T cells can become activated by recombinant influenza hemagglutinin, their age-related immunocompetence during a virus-induced immune response has so far not been investigated. In this study we evaluate the kinetics of γδ T cells after vaccination with the trivalent 2011/2012 northern hemisphere seasonal influenza vaccine. We applied multi-parametric flow cytometry to a cohort of 21 young (19-30 years and 23 elderly (53-67 years healthy individuals. Activated and proliferating γδ T cells, as identified by CD38 and Ki67 expression, were quantified on the days 0, 3, 7, 10, 14, 17, and 21. We observed a significantly lower number of activated and proliferating γδ T cells at baseline and following vaccination in elderly as compared to young individuals. The kinetics changes of activated γδ T cells were much stronger in the young, while corresponding changes in the elderly occurred slower. In addition, we observed an association between day 21 HAI titers of influenza A and the frequencies of Ki67+ γδ T cells at day 7 in the young. In conclusion, aging induces alterations of the γδ T cell response that might have negative implications for vaccination efficacy.

  13. CD4+ T-Cell Reactivity to Orexin/Hypocretin in Patients With Narcolepsy Type 1.

    Science.gov (United States)

    Ramberger, Melanie; Högl, Birgit; Stefani, Ambra; Mitterling, Thomas; Reindl, Markus; Lutterotti, Andreas

    2017-03-01

    Narcolepsy type 1 is accompanied by a selective loss of orexin/hypocretin (hcrt) neurons in the lateral hypothalamus caused by yet unknown mechanisms. Epidemiologic and genetic associations strongly suggest an immune-mediated pathogenesis of the disease. We compared specific T-cell reactivity to orexin/hcrt peptides in peripheral blood mononuclear cells of narcolepsy type 1 patients to healthy controls by a carboxyfluorescein succinimidyl ester proliferation assay. Orexin/hcrt-specific T-cell reactivity was also determined by cytokine (interferon gamma and granulocyte-macrophage colony-stimulating factor) analysis. Individuals were considered as responders if the cell division index of CD3+CD4+ T cells and both stimulation indices of cytokine secretion exceeded the cutoff 3. Additionally, T-cell reactivity to orexin/hcrt had to be confirmed by showing reactivity to single peptides present in different peptide pools. Using these criteria, 3/15 patients (20%) and 0/13 controls (0%) showed orexin/hcrt-specific CD4+ T-cell proliferation (p = .2262). The heterogeneous reactivity pattern did not allow the identification of a preferential target epitope. A significant role of orexin/hcrt-specific T cells in narcolepsy type 1 patients could not be confirmed in this study. Further studies are needed to assess the exact role of CD4+ T cells and possible target antigens in narcolepsy type 1 patients. © Sleep Research Society 2016. Published by Oxford University Press [on behalf of the Sleep Research Society].

  14. Clonally Diverse T Cell Homeostasis Is Maintained by a Common Program of Cell-Cycle Control

    Science.gov (United States)

    Hogan, Thea; Shuvaev, Andrey; Commenges, Daniel; Yates, Andrew; Callard, Robin

    2013-01-01

    Lymphopenia induces T cells to undergo cell divisions as part of a homeostatic response mechanism. The clonal response to lymphopenia is extremely diverse, and it is unknown whether this heterogeneity represents distinct mechanisms of cell-cycle control or whether a common mechanism can account for the diversity. We addressed this question by combining in vivo and mathematical modeling of lymphopenia-induced proliferation (LIP) of two distinct T cell clonotypes. OT-I T cells undergo rapid LIP accompanied by differentiation that superficially resembles Ag-induced proliferation, whereas F5 T cells divide slowly and remain naive. Both F5 and OT-I LIP responses were most accurately described by a single stochastic division model where the rate of cell division was exponentially decreased with increasing cell numbers. The model successfully identified key biological parameters of the response and accurately predicted the homeostatic set point of each clone. Significantly, the model was successful in predicting interclonal competition between OT-I and F5 T cells, consistent with competition for the same resource(s) required for homeostatic proliferation. Our results show that diverse and heterogenous clonal T cell responses can be accounted for by a single common model of homeostasis. PMID:23475214

  15. Human thymus regeneration and T cell reconstitution

    NARCIS (Netherlands)

    Legrand, Nicolas; Dontje, Wendy; van Lent, Anja U.; Spits, Hergen; Blom, Bianca

    2007-01-01

    The thymus supports the development of T cells throughout life from hematopoietic progenitor cells migrating from the bone marrow. During the early years after birth thymic activity is highest, but progressively declines resulting in diminished naïve T cell output. Underlying causes of thymic

  16. Surviving the crash: T-cell homeostasis

    Indian Academy of Sciences (India)

    TOSHIBA

    Spatial and temporal elements. – Cellular sites for the integration of cell death and survival cues. – Spatial regulation of Notch activity for cell survival. Page 4. Cell survival is determined by the availability and uptake of nutrients live dead. Activated T-cells. T-cells. Page 5. dead wildtype. Bax active -6A7. Nucleus – H33342.

  17. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell ...

  18. Carbohydrates and T cells: A sweet twosome

    Science.gov (United States)

    Avci, Fikri Y.; Li, Xiangming; Tsuji, Moriya; Kasper, Dennis L.

    2013-01-01

    Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically-linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease. PMID:23757291

  19. Regulation of T cell responses in atherosclerosis

    NARCIS (Netherlands)

    Puijvelde, Gijsbrecht Henricus Maria van

    2007-01-01

    One of the most important characteristics of atherosclerosis is the chronic inflammatory response in which T cells and NKT cells are very important. In this thesis several methods to modulate the activity of these T and NKT cells in atherosclerosis are described. The induction of regulatory T cells

  20. T cell immunosurveillance controls B lymphoma development

    OpenAIRE

    Kallies, Axel

    2014-01-01

    We recently showed a critical role for T cells in the immunosurveillance of nascent B cell lymphomas arising from mutations impacting plasma cell differentiation. Our data suggest that CD8+ T cells continuously eliminate mutated B cells that fail to downregulate their co-stimulatory machinery and the Fas death receptor, thus constraining B lymphoma pathogenesis.

  1. Splenic function after angioembolization for splenic trauma in children and adults: A systematic review

    NARCIS (Netherlands)

    Schimmer, J. A. G.; van der Steeg, A. F. W.; Zuidema, W. P.

    2016-01-01

    Splenic artery embolization (SAE), proximal or distal, is becoming the standard of care for traumatic splenic injury. Theoretically the immunological function of the spleen may be preserved, but this has not yet been proven. A parameter for measuring the remaining splenic function must therefore be

  2. Escherichia coli clearance after splenic autotransplants

    International Nuclear Information System (INIS)

    Marques, R.G.; Petroianu, A.; Oliveira, M.B.N.; Bernardo-Filho, M.; Portela, M.C.

    2002-01-01

    Background: Splenic autotransplantation seems to be the only alternative for preservation of splenic tissue, after total splenectomy. The present study was carried out to analyze Escherichia coli depuration by mononuclear phagocyte system organs after total splenectomy and splenic autotransplantation. Methods: We utilized an experimental model including young and adult Wistar rats, of both sexes, submitted to total splenectomy and splenic autotransplantation. The evaluation method was intravenous inoculation of a suspension of Escherichia coli labeled with technetium-99m. We analyzed bacteria uptake by mononuclear phagocyte system organs and bacteria remnant in the bloodstream. Results: There was no difference between young and adult animals in bacteria uptake by mononuclear phagocyte system organs. In the comparison of groups, it was found out that the mean percent uptake by spleen and liver of animals in the control group was higher than that observed for animals with splenic implants. However, bacteria uptake in the lung was higher in the splenic implant group than in the control group. Although spleen bacteria uptake in the control group animals has been higher than that of animals in the splenic implant group, the remnant bacteria in the bloodstream was similar. Animals submitted to isolated total splenectomy showed higher bacteria remnant in the bloodstream than animals of the control group or the group submitted to total splenectomy combined with splenic autotransplantation. Conclusion: Our results indicate that autogenous splenic implant is efficacious in bacteria depuration in rats, by means of their macrophages phagocytosis. In addition, it does not modify bacteria removal function of liver and lung

  3. T-cell activation and early gene response in dogs.

    Science.gov (United States)

    Mortlock, Sally-Anne; Wei, Jerry; Williamson, Peter

    2015-01-01

    T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR), and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA) (5μg/ml), including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2), early growth response 1 (EGR1), growth arrest and DNA damage-inducible gene (GADD45B), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS), early growth response 2 (EGR2), hemogen (HEMGN), polo-like kinase 2 (PLK2) and polo-like kinase 3 (PLK3). Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in cell cycle

  4. T-cell activation and early gene response in dogs.

    Directory of Open Access Journals (Sweden)

    Sally-Anne Mortlock

    Full Text Available T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR, and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA (5μg/ml, including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2, early growth response 1 (EGR1, growth arrest and DNA damage-inducible gene (GADD45B, phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS, early growth response 2 (EGR2, hemogen (HEMGN, polo-like kinase 2 (PLK2 and polo-like kinase 3 (PLK3. Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in

  5. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  6. CMV-specific T cell therapy.

    Science.gov (United States)

    Einsele, Hermann; Kapp, Markus; Grigoleit, Götz Ulrich

    2008-01-01

    Human cytomegalovirus (CMV) infection continues to be one of the most important and life threatening complications after allogeneic stem cell transplantation (SCT). The reconstitution of CMV-specific T cell responses after SCT has been demonstrated to be protective against the development of CMV disease. To improve T cell immunity against CMV in bone marrow transplant patients, different strategies were explored. On one hand, CMV-specific T cells can be selected from the donor, and can be transferred to the patient without any further in vitro expansion. On the other hand, CMV-specific T cells can be activated and expanded in vitro by stimulation with antigen presenting cells (APCs) loaded with specific proteins or peptides. Here, we review the therapeutic application of CMV-specific T cells to fight CMV infection.

  7. Childhood tuberculosis is associated with decreased abundance of T cell gene transcripts and impaired T cell function.

    Directory of Open Access Journals (Sweden)

    Cheryl Hemingway

    Full Text Available The WHO estimates around a million children contract tuberculosis (TB annually with over 80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and association with skin test anergy suggests failure of the immune system to both recognise and respond to infection. To understand the immune mechanisms, we studied genome-wide whole blood RNA expression in children with TB meningitis (TBM. Findings were validated in a second cohort of children with TBM and pulmonary TB (PTB, and functional T-cell responses studied in a third cohort of children with TBM, other extrapulmonary TB (EPTB and PTB. The predominant RNA transcriptional response in children with TBM was decreased abundance of multiple genes, with 140/204 (68% of all differentially regulated genes showing reduced abundance compared to healthy controls. Findings were validated in a second cohort with concordance of the direction of differential expression in both TBM (r2 = 0.78 p = 2x10-16 and PTB patients (r2 = 0.71 p = 2x10-16 when compared to a second group of healthy controls. Although the direction of expression of these significant genes was similar in the PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p = 2.67E-11 and T-cell receptor signalling (p = 6.56E-07. Less abundant gene expression in immune cells was associated with a functional defect in T-cell proliferation that recovered after full TB treatment (p<0.0003. Multiple genes involved in T-cell activation show decreased abundance in children with acute TB, who also have impaired functional T-cell responses. Our data suggest that childhood TB is associated with an acquired immune defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism causing the immune paresis may identify new treatment and prevention strategies.

  8. A chemically inert drug can stimulate T cells in vitro by their T cell receptor in non-sensitised individuals

    International Nuclear Information System (INIS)

    Engler, Olivier B.; Strasser, Ingrid; Naisbitt, Dean J.; Cerny, Andreas; Pichler, Werner J.

    2004-01-01

    Drugs can interact with T cell receptors (TCR) after binding to peptide-MHC structures. This binding may involve the formation of a stable, covalent bond between a chemically reactive drug and MHC or the peptide embedded within. Alternatively, if the drug is chemically inert, the binding may be non-covalent and readily reversible. Both types of drug presentation account for a substantial number of adverse side effects to drugs. Presently no tests are available to predict the ability of chemically inert drugs to stimulate an immune response. Here we present data on the successful induction of a primary T cell immune response in vitro against a chemically inert drug using blood from healthy individuals, previously not exposed to the drug. Blood lymphocytes were stimulated by the chemically inert drug sulfamethoxazole and the protein-reactive drug-metabolite sulfamethoxazole-nitroso in the presence of IL-2. 9/10 individuals reacted in response to sulfamethoxazole-nitroso, but only three reacted to the chemically inert compound sulfamethoxazole. Drug reactive T cells could be detected after 14-35 days of cell culture by drug-specific proliferation or cytotoxicity, which was MHC-restricted. These cells were CD4, CD8 positive or CD4/CD8 double positive and T cell clones generated secreted Th0 type cytokines. Drug interaction lead to down-regulation of specific TCR. These data confirm the ability of chemically inert drugs to stimulate certain T cells by their TCR and may provide the opportunity to screen new drugs for their ability to interact with TCRs

  9. Enriched environment and stress exposure influence splenic B lymphocyte composition.

    Science.gov (United States)

    Gurfein, Blake T; Hasdemir, Burcu; Milush, Jeffrey M; Touma, Chadi; Palme, Rupert; Nixon, Douglas F; Darcel, Nicholas; Hecht, Frederick M; Bhargava, Aditi

    2017-01-01

    Prolonged chronic stress has deleterious effects on immune function and is associated with numerous negative health outcomes. The spleen harbors one-fourth of the body's lymphocytes and mediates both innate and adaptive immune responses. However, the subset of splenic lymphocytes that respond, either adaptively or maladaptively, to various stressors remains largely unknown. Here we investigated the effects of unpredictable chronic mild stress (CMS) exposure on spleen composition in male mice housed in two different caging conditions: standard caging (Cntl) and enriched environment (EE). EE-caged mice exhibited the greatest absolute number of splenocytes and CMS exposure significantly lowered splenocyte numbers in both caging conditions. Glucocorticoid production, measured by mean fecal corticosterone metabolites (FCM), was significantly lower in EE-caged mice vs. Cntl-caged mice. Surprisingly, CMS exposure resulted in an increase in mean FCM in EE-caged mice, but no significant change in Cntl-caged mice. CMS altered the splenic B:T lymphocyte ratio; it reduced the frequency of B cells, but increased the frequency of T cells in EE-caged mice. Splenocyte number and B:T lymphocyte ratio showed a negative relationship with mean FCM. EE-caged mice had a lower frequency of immature and germinal B cells than Cntl-caged mice. CMS markedly increased the frequency of immature and marginal zone B cells, but decreased the frequency of follicular B cells in both caging conditions. Mean FCM correlated positively with frequency of immature, marginal zone and germinal center B cells, but negatively with frequency of follicular B cells. To conclude, splenic immune cells, particularly B lymphocyte composition, are modulated by caging environment and stress and may prime mice differently to respond to immune challenges.

  10. Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma.

    Science.gov (United States)

    Yoo, Hae Yong; Kim, Pora; Kim, Won Seog; Lee, Seung Ho; Kim, Sangok; Kang, So Young; Jang, Hye Yoon; Lee, Jong-Eun; Kim, Jaesang; Kim, Seok Jin; Ko, Young Hyeh; Lee, Sanghyuk

    2016-06-01

    CTLA4 and CD28 are co-regulatory receptors with opposite roles in T-cell signaling. By RNA sequencing, we identified a fusion between the two genes from partial gene duplication in a case of angioimmunoblastic T-cell lymphoma. The fusion gene, which codes for the extracellular domain of CTLA4 and the cytoplasmic region of CD28, is likely capable of transforming inhibitory signals into stimulatory signals for T-cell activation. Ectopic expression of the fusion transcript in Jurkat and H9 cells resulted in enhanced proliferation and AKT and ERK phosphorylation, indicating activation of downstream oncogenic pathways. To estimate the frequency of this gene fusion in mature T-cell lymphomas, we examined 115 T-cell lymphoma samples of diverse subtypes using reverse transcriptase polymerase chain reaction analysis and Sanger sequencing. We identified the fusion in 26 of 45 cases of angioimmunoblastic T-cell lymphomas (58%), nine of 39 peripheral T-cell lymphomas, not otherwise specified (23%), and nine of 31 extranodal NK/T cell lymphomas (29%). We further investigated the mutation status of 70 lymphoma-associated genes using ultra-deep targeted resequencing for 74 mature T-cell lymphoma samples. The mutational landscape we obtained suggests that T-cell lymphoma results from diverse combinations of multiple gene mutations. The CTLA4-CD28 gene fusion is likely a major contributor to the pathogenesis of T-cell lymphomas and represents a potential target for anti-CTLA4 cancer immunotherapy. Copyright© Ferrata Storti Foundation.

  11. Circulating rotavirus-specific T cells have a poor functional profile

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Miguel; Herrera, Daniel [Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá (Colombia); Jácome, María Fernanda; Mesa, Martha C. [Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá (Colombia); Rodríguez, Luz-Stella [Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá (Colombia); Guzmán, Carolina [Departamento de Pediatría, Hospital Universitario San Ignacio, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá (Colombia); Angel, Juana; Franco, Manuel A. [Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá (Colombia)

    2014-11-15

    Frequencies of circulating T cells producing IFN-γ, TNF-α, and IL-2, and percentages of T cells proliferating after stimulation with rotavirus (RV), tetanus toxoid, and influenza were evaluated in PBMC derived from healthy adults and children. In addition, the potential anergic state of RV-specific T cells was analyzed by stimulation of PBMC with RV antigen in the presence of three anergy inhibitors (rIL-2, rIL-12, or DGKα-i). The quality and magnitude of RV-T cell responses were significantly lower than those of tetanus toxoid and influenza antigens. RV-CD4 T cell response was enriched in monofunctional IFN-γ{sup +} cells, while influenza-CD4 and tetanus toxoid-CD4 T cell responses were enriched in multifunctional T cells. Moreover, rIL-2 – unlike rIL-12 or DGKα-i – increased the frequencies of RV-CD4 TNF-α{sup +}, CD4 IFN-γ{sup +}, and CD8 IFN-γ{sup +} cells. Thus, circulating RV-T cells seem to have a relatively poor functional profile that may be partially reversed in vitro by the addition of rIL-2. - Highlights: • The quality and magnitude of circulating RV-T cell responses are relatively poor. • Circulating RV-CD4 T cells are enriched in monofunctional IFN-γ+ cells. • Treatment with rIL-2 increased the frequencies of cytokine secreting RV-T cells.

  12. Lack of Ikaros cripples expression of Foxo1 and its targets in naive T cells.

    Science.gov (United States)

    Agnihotri, Parul; Robertson, Nicholas M; Umetsu, Sarah E; Arakcheeva, Ksenia; Winandy, Susan

    2017-11-01

    Ikaros is a transcription factor that regulates lymphocyte development from the level of the haematopoietic stem cell. Lack of Ikaros reduces the ability of progenitor cells to commit to the T-cell lineage, resulting in reduced numbers of early thymic T-cell progenitors and mature T cells. Mature CD4 T cells that lack Ikaros have defects in proliferation, T helper cell differentiation, cytokine expression and the ability to become anergic. A role for Ikaros in the naive T cell has not yet been identified. The receptors interleukin-7 receptor α (IL-7Rα) and l-selectin are important for ensuring survival and proper homing of naive T cells, respectively. Here we show that lack of Ikaros leads to reduced expression of these receptors in naive T cells, which impacts their ability to home and survive in response to IL-7. We define the mechanism underlying this phenotype as a requirement for Ikaros in maintenance of expression of Foxo1, a transcriptional regulator that is required for their expression. We also demonstrate that CD4 T cells lacking Ikaros are significantly crippled in their ability to become induced regulatory T cells, a phenotype also linked to reduced Foxo1 expression. Finally, we show that restoring Ikaros function to Ikaros-deficient CD4 T cells increases levels of Foxo1 message. Together, these studies define, for the first time, a role for Ikaros in naive T cells and establish it as the first transcriptional regulator required for maintaining levels of Foxo1 gene expression in these cells. © 2017 John Wiley & Sons Ltd.

  13. Chronic activation profile of circulating CD8+ T cells in Sézary syndrome.

    Science.gov (United States)

    Torrealba, Marina Passos; Manfrere, Kelly Cristina; Miyashiro, Denis R; Lima, Josenilson F; de M Oliveira, Luana; Pereira, Nátalli Z; Cury-Martins, Jade; Pereira, Juliana; Duarte, Alberto J S; Sato, Maria N; Sanches, José A

    2018-01-09

    Sézary syndrome (SS) is a leukemic variant of cutaneous T cell lymphoma (CTCL), and the neoplastic CD4+ T cells of SS patients undergo intense clonal proliferation. Although Sézary cells have been studied extensively, studies on adaptive immunity regarding CD8+T cells are scarce. This study aimed to investigate activation marker expression in CD8+ T cells according to the differentiation stages and IL-7/IL7Rα axis responses of patients with SS. Moreover, this study aimed to verify the soluble forms of CD38, sCD127 and IL-7 in serum. Although the SS patients of our cohort had reduced numbers of CD8+ T cells, they exhibited higher percentages of CD8+CD38+ T cells, mainly effector/memory CD8+ T cells, than the control group. In contrast, down-regulated expression of the activation markers CD127/IL-7R and CD26 was found in the CD8+ T cells of SS patients. High serum levels of sCD38 and sCD127 and scarce serum levels of IL-7 were detected, emphasizing the immune activation status of SS patients. Moreover, CD8+ T cells from SS patients exhibited IL-7 unresponsiveness to STAT5 phosphorylation and Bcl-2 expression, and IL-7 priming partially restored IFNγ production. Our findings showed a chronic activation profile of CD8+ T cells, as an attenuated cytotoxic profile and impaired IL-7 responsiveness was observed, suggesting chronic activation status of CD8+ T cells in SS patients.

  14. Target organ localization of memory CD4(+) T cells in patients with chronic beryllium disease.

    Science.gov (United States)

    Fontenot, Andrew P; Canavera, Scott J; Gharavi, Laia; Newman, Lee S; Kotzin, Brian L

    2002-11-01

    Chronic beryllium disease (CBD) is caused by exposure to beryllium in the workplace, and it remains an important public health concern. Evidence suggests that CD4(+) T cells play a critical role in the development of this disease. Using intracellular cytokine staining, we found that the frequency of beryllium-specific CD4(+) T cells in the lungs (bronchoalveolar lavage) of 12 CBD patients ranged from 1.4% to 29% (mean 17.8%), and these T cells expressed a Th1-type phenotype in response to beryllium sulfate (BeSO(4)). Few, if any, beryllium-specific CD8(+) T cells were identified. In contrast, the frequency of beryllium-responsive CD4(+) T cells in the blood of these subjects ranged from undetectable to 1 in 500. No correlation was observed between the frequency of beryllium-responsive bronchoalveolar lavage (BAL) CD4(+) T cells as detected by intracellular staining and lymphocyte proliferation in culture after BeSO(4) exposure. Staining for surface marker expression showed that nearly all BAL T cells exhibit an effector memory cell phenotype. These results demonstrate a dramatically high frequency and compartmentalization of antigen-specific effector memory CD4(+) cells in the lungs of CBD patients. These studies provide insight into the phenotypic and functional characteristics of antigen-specific T cells invading other inaccessible target organs in human disease.

  15. When aging reaches CD4+ T-cells: phenotypic and functional changes

    Directory of Open Access Journals (Sweden)

    Marco Antonio Moro-García

    2013-05-01

    Full Text Available Beyond midlife, the immune system shows aging features and its defensive capability becomes impaired, by a process known as immunosenescence that involves many changes in the innate and adaptive responses. Innate immunity seems to be better preserved globally, while the adaptive immune response exhibits profound age-dependent modifications. Elderly people display a decline in numbers of naïve T-cells in peripheral blood and lymphoid tissues, while, in contrast, their proportion of highly differentiated effector and memory T-cells, such as the CD28null T-cells, increases markedly. Naïve and memory CD4+ T-cells constitute a highly dynamic system with constant homeostatic and antigen-driven proliferation, influx, and loss of T-cells. Thymic activity dwindles with age and essentially ceases in the later decades of life, severely constraining the generation of new T-cells. Homeostatic control mechanisms are very effective at maintaining a large and diverse subset of naïve CD4+ T-cells throughout life, but although later than in CD8+T-cell compartment, these mechanisms ultimately fail with age.

  16. Scaffold protein JLP mediates TCR-initiated CD4+T cell activation and CD154 expression.

    Science.gov (United States)

    Yan, Qi; Yang, Cheng; Fu, Qiang; Chen, Zhaowei; Liu, Shan; Fu, Dou; Rahman, Rahmat N; Nakazato, Ryota; Yoshioka, Katsuji; Kung, Sam K P; Ding, Guohua; Wang, Huiming

    2017-07-01

    CD4 + T-cell activation and its subsequent induction of CD154 (CD40 ligand, CD40L) expression are pivotal in shaping both the humoral and cellular immune responses. Scaffold protein JLP regulates signal transduction pathways and molecular trafficking inside cells, thus represents a critical component in maintaining cellular functions. Its role in regulating CD4 + T-cell activation and CD154 expression, however, is unclear. Here, we demonstrated expression of JLP in mouse tissues of lymph nodes, thymus, spleen, and also CD4 + T cells. Using CD4+ T cells from jlp-deficient and jlp-wild-type mice, we demonstrated that JLP-deficiency impaired T-cell proliferation, IL-2 production, and CD154 induction upon TCR stimulations, but had no impacts on the expression of other surface molecules such as CD25, CD69, and TCR. These observed impaired T-cell functions in the jlp-/- CD4 + T cells were associated with defective NF-AT activation and Ca 2 + influx, but not the MAPK, NF-κB, as well as AP-1 signaling pathways. Our findings indicated that, for the first time, JLP plays a critical role in regulating CD4 + T cells response to TCR stimulation partly by mediating the activation of TCR-initiated Ca 2+ /NF-AT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Human CD8 T cells generated in vitro from hematopoietic stem cells are functionally mature

    Directory of Open Access Journals (Sweden)

    Zúñiga-Pflücker Juan

    2011-03-01

    Full Text Available Abstract Background T cell development occurs within the highly specialized thymus. Cytotoxic CD8 T cells are critical in adaptive immunity by targeting virally infected or tumor cells. In this study, we addressed whether functional CD8 T cells can be generated fully in vitro using human umbilical cord blood (UCB hematopoietic stem cells (HSCs in coculture with OP9-DL1 cells. Results HSC/OP9-DL1 cocultures supported the differentiation of CD8 T cells, which were TCR/CD3hi CD27hi CD1aneg and thus phenotypically resembled mature functional CD8 single positive thymocytes. These in vitro-generated T cells also appeared to be conventional CD8 cells, as they expressed high levels of Eomes and low levels of Plzf, albeit not identical to ex vivo UCB CD8 T cells. Consistent with the phenotypic and molecular characterization, upon TCR-stimulation, in vitro-generated CD8 T cells proliferated, expressed activation markers (MHC-II, CD25, CD38, secreted IFN-γ and expressed Granzyme B, a cytotoxic T-cell effector molecule. Conclusion Taken together, the ability to direct human hematopoietic stem cell or T-progenitor cells towards a mature functional phenotype raises the possibility of establishing cell-based treatments for T-immunodeficiencies by rapidly restoring CD8 effector function, thereby mitigating the risks associated with opportunistic infections.

  18. Intratumoral delivery of IL-18 naked DNA induces T-cell activation and Th1 response in a mouse hepatic cancer model

    International Nuclear Information System (INIS)

    Chang, Chi-Young; Lee, Jienny; Kim, Eun-Young; Park, Hae-Jung; Kwon, Choon-Hyuck; Joh, Jae-Won; Kim, Sung-Joo

    2007-01-01

    The novel cytokine, interleukin (IL)-18, is a strong interferon-γ inducer and costimulatory factor in Th1 cell activation. IL-18 triggers IFN-γ production and enhances cytolytic activity in both T and NK cells. However, the exact mechanism of antitumor action of IL-18 remains to be clarified. To determine the effects of IL-18 plasmid DNA on hepatic cancer in mice, CT26 murine colon adenocarcinoma cells were established in mouse liver. Plasmid vectors encoding IL-18 were transferred directly into the liver 7 days after tumor injection to restrict IL-18 expression within the tumor site. The IL-18 protein level was increased in the liver 4 days after plasmid injection, and a marked antitumoral effect was observed at day 7. Antitumor effects were evaluated by measuring tumor regression, immune cell population, and IFN-γ production. The IL-18 plasmid controlled the growth of hepatic tumors and proliferation of splenic immune cells. Moreover, treatment of CT26 tumors with the IL-18 plasmid significantly enhanced the population of the effector T and NK cells in the spleen and peripheral blood. In spleen, the population of CD4 + CD62 Low cells was augmented in response to IL-18 on day 7. These results are consistent with the increase in CD4 + T cells secreting IFN-γ, but not CD8 + T cells. The marked reduction of tumor growth in tumor-bearing mice was associated with the maintenance of IFN-γ production in spleen in response to IL-18. These antitumoral effects were maintained until 14 days after plasmid injection. Our results suggest that direct plasmid DNA transfer of IL-18 with no accompanying reagents to augment transfection efficiency may be useful in tumor immunotherapy

  19. Interleukin 2 and interleukin 10 function synergistically to promote CD8+T cell cytotoxicity, which is suppressed by regulatory T cells in breast cancer.

    Science.gov (United States)

    Li, Xiaogang; Lu, Ping; Li, Bo; Zhang, Wanfu; Yang, Rong; Chu, Yan; Luo, Kaiyuan

    2017-06-01

    The precise role of interleukin (IL)-10 in breast cancer is not clear. Previous studies suggested a tumor-promoting role of IL-10 in breast cancer, whereas recent discoveries that IL-10 activated and expanded tumor-resident CD8 + T cells challenged the traditional view. Here, we investigated the role of IL-10 in HLA-A2-positive breast cancer patients with Grade III, Stage IIA or IIB in-situ and invasive ductal carcinoma, and compared it with that of IL-2, the canonical CD8 + T cell growth factor. We first observed that breast cancer patients presented higher serum levels of IL-2 and IL-10 than healthy controls. Upon prolonged TCR stimulation, peripheral blood CD8 + T cells from breast cancer patients tended to undergo apoptosis, which could be prevented by the addition of IL-2 and/or IL-10. The cytotoxicity of TCR-activated CD8 + T cells was also enhanced by exogenous IL-2 and/or IL-10. Interestingly, IL-2 and IL-10 demonstrated synergistic effects, since the enhancement in CD8 + T cell function when both cytokines were added was greater than the sum of the improvements mediated by each individual cytokine. IL-10 by itself could not promote the proliferation of CD8 + T cells but could significantly enhance IL-2-mediated promotion of CD8 + T cell proliferation. In addition, the cytotoxicity of tumor-infiltrating CD8 + T cells in breast tumor was elevated when both IL-2 and IL-10 were present but not when either one was absent. This synergistic effect was stopped by CD4 + CD25 + regulatory T cells (Treg), which depleted IL-2 in a cell number-dependent manner. Together, these results demonstrated that IL-2 and IL-10 could work synergistically to improve the survival, proliferation, and cytotoxicity of activated CD8 + T cells, an effect suppressible by CD4 + CD25 + Treg cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Programmed death-1 (PD-1)-dependent functional impairment of CD4(+) T cells in recurrent genital papilloma.

    Science.gov (United States)

    Chang, Dong-Yeop; Song, Sang Hoon; You, Sooseong; Lee, Jino; Kim, Jihye; Racanelli, Vito; Son, Hwancheol; Shin, Eui-Cheol

    2014-08-01

    Genital papilloma is caused by human papilloma virus (HPV) infection and recurs frequently. Although T cells are known to play a critical role in the control of HPV infection and papilloma development, the function and phenotype of these cells in the lesion remain to be elucidated. In the present study, we examined the function and phenotype of CD4(+) T cells isolated from the lesions of primary (n = 9) and recurrent (n = 11) genital papillomas. In recurrent papillomas, the frequency of proliferating (Ki-67(+)) CD4(+) T cells was significantly reduced compared with primary papillomas. Cytokine production was evaluated by intracellular cytokine staining in anti-CD3/anti-CD28-stimulated CD4(+) T cells. CD4(+) T cells from recurrent lesions showed impaired production of IL-2, IFN-γ, and TNF-α. Of interest, the frequency of cytokine-producing CD4(+) T cells significantly correlated with the frequency of Ki-67(+)CD4(+) T cells. We also studied expression of programmed death-1 (PD-1), a T-cell exhaustion marker. The frequency of PD-1(+)CD4(+) T cells was significantly increased in recurrent lesions and inversely correlated with the frequency of cytokine-producing CD4(+) T cells. The functional significance of PD-1 expression was determined in blocking assays with anti-PD-L1, which restored cytokine production of CD4(+) T cells from recurrent lesions. Taken together, in recurrent genital papilloma lesions, proliferation, and cytokine production by CD4(+) T cells are impaired and the PD-1/PD-L1 interaction is responsible for the functional impairment of CD4(+) T cells.

  1. Responses of Bovine WC1+ γδ T Cells to Protein and Nonprotein Antigens of Mycobacterium bovis

    Science.gov (United States)

    Welsh, Michael D.; Kennedy, Hilary E.; Smyth, Allister J.; Girvin, R. Martyn; Andersen, Peter; Pollock, John M.

    2002-01-01

    WC1+ γδ T cells of Mycobacterium bovis-infected cattle are highly responsive to M. bovis sonic extract (MBSE). In mycobacterial infections of other species, γδ T cells have been shown to respond to protein and nonprotein antigens, but the bovine WC1+ γδ T-cell antigenic targets within MBSE require further definition in terms of the dominance of protein versus nonprotein components. The present study sought to characterize the WC1+ γδ T-cell antigenic targets, together with the role of interleukin-2 (IL-2), in the context of M. bovis infection. This was achieved by testing crude and defined antigens to assess protein versus nonprotein recognition by WC1+ γδ T cells in comparison with CD4+ αβ T cells. Both cell types proliferated strongly in response to MBSE, with CD4+ T cells being the major producers of gamma interferon (IFN-γ). However, enzymatic digestion of the protein in MBSE removed its ability to stimulate CD4+ T-cell responses, whereas some WC1+ γδ T-cell proliferation remained. The most antigenic protein inducing proliferation and IFN-γ secretion in WC1+ γδ T-cell cultures was found to be ESAT-6, which is a potential novel diagnostic reagent and vaccine candidate. In addition, WC1+ γδ T-cell proliferation was observed in response to stimulation with prenyl pyrophosphate antigens (isopentenyl pyrophosphate and monomethyl phosphate). High levels of cellular activation (CD25 expression) resulted from MBSE stimulation of WC1+ γδ T cells from infected animals. A similar degree of activation was induced by IL-2 alone, but for WC1+ γδ T-cell division IL-2 was found to act only as a costimulatory signal, enhancing antigen-driven responses. Overall, the data indicate that protein antigens are important stimulators of WC1+ γδ T-cell proliferation and IFN-γ secretion in M. bovis infection, with nonprotein antigens inducing significant proliferation. These findings have important implications for diagnostic and vaccine development. PMID

  2. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells.

    Science.gov (United States)

    Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E; Williams, Richard T; Jenkins, Marc K; Farrar, Michael A

    2015-10-15

    BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-β1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. The composition of T cell subtypes in duodenal biopsies are altered in coeliac disease patients.

    Directory of Open Access Journals (Sweden)

    Janni V Steenholt

    Full Text Available One of the hallmarks of Celiac disease (CD is intraepithelial lymphocytosis in the small intestine. Until now, investigations to characterize the T cell subpopulations within the epithelial layer have not discriminated between the heterodimeric co-receptor molecule, CD8αβ, and the possibly immunoregulatory CD8αα homodimer molecule. Besides TCRαβ+ CD4+ cells, no other phenotypes have been shown to be gluten-reactive. Using flow cytometry on lymphocytes from duodenal biopsies, we determined that the number of B cells (CD3- CD19+ and the number of CD3+ CD4- CD8- double-negative (DN T cells were elevated 6-7 fold in children with CD. We next isolated and quantified intraepithelial lymphocytes (IELs from biopsies obtained from patients (both children and adults with CD, potential CD and non-CD controls. Flow cytometric analysis of the duodenal T cell subpopulations was performed including the markers TCRαβ, TCRγδ, CD4, CD8α and CD8β. Proportions of γδ T cells and CD8αβ+ cells among IELs were increased in CD patients, whereas proportions of CD4+ CD8αα+ and CD4+ single-positive T cells were decreased. Additionally, two gluten-reactive T cell lines (TCLs derived from CD biopsies were analyzed for changes in proportions of T cell subsets before and after gluten stimulation. In a proliferation assay, dividing cells were tracked with carboxyfluorescein succinimidyl ester (CFSE, and both αβ and γδ T cells proliferated in response to gluten. Changes in duodenal T cell subpopulations in potential CD patients followed the same pattern as for CD patients, but with less pronounced effect.

  4. T Cell Repertoire and Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Kenneth Croitoru

    1996-01-01

    Full Text Available The diversity of the T cell receptor repertoire is generated through rearrangement of the variable, junctional and constant region genes. Selection processes in the thymus and periphery serve to eliminate self-reacting T cells, thereby preventing autoimmune disease. The possibility that inflammatory bowel disease (IBD is an autoimmune disease has led to the search for an auto-antigen. In addition, studies are exploring the T cell receptor repertoire in IBD patients for changes that may provide clues regarding etiopathogenesis. Using monoclonal antibodies to T cell receptor variable-gene products or polymerase chain reaction analysis of variable-gene mRNA expression, the mucosal T cell repertoire has been examined in humans. The intestinal intraepithelial lymphocytes show a significant degree of oligoclonal expansion that may represent local antigen exposure or unique selection processes. This is in keeping with studies that show that murine intestinal intraepithelial lymphocytes undergo positive and possibly negative selection independent of the thymus. In the inflamed human gut, shifts in the T cell receptor repertoire may also reflect recruitment of peripheral T cells to the gut. In one study, a subset of Crohn’s disease patients was shown to have an increase in the proportion of variable β8 peripheral blood lymphocyte and mesenteric lymph node cells, suggesting a superantigen effect. The authors hypothesized that changes in the functional T cell receptor repertoire can also occur which might be independent of changes in the distribution of T cells expressing variable β T cell receptors. In fact, the authors have shown there is a selective decrease in the cytotoxic function of peripheral variable β8 T cells in Crohn’s disease. Furthermore, stimulation with the variable β8 selective bacterial enterotoxin staphylococcal enterotoxin E failed to increase the cytotoxic function in this subset of Crohn’s disease patients compared with

  5. Splenic Tuberculosis Presenting as Ascites in Immunocompetant ...

    African Journals Online (AJOL)

    Tuberculosis can involve any part of the gastrointestinal tract from mouth to anus, the peritoneum and the pancreatobiliary system. Here we report a case of splenic tuberculosis in a 60-year-old man who presented with ascitis. Splenic tuberculosis is an unusual clinical presentation, especially in immunocompetent patients.

  6. Splenic abscess due to Salmonella enteritidis

    Directory of Open Access Journals (Sweden)

    Hatice Çabadak

    2012-02-01

    Full Text Available Splenic abscess is a very rare complication of non-typhoidal Salmonella infections. We report a case of splenic abscess caused by Salmonella enteritidis. The patient is a 63-year-old woman with diabetes mellitus and underwent splenectomy. This case suggests that the patients with comorbities are at increased risk for invasive infections in non-typhoidal Salmonella infections.

  7. Splenic irradiation in HIV-related thrombocytopenia

    International Nuclear Information System (INIS)

    Leung, J.T.; Kuan, R.

    1996-01-01

    Splenic irradiation has been used in patients with HIV-related thrombocytopenia. This retrospective review deals with four patients treated with low dose splenic irradiation. All patients had an increase in platelet count and tolerated the treatment without side effects. However, the treatment response lasted for several months only. 9 refs., 1 tab

  8. Dexamethasone inhibits IL-9 production by human T cells

    Directory of Open Access Journals (Sweden)

    Cormont Francoise

    2005-04-01

    Full Text Available Abstract Background Interleukin 9 (IL-9 is produced by activated CD4+ T cells. Its effects include stimulation of mucus production, enhanced mast cell proliferation, enhanced eosinophil function, and IgE production. These effects are consistent with a role in allergic diseases. Glucocorticoids have potent anti-inflammatory effects, including suppression of cytokine synthesis, and are widely used in the treatment of allergic conditions. Methods We examined the effect of the glucocorticoid dexamethasone (Dex on IL-9 mRNA expression and protein secretion with real-time RT-PCR and ELISA. Peripheral blood mononuclear cells (PBMC were prepared from human volunteers and activated with OKT3. CD4+ T cells were purified from PBMC and activated with OKT3 plus PMA. Results IL-9 mRNA abundance and protein secretion were both markedly reduced following treatment of activated PBMC with Dex. mRNA levels were reduced to 0.7% of control values and protein secretion was reduced to 2.8% of controls. In CD4+ T cells, Dex reduced protein secretion to a similar extent. The IC50 value of Dex on mRNA expression was 4 nM. Conclusion These results indicate that IL-9 production is very markedly inhibited by Dex. The findings raise the possibility that the beneficial effects of glucocorticoids in the treatment of allergic diseases are in part mediated by inhibition of IL-9 production.

  9. Regulation of T cell differentiation and function by EZH2

    Directory of Open Access Journals (Sweden)

    THEODOROS KARANTANOS

    2016-05-01

    Full Text Available The enhancer of zeste homologue 2 (EZH2, one of the polycomb group (PcG proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2 and induces the trimethylation of the histone H3 lysine 27 (H3K27me3 promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity while the three other protein components of PRC2, namely EED, SUZ12 and RpAp46/48 induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic (Hox gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency and cancer biology. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft versus host disease (GvHD. In this review we will briefly summarize the current knowledge regarding the role of EZH2 in the regulation of T cell differentiation, effector function and homing in the tumor microenvironment and we will discuss possible therapeutic targeting of EZH2 in order to alter T cell immune functions.

  10. Molecular Pathology of Adult T-Cell Leukemia/Lymphoma.

    Science.gov (United States)

    Ohshima, Koichi

    2015-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell neoplasm of highly pleomorphic lymphoid cells. ATLL is usually widely disseminated, and it is caused by human T-cell leukemia virus type 1 (HTLV-1). It is a disease with a long latency, and affected individuals are usually exposed to the virus very early in life. The cumulative incidence of ATLL is estimated to be 2.5% among HTLV-1 carriers. ATLL cells express CD2, CD3, CD5, CD4, and CD25, as well as CCR4 and FoxP3 of the regulatory T-cell marker. HTLV-1 is causally linked to ATLL, but infection alone is not sufficient to result in neoplastic transformation. A significant finding in this connection is that the Tax viral protein leads to transcriptional activation of many genes, while the HTLV-1 basic leucine zipper factor is thought to be important for T-cell proliferation and oncogenesis. Half of ATLL cases retain the ability to express HTLV-1 Tax, which is a target of HTLV-1-specific cytotoxic T lymphocytes (CTL). An increase in HTLV-1-specific CTL responses is observed in some asymptomatic HTLV-1 carriers. Although HTLV-1-specific CTL are also present in the peripheral blood of ATLL patients, they do not expand sufficiently. We investigated the clinicopathological features and analyzed the staining of Tax-specific CTL and FoxP3. Tax-specific CTL correlated inversely with FoxP3, an increase in the ratio of CD163+ tumor-associated macrophages was associated with worse clinical prognosis, and ATLL cell lines proliferated significantly following direct co-culture with M2 macrophages. Several clinical variants of ATLL have been identified: acute, lymphomatous, chronic, and smoldering. Oligo-array comparative genomic hybridization revealed that genomic loss of 9p21.3 was a significant characteristic of acute-type, but not of chronic-type ATLL. Furthermore, we found that genomic alteration of CD58, which is implicated in immune escape, is more frequently observed in acute than in chronic ATLL. Interestingly

  11. MHC class II molecules deliver costimulatory signals in human T cells through a functional linkage with IL-2-receptors

    DEFF Research Database (Denmark)

    Odum, Niels; Kanner, S B; Ledbetter, J A

    1993-01-01

    MHC class II-positive T cells are found in tissues involved in autoimmune and infectious disorders. Because stimulation of class II molecules by mAb or bacterial superantigens induces protein tyrosine phosphorylation through activation of PTK3 in T cells, we hypothesized that class II signals play...... tyrosine phosphorylation of specific substrates including PLC-gamma 1. Combined stimulation of IL-2R and class II molecules had an additive effect on tyrosine phosphorylation. Pretreatment of T cells with a protein tyrosine kinase inhibitor, herbimycin A, inhibited IL-2 and class II-induced proliferation...... a regulatory function in T cell activation. Here, we show that cross-linking HLA-DR and -DP but not -DQ molecules by immobilized mAb enhanced proliferative T cell responses to IL-2. In contrast, class II stimulation had no effect on IL-4-induced proliferation. The costimulatory effect was most pronounced...

  12. Embolization Therapy for Traumatic Splenic Lacerations

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Niloy; Matsumoto, Alan H., E-mail: ahm4d@virginia.edu; Arslan, Bulent; Turba, Ulku C.; Sabri, Saher; Angle, John F. [University of Virginia Health System, Division of Vascular and Interventional Radiology, Department of Radiology (United States)

    2012-08-15

    Purpose: This study was designed to evaluate the clinical success, complications, and transfusion requirements based on the location of and agents used for splenic artery embolization in patients with splenic trauma. Methods: A retrospective study was performed of patients with splenic trauma who underwent angiography and embolization from September 2000 to January 2010 at a level I trauma center. Electronic medical records were reviewed for demographics, imaging data, technical aspects of the procedure, and clinical outcomes. Results: Fifty patients were identified (34 men and 16 women), with an average age of 48 (range, 16-80) years. Extravasation was seen on initial angiography in 27 (54%) and was absent in 23 (46%). All 27 patients with extravasation were embolized, and 18 of 23 (78.2%) without extravasation were embolized empirically. Primary clinical success was similar (>75%) across all embolization locations, embolic agents, and grades of laceration treated. Of 45 patients treated, 9 patients (20%) were embolized in the main splenic artery, 34 (75.6%) in the splenic hilum, and 2 (4.4%) were embolized in both locations. Partial splenic infarctions developed in 47.3% treated in the splenic hilum compared with 12.5% treated in the main splenic artery. There were four (8.9%) mortalities: two occurred in patients with multiple critical injuries and two from nonbleeding etiologies. Conclusions: Embolization of traumatic splenic artery injuries is safe and effective, regardless of the location of treatment. Embolization in splenic hilar branches may have a higher incidence of infarction. The grade of laceration and agents used for embolotherapy did not impact the outcomes.

  13. Surviving the crash: T-cell homeostasis

    Indian Academy of Sciences (India)

    TOSHIBA

    The formation of higher order apoptotic structures at the mitochondrion precedes cellular collapse dead. Tracking bax multimerization at mitochondria wildtype. Bax active -6A7. Nucleus – H33342. Apoptotic T-cells ...

  14. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  15. Expression of tyrosine hydroxylase in CD4+T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    Science.gov (United States)

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  16. Curtailed T-cell activation curbs effector differentiation and generates CD8+ T cells with a naturally-occurring memory stem cell phenotype.

    Science.gov (United States)

    Zanon, Veronica; Pilipow, Karolina; Scamardella, Eloise; De Paoli, Federica; De Simone, Gabriele; Price, David A; Martinez Usatorre, Amaia; Romero, Pedro; Mavilio, Domenico; Roberto, Alessandra; Lugli, Enrico

    2017-09-01

    Human T memory stem (T SCM ) cells with superior persistence capacity and effector functions are emerging as important players in the maintenance of long-lived T-cell memory and are thus considered an attractive population to be used in adoptive transfer-based immunotherapy of cancer. However, the molecular signals regulating their generation remain poorly defined. Here we show that curtailed T-cell receptor stimulation curbs human effector CD8 + T-cell differentiation and allows the generation of CD45RO - CD45RA + CCR7 + CD27 + CD95 + -phenotype cells from highly purified naïve T-cell precursors, resembling naturally-occurring human T SCM . These cells proliferate extensively in vitro and in vivo, express low amounts of effector-associated genes and transcription factors and undergo considerable self-renewal in response to IL-15 while retaining effector differentiation potential. Such a phenotype is associated with a lower number of mitochondria compared to highly-activated effector T cells committed to terminal differentiation. These results shed light on the molecular signals that are required to generate long-lived memory T cells with potential application in adoptive cell transfer immunotherapy. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.

  17. Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γδT Cells.

    Science.gov (United States)

    Shimizu, Kanako; Shinga, Jun; Yamasaki, Satoru; Kawamura, Masami; Dörrie, Jan; Schaft, Niels; Sato, Yusuke; Iyoda, Tomonori; Fujii, Shin-Ichiro

    2015-01-01

    Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.

  18. [THE INDUCTION OF CD25 EXPRESSION IN Jurkat T CELLS].

    Science.gov (United States)

    Shatrova, A N; Mityushova, E V; Aksenov, N V; Marakhova, L L

    2015-01-01

    The expression of an α-subunit of interleukin-2 receptor (IL-2Rα) was assessed by quantifying activation-induced upregulation of CD25 in IL-2-independent Jurkat leukemic cell line. It has been found that in growing Jurkat culture within 24 h, phytohemagglutinin (PHA, 5 μg/ml) or PHA in combination with 12,13-phorbol dibutirate (PDBu, 10(-8)M) increase the number of CD25+ cells to 32.3 ± 3.4% (n = 11) and 44.8 ± 8.6% (n = 6) respectively. Interleukin-2 (IL-2, 200 U/ml) alone or in combination with PDBu did not induce CD25 expression in Jurkat cells. All the tested stimulatory agencies affected neither the proliferation status no the growth of Jurkat cell cultures. In contrast to human blood T cells, WHI-P131, a selective pharmacological inhibitor of JAK/STAT signaling and CD25 expression, did not decrease the number of induced CD25+ cells in Jurkat culture. Flow cytometry analysis revealed a dose-dependent decrease in the proportion of cells in G1 phase and an increase in the proportion of cells in G2/M phase in WHI-P131-treated Jurkat cultures. It has been also found that WHI-P131 induces G2/M arrest in the absence of PHA or PDBu. We have concluded that (1) the IL-2-independent T cells of Jurkat line had not loss the mechanism for IL-2Rα expression in response to T cell receptor activation, (2) in the transformed T cells, WHI-P131 can arrest cell cycle at G2/M phase and has effects on targets other than IL-2 receptor-associated tyrosine kinase JAK3.

  19. Mechanical regulation of T-cell functions

    OpenAIRE

    Chen, Wei; Zhu, Cheng

    2013-01-01

    T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycles, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force but display variable substrate rigidities, to the blood and lymphatic circulation systems where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they...

  20. T cell activation in APECED patients

    OpenAIRE

    Mannerström, Helga

    2013-01-01

    Autoimmune polyendocrinopathy-candidasis-ectodermal dystrophy, APECED, is a rare monogenic autoimmune disease in humans, which is caused by loss-of-function mutation in Autoimmune Regulator gene, AIRE. Previous results have shown impairments in the circulating T cells of the APECED patients. In this study we wanted to look closer on the disturbance in the T cell receptor development of APECED patients. By studying the TCR-mediated responsiveness of CD3 stimulation and comparing the activation...

  1. Human CD6 Down-Modulation following T-Cell Activation Compromises Lymphocyte Survival and Proliferative Responses

    Directory of Open Access Journals (Sweden)

    Esther Carrasco

    2017-06-01

    Full Text Available Available evidence indicates that the CD6 lymphocyte surface receptor is involved in T-cell developmental and activation processes, by facilitating cell-to-cell adhesive contacts with antigen-presenting cells and likely modulating T-cell receptor (TCR signaling. Here, we show that in vitro activation of human T cells under different TCR-ligation conditions leads to surface downregulation of CD6 expression. This phenomenon was (i concomitant to increased levels of soluble CD6 (sCD6 in culture supernatants, (ii partially reverted by protease inhibitors, (iii not associated to CD6 mRNA down-regulation, and (iv reversible by stimulus removal. CD6 down-modulation inversely correlated with the upregulation of CD25 in both FoxP3− (Tact and FoxP3+ (Treg T-cell subsets. Furthermore, ex vivo analysis of peripheral CD4+ and CD8+ T cells with activated (CD25+ or effector memory (effector memory T cell, CD45RA−CCR7− phenotype present lower CD6 levels than their naïve or central memory (central memory T cell, CD45RA−CCR7+ counterparts. CD6lo/− T cells resulting from in vitro T-cell activation show higher apoptosis and lower proliferation levels than CD6hi T cells, supporting the relevance of CD6 in the induction of proper T-cell proliferative responses and resistance to apoptosis. Accordingly, CD6 transfectants also showed higher viability when exposed to TCR-independent apoptosis-inducing conditions in comparison with untransfected cells. Taken together, these results provide insight into the origin of sCD6 and the previously reported circulating CD6-negative T-cell subset in humans, as well as into the functional consequences of CD6 down-modulation on ongoing T-cell responses, which includes sensitization to apoptotic events and attenuation of T-cell proliferative responses.

  2. Unbalanced recovery of regulatory and effector T cells after allogeneic stem cell transplantation contributes to chronic GVHD.

    Science.gov (United States)

    Alho, Ana C; Kim, Haesook T; Chammas, Marie J; Reynolds, Carol G; Matos, Tiago R; Forcade, Edouard; Whangbo, Jennifer; Nikiforow, Sarah; Cutler, Corey S; Koreth, John; Ho, Vincent T; Armand, Philippe; Antin, Joseph H; Alyea, Edwin P; Lacerda, Joao F; Soiffer, Robert J; Ritz, Jerome

    2016-02-04

    The development and maintenance of immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT) requires the balanced reconstitution of donor-derived CD4 regulatory T cells (CD4Tregs) as well as effector CD4 (conventional CD4 T cells [CD4Tcons]) and CD8 T cells. To characterize the complex mechanisms that lead to unbalanced recovery of these distinct T-cell populations, we studied 107 adult patients who received T-replete stem cell grafts after reduced-intensity conditioning. Immune reconstitution of CD4Treg, CD4Tcon, and CD8 T cells was monitored for a 2-year period. CD3 T-cell counts gradually recovered to normal levels during this period but CD8 T cells recovered more rapidly than either CD4Tregs or CD4Tcons. Reconstituting CD4Tregs and CD4Tcons were predominantly central memory (CM) and effector memory (EM) cells and CD8 T cells were predominantly terminal EM cells. Thymic generation of naive CD4Tcon and CD8 T cells was maintained but thymic production of CD4Tregs was markedly decreased with little recovery during the 2-year study. T-cell proliferation was skewed in favor of CM and EM CD4Tcon and CD8 T cells, especially 6 to 12 months after HSCT. Intracellular expression of BCL2 was increased in CD4Tcon and CD8 T cells in the first 3 to 6 months after HSCT. Early recovery of naive and CM fractions within each T-cell population 3 months after transplant was also strongly correlated with the subsequent development of chronic graft-versus-host disease (GVHD). These dynamic imbalances favor the production, expansion, and persistence of effector T cells over CD4Tregs and were associated with the development of chronic GVHD. © 2016 by The American Society of Hematology.

  3. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Neil Q. Tay

    2017-11-01

    Full Text Available CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses.

  4. CD40L Expression Allows CD8+T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells.

    Science.gov (United States)

    Tay, Neil Q; Lee, Debbie C P; Chua, Yen Leong; Prabhu, Nayana; Gascoigne, Nicholas R J; Kemeny, David M

    2017-01-01

    CD8 + T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4 + T cells is known to be necessary for the generation of a robust CD8 + T cell response, the contribution of CD8 + T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8 + T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8 + T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8 + T cell responses, we generated and characterized CD40L-expressing CD8 + T cells both in vitro and in vivo . We found that CD40L was expressed on 30-50% of effector CD8 + T cells when stimulated and that this expression was transient. The expression of CD40L on CD8 + T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8 + T cells and the bystander effector CD8 + T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8 + T cells and DCs cooperate to maximize CD8 + T cell responses.

  5. Induction of Immunosuppressive CD8+CD25+FOXP3+ Regulatory T Cells by Suboptimal Stimulation with Staphylococcal Enterotoxin C1.

    Science.gov (United States)

    Lee, Juyeun; Park, Nogi; Park, Joo Youn; Kaplan, Barbara L F; Pruett, Stephen B; Park, Juw Won; Park, Yong Ho; Seo, Keun Seok

    2018-01-15

    Superantigens (SAgs) produced by Staphylococcus aureus at high concentrations induce proliferation of T cells bearing specific TCR Vβ sequences and massive cytokinemia that cause toxic shock syndrome. However, the biological relevance of SAgs produced at very low concentrations during asymptomatic colonization or chronic infections is not understood. In this study, we demonstrate that suboptimal stimulation of human PBMCs with a low concentration (1 ng/ml) of staphylococcal enterotoxin C1, at which half-maximal T cell proliferation was observed, induced CD8 + CD25 + T cells expressing markers related to regulatory T cells (Tregs), such as IFN-γ, IL-10, TGF-β, FOXP3, CD28, CTLA4, TNFR2, CD45RO, and HLA-DR. Importantly, these CD8 + CD25 + T cells suppressed responder cell proliferation mediated in contact-dependent and soluble factor-dependent manners, involving galectin-1 and granzymes, respectively. In contrast, optimal stimulation of human PBMCs with a high concentration (1 μg/ml) of staphylococcal enterotoxin C1, at which maximal T cell proliferation was observed, also induced similar expression of markers related to Tregs, including FOXP3 in CD8 + CD25 + cells, but these T cells were not functionally immunosuppressive. We further demonstrated that SAg-induced TCR Vβ-restricted and MHC class II-restricted expansion of immunosuppressive CD8 + CD25 + T cells is independent of CD4 + T cells. Our results suggest that the concentration of SAg strongly affects the functional characteristics of activated T cells, and low concentrations of SAg produced during asymptomatic colonization or chronic S. aureus infection induce immunosuppressive CD8 + Tregs, potentially promoting colonization, propagation, and invasion of S. aureus in the host. Copyright © 2018 by The American Association of Immunologists, Inc.

  6. TRAF2 regulates peripheral CD8(+) T-cell and NKT-cell homeostasis by modulating sensitivity to IL-15.

    Science.gov (United States)

    Villanueva, Jeanette E; Malle, Elisabeth K; Gardam, Sandra; Silveira, Pablo A; Zammit, Nathan W; Walters, Stacey N; Brink, Robert; Grey, Shane T

    2015-06-01

    In this study, a critical and novel role for TNF receptor (TNFR) associated factor 2 (TRAF2) is elucidated for peripheral CD8(+) T-cell and NKT-cell homeostasis. Mice deficient in TRAF2 only in their T cells (TRAF2TKO) show ∼40% reduction in effector memory and ∼50% reduction in naïve CD8(+) T-cell subsets. IL-15-dependent populations were reduced further, as TRAF2TKO mice displayed a marked ∼70% reduction in central memory CD8(+) CD44(hi) CD122(+) T cells and ∼80% decrease in NKT cells. TRAF2TKO CD8(+) CD44(hi) T cells exhibited impaired dose-dependent proliferation to exogenous IL-15. In contrast, TRAF2TKO CD8(+) T cells proliferated normally to anti-CD3 and TRAF2TKO CD8(+) CD44(hi) T cells exhibited normal proliferation to exogenous IL-2. TRAF2TKO CD8(+) T cells expressed normal levels of IL-15-associated receptors and possessed functional IL-15-mediated STAT5 phosphorylation, however TRAF2 deletion caused increased AKT activation. Loss of CD8(+) CD44(hi) CD122(+) and NKT cells was mechanistically linked to an inability to respond to IL-15. The reduced CD8(+) CD44(hi) CD122(+) T-cell and NKT-cell populations in TRAF2TKO mice were rescued in the presence of high dose IL-15 by IL-15/IL-15Rα complex administration. These studies demonstrate a critical role for TRAF2 in the maintenance of peripheral CD8(+) CD44(hi) CD122(+) T-cell and NKT-cell homeostasis by modulating sensitivity to T-cell intrinsic growth factors such as IL-15. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.