WorldWideScience

Sample records for splanchnic sympathetic nerve

  1. Leptin acts in the forebrain to differentially influence baroreflex control of lumbar, renal and splanchnic sympathetic nerve activity and heart rate

    Science.gov (United States)

    Li, Baoxin; Shi, Zhigang; Cassaglia, Priscila A.; Brooks, Virginia L.

    2013-01-01

    While leptin is known to increase sympathetic nerve activity (SNA), we tested the hypothesis that leptin also enhances baroreflex control of SNA and HR. Using α-chloralose anesthetized male rats, mean arterial pressure (MAP), HR, lumbar SNA (LSNA), splanchnic SNA (SSNA), and renal SNA (RSNA) were recorded before and for 2 hr after lateral cerebroventricular (LV) leptin or aCSF administration. Baroreflex function was assessed using a four parameter sigmoidal fit of HR and SNA responses to slow ramp (3-5 min) changes in MAP, induced by iv infusion of nitroprusside and phenylephrine. Leptin (3 μg) increased (Pbaroreflex maxima. Leptin also increased gain of baroreflex control of LSNA and RSNA, but not of SSNA or HR. The elevations in HR were eliminated by pretreatment with methscopalamine, to block parasympathetic nerve activity; however, after cardiac sympathetic blockade with atenolol, leptin still increased basal HR and MAP and the HR baroreflex maximum and minimum. Leptin (1.5 μg) also increased LSNA and enhanced LSNA baroreflex gain and maximum, but did not alter MAP, HR, or the HR baroreflex. LV aCSF had no effects. Finally, to test if leptin acts in the brainstem, leptin (3 μg) was infused into the 4th ventricle; however, no significant changes were observed. In conclusion, leptin acts in the forebrain to differentially influence baroreflex control of LSNA, RSNA, SSNA and HR, with the latter action mediated via suppression of parasympathetic nerve activity. PMID:23424232

  2. Computerized tomography-guided neurolytic splanchnic nerve block

    International Nuclear Information System (INIS)

    Henriquet, Franco; De Martini, Giuseppe; Roy, Maria Teresa; Pretrolesi, Fabio; Martinoli, Carlo; Cariati, Maurizio; Fiorentini, Franco.

    1997-01-01

    Computerized tomography-guided neurolytic splanchnic nerve block is a technique for relieving abdominal cancer pain; the goal is the alcoholic neurolytic interruption of the sensitive structures in retroperitoneal space. Computerized tomography yields accurate anatomical detailing and the course for needle placement and alcohol spread. January, 1993, to July, 1996, twenty-one bilateral splanchnic nerve blocks were performed through the posterior access. Forty-eight hours after alcoholism. 14 patients (66%) had complete pain regression; 52% of the patients needed no analgesics for 6 to 54 days and only 9 patients (42%) needed another low opioid therapy. Complications included hypotension and diarrhea in all cases. One had a cardiac arrest and diet 8 days after the procedure. There were no other complications. The whole procedure usually lasted 60 min (range: 45 to 90 min). Splanchnic nerve neurolysis is a useful treatment in the patients with severe chronic abdominal pain. It is used as a second line treatment when large lesions change celia anatomy and complicate the percutaneous block of the celiac plexus. Endosulfan, Malathion and Methyl parathion, on the metabolic rate of the estuarine clam, Villorita cyprinoides var. cochinensis, have been investigated. The animals exposed to the lower sublethal concentrations of Endosulfan, Malthion and Methyl parathion consumed oxygen at the rate of 1.60, 1.98 and 2.09 ml. 0 2 g - 1 h -1 respectively, while at the higher concentrations of the pesticides, consumption of oxygen by the animal dropped to nearly half the control value. When compared to Malathion and Methyl parathion. Endosulfan induced animals recorded a greater reduction in her percentage deviation (from control) of oxygen consumption, possibly due to hypoxia induced by the pollutants

  3. Advances in sympathetic nerve recording in humans

    Directory of Open Access Journals (Sweden)

    Elisabeth eLambert

    2012-02-01

    Full Text Available Sympathetic nerve recording is commonly assessed by measuring the firing activity of a number of neurones. While the estimation of overall sympathetic nervous activity using this multiunit recording approach has advanced our understanding of sympathetic regulation in health and disease no information is gained regarding the underling mechanisms generating the bursts of sympathetic activity. The introduction of single-unit recording has been a major step forward, enabling the examination of specific sympathetic firing patterns in diverse clinical conditions. Disturbances in sympathetic nerve firing, including high firing probabilities, high firing rates or high incidence of multiple firing, or a combination of both, may have clinical implications with regards to the development and progression of target organ damage. Understanding the mechanisms and consequences of specific firing patterns would permit the development of therapeutic strategies targeting these nuances of sympathetic overdrive.

  4. Autonomic Regulation of Splanchnic Circulation

    Directory of Open Access Journals (Sweden)

    Kathleen A Fraser

    1991-01-01

    Full Text Available The role of the autonomic nervous system in circulatory regulation of the splanchnic organs (stomach, small intestine, colon, liver, pancreas and spleen is reviewed. In general, the sympathetic nervous system is primarily involved in vasoconstriction, while the parasympathetic contributes to vasodilation. Vasoconstriction in the splanchnic circulation appears to be mediated by alpha-2 receptors and vasodilation by activation of primary afferent nerves with subsequent release of vasodilatory peptides, or by stimulation of beta-adrenergic receptors. As well, an important function of the autonomic nervous system is to provide a mechanism by which splanchnic vascular reserve can be mobilized during stress to maintain overall cardiovascular homeostasis.

  5. CT guided celiac plexus and splanchnic nerve neurolysis : the modified anterior approach

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Lee, Mi Suk; Ym, Seong Hee; Lee, Jin Hee

    1997-01-01

    Since it was first described by Kappis, celiac plexus neurolysis (CPN) has been performed under fluoroscopic guidance by anesthetists or surgeons for the relief of intractable pain caused by upper abdominal malignancy. Recently, however, several groups have reported a computed tomography (CT)-guided technique that increased the safety of the blocking procedure and improved its results. The authors present a new technique CT-guided celiac plexus and splanchic nerve block, to be used simultaneously with a modified anterior approach. Using CT to guide needle tip placement, an anterior approach that permitted direct neurolysis of the celiac ganglia and splanchnic nerve was developed

  6. Mechanisms of insulin action on sympathetic nerve activity

    Science.gov (United States)

    Muntzel, Martin S.; Anderson, Erling A.; Johnson, Alan Kim; Mark, Allyn L.

    1996-01-01

    Insulin resistance and hyperinsulinemia may contribute to the development of arterial hypertension. Although insulin may elevate arterial pressure, in part, through activation of the sympathetic nervous system, the sites and mechanisms of insulin-induced sympathetic excitation remain uncertain. While sympathoexcitation during insulin may be mediated by the baroreflex, or by modulation of norepinephrine release from sympathetic nerve endings, it has been shown repeatedly that insulin increases sympathetic outflow by actions on the central nervous system. Previous studies employing norepinephrine turnover have suggested that insulin causes sympathoexcitation by acting in the hypothalamus. Recent experiments from our laboratory involving direct measurements of regional sympathetic nerve activity have provided further evidence that insulin acts in the central nervous system. For example, administration of insulin into the third cerebralventricle increased lumbar but not renal or adrenal sympathetic nerve activity in normotensive rats. Interestingly, this pattern of regional sympathetic nerve responses to central neural administration of insulin is similar to that seen with systemic administration of insulin. Further, lesions of the anteroventral third ventricle hypothalamic (AV3V) region abolished increases in sympathetic activity to systemic administration of insulin with euglycemic clamp, suggesting that AV3V-related structures are critical for insulin-induced elevations in sympathetic outflow.

  7. Baroreflex control of muscle sympathetic nerve activity after carotid body tumor resection

    NARCIS (Netherlands)

    Timmers, Henri J. L. M.; Karemaker, John M.; Wieling, Wouter; Marres, Henri A. M.; Lenders, Jacques W. M.

    2003-01-01

    Bilateral carotid body tumor resection causes a permanent attenuation of vagal baroreflex sensitivity. We retrospectively examined the effects of bilateral carotid body tumor resection on the baroreflex control of sympathetic nerve traffic. Muscle sympathetic nerve activity was recorded in 5

  8. Role of sympathetic nerve activity in the process of fainting

    Directory of Open Access Journals (Sweden)

    Satoshi eIwase

    2014-09-01

    Full Text Available Syncope is defined as a transient loss of consciousness and postural tone, characterized by rapid onset, short duration, and spontaneous recovery, and the process of syncope progression will be described with two types of sympathetic change. Simultaneous recordings of microneurographically recorded MSNA and continuous and noninvasive blood pressure measurement have disclose what is going on in the course of progression of the syncope. Vasovagal or neurally mediated syncope, three stages are identified in the course of syncope onset, oscillation, imbalance, and catastrophe phases. The vasovagal syncope is characterized by the sympathoexcitation, followed by vagal overcome via the Bezold-Jarisch reflex. Orthostatic syncope is caused by the response failure or lack of sympathetic nerve activity toward the orthostatic challenge followed by the fluid shift, and subsequent cerebral low perfusion. Four causes are considered for the compensatory failure, which triggers the orthostatic syncope; hypovolemia, increased pooling in the lower body, failure to activate the sympathetic activity, and failure of vasoconstriction against sympathetic vasoconstrictive stimulation. Many pathophysiological conditions were described in the viewpoint of 1 exaggerated sympathoexcitation and 2 failure to activate the sympathetic nerve. We conclude that the sympathetic nervous system can control the cardiovascular function, and its failure resulted syncope, however, responses of the system by microneurographically recorded MSNA would determine the pathophysiology of the onset and progression of syncope, explaining the treatment effect that could be achieved by the analysis of this mechanism.

  9. Effect of ghrelin on regulation of splenic sympathetic nerve discharge.

    Science.gov (United States)

    Balivada, Sivasai; Pawar, Hitesh N; Montgomery, Shawnee; Kenney, Michael J

    2016-12-01

    Ghrelin influences immune system function and modulates the sympathetic nervous system; however, the contribution of ghrelin to neural-immune interactions is not well-established because the effect of ghrelin on splenic sympathetic nerve discharge (SND) is not known. This study tested the hypothesis that central ghrelin administration would inhibit splenic SND in anesthetized rats. Rats received intracerebroventricular (ICV) injections of ghrelin (1nmol/kg) or aCSF. Lumbar SND recordings provided a non-visceral nerve control. The ICV ghrelin administration significantly increased splenic and lumbar SND, whereas mean arterial pressure (MAP) was not altered. These findings provide fundamental information regarding the nature of sympathetic-immune interactions. Published by Elsevier B.V.

  10. Entrainment pattern between sympathetic and phrenic nerve activities in the Sprague-Dawley rat: hypoxia-evoked sympathetic activity during expiration.

    Science.gov (United States)

    Dick, Thomas E; Hsieh, Y-H; Morrison, Shaun; Coles, Sharon K; Prabhakar, Nanduri

    2004-06-01

    Sympathetic and respiratory motor activities are entrained centrally. We hypothesize that this coupling may partially underlie changes in sympathetic activity evoked by hypoxia due to activity-dependent changes in the respiratory pattern. Specifically, we tested the hypothesis that sympathetic nerve activity (SNA) expresses a short-term potentiation in activity after hypoxia similar to that expressed in phrenic nerve activity (PNA). Adult male, Sprague-Dawley (Zivic Miller) rats (n = 19) were anesthetized (Equithesin), vagotomized, paralyzed, ventilated, and pneumothoracotomized. We recorded PNA and splanchnic SNA (sSNA) and generated cycle-triggered averages (CTAs) of rectified and integrated sSNA before, during, and after exposures to hypoxia (8% O(2) and 92% N(2) for 45 s). Inspiration (I) and expiration (E) were divided in half, and the average and area of integrated sSNA were calculated and compared at the following time points: before hypoxia, at the peak breathing frequency during hypoxia, immediately before the end of hypoxia, immediately after hypoxia, and 60 s after hypoxia. In our animal model, sSNA bursts consistently followed the I-E phase transition. With hypoxia, sSNA increased in both halves of E, but preferentially in the second rather than the first half of E, and decreased in I. After hypoxia, sSNA decreased abruptly, but the coefficient of variation in respiratory modulation of sSNA was significantly less than that at baseline. The hypoxic-evoked changes in sympathetic activity and respiratory pattern resulted in sSNA in the first half of E being correlated negatively to that in the second half of E (r = -0.65, P hypoxia, the variability in the entrainment pattern had returned to baseline. The preferential recruitment of late expiratory sSNA during hypoxia results from either activation by expiratory-modulated neurons or by non-modulated neurons whose excitatory drive is not gated during late E.

  11. Hysteresis in the sympathetic baroreflex: role of baseline nerve activity

    Science.gov (United States)

    Hart, Emma C; Wallin, B Gunnar; Curry, Timothy B; Joyner, Michael J; Karlsson, Tomas; Charkoudian, Nisha

    2011-01-01

    Abstract Sympathetic baroreflex sensitivity (BRS) is greater during decreasing compared to increasing diastolic blood pressure (DBP) in young men and women. In older men and women there is no difference in sympathetic BRS to increasing and decreasing DBP. We investigated whether the sensitivity of the central nervous system to increasing and decreasing DBP is dependent upon baseline muscle sympathetic nerve activity (MSNA). We hypothesised that the difference in sympathetic BRS between falling and rising segments of DBP would be positively related to baseline MSNA in 30 young men, 21 young women, 14 older men and 14 postmenopausal women. MSNA was measured using peroneal microneurography and BRS was measured using the spontaneous baroreflex threshold technique. On average, sympathetic BRS was greater during decreasing compared to increasing DBP in young men (P 0.05). In summary, baseline MSNA plays a role in determining sympathetic BRS to falling and rising DBP in young and older men and postmenopausal women, but not in young women. This relationship is consistent with a decreased potential for sympathoexcitation in people with higher resting MSNA. Furthermore, the lack of relationship in young women suggests important contributions of sex hormones to differential responses of MSNA to falling and rising pressures. PMID:21540345

  12. Regulation of the renal sympathetic nerves in heart failure

    Directory of Open Access Journals (Sweden)

    Rohit eRamchandra

    2015-08-01

    Full Text Available Heart failure (HF is a serious debilitating condition with poor survival rates and an increasing level of prevalence. Heart failure is associated with an increase in renal norepinephrine spillover, which is an independent predictor of mortality in HF patients. The excessive sympatho-excitation that is a hallmark of heart failure has long-term effects that contribute to disease progression. An increase in directly recorded renal sympathetic nerve activity has also been recorded in animal models of heart failure. This review will focus on the mechanisms controlling sympathetic nerve activity to the kidney during normal conditions and alterations in these mechanisms during heart failure. In particular the roles of afferent reflexes and central mechanisms will be discussed.

  13. [Hemopneumothorax after thoracic sympathetic nerve block; report of a case].

    Science.gov (United States)

    Sakai, Takehiro; Sano, Atsushi; Matsukura, Akira; Kikuchi, Junko; Taguchi, Taizo; Tanizaki, Yuji; Hamashima, Hideki; Kimura, Daisuke; Hatanaka, Ryo; Yamada, Yoshitsugu; Tsushima, Takao; Fukuda, Ikuo

    2014-07-01

    A 72-year-old man, who had been treated pneumothorax 50 years ago, visited a physician complaining of dyspnea after thoracic sympathetic nerve block for postherpetic neuralgia. The patient was diagnosed as pneumothorax, and was consulted to our hospital. Clinical sign and the chest radiography suggested tension hemopneumothorax, and the chest drainage was immediately performed. Although bloody fluid of 1,100 ml was initially drained, no further increase was noted. The patient was discharged on the 21st hospital day.

  14. Sympathetic nerve activity and whole body heat stress in humans

    OpenAIRE

    Low, David A.; Keller, David M.; Wingo, Jonathan E.; Brothers, R. Matthew; Crandall, Craig G.

    2011-01-01

    We and others have shown that moderate passive whole body heating (i.e., increased internal temperature ∼0.7°C) increases muscle (MSNA) and skin sympathetic nerve activity (SSNA). It is unknown, however, if MSNA and/or SSNA continue to increase with more severe passive whole body heating or whether these responses plateau following moderate heating. The aim of this investigation was to test the hypothesis that MSNA and SSNA continue to increase from a moderate to a more severe heat stress. Th...

  15. The pedunculopontine tegmentum controls renal sympathetic nerve activity and cardiorespiratory activities in nembutal-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Anne M Fink

    Full Text Available Elevated renal sympathetic nerve activity (RSNA accompanies a variety of complex disorders, including obstructive sleep apnea, heart failure, and chronic kidney disease. Understanding pathophysiologic renal mechanisms is important for determining why hypertension is both a common sequelae and a predisposing factor of these disorders. The role of the brainstem in regulating RSNA remains incompletely understood. The pedunculopontine tegmentum (PPT is known for regulating behaviors including alertness, locomotion, and rapid eye movement sleep. Activation of PPT neurons in anesthetized rats was previously found to increase splanchnic sympathetic nerve activity and blood pressure, in addition to altering breathing. The present study is the first investigation of the PPT and its potential role in regulating RSNA. Microinjections of DL-homocysteic acid (DLH were used to probe the PPT in 100-μm increments in Nembutal-anesthetized rats to identify effective sites, defined as locations where changes in RSNA could be evoked. A total of 239 DLH microinjections were made in 18 rats, which identified 20 effective sites (each confirmed by the ability to evoke a repeatable sympathoexcitatory response. Peak increases in RSNA occurred within 10-20 seconds of PPT activation, with RSNA increasing by 104.5 ± 68.4% (mean ± standard deviation from baseline. Mean arterial pressure remained significantly elevated for 30 seconds, increasing from 101.6 ± 18.6 mmHg to 135.9 ± 36.4 mmHg. DLH microinjections also increased respiratory rate and minute ventilation. The effective sites were found throughout the rostal-caudal extent of the PPT with most located in the dorsal regions of the nucleus. The majority of PPT locations tested with DLH microinjections did not alter RSNA (179 sites, suggesting that the neurons that confer renal sympathoexcitatory functions comprise a small component of the PPT. The study also underscores the importance of further investigation to

  16. Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: role of oestrogen

    Science.gov (United States)

    Shi, Zhigang; Brooks, Virginia L

    2015-01-01

    Key points Leptin increases sympathetic nerve activity (SNA) in males, which contributes to obesity-induced hypertension; however, whether leptin is equally effective in females is unknown. We report that leptin does increase SNA and heart rate in female rats; however, for lumbar and renal SNA, this action is only evident in pro-oestrus and in oestrogen-treated ovariectomized rats, but not in ovariectomized or dioestrus rats. Leptin increases SNA and heart rate similarly in male and pro-oestrus female rats; however, leptin increases arterial pressure only in males. Blockade of MC3/4 receptors in the paraventricular nucleus (PVN) with SHU9119 decreases SNA in leptin-treated pro-oestrus rats, suggesting that leptin increases SNA in part by increasing α-melanocyte-stimulating hormone drive of PVN presympathetic neurons. Our data establish sex differences in leptin's effects to increase SNA and arterial pressure, which emphasizes the need for enhanced recognition and investigation of sex differences in obesity-induced sympathoexcitation and hypertension. Abstract Obesity and hypertension are commonly associated, and activation of the sympathetic nervous system is considered to be a major contributor, at least in part due to the central actions of leptin. However, while leptin increases sympathetic nerve activity (SNA) in males, whether leptin is equally effective in females is unknown. Here, we show that intracerebroventricular (i.c.v.) leptin increases lumbar (LSNA) and renal (RSNA) SNA and baroreflex control of LSNA and RSNA in α-chloralose anaesthetized female rats, but only during pro-oestrus. In contrast, i.c.v. leptin increased basal and baroreflex control of splanchnic SNA (SSNA) and heart rate (HR) in rats in both the pro-oestrus and dioestrus states. The effects of leptin on basal LSNA, RSNA, SSNA and HR were similar in males and pro-oestrus females; however, i.c.v. leptin increased mean arterial pressure (MAP) only in males. Leptin did not alter LSNA or HR

  17. Effects of vagotomy, splanchnic nerve lesion, and fluorocitrate on the transmission of acute hyperosmotic stress signals to the supraoptic nucleus.

    Science.gov (United States)

    Xiong, Yingfei; Liu, Rui; Xu, Yan; Duan, Li; Cao, Rong; Tu, Lingfeng; Li, Zhuyi; Zhao, Gang; Rao, Zhiren

    2011-02-01

    The response to hyperosmotic stresses in the abdominal cavity is regulated, in part, by vasopressin (VP)-secreting neurons in the supraoptic nucleus (SON). How osmotic stress signals are transmitted to the brain is incompletely understood, and whether the transmission routes for osmotic stress signals differ between acute and chronic stresses is unknown. Here we investigated the role of the vagus, splanchnic nerves, and astrocytes in the SON in transducing acute hyperosmotic-stress signals from the abdominal cavity. We found that acute administration of hyperosmotic saline triggered the activation of neurons as well as astrocytes in the SON and the adjoining ventral glia limitans (SON-VGL). Severing the subdiaphragmatic vagal nerve (SDV) prevented the normal response of cells in the SON to HS treatment and attenuated the release of VP into the bloodstream. Lesioning the splanchnic nerves (SNL) diminished HS-induced release of VP, but to a much lesser extent than SDV. Furthermore, SNL did not significantly affect the up-regulation of Fos in SON neurons or the up-regulation of Fos and GFAP in SON and SON-VGL astrocytes that normally occurred in response to HS and did not affect HS-induced expansion of the SON-VGL. Inhibiting astrocytes with fluorocitrate (FCA) prevented the response of the SON to HS and attenuated the release of VP, similarly to SDV surgery. These results suggest that the vagus is the principle route for the transmission of hyperosmotic signals to the brain and that astrocytes in the SON region are necessary for the activation of SON neurons and the release of VP into the bloodstream. Copyright © 2010 Wiley-Liss, Inc.

  18. Study of sympathetic nerve activity in young Indian obese individuals

    Directory of Open Access Journals (Sweden)

    B Kalpana

    2013-01-01

    Full Text Available Background: Obesity is the culmination of a chronic imbalance between energy intake and energy expenditure. This energy balance can be potentially affected by the activity of autonomic nervous system (ANS. Altered sympathetic nerve function may be of importance in obesity. Objective: The present study is an attempt to pinpoint the defect (if any in the activity of sympathetic limb of the ANS in obesity, by subjecting to isometric exercise stress. Materials and Methods: A total of 81 females belonging to the age group of 18-22 years were recruited for the study. The participants were divided into two groups as normal weight and obese based on WHO guidelines for Asia Pacific region. After recording the resting blood pressure, they were subjected to isometric exercise by Handgrip dynamometer. Blood pressure was recorded again, and the difference was noted down. All recorded parameters were compared between two groups using unpaired t test. The relationship between body mass index (BMI and rise in diastolic pressure was quantified by Pearson′s correlation test. A P value less than 0.05 was considered as significant. Results: In obese, the diastolic pressure was significantly higher at rest, but showed reduced rise during handgrip test in comparison with normal weight individuals. Also, the rise in diastolic pressure exhibited a negative relation with BMI. Conclusion: The result is suggestive of impaired autonomic function at rest and reduced sympathetic activity in the group of obese when subjected to stress. This could make them more prone for future development of hypertension or other cardiovascular disorders.

  19. Study of nerve fibers nature reinforcing duodenal contractions by electrical stimulation of sympathetic nerve

    Directory of Open Access Journals (Sweden)

    Sveshnikov D.S.

    2011-09-01

    Full Text Available The subject of the article is to investigate the mechanism of increased reactions by electrical stimulation of the sympathetic nerve. Materials and methods: Experiments on dogs have shown that stimulant reactions during blockade of a-adrenergic by phentolamine and (3-adrenergic receptors with propranolol were completely eliminated by lizer-gol —the blocker of 5-HT12-receptors. Results: Infusion of lizergol did not influence on duodenal motor activity and the function of the vagus nerve. Conclusion: Effector neuron is found out to be serotonergic and its action is provided by 5-HT1 2 receptors

  20. Baroreflex control of muscle sympathetic nerve activity: a nonpharmacological measure of baroreflex sensitivity

    OpenAIRE

    Hart, Emma C.; Joyner, Michael J.; Wallin, B. Gunnar; Karlsson, Tomas; Curry, Timothy B.; Charkoudian, Nisha

    2009-01-01

    The sensitivity of baroreflex control of sympathetic nerve activity (SNA) represents the responsiveness of SNA to changes in blood pressure. In a slightly different analysis, the baroreflex threshold measures the probability of whether a sympathetic burst will occur at a given diastolic blood pressure. We hypothesized that baroreflex threshold analysis could be used to estimate the sensitivity of the sympathetic baroreflex measured by the pharmacological modified Oxford test. We compared four...

  1. [Progressive hemifacial atrophy with sympathetic nerve dysfunction of central origin].

    Science.gov (United States)

    Tsuchiya, I; Sahashi, K; Ibi, T; Iwase, S; Mano, T

    1989-09-01

    A 37-year-old unmarried man was admitted because of gait disturbance and right hemifacial atrophy. Family history was unremarkable. He had an unconscious attack at age 13 and had writer's cramp since age 15. He was thin and lipodystrophic. In reviewing his portraits, hemifacial atrophy was considered to develop in his early teens and to be progressive since then. Pigmented gum, high arched palate, mild mental retardation, pseudo-Argyll Robertson's pupil, sexual impotence, amyotrophy of the left thigh and the right calf, and a limp due to bony abnormalities was detected. Serological tests for syphilis were negative. Bone X-rays disclosed coxa-deformance. Cerebrospinal fluid. EMG, EEG, muscle biopsy and brain CT were normal. Hearing was decreased to 20-35 dB bilaterally. Plasma norepinephrine levels were 450 pg/ml in the supine position and 539 pg/ml in standing. Plasma renin activity was 5.1-5.4 ng/ml/hr. Microneurography revealed highly accentuated muscle and skin sympathetic nerve activities. Hypothermia on the feet, reduced CVR-R and decreased mydriatic response to 5% cocaine instillation were present. Intravenous infusion of norepinephrine and intradermal injection of either acetylcholine or histamine revealed normal results. In the case, sympathicotonia due to dysfunction in the central nervous system is considered to be related to the pathogenesis of hemifacial atrophy.

  2. Beneficial effect of splanchnic nerve transection and harmful effect of vagotomy on acute necrotizing pancreatitis in the dog.

    Science.gov (United States)

    Sun, Jun-Jun; Chu, Zhi-Jie; Zhang, Yu-Ming; Qi, Shi-Fang; Chang, Yong-Chao; Xin, Shi-Yong; Liu, Wei-Feng; Yang, Yan-Hui; Zhang, Xiao-Hui; Yang, Cheng; Yang, Tian-Bao

    2015-01-01

    The nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways. However, the influence of visceral nerve (VN) on acute necrotizing pancreatitis (ANP) has drawn little attention. To investigate the influence of VN on the pathophysiological process of ANP in dogs. The dogs were divided into a sham operation (SO) group, ANP group, ANP + vagal nerve trunk transection (VNTT) group, and ANP + greater splanchnic nerve transection (GSNT) group. The VNTT and GSNT groups underwent VNTT and GSNT respectively immediately after ANP induction. The levels of serum pancreatic amylase (AMY), calcium, high-sensitivity C-reactive protein (HCRP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-10 (IL-10) were monitored dynamically and the pathological examinations of the pancreas was performed at postoperative day 7. All serum parameters among the four groups showed no differences before the experiment (p > 0.05). At different postoperative times, the serum TNF-α, IL-1β, HCRP, and AMY were significantly increased, however, the serum calcium and IL-10 had dropped in the ANP group versus SO group (p < 0.05); an alike variation trend occurred between the VNTT group and ANP group (p < 0.05); an opposite variation trend occurred between the GSNT group and the ANP group (p < 0.05). The pancreas pathological scoring of VNTT group was highest in the four groups (p < 0.05) and GSNT group was lower versus ANP group (p < 0.05). The GSNT has been shown to alleviate development of ANP, however, VNTT may exacerbate the ANP.

  3. Alterations of sympathetic nerve fibers in avascular necrosis of femoral head.

    Science.gov (United States)

    Li, Deqiang; Liu, Peilai; Zhang, Yuankai; Li, Ming

    2015-01-01

    Avascular necrosis of the femoral head (ANFH) was mainly due to alterations of bone vascularity. And noradrenaline (NA), as the neurotransmitter of the sympathetic nervous system (SNS), leads to the vasoconstriction by activating its α-Receptor. This study was to explore the nerve fiber density of the femoral head in the rabbit model of ANFH. Twenty New Zealand white rabbits were used in this study. The rabbit model of ANFH was established by the injection of methylprednisolone acetate. The nerve fiber density and distribution in the femoral head was determined using an Olympus BH2 microscope. Significant fewer sympathetic nerve fibers was found in the ANFH intertrochanteric bone samples (P = 0.036) with osteonecrosis. The number of sympathetic nerve fibers was compared between the two groups. And less sympathetic nerve fibers were found in later stage ANFH samples in comparison with those of early stages. ANFH might be preceded by an inflammatory reaction, and an inflammatory response might lead to arthritic changes in tissue samples, which in turn reduces the number of sympathetic nerve fibers.

  4. Renal denervation in male rats with heart failure improves ventricular sympathetic nerve innervation and function.

    Science.gov (United States)

    Pinkham, Maximilian I; Loftus, Michael T; Amirapu, Satya; Guild, Sarah-Jane; Quill, Gina; Woodward, William R; Habecker, Beth A; Barrett, Carolyn J

    2017-03-01

    Heart failure is characterized by the loss of sympathetic innervation to the ventricles, contributing to impaired cardiac function and arrhythmogenesis. We hypothesized that renal denervation (RDx) would reverse this loss. Male Wistar rats underwent myocardial infarction (MI) or sham surgery and progressed into heart failure for 4 wk before receiving bilateral RDx or sham RDx. After additional 3 wk, left ventricular (LV) function was assessed, and ventricular sympathetic nerve fiber density was determined via histology. Post-MI heart failure rats displayed significant reductions in ventricular sympathetic innervation and tissue norepinephrine content (nerve fiber density in the LV of MI+sham RDx hearts was 0.31 ± 0.05% vs. 1.00 ± 0.10% in sham MI+sham RDx group, P renal nerve activity and cardiac sympathetic nerve innervation in heart failure. Our findings show denervating the renal nerves improves cardiac sympathetic innervation and function in the post-MI failing heart. Copyright © 2017 the American Physiological Society.

  5. Loss of Sympathetic Nerves in Spleens from Patients with End Stage Sepsis

    Directory of Open Access Journals (Sweden)

    Donald B. Hoover

    2017-12-01

    Full Text Available The spleen is an important site for central regulation of immune function by noradrenergic sympathetic nerves, but little is known about this major region of neuroimmune communication in humans. Experimental studies using animal models have established that sympathetic innervation of the spleen is essential for cholinergic anti-inflammatory responses evoked by vagal nerve stimulation, and clinical studies are evaluating this approach for treating inflammatory diseases. Most data on sympathetic nerves in spleen derive from rodent studies, and this work has established that remodeling of sympathetic innervation can occur during inflammation. However, little is known about the effects of sepsis on spleen innervation. Our primary goals were to (i localize noradrenergic nerves in human spleen by immunohistochemistry for tyrosine hydroxylase (TH, a specific noradrenergic marker, (ii determine if nerves occur in close apposition to leukocytes, and (iii determine if splenic sympathetic innervation is altered in patients who died from end stage sepsis. Staining for vesicular acetylcholine transporter (VAChT was done to screen for cholinergic nerves. Archived paraffin tissue blocks were used. Control samples were obtained from trauma patients or patients who died after hemorrhagic stroke. TH + nerves were associated with arteries and arterioles in all control spleens, occurring in bundles or as nerve fibers. Individual TH + nerve fibers entered the perivascular region where some appeared in close apposition to leukocytes. In marked contrast, spleens from half of the septic patients lacked TH + nerves fibers and the average abundance of TH + nerves for the septic group was only 16% of that for the control group (control: 0.272 ± 0.060% area, n = 6; sepsis: 0.043 ± 0.026% area, n = 8; P < 0.005. All spleens lacked cholinergic innervation. Our results provide definitive evidence for the distribution of noradrenergic

  6. Sympathetic nerve activity and whole body heat stress in humans.

    Science.gov (United States)

    Low, David A; Keller, David M; Wingo, Jonathan E; Brothers, R Matthew; Crandall, Craig G

    2011-11-01

    We and others have shown that moderate passive whole body heating (i.e., increased internal temperature ∼0.7°C) increases muscle (MSNA) and skin sympathetic nerve activity (SSNA). It is unknown, however, if MSNA and/or SSNA continue to increase with more severe passive whole body heating or whether these responses plateau following moderate heating. The aim of this investigation was to test the hypothesis that MSNA and SSNA continue to increase from a moderate to a more severe heat stress. Thirteen subjects, dressed in a water-perfused suit, underwent at least one passive heat stress that increased internal temperature ∼1.3°C, while either MSNA (n = 8) or SSNA (n = 8) was continuously recorded. Heat stress significantly increased mean skin temperature (Δ∼5°C, P heat stress (Δ core temperature 0.63 ± 0.01°C) when expressed as burst frequency (26 ± 14 to 45 ± 16 bursts/min, P = 0.001), burst incidence (39 ± 13 to 48 ± 14 bursts/100 cardiac cyles, P = 0.03), or total activity (317 ± 170 to 489 ± 150 units/min, P = 0.02) and continued to increase until the end of heat stress (burst frequency: 61 ± 15 bursts/min, P = 0.01; burst incidence: 56 ± 11 bursts/100 cardiac cyles, P = 0.04; total activity: 648 ± 158 units/min, P = 0.01) relative to the mid-heating stage. Similarly, SSNA (total activity) increased midway through the heat stress (normothermia; 1,486 ± 472 to mid heat stress 6,467 ± 5,256 units/min, P = 0.03) and continued to increase until the end of heat stress (11,217 ± 6,684 units/min, P = 0.002 vs. mid-heat stress). These results indicate that both MSNA and SSNA continue to increase as internal temperature is elevated above previously reported values.

  7. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effectiveness of Splanchnic Nerve Neurolysis for Targeting Location of Cancer Pain: Using the Pain Drawing as an Outcome Variable.

    Science.gov (United States)

    Novy, Diane M; Engle, Mitchell P; Lai, Emily A; Cook, Christina; Martin, Emily C; Trahan, Lisa; Yu, Jun; Koyyalagunta, Dhanalakshmi

    2016-07-01

    The effectiveness of splanchnic nerve neurolysis (SNN) for cancer-related abdominal pain has been investigated using numeric pain intensity rating as an outcome variable. The outcome variable in this study used the grid method for obtaining a targeted pain drawing score on 60 patients with pain from pancreatic or gastro-intestinal primary cancers or metastatic disease to the abdominal region. Results demonstrate excellent inter-rater agreement (intra-class correlation [ICC] coefficient at pre-SNN = 0.97 and ICC at within one month post-SNN = 0.98) for the grid method of scoring the pain drawing and demonstrate psychometric generalizability among patients with cancer-related pain. Using the Wilcoxon signed rank test and associated effect sizes, results show significant improvement in dispersion of pain following SNN. Effect sizes for the difference in pre-SNN to 2 post-SNN time points were higher for the pain drawing than for pain intensity rating. Specifically, the effect size difference from pre- to within one month post-SNN was r = 0.42 for pain drawing versus r = 0.23 for pain intensity rating. Based on a smaller subset of patients who were seen within 1 - 6 months following SNN, the effect size difference from pre-SNN was r = 0.46 for pain drawing versus r = 0.00 for pain intensity rating. Collectively, these data support the use of the pain drawing as a reliable outcome measure among patients with cancer pain for procedures such as SNN that target specific location and dispersion of pain.

  9. Catheter-Based Renal Nerve Ablation and Centrally Generated Sympathetic Activity in Difficult-to-Control Hypertensive Patients: Prospective Case Series

    NARCIS (Netherlands)

    Brinkmann, J.; Heusser, K.; Schmidt, B.M.; Menne, J.; Klein, G.; Bauersachs, J.; Haller, H.; Sweep, F.C.; Diedrich, A.; Jordan, J.; Tank, J.

    2012-01-01

    Endovascular renal nerve ablation has been developed to treat resistant hypertension. In addition to lowering efferent renal sympathetic activation, the intervention may attenuate central sympathetic outflow through decreased renal afferent nerve traffic, as evidenced by a recent case report. We

  10. [Role of renal sympathetic nerve and oxidative stress in foot shock-induced hypertension in rats].

    Science.gov (United States)

    Jiang, Ren-Di; Zhang, Zhe; Xu, Jian-Bing; Dong, Tao; Zhang, Guo-Xing

    2015-06-25

    The present study was aimed to investigate the roles of renal sympathetic nerve and oxidative stress in the development of foot shock-induced hypertension. Ninety rats were divided into 6 groups (the number of each group was 15): control group, foot shock group, denervation of renal sympathetic nerve group, denervation of renal sympathetic nerve + foot shock group, Tempol treatment + foot shock group, denervation of renal sympathetic nerve + Tempol treatment + foot shock group. Rats were received electrical foot shock for 14 days (2-4 mA, 75 V, shocks of 50-100 ms every 30 s, for 4 h each session through an electrified grid floor every day). Renal sympathetic ablation was used to remove bilateral renal sympathetic nerve in rats (rats were allowed to recover for one week before the beginning of the foot shock procedure). The antioxidant Tempol was injected intraperitoneally at 1 h before foot shock. Systolic blood pressure was measured at 1 h after foot shock on day 0, 3, 7, 10 and 14. Contents of thiobarbituric acid reactive substance (TBARS), renin, angiotensin II (AngII) and glutathione peroxidase (GSH-Px) in plasma were measured by ELISA after 14-day foot shock. The results showed that systolic blood pressure of foot shock group was significantly increased (P blood pressure induced by foot shock. Levels of TBARS, renin and AngII in plasma were increased significantly in foot shock group compared with that of control group (P oxidative stress and directly or indirectly activate renin-angiotensin-aldosterone system, so the foot shock-induced high blood pressure may be maintained and hypertension may therefore be produced.

  11. Sex Comparisons in Muscle Sympathetic Nerve Activity and Arterial Pressure Oscillations During Progressive Central Hypovolemia

    Science.gov (United States)

    2015-01-01

    Specifically, the ‘reserve’ for autonomic responses associated with blood pressure-sympathetic nerve activity (MSNA) coherence and vasoconstrictor reserves has...134. Convertino, V. A., C. A. Rickards, and K. L. Ryan. 2012. Autonomic mechanisms associated with heart rate and vasoconstrictor reserves. Clin. Auton

  12. Effect of percutaneous renal sympathetic nerve radiofrequency ablation in patients with severe heart failure.

    Science.gov (United States)

    Dai, Qiming; Lu, Jing; Wang, Benwen; Ma, Genshan

    2015-01-01

    This study aimed to investigate the clinical feasibility and effects of percutaneous renal sympathetic nerve radiofrequency ablation in patients with heart failure. A total of 20 patients with heart failure were enrolled, aged from 47 to 75 years (63±10 years). They were divided into the standard therapy (n = 10), and renal nerve radiofrequency ablation groups (n = 10). There were 15 males and 5 female patients, including 8 ischemic cardiomyopathy, 8 dilated cardiomyopathy, and 8 hypertensive cardiopathy. All of the patients met the criteria of New York Heart Association classes III-IV cardiac function. Patients with diabetes and renal failure were excluded. Percutaneous renal sympathetic nerve radiofrequency ablation was performed on the renal artery wall under X-ray guidance. Serum electrolytes, neurohormones, and 24 h urine volume were recorded 24 h before and after the operation. Echocardiograms were performed to obtain left ventricular ejection fraction at baseline and 6 months. Heart rate, blood pressure, symptoms of dyspnea and edema were also monitored. After renal nerve ablation, 24 h urine volume was increased, while neurohormone levels were decreased compared with those of pre-operation and standard therapy. No obvious change in heart rate or blood pressure was recorded. Symptoms of heart failure were improved in patients after the operation. No complications were recorded in the study. Percutaneous renal sympathetic nerve radiofrequency ablation may be a feasible, safe, and effective treatment for the patients with severe congestive heart failure.

  13. Carotid baroreflex regulation of sympathetic nerve activity during dynamic exercise in humans

    Science.gov (United States)

    Fadel, P. J.; Ogoh, S.; Watenpaugh, D. E.; Wasmund, W.; Olivencia-Yurvati, A.; Smith, M. L.; Raven, P. B.

    2001-01-01

    We sought to determine whether carotid baroreflex (CBR) control of muscle sympathetic nerve activity (MSNA) was altered during dynamic exercise. In five men and three women, 23.8 +/- 0.7 (SE) yr of age, CBR function was evaluated at rest and during 20 min of arm cycling at 50% peak O(2) uptake using 5-s periods of neck pressure and neck suction. From rest to steady-state arm cycling, mean arterial pressure (MAP) was significantly increased from 90.0 +/- 2.7 to 118.7 +/- 3.6 mmHg and MSNA burst frequency (microneurography at the peroneal nerve) was elevated by 51 +/- 14% (P baroreflex sensitivity for the control of MSNA at rest was the same as during exercise (P = 0.74) across the range of neck chamber pressures. Thus CBR control of sympathetic nerve activity appears to be preserved during moderate-intensity dynamic exercise.

  14. Sympathetic nerve-derived ATP regulates renal medullary blood flow via vasa recta pericytes

    Directory of Open Access Journals (Sweden)

    Scott S Wildman

    2013-10-01

    Full Text Available Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta, and therefore may be able to regulate medullary blood flow (MBF. Regulation of MBF is essential for appropriate urine concentration and providing essential oxygen and nutrients to this region of high, and variable, metabolic demand. Various sources of endogenous ATP have been proposed, including from epithelial, endothelial and red blood cells in response to stimuli such as mechanical stimulation, local acidosis, hypoxia, and exposure to various hormones. Extensive sympathetic innervation of the nephron has previously been shown, however the innervation reported has focused around the proximal and distal tubules, and ascending loop of Henle. We hypothesise that sympathetic nerves are an additional source of ATP acting at renal pericytes and therefore regulate MBF. Using a rat live kidney slice model in combination with video imaging and confocal microscopy techniques we firstly show sympathetic nerves in close proximity to vasa recta pericytes in both the outer and inner medulla. Secondly, we demonstrate pharmacological stimulation of sympathetic nerves in situ (by tyramine evokes pericyte-mediated vasoconstriction of vasa recta capillaries; inhibited by the application of the P2 receptor antagonist suramin. Lastly, tyramine-evoked vasoconstriction of vasa recta by pericytes is significantly less than ATP-evoked vasoconstriction. Sympathetic innervation may provide an additional level of functional regulation in the renal medulla that is highly localized. It now needs to be determined under which physiological/pathophysiological circumstances that sympathetic innervation of renal pericytes is

  15. Muscle sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Yrsa Bergmann Sverrisdóttir

    Full Text Available BACKGROUND: Evidence from animal studies indicates the importance of an interaction between the sympathetic nervous system and the endothelium for cardiovascular regulation. However the interaction between these two systems remains largely unexplored in humans. The aim of this study was to investigate whether directly recorded sympathetic vasoconstrictor outflow is related to a surrogate marker of endothelial function in healthy individuals. METHODS AND RESULTS: In 10 healthy normotensive subjects (3 f/7 m, (age 37+/-11 yrs, (BMI 24+/-3 kg/m(2 direct recordings of sympathetic action potentials to the muscle vascular bed (MSNA were performed and endothelial function estimated with the Reactive Hyperaemia- Peripheral Arterial Tonometry (RH-PAT technique. Blood samples were taken and time spent on leisure-time physical activities was estimated. In all subjects the rate between resting flow and the maximum flow, the Reactive Hyperemic index (RH-PAT index, was within the normal range (1.9-3.3 and MSNA was as expected for age and gender (13-44 burst/minute. RH-PAT index was inversely related to MSNA (r = -0.8, p = 0.005. RH-PAT index and MSNA were reciprocally related to time (h/week spent on physical activity (p = 0.005 and p = 0.006 respectively and platelet concentration (PLT (p = 0.02 and p = 0.004 respectively. CONCLUSIONS: Our results show that sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy normotensive individuals, indicating that sympathetic outflow may be modulated by changes in endothelial function. In this study time spent on physical activity is identified as a predictor of sympathetic nerve activity and endothelial function in a group of healthy individuals. The results are of importance in understanding mechanisms underlying sympathetic activation in conditions associated with endothelial dysfunction and emphasise the importance of a daily exercise routine for maintenance of cardiovascular

  16. Muscle sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy individuals.

    Science.gov (United States)

    Sverrisdóttir, Yrsa Bergmann; Jansson, Linda Marie; Hägg, Ulrika; Gan, Li-Ming

    2010-02-17

    Evidence from animal studies indicates the importance of an interaction between the sympathetic nervous system and the endothelium for cardiovascular regulation. However the interaction between these two systems remains largely unexplored in humans. The aim of this study was to investigate whether directly recorded sympathetic vasoconstrictor outflow is related to a surrogate marker of endothelial function in healthy individuals. In 10 healthy normotensive subjects (3 f/7 m), (age 37+/-11 yrs), (BMI 24+/-3 kg/m(2)) direct recordings of sympathetic action potentials to the muscle vascular bed (MSNA) were performed and endothelial function estimated with the Reactive Hyperaemia- Peripheral Arterial Tonometry (RH-PAT) technique. Blood samples were taken and time spent on leisure-time physical activities was estimated. In all subjects the rate between resting flow and the maximum flow, the Reactive Hyperemic index (RH-PAT index), was within the normal range (1.9-3.3) and MSNA was as expected for age and gender (13-44 burst/minute). RH-PAT index was inversely related to MSNA (r = -0.8, p = 0.005). RH-PAT index and MSNA were reciprocally related to time (h/week) spent on physical activity (p = 0.005 and p = 0.006 respectively) and platelet concentration (PLT) (p = 0.02 and p = 0.004 respectively). Our results show that sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy normotensive individuals, indicating that sympathetic outflow may be modulated by changes in endothelial function. In this study time spent on physical activity is identified as a predictor of sympathetic nerve activity and endothelial function in a group of healthy individuals. The results are of importance in understanding mechanisms underlying sympathetic activation in conditions associated with endothelial dysfunction and emphasise the importance of a daily exercise routine for maintenance of cardiovascular health.

  17. Visceral afferent activation-induced changes in sympathetic nerve activity and baroreflex sensitivity.

    Science.gov (United States)

    Saleh, T M; Connell, B J; Allen, G V

    1999-06-01

    The following experiments were done to determine whether changes in baroreflex sensitivity evoked by cervical vagus nerve stimulation are due to sympathoexcitation mediated by the parabrachial nucleus. The relative contribution of cardiopulmonary and general gastric afferents within the cervical vagus nerve to the depression in baroreflex sensitivity are also investigated. Male Sprague-Dawley rats anesthetized with thiobutabarbital sodium (50 mg/kg) were instrumented to measure blood pressure and heart rate or for the continuous monitoring of renal sympathetic nerve activity. Baroreflex sensitivity was measured using bolus injections of phenylephrine. Electrical stimulation of the cervical vagus (with or without the aortic depressor nerve) or the abdominal vagus nerve produced a significant increase in renal nerve activity and a decrease in baroreflex sensitivity. Both of these effects were blocked after the microinjection of lidocaine into the parabrachial nucleus before nerve stimulation. Therefore, we conclude that an increase in the activity of cardiac, pulmonary, or general gastric afferents mediated the increased sympathetic output and decreased baroreflex sensitivity via a pathway involving the parabrachial nucleus.

  18. Recovery of sympathetic nerve function after lumbar sympathectomy is slower in the hind limbs than in the torso.

    Science.gov (United States)

    Zheng, Zhi-Fang; Liu, Yi-Shu; Min, Xuan; Tang, Jian-Bing; Liu, Hong-Wei; Cheng, Biao

    2017-07-01

    Local sympathetic denervation by surgical sympathectomy is used in the treatment of lower limb ulcers and ischemia, but the restoration of cutaneous sympathetic nerve functions is less clear. This study aims to explore the recovery of cutaneous sympathetic functions after bilateral L 2-4 sympathectomy. The skin temperature of the left feet, using a point monitoring thermometer, increased intraoperatively after sympathectomy. The cytoplasm of sympathetic neurons contained tyrosine hydroxylase and dopamine β-hydroxylase, visualized by immunofluorescence, indicated the accuracy of sympathectomy. Iodine starch test results suggested that the sweating function of the hind feet plantar skin decreased 2 and 7 weeks after lumbar sympathectomy but had recovered by 3 months. Immunofluorescence and western blot assay results revealed that norepinephrine and dopamine β-hydroxylase expression in the skin from the sacrococcygeal region and hind feet decreased in the sympathectomized group at 2 weeks. Transmission electron microscopy results showed that perinuclear space and axon demyelination in sympathetic cells in the L 5 sympathetic trunks were found in the sympathectomized group 3 months after sympathectomy. Although sympathetic denervation occurred in the sacrococcygeal region and hind feet skin 2 weeks after lumbar sympathectomy, the skin functions recovered gradually over 7 weeks to 3 months. In conclusion, sympathetic functional recovery may account for the recurrence of hyperhidrosis after sympathectomy and the normalization of sympathetic nerve trunks after incomplete injury. The recovery of sympathetic nerve function was slower in the limbs than in the torso after bilateral L 2-4 sympathectomy.

  19. Recovery of sympathetic nerve function after lumbar sympathectomy is slower in the hind limbs than in the torso

    Directory of Open Access Journals (Sweden)

    Zhi-fang Zheng

    2017-01-01

    Full Text Available Local sympathetic denervation by surgical sympathectomy is used in the treatment of lower limb ulcers and ischemia, but the restoration of cutaneous sympathetic nerve functions is less clear. This study aims to explore the recovery of cutaneous sympathetic functions after bilateral L2–4 sympathectomy. The skin temperature of the left feet, using a point monitoring thermometer, increased intraoperatively after sympathectomy. The cytoplasm of sympathetic neurons contained tyrosine hydroxylase and dopamine β-hydroxylase, visualized by immunofluorescence, indicated the accuracy of sympathectomy. Iodine starch test results suggested that the sweating function of the hind feet plantar skin decreased 2 and 7 weeks after lumbar sympathectomy but had recovered by 3 months. Immunofluorescence and western blot assay results revealed that norepinephrine and dopamine β-hydroxylase expression in the skin from the sacrococcygeal region and hind feet decreased in the sympathectomized group at 2 weeks. Transmission electron microscopy results showed that perinuclear space and axon demyelination in sympathetic cells in the L5 sympathetic trunks were found in the sympathectomized group 3 months after sympathectomy. Although sympathetic denervation occurred in the sacrococcygeal region and hind feet skin 2 weeks after lumbar sympathectomy, the skin functions recovered gradually over 7 weeks to 3 months. In conclusion, sympathetic functional recovery may account for the recurrence of hyperhidrosis after sympathectomy and the normalization of sympathetic nerve trunks after incomplete injury. The recovery of sympathetic nerve function was slower in the limbs than in the torso after bilateral L2–4 sympathectomy.

  20. Baroreflex control of renal sympathetic nerve activity in early heart failure assessed by the sequence method.

    Science.gov (United States)

    Lataro, Renata Maria; Silva, Luiz Eduardo Virgilio; Silva, Carlos Alberto Aguiar; Salgado, Helio Cesar; Fazan, Rubens

    2017-06-01

    The integrity of the baroreflex control of sympathetic activity in heart failure (HF) remains under debate. We proposed the use of the sequence method to assess the baroreflex control of renal sympathetic nerve activity (RSNA). The sequence method assesses the spontaneous arterial pressure (AP) fluctuations and their related changes in heart rate (or other efferent responses), providing the sensitivity and the effectiveness of the baroreflex. Effectiveness refers to the fraction of spontaneous AP changes that elicits baroreflex-mediated variations in the efferent response. Using three different approaches, we showed that the baroreflex sensitivity between AP and RSNA is not altered in early HF rats. However, the sequence method provided evidence that the effectiveness of baroreflex in changing RSNA in response to AP changes is markedly decreased in HF. The results help us better understand the baroreflex control of the sympathetic nerve activity. In heart failure (HF), the reflex control of the heart rate is known to be markedly impaired; however, the baroreceptor control of the sympathetic drive remains under debate. Applying the sequence method to a series of arterial pressure (AP) and renal sympathetic nerve activity (RSNA), we demonstrated a clear dysfunction in the baroreflex control of sympathetic activity in rats with early HF. We analysed the baroreflex control of the sympathetic drive using three different approaches: AP vs. RSNA curve, cross-spectral analysis and sequence method between AP and RSNA. The sequence method also provides the baroreflex effectiveness index (BEI), which represents the percentage of AP ramps that actually produce a reflex response. The methods were applied to control rats and rats with HF induced by myocardial infarction. None of the methods employed to assess the sympathetic baroreflex gain were able to detect any differences between the control and the HF group. However, rats with HF exhibited a lower BEI compared to the

  1. Change in sympathetic nerve firing pattern associated with dietary weight loss in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elisabeth Annie Lambert

    2011-08-01

    Full Text Available Sympathetic activation in subjects with the metabolic syndrome (MS plays a role in the pathogenesis of cardiovascular disease development. Diet-induced weight loss decreases sympathetic outflow. However the mechanisms that account for sympathetic inhibition are not known. We sought to provide a detailed description of the sympathetic response to diet by analyzing the firing behavior of single-unit sympathetic nerve fibres. Fourteen subjects (57±2 years, 9 men, 5 females fulfilling ATP III criteria for the MS underwent a 3-month low calorie diet. Metabolic profile, hemodynamic parameters and multi-unit and single unit muscle sympathetic nerve activity (MSNA, microneurography were assessed prior to and at the end of the diet. Patients’ weight dropped from 96±4 to 88±3 kg (P<0.001. This was associated with a decrease in systolic and diastolic blood pressure (-12 ±3 and -5±2 mmHg, P<0.05, and in heart rate (-7±2 bpm, P<0.01 and an improvement in all metabolic parameters (fasting glucose: -0.302.1±0.118 mmol/l, total cholesterol: -0.564±0.164 mmol/l, triglycerides: -0.414±0.137 mmol/l, P<0.05. Multi-unit MSNA decreased from 68±4 to 59±5 bursts per 100 heartbeats (P<0.05. Single-unit MSNA indicated that the firing rate of individual vasoconstrictor fibres decreased from 59±10 to 32±4 spikes per 100 heart beats (P<0.05. The probability of firing decreased from 34±5 to 23±3 % of heartbeats (P<0.05, and the incidence of multiple firing decreased from 14±4 to 6±1 % of heartbeats (P<0.05. Cardiac and sympathetic baroreflex function were significantly improved (cardiac slope: 6.57±0.69 to 9.57±1.20 msec.mmHg-1; sympathetic slope: -3.86±0.34 to -5.05±0.47 bursts per 100 heartbeats.mmHg-1 P<0.05 for both. Hypocaloric diet decreased sympathetic activity and improved hemodynamic and metabolic parameters. The sympathoinhibition associated with weight loss involves marked changes, not only in the rate but also in the firing pattern of

  2. Jugular venous overflow of noradrenaline from the brain: a neurochemical indicator of cerebrovascular sympathetic nerve activity in humans

    DEFF Research Database (Denmark)

    Mitchell, D.A.; Lambert, G.; Secher, Niels H.

    2009-01-01

    A novel neurochemical method was applied for studying the activity of sympathetic nerves in the human cerebral vascular system. The aim was to investigate whether noradrenaline plasma kinetic measurements made with internal jugular venous sampling reflect cerebrovascular sympathetic activity. A d...

  3. Acute electromyostimulation decreases muscle sympathetic nerve activity in patients with advanced chronic heart failure (EMSICA Study.

    Directory of Open Access Journals (Sweden)

    Marc Labrunée

    Full Text Available Muscle passive contraction of lower limb by neuromuscular electrostimulation (NMES is frequently used in chronic heart failure (CHF patients but no data are available concerning its action on sympathetic activity. However, Transcutaneous Electrical Nerve Stimulation (TENS is able to improve baroreflex in CHF. The primary aim of the present study was to investigate the acute effect of TENS and NMES compared to Sham stimulation on sympathetic overactivity as assessed by Muscle Sympathetic Nerve Activity (MSNA.We performed a serie of two parallel, randomized, double blinded and sham controlled protocols in twenty-two CHF patients in New York Heart Association (NYHA Class III. Half of them performed stimulation by TENS, and the others tested NMES.Compare to Sham stimulation, both TENS and NMES are able to reduce MSNA (63.5 ± 3.5 vs 69.7 ± 3.1 bursts / min, p < 0.01 after TENS and 51.6 ± 3.3 vs 56.7 ± 3.3 bursts / min, p < 0, 01 after NMES. No variation of blood pressure, heart rate or respiratory parameters was observed after stimulation.The results suggest that sensory stimulation of lower limbs by electrical device, either TENS or NMES, could inhibit sympathetic outflow directed to legs in CHF patients. These properties could benefits CHF patients and pave the way for a new non-pharmacological approach of CHF.

  4. A Hypothalamic Leptin-Glutamate Interaction in the Regulation of Sympathetic Nerve Activity

    Directory of Open Access Journals (Sweden)

    Hong Zheng

    2017-01-01

    Full Text Available Accumulated evidence indicates that obesity-induced type 2 diabetes (T2D is associated with enhanced sympathetic activation. The present study was conducted to investigate the role for leptin-glutamate signaling within the hypothalamus in regulating sympathetic nerve activity. In anesthetized rats, microinjections of leptin (5 ng ~ 100 ng into the arcuate nucleus (ARCN and paraventricular nucleus (PVN induced increases in renal sympathetic nerve activity (RSNA, blood pressure (BP, and heart rate (HR. Prior microinjections of NMDA receptor antagonist AP5 (16 pmol into the ARCN or PVN reduced leptin-induced increases in RSNA, BP, and HR in both ARCN and PVN. Knockdown of a leptin receptor with siRNA inhibited NMDA-induced increases in RSNA, BP, and HR in the ARCN but not in the PVN. Confocal calcium imaging in the neuronal NG108 and astrocytic C6 cells demonstrated that preincubation with leptin induced an increase in intracellular calcium green fluorescence when the cells were challenged with glutamate. In high-fat diet and low-dose streptozotocin-induced T2D rats, we found that leptin receptor and NMDA NR1 receptor expressions in the ARCN and PVN were significantly increased. In conclusion, these studies provide evidence that within the hypothalamic nuclei, leptin-glutamate signaling regulates the sympathetic activation. This may contribute to the sympathoexcitation commonly observed in obesity-related T2D.

  5. Attenuated baroreflex control of sympathetic nerve activity after cardiovascular deconditioning in rats

    Science.gov (United States)

    Moffitt, J. A.; Foley, C. M.; Schadt, J. C.; Laughlin, M. H.; Hasser, E. M.

    1998-01-01

    The effect of cardiovascular deconditioning on baroreflex control of the sympathetic nervous system was evaluated after 14 days of hindlimb unloading (HU) or the control condition. Rats were chronically instrumented with catheters and sympathetic nerve recording electrodes for measurement of mean arterial pressure (MAP) and heart rate (HR) and recording of lumbar (LSNA) or renal (RSNA) sympathetic nerve activity. Experiments were conducted 24 h after surgery, with the animals in a normal posture. Baroreflex function was assessed using a logistic function that related HR and LSNA or RSNA to MAP during infusion of phenylephrine and nitroprusside. Baroreflex influence on HR was not affected by HU. Maximum baroreflex-elicited LSNA was significantly reduced in HU rats (204 +/- 11.9 vs. 342 +/- 30.6% baseline LSNA), as was maximum reflex gain (-4.0 +/- 0.6 vs. -7.8 +/- 1.3 %LSNA/mmHg). Maximum baroreflex-elicited RSNA (259 +/- 10.8 vs. 453 +/- 28.0% baseline RSNA), minimum baroreflex-elicited RSNA (-2 +/- 2.8 vs. 13 +/- 4.5% baseline RSNA), and maximum gain (-5.8 +/- 0.5 vs. -13.6 +/- 3.1 %RSNA/mmHg) were significantly decreased in HU rats. Results demonstrate that baroreflex modulation of sympathetic nervous system activity is attenuated after cardiovascular deconditioning in rodents. Data suggest that alterations in the arterial baroreflex may contribute to orthostatic intolerance after a period of bedrest or spaceflight in humans.

  6. Heart rate variability and muscle sympathetic nerve activity response to acute stress: the effect of breathing

    OpenAIRE

    DeBeck, Lindsay D.; Petersen, Stewart R.; Jones, Kelvin E.; Stickland, Michael K.

    2010-01-01

    Previous research has suggested a relationship between low-frequency power of heart rate variability (HRV; LF in normalized units, LFnu) and muscle sympathetic nerve activity (MSNA). However, investigations have not systematically controlled for breathing, which can modulate both HRV and MSNA. Accordingly, the aims of this experiment were to investigate the possibility of parallel responses in MSNA and HRV (LFnu) to selected acute stressors and the effect of controlled breathing. After data w...

  7. Histamine H3 receptors mediate inhibition of noradrenaline release from intestinal sympathetic nerves

    OpenAIRE

    Blandizzi, Corrado; Tognetti, Martina; Colucci, Rocchina; Tacca, Mario Del

    2000-01-01

    The present study investigates whether presynaptic histamine receptors regulate noradrenaline release from intestinal sympathetic nerves. The experiments were performed on longitudinal muscle-myenteric plexus preparations of guinea-pig ileum, preincubated with [3H]-noradrenaline.In the presence of rauwolscine, electrically-induced [3H]-noradrenaline release was inhibited by histamine or R-α-methylhistamine, whereas it was unaffected by pyridylethylamine, impromidine, pyrilamine, cimetidine, t...

  8. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia

    Science.gov (United States)

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio

    2013-01-01

    Familial dysautonomia (Riley–Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement. PMID:23165765

  9. Loss of sympathetic nerve fibers in vital intertrochanteric bone cylinders lateral to osteonecrosis of the femoral head.

    Science.gov (United States)

    Beckmann, Johannes; Knödl, Matthias; Bauser, Eva; Tingart, Markus; Grifka, Joachim; Straub, Rainer H

    2013-03-01

    Although etiology in osteonecrosis of the femoral head mainly depends on alterations of bone blood flow, vasoregulatory nerve fibers of the sympathetic and sensory nervous system have never been investigated in bone of osteonecrosis patients. This study aimed to demonstrate density of sympathetic and sensory nerve fibers in femoral head and, for comparison, adjacent periosteum, and synovium of the hip joint in patients with osteonecrosis. Immunofluorescence staining techniques were applied using specific nerve fiber markers. A total of 10 patients with early femoral head osteonecrosis (ARCO I-II), 10 with late femoral head osteonecrosis (ARCO III-IV), and 10 patients with osteoarthritis of the hip were investigated. In the bone of the femoral head, density of sympathetic nerve fibers was lower in early and late osteonecrosis compared to osteoarthritis. There was a marked preponderance of sympathetic over sensory nerve fibers in bone of osteoarthritis patients, which was opposite in early and late femoral head osteonecrosis. In periosteum, density of sympathetic nerve fibers was similar in all three groups but density of sensory nerve fibers and cellularity were higher in early osteonecrosis compared to the other two groups. Due to the different affinity of norepinephrine for α-adrenoceptors (high affinity) and β-adrenoceptors (low affinity), the loss of sympathetic nerve fibers relative to sensory nerve fibers in femoral head osteonecrosis might change the femoral head blood flow (towards α-adrenergic vasoconstriction). Higher density of sensory nerve fibers and cellularity in periosteum might indicate an inflammatory response in early osteonecrosis. Copyright © 2012 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  10. Impact of Non-Invasive Ventilation on Sympathetic Nerve Activity in Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Haarmann, Helge; Folle, Jan; Nguyen, Xuan Phuc; Herrmann, Peter; Heusser, Karsten; Hasenfuß, Gerd; Andreas, Stefan; Raupach, Tobias

    2017-02-01

    Chronic obstructive pulmonary disease (COPD) is associated with elevated sympathetic nerve activity, which is probably linked to an increased cardiovascular risk, and may contribute to muscle dysfunction by heightened muscle vasoconstrictor drive. We hypothesized that resistive unloading of respiratory muscles by intermittent non-invasive ventilation (NIV) reduces sympathetic tone at rest and during subsequent handgrip exercise in patients with COPD. Muscle sympathetic nerve activity (MSNA) in the peroneal nerve, heart rate, blood pressure, CO 2 , and SpO 2 were continuously recorded in 5 COPD patients with intermittent NIV and 11 control COPD patients without NIV. Static and dynamic handgrip exercises were performed before and after NIV. At baseline, heart rate-adjusted MSNA (bursts/100 heart beats) did not differ between groups. NIV did not significantly affect MSNA levels at rest. However, during handgrip exercises directly following NIV, MSNA was lower than before, which was significant for dynamic handgrip (67.00 ± 3.70 vs. 62.13 ± 4.50 bursts/100 heart beats; p = 0.035 in paired t test). In contrast, MSNA (non-significantly) increased in the control group during repeated dynamic or static handgrip. During dynamic handgrip, tCO 2 was lower after NIV than before (change by -5.04 ± 0.68 mmHg vs. -0.53 ± 0.64 in the control group; p = 0.021), while systolic and diastolic blood pressure did not change significantly. NIV reduces sympathetic activation during subsequent dynamic handgrip exercise and thereby may elicit positive effects on the cardiovascular system as well as on muscle function in patients with COPD.

  11. Differentiated baroreflex modulation of sympathetic nerve activity during deep brain stimulation in humans.

    Science.gov (United States)

    Sverrisdóttir, Yrsa B; Green, Alexander L; Aziz, Tipu Z; Bahuri, Nor Faizal A; Hyam, Jonathan; Basnayake, Shanika D; Paterson, David J

    2014-05-01

    Targeted electric deep brain stimulation in midbrain nuclei in humans alters cardiovascular parameters, presumably by modulating autonomic and baroreflex function. Baroreflex modulation of sympathetic outflow is crucial for cardiovascular regulation and is hypothesized to occur at 2 distinct brain locations. The aim of this study was to evaluate sympathetic outflow in humans with deep brain stimulating electrodes during ON and OFF stimulation of specific midbrain nuclei known to regulate cardiovascular function. Multiunit muscle sympathetic nerve activity was recorded in 17 patients undergoing deep brain stimulation for treatment of chronic neuropathic pain (n=7) and Parkinson disease (n=10). Sympathetic outflow was recorded during ON and OFF stimulation. Arterial blood pressure, heart rate, and respiratory frequency were monitored during the recording session, and spontaneous vasomotor and cardiac baroreflex sensitivity were assessed. Head-up tilt testing was performed separately in the patients with Parkinson disease postoperatively. Stimulation of the dorsal most part of the subthalamic nucleus and ventrolateral periaqueductal gray resulted in improved vasomotor baroreflex sensitivity, decreased burst frequency and blood pressure, unchanged burst amplitude distribution, and a reduced fall in blood pressure after tilt. Stimulation of the dorsolateral periaqueductal gray resulted in a shift in burst amplitude distribution toward larger amplitudes, decreased spontaneous beat-to-beat blood pressure variability, and unchanged burst frequency, baroreflex sensitivity, and blood pressure. Our results indicate that a differentiated regulation of sympathetic outflow occurs in the subthalamic nucleus and periaqueductal gray. These results may have implications in our understanding of abnormal sympathetic discharge in cardiovascular disease and provide an opportunity for therapeutic targeting.

  12. Effects of cervical sympathetic nerve stimulation on the cerebral microcirculation: possible clinical implications.

    Science.gov (United States)

    Passatore, M; Deriu, F; Roatta, S; Grassi, C; Micieli, G

    1996-01-01

    The action of bilateral cervical sympathetic nerve (CSN) stimulation on mean cerebral blood flow (CBF) and on its rhythmical fluctuations was studied in normotensive rabbits by using laser-Doppler flowmetry (LDF). A reduction in mean CBF, mediated by alpha-adrenoceptors, was the predominant effect; it was more often present and larger in size in the vascular beds supplied by the carotid than in those supplied by the vertebro-basilar system. This suggests that the sympathetic action facilitates a redistribution of blood flow to the brain stem. The effect induced by CSN stimulation on CBF spontaneous oscillations was a consistent decrease in amplitude and an increase in frequency, irrespective of the changes produced on the mean level of CBF. The possible implications of the sympathetic action on the state of the blood-brain barrier (BBB) are discussed. Experimental and clinical data dealing with the influence of sympathetic activation on the cerebrovascular system have been compared. As a result the possibility of analysing the spontaneous oscillations of CBF for clinical purposes is suggested.

  13. Electroacupuncture Improved the Function of Myocardial Ischemia Involved in the Hippocampus-Paraventricular Nucleus-Sympathetic Nerve Pathway

    Directory of Open Access Journals (Sweden)

    Shuai Cui

    2018-01-01

    Full Text Available We investigated the hippocampus-paraventricular nucleus- (PVN- sympathetic nerve pathway in electroacupuncture (EA at the heart meridian for the treatment of myocardial ischemia by observing PVN neuronal discharge, sympathetic nerve discharge, and hemodynamics parameters. Sprague Dawley (SD rats were equally divided into four groups: Sham, Model, Model + EA, and Model + EA + Lesion. The model rat was established by ligating the left anterior descending branch of the coronary artery. Changes in the sympathetic nerve discharge and hemodynamic parameters were observed. The Model + EA exhibited a significantly lower discharge frequency of PVN neurons compared with the Model. The Model + EA + Lesion had a significantly higher discharge frequency compared with the Model + EA. The total discharge frequency of PVN neurons and interneurons were positively correlated with the sympathetic nerve discharge. The total discharge frequency of PVN neurons was positively correlated with heart rate (HR and negatively correlated with mean arterial pressure (MAP and rate pressure product (RPP. The discharge frequency of interneurons was positively correlated with HR and negatively correlated with MAP and RPP. The hippocampus-PVN-sympathetic nerve pathway is involved in electroacupuncture at the heart meridian and interneurons are the key neurons in PVNs.

  14. Effect of sympathetic nerve block on acute inflammatory pain and hyperalgesia

    DEFF Research Database (Denmark)

    Pedersen, J L; Rung, G W; Kehlet, H

    1997-01-01

    . The duration and quality of blocks were evaluated by the sympatogalvanic skin response and skin temperature. Bilateral heat injuries were produced on the medial surfaces of the calves with a 50 x 25 mm thermode (47 degrees C, 7 min) 45 min after the blocks. Pain intensity induced by heat, pain thresholds....... METHODS: The study was made as a randomized, single blinded investigation, in which the volunteers served as their own controls. A lumbar sympathetic nerve block and a contralateral placebo block were performed in 24 persons by injecting 10 ml bupivacaine (0.5%) and 10 ml saline, respectively...... acute inflammatory pain or hyperalgesia after a heat injury in human skin....

  15. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in rheumatoid arthritis.

    Science.gov (United States)

    Adlan, Ahmed M; Paton, Julian F R; Lip, Gregory Y H; Kitas, George D; Fisher, James P

    2017-02-01

    Rheumatoid arthritis (RA) is a chronic inflammatory condition associated with an increased risk of cardiovascular mortality. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity heighten cardiovascular risk, althogh whether such autonomic dysfunction is present in RA is not known. In the present study, we observed an increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in patients with RA compared to matched controls. Pain was positively correlated with sympathetic nerve activity and negatively correlated with cardiac baroreflex sensitivity. The pattern of autonomic dysfunction that we describe may help to explain the increased cardiovascular risk in RA, and raises the possibility that optimizing pain management may resolve autonomic dysfunction in RA. Rheumatoid arthritis (RA) is a chronic inflammatory condition associated with increased cardiovascular morbidity/mortality and an incompletely understood pathophysiology. In animal studies, central and blood borne inflammatory cytokines that can be elevated in RA evoke pathogenic increases in sympathetic activity and reductions in baroreflex sensitivity (BRS). We hypothesized that muscle sympathetic nerve activity (MSNA) was increased and BRS decreased in RA. MSNA, blood pressure and heart rate (HR) were recorded in age- and sex-matched RA-normotensive (n = 13), RA-hypertensive patients (RA-HTN; n = 17), normotensive (NC; n = 17) and hypertensive controls (HTN; n = 16). BRS was determined using the modified Oxford technique. Inflammation and pain were determined using serum high sensitivity C-reactive protein (hs-CRP) and a visual analogue scale (VAS), respectively. MSNA was elevated similarly in RA, RA-HTN and HTN patients (32 ± 9, 35 ± 14, 37 ± 8 bursts min -1 ) compared to NC (22 ± 9 bursts min -1 ; P = 0.004). Sympathetic BRS was similar between groups (P = 0.927), whereas cardiac BRS (cBRS) was reduced in RA, RA-HTN and HTN

  16. Resting sympathetic nerve activity is related to age, sex and arterial pressure but not to α2-adrenergic receptor subtype.

    Science.gov (United States)

    Maqbool, Azhar; West, Robert M; Galloway, Stacey L; Drinkhill, Mark J; Mary, David A S G; Greenwood, John P; Ball, Stephen G

    2010-10-01

    Sympathetic nerve hyperactivity has been associated with hypertension and heart failure and their cardiovascular complications. The α2-adrenergic receptors have been proposed to play a prominent role in the control of sympathetic neural output, and their malfunction to constitute a potential central mechanism for sympathetic hyperactivity of essential hypertension. Reports on the relationship between variant alleles of α2-adrenergic receptor subtypes and sympathetic drive or its effects, however, have not been consistent. Therefore, this study was planned to test the hypothesis that variant alleles of subtypes of α2-adrenergic receptors are associated with raised muscle sympathetic nerve activity (MSNA) in man. One hundred and seventy-two individuals, with a wide range of arterial pressure, were prospectively examined. Resting MSNA was quantified from multiunit bursts and from single units, and α2-adrenergic receptor subtypes were genotyped from DNA extracted from leucocytes and quantified by spectrophotometry. No significant relationships between variant alleles of any of the α2A, α2B or α2C subtypes and raised muscle sympathetic activity were found. In contrast, MSNA showed a marked significant curvilinear relationship with age and systolic pressure; sex had a small but statistically significant effect. The α2-adrenergic receptor variants had a similar frequency when hypertensive and normotensive individuals were compared. Variant alleles of three α2-adrenergic receptor subtypes were not related to resting muscle sympathetic nerve hyperactivity, indicating that their functional differences shown in vitro are not reflected in sympathetic activity in man. Age had a marked effect likely influencing arterial pressure through sympathetic activity.

  17. Selective visualization of pelvic splanchnic nerve and pelvic plexus using readout-segmented echo-planar diffusion-weighted magnetic resonance neurography: A preliminary study in healthy male volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Rikiya, E-mail: rickdom@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Isoda, Hiroyoshi, E-mail: sayuki@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Arizono, Shigeki, E-mail: arizono@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Furuta, Akihiro, E-mail: akihirof@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Ohno, Tsuyoshi, E-mail: goohno@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 543-8555 (Japan); Ono, Ayako, E-mail: onoayako@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Murata, Katsutoshi, E-mail: katsutoshi.murata@siemens.com [Siemens Healthcare Japan KK, Gate City Osaki West Tower, 11-1 Osaki 1-Chome, Shinagawa-ku, Tokyo 141-8644 (Japan); Togashi, Kaori, E-mail: ktogashi@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan)

    2017-01-15

    Highlights: • RS-EPI DW-MRN has a potential to selectively depict the pelvic parasympathetic nerve. • The nervous visibility showed a moderate correlation with the image artifact level. • Our method could help preserving function after pelvic nerve-preserving surgery. - Abstract: Purpose: To evaluate the potential of readout-segmented echo-planar diffusion-weighted magnetic resonance neurography (RS-EPI DW-MRN) for the selective visualization of pelvic splanchnic nerve and pelvic plexus in healthy male volunteers. Materials and methods: Institutional review board approval and written informed consent were obtained. RS-EPI DW-MRN images were acquired from thirteen healthy male volunteers aged 25–48 years between September 2013 and December 2013. For RS-EPI DW-MRN, the following parameters were used: spatial resolution, 1.1 × 1.1 × 2.5 mm; b-value, 250 s/mm{sup 2}; number of readout-segments, seven; and acquisition time, 7 min 45 s. For qualitative assessment, two abdominal radiologists independently evaluated the visibility of the pelvic splanchnic nerves and pelvic plexuses bilaterally in each subject on oblique coronal thin-slab 10-mm-thick maximum intensity projection images and scored it with a 4-point grading scale (excellent, good, fair, poor). Both readers scored twice at 6-month intervals. Inter-observer and intra-observer variability were evaluated using Cohen’s quadratically weighted κ statistics. Image artifact level was scored on a 4-point grading scale by other two abdominal radiologists in order to evaluate the correlation between the nerve visibility and the severity of imaging artifacts using the Spearman’s correlation coefficient. Results: Qualitative grading showed the following success rate (number of nerves qualitatively scored as excellent or good divided by total number of nerves): reader 1 (first set), 73% (19/26); reader 2 (first set), 77% (20/26); reader 1 (second set), 81% (21/26); and reader 2 (second set), 77% (20

  18. Insulin enhances the gain of arterial baroreflex control of muscle sympathetic nerve activity in humans.

    Science.gov (United States)

    Young, Colin N; Deo, Shekhar H; Chaudhary, Kunal; Thyfault, John P; Fadel, Paul J

    2010-09-15

    Recent animal studies indicate that insulin increases arterial baroreflex control of lumbar sympathetic nerve activity; however, the extent to which these findings can be extrapolated to humans is unknown. To begin to address this, muscle sympathetic nerve activity (MSNA) and arterial blood pressure were measured in 19 healthy subjects (27 ± 1 years) before, and for 120 min following, two common methodologies used to evoke sustained increases in plasma insulin: a mixed meal and a hyperinsulinaemic euglycaemic clamp. Weighted linear regression analysis between MSNA and diastolic blood pressure was used to determine the gain (i.e. sensitivity) of arterial baroreflex control of MSNA. Plasma insulin was significantly elevated within 30 min following meal intake (34 ± 6 uIU ml(1); P gain for burst incidence and total MSNA was increased and remained elevated for the duration of the protocol (e.g. burst incidence gain: 3.29 ± 0.54 baseline vs. 5.64 ± 0.67 bursts (100 heart beats)(1) mmHg(1) at 120 min; P gain was similarly enhanced (e.g. burst incidence gain: 2.44 ± 0.29 baseline vs. 4.74 ± 0.71 bursts (100 heart beats)(1) mmHg(1) at 120 min; P gain remained unchanged. These findings demonstrate, for the first time in healthy humans, that increases in plasma insulin enhance the gain of arterial baroreflex control of MSNA.

  19. Comparison of sympathetic nerve responses to neck and forearm isometric exercise

    Science.gov (United States)

    Steele, S. L. Jr; Ray, C. A.

    2000-01-01

    PURPOSE: Although the autonomic and cardiovascular responses to arm and leg exercise have been studied, the sympathetic adjustments to exercise of the neck have not. The purpose of the present study was twofold: 1) to determine sympathetic and cardiovascular responses to isometric contractions of the neck extensors and 2) to compare sympathetic and cardiovascular responses to isometric exercise of the neck and forearm. METHODS: Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate were measured in nine healthy subjects while performing isometric neck extension (INE) and isometric handgrip (IHG) in the prone position. After a 3-min baseline period, subjects performed three intensities of INE for 2.5 min each: 1) unloaded (supporting head alone), 2) 10% maximal voluntary contraction (MVC), and 3) 30% MVC, then subjects performed two intensities (10% and 30% MVC) of IHG for 2.5 min. RESULTS: Supporting the head by itself did not significantly change any of the variables. During [NE, MAP significantly increased by 10 +/- 2 and 31 +/- 4 mm Hg and MSNA increased by 67 +/- 46 and 168 +/- 36 units/30 s for 10% and 30% MVC, respectively. IHG and INE evoked similar responses at 10% MVC, but IHG elicited higher peak MAP and MSNA at 30% MVC (37 +/- 7 mm Hg (P INE can elicit marked increases in MSNA and cardiovascular responses but that it evokes lower peak responses as compared to IHG. We speculate that possible differences in muscle fiber type composition, muscle mass, and/or muscle architecture of the neck and forearm are responsible for these differences in peak responses.

  20. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity.

    OpenAIRE

    Clancy, JA; Mary, DA; Witte, KK; Greenwood, JP; Deuchars, SA; Deuchars, J

    2014-01-01

    Background: Vagus nerve stimulation (VNS) is currently used to treat refractory epilepsy and is being investigated as a potential therapy for a range of conditions, including heart failure, tinnitus, obesity and Alzheimer's disease. However, the invasive nature and expense limits the use of VNS in patient populations and hinders the exploration of the mechanisms involved. Objective: We investigated a non-invasive method of VNS through electrical stimulation of the auricular branch of the vagu...

  1. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Ibrahim M Salman

    2015-08-01

    Full Text Available Chronic kidney disease (CKD is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n=16 were instrumented for telemetric recording of RSNA and MAP. At 12–13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2 and central chemoreflex (hypercapnia: 7% CO2 activation and acute stress (open-field exposure, were measured. As indicators of renal function, urinary protein (UPro and creatinine (Ucr levels were assessed. LPK rats had higher resting RSNA (1.2±0.1 vs. 0.6±0.1 µV, p<0.05 and MAP (151±8 vs. 97±2 mmHg, p<0.05 compared to Lewis. MAP was negatively correlated with Ucr (r=-0.80, p=0.002 and positively correlated with RSNA (r=0.66, p=0.014, with multiple linear regression modeling indicating the strongest correlation was with Ucr. RSNA and MAP responses to activation of the central chemoreflex and open-field stress were reduced in the LPK relative to the Lewis (all p<0.05. This is the first description of dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways.

  2. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients.

    Science.gov (United States)

    Metzler-Wilson, Kristen; Toma, Kumika; Sammons, Dawn L; Mann, Sarah; Jurovcik, Andrew J; Demidova, Olga; Wilson, Thad E

    2015-09-01

    Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm(-2)·min(-1), P rosacea and controls, respectively) stress was augmented in rosacea (both P rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component. Copyright © 2015 the American Physiological Society.

  3. Baroreflex modulation of muscle sympathetic nerve activity during cold pressor test in humans

    Science.gov (United States)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    The purpose of this project was to test the hypothesis that baroreceptor modulation of muscle sympathetic nerve activity (MSNA) and heart rate is altered during the cold pressor test. Ten subjects were exposed to a cold pressor test by immersing a hand in ice water for 3 min while arterial blood pressure, heart rate, and MSNA were recorded. During the second and third minute of the cold pressor test, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P baroreflex modulation of MSNA is elevated without altering the sensitivity of baroreflex control of heart rate.

  4. Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans

    Science.gov (United States)

    Cui, J.; Wilson, T. E.; Shibasaki, M.; Hodges, N. A.; Crandall, C. G.

    2001-01-01

    To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip muscle ischemia. During muscle ischemia, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P baroreflex modulation of MSNA is elevated by muscle metaboreceptor stimulation, whereas the sensitivity of baroreflex of modulate heart rate is unchanged during posthandgrip muscle ischemia.

  5. Effects of acute administration of selective serotonin reuptake inhibitors on sympathetic nerve activity

    Energy Technology Data Exchange (ETDEWEB)

    Tiradentes, R.V. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Pires, J.G.P. [Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Escola de Medicina da Empresa Brasileira de Ensino, Vitória, ES (Brazil); Silva, N.F. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Ramage, A.G. [Department of Neuroscience, Physiology and Pharmacology, University College London, London (United Kingdom); Santuzzi, C.H. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Futuro, H.A. Neto [Escola de Medicina da Empresa Brasileira de Ensino, Vitória, ES (Brazil); Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Escola Superior de Ciências da Saúde, Santa Casa de Misericórdia de Vitória, Vitória, ES (Brazil)

    2014-05-30

    Serotonergic mechanisms have an important function in the central control of circulation. Here, the acute effects of three selective serotonin (5-HT) reuptake inhibitors (SSRIs) on autonomic and cardiorespiratory variables were measured in rats. Although SSRIs require 2-3 weeks to achieve their full antidepressant effects, it has been shown that they cause an immediate inhibition of 5-HT reuptake. Seventy male Wistar rats were anesthetized with urethane and instrumented to record blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and respiratory frequency. At lower doses, the acute cardiovascular effects of fluoxetine, paroxetine and sertraline administered intravenously were insignificant and variable. At middle and higher doses, a general pattern was observed, with significant reductions in sympathetic nerve activity. At 10 min, fluoxetine (3 and 10 mg/kg) reduced RSNA by -33±4.7 and -31±5.4%, respectively, without changes in blood pressure; 3 and 10 mg/kg paroxetine reduced RSNA by -35±5.4 and -31±5.5%, respectively, with an increase in blood pressure +26.3±2.5; 3 mg/kg sertraline reduced RSNA by -59.4±8.6%, without changes in blood pressure. Sympathoinhibition began 5 min after injection and lasted approximately 30 min. For fluoxetine and sertraline, but not paroxetine, there was a reduction in heart rate that was nearly parallel to the sympathoinhibition. The effect of these drugs on the other variables was insignificant. In conclusion, acute peripheral administration of SSRIs caused early autonomic cardiovascular effects, particularly sympathoinhibition, as measured by RSNA. Although a peripheral action cannot be ruled out, such effects are presumably mostly central.

  6. Effects of Spinal Cord Stimulation on Cardiac Sympathetic Nerve Activity in Patients with Heart Failure.

    Science.gov (United States)

    Naar, Jan; Jaye, Deborah; Linde, Cecilia; Neužil, Petr; Doškář, Petr; Málek, Filip; Braunschweig, Frieder; Lund, Lars H; Mortensen, Lars; Linderoth, Bengt; Lind, Göran; Bone, Dianna; Scholte, Arthur J; Kueffer, Fred; Koehler, Jodi; Shahgaldi, Kambiz; Lang, Otto; Ståhlberg, Marcus

    2017-05-01

    Spinal cord stimulation (SCS) reduces sympathetic activity in animal models of heart failure with reduced ejection fraction (HF) but limited data exist of SCS in patients with HF. The aim of the present study was to test the primary hypothesis that SCS reduces cardiac sympathetic nerve activity in HF patients. Secondary hypotheses were that SCS improves left ventricular function and dimension, exercise capacity, and clinical variables relevant to HF. HF patients with a SCS device previously participating in the DEFEAT-HF trial were included in this crossover study with 6-week intervention periods (SCS-ON and SCS-OFF). SCS (50 Hz, 210-μs pulse duration, aiming at T2-T4 segments) was delivered for 12 hours daily. Indices of myocardial sympathetic neuronal function (heart-to-mediastinum ratio, HMR) and activity (washout rate, WR) were assessed using 123 I-metaiodobenzylguanidine (MIBG) scintigraphy. Echocardiography, exercise testing, and clinical data collection were also performed. We included 13 patients (65.3 ± 8.0 years, nine males) and MIBG scintigraphy data were available in 10. HMR was not different comparing SCS-ON (1.37 ± 0.16) and SCS-OFF (1.41 ± 0.21, P = 0.46). WR was also unchanged comparing SCS-ON (41.5 ± 5.3) and SCS-OFF (39.1 ± 5.8, P = 0.30). Similarly, average New York Heart Association class (2.4 ± 0.5 vs 2.3 ± 0.6, P = 0.34), quality of life score (24 ± 16 vs 24 ± 16, P = 0.94), and left ventricular dimension and function as well as exercise capacity were all unchanged comparing SCS-ON and SCS-OFF. In patients with HF, SCS (12 hours daily, targeting the T2-T4 segments of the spinal cord) does not appear to influence cardiac sympathetic neuronal activity or function as assessed by MIBG scintigraphy. © 2017 Wiley Periodicals, Inc.

  7. Arterial baroreflex control of sympathetic nerve activity and heart rate in patients with type 2 diabetes.

    Science.gov (United States)

    Holwerda, Seth W; Vianna, Lauro C; Restaino, Robert M; Chaudhary, Kunal; Young, Colin N; Fadel, Paul J

    2016-11-01

    Despite greater blood pressure reactivity to acute cardiovascular stressors and a higher prevalence of hypertension in type 2 diabetes (T2D) patients, limited information is available regarding arterial baroreflex (ABR) control in T2D. We hypothesized that ABR control of muscle sympathetic nerve activity (MSNA) and heart rate (HR) are attenuated in T2D patients. Seventeen T2D patients (50 ± 2 yr; 31 ± 1 kg/m 2 ), 9 weight-matched controls (WM-CON, 46 ± 2 yr; 32 ± 2 kg/m 2 ) and 10 lean controls (Lean-CON, 49 ± 3 yr; 23 ± 1 kg/m 2 ), underwent bolus infusions of sodium nitroprusside (100 μg) followed 60 s later by phenylephrine (150 μg) and weighted linear regression performed. No group differences in overall sympathetic baroreflex gain were observed (T2D: -2.5 ± 0.3 vs. WM-CON: -2.6 ± 0.2 vs. Lean-CON: -2.7 ± 0.4 arbitrary units·beat·mmHg -1 , P > 0.05) or in sympathetic baroreflex gain when derived separately during blood pressure (BP) falls (nitroprusside) and BP rises (phenylephrine). In contrast, overall cardiac baroreflex gain was reduced in T2D patients compared with Lean-CON (T2D: 8.2 ± 1.5 vs. Lean-CON: 15.6 ± 2.9 ms·mmHg -1 , P baroreflex gain was reduced in T2D patients and weight-matched controls compared with lean controls (P 0.05). Sympathetic and cardiac ABR gains were comparable between normotensive and hypertensive T2D patients (P > 0.05). These findings suggest preserved ABR control of MSNA in T2D patients compared with both obese and lean age-matched counterparts, with a selective impairment in ABR HR control in T2D that may be related to obesity. Copyright © 2016 the American Physiological Society.

  8. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system.

    Science.gov (United States)

    Elenkov, I J; Wilder, R L; Chrousos, G P; Vizi, E S

    2000-12-01

    The brain and the immune system are the two major adaptive systems of the body. During an immune response the brain and the immune system "talk to each other" and this process is essential for maintaining homeostasis. Two major pathway systems are involved in this cross-talk: the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). This overview focuses on the role of SNS in neuroimmune interactions, an area that has received much less attention than the role of HPA axis. Evidence accumulated over the last 20 years suggests that norepinephrine (NE) fulfills the criteria for neurotransmitter/neuromodulator in lymphoid organs. Thus, primary and secondary lymphoid organs receive extensive sympathetic/noradrenergic innervation. Under stimulation, NE is released from the sympathetic nerve terminals in these organs, and the target immune cells express adrenoreceptors. Through stimulation of these receptors, locally released NE, or circulating catecholamines such as epinephrine, affect lymphocyte traffic, circulation, and proliferation, and modulate cytokine production and the functional activity of different lymphoid cells. Although there exists substantial sympathetic innervation in the bone marrow, and particularly in the thymus and mucosal tissues, our knowledge about the effect of the sympathetic neural input on hematopoiesis, thymocyte development, and mucosal immunity is extremely modest. In addition, recent evidence is discussed that NE and epinephrine, through stimulation of the beta(2)-adrenoreceptor-cAMP-protein kinase A pathway, inhibit the production of type 1/proinflammatory cytokines, such as interleukin (IL-12), tumor necrosis factor-alpha, and interferon-gamma by antigen-presenting cells and T helper (Th) 1 cells, whereas they stimulate the production of type 2/anti-inflammatory cytokines such as IL-10 and transforming growth factor-beta. Through this mechanism, systemically, endogenous catecholamines may cause a selective

  9. Muscle sympathetic nerve responses to passive and active one-legged cycling: insights into the contributions of central command.

    Science.gov (United States)

    Doherty, Connor J; Incognito, Anthony V; Notay, Karambir; Burns, Matthew J; Slysz, Joshua T; Seed, Jeremy D; Nardone, Massimo; Burr, Jamie F; Millar, Philip J

    2018-01-01

    The contribution of central command to the peripheral vasoconstrictor response during exercise has been investigated using primarily handgrip exercise. The purpose of the present study was to compare muscle sympathetic nerve activity (MSNA) responses during passive (involuntary) and active (voluntary) zero-load cycling to gain insights into the effects of central command on sympathetic outflow during dynamic exercise. Hemodynamic measurements and contralateral leg MSNA (microneurography) data were collected in 18 young healthy participants at rest and during 2 min of passive and active zero-load one-legged cycling. Arterial baroreflex control of MSNA burst occurrence and burst area were calculated separately in the time domain. Blood pressure and stroke volume increased during exercise ( P cycling ( P > 0.05). In contrast, heart rate, cardiac output, and total vascular conductance were greater during the first and second minute of active cycling ( P cycling ( P 0.05). Reductions in total MSNA were attenuated during the first ( P cycling, in concert with increased MSNA burst amplitude ( P = 0.02 and P = 0.005, respectively). The sensitivity of arterial baroreflex control of MSNA burst occurrence was lower during active than passive cycling ( P = 0.01), while control of MSNA burst strength was unchanged ( P > 0.05). These results suggest that central feedforward mechanisms are involved primarily in modulating the strength, but not the occurrence, of a sympathetic burst during low-intensity dynamic leg exercise. NEW & NOTEWORTHY Muscle sympathetic nerve activity burst frequency decreased equally during passive and active cycling, but reductions in total muscle sympathetic nerve activity were attenuated during active cycling. These results suggest that central command primarily regulates the strength, not the occurrence, of a muscle sympathetic burst during low-intensity dynamic leg exercise.

  10. Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally-charged images

    Directory of Open Access Journals (Sweden)

    Rachael eBrown

    2012-10-01

    Full Text Available The sympathetic innervation of the skin primarily subserves thermoregulation, but the system has also been commandeered as a means of expressing emotion. While it is known that the level of skin sympathetic nerve activity (SSNA is affected by anxiety, the majority of emotional studies have utilized the galvanic skin response as a means of inferring increases in SSNA. The purpose of the present study was to characterize the changes in SSNA when showing subjects neutral or emotionally-charged images from the International Affective Picture System. Skin sympathetic nerve activity was recorded via tungsten microelectrodes inserted into cutaneous fascicles of the common peroneal nerve in ten subjects. Neutral images, positively-charged images (erotica or negatively-charged images (mutilation were presented in blocks of fifteen images of a specific type, each block lasting two minutes. Images of erotica or mutilation were presented in a quasi-random fashion, each block following a block of neutral images. Both images of erotica or images of mutilation caused significant increases in SSNA, but the increases in SSNA were greater for mutilation. The increases in SSNA were often coupled with sweat release and cutaneous vasoconstriction, however, these markers were not always consistent with the SSNA increases. We conclude that SSNA, comprising cutaneous vasoconstrictor and sudomotor activity, increases with both positively-charged and negatively-charged emotional images. Measurement of SSNA provides a more comprehensive assessment of sympathetic outflow to the skin than does the use of sweat release alone as a marker of emotional processing.

  11. Contributions of central command and muscle feedback to sympathetic nerve activity in contracting human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Daniel eBoulton

    2016-05-01

    Full Text Available During voluntary contractions, muscle sympathetic nerve activity (MSNA to contracting muscles increases in proportion to force but the underlying mechanisms are not clear. To shed light on these mechanisms, particularly the influences of central command and muscle afferent feedback, the present study tested the hypothesis that MSNA is greater during voluntary compared with electrically-evoked contractions. Seven male subjects performed a series of 1-minute isometric dorsiflexion contractions (left leg separated by 2-minute rest periods, alternating between voluntary and electrically-evoked contractions at similar forces (5-10 % of maximum. MSNA was recorded continuously (microneurography from the left peroneal nerve and quantified from cardiac-synchronised, negative-going spikes in the neurogram. Compared with pre-contraction values, MSNA increased by 51 ± 34 % (P 0.05. MSNA analysed at 15-s intervals revealed that this effect of voluntary contraction appeared 15-30 s after contraction onset (P < 0.01, remained elevated until the end of contraction, and disappeared within 15 s after contraction. These findings suggest that central command, and not feedback from contracting muscle, is the primary mechanism responsible for the increase in MSNA to contracting muscle. The time-course of MSNA suggests that there is a longer delay in the onset of this effect compared with its cessation after contraction.

  12. Jugular venous overflow of noradrenaline from the brain: a neurochemical indicator of cerebrovascular sympathetic nerve activity in humans

    DEFF Research Database (Denmark)

    Mitchell, D.A.; Lambert, G.; Secher, Niels H.

    2009-01-01

    )) overflow rates were measured. These measurements were also made following ganglion blockade (trimethaphan, n = 6), central sympathetic inhibition (clonidine, n = 4) and neuronal noradrenaline uptake blockade (desipramine, n = 13) and in a group of patients (n = 9) with pure autonomic failure (PAF...... = 0.3). Neuronal noradrenaline uptake block with desipramine lowered the transcranial plasma extraction of tritiated noradrenaline (P = 0.001). The PAF patients had 77% lower brain noradrenaline spillover than healthy recruits (P = 0.06), indicating that in them sympathetic nerve degeneration extended...

  13. Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG

    International Nuclear Information System (INIS)

    Kiyono, Yasushi; Kajiyama, Satomi; Fujiwara, Hiromi; Kanegawa, Naoki; Saji, Hideo

    2005-01-01

    Cardiac scintigraphic studies using 123 I-labeled metaiodobenzylguanidine ([ 123 I]MIBG) have demonstrated heterogeneous myocardial accumulation of MIBG in diabetes. The accumulation has been found to correlate with a heterogeneous decrease in the expression of norepinephrine transporter (NET). In diabetic peripheral nerve tissue, polyol pathways are activated and cause nerve dysfunction and degeneration. However, there has been little research on the polyol pathway and cardiac sympathetic nerves. Therefore, to assess the influence of the polyol pathway on cardiac sympathetic nervous function, we investigated the regional accumulation of MIBG and NET protein expression in diabetic model rats treated with aldose reductase inhibitor (ARI) for the blockade of polyol pathways. Rats were given a single intravenous injection of streptozotocin (n=76, STZ-D rats). Starting the day after STZ injection, ARI was administered daily to 42 of the rats for 4 weeks (ARI-D rats). To assess the cardiac sympathetic nervous function, [ 125 I]MIBG autoradiographic experiments were carried out. Finally, NET protein expression was assessed with a saturation binding assay. The myocardial sorbitol concentration was significantly higher in STZ-D rats than in ARI-D rats. There was no heterogeneous accumulation of MIBG in ARI-D rats. There was a heterogeneous decrease of NET expression in STZ-D rats, but not in ARI-D or control rats. The gathered data indicate that the enhanced polyol pathway correlates with the decrease in regional cardiac sympathetic nervous function, and this impairment may lead to the reduction of NET protein in cardiac sympathetic nerves of the diabetic inferior wall. (orig.)

  14. Deciphering the Neural Control of Sympathetic Nerve Activity: Status Report and Directions for Future Research

    Directory of Open Access Journals (Sweden)

    Susan M. Barman

    2017-12-01

    Full Text Available Sympathetic nerve activity (SNA contributes appreciably to the control of physiological function, such that pathological alterations in SNA can lead to a variety of diseases. The goal of this review is to discuss the characteristics of SNA, briefly review the methodology that has been used to assess SNA and its control, and to describe the essential role of neurophysiological studies in conscious animals to provide additional insights into the regulation of SNA. Studies in both humans and animals have shown that SNA is rhythmic or organized into bursts whose frequency varies depending on experimental conditions and the species. These rhythms are generated by brainstem neurons, and conveyed to sympathetic preganglionic neurons through several pathways, including those emanating from the rostral ventrolateral medulla. Although rhythmic SNA is present in decerebrate animals (indicating that neurons in the brainstem and spinal cord are adequate to generate this activity, there is considerable evidence that a variety of supratentorial structures including the insular and prefrontal cortices, amygdala, and hypothalamic subnuclei provide inputs to the brainstem regions that regulate SNA. It is also known that the characteristics of SNA are altered during stress and particular behaviors such as the defense response and exercise. While it is a certainty that supratentorial structures contribute to changes in SNA during these behaviors, the neural underpinnings of the responses are yet to be established. Understanding how SNA is modified during affective responses and particular behaviors will require neurophysiological studies in awake, behaving animals, including those that entail recording activity from neurons that generate SNA. Recent studies have shown that responses of neurons in the central nervous system to most sensory inputs are context-specific. Future neurophysiological studies in conscious animals should also ascertain whether this general

  15. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    Science.gov (United States)

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P steady-state MSNA was decreased by 31% (P steady-state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure. Copyright © 2014 the American Physiological Society.

  16. Effect of Switching from Cilnidipine to Azelnidipine on Cardiac Sympathetic Nerve Function in Patients with Heart Failure Preserved Ejection Fraction.

    Science.gov (United States)

    Kiuchi, Shunsuke; Hisatake, Shinji; Kabuki, Takayuki; Oka, Takashi; Dobashi, Shintaro; Fujii, Takahiro; Ikeda, Takanori

    2018-01-27

    Cardiac sympathetic nerve activity is known to play a key role in the development and progression of heart failure (HF). Azelnidipine, an L-type calcium channel blocker (CCB), inhibits the sympathetic nerve activity of the central system. In contrast, cilnidipine, an N-type CCB, inhibits the sympathetic nerve activity of the peripheral system. CCBs are recommended as class IIa in patients with HF preserved ejection fraction (HFpEF); however, there are no comparative data on the difference in effect of cilnidipine and azelnidipine in patients with HFpEF and hypertension. We investigated the difference in effect of azelnidipine compared with cilnidipine in patients with HFpEF. Twenty-four consecutive HF patients who received angiotensin II type1a receptor blocker and beta blocker from April 2013 to January 2015 were enrolled. Cilnidipine was switched to azelnidipine during the follow-up period. Blood pressures, heart rate, blood tests, echocardiography, and 123 I-metaiodobenzylguanidine (MIBG) cardiac-scintigraphy were measured before and after 6 months from azelnidipine administration. B-type natriuretic peptide tended to decrease after switching to azelnidipine; however, there were no significant differences between the pre-state and post-state (pre-state: 118.5 pg/mL and post-state: 78.4 pg/mL, P = 0.137). Other laboratory findings, including catecholamine, also did not change significantly. In echocardiography, there were no significant differences in systolic and diastolic functions at the pre-state and post-state. As for MIBG, there were no significant changes in heart/mediastinum ratio. However, washout rate was significantly reduced (pre-state: 42.9 and post-state: 39.6, P = 0.030). Azelnidipine improved the dysfunction of cardiac sympathetic nerve activity compared with cilnidipine in patients with HFpEF.

  17. Anatomy of the nerves and ganglia of the aortic plexus in males

    Science.gov (United States)

    Beveridge, Tyler S; Johnson, Marjorie; Power, Adam; Power, Nicholas E; Allman, Brian L

    2015-01-01

    It is well accepted that the aortic plexus is a network of pre- and post-ganglionic nerves overlying the abdominal aorta, which is primarily involved with the sympathetic innervation to the mesenteric, pelvic and urogenital organs. Because a comprehensive anatomical description of the aortic plexus and its connections with adjacent plexuses are lacking, these delicate structures are prone to unintended damage during abdominal surgeries. Through dissection of fresh, frozen human cadavers (n = 7), the present study aimed to provide the first complete mapping of the nerves and ganglia of the aortic plexus in males. Using standard histochemical procedures, ganglia of the aortic plexus were verified through microscopic analysis using haematoxylin & eosin (H&E) and anti-tyrosine hydroxylase stains. All specimens exhibited four distinct sympathetic ganglia within the aortic plexus: the right and left spermatic ganglia, the inferior mesenteric ganglion and one previously unidentified ganglion, which has been named the prehypogastric ganglion by the authors. The spermatic ganglia were consistently supplied by the L1 lumbar splanchnic nerves and the inferior mesenteric ganglion and the newly characterized prehypogastric ganglion were supplied by the left and right L2 lumbar splanchnic nerves, respectively. Additionally, our examination revealed the aortic plexus does have potential for variation, primarily in the possibility of exhibiting accessory splanchnic nerves. Clinically, our results could have significant implications for preserving fertility in men as well as sympathetic function to the hindgut and pelvis during retroperitoneal surgeries. PMID:25382240

  18. Local heat application to the leg reduces muscle sympathetic nerve activity in human.

    Science.gov (United States)

    Takahashi, Noriyo; Nakamura, Takeshi; Kanno, Nami; Kimura, Kenichi; Toge, Yasushi; Lee, Kyu-Ha; Tajima, Fumihiro

    2011-09-01

    The study was designed to assess the effects of local heat (LH) application on postganglionic muscle sympathetic nerve activity (MSNA) measured by microneurography in healthy men. In the first protocol, MSNA of the left peroneal nerve, blood pressure (BP), heart rate (HR), and skin temperature of the shin (TSK) were recorded in nine men. In the second protocol, leg blood flow (LBF) was measured in the same subjects by strain-gauge plethysmography. In both protocols, after 10 min of rest in the supine position, a heated hydrocollator pack was applied to the shin and anterior foot for 15 min and recovery was monitored over a period of 20 min. TSK gradually increased from 31.7 ± 0.1 to 41.9 ± 0.5°C (mean ± SEM) during LH. No subject complained of pain, and BP and HR remained constant. The MSNA burst rate (16.1 ± 2.1 beats/min) during the control period decreased significantly (P < 0.05) to 72.0 ± 2.3% during LH. Total MSNA also decreased to 59.2 ± 2.6% (P < 0.05) during LH, but both immediately returned to baseline at recovery. In contrast, LBF in the left leg significantly and immediately increased (P < 0.05) after LH application and remained significantly elevated until the end of the recovery period. These results suggest that: (1) LH application significantly attenuates MSNA without any changes in HR and BP. (2) Other factors in addition to MSNA seem to control regional blood flow in the lower extremity during LH.

  19. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Song

    Full Text Available During hypovolemic shock, skeletal muscle blood flow could be redistributed to vital organs via vasoconstriction in part evoked by activation of the innervating sympathetic nerve activity. However, it is not well known whether this mechanism operates during anaphylactic shock. We determined the femoral artery blood flow (FBF and lumbar sympathetic nerve activity (LSNA mainly regulating the hindquater muscle blood flow during anaphylactic hypotension in anesthetized rats. Anesthetized Sprague-Dawley rats were randomly allocated to the following groups (n = 7/group: (1 non-sensitized, (2 anaphylaxis, (3 anaphylaxis-lumbar sympathectomy (LS and (4 anaphylaxis-sinoaortic denervation (SAD groups. Anaphylaxis was induced by an intravenous injection of the ovalbumin antigen to the sensitized rats. The systemic arterial pressure (SAP, heart rate (HR, central venous pressure (CVP, FBF and LSNA were continuously measured. In the anaphylaxis group, LSNA and HR increased, while SAP and FBF decreased after antigen injection. In the anaphylaxis-SAD group, LSNA did not significantly change during the early phase, but the responses of SAP and FBF were similar to those in the anaphylaxis group. In the anaphylaxis-LS group, both FBF and SAP decreased similarly to the anaphylaxis group during anaphylactic hypotension. These results indicated that LSNA increased via baroreceptor reflex, but this sympathoexcitation or LS did not affect antigen-induced decreases in FBF or SAP. Lumbar sympathetic nerves are not involved in regulation of the blood flow to the hindlimb or systemic blood pressure during anaphylactic hypotension in anesthetized rats.

  20. Skin sympathetic nerve activity in humans during exposure to emotionally-charged images: sex differences

    Directory of Open Access Journals (Sweden)

    Rachael eBrown

    2014-03-01

    Full Text Available While it is known that anxiety or emotional arousal affects skin sympathetic nerve activity (SSNA, the galvanic skin response (GSR is the most widely used parameter to infer increases in SSNA during stress or emotional studies. We recently showed that SSNA provides a more sensitive measure of emotional state than effector-organ responses. The aim of the present study was to assess whether there are gender differences in the responses of SSNA and other physiological parameters such as blood pressure, heart rate, skin blood flow and sweat release, while subjects viewed neutral or emotionally-charged images from the International Affective Picture System. Changes in SSNA were assessed using microneurography in twenty subjects (ten male and ten female. Blocks of positively-charged (erotica or negatively-charge images (mutilation were presented in a quasi-random fashion, following a block of neutral images, with each block containing fifteen images and lasting two minutes. Images of both erotica and mutilation caused significant increases in SSNA, with increases being greater for males viewing erotica and greater for females viewing mutilation. The increases in SSNA were often coupled with sweat release and cutaneous vasoconstriction; however, these markers were not significantly different than those produced by viewing neutral images and were not always consistent with the SSNA increases. We conclude that SSNA increases with both positively-charged and negatively-charged emotional images, yet sex differences are present.

  1. Exercise training reduces sympathetic nerve activity in heart failure patients treated with carvedilol.

    Science.gov (United States)

    Fraga, Raffael; Franco, Fábio G; Roveda, Fabiana; de Matos, Luciana N J; Braga, Ana M F W; Rondon, Maria U P B; Rotta, Daniel R; Brum, Patricia C; Barretto, Antonio C P; Middlekauff, Holly R; Negrão, Carlos E

    2007-01-01

    Evidence suggests that carvedilol decreases muscle sympathetic nerve activity (MSNA) in patients with heart failure (HF) but carvedilol fails to improve forearm vascular resistance and overall functional capacity. Exercise training in HF reduces MSNA and improves forearm vascular resistance and functional capacity. To investigate whether the beneficial effects exercise training on MSNA are maintained in the presence of carvedilol. Twenty seven HF patients, NYHA Class II-III, EF <35%, peak VO(2) <20 ml/kg/min, treated with carvedilol were randomly divided into two groups: exercise training (n=15) and untrained (n=12). MSNA was recorded by microneurography. Forearm blood flow (FBF) was measured by venous occlusion plethysmography. The four-month training program consisted of three 60-min exercise/week on a cycloergometer. Baseline parameters were similar between groups. Exercise training reduced MSNA (-14+/-3.3 bursts/100 HB, p=0.001) and increased forearm blood flow (0.6+/-0.1 mL/min/100 g, p<0.001) in HF patients on carvedilol. In addition, exercise training improved peak VO(2) in HF patients (20+/-6%, p=0.002). MSNA, FBF and peak VO(2) were unchanged in untrained HF patients on carvedilol. Exercise training reduces MSNA in heart failure patients treated with carvedilol. In addition, the beneficial effects of exercise training on muscle blood flow and functional capacity are still realized in patients on carvedilol.

  2. Arterial baroreflex control of sympathetic nerve activity during acute hypotension: effect of fitness

    Science.gov (United States)

    Fadel, P. J.; Stromstad, M.; Hansen, J.; Sander, M.; Horn, K.; Ogoh, S.; Smith, M. L.; Secher, N. H.; Raven, P. B.

    2001-01-01

    We examined arterial baroreflex control of muscle sympathetic nerve activity (MSNA) during abrupt decreases in mean arterial pressure (MAP) and evaluated whether endurance training alters baroreflex function. Acute hypotension was induced nonpharmacologically in 14 healthy subjects, of which 7 were of high fitness (HF) and 7 were of average fitness (AF), by releasing a unilateral arterial thigh cuff after 9 min of resting ischemia under two conditions: control, which used aortic and carotid baroreflex (ABR and CBR, respectively) deactivation; and suction, which used ABR deactivation alone. The application of neck suction to counteract changes in carotid sinus transmural pressure during cuff release significantly attenuated the MSNA response (which increased 134 +/- 32 U/14 s) compared with control (which increased 195 +/- 43 U/14 s) and caused a greater decrease in MAP (19 +/- 2 vs. 15 +/- 2 mmHg; P control of MSNA. These data indicate that the CBR contributes importantly to the MSNA response during acute systemic hypotension. Additionally, we suggest that an impaired control of vascular reactivity hinders blood pressure regulation in HF subjects.

  3. Neuropeptide Y acts in the paraventricular nucleus to suppress sympathetic nerve activity and its baroreflex regulation

    Science.gov (United States)

    Cassaglia, Priscila A; Shi, Zhigang; Li, Baoxin; Reis, Wagner L; Clute-Reinig, Nicholas M; Stern, Javier E; Brooks, Virginia L

    2014-01-01

    Neuropeptide Y (NPY), a brain neuromodulator that has been strongly implicated in the regulation of energy balance, also acts centrally to inhibit sympathetic nerve activity (SNA); however, the site and mechanism of action are unknown. In chloralose-anaesthetized female rats, nanoinjection of NPY into the paraventricular nucleus of the hypothalamus (PVN) dose-dependently suppressed lumbar SNA (LSNA) and its baroreflex regulation, and these effects were blocked by prior inhibition of NPY Y1 or Y5 receptors. Moreover, PVN injection of Y1 and Y5 receptor antagonists in otherwise untreated rats increased basal and baroreflex control of LSNA, indicating that endogenous NPY tonically inhibits PVN presympathetic neurons. The sympathoexcitation following blockade of PVN NPY inhibition was eliminated by prior PVN nanoinjection of the melanocortin 3/4 receptor inhibitor SHU9119. Moreover, presympathetic neurons, identified immunohistochemically using cholera toxin b neuronal tract tracing from the rostral ventrolateral medulla (RVLM), express NPY Y1 receptor immunoreactivity, and patch-clamp recordings revealed that both NPY and α–melanocyte-stimulating hormone (α-MSH) inhibit and stimulate, respectively, PVN–RVLM neurons. Collectively, these data suggest that PVN NPY inputs converge with α-MSH to influence presympathetic neurons. Together these results identify endogenous NPY as a novel and potent inhibitory neuromodulator within the PVN that may contribute to changes in SNA that occur in states associated with altered energy balance, such as obesity and pregnancy. PMID:24535439

  4. Baroreflex modulation of sympathetic nerve activity to muscle in heat-stressed humans

    Science.gov (United States)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To identify whether whole body heating alters arterial baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA and beat-by-beat arterial blood pressure were recorded in seven healthy subjects during acute hypotensive and hypertensive stimuli in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature (P 0.05). During both normothermic and heat stress conditions, MSNA increased and then decreased significantly when blood pressure was lowered and then raised via intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure during heat stress (-128.3 +/- 13.9 U x beats(-1) x mmHg(-1)) was similar (P = 0.31) with normothermia (-140.6 +/- 21.1 U x beats(-1) x mmHg(-1)). Moreover, no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that arterial baroreflex modulation of MSNA and heart rate are not altered by whole body heating, with the exception of an upward shift of these baroreflex curves to accommodate changes in these variables that occur with whole body heating.

  5. Arterial baroreflex control of sympathetic nerve activity during acute hypotension: effect of fitness

    Science.gov (United States)

    Fadel, P. J.; Stromstad, M.; Hansen, J.; Sander, M.; Horn, K.; Ogoh, S.; Smith, M. L.; Secher, N. H.; Raven, P. B.

    2001-01-01

    We examined arterial baroreflex control of muscle sympathetic nerve activity (MSNA) during abrupt decreases in mean arterial pressure (MAP) and evaluated whether endurance training alters baroreflex function. Acute hypotension was induced nonpharmacologically in 14 healthy subjects, of which 7 were of high fitness (HF) and 7 were of average fitness (AF), by releasing a unilateral arterial thigh cuff after 9 min of resting ischemia under two conditions: control, which used aortic and carotid baroreflex (ABR and CBR, respectively) deactivation; and suction, which used ABR deactivation alone. The application of neck suction to counteract changes in carotid sinus transmural pressure during cuff release significantly attenuated the MSNA response (which increased 134 +/- 32 U/14 s) compared with control (which increased 195 +/- 43 U/14 s) and caused a greater decrease in MAP (19 +/- 2 vs. 15 +/- 2 mmHg; P baroreflex control of MSNA. These data indicate that the CBR contributes importantly to the MSNA response during acute systemic hypotension. Additionally, we suggest that an impaired control of vascular reactivity hinders blood pressure regulation in HF subjects.

  6. Mindfulness meditation lowers muscle sympathetic nerve activity and blood pressure in African-American males with chronic kidney disease.

    Science.gov (United States)

    Park, Jeanie; Lyles, Robert H; Bauer-Wu, Susan

    2014-07-01

    Mindfulness meditation (MM) is a stress-reduction technique that may have real biological effects on hemodynamics but has never previously been tested in chronic kidney disease (CKD) patients. In addition, the mechanisms underlying the potential blood pressure (BP)-lowering effects of MM are unknown. We sought to determine whether MM acutely lowers BP in CKD patients, and whether these hemodynamic changes are mediated by a reduction in sympathetic nerve activity. In 15 hypertensive African-American (AA) males with CKD, we conducted a randomized, crossover study in which participants underwent 14 min of MM or 14 min of BP education (control intervention) during two separate random-order study visits. Muscle sympathetic nerve activity (MSNA), beat-to-beat arterial BP, heart rate (HR), and respiratory rate (RR) were continuously measured at baseline and during each intervention. A subset had a third study visit to undergo controlled breathing (CB) to determine whether a reduction in RR alone was sufficient in exacting hemodynamic changes. We observed a significantly greater reduction in systolic BP, diastolic BP, mean arterial pressure, and HR, as well as a significantly greater reduction in MSNA, during MM compared with the control intervention. Participants had a significantly lower RR during MM; however, in contrast to MM, CB alone did not reduce BP, HR, or MSNA. MM acutely lowers BP and HR in AA males with hypertensive CKD, and these hemodynamic effects may be mediated by a reduction in sympathetic nerve activity. RR is significantly lower during MM, but CB alone without concomitant meditation does not acutely alter hemodynamics or sympathetic activity in CKD.

  7. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by {sup 11}C-hydroxyephedrine

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Rudolf A.; Higuchi, Takahiro [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); Maya, Yoshifumi [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nihon Medi-Physics Co., Ltd., Research Centre, Chiba (Japan); Rischpler, Christoph [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Muenchen (Germany); Javadi, Mehrbod S. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Baltimore, MD (United States); Fukushima, Kazuhito [Hyogo College of Medicine, Department of Radiology, Hyogo (Japan); Lapa, Constantin [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Herrmann, Ken [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States)

    2016-02-15

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, {sup 11}C-hydroxyephedrine ({sup 11}C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using {sup 11}C-HED as a marker of sympathetic innervation and {sup 201}TI for perfusion. Additional serial in vivo cardiac {sup 11}C-HED and {sup 18}F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the {sup 11}C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute {sup 11}C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased {sup 11}C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the {sup 11}C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger {sup 11}C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial {sup 11}C-HED uptake. (orig.)

  8. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by 11C-hydroxyephedrine

    International Nuclear Information System (INIS)

    Werner, Rudolf A.; Higuchi, Takahiro; Maya, Yoshifumi; Rischpler, Christoph; Javadi, Mehrbod S.; Fukushima, Kazuhito; Lapa, Constantin; Herrmann, Ken

    2016-01-01

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, 11 C-hydroxyephedrine ( 11 C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using 11 C-HED as a marker of sympathetic innervation and 201 TI for perfusion. Additional serial in vivo cardiac 11 C-HED and 18 F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the 11 C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute 11 C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased 11 C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the 11 C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger 11 C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial 11 C-HED uptake. (orig.)

  9. Influence of age on respiratory modulation of muscle sympathetic nerve activity, blood pressure and baroreflex function in humans.

    Science.gov (United States)

    Shantsila, Alena; McIntyre, David B; Lip, Gregory Y H; Fadel, Paul J; Paton, Julian F R; Pickering, Anthony E; Fisher, James P

    2015-09-01

    What is the central question of this study? Does ageing influence the respiratory-related bursting of muscle sympathetic nerve activity (MSNA) and the association between the rhythmic fluctuations in MSNA and blood pressure (Traube-Hering waves) that occur with respiration? What is the main finding and its importance? Despite the age-related elevation in MSNA, the cyclical inhibition of MSNA during respiration is similar between young and older individuals. Furthermore, central respiratory-sympathetic coupling plays a role in the generation of Traube-Hering waves in both young and older humans. Healthy ageing and alterations in respiratory-sympathetic coupling have been independently linked with heightened sympathetic neural vasoconstrictor activity. We investigated how age influences the respiratory-related modulation of muscle sympathetic nerve activity (MSNA) and the association between the rhythmic fluctuations in MSNA and blood pressure that occur with respiration (Traube-Hering waves; THW). Ten young (22 ± 2 years; mean ± SD) and 10 older healthy men (58 ± 6 years) were studied while resting supine and breathing spontaneously. MSNA, blood pressure and respiration were recorded simultaneously. Resting values were ascertained and respiratory cycle-triggered averaging of MSNA and blood pressure measurements performed. The MSNA burst incidence was higher in older individuals [22.7 ± 9.2 versus 42.2 ± 13.7 bursts (100 heart beats)(-1), P respiratory-related MSNA and the magnitude of Traube-Hering waves was observed in all young (100%) and most older subjects (80%). These data suggest that the strength of the cyclical inhibition of MSNA during respiration is similar between young and older individuals; thus, alterations in respiratory-sympathetic coupling appear not to contribute to the age-related elevation in MSNA. Furthermore, central respiratory-sympathetic coupling plays a role in the generation of Traube-Hering waves in both healthy young and older

  10. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder.

    Science.gov (United States)

    Park, Jeanie; Marvar, Paul J; Liao, Peizhou; Kankam, Melanie L; Norrholm, Seth D; Downey, Ryan M; McCullough, S Ashley; Le, Ngoc-Anh; Rothbaum, Barbara O

    2017-07-15

    Patients with post-traumatic stress disorder (PTSD) are at a significantly higher risk of developing hypertension and cardiovascular disease. The mechanisms underlying this increased risk are not known. Studies have suggested that PTSD patients have an overactive sympathetic nervous system (SNS) that could contribute to cardiovascular risk; however, sympathetic function has not previously been rigorously evaluated in PTSD patients. Using direct measurements of sympathetic nerve activity and pharmacological manipulation of blood pressure, we show that veterans with PTSD have augmented SNS and haemodynamic reactivity during both combat-related and non-combat related mental stress, impaired sympathetic and cardiovagal baroreflex sensitivity, and increased inflammation. Identifying the mechanisms contributing to increased cardiovascular (CV) risk in PTSD will pave the way for developing interventions to improve sympathetic function and reduce CV risk in these patients. Post-traumatic stress disorder (PTSD) is associated with increased cardiovascular (CV) risk. We tested the hypothesis that PTSD patients have augmented sympathetic nervous system (SNS) and haemodynamic reactivity during mental stress, as well as impaired arterial baroreflex sensitivity (BRS). Fourteen otherwise healthy Veterans with combat-related PTSD were compared with 14 matched Controls without PTSD.  Muscle sympathetic nerve activity (MSNA), continuous blood pressure (BP) and electrocardiography were measured at baseline, as well as during two types of mental stress:  combat-related mental stress using virtual reality combat exposure (VRCE) and non-combat related stress using mental arithmetic (MA). A cold pressor test (CPT) was administered for comparison. BRS was tested using pharmacological manipulation of BP via the Modified Oxford technique at rest and during VRCE. Blood samples were analysed for inflammatory biomarkers. Baseline characteristics, MSNA and haemodynamics were similar between

  11. The Effect of Transcutaneous Electrical Nerve Stimulation of Sympathetic Ganglions and Acupuncture Points on Distal Blood Flow

    Directory of Open Access Journals (Sweden)

    Fahimeh Kamali

    2017-04-01

    Full Text Available Transcutaneous electrical nerve stimulation (TENS is a widely-practiced method to increase blood flow in clinical practice. The best location for stimulation to achieve optimal blood flow has not yet been determined. We compared the effect of TENS application at sympathetic ganglions and acupuncture points on blood flow in the foot of healthy individuals. Seventy-five healthy individuals were randomly assigned to three groups. The first group received cutaneous electrical stimulation at the thoracolumbar sympathetic ganglions. The second group received stimulation at acupuncture points. The third group received stimulation in the mid-calf area as a control group. Blood flow was recorded at time zero as baseline and every 3 minutes after baseline during stimulation, with a laser Doppler flow-meter. Individuals who received sympathetic ganglion stimulation showed significantly greater blood flow than those receiving acupuncture point stimulation or those in the control group (p<0.001. Data analysis revealed that blood flow at different times during stimulation increased significantly from time zero in each group. Therefore, the application of low-frequency TENS at the thoracolumbar sympathetic ganglions was more effective in increasing peripheral blood circulation than stimulation at acupuncture points.

  12. A technique for estimating activity in whole nerve trunks applied to the cervical sympathetic trunk, in the rabbit.

    Science.gov (United States)

    Hellström, F; Roatta, S; Johansson, H; Passatore, M

    1999-12-24

    The changes in sympathetic outflow may be evaluated from the amplitude of the antidromic compound action potential (ACAP) according to the collision technique described by Douglas and Ritchie (Douglas, W.W. and Ritchie J.M., A technique for recording functional activity in specific groups of medullated and non-medullated fibers in whole nerve trunks. J. Physiol., 138(1957) 19-30). This technique was revised, taking into account the depressant action exerted by antidromic stimulation on sympathetic preganglionic neurones (SPNs). Cervical sympathetic nerve (CSN) of rabbits was used as experimental model. Stimulation frequencies of 0.2-0.5 Hz were found to be sufficiently low to avoid depressant actions on CSN spontaneous activity; they were employed to test the sensitivity of the technique during different experimental manoeuvres, such as changes in pulmonary-ventilation, baroreceptor unloading and arousal stimuli. In addition a procedure was devised to calibrate the ACAP amplitude: high frequency antidromic stimulation was used to induce a complete and transient inhibition of SPNs which allows to record the ACAP maximum amplitude. ACAPs recorded in various experimental conditions can then be expressed as percentage of this value.

  13. Role of endothelin-1 in mediating changes in cardiac sympathetic nerve activity in heart failure.

    Science.gov (United States)

    Abukar, Yonis; May, Clive N; Ramchandra, Rohit

    2016-01-01

    Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg(-1)·h(-1)) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep (n = 6) and sheep with pacing-induced HF (n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (-8 ± 4 mmHg and -4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF. Copyright © 2016 the American Physiological Society.

  14. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    Directory of Open Access Journals (Sweden)

    Yumie Morimoto-Kobayashi

    Full Text Available Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1 expression in brown adipose tissue (BAT was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA. Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional

  15. Muscle Sympathetic Nerve Activity During Intense Lower Body Negative Pressure to Presyncope in Humans

    Science.gov (United States)

    2009-08-24

    maximal LBNP tolerance. Using this approach , absolute LBNP levels corresponded well to these ranges of percentages if subjects were able to continue at... patients with spinal cord injury display spontaneous bursts of MSNA, but activity is significantly lower than that of neurologically intact patients , and is...over sympathetic neural activity, and that this reduced baroreflex sensitivity is associated with syncope . We reasoned that if sympathetic baroreflexes

  16. Sympathetic nerve traffic and blood pressure changes after bilateral renal denervation in resistant hypertension: a time-integrated analysis.

    Science.gov (United States)

    Seravalle, Gino; D'Arrigo, Graziella; Tripepi, Giovanni; Mallamaci, Francesca; Brambilla, Gianmaria; Mancia, Giuseppe; Grassi, Guido; Zoccali, Carmine

    2017-08-01

    Renal denervation reduces blood pressure (BP) and sympathetic drive in experimental animal models, but the effect of this intervention on sympathetic activity in patients with treatment-resistant hypertension is still unclear. In an incident series of 29 patients with treatment-resistant hypertension, we performed serial measurements (n = 123) of muscle sympathetic nerve activity (MSNA, microneurography) and standardized BP measurements. Data were analysed by mixed linear modelling (MLM) and by regression analysis of time-integrated changes of both MSNA and synchronous, standardized (in-lab) BP measurements. Bilateral renal denervation was accompanied by a marked reduction in MSNA (P = 0.01 by MLM), which was parallelled by a reduction in systolic (from 175 ± 14 to 156 ± 16 mmHg) and, to a lesser extent, in diastolic (from 96 ± 12 to 87 ± 6 mmHg) BP over time. Neither systolic nor diastolic BP associated to a significant extent with corrected MSNA (MSNAC) in the MLM analysis (systolic BP versus MSNAC: β = -0.08, P = 0.08; diastolic BP versus MSNAC: β = -0.007, P = 0.75). However, the study of time-integrated changes in MSNA and BP showed a robust association between proportional changes in MSNA over time and simultaneous changes in systolic and diastolic BP (β = 0.61, P hypertension and in the BP-lowering effect of the procedure.

  17. Transvenous stimulation of the renal sympathetic nerves increases systemic blood pressure: a potential new treatment option for neurocardiogenic syncope.

    Science.gov (United States)

    Madhavan, Malini; Desimone, Christopher V; Ebrille, Elisa; Mulpuru, Siva K; Mikell, Susan B; Johnson, Susan B; Suddendorf, Scott H; Ladewig, Dorothy J; Gilles, Emily J; Danielsen, Andrew J; Asirvatham, Samuel J

    2014-10-01

    Neurocardiogenic syncope (NCS) is a common and sometimes debilitating disorder, with no consistently effective treatment. NCS is due to a combination of bradycardia and vasodilation leading to syncope. Although pacemaker devices have been tried in treating the bradycardic aspect of NCS, no device-based therapy exists to treat the coexistent vasodilation that occurs. The renal sympathetic innervation has been the target of denervation to treat hypertension. We hypothesized that stimulation of the renal sympathetic nerves can increase blood pressure and counteract vasodilation in NCS. High-frequency stimulation (800-900 pps, 10 V, 30-200 seconds) was performed using a quadripolar catheter in the renal vein of 7 dogs and 1 baboon. A significant increase in blood pressure (BP; mean [SD] systolic BP 117 [±28] vs. 128 [±33], diastolic BP 75 [±19] vs. 87 [±29] mmHg) was noted during the stimulation, which returned to baseline after cessation of stimulation. The mean increase in systolic and diastolic BP was 13.0 (±3.3) (P = 0.006) and 10.2 (±4.6) (P = 0.08), respectively. We report the first ever study of feasibility and safety of high-frequency electrical stimulation of the renal sympathetic innervation to increase BP in animal models. This has potential applications in the treatment of hypotensive states such as NCS. © 2014 Wiley Periodicals, Inc.

  18. Usefulness of cardiac 125I-metaiodobenzylguanidine uptake for evaluation of cardiac sympathetic nerve abnormalities in diabetic rats

    International Nuclear Information System (INIS)

    Abe, Nanami; Kashiwagi, Atsunori; Shigeta, Yukio

    1992-01-01

    We investigated cardiac sympathetic nerve abnormalities in streptozocin-induced diabetic rats using 125 I-metaiodobenzylguanidine (MIBG). The radioactivity ratio of cardiac tissue to 1 ml blood (H/B) was used as an index of cardiac MIBG uptake. Cardiac 125 I-MIBG uptake (H/B) in 4-, 8- and 20-wk diabetic rats was 48% lower than that in control rats. Similar results were obtained even when the data were corrected for g wet tissue weight. Although there was no improvement in H/B following 2-wk insulin treatment, the H/B ratio increased significantly, to 85% of control levels, following 4 wk insulin treatment indicating the reversibility of impaired MIBG uptake in diabetic rats. In vivo reserpine treatment resulted in a 50% reduction in the H/B value in control rats. However, the treatment did not significantly suppress uptake in diabetic rats. Cardiac norepinephrine content in both * 4- and ** 8-wk diabetic rats was significantly ( * p ** p 125 I-MIBG in diabetic rats is significantly impaired due to cardiac sympathetic nerve abnormalities. These abnormalities are reversible, however, dependent on the diabetic state. (author)

  19. Effects of L-arginine and L-lysine mixtures on splenic sympathetic nerve activity and tumor proliferation.

    Science.gov (United States)

    Shen, Jiao; Horii, Yuko; Fujisaki, Yoshiyuki; Nagai, Katsuya

    2009-05-11

    Oral supplementations of L-arginine and L-lysine show tumor inhibition abilities. The splenic sympathetic nerve is involved in central modulation of cellular immunity and suppresses splenic natural killer cell activity in rats. An intravenous administration of a mixture of 10 mM L-arginine and L-lysine decreased splenic sympathetic nerve activity (splenic-SNA). We examined the effect of L-arginine and L-lysine mixtures on splenic-SNA in urethane-anesthetized rats by administration of 1 ml mixtures of 2 mM, 10 mM, and 50 mM L-arginine and L-lysine. We also studied the effect of the above mixtures on human colon cancer cell proliferation in athymic nude mice. An increase in splenic-SNA and tumor volume (2 mM), no effect (10 mM), and a decrease in both values (50 mM) were seen. Bivariate correlation analysis revealed a positive correlation between changes in splenic-SNA and tumor volume, indicating the tumor suppressing ability of weakened splenic-SNA.

  20. Mechanisms involved in nicotinic acetylcholine receptor-induced neurotransmitter release from sympathetic nerve terminals in the mouse vas deferens.

    Directory of Open Access Journals (Sweden)

    Damian J Williams

    Full Text Available Prejunctional nicotinic acetylcholine receptors (nAChRs amplify postganglionic sympathetic neurotransmission, and there are indications that intraterminal Ca(2+ stores might be involved. However, the mechanisms by which nAChR activation stimulates neurotransmitter release at such junctions is unknown. Rapid local delivery (picospritzing of the nAChR agonist epibatidine was combined with intracellular sharp microelectrode recording to monitor spontaneous and field-stimulation-evoked neurotransmitter release from sympathetic nerve terminals in the mouse isolated vas deferens. Locally applied epibatidine (1 µM produced 'epibatidine-induced depolarisations' (EIDs that were similar in shape to spontaneous excitatory junction potentials (SEJPs and were abolished by nonselective nAChR antagonists and the purinergic desensitizing agonist α,β-methylene ATP. The amplitude distribution of EIDs was only slightly shifted towards lower amplitudes by the selective α7 nAChR antagonists α-bungarotoxin and methyllcaconitine, the voltage-gated Na(+ channel blocker tetrodotoxin or by blocking voltage-gated Ca(2+ channels with Cd(2+. Lowering the extracellular Ca(2+ concentration reduced the frequency of EIDs by 69%, but more surprisingly, the Ca(2+-induced Ca(2+ release blocker ryanodine greatly decreased the amplitude (by 41% and the frequency of EIDs by 36%. Ryanodine had no effect on electrically-evoked neurotransmitter release, paired-pulse facilitation, SEJP frequency, SEJP amplitude or SEJP amplitude distribution. These results show that activation of non-α7 nAChRs on sympathetic postganglionic nerve terminals induces high-amplitude junctional potentials that are argued to represent multipacketed neurotransmitter release synchronized by intraterminal Ca(2+-induced Ca(2+ release, triggered by Ca(2+ influx directly through the nAChR. This nAChR-induced neurotransmitter release can be targeted pharmacologically without affecting spontaneous or electrically

  1. Changes in the Skin Conductance Monitor as an End Point for Sympathetic Nerve Blocks.

    Science.gov (United States)

    Gungor, Semih; Rana, Bhumika; Fields, Kara; Bae, James J; Mount, Lauren; Buschiazzo, Valeria; Storm, Hanne

    2017-11-01

    There is a lack of objective methods for determining the achievement of sympathetic block. This study validates the skin conductance monitor (SCM) as an end point indicator of successful sympathetic blockade as compared with traditional monitors. This interventional study included 13 patients undergoing 25 lumbar sympathetic blocks to compare time to indication of successful blockade between the SCM indices and traditional measures, clinically visible hyperemia, clinically visible engorgement of veins, subjective skin temperature difference, unilateral thermometry monitoring, bilateral comparative thermometry monitoring, and change in waveform amplitude in pulse oximetry plethysmography, within a 30-minute observation period. Differences in the SCM indices were studied pre- and postblock to validate the SCM. SCM showed substantially greater odds of indicating achievement of sympathetic block in the next moment (i.e., hazard rate) compared with all traditional measures (clinically visible hyperemia, clinically visible engorgement of veins, subjective temperature difference, unilateral thermometry monitoring, bilateral comparative thermometry monitoring, and change in waveform amplitude in pulse oximetry plethysmography; P ≤ 0.011). SCM indicated successful block for all (100%) procedures, while the traditional measures failed to indicate successful blocks in 16-84% of procedures. The SCM indices were significantly higher in preblock compared with postblock measurements (P SCM is a more reliable and rapid response indicator of a successful sympathetic blockade when compared with traditional monitors. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. Responses of muscle spindles in feline dorsal neck muscles to electrical stimulation of the cervical sympathetic nerve.

    Science.gov (United States)

    Hellström, F; Roatta, S; Thunberg, J; Passatore, M; Djupsjöbacka, M

    2005-09-01

    Previous studies performed in jaw muscles of rabbits and rats have demonstrated that sympathetic outflow may affect the activity of muscle spindle afferents (MSAs). The resulting impairment of MSA information has been suggested to be involved in the genesis and spread of chronic muscle pain. The present study was designed to investigate sympathetic influences on muscle spindles in feline trapezius and splenius muscles (TrSp), as these muscles are commonly affected by chronic pain in humans. Experiments were carried out in cats anesthetized with alpha-chloralose. The effect of electrical stimulation (10 Hz for 90 s or 3 Hz for 5 min) of the peripheral stump of the cervical sympathetic nerve (CSN) was investigated on the discharge of TrSp MSAs (units classified as Ia-like and II-like) and on their responses to sinusoidal stretching of these muscles. In some of the experiments, the local microcirculation of the muscles was monitored by laser Doppler flowmetry. In total, 46 MSAs were recorded. Stimulation of the CSN at 10 Hz powerfully depressed the mean discharge rate of the majority of the tested MSAs (73%) and also affected the sensitivity of MSAs to sinusoidal changes of muscle length, which were evaluated in terms of amplitude and phase of the sinusoidal fitting of unitary activity. The amplitude was significantly reduced in Ia-like units and variably affected in II-like units, while in general the phase was affected little and not changed significantly in either group. The discharge of a smaller percentage of tested units was also modulated by 3-Hz CSN stimulation. Blockade of the neuromuscular junctions by pancuronium did not induce any changes in MSA responses to CSN stimulation, showing that these responses were not secondary to changes in extrafusal or fusimotor activity. Further data showed that the sympathetically induced modulation of MSA discharge was not secondary to the concomitant reduction of muscle blood flow induced by the stimulation. Hence

  3. Abnormal central control underlies impaired baroreflex control of heart rate and sympathetic nerve activity in female Lewis polycystic kidney rats.

    Science.gov (United States)

    Salman, Ibrahim M; Phillips, Jacqueline K; Ameer, Omar Z; Hildreth, Cara M

    2015-07-01

    Why baroreflex dysfunction occurs in females with chronic kidney disease is unknown. We therefore aimed to examine whether temporal changes in baroreflex control of heart rate (HR) and renal sympathetic nerve activity (RSNA) occur in female Lewis polycystic kidney (LPK) rats and whether this is associated with any changes in afferent, central or efferent processing of the reflex pathway. Using urethane-anaesthetized juvenile and adult LPK and Lewis control rats (n = 40), baroreflex-mediated changes in HR, RSNA and aortic depressor nerve activity (ADNA) were examined. Reflex changes to aortic depressor and vagal efferent nerve stimulation were also determined. In the juvenile LPK rats, except for a slight reduction in the gain of the normalized HR and RSNA baroreflex function curves, no difference in baroreflex control of HR, RSNA or ADNA was observed. Responses to aortic depressor and vagal efferent nerve stimulation were also comparable. In the adult hypertensive LPK rats, the range of both HR (35 ± 8 vs. 78 ± 9  bpm, P ≤ 0.05 LPK vs. Lewis) and RSNA (60 ± 7 vs. 80 ± 3%, P ≤ 0.05 LPK vs. Lewis) was also reduced. This was not associated with any change in the ADNA baroreflex function curves or reflex HR responses to vagal efferent nerve stimulation, but was associated with a reduction in the reflex bradycardic (-21 ± 4 vs. -34 ± 8 bpm, P baroreflex dysfunction results from impaired central processing of the reflex.

  4. Insulin acts in the arcuate nucleus to increase lumbar sympathetic nerve activity and baroreflex function in rats

    Science.gov (United States)

    Cassaglia, Priscila A; Hermes, Sam M; Aicher, Sue A; Brooks, Virginia L

    2011-01-01

    Abstract Although the central effects of insulin to activate the sympathetic nervous system and enhance baroreflex gain are well known, the specific brain site(s) at which insulin acts has not been identified. We tested the hypotheses that (1) the paraventricular nucleus of the hypothalamus (PVN) and the arcuate nucleus (ArcN) are necessary brain sites and (2) insulin initiates its effects directly in the PVN and/or the ArcN. In α-chloralose anaesthetised female Sprague–Dawley rats, mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve activity (LSNA) were recorded continuously, and baroreflex gain of HR and LSNA were measured before and during a hyperinsulinaemic–euglycaemic clamp. After 60 min, intravenous infusion of insulin (15 mU kg−1 min−1), but not saline, significantly increased (P baroreflex control of LSNA (from 3.8 ± 1.1 to 7.4 ± 2.4% control mmHg−1). These effects were reversed (P baroreflex gain (in % control mmHg−1 from 4.3 ± 1.2 to 6.9 ± 1.0, 0.6 nU; 7.7 ± 1.2, 6 nU; and 7.8 ± 1.3, 60 nU). None of the treatments altered MAP, HR, or baroreflex control of HR. Our findings identify the ArcN as the site at which insulin acts to activate the sympathetic nervous system and increase baroreflex gain, via a neural pathway that includes the PVN. PMID:21300750

  5. Enhanced sympathetic nerve activity induced by neonatal colon inflammation induces gastric hypersensitivity and anxiety-like behavior in adult rats.

    Science.gov (United States)

    Winston, John H; Sarna, Sushil K

    2016-07-01

    Gastric hypersensitivity (GHS) and anxiety are prevalent in functional dyspepsia patients; their underlying mechanisms remain unknown largely because of lack of availability of live visceral tissues from human subjects. Recently, we demonstrated in a preclinical model that rats subjected to neonatal colon inflammation show increased basal plasma norepinephrine (NE), which contributes to GHS through the upregulation of nerve growth factor (NGF) expression in the gastric fundus. We tested the hypothesis that neonatal colon inflammation increases anxiety-like behavior and sympathetic nervous system activity, which upregulates the expression of NGF to induce GHS in adult life. Chemical sympathectomy, but not adrenalectomy, suppressed the elevated NGF expression in the fundus muscularis externa and GHS. The measurement of heart rate variability showed a significant increase in the low frequency-to-high frequency ratio in GHS vs. the control rats. Stimulus-evoked release of NE from the fundus muscularis externa strips was significantly greater in GHS than in the control rats. Tyrosine hydroxylase expression was increased in the celiac ganglia of the GHS vs. the control rats. We found an increase in trait but not stress-induced anxiety-like behavior in GHS rats in an elevated plus maze. We concluded that neonatal programming triggered by colon inflammation upregulates tyrosine hydroxylase in the celiac ganglia, which upregulates the release of NE in the gastric fundus muscularis externa. The increase of NE release from the sympathetic nerve terminals concentration dependently upregulates NGF, which proportionately increases the visceromotor response to gastric distention. Neonatal programming concurrently increases anxiety-like behavior in GHS rats. Copyright © 2016 the American Physiological Society.

  6. Exercise training prevents the deterioration in the arterial baroreflex control of sympathetic nerve activity in chronic heart failure patients.

    Science.gov (United States)

    Groehs, Raphaela V; Toschi-Dias, Edgar; Antunes-Correa, Ligia M; Trevizan, Patrícia F; Rondon, Maria Urbana P B; Oliveira, Patrícia; Alves, Maria J N N; Almeida, Dirceu R; Middlekauff, Holly R; Negrão, Carlos E

    2015-05-01

    Arterial baroreflex control of muscle sympathetic nerve activity (ABRMSNA) is impaired in chronic systolic heart failure (CHF). The purpose of the study was to test the hypothesis that exercise training would improve the gain and reduce the time delay of ABRMSNA in CHF patients. Twenty-six CHF patients, New York Heart Association Functional Class II-III, EF ≤ 40%, peak V̇o2 ≤ 20 ml·kg(-1)·min(-1) were divided into two groups: untrained (UT, n = 13, 57 ± 3 years) and exercise trained (ET, n = 13, 49 ± 3 years). Muscle sympathetic nerve activity (MSNA) was directly recorded by microneurography technique. Arterial pressure was measured on a beat-to-beat basis. Time series of MSNA and systolic arterial pressure were analyzed by autoregressive spectral analysis. The gain and time delay of ABRMSNA was obtained by bivariate autoregressive analysis. Exercise training was performed on a cycle ergometer at moderate intensity, three 60-min sessions per week for 16 wk. Baseline MSNA, gain and time delay of ABRMSNA, and low frequency of MSNA (LFMSNA) to high-frequency ratio (HFMSNA) (LFMSNA/HFMSNA) were similar between groups. ET significantly decreased MSNA. MSNA was unchanged in the UT patients. The gain and time delay of ABRMSNA were unchanged in the ET patients. In contrast, the gain of ABRMSNA was significantly reduced [3.5 ± 0.7 vs. 1.8 ± 0.2, arbitrary units (au)/mmHg, P = 0.04] and the time delay of ABRMSNA was significantly increased (4.6 ± 0.8 vs. 7.9 ± 1.0 s, P = 0.05) in the UT patients. LFMSNA-to-HFMSNA ratio tended to be lower in the ET patients (P training prevents the deterioration of ABRMSNA in CHF patients. Copyright © 2015 the American Physiological Society.

  7. Effect of cortisol on muscle sympathetic nerve activity in Pima Indians and Caucasians

    DEFF Research Database (Denmark)

    Vozarova, Barbora; Weyer, Christian; Snitker, Soren

    2003-01-01

    . Although glucocorticoids inhibit SNS activity, Pima Indians are not hypercortisolemic compared with Caucasians. This does not exclude the possibility that the SNS is more responsive to an inhibitory effect of cortisol in the former than in the latter group. We measured fasting plasma ACTH and cortisol...... and muscle SNS activity [muscle sympathetic nervous system activity (MSNA), microneurography] in 58 males [27 Pimas/31 Caucasians]. Seven Pimas and 12 Caucasians were randomized to a double-blind, placebo-controlled, cross-over study to examine the effect of overnight partial chemical adrenalectomy...... to a tonic inhibitory effect of cortisol. However, an acute release of cortisol is likely to more effectively contain sympathoexcitation during stress in Pima Indians than in Caucasians, which may be an important mechanism of cardioprotection in this Native American population....

  8. Effect of cortisol on muscle sympathetic nerve activity in Pima Indians and Caucasians

    DEFF Research Database (Denmark)

    Vozarova, Barbora; Weyer, Christian; Snitker, Soren

    2003-01-01

    to a tonic inhibitory effect of cortisol. However, an acute release of cortisol is likely to more effectively contain sympathoexcitation during stress in Pima Indians than in Caucasians, which may be an important mechanism of cardioprotection in this Native American population.......The hypothalamo-pituitary-adrenal axis and sympathetic nervous system (SNS) interact to maintain cardiovascular and metabolic homeostasis, especially during stress. Pima Indians have a low SNS activity, which may contribute to both their increased risk of obesity and reduced risk of hypertension....... Although glucocorticoids inhibit SNS activity, Pima Indians are not hypercortisolemic compared with Caucasians. This does not exclude the possibility that the SNS is more responsive to an inhibitory effect of cortisol in the former than in the latter group. We measured fasting plasma ACTH and cortisol...

  9. Bioelectronic block of paravertebral sympathetic nerves mitigates post-myocardial infarction ventricular arrhythmias.

    Science.gov (United States)

    Chui, Ray W; Buckley, Una; Rajendran, Pradeep S; Vrabec, Tina; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2017-11-01

    Autonomic dysfunction contributes to induction of ventricular tachyarrhythmia (VT). To determine the efficacy of charge-balanced direct current (CBDC), applied to the T1-T2 segment of the paravertebral sympathetic chain, on VT inducibility post-myocardial infarction (MI). In a porcine model, CBDC was applied in acute animals (n = 7) to optimize stimulation parameters for sympathetic blockade and in chronic MI animals (n = 7) to evaluate the potential for VTs. Chronic MI was induced by microsphere embolization of the left anterior descending coronary artery. At termination, in anesthetized animals and following thoracotomy, an epicardial sock array was placed over both ventricles and a quadripolar carousel electrode positioned underlying the right T1-T2 paravertebral chain. In acute animals, the efficacy of CBDC carousel (CBDCC) block was assessed by evaluating cardiac function during T2 paravertebral ganglion stimulation with and without CBDCC. In chronic MI animals, VT inducibility was assessed by extrasystolic (S1-S2) stimulations at baseline and under >66% CBDCC blockade of T2-evoked sympathoexcitation. CBDCC demonstrated a current-dependent and reversible block without impacting basal cardiac function. VT was induced at baseline in all chronic MI animals. One animal died after baseline induction. Of the 6 remaining animals, only 1 was reinducible with simultaneous CBDCC application (P block of the T1-T2 paravertebral chain with CBDCC reduced VT in a chronic MI model. CBDCC prolonged VERP, without altering baseline cardiac function, resulting in improved electrical stability. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. Comparison of the noradrenergic sympathetic nerve contribution during local skin heating at forearm and leg sites in humans.

    Science.gov (United States)

    Del Pozzi, Andrew T; Hodges, Gary J

    2015-05-01

    We investigated the role of noradrenergic sympathetic nerves in the cutaneous circulation at rest and in response to local heating. Dorsal forearm and lateral leg sites were each instrumented with 2 microdialysis fibers, 2 local skin heaters, and 2 laser-Doppler probes. All sites were heated from 33° to 42 °C. Each limb had 1 skin site treated with bretylium tosylate (BT) to block noradrenergic sympathetic neurotransmitter release and 1 site infused with lactated Ringer's (Control). During baseline (33 °C), cutaneous vascular conductance (CVC; laser-Doppler flux/blood pressure) at control (24 ± 2 %max) and BT-treated (29 ± 4 %max) sites in the leg was significantly higher than the forearm (control: 12 ± 1 %max; BT-treated: 17 ± 2 %max) (P = 0.032 and P = 0.042). At 42 °C local skin temperature, the initial peak CVC response with BT decreased compared to control at both forearm (62 ± 3 vs. 86 ± 6 %max, P leg (67 ± 3 vs. 77 ± 2 %max, P = 0.035) sites. CVC at the forearm with BT was lower than that of the leg (P = 0.02). With control, plateau phase (~35 min at 42 °C) CVC was greater in the leg (98 ± 2 %max) than the forearm (89 ± 4 %max) (P = 0.027). BT reduced the peak CVC in the leg (90 ± 4 %max, P = 0.027) and in the forearm (69 ± 5 %max, P legs (P leg and forearm at rest and with skin heating.

  11. Effects of nicorandil on cardiac sympathetic nerve activity after reperfusion therapy in patients with first anterior acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Gunma (Japan)

    2005-03-01

    Ischaemic preconditioning (PC) is a cardioprotective phenomenon in which short periods of myocardial ischaemia result in resistance to decreased contractile dysfunction during a subsequent period of sustained ischaemia. Nicorandil, an ATP-sensitive potassium channel opener, can induce PC effects on sympathetic nerves during myocardial ischaemia. However, its effects on cardiac sympathetic nerve activity (CSNA) and left ventricular remodelling have not been determined. In this study, we sought to determine whether nicorandil administration improves CSNA in patients with acute myocardial infarction (AMI). We studied 58 patients with first anterior AMI, who were randomly assigned to receive nicorandil (group A) or isosorbide dinitrate (group B) after primary coronary angioplasty. The nicorandil or isosorbide dinitrate was continuously infused for >48 h. The extent score (ES) was determined from {sup 99m}Tc-pyrophosphate scintigraphy, and the total defect score (TDS) was determined from {sup 201}Tl scintigraphy 3-5 days after primary angioplasty. The left ventricular end-diastolic volume (LVEDV) and left ventricular ejection fraction (LVEF) were determined by left ventriculography 2 weeks later. The delayed heart/mediastinum count (H/M) ratio, delayed TDS and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images 3 weeks later. The left ventriculography results were re-examined 6 months after treatment. Fifty patients originally enrolled in the trial completed the entire protocol. After treatment, no significant differences were observed in ES or left ventricular parameters between the two groups. However, in group A (n=25), the TDSs determined from {sup 201}Tl and {sup 123}I-MIBG were significantly lower (26{+-}6 vs 30{+-}5, P<0.01, and 32{+-}8 vs 40{+-}6, P<0.0001, respectively), the H/M ratio significantly higher (1.99{+-}0.16 vs 1.77{+-}0.30, P<0.005) and the WR significantly lower (36%{+-}8% vs 44%{+-}12%, P<0.005) than in group B

  12. Role of small conductance calcium-activated potassium channels expressed in PVN in regulating sympathetic nerve activity and arterial blood pressure in rats

    OpenAIRE

    Gui, Le; LaGrange, Lila P.; Larson, Robert A.; Gu, Mingjun; Zhu, Jianhua; Chen, Qing-Hui

    2012-01-01

    Small conductance Ca2+-activated K+ (SK) channels regulate membrane properties of rostral ventrolateral medulla (RVLM) projecting hypothalamic paraventricular nucleus (PVN) neurons and inhibition of SK channels increases in vitro excitability. Here, we determined in vivo the role of PVN SK channels in regulating sympathetic nerve activity (SNA) and mean arterial pressure (MAP). In anesthetized rats, bilateral PVN microinjection of SK channel blocker with peptide apamin (0, 0.125, 1.25, 3.75, ...

  13. Effects of inhaled citronella oil and related compounds on rat body weight and brown adipose tissue sympathetic nerve.

    Science.gov (United States)

    Batubara, Irmanida; Suparto, Irma H; Sa'diah, Siti; Matsuoka, Ryunosuke; Mitsunaga, Tohru

    2015-03-12

    Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae), Indonesian local name: "Sereh Wangi" on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD) were made to inhale citronella oil, R-(+)-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations.

  14. Effects of Inhaled Citronella Oil and Related Compounds on Rat Body Weight and Brown Adipose Tissue Sympathetic Nerve

    Directory of Open Access Journals (Sweden)

    Irmanida Batubara

    2015-03-01

    Full Text Available Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae, Indonesian local name: “Sereh Wangi” on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD were made to inhale citronella oil, R-(+-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations.

  15. Effects of short-term continuous positive airway pressure on myocardial sympathetic nerve function and energetics in patients with heart failure and obstructive sleep apnea: a randomized study.

    Science.gov (United States)

    Hall, Allison B; Ziadi, Maria C; Leech, Judith A; Chen, Shin-Yee; Burwash, Ian G; Renaud, Jennifer; deKemp, Robert A; Haddad, Haissam; Mielniczuk, Lisa M; Yoshinaga, Keiichiro; Guo, Ann; Chen, Li; Walter, Olga; Garrard, Linda; DaSilva, Jean N; Floras, John S; Beanlands, Rob S B

    2014-09-09

    Heart failure with reduced ejection fraction and obstructive sleep apnea (OSA), 2 states of increased metabolic demand and sympathetic nervous system activation, often coexist. Continuous positive airway pressure (CPAP), which alleviates OSA, can improve ventricular function. It is unknown whether this is due to altered oxidative metabolism or presynaptic sympathetic nerve function. We hypothesized that short-term (6-8 weeks) CPAP in patients with OSA and heart failure with reduced ejection fraction would improve myocardial sympathetic nerve function and energetics. Forty-five patients with OSA and heart failure with reduced ejection fraction (left ventricular ejection fraction 35.8±9.7% [mean±SD]) were evaluated with the use of echocardiography and 11C-acetate and 11C-hydroxyephedrine positron emission tomography before and ≈6 to 8 weeks after randomization to receive short-term CPAP (n=22) or no CPAP (n=23). Work metabolic index, an estimate of myocardial efficiency, was calculated as follows: (stroke volume index×heart rate×systolic blood pressure÷Kmono), where Kmono is the monoexponential function fit to the myocardial 11C-acetate time-activity data, reflecting oxidative metabolism. Presynaptic sympathetic nerve function was measured with the use of the 11C-hydroxyephedrine retention index. CPAP significantly increased hydroxyephedrine retention versus no CPAP (Δretention: +0.012 [0.002, 0.021] versus -0.006 [-0.013, 0.005] min(-1); P=0.003). There was no significant change in work metabolic index between groups. However, in those with more severe OSA (apnea-hypopnea index>20 events per hour), CPAP significantly increased both work metabolic index and systolic blood pressure (Penergetics. In those with more severe OSA, CPAP may improve cardiac efficiency. Further outcome-based investigation of the consequences of CPAP is warranted. http://www.clinicaltrials.gov. Unique identifier: NCT00756366. © 2014 American Heart Association, Inc.

  16. Trigger point-related sympathetic nerve activity in chronic sciatic leg pain: a case study.

    Science.gov (United States)

    Skorupska, Elżbieta; Rychlik, Michał; Pawelec, Wiktoria; Bednarek, Agata; Samborski, Włodzimierz

    2014-10-01

    Sciatica has classically been associated with irritation of the sciatic nerve by the vertebral disc and consequent inflammation. Some authors suggest that active trigger points in the gluteus minimus muscle can refer pain in similar way to sciatica. Trigger point diagnosis is based on Travel and Simons criteria, but referred pain and twitch response are significant confirmatory signs of the diagnostic criteria. Although vasoconstriction in the area of a latent trigger point has been demonstrated, the vasomotor reaction of active trigger points has not been examined. We report the case of a 22-year-old Caucasian European man who presented with a 3-year history of chronic sciatic-type leg pain. In the third year of symptoms, coexistent myofascial pain syndrome was diagnosed. Acupuncture needle stimulation of active trigger points under infrared thermovisual camera showed a sudden short-term vasodilatation (an autonomic phenomenon) in the area of referred pain. The vasodilatation spread from 0.2 to 171.9 cm(2) and then gradually decreased. After needling, increases in average and maximum skin temperature were seen as follows: for the thigh, changes were +2.6°C (average) and +3.6°C (maximum); for the calf, changes were +0.9°C (average) and +1.4°C (maximum). It is not yet known whether the vasodilatation observed was evoked exclusively by dry needling of active trigger points. The complex condition of the patient suggests that other variables might have influenced the infrared thermovision camera results. We suggest that it is important to check if vasodilatation in the area of referred pain occurs in all patients with active trigger points. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Bradykinin receptor blockade restores the baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal failure rats.

    Science.gov (United States)

    Abdulla, M H; Duff, M; Swanton, H; Johns, E J

    2016-11-01

    This study investigated the effect of renal bradykinin B1 and B2 receptor blockade on the high- and low-pressure baroreceptor reflex regulation of renal sympathetic nerve activity (RSNA) in rats with cisplatin-induced renal failure. Cisplatin (5 mg/kg) or saline was given intraperitoneally 4 days prior to study. Following chloralose/urethane anaesthesia, rats were prepared for measurement of mean arterial pressure (MAP), heart rate and RSNA and received intrarenal infusions of either Lys-[des-Arg 9 , Leu 8 ]-bradykinin (LBK), a bradykinin B1 receptor blocker, or bradyzide (BZ), a bradykinin B2 receptor blocker. RSNA baroreflex gain curves and renal sympatho-inhibitory responses to volume expansion (VE) were obtained. In the control and renal failure groups, basal MAP (89 ± 3 vs. 80 ± 8 mmHg) and RSNA (2.0 ± 0.3 vs. 1.7 ± 0.6 μV.s) were similar but HR was lower in the latter group (331 ± 8 vs. 396 ± 9 beats/min). The baroreflex gain for RSNA in the renal failure rats was 39% (P renal failure rats. Intrarenal LBK infusion in the renal failure rats normalized the VE induced renal sympatho-inhibition whereas BZ only partially restored the response. These findings suggest that pro-inflammatory bradykinin acting at different receptors within the kidney generates afferent neural signals which impact differentially within the central nervous system on high- and low-pressure regulation of RSNA. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  18. Assessment of cardiac sympathetic nerve activity in children with chronic heart failure using quantitative iodine-123 metaiodobenzylguanidine imaging

    International Nuclear Information System (INIS)

    Karasawa, Kensuke; Ayusawa, Mamoru; Noto, Nobutaka; Sumitomo, Naokata; Okada, Tomoo; Harada, Kensuke

    2000-01-01

    Cardiac sympathetic nerve activity in children with chronic heart failure was examined by quantitative iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging in 33 patients aged 7.5±6.1 years (range 0-18 years), including 8 with cardiomyopathy, 15 with congenital heart disease, 3 with anthracycrine cardiotoxicity, 3 with myocarditis, 3 with primary pulmonary hypertension and 1 with Pompe's disease. Anterior planar images were obtained 15 min and 3 hr after the injection of iodine-123 MIBG. The cardiac iodine-123 MIBG uptake was assessed as the heart to upper mediastinum uptake activity ratio of the delayed image (H/M) and the cardiac percentage washout rate (%WR). The severity of chronic heart failure was class I (no medication) in 8 patients, class II (no symptom with medication) in 9, class III (symptom even with medication) in 10 and class IV (late cardiac death) in 6. H/M was 2.33±0.22 in chronic heart failure class I, 2.50±0.34 in class II, 1.95±0.61 in class III, and 1.39±0.29 in class IV (p<0.05). %WR was 24.8±12.8% in chronic heart failure class I, 23.3±10.2% in class II, 49.2±24.5% in class III, and 66.3±26.5% in class IV (p<0.05). The low H/M and high %WR were proportionate to the severity of chronic heart failure. Cardiac iodine-123 MIBG showed cardiac adrenergic neuronal dysfunction in children with severe chronic heart failure. Quantitative iodine-123 MIBG myocardial imaging is clinically useful as a predictor of therapeutic outcome and mortality in children with chronic heart failure. (author)

  19. Effect of amine uptake inhibitors on the uptake of 14C-bretylium in intact and degenerating sympathetic nerves of the rat

    International Nuclear Information System (INIS)

    Almgren, O.

    1981-01-01

    The effect of different amine uptake inhibitors on the accumulation of 14 C-bretylium in sympathetically denervated or decentralized salivary glands were studied in vivo in rats 11-14 hours after the surgical intervention. The time period chosen is known to be critical for the delaying effect of bretylium on the degeneration transmitter release in sympathetically innervated organs. Cocaine, desmethylimipramine (DMI), protriptyline or reserpine all depressed the uptake of 14 C-bretylium in both denervated and decentralized salivary glands, cocaine being the most efficient one. DMI and protriptyline, but not cocaine inhibit the degeneration delaying effect of bretylium, while all three agents inhibit amine uptake at level of the nerve cell membrane. Apparently, bretylium reaches the critical sites of its degeneration delaying action by the axonal amine pump but only a small fraction of the drug entering the degenerating adrenergic nerve terminal is needed at the critical sites to interact with the degeneration processes. The difference between the tricyclic antidepressants on one hand and cocaine on the other with respect to the effect on the degeneration delaying action of bretylium, must depend on some action different from the axonal membrane uptake inhibition. Reserpine which is known not to interfere with the delaying effect of bretylium on the denervation degeneration did reduce the uptake of 14 C-bretylium. This fact seems to indicate that the site of action of bretylium is located outside the adrenergic nerve granules. (author)

  20. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain.

    Science.gov (United States)

    Chartier, Stephane R; Thompson, Michelle L; Longo, Geraldine; Fealk, Michelle N; Majuta, Lisa A; Mantyh, Patrick W

    2014-11-01

    Skeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in nonhealed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation. If such ectopic sprouting did occur, it could result in normally nonnoxious loading of the skeleton being perceived as noxious and/or the generation of a neuropathic pain state. To explore this possibility, a mouse model of skeletal pain was generated by inducing a closed fracture of the femur. Examined animals had comminuted fractures and did not fully heal even at 90+days post fracture. In all mice with nonhealed fractures, exuberant sensory and sympathetic nerve sprouting, an increase in the density of nerve fibers, and the formation of neuroma-like structures near the fracture site were observed. Additionally, all of these animals exhibited significant pain behaviors upon palpation of the nonhealed fracture site. In contrast, sprouting of sensory and sympathetic nerve fibers or significant palpation-induced pain behaviors was never observed in naïve animals. Understanding what drives this ectopic nerve sprouting and the role it plays in skeletal pain may allow a better understanding and treatment of this currently difficult-to-control pain state. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  1. Prediction of cardiac sympathetic nerve activity and cardiac functional outcome after treatment in patients with dilated cardiomyopathy. Examination using dobutamine gated blood pool scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Iwasaki, Tsutomu; Suzuki, Tadashi [Gunma Univ., Maebashi (Japan). School of Medicine; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi; Nagai, Ryozo

    2000-07-01

    This study evaluated whether dobutamine gated blood pool scintigraphy can predict improvement of cardiac sympathetic nerve activity and cardiac function. Sixteen patients (10 men and 6 women, mean age 59{+-}13 years) with dilated cardiomyopathy underwent dobutamine gated blood pool scintigraphy to measure left ventricular ejection fraction (LVEF) using tracer at 0, 5, 10 and 15 {mu}g/kg/min before treatment. Patients were divided into good responders (LVEF increase {>=}15%) 8 patients (GR Group) and poor responders (LVEF increase <15%) 8 patients (PR Group) after treatment with {beta}-blocker or amiodarone with a background treatment of digitalis, diuretics and angiotensin converting enzyme inhibitor. I-123 metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic nerve activity and echocardiography were performed before and at one year after treatment. MIBG imaging was obtained 4 hours after tracer injection, and the heart/mediastinum count ratio (H/M ratio) calculated from the anterior planar image and the total defect score (TDS) from the single photon emission computed tomography image. LVEF and left ventricular endo-diastolic dimension (LVDd) were measured by echocardiography and New York Heart Association (NYHA) functional class was evaluated. The GR Group showed TDS decreased from 28{+-}6 to 17{+-}12 (p<0.05), H/M ratio increased from 1.79{+-}0.26 to 2.07{+-}0.32 (p<0.05), LVEF increased from 29{+-}8% to 48{+-}10% (p<0.01), and LVDd decreased from 65{+-}4 mm to 58{+-}5 mm (p<0.05). In contrast, the PR group showed no significant changes in TDS. H/M ratio, LVEF and LVDd. NYHA functional class improved in both groups. The improvement was better in the GR Group than in the PR group. Dobutamine gated blood pool scintigraphy is useful to predict the improvement of the cardiac sympathetic nerve activity and cardiac function, and symptoms after treatment in patients with dilated cardiomyopathy. (author)

  2. Arterial pressure oscillations are not associated with muscle sympathetic nerve activity in individuals exposed to central hypovolaemia

    Science.gov (United States)

    2011-09-19

    this ‘next step’ approach for investigation of non-invasive surrogates to ensure clinical utility in individual patients . This study is not without...blood pressure in health and disease. Therefore, knowing the level of sympathetic activation is important to treat patients with abnormal sympathetic...haemodynamic decompensation (i.e. pre- syncope ). Haemodynamic decompensation was identified by the attending investigator by a precipitous fall in

  3. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi, Gunma (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Department of Internal Medicine, Gunma (Japan)

    2005-08-01

    The production of aldosterone in the heart is suppressed by the angiotensin-converting enzyme (ACE) inhibitor perindopril in patients with congestive heart failure (CHF). Moreover, perindopril has been reported to have more cardioprotective effects than enalapril. Forty patients with CHF [left ventricular ejection fraction (LVEF) <45%; mean 33{+-}7%] were randomly assigned to perindopril (2 mg/day; n=20) or enalapril (5 mg/day; n=20). All patients were also treated with diuretics. The delayed heart/mediastinum count (H/M) ratio, delayed total defect score (TDS) and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images, and plasma brain natriuretic peptide (BNP) concentrations were measured before and 6 months after treatment. The left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV) and LVEF were also determined by echocardiography. After treatment, in patients receiving perindopril, TDS decreased from 39{+-}10 to 34{+-}9 (P<0.01), H/M ratios increased from 1.62{+-}0.27 to 1.76{+-}0.29 (P<0.01), WR decreased from 50{+-}14% to 42{+-}14% (P<0.05) and plasma BNP concentrations decreased from 226{+-}155 to 141{+-}90 pg/ml (P<0.0005). In addition, the LVEDV decreased from 180{+-}30 to 161{+-}30 ml (P<0.05) and the LVESV decreased from 122{+-}35 to 105{+-}36 ml (P<0.05). Although the LVEF tended to increase, the change was not statistically significant (from 33{+-}8% to 36{+-}12%; P=NS). On the other hand, there were no significant changes in these parameters in patients receiving enalapril. Plasma BNP concentrations, {sup 123}I-MIBG scintigraphic and echocardiographic parameters improved after 6 months of perindopril treatment. These findings indicate that perindopril treatment can ameliorate the cardiac sympathetic nerve activity and the left ventricular performance in patients with CHF. (orig.)

  4. Altered differential control of sympathetic outflow following sedentary conditions: Role of subregional neuroplasticity in the RVLM

    Directory of Open Access Journals (Sweden)

    Madhan Subramanian

    2016-07-01

    Full Text Available Despite the classically held belief of an all-or-none activation of the sympathetic nervous system, differential responses in sympathetic nerve activity (SNA can occur acutely at varying magnitudes and in opposing directions. Sympathetic nerves also appear to contribute differentially to various disease states including hypertension and heart failure. Previously we have reported that sedentary conditions enhanced responses of splanchnic SNA (SSNA but not lumbar SNA (LSNA to activation of the rostral ventrolateral medulla (RVLM in rats. Bulbospinal RVLM neurons from sedentary rats also exhibit increased dendritic branching in rostral regions of the RVLM. We hypothesized that regionally specific structural neuroplasticity would manifest as enhanced SSNA but not LSNA following activation of the rostral RVLM. To test this hypothesis, groups of physically active (10-12 weeks on running wheels or sedentary, male Sprague-Dawley rats were instrumented to record mean arterial pressure, LSNA and SSNA under Inactin anesthesia and during microinjections of glutamate (30 nl, 10 mM into multiple sites within the RVLM. Sedentary conditions enhanced SSNA but not LSNA responses and SSNA responses were enhanced at more central and rostral sites. Results suggest that enhanced SSNA responses in rostral RVLM coincide with enhanced dendritic branching in rostral RVLM observed previously. Identifying structural and functional neuroplasticity in specific populations of RVLM neurons may help identify new treatments for cardiovascular diseases, known to be more prevalent in sedentary individuals.

  5. Altered Differential Control of Sympathetic Outflow Following Sedentary Conditions: Role of Subregional Neuroplasticity in the RVLM

    Science.gov (United States)

    Subramanian, Madhan; Mueller, Patrick J.

    2016-01-01

    Despite the classically held belief of an “all-or-none” activation of the sympathetic nervous system, differential responses in sympathetic nerve activity (SNA) can occur acutely at varying magnitudes and in opposing directions. Sympathetic nerves also appear to contribute differentially to various disease states including hypertension and heart failure. Previously we have reported that sedentary conditions enhanced responses of splanchnic SNA (SSNA) but not lumbar SNA (LSNA) to activation of the rostral ventrolateral medulla (RVLM) in rats. Bulbospinal RVLM neurons from sedentary rats also exhibit increased dendritic branching in rostral regions of the RVLM. We hypothesized that regionally specific structural neuroplasticity would manifest as enhanced SSNA but not LSNA following activation of the rostral RVLM. To test this hypothesis, groups of physically active (10–12 weeks on running wheels) or sedentary, male Sprague-Dawley rats were instrumented to record mean arterial pressure, LSNA and SSNA under Inactin anesthesia and during microinjections of glutamate (30 nl, 10 mM) into multiple sites within the RVLM. Sedentary conditions enhanced SSNA but not LSNA responses and SSNA responses were enhanced at more central and rostral sites. Results suggest that enhanced SSNA responses in rostral RVLM coincide with enhanced dendritic branching in rostral RVLM observed previously. Identifying structural and functional neuroplasticity in specific populations of RVLM neurons may help identify new treatments for cardiovascular diseases, known to be more prevalent in sedentary individuals. PMID:27486405

  6. The effect of residential exercise training on baroreflex control of heart rate and sympathetic nerve activity in patients with acute myocardial infarction.

    Science.gov (United States)

    Mimura, Jun; Yuasa, Fumio; Yuyama, Reisuke; Kawamura, Akihiro; Iwasaki, Masayoshi; Sugiura, Tetsuro; Iwasaka, Toshiji

    2005-04-01

    Exercise training has been shown to favorably affect the prognosis after acute myocardial infarction (AMI), but the mechanisms of such favorable effects remain speculative. The aim of this study was to determine whether exercise training improves baroreflex control of heart rate and muscle sympathetic nerve activity (MSNA) in patients with AMI. Prospective randomized clinical study. Thirty patients with an uncomplicated AMI were randomized into trained or untrained groups. Arterial BP, heart rate, and MSNA were measured at rest, and during baroreceptor stimulation (phenylephrine infusion) and baroreceptor deactivation (nitroprusside infusion). These measurements were performed at baseline and after 4 weeks of exercise training. Peak oxygen uptake increased significantly (12.3 +/- 10.7% [mean +/- SD]) with exercise training. Resting MSNA reduced from 34 +/- 12 to 27 +/- 8 bursts/min in the trained group but not in the untrained group. Arterial baroreflex sensitivity (BRS) [from 8.9 +/- 3.0 to 10.3 +/- 3.0 ms/mm Hg, p trained group, but not in the untrained group. Despite baroreceptor deactivation improving MSNA response in both groups, there was no significant difference between the two groups. Exercise training increased arterial BRS and decreased sympathetic nerve traffic after AMI, which indicate that the sympathoinhibitory effect of exercise training may, at least in part, contribute to the beneficial effect of exercise training in patients with AMI.

  7. Phase Difference in the Induction of Tyrosine Hydroxylase in Cell Body and Nerve Terminals of Sympathetic Neurones

    Science.gov (United States)

    Thoenen, Hans; Mueller, Robert A.; Axelrod, Julius

    1970-01-01

    The induction of tyrosine hydroxylase in the nerve terminals of the rat heart by reserpine lags behind that in the stellate ganglion by two to three days. Cycloheximide given three days after reserpine blocks the further rise of the enzyme in the nerve terminals. The increase in tyrosine hydroxylase activity of the lumbar ganglion is as marked as that in the stellate ganglion. The increase of enzyme activity in the sciatic nerve after reserpine administration resembles that found in the heart nerve terminals. Determination of enzyme activity in segments of sciatic nerves indicates a two-day lag and then a proximal-distal transport of enzyme, but the apparent rate is not sufficient to account for the increase in enzyme in the nerve terminals. These findings are compatible with the local synthesis of induced tyrosine hydroxylase in the nerve terminals rather than the peripheral movement of the completed enzyme. PMID:4189989

  8. Sympathetic nervous system and spaceflight

    Science.gov (United States)

    Cooke, William H.; Convertino, Victor A.

    2007-02-01

    Purpose: Orthostatic stability on Earth is maintained through sympathetic nerve activation sufficient to increase peripheral vascular resistance and defend against reductions of blood pressure. Orthostatic instability in astronauts upon return from space missions has been linked to blunted vascular resistance responses to standing, introducing the possibility that spaceflight alters normal function between sympathetic efferent traffic and vascular reactivity. Methods: We evaluated published results of spaceflight and relevant ground-based microgravity simulations in an effort to determine responses of the sympathetic nervous system and consequences for orthostatic stability. Results: Direct microneurographic recordings from humans in space revealed that sympathetic nerve activity is increased and preserved in the upright posture after return to Earth (STS-90). However, none of the astronauts studied during STS-90 presented with presyncope postflight, leaving unanswered the question of whether postflight orthostatic intolerance is associated with blunted sympathetic nerve responses or inadequate translation into vascular resistance. Conclusions: There is little evidence to support the concept that spaceflight induces fundamental sympathetic neuroplasticity. The available data seem to support the hypothesis that regardless of whether or not sympathetic traffic is altered during flight, astronauts return with reduced blood volumes and consequent heightened baseline sympathetic activity. Because of this, the ability to withstand an orthostatic challenge postflight is directly proportional to an astronaut's maximal sympathetic activation capacity and remaining sympathetic reserve.

  9. Comparison of the hyperglycaemic and glycogenolytic responses to catecholamines with those to stimulation of the hepatic sympathetic innervation in the dog.

    Science.gov (United States)

    Edwards, A V; Silver, M

    1972-06-01

    1. The effects of stimulation of the splanchnic innervation to the adrenal medullae, in dogs with cut hepatic nerves, were compared with those obtained previously in response to splanchnic and hepatic nerve stimulation in adrenalectomized dogs.2. Maximal stimulation of both adrenal medullae via the splanchnic innervation (20 c/s for 9 min), in dogs with cut hepatic nerves, produced closely similar hyperglycaemic and glycogenolytic responses to those obtained previously in adrenalectomized dogs with intact hepatic nerves.3. The rise in plasma glucose concentration in response to maximal stimulation of the adrenal medullae in dogs with intact hepatic nerves was found to be comparable to that which occurs in response to maximal stimulation of the hepatic sympathetic innervation alone. In contrast, the rise in haematocrit during maximal stimulation of the entire splanchnic innervation was substantially greater than that observed after removal of both adrenal glands.4. The output of adrenaline and noradrenaline from the left adrenal gland was determined during maximal stimulation of the left splanchnic nerve (20 c/s for 9 min). These results were then used to compute doses of the two amines which would reproduce the output of catecholamines from both glands under such conditions. The extent of the rise in mean plasma glucose concentration in response to these infusions was similar to that produced by maximal stimulation of both adrenal glands, but the duration of hyperglycaemia and depletion of liver glycogen were significantly less.5. Stimulation of the splanchnic innervation was found to produce an initial ;surge' in the release of catecholamines from the adrenal medullae, followed by a rapid decline in output when stimulation was continued for longer than 30 sec. Evidence was obtained which showed that this pattern of release is well suited to produce rapid mobilization of liver glycogen.6. Comparable changes in plasma glucose concentration occurred in response to

  10. 5-HT causes splanchnic venodilation.

    Science.gov (United States)

    Seitz, Bridget M; Orer, Hakan S; Krieger-Burke, Teresa; Darios, Emma S; Thompson, Janice M; Fink, Gregory D; Watts, Stephanie W

    2017-09-01

    Serotonin [5-hydroxytryptamine (5-HT)] causes relaxation of the isolated superior mesenteric vein, a splanchnic blood vessel, through activation of the 5-HT 7 receptor. As part of studies designed to identify the mechanism(s) through which chronic (≥24 h) infusion of 5-HT lowers blood pressure, we tested the hypothesis that 5-HT causes in vitro and in vivo splanchnic venodilation that is 5-HT 7 receptor dependent. In tissue baths for measurement of isometric contraction, the portal vein and abdominal inferior vena cava relaxed to 5-HT and the 5-HT 1/7 receptor agonist 5-carboxamidotryptamine; relaxation was abolished by the 5-HT 7 receptor antagonist SB-269970. Western blot analyses showed that the abdominal inferior vena cava and portal vein express 5-HT 7 receptor protein. In contrast, the thoracic vena cava, outside the splanchnic circulation, did not relax to serotonergic agonists and exhibited minimal expression of the 5-HT 7 receptor. Male Sprague-Dawley rats with chronically implanted radiotelemetry transmitters underwent repeated ultrasound imaging of abdominal vessels. After baseline imaging, minipumps containing vehicle (saline) or 5-HT (25 μg·kg -1 ·min -1 ) were implanted. Twenty-four hours later, venous diameters were increased in rats with 5-HT-infusion (percent increase from baseline: superior mesenteric vein, 17.5 ± 1.9; portal vein, 17.7 ± 1.8; and abdominal inferior vena cava, 46.9 ± 8.0) while arterial pressure was decreased (~13 mmHg). Measures returned to baseline after infusion termination. In a separate group of animals, treatment with SB-269970 (3 mg/kg iv) prevented the splanchnic venodilation and fall in blood pressure during 24 h of 5-HT infusion. Thus, 5-HT causes 5-HT 7 receptor-dependent splanchnic venous dilation associated with a fall in blood pressure. NEW & NOTEWORTHY This research is noteworthy because it combines and links, through the 5-HT 7 receptor, an in vitro observation (venorelaxation) with in vivo events

  11. Intracellular mechanism of action of sympathetic hepatic nerves on glucose and lactate balance in perfused rat liver

    NARCIS (Netherlands)

    Ballé, C.; Beuers, U.; ENGELHARDT, R.; JUNGERMANN, K.

    1987-01-01

    In rat liver perfused in situ stimulation of the nerve plexus around the hepatic artery and the portal vein caused an increase in glucose output and a shift from lactate uptake to output. The effects of nerve stimulation on some key enzymes, metabolites and effectors of carbohydrate metabolism were

  12. Effect of 4G-alpha-glucopyranosyl hesperidin on brown fat adipose tissue- and cutaneous-sympathetic nerve activity and peripheral body temperature.

    Science.gov (United States)

    Shen, Jiao; Nakamura, Hiroyasu; Fujisaki, Yoshiyuki; Tanida, Mamoru; Horii, Yuko; Fuyuki, Risa; Takumi, Hiroko; Shiraishi, Koso; Kometani, Takashi; Nagai, Katsuya

    2009-09-11

    Changes in the activity of the autonomic nervous system are good indicators of alterations in physiological phenomena such as the body temperature, blood glucose, blood pressure. Hesperidin, a flavanone known as vitamin P, has been shown to reduce the levels of serum lipids, cholesterol, and blood pressure. However, hesperidin is not water-soluble and is not well absorbed from the intestine. G-hesperidin (4G-alpha-glucopyranosyl hesperidin) is more water-soluble and more rapidly absorbed than hesperidin. In order to clarify the functions of G-hesperidin, we examined the effects of oral administration of G-hesperidin on interscapular brown adipose tissue-sympathetic nerve activity (BAT-SNA) and cutaneous sympathetic nerve activity (CASNA) in rats weighing about 300 g. In this study, we found that oral administration of 60 mg of G-hesperidin increased the BAT-SNA but decreased the CASNA in urethane-anesthetized rats. Since an elevation in BAT-SNA increases heat production (i.e. body temperature (BT)) and a decrease in CASNA increases cutaneous perfusion, we examined whether oral administration of G-hesperidin had an effect on the peripheral BT in rats. Consequently, we observed that the subcutaneous BT at the caudal end of the back after oral administration of 60 mg of G-hesperidin was significantly higher than the subcutaneous BT after oral administration of water in conscious rats. These findings suggest that G-hesperidin enhances the BAT-SNA and suppresses the CASNA resulting in an increase in the peripheral BT, probably by an increase in the thermogenesis in the BAT and an elevation in the cutaneous blood flow.

  13. Obesity depresses baroreflex control of renal sympathetic nerve activity and heart rate in Sprague Dawley rats: role of the renal innervation.

    Science.gov (United States)

    Khan, S A; Sattar, M Z A; Abdullah, N A; Rathore, H A; Abdulla, M H; Ahmad, A; Johns, E J

    2015-07-01

    This study investigated the role of the renal innervation in arterial and cardiopulmonary baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) in rats fed a high-fat diet to induce obesity. Rats received either a normal (12% kcal) or high (45% kcal) fat diet for 60 days. On day 61, rats were anesthetized and prepared for recording left RSNA. In one group, the renal nerves remained intact, while in the other, both kidneys were denervated. Baroreflex gain curves for RSNA and HR were generated by increasing and decreasing blood pressure. Low-pressure baroreceptors were challenged by infusing a saline load. Mean blood pressure was 135 mmHg in the fat-fed and 105 mmHg (P baroreflex sensitivities were reduced by 73 and 72% (both P baroreflexes which was dependent on an intact renal innervation. This suggests that in obese states neural signals arising from the kidney contribute to a deranged autonomic control. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Nitric oxide impacts on angiotensin AT2 receptor modulation of high-pressure baroreflex control of renal sympathetic nerve activity in anaesthetized rats.

    Science.gov (United States)

    Abdulla, M H; Johns, E J

    2014-04-01

    Nitric oxide (NO) interacts with the local brain renin-angiotensin system to modulate sympathetic outflow and cardiovascular homoeostasis. This study investigated whether NO influenced the ability of angiotensin AT2 receptor activation to modify the high-pressure baroreceptor regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR). Anaesthetized (chloralose/urethane) rats were prepared to allow generation of baroreflex gain curves for RSNA or HR following intracerebroventricular (I.C.V.) CGP42112 (AT2 receptor agonist), PD123319 (AT2 receptor antagonist) or losartan (AT1 receptor antagonist), and then in combination with L-NAME (NO synthase inhibitor). I.C.V. PD123319, CGP42112, and Losartan did not change baseline mean arterial pressure, HR or RSNA. Baroreflex sensitivities for RSNA and HR were increased following AT2 receptor activation with CGP42112 by 112 and 157%, respectively, but were reduced following PD123319 by 20% (all P baroreflex sensitivity for both RSNA and HR, by 62 and 158%, respectively, but when co-infused with either CGP42112 or PD123319, the baroreflex sensitivity fell to values comparable to those obtained during I.C.V. saline infusion. The baroreflex sensitivities for RSNA and HR were increased by losartan by 92% and 192%, respectively, but in the presence of L-NAME were no different from those obtained during I.C.V. saline infusion. There is an important facilitatory role for AT2 receptors in the high-pressure baroreflex regulation of RSNA and HR which is dependent on a functional NO/NOS system. Conversely, AT1 receptors have an inhibitory effect on the baroreflex, an action that relies on a tonic inhibition of NO. © 2013 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.

  15. Heat stress enhances arterial baroreflex control of muscle sympathetic nerve activity via increased sensitivity of burst gating, not burst area, in humans.

    Science.gov (United States)

    Keller, D M; Cui, J; Davis, S L; Low, D A; Crandall, C G

    2006-06-01

    The relationship between muscle sympathetic nerve activity (MSNA) and diastolic blood pressure has been used to describe two sites for arterial baroreflex control of MSNA. By determining both the likelihood of occurrence for sympathetic bursts and the area of each burst for a given diastolic blood pressure, both a 'gating' and an 'area' control site has been described in normothermic humans. Assessing the effect of heat stress on these mechanisms will improve the understanding of baroreflex control of arterial blood pressure under this thermal condition. Therefore, the purpose of this study was to test the hypothesis that heat stress enhances arterial baroreflex control of burst gating and area. In 10 normotensive subjects (age, 32+/-2 years; mean+/-s.e.m.), MSNA (peroneal) was assessed using standard microneurographic techniques. Five minute periods of data were examined during normothermic and whole-body heating conditions. The burst incidence (i.e. number of sympathetic bursts per 100 cardiac cycles) and the area of each burst were determined for each cardiac cycle and were placed into 3 mmHg intervals of diastolic blood pressure. During normotheric conditions, there was a moderate, negative relationship between burst incidence and diastolic blood pressure (slope=-2.49+/-0.38; r(2)=0.73+/-0.06; mean+/-s.e.m.), while area per burst relative to diastolic blood pressure exhibited a less strong relationship (slope=-1.13+/-0.46; r(2)=0.45+/-0.09). During whole-body heating there was an increase in the slope of the relationship between burst incidence and diastolic blood pressure (slope=-4.69+/-0.44; r(2)=0.84+/-0.03) compared to normothermia (Pburst and diastolic blood pressure was unchanged (slope=-0.92+/-0.29; r(2)=0.41+/-0.08) (P=0.50). The primary finding of this investigation is that, at rest, whole-body heating enhanced arterial baroreflex control of MSNA through increased sensitivity of a 'gating' mechanism, as indicated by an increase in the slope of the

  16. Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat.

    Science.gov (United States)

    Matsukawa, Kanji; Ishii, Kei; Asahara, Ryota; Idesako, Mitsuhiro

    2016-10-01

    Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade. Copyright © 2016 the American Physiological Society.

  17. Adaptive servo-ventilation therapy improves cardiac sympathetic nerve activity, cardiac function, exercise capacity, and symptom in patients with chronic heart failure and Cheyne-Stokes respiration.

    Science.gov (United States)

    Toyama, Takuji; Hoshizaki, Hiroshi; Kasama, Shu; Miyaishi, Yusuke; Kan, Hakuken; Yamashita, Eiji; Kawaguti, Ren; Adachi, Hitoshi; Ohsima, Shigeru

    2017-12-01

    Adaptive servo-ventilation (ASV) therapy has been reported to be effective for improving central sleep apnea (CSA) and chronic heart failure (CHF). The purpose of this study was to clarify whether ASV is effective for CSA, cardiac sympathetic nerve activity (CSNA), cardiac symptoms/function, and exercise capacity in CHF patients with CSA and Cheyne-Stokes respiration (CSR-CSA). In this study, 31 CHF patients with CSR-CSA and a left ventricular ejection fraction (LVEF) ≤ 40% were randomized into an ASV group and a conservative therapy (non-ASV) group for 6 month. Nuclear imagings with 123 I-Metaiodobenzylguanidine (MIBG) and 99m Tc-Sestamibi were performed. Exercise capacity using a specific activity scale (SAS) and the New York Heart Association (NYHA) class were evaluated. CSNA was evaluated by 123 I-MIBG imaging, with the delayed heart/mediastinum activity ratio (H/M), delayed total defect score (TDS), and washout rate (WR). The ASV group had significantly better (P improvement of CSR-CSA, CSNA, cardiac symptoms/function, and exercise capacity in CHF patients with CSR-CSA.

  18. Effectiveness of nocturnal home oxygen therapy to improve exercise capacity, cardiac function and cardiac sympathetic nerve activity in patients with chronic heart failure and central sleep apnea.

    Science.gov (United States)

    Toyama, Takuji; Seki, Ryotaro; Kasama, Shu; Isobe, Naoki; Sakurai, Shigeki; Adachi, Hitoshi; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi

    2009-02-01

    Central sleep apnea, often found in patients with chronic heart failure (CHF), has a high risk of poor prognosis. This study involved 20 patients with CHF (left ventricular ejection fraction (LVEF) 5 times/h who were divided into 2 groups: 10 patients treated with nocturnal home oxygen therapy (HOT) and 10 patients without HOT (non-HOT). All patients had dilated cardiomyopathy and underwent overnight polysomnography, cardiopulmonary exercise testing, and nuclear cardiac examinations to evaluate AHI, exercise capacity according to the specific activity scale and oxygen uptake at anaerobic threshold and peak exercise (peak VO(2)). Cardiac function according to (99m)Tc-MIBI QGS, and the total defect score (TDS), H/M ratio and the washout rate (WR) on (123)I-metaiodobenzylguanidine (MIBG) imaging were calculated for all patients. As compared with the non-HOT group, the HOT group demonstrated a greater reduction in AHI (26.1+/-9.1 to 5.1+/-3.4), (123)I-MIBG TDS (31+/-8 to 25+/-9), and (123)I-MIBG WR (48+/-8% to 41+/-5%) and a greater increase in the specific activity scale (4.0+/-0.9 to 5.8+/-1.2 Mets), peak VO(2) (16.0+/-3.8 to 18.3+/-4.7 ml . min(-1) . kg(-1)), and LVEF (27+/-9% to 37+/-10%). HOT improves exercise capacity, cardiac function, and cardiac sympathetic nerve activity in patients with CHF and central sleep apnea.

  19. Correlation between endogenous noradrenaline and glucose released from the liver upon hepatic sympathetic nerve stimulation in anesthetized dogs.

    Science.gov (United States)

    Garceau, D; Yamaguchi, N; Goyer, R; Guitard, F

    1984-09-01

    The metabolic role of neurally released noradrenaline (NA) was studied in the liver of anesthetized dogs. Sustained stimulation with various frequencies was directly applied on the anterior plexus of hepatic nerves. Stimulation-induced changes in plasma concentrations of endogenous catecholamines in hepatic venous blood were determined in correlation with concomitant changes in those of glucose (GL). Mean basal values for hepatic venous NA, adrenaline, dopamine, and GL were 0.062, 0.022, 0.032 ng/mL, and 97.9 mg%, respectively. Among these catecholamines, NA was the only one being released significantly during stimulation. While hepatic venous NA increased rapidly during stimulation, being maximum within 3 min, hepatic venous GL increased gradually, reaching a maximum value 5 min after the onset of stimulation. A highly significant correlation (r = 0.90, P less than 0.001) was found between changes in hepatic venous NA and GL concentrations observed during stimulation at various frequencies (2-16 Hz). However, hepatic vasoconstricting responses to stimulation were not correlated with increased hepatic venous GL. An alpha-blockade with phentolamine (2 mg/kg, iv) resulted in diminished release of GL by approximately 50% (P less than 0.05) and reduced hepatic arterial vasoconstriction by approximately 47% (P less than 0.01) upon stimulation (8 Hz, 5 min), even though NA release was markedly enhanced. We conclude that in the dog, NA is the sole catecholamine released within the liver in response to direct hepatic nerve stimulation, and NA thus released mediates the hepatic glycogenolysis via alpha-adrenoceptors.

  20. Sympathetic chain Schwannoma

    International Nuclear Information System (INIS)

    Al-Mashat, Faisal M.

    2009-01-01

    Schwannomas are rare, benign, slowly growing tumors arising from Schwann cells that line nerve sheaths. Schwannomas arising from the cervical sympathetic chain are extremely rare. Here, we report a case of a 70-year-old man who presented with only an asymptomatic neck mass. Physical examination revealed a left sided Horner syndrome and a neck mass with transmitted pulsation and anterior displacement of the carotid artery. Computed tomography (CT) showed a well-defined non-enhancing mass with vascular displacement. The nerve of origin of this encapsulated tumor was the sympathetic chain. The tumor was excised completely intact. The pathologic diagnosis was Schwannoma (Antoni type A and Antoni type B). The patient has been well and free of tumor recurrence for 14 months with persistence of asymptomatic left sided Horner syndrome. The clinical, radiological and pathological evaluations, therapy and postoperative complications of this tumor are discussed. (author)

  1. Subcellular storage and release mode of the novel18F-labeled sympathetic nerve PET tracer LMI1195.

    Science.gov (United States)

    Chen, Xinyu; Werner, Rudolf A; Lapa, Constantin; Nose, Naoko; Hirano, Mitsuru; Javadi, Mehrbod S; Robinson, Simon; Higuchi, Takahiro

    2018-02-06

    18 F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine ( 18 F-LMI1195) is a new class of PET tracer designed for sympathetic nervous imaging of the heart. The favorable image quality with high and specific neural uptake has been previously demonstrated in animals and humans, but intracellular behavior is not yet fully understood. The aim of the present study is to verify whether it is taken up in storage vesicles and released in company with vesicle turnover. Both vesicle-rich (PC12) and vesicle-poor (SK-N-SH) norepinephrine-expressing cell lines were used for in vitro tracer uptake studies. After 2 h of 18 F-LMI1195 preloading into both cell lines, effects of stimulants for storage vesicle turnover (high concentration KCl (100 mM) or reserpine treatment) were measured at 10, 20, and 30 min. 131 I-meta-iodobenzylguanidine ( 131 I-MIBG) served as a reference. Both high concentration KCl and reserpine enhanced 18 F-LMI1195 washout from PC12 cells, while tracer retention remained stable in the SK-N-SH cells. After 30 min of treatment, 18 F-LMI1195 releasing index (percentage of tracer released from cells) from vesicle-rich PC12 cells achieved significant differences compared to cells without treatment condition. In contrast, such effect could not be observed using vesicle-poor SK-N-SH cell lines. Similar tracer kinetics after KCl or reserpine treatment were also observed using 131 I-MIBG. In case of KCl exposure, Ca 2 +-free buffer with the calcium chelator, ethylenediaminetetracetic acid (EDTA), could suppress the tracer washout from PC12 cells. This finding is consistent with the tracer release being mediated by Ca 2 + influx resulting from membrane depolarization. Analogous to 131 I-MIBG, the current in vitro tracer uptake study confirmed that 18 F-LMI1195 is also stored in vesicles in PC12 cells and released along with vesicle turnover. Understanding the basic kinetics of 18 F-LMI1195 at a subcellular level is important for the design of clinical imaging protocols

  2. Differential action for ethanol on baroreceptor reflex control of heart rate and sympathetic efferent discharge in rats

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Z.; Abdel-Rahman, A.R.A.; Wooles, W.R.

    1988-01-01

    The acute effects of ethanol (0.33, 0.66, or 1 g/kg) on baroreflex control of heart rate (HR) and sympathetic efferent discharge (SED) were investigated in rats. The two higher doses of ethanol caused a progressive and significant increase in baseline SED and a slight increase in HR. The findings suggest that the sensitivity of the reflex control of SED was preserved whereas that of HR was impaired after acute ethanol administration. Since these findings were obtained in the same animals, the data suggest that acute ethanol has a differential action on reflex control of SED and HR. Further, the significant increase in SED after moderate and high doses of ethanol suggests an increased central sympathetic tone as recordings were made from preganglionic nerve fibers (splanchnic nerve). The absence of an increase in baseline MAP, in spite of a significant increase in baseline SED following acute ethanol injection, could be explained, at least in part, by an ethanol-evoked reduction in pressor responsiveness to phenylephrine, an ..cap alpha..-adrenergic agonist.

  3. Reflex Sympathetic Dystrophy in Children

    Directory of Open Access Journals (Sweden)

    Adnan Ayvaz

    2013-10-01

    Full Text Available    Reflex sympathetic dystrophy (chronic regional pain syndrome isn’t frequently encountered in practical pediatrics and childhood. Reflex sympathetic dystrophy syndrome (RSD is a disorder characterized by widespread localized pain, often along with swelling, discoloration, trophic changes and autonomic abnormalities such as vasomotor disorders. Its etio-pathogenesis hasn’t been completely determined.The disease can form in an area innerved by a partially damaged nerve and usually follows minor injury or trauma. In this paper, two girl patients with reflex sympathetic dystrophy are discussed along with the laboratory and clinic finding by accompaniment the literature as it is rarely seen in childhood.

  4. Contribution of α-adrenoceptors to depolarization and contraction evoked by continuous asynchronous sympathetic nerve activity in rat tail artery

    Science.gov (United States)

    Brock, J A; McLachlan, E M; Rayner, S E

    1997-01-01

    The effects of continuous but asynchronous nerve activity induced by ciguatoxin (CTX-1) on the membrane potential and contraction of smooth muscle cells have been investigated in rat proximal tail arteries isolated in vitro. These effects have been compared with those produced by the continuous application of phenylephrine (PE).CTX-1 (0.4 nM) and PE (10 μM) produced a maintained depolarization of the arterial smooth muscle that was almost completely blocked by α-adrenoceptor blockade. In both cases, the depolarization was more sensitive to the selective α2-adrenoceptor antagonist, idazoxan (0.1 μM), than to the selective α1-adrenoceptor antagonist, prazosin (0.01 μM).In contrast, the maintained contraction of the tail artery induced by CTX-1 (0.2 nM) and PE (2 and 10 μM) was more sensitive to prazosin (0.01) μM, than to idazoxan (0.01 μM). In combination, these antagonists almost completely inhibited contraction to both agents.Application of the calcium channel antagonist, nifedipine (1 μM), had no effect on the depolarization induced by either CTX-1 or PE but maximally reduced the force of the maintained contraction to both agents by about 50%.We conclude that the constriction of the tail artery induced by CTX-1, which mimics the natural discharge of postganglionic perivascular axons, is due almost entirely to α-adrenoceptor activation. The results indicate that neuronally released noradrenaline activates more than one α-adrenoceptor subtype. The depolarization is dependent primarily on α2-adrenoceptor activation whereas the contraction is dependent primarily on α1-adrenoceptor activation. The links between α-adrenoceptor activation and the voltage-dependent and voltage-independent mechanisms that deliver Ca2+ to the contractile apparatus appear to be complex. PMID:9113373

  5. Nitric Oxide Orchestrates a Power-Law Modulation of Sympathetic Firing Behaviors in Neonatal Rat Spinal Cords

    Directory of Open Access Journals (Sweden)

    Chun-Kuei Su

    2018-03-01

    Full Text Available Nitric oxide (NO is a diffusible gas and has multifarious effects on both pre- and postsynaptic events. As a consequence of complex excitatory and inhibitory integrations, NO effects on neuronal activities are heterogeneous. Using in vitro preparations of neonatal rats that retain the splanchnic sympathetic nerves and the thoracic spinal cord as an experimental model, we report here that either enhancement or attenuation of NO production in the neonatal rat spinal cords could increase, decrease, or not change the spontaneous firing behaviors recorded from splanchnic sympathetic single fibers. To elucidate the mathematical features of NO-mediated heterogeneous responses, the ratios of changes in firing were plotted against their original firing rates. In log-log plots, a linear data distribution demonstrated that NO-mediated heterogeneity in sympathetic firing responses was well described by a power function. Selective antagonists were applied to test if glycinergic, GABAergic, glutamatergic, and cholinergic neurotransmission in the spinal cord are involved in NO-mediated power-law firing modulations (plFM. NO-mediated plFM diminished in the presence of mecamylamine (an open-channel blocker of nicotinic cholinergic receptors, indicating that endogenous nicotinic receptor activities were essential for plFM. Applications of strychnine (a glycine receptor blocker, gabazine (a GABAA receptor blocker, or kynurenate (a broad-spectrum ionotropic glutamate receptor blocker also caused plFM. However, strychnine- or kynurenate-induced plFM was diminished by L-NAME (an NO synthase inhibitor pretreatments, indicating that the involvements of glycine or ionotropic glutamate receptor activities in plFM were secondary to NO signaling. To recapitulate the arithmetic natures of the plFM, the plFM were simulated by firing changes in two components: a step increment and a fractional reduction of their basal firing activities. Ionotropic glutamate receptor

  6. Nitric Oxide Orchestrates a Power-Law Modulation of Sympathetic Firing Behaviors in Neonatal Rat Spinal Cords.

    Science.gov (United States)

    Su, Chun-Kuei; Chen, Yi-Yin; Ho, Chiu-Ming

    2018-01-01

    Nitric oxide (NO) is a diffusible gas and has multifarious effects on both pre- and postsynaptic events. As a consequence of complex excitatory and inhibitory integrations, NO effects on neuronal activities are heterogeneous. Using in vitro preparations of neonatal rats that retain the splanchnic sympathetic nerves and the thoracic spinal cord as an experimental model, we report here that either enhancement or attenuation of NO production in the neonatal rat spinal cords could increase, decrease, or not change the spontaneous firing behaviors recorded from splanchnic sympathetic single fibers. To elucidate the mathematical features of NO-mediated heterogeneous responses, the ratios of changes in firing were plotted against their original firing rates. In log-log plots, a linear data distribution demonstrated that NO-mediated heterogeneity in sympathetic firing responses was well described by a power function. Selective antagonists were applied to test if glycinergic, GABAergic, glutamatergic, and cholinergic neurotransmission in the spinal cord are involved in NO-mediated power-law firing modulations (plFM). NO-mediated plFM diminished in the presence of mecamylamine (an open-channel blocker of nicotinic cholinergic receptors), indicating that endogenous nicotinic receptor activities were essential for plFM. Applications of strychnine (a glycine receptor blocker), gabazine (a GABA A receptor blocker), or kynurenate (a broad-spectrum ionotropic glutamate receptor blocker) also caused plFM. However, strychnine- or kynurenate-induced plFM was diminished by L-NAME (an NO synthase inhibitor) pretreatments, indicating that the involvements of glycine or ionotropic glutamate receptor activities in plFM were secondary to NO signaling. To recapitulate the arithmetic natures of the plFM, the plFM were simulated by firing changes in two components: a step increment and a fractional reduction of their basal firing activities. Ionotropic glutamate receptor activities were found

  7. Evaluation of cardiac sympathetic nerve activity and aldosterone suppression in patients with acute decompensated heart failure on treatment containing intravenous atrial natriuretic peptide

    International Nuclear Information System (INIS)

    Kasama, Shu; Toyama, Takuji; Kurabayashi, Masahiko; Iwasaki, Toshiya; Sumino, Hiroyuki; Kumakura, Hisao; Minami, Kazutomo; Ichikawa, Shuichi; Matsumoto, Naoya; Nakata, Tomoaki

    2014-01-01

    Aldosterone prevents the uptake of norepinephrine in the myocardium. Atrial natriuretic peptide (ANP), a circulating hormone of cardiac origin, inhibits aldosterone synthase gene expression in cultured cardiocytes. We evaluated the effects of intravenous ANP on cardiac sympathetic nerve activity (CSNA) and aldosterone suppression in patients with acute decompensated heart failure (ADHF). We studied 182 patients with moderate nonischemic ADHF requiring hospitalization and treated with standard therapy containing intravenous ANP and 10 age-matched normal control subjects. ANP was continuously infused for >96 h. In all subjects, delayed total defect score (TDS), heart to mediastinum ratio, and washout rate were determined by 123 I-metaiodobenzylguanidine (MIBG) scintigraphy. Left ventricular (LV) end-diastolic volume, end-systolic volume, and ejection fraction were determined by echocardiography. All patients with acute heart failure (AHF) were examined once within 3 days and then 4 weeks after admission, while the control subjects were examined only once (when their hemodynamics were normal). Moreover, for 62 AHF patients, plasma aldosterone concentrations were measured at admission and 1 h before stopping ANP infusion. 123 I-MIBG scintigraphic and echocardiographic parameters in normal subjects were more favorable than those in patients with AHF (all p < 0.001). After treatment, all these parameters improved significantly in AHF patients (all p < 0.001). We also found significant correlation between percent changes of TDS and aldosterone concentrations (r = 0.539, p < 0.001) in 62 AHF patients. The CSNA and LV performance were all improved in AHF patients. Furthermore, norepinephrine uptake of myocardium may be ameliorated by suppressing aldosterone production after standard treatment containing intravenous ANP. (orig.)

  8. Effectiveness of nocturnal home oxygen therapy to improve exercise capacity, cardiac function and cardiac sympathetic nerve activity in patients with chronic heart failure and central sleep apnea

    International Nuclear Information System (INIS)

    Toyama, Takuji; Seki, Ryotaro; Isobe, Naoki; Sakurai, Shigeki; Adachi, Hitoshi; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi; Kasama, Shu

    2009-01-01

    Central sleep apnea, often found in patients with chronic heart failure (CHF), has a high risk of poor prognosis. This study involved 20 patients with CHF (left ventricular ejection fraction (LVEF) 5 times/h who were divided into 2 groups: 10 patients treated with nocturnal home oxygen therapy (HOT) and 10 patients without HOT (non-HOT). All patients had dilated cardiomyopathy and underwent overnight polysomnography, cardiopulmonary exercise testing, and nuclear cardiac examinations to evaluate AHI, exercise capacity according to the specific activity scale and oxygen uptake at anaerobic threshold and peak exercise (peak VO 2 ). Cardiac function according to 99m Tc-methoxyisobutylisonitrile (MIBI) QGS, and the total defect score (TDS), H/M ratio and the washout rate (WR) on 123 I-metaiodobenzylguanidine (MIBG) imaging were calculated for all patients. As compared with the non-HOT group, the HOT group demonstrated a greater reduction in AHI (26.1±9.1 to 5.1±3.4), 123 I-MIBG TDS (31±8 to 25±9), and 123 I-MIBG WR (48±8% to 41±5%) and a greater increase in the specific activity scale (4.0±0.9 to 5.8±1.2 Mets), peak VO 2 (16.0±3.8 to 18.3±4.7 ml·min -1 ·kg -1 ), and LVEF (27±9% to 37±10%). HOT improves exercise capacity, cardiac function, and cardiac sympathetic nerve activity in patients with CHF and central sleep apnea. (author)

  9. Evaluation of cardiac sympathetic nerve activity and aldosterone suppression in patients with acute decompensated heart failure on treatment containing intravenous atrial natriuretic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Iwasaki, Toshiya; Sumino, Hiroyuki; Kumakura, Hisao; Minami, Kazutomo; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Nakata, Tomoaki [Sapporo Medical University School of Medicine, Second (Cardiology) Department of Internal Medicine, Sapporo, Hokkaido (Japan)

    2014-09-15

    Aldosterone prevents the uptake of norepinephrine in the myocardium. Atrial natriuretic peptide (ANP), a circulating hormone of cardiac origin, inhibits aldosterone synthase gene expression in cultured cardiocytes. We evaluated the effects of intravenous ANP on cardiac sympathetic nerve activity (CSNA) and aldosterone suppression in patients with acute decompensated heart failure (ADHF). We studied 182 patients with moderate nonischemic ADHF requiring hospitalization and treated with standard therapy containing intravenous ANP and 10 age-matched normal control subjects. ANP was continuously infused for >96 h. In all subjects, delayed total defect score (TDS), heart to mediastinum ratio, and washout rate were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy. Left ventricular (LV) end-diastolic volume, end-systolic volume, and ejection fraction were determined by echocardiography. All patients with acute heart failure (AHF) were examined once within 3 days and then 4 weeks after admission, while the control subjects were examined only once (when their hemodynamics were normal). Moreover, for 62 AHF patients, plasma aldosterone concentrations were measured at admission and 1 h before stopping ANP infusion. {sup 123}I-MIBG scintigraphic and echocardiographic parameters in normal subjects were more favorable than those in patients with AHF (all p < 0.001). After treatment, all these parameters improved significantly in AHF patients (all p < 0.001). We also found significant correlation between percent changes of TDS and aldosterone concentrations (r = 0.539, p < 0.001) in 62 AHF patients. The CSNA and LV performance were all improved in AHF patients. Furthermore, norepinephrine uptake of myocardium may be ameliorated by suppressing aldosterone production after standard treatment containing intravenous ANP. (orig.)

  10. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Suzuki, Yasuyuki; Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Sato, Yuichi [Health Park Clinic, Department of Imaging, Takasaki, Gunma (Japan)

    2015-04-01

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  11. [ Sudeck's bone atrophy (reflex sympathetic dystrophy)].

    Science.gov (United States)

    Hayashi, Yasufumi

    2008-07-01

    Reflex sympathetic dystrophy is a disease clinically characterized severe pain, allodynia (severe pain caused by a touch) and over-reaction of pain sensation after a minor injury. In 1994, reflex sympathetic dystrophy was given a name of complex regional pain syndrome type 1 by a international congress, because local blockade of the sympathetic nerve has not been found to be invariably effective. Treatment system for reflex sympathetic dystrophy is composed of medicament therapy including oral administration and/or injection of drug, physical therapy such as thermotherapy and gently passive movement, surgical treatment and psychotherapy. Treatment with injection of pamidronate for 23 patients with reflex sympathetic dystrophy revealed to reduced the grade of pain to two third compared to pre-treatment period, and local intravenous block with local anesthetic drug and steroid hormone disappeared the almost symptoms in cases of early phase.

  12. The effect of insulin and glucagon on splanchnic oxygen consumption

    DEFF Research Database (Denmark)

    Simonsen, Lene; Coker, Robert; A L Mulla, Nariman

    2002-01-01

    The purpose of these experiments was to measure the influence of insulin and glucagon on the splanchnic oxygen consumption. Two experiments were performed.......The purpose of these experiments was to measure the influence of insulin and glucagon on the splanchnic oxygen consumption. Two experiments were performed....

  13. Splanchnic factors enhance the norepinephrine response to oral glucose in aged man.

    Science.gov (United States)

    Tonino, R P; Minaker, K L; Young, J B; Landsberg, L; Rowe, J W

    1986-01-01

    Oral glucose has been shown to increase sympathetic nervous system (SNS) activity more in old than in young subjects. In contrast intravenous glucose during euglycemic hyperinsulinemia increases SNS activity in young but not in old subjects. To evaluate the role of splanchnic factors in this discrepancy, we employed a modification of the glucose clamp technique in 6 young (24-39 years) and 8 old (65-83 years) normal males. Each subject underwent two studies in which insulin was infused at 120 mU/m2 X min for 3 h and either oral glucose (50 gms) or water was given 60 min after initiating insulin. Euglycemia was maintained in all studies. When compared to control drink, oral glucose elevated norepinephrine in old (p less than 0.01), but not in young subjects. The difference between old and young was significant (p less than 0.02). When compared to control drink, oral glucose increased pulse rate and double product in the young, and pulse rate in the old. These results indicate that oral glucose activates the SNS in the elderly via splanchnic mechanisms independent of changes in circulating levels of glucose or insulin.

  14. Sympathetic Response to Insulin is Mediated by Melanocortin 3/4 Receptors in the Hypothalamic Paraventricular Nucleus

    OpenAIRE

    Ward, Kathryn R.; Bardgett, James F.; Wolfgang, Lawrence; Stocker, Sean D.

    2011-01-01

    Hyperinsulinemia increases sympathetic nerve activity and contributes to cardiovascular dysfunction in obesity and diabetes. Neurons of the hypothalamic paraventricular nucleus regulate sympathetic nerve activity through mono- and poly-synaptic connections to preganglionic neurons in the spinal cord. The purpose of the present study was to determine whether hypothalamic paraventricular nucleus neurons mediate the sympathetic response to insulin. Hyperinsulinemic-euglycemic clamps were perform...

  15. Sympathetic block by metal clips may be a reversible operation

    DEFF Research Database (Denmark)

    Thomsen, Lars L; Mikkelsen, Rasmus T; Derejko, Miroslawa

    2014-01-01

    the sympathetic chain vary tremendously. Most surgeons transect or resect the sympathetic chain, but application of a metal clip that blocks transmission of nerve impulses in the sympathetic chain is used increasingly worldwide. This approach offers potential reversibility if patients regret surgery......, but the question of reversibility remains controversial. Two recent experimental studies found severe histological signs of nerve damage 4-6 weeks after clip removal, but they only used conventional histopathological staining methods. METHODS: Thoracoscopic clipping of the sympathetic trunk was performed in adult...... sheep, and the clip was removed thoracoscopically after 7 days. Following another 4 weeks (n = 6) or 12 weeks (n = 3), the sympathetic trunks were harvested and analysed by conventional and specific nerve tissue immunohistochemical stains (S100, neurofilament protein and synaptophysin...

  16. Sympathetic Prions

    Directory of Open Access Journals (Sweden)

    Markus Glatzel

    2001-01-01

    Full Text Available Transmissible spongiform encephalopathies are a group of invariably fatal neurodegenerative diseases. The infectious agent is termed prion and is thought to be composed of a modified protein (PrPSc or PrPRES, a protease-resistant conformer of the normal host-encoded membrane glycoprotein, PrPC[1]. Bovine spongiform encephalopathy, scrapie of sheep, and Creutzfeldt-Jakob disease are among the most notable transmissible spongiform encephalopathies. Prions are most efficiently propagated trough intracerebral inoculation, yet the entry point of the infectious agent is often through peripheral sites like the gastrointestinal tract[2,3]. The process by which prions invade the brain is termed neuroinvasion[4]. We and others have speculated that, depending on the amount of infectious agent injected, the injection site, and the strain of prions employed, neuroinvasion can occur either directly via peripheral nerves or first through the lymphoreticular system and then via peripheral nerves[5].

  17. Imbalance between sympathetic and sensory innervation in peritoneal endometriosis.

    Science.gov (United States)

    Arnold, Julia; Barcena de Arellano, Maria L; Rüster, Carola; Vercellino, Giuseppe F; Chiantera, Vito; Schneider, Achim; Mechsner, Sylvia

    2012-01-01

    To investigate possible mechanisms of pain pathophysiology in patients with peritoneal endometriosis, a clinical study on sensory and sympathetic nerve fibre sprouting in endometriosis was performed. Peritoneal lesions (n=40) and healthy peritoneum (n=12) were immunostained and analysed with anti-protein gene product 9.5 (PGP 9.5), anti-substance P (SP) and anti-tyrosine hydroxylase (TH), specific markers for intact nerve fibres, sensory nerve fibres and sympathetic nerve fibres, respectively, to identify the ratio of sympathetic and sensory nerve fibres. In addition, immune cell infiltrates in peritoneal endometriotic lesions were analysed and the nerve growth factor (NGF) and interleukin (IL)-1β expression was correlate with the nerve fibre density. Peritoneal fluids from patients with endometriosis (n=40) and without endometriosis (n=20) were used for the in vitro neuronal growth assay. Cultured chicken dorsal root ganglia (DRG) and sympathetic ganglia were stained with anti-growth associated protein 43 (anti-GAP 43), anti-SP and anti-TH. We could detect an increased sensory and decreased sympathetic nerve fibres density in peritoneal lesions compared to healthy peritoneum. Peritoneal fluids of patients with endometriosis compared to patients without endometriosis induced an increased sprouting of sensory neurites from DRG and decreased neurite outgrowth from sympathetic ganglia. In conclusion, this study demonstrates an imbalance between sympathetic and sensory nerve fibres in peritoneal endometriosis, as well as an altered modulation of peritoneal fluids from patients with endometriosis on sympathetic and sensory innervation which might directly be involved in the maintenance of inflammation and pain. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Electric sympathetic block: a review of electrotherapy physics.

    Science.gov (United States)

    Schwartz, R G

    1991-01-01

    Electric sympathetic block is the procedure whereby blockage of the sympathetic nerve fiber is achieved by applying controlled electrical pulses via electrodes placed on the skin. An electric block of the sympathetic fiber can occur with a direct monophasic current to achieve an anodal block, a middle-frequency or Endosan current to effect sustained depolarization, or an interferential current to achieve a fatiguing effect. The physics and theoretical framework underlying the currents used in this procedure will be reviewed.

  19. Modulation of the sympathetic nerve action on carbohydrate and ketone body metabolism by fatty acids, glucagon und insulin in perfused rat liver

    NARCIS (Netherlands)

    Küster, J.; Beuers, U.; JUNGERMANN, K.

    1989-01-01

    Rat liver was perfused in situ via the portal vein without recirculation: 1) Nerve stimulation (20 Hz, 2 ms, 20 V) increased glucose output and shifted lactate uptake to output; the alterations were diminished by oleate but not octanoate. 2) Glucagon (1nM) stimulated glucose output maximally also in

  20. Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure.

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Weiss, Robert M; Felder, Robert B

    2016-10-01

    We previously reported that endoplasmic reticulum (ER) stress is induced in the subfornical organ (SFO) and the hypothalamic paraventricular nucleus (PVN) of heart failure (HF) rats and is reduced by inhibition of mitogen-activated protein kinase (MAPK) signaling. The present study further examined the relationship between brain MAPK signaling, ER stress, and sympathetic excitation in HF. Sham-operated (Sham) and HF rats received a 4-wk intracerebroventricular (ICV) infusion of vehicle (Veh) or the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 10 μg/day). Lower mRNA levels of the ER stress biomarkers GRP78, ATF6, ATF4, and XBP-1s in the SFO and PVN of TUDCA-treated HF rats validated the efficacy of the TUDCA dose. The elevated levels of phosphorylated p44/42 and p38 MAPK in SFO and PVN of Veh-treated HF rats, compared with Sham rats, were significantly reduced in TUDCA-treated HF rats as shown by Western blot and immunofluorescent staining. Plasma norepinephrine levels were higher in Veh-treated HF rats, compared with Veh-treated Sham rats, and were significantly lower in the TUDCA-treated HF rats. TUDCA-treated HF rats also had lower mRNA levels for angiotensin converting enzyme, angiotensin II type 1 receptor, tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and NF-κB p65, and a higher mRNA level of IκB-α, in the SFO and PVN than Veh-treated HF rats. These data suggest that ER stress contributes to the augmented sympathetic activity in HF by inducing MAPK signaling, thereby promoting inflammation and renin-angiotensin system activity in key cardiovascular regulatory regions of the brain.

  1. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction

    NARCIS (Netherlands)

    Wernli, G.; Hasan, W.; Bhattacherjee, A.; Rooijen, van N.; Smith, P.K.

    2009-01-01

    Myocardial infarction induces sympathetic axon sprouting adjacent to the necrotic region, and this has been implicated in the etiology of arrhythmias resulting in sudden cardiac death. Previous studies show that nerve growth factor (NGF) is essential for enhanced post-infarct sympathetic sprouting,

  2. Sympathetic Responses to Central Hypovolemia: New Insights from Microneurographic Recordings

    Science.gov (United States)

    2012-04-26

    reviewed and approved by the US Army Medical Research and Materiel Command Institutional Review Board and in accor- dance with the approved protocols...C. (2007b). Sympathetic nerve activity and heart rate vari- ability during severe hemorrhagic shock in sheep.Auton. Neurosci . 136, 43–51. Billman, G...A. (2002). Syncopal attack alters the burst properties of muscle sympathetic nerve activity in humans. Auton. Neurosci . 95, 141–145. Iwase, S

  3. Splanchnic venous thrombosis driven by a constitutively activated ...

    African Journals Online (AJOL)

    Introduction: Splanchnic venous thrombosis (SVT) has varied etiology with Philadelphia-negative myeloproliferative neoplasms (MPNs) being the most frequent underlying prothrombotic factor. Hematological indices often remain within normal range because of portal hypertension and its sequelae, causing diagnostic ...

  4. Splanchnic venous thrombosis driven by a constitutively activated ...

    African Journals Online (AJOL)

    Abstract. Introduction: Splanchnic venous thrombosis (SVT) has varied etiology with Philadelphia- negative myeloproliferative neoplasms (MPNs) being the most frequent underlying prothrombotic factor. Hematological indices often remain within normal range because of portal hypertension and its sequelae, causing ...

  5. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    2001-01-01

    -blockade group vs. the control group, hormones, metabolites, VO(2), and RER followed the same pattern of changes in ACE-blockade and control groups during exercise. Splanchnic blood flow (at rest: 1.67 +/- 0.12, ACE blockade; 1.59 +/- 0.18 l/min, control) decreased during moderate exercise (0.78 +/- 0.07, ACE......, no differences in the pattern of change of splanchnic blood flow and splanchnic glucose production were observed during ACE blockade compared with controls. This study demonstrates that the normal increase in ANG II levels observed during prolonged exercise in humans does not play a major role in the regulation......The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin...

  6. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proof-of-concept study.

    Science.gov (United States)

    Gronda, Edoardo; Seravalle, Gino; Brambilla, Gianmaria; Costantino, Giuseppe; Casini, Andrea; Alsheraei, Ali; Lovett, Eric G; Mancia, Giuseppe; Grassi, Guido

    2014-09-01

    Heart failure (HF) pathophysiology is believed to be mediated by autonomic dysfunction, including chronic sympathoexcitation and diminished baroreflex sensitivity, which correlate with mortality risk. Baroreflex activation therapy (BAT) is a device-based treatment providing chronic baroreflex activation through electrical stimulation of the carotid sinus. BAT chronically reduces sympathetic activity in resistant hypertension. The purpose of this investigation is to determine BAT effects in clinical HF. In a single-centre, open-label evaluation, patients with NYHA class III HF, EF baroreflex sensitivity, EF, NYHA class, quality of life and 6 min hall walk (6 MHW) distance (P ≤ 0.05 each). On an observational basis, hospitalization and emergency department visits for worsening HF were markedly reduced. One complication, perioperative anaemia requiring transfusion, occurred during the study. BAT was safe and provided chronic improvement in MSNA and clinical variables. Based on present understanding of HF pathophysiology, these results suggest that BAT may improve outcome in HF by modulating autonomic balance. Prospective, randomized trials to test the hypothesis are warranted. © 2014 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

  7. Reflex sympathetic dystrophy.

    Science.gov (United States)

    Miller, Ruth L S

    2003-01-01

    Reflex sympathetic dystrophy, also known as complex regional pain syndrome type I, is a multisymptom syndrome usually affecting one or more extremities. It is inadequately understood and, therefore, often frustrating to treat. This article presents a case study of a 23-year career nurse who developed reflex sympathetic dystrophy of the left knee. It also reviews the rationale for reflex sympathetic dystrophy, treatment, and life-care planning for a patient with reflex sympathetic dystrophy.

  8. Imaging Diagnosis of Splanchnic Venous Thrombosis

    Directory of Open Access Journals (Sweden)

    S. Rajesh

    2015-01-01

    Full Text Available Splanchnic vein thrombosis (SVT is a broad term that includes Budd-Chiari syndrome and occlusion of veins that constitute the portal venous system. Due to the common risk factors involved in the pathogenesis of these clinically distinct disorders, concurrent involvement of two different regions is quite common. In acute and subacute SVT, the symptoms may overlap with a variety of other abdominal emergencies while in chronic SVT, the extent of portal hypertension and its attendant complications determine the clinical course. As a result, clinical diagnosis is often difficult and is frequently reliant on imaging. Tremendous improvements in vascular imaging in recent years have ensured that this once rare entity is being increasingly detected. Treatment of acute SVT requires immediate anticoagulation. Transcatheter thrombolysis or transjugular intrahepatic portosystemic shunt is used in the event of clinical deterioration. In cases with peritonitis, immediate laparotomy and bowel resection may be required for irreversible bowel ischemia. In chronic SVT, the underlying cause should be identified and treated. The imaging manifestations of the clinical syndromes resulting from SVT are comprehensively discussed here along with a brief review of the relevant clinical features and therapeutic approach.

  9. Sympathetic skin responses in reflex sympathetic dystrophy.

    Science.gov (United States)

    Bolel, K; Hizmetli, S; Akyüz, A

    2006-07-01

    This study was performed to determine the utility of sympathetic skin response (SSR) in evaluating the sympathetic function and to follow up the effects of sympathetic blockade in reflex sympathetic dystrophy (RSD). Thirty patients having RSD with upper extremity involvement were randomly divided into two groups. Besides medical therapy and exercise, physical therapy agents were applied to both the groups. In addition to this treatment protocol, stellar ganglion blockade was done by diadynamic current in Group II. The normal sides of the patients were used for the control group. SSRs were measured in all the patients before and after the therapy. The amplitude was found to be increased and the latency was found to be decreased in the affected side in both the groups before the therapy. After the therapy, the amplitude was decreased and latency was increased in both the groups. But, the differences in amplitude (P = 0.001) and latency (P = 0.002) before and after the therapy were significantly higher in Group II. (Before the treatment, SSRs were significantly different between the normal and the affected sides in both the groups. The observed change in SSRs after the treatment was higher in Group II.) It was concluded that, SSR can be a useful and noninvasive method in diagnosing the sympathetic dysfunction in RSD and can be used for evaluating the response to sympathetic blockade and other treatment modalities.

  10. Mesenteric, coeliac and splanchnic blood flow in humans during exercise

    DEFF Research Database (Denmark)

    Perko, M J; Nielsen, H B; Skak, C

    1998-01-01

    1. Exercise reduces splanchnic blood flow, but the mesenteric contribution to this response is uncertain. 2. In nineteen humans, superior mesenteric and coeliac artery flows were determined by duplex ultrasonography during fasting and postprandial submaximal cycling and compared with the splanchnic...... blood flow as assessed by the Indocyanine Green dye-elimination technique. 3. Cycling increased arterial pressure, heart rate and cardiac output, while it reduced total vascular resistance. These responses were not altered in the postprandial state. During fasting, cycling increased mesenteric, coeliac...... the coeliac circulation was not influenced. Postprandial cycling did not influence the mesenteric resistance significantly, but its blood flow decreased by 22 % (0.46 +/- 0.28 l min-1). Coeliac and splanchnic resistance increased by 150 and 63 %, respectively, and the corresponding regional blood flow...

  11. Outcome of splanchnic blood flow determination in patients with suspected chronic intestinal ischaemia. A retrospective survey

    DEFF Research Database (Denmark)

    Møller, Søren; Madsen, Jan Lysgård

    2002-01-01

    flow: A, normal response (splanchnic blood flow > or = 200 ml/min); B, possible abnormal response (splanchnic blood flow 51-199 ml/min); and C, definitive abnormal response (splanchnic blood flow ... a normal meal-induced response, 23 patients had a possible abnormal response and 10 patients had a definitive abnormal response, which gave evidence of chronic intestinal ischaemia. In the total patient population, the increase in splanchnic blood flow was significantly correlated to an increase in hepatic...... oxygen uptake (r = 0.38, P abnormal meal-induced splanchnic blood flow and 30% of these patients...

  12. Sympathetic baroreflex gain in normotensive pregnant women.

    Science.gov (United States)

    Usselman, Charlotte W; Skow, Rachel J; Matenchuk, Brittany A; Chari, Radha S; Julian, Colleen G; Stickland, Michael K; Davenport, Margie H; Steinback, Craig D

    2015-09-01

    Muscle sympathetic nerve activity is increased during normotensive pregnancy while mean arterial pressure is maintained or reduced, suggesting baroreflex resetting. We hypothesized spontaneous sympathetic baroreflex gain would be reduced in normotensive pregnant women relative to nonpregnant matched controls. Integrated muscle sympathetic burst incidence and total sympathetic activity (microneurography), blood pressure (Finometer), and R-R interval (ECG) were assessed at rest in 11 pregnant women (33 ± 1 wk gestation, 31 ± 1 yr, prepregnancy BMI: 23.5 ± 0.9 kg/m(2)) and 11 nonpregnant controls (29 ± 1 yr; BMI: 25.2 ± 1.7 kg/m(2)). Pregnant women had elevated baseline sympathetic burst incidence (43 ± 2 vs. 33 ± 2 bursts/100 heart beats, P = 0.01) and total sympathetic activity (1,811 ± 148 vs. 1,140 ± 55 au, P baroreflex set point with pregnancy. Baroreflex gain, calculated as the linear relationship between sympathetic burst incidence and DBP, was reduced in pregnant women relative to controls (-3.7 ± 0.5 vs. -5.4 ± 0.5 bursts·100 heart beats(-1)·mmHg(-1), P = 0.03), as was baroreflex gain calculated with total sympathetic activity (-294 ± 24 vs. -210 ± 24 au·100 heart beats(-1)·mmHg(-1); P = 0.03). Cardiovagal baroreflex gain (sequence method) was not different between nonpregnant controls and pregnant women (49 ± 8 vs. 36 ± 8 ms/mmHg; P = 0.2). However, sympathetic (burst incidence) and cardiovagal gains were negatively correlated in pregnant women (R = -0.7; P = 0.02). Together, these data indicate that the influence of the sympathetic nervous system over arterial blood pressure is reduced in normotensive pregnancy, in terms of both long-term and beat-to-beat regulation of arterial pressure, likely through a baroreceptor-dependent mechanism. Copyright © 2015 the American Physiological Society.

  13. Dyspepsia as initial symptom of splanchnic vascular insufficiency

    NARCIS (Netherlands)

    deWidtLevert, LM; Nelis, GF; Jorning, PJG

    A patient is reported with an unusual presentation of splanchnic ischaemia, causing gastritis. Although mesenteric ischaemia is well described in the literature, there is little information on gastric ischaemia resulting in gastritis. There was a considerable delay in diagnosis and treatment, adding

  14. Increased Hepato-Splanchnic Vasoconstriction in Diabetics during Regular Hemodialysis.

    Directory of Open Access Journals (Sweden)

    Werner Ribitsch

    Full Text Available Ultrafiltration (UF of excess fluid activates numerous compensatory mechanisms during hemodialysis (HD. The increase of both total peripheral and splanchnic vascular resistance is considered essential in maintaining hemodynamic stability. The aim of this study was to evaluate the extent of UF-induced changes in hepato-splanchnic blood flow and resistance in a group of maintenance HD patients during regular dialysis.Hepato-splanchnic flow resistance index (RI and hepato-splanchnic perfusion index (QI were measured in 12 chronic HD patients using a modified, non-invasive Indocyaningreen (ICG dilution method. During a midweek dialysis session we determined RI, QI, ICG disappearance rate (kICG, plasma volume (Vp, hematocrit (Hct, mean arterial blood pressure (MAP and heart rate (HR at four times in hourly intervals (t1 to t4. Dialysis settings were standardized and all patient studies were done in duplicate.In the whole study group mean UF volume was 1.86 ± 0.46 L, Vp dropped from 3.65 ± 0.77L at t1 to 3.40 ± 0.78L at t4, and all patients remained hemodynamically stable. In all patients RI significantly increased from 12.40 ± 4.21 mmHg∙s∙m2/mL at t1 to 14.94 ± 6.36 mmHg∙s∙m2/mL at t4 while QI significantly decreased from 0.61 ± 0.22 at t1 to 0.52 ± 0.20 L/min/m2 at t4, indicating active vasoconstriction. In diabetic subjects, however, RI was significantly larger than in non-diabetics at all time points. QI was lower in diabetic subjects.In chronic HD-patients hepato-splanchnic blood flow substantially decreases during moderate UF as a result of an active splanchnic vasoconstriction. Our data indicate that diabetic HD-patients are particularly prone to splanchnic ischemia and might therefore have an increased risk for bacterial translocation, endotoxemia and systemic inflammation.

  15. Sympathetic vasoconstrictor nerve function in alcoholic neuropathy

    DEFF Research Database (Denmark)

    Jensen, K; Andersen, K; Smith, T

    1984-01-01

    % decrease in tissue blood flow, when the ankle is lowered 40 cm below heart level in the supine individual. The patients with moderate to severe polyneuropathy, taken as a group, did not differ significantly from the group of patients with no or only mild polyneuropathy, although a lesser response was seen...

  16. The Sympathetic Release Test: A Test Used to Assess Thermoregulation and Autonomic Control of Blood Flow

    Science.gov (United States)

    Tansey, E. A.; Roe, S. M.; Johnson, C. J.

    2014-01-01

    When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the…

  17. Sympathetic skin response in acute sensory ataxic neuropathy.

    Science.gov (United States)

    Arunodaya, G R; Taly, A B; Swamy, H S

    1995-05-01

    Sympathetic skin response (SSR) is a recently described objective method of studying sudomotor sympathetic nerve function and has been studied in a variety of peripheral neuropathies. We report SSR changes in nine patients with acute sensory ataxic neuropathy (ASAN). All had severe sensory and mild motor nerve conduction abnormalities; five had dysautonomia. SSR, elicited by electric shock and cough stimuli, was absent in three patients. Latency was normal in all when SSR was present. Two patients had SSR amplitude of 0.2 mV or less. Absence of SSR did not correlate with dysautonomia, absence of sensory nerve action potential or motor nerve conduction abnormalities. Follow up SSR studies revealed return of absent SSR in one patient over a period of 3 months, despite persistence of ataxia. To our knowledge, this is the first report of SSR changes in ASAN.

  18. Splanchnic-aortic inflammatory axis in experimental portal hypertension

    Science.gov (United States)

    Aller, Maria-Angeles; de las Heras, Natalia; Nava, Maria-Paz; Regadera, Javier; Arias, Jaime; Lahera, Vicente

    2013-01-01

    Splanchnic and systemic low-grade inflammation has been proposed to be a consequence of long-term prehepatic portal hypertension. This experimental model causes minimal alternations in the liver, thus making a more selective study possible for the pathological changes characteristic of prehepatic portal hypertension. Low-grade splanchnic inflammation after long-term triple partial portal vein ligation could be associated with liver steatosis and portal hypertensive intestinal vasculopathy. In fact, we have previously shown that prehepatic portal hypertension in the rat induces liver steatosis and changes in lipid and carbohydrate metabolism similar to those produced in chronic inflammatory conditions described in metabolic syndrome in humans. Dysbiosis and bacterial translocation in this experimental model suggest the existence of a portal hypertensive intestinal microbiome implicated in both the splanchnic and systemic alterations related to prehepatic portal hypertension. Among the systemic impairments, aortopathy characterized by oxidative stress, increased levels of proinflammatory cytokines and profibrogenic mediators stand out. In this experimental model of long-term triple portal vein ligated-rats, the abdominal aortic proinflammatory response could be attributed to oxidative stress. Thus, the increased aortic reduced-nicotinamide-adenine dinucleotide phosphate [NAD(P)H] oxidase activity could be associated with reactive oxygen species production and promote aortic inflammation. Also, oxidative stress mediated by NAD(P)H oxidase has been associated with risk factors for inflammation and atherosclerosis. The splanchnic and systemic pathology that is produced in the long term after triple partial portal vein ligation in the rat reinforces the validity of this experimental model to study the chronic low-grade inflammatory response induced by prehepatic portal hypertension. PMID:24307792

  19. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    Science.gov (United States)

    2016-01-01

    sympathetic nerves via the white rami communicants to the spinal cord. The spe- cific role of these “sympathetic afferents” in the regulation of respiratory...subtypes and afferent properties Sympathetic sensory activity has been recorded in stellate ganglia (160) and white rami of T2 to T4 (198). This activity...Coleridge JC, Kidd C. Proceedings: Multi- terminal afferent fibres from the thoracic viscera in sympathetic rami communicantes of cats and dogs. J

  20. Three Weeks of Overload Training Increases Resting Muscle Sympathetic Activity.

    Science.gov (United States)

    Coates, Alexandra M; Incognito, Anthony V; Seed, Jeremy D; Doherty, Connor J; Millar, Philip J; Burr, Jamie F

    2018-05-01

    Overload training is hypothesized to alter autonomic regulation, although interpretations using indirect measures of heart rate variability are conflicting. The aim of the present study was to examine the effects of overload training on muscle sympathetic nerve activity (MSNA), a direct measure of central sympathetic outflow, in recreational endurance athletes. Measurements of heart rate variability, cardiac baroreflex sensitivity (BRS), MSNA (microneurography), and sympathetic BRS were obtained in 17 healthy triathletes and cyclists after 1 wk of reduced training (baseline) and again after 3 wk of either regular (n = 7) or overload (n = 10) training. After training, the changes (Δ) in peak power output (10 ± 10 vs -12 ± 9 W, P 0.05). Overload training increased MSNA and attenuated increases in cardiac BRS and heart rate variability observed with regular training. These results support neural adaptations after overload training and suggest that increased central sympathetic outflow may be linked with decreased exercise performance.

  1. Intracranial Pressure Is a Determinant of Sympathetic Activity.

    Science.gov (United States)

    Schmidt, Eric A; Despas, Fabien; Pavy-Le Traon, Anne; Czosnyka, Zofia; Pickard, John D; Rahmouni, Kamal; Pathak, Atul; Senard, Jean M

    2018-01-01

    Intracranial pressure (ICP) is the pressure within the cranium . ICP rise compresses brain vessels and reduces cerebral blood delivery. Massive ICP rise leads to cerebral ischemia, but it is also known to produce hypertension, bradycardia and respiratory irregularities due to a sympatho-adrenal mechanism termed Cushing response. One still unresolved question is whether the Cushing response is a non-synaptic acute brainstem ischemic mechanism or part of a larger physiological reflex for arterial blood pressure control and homeostasis regulation. We hypothesize that changes in ICP modulates sympathetic activity. Thus, modest ICP increase and decrease were achieved in mice and patients with respectively intra-ventricular and lumbar fluid infusion. Sympathetic activity was gauged directly by microneurography, recording renal sympathetic nerve activity in mice and muscle sympathetic nerve activity in patients, and gauged indirectly in both species by heart-rate variability analysis. In mice ( n = 15), renal sympathetic activity increased from 29.9 ± 4.0 bursts.s -1 (baseline ICP 6.6 ± 0.7 mmHg) to 45.7 ± 6.4 bursts.s -1 (plateau ICP 38.6 ± 1.0 mmHg) and decreased to 34.8 ± 5.6 bursts.s -1 (post-infusion ICP 9.1 ± 0.8 mmHg). In patients ( n = 10), muscle sympathetic activity increased from 51.2 ± 2.5 bursts.min -1 (baseline ICP 8.3 ± 1.0 mmHg) to 66.7 ± 2.9 bursts.min -1 (plateau ICP 25 ± 0.3 mmHg) and decreased to 58.8 ± 2.6 bursts.min -1 (post-infusion ICP 14.8 ± 0.9 mmHg). In patients 7 mmHg ICP rise significantly increases sympathetic activity by 17%. Heart-rate variability analysis demonstrated a significant vagal withdrawal during the ICP rise, in accordance with the microneurography findings. Mice and human results are alike. We demonstrate in animal and human that ICP is a reversible determinant of efferent sympathetic outflow, even at relatively low ICP levels. ICP is a biophysical stress related to the forces within the brain. But ICP has also to be

  2. Bursting into space: alterations of sympathetic control by space travel

    Science.gov (United States)

    Eckberg, D. L.

    2003-01-01

    AIM: Astronauts return to Earth with reduced red cell masses and hypovolaemia. Not surprisingly, when they stand, their heart rates may speed inordinately, their blood pressures may fall, and some may experience frank syncope. We studied autonomic function in six male astronauts (average +/- SEM age: 40 +/- 2 years) before, during, and after the 16-day Neurolab space shuttle mission. METHOD: We recorded electrocardiograms, finger photoplethysmographic arterial pressures, respiration, peroneal nerve muscle sympathetic activity, plasma noradrenaline and noradrenaline kinetics, and cardiac output, and we calculated stroke volume and total peripheral resistance. We perturbed autonomic function before and during spaceflight with graded Valsalva manoeuvres and lower body suction, and before and after the mission with passive upright tilt. RESULTS: In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33%) in three subjects, in whom noradrenaline spillover and clearance also were increased. Valsalva straining provoked greater reductions of arterial pressure, and proportionally greater sympathetic responses in space than on Earth. Lower body suction elicited greater increases of sympathetic nerve activity, plasma noradrenaline, and noradrenaline spillover in space than on Earth. After the Neurolab mission, left ventricular stroke volume was lower and heart rate was higher during tilt, than before spaceflight. No astronaut experienced orthostatic hypotension or pre-syncope during 10 min of post-flight tilting. CONCLUSION: We conclude that baseline sympathetic outflow, however measured, is higher in space than on earth, and that augmented sympathetic nerve responses to Valsalva straining, lower body suction, and post-flight upright tilt represent normal adjustments to greater haemodynamic stresses associated with hypovolaemia.

  3. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, M.S.; Tuli, M.M.; Radtke, N.L.; Heger, J.J.; Miles, W.M.; Mock, B.H.; Burt, R.W.; Wellman, H.N.; Zipes, D.P. (Indiana Univ. School of Medicine, IN (USA))

    1989-11-15

    Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a finding is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study.

  4. Arrhythmogenic effect of sympathetic histamine in mouse hearts subjected to acute ischemia.

    Science.gov (United States)

    He, Gonghao; Hu, Jing; Li, Teng; Ma, Xue; Meng, Jingru; Jia, Min; Lu, Jun; Ohtsu, Hiroshi; Chen, Zhong; Luo, Xiaoxing

    2012-02-10

    The role of histamine as a newly recognized sympathetic neurotransmitter has been presented previously, and its postsynaptic effects greatly depended on the activities of sympathetic nerves. Cardiac sympathetic nerves become overactivated under acute myocardial ischemic conditions and release neurotransmitters in large amounts, inducing ventricular arrhythmia. Therefore, it is proposed that cardiac sympathetic histamine, in addition to norepinephrine, may have a significant arrhythmogenic effect. To test this hypothesis, we observed the release of cardiac sympathetic histamine and associated ventricular arrhythmogenesis that was induced by acute ischemia in isolated mouse hearts. Mast cell-deficient mice (MCDM) and histidine decarboxylase knockout (HDC(-/-)) mice were used to exclude the potential involvement of mast cells. Electrical field stimulation and acute ischemia-reperfusion evoked chemical sympathectomy-sensitive histamine release from the hearts of both MCDM and wild-type (WT) mice but not from HDC(-/-) mice. The release of histamine from the hearts of MCDM and WT mice was associated with the development of acute ischemia-induced ventricular tachycardia and ventricular fibrillation. The incidence and duration of induced ventricular arrhythmias were found to decrease in the presence of the selective histamine H(2) receptor antagonist famotidine. Additionally, the released histamine facilitated the arrhythmogenic effect of simultaneously released norepinephrine. We conclude that, under acute ischemic conditions, cardiac sympathetic histamine released by overactive sympathetic nerve terminals plays a certain arrhythmogenic role via H(2) receptors. These findings provided novel insight into the pathophysiological roles of sympathetic histamine, which may be a new therapeutic target for acute ischemia-induced arrhythmias.

  5. Glucose-induced thermogenesis in splanchnic and leg tissues in man

    DEFF Research Database (Denmark)

    Simonsen, L; Ryge, C; Bülow, J

    1995-01-01

    and lactate were taken from an artery, a hepatic vein and a femoral vein. Blood flow in the splanchnic region was measured by constant infusion of Indocyanine Green. Leg blood flow was measured by venous occlusion strain-gauge plethysmography. Oxygen uptake and carbon dioxide output in the splanchnic and leg...

  6. A search for activation of C-nociceptors by sympathetic fibers in complex regional pain syndrome

    Science.gov (United States)

    Campero, Mario; Bostock, Hugh; Baumann, Thomas K.; Ochoa, José L.

    2010-01-01

    Objective Although the term ‘reflex sympathetic dystrophy’ has been replaced by ‘complex regional pain syndrome’ (CRPS) type I, there remains a widespread presumption that the sympathetic nervous system is actively involved in mediating chronic neuropathic pain [“sympathetically maintained pain” (SMP)], even in the absence of detectable neuropathophysiology. Methods We have used microneurography to evaluate possible electrophysiological interactions in 24 patients diagnosed with CRPS I (n=13), or CRPS II (n=11) by simultaneously recording from single identified sympathetic efferent fibers and C nociceptors, while provoking sympathetic neural discharges in cutaneous nerves. Results We assessed potential effects of sympathetic activity upon 35 polymodal nociceptors and 19 mechano-insensitive nociceptors, recorded in CRPS I (26 nociceptors) and CRPS II patients (28 nociceptors). No evidence of activation of nociceptors related to sympathetic discharge was found, although nociceptors in 6 CRPS II patients exhibited unrelated spontaneous pathological nerve impulse activity. Conclusion We conclude that activation of nociceptors by sympathetic efferent discharges is not a cardinal pathogenic event in either CRPS I or CRPS II patients. Significance This study shows that sympathetic-nociceptor interactions, if they exist in patients communicating chronic neuropathic pain, must be the exception. PMID:20359942

  7. Direct evidences for sympathetic hyperactivity and baroreflex impairment in Tako Tsubo cardiopathy.

    Directory of Open Access Journals (Sweden)

    Angelica Vaccaro

    Full Text Available BACKGROUND: The exact pathophysiology of Tako-Tsubo cardiomyopathy (TTC remains unknown but a role for sympathetic hyperactivity has been suggested. Up to now, no direct evidence of sympathetic nerve hyperactivity has been established nor involvement of sympathetic baroreflex identified. The aim of our study was to determine, by direct sympathetic nerve activity (SNS recording if sympathetic nervous system activity is increased and spontaneous baroreflex control of sympathetic activity reduced in patients with TTC. METHODS: We included 13 patients who presented with TTC and compared their SNS activity and spontaneous baroreflex control of sympathetic activity with that of 13 control patients with acutely decompensated chronic heart failure. SNS activity was evaluated by microneurography, a technique assessing muscle sympathetic nerve activity (MSNA. Spontaneous baroreflex control of sympathetic activity was evaluated as the absolute value of the slope of the regression line representing the relationship between spontaneous diastolic blood pressure values and concomitant SNS activity. Control patients were matched for age, sex, left ventricular ejection fraction and creatinine clearance. RESULTS: The mean age of the patients with TTC was 80 years, all patients were women. There were no significant differences between the two groups of patients for blood pressure, heart rate or oxygen saturation level. TTC patients presented a significant increase in sympathetic nerve activity (MSNA median 63.3 bursts/min [interquartile range 61.3 to 66.0] vs median 55.7 bursts/min [interquartile range 51.0 to 61.7]; p = 0.0089 and a decrease in spontaneous baroreflex control of sympathetic activity compared to matched control patients (spontaneous baroreflex control of sympathetic activity median 0.7%burst/mmHg [interquartile range 0.4 to 1.9] vs median 2.4%burst/mmHg [interquartile range 1.8 to 2.9]; p = 0.005. CONCLUSIONS: We report for the first time, through

  8. Direct evidences for sympathetic hyperactivity and baroreflex impairment in Tako Tsubo cardiopathy.

    Science.gov (United States)

    Vaccaro, Angelica; Despas, Fabien; Delmas, Clement; Lairez, Olivier; Lambert, Elisabeth; Lambert, Gavin; Labrunee, Marc; Guiraud, Thibaut; Esler, Murray; Galinier, Michel; Senard, Jean Michel; Pathak, Atul

    2014-01-01

    The exact pathophysiology of Tako-Tsubo cardiomyopathy (TTC) remains unknown but a role for sympathetic hyperactivity has been suggested. Up to now, no direct evidence of sympathetic nerve hyperactivity has been established nor involvement of sympathetic baroreflex identified. The aim of our study was to determine, by direct sympathetic nerve activity (SNS) recording if sympathetic nervous system activity is increased and spontaneous baroreflex control of sympathetic activity reduced in patients with TTC. We included 13 patients who presented with TTC and compared their SNS activity and spontaneous baroreflex control of sympathetic activity with that of 13 control patients with acutely decompensated chronic heart failure. SNS activity was evaluated by microneurography, a technique assessing muscle sympathetic nerve activity (MSNA). Spontaneous baroreflex control of sympathetic activity was evaluated as the absolute value of the slope of the regression line representing the relationship between spontaneous diastolic blood pressure values and concomitant SNS activity. Control patients were matched for age, sex, left ventricular ejection fraction and creatinine clearance. The mean age of the patients with TTC was 80 years, all patients were women. There were no significant differences between the two groups of patients for blood pressure, heart rate or oxygen saturation level. TTC patients presented a significant increase in sympathetic nerve activity (MSNA median 63.3 bursts/min [interquartile range 61.3 to 66.0] vs median 55.7 bursts/min [interquartile range 51.0 to 61.7]; p = 0.0089) and a decrease in spontaneous baroreflex control of sympathetic activity compared to matched control patients (spontaneous baroreflex control of sympathetic activity median 0.7%burst/mmHg [interquartile range 0.4 to 1.9] vs median 2.4%burst/mmHg [interquartile range 1.8 to 2.9]; p = 0.005). We report for the first time, through direct measurement of sympathetic nerve activity, that

  9. Mineralocorticoid Receptors, Inflammation and Sympathetic Drive in Heart Failure

    Science.gov (United States)

    Felder, Robert B.

    2010-01-01

    Appreciation for the role of aldosterone and mineralocorticoid receptors in cardiovascular disease is accelerating rapidly. Recent experimental work has unveiled a strong relationship between brain mineralocorticoid receptors and sympathetic drive, an important determinant of outcome in heart failure and hypertension. Two putative mechanisms are explored in this manuscript. First, brain mineralocorticoid receptors may influence sympathetic discharge by regulating the release of pro-inflammatory cytokines into the circulation. Blood-borne pro-inflammatory cytokines act upon receptors in the microvasculature of the brain to induce cyclooxygenase-2 activity and the production of prostaglandin E2, which penetrates the blood-brain barrier to activate the sympathetic nervous system. Second, brain mineralocorticoid receptors may influence sympathetic drive by upregulating the activity of the brain renin-angiotensin system, resulting in NAD(P)H oxidase dependent superoxide production. A potential role for superoxide dependent mitogen-activated protein kinase signaling pathways in the regulation of sympathetic nerve activity is also considered. Other potential downstream signaling mechanisms contributing to mineralocorticoid receptor mediated sympathetic excitation are under investigation. PMID:19648480

  10. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Science.gov (United States)

    Tohyama, Takeshi; Saku, Keita; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed

  11. SPLANCHNIC VEIN THROMBOSIS IN THE MEDITERRANEAN AREA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Hanaa El-Karaksy

    2011-07-01

    Full Text Available Abdominal venous thrombosis may present as splanchnic venous thrombosis (SVT (occlusion of portal, splenic, superior or inferior mesenteric veins or Budd- Chiari Syndrome (BCS (thrombosis of inferior vena cava and/or hepatic veins. The aim of this review is to report the scanty data available for splanchnic vein thrombosis in the South Mediterranean area. In one Egyptian study, the possible circumstantial risk factors for portal vein thrombosis were found in 30% of cases:  19% neonatal sepsis, 8.7% umbilical catheterization, 6% severe gastroenteritis and dehydration. Another Egyptian study concluded that hereditary thrombophilia was common in children with PVT (62.5%, the commonest being factor V Leiden mutation (FVL (30%. Concurrence of more than one hereditary thrombophilia was not uncommon (12.5%. The first international publication on hepatic veno-occlusive disease (VOD in Egypt was in 1965 in children who rapidly develop abdominal distention with ascites and hepatomegaly. This disease was more frequent in malnourished children coming from rural areas; infusions given at home may contain noxious substances that were hepatotoxic and Infections might play a role. VOD of childhood is rarely seen nowadays. Data from South Mediterranean area are deficient and this may be attributable to reporting in local medical journals that are difficult to access. Medical societies concerned with this topic could help distribute this information.

  12. CAUSES OF ADULT SPLANCHNIC VEIN THROMBOSIS IN THE MEDITERRANEAN AREA

    Directory of Open Access Journals (Sweden)

    Valerio De Stefano

    2011-12-01

    Full Text Available The term splanchnic vein thrombosis encompasses Budd-Chiari syndrome (BCS, extrahepatic portal vein obstruction (EHPVO, and mesenteric vein thrombosis. Risk factors can be local or systemic. A local precipitating factor is rare in BCS, while it is common in  patients with portal vein thrombosis. Chronic myeloproliferative neoplasms (MPN are the leading systemic cause of splanchnic vein thrombosis, and are diagnosed in half BCS patients and one-third of EHPVO patients; the molecular marker JAK2 V617F is detectable in a large majority of patients with overt MPN and up to 40% of patients without overt MPN. Inherited thrombophilia is present in at least one-third of patients, and the factor V Leiden or the prothrombin G20210A mutations are the most common mutations found in BCS or EHPVO patients, respectively. Multiple factors are present in approximately one-third of patients with BCS and two- thirds of patients with portal vein thrombosis. In a few patient series from the Southern Mediterranean area the high prevalence of MPN and thrombophilia as underlying cause of BCS is confirmed, although the data should be considered preliminary. Peculiar risk factors present in the area are Behcet’s disease and hydatidosis; moreover, the presence of membraneous webs, typically found in Asian patients, can be found in a significant portion of cases.

  13. CAUSES OF ADULT SPLANCHNIC VEIN THROMBOSIS IN THE MEDITERRANEAN AREA

    Directory of Open Access Journals (Sweden)

    Laura Betti

    2011-01-01

    Full Text Available

    The term splanchnic vein thrombosis encompasses Budd-Chiari syndrome (BCS, extrahepatic portal vein obstruction (EHPVO, and mesenteric vein thrombosis.

    Risk factors can be local or systemic. A local precipitating factor is rare in BCS, while it is common in  patients with portal vein thrombosis. Chronic myeloproliferative neoplasms (MPN are the leading systemic cause of splanchnic vein thrombosis, and are diagnosed in half BCS patients and one-third of EHPVO patients; the molecular marker JAK2 V617F is detectable in a large majority of patients with overt MPN and up to 40% of patients without overt MPN. Inherited thrombophilia is present in at least one-third of patients, and the factor V Leiden or the prothrombin G20210A mutations are the most common mutations found in BCS or EHPVO patients, respectively. Multiple factors are present in approximately one-third of patients with BCS and two- thirds of patients with portal vein thrombosis.

    In a few patient series from the Southern Mediterranean area the high prevalence of MPN and thrombophilia as underlying cause of BCS is confirmed, although the data should be considered preliminary. Peculiar risk factors present in the area are Behcet’s disease and hydatidosis; moreover, the presence of membraneous webs, typically found in Asian patients, can be found in a significant portion of cases.

  14. Effect of oral propranolol on splanchnic oxygen uptake and haemodynamics in patients with cirrhosis

    DEFF Research Database (Denmark)

    Bendtsen, F; Henriksen, Jens Henrik Sahl; Becker, U

    1987-01-01

    In order to elucidate the effect of beta-adrenergic blockade on liver metabolism and haemodynamics, splanchnic oxygen uptake, hepatic removal of indocyanine green (ICG) and splanchnic and systemic haemodynamics were studied in 13 patients with cirrhosis before and 1.5-2 h after an oral dose of 80...... pressure, stroke volume, and systemic vascular resistance remained essentially unchanged. The results indicate that besides the well-known cardiovascular effects of propranolol, beta-adrenergic blockade may also reduce hepatic metabolic functions as evidenced by the significantly decreased splanchnic...

  15. Effect of oral propranolol on splanchnic oxygen uptake and haemodynamics in patients with cirrhosis

    DEFF Research Database (Denmark)

    Bendtsen, Flemming; Henriksen, Jens Henrik; Becker, Povl Ulrik

    1987-01-01

    In order to elucidate the effect of beta-adrenergic blockade on liver metabolism and haemodynamics, splanchnic oxygen uptake, hepatic removal of indocyanine green (ICG) and splanchnic and systemic haemodynamics were studied in 13 patients with cirrhosis before and 1.5-2 h after an oral dose of 80...... mg propranolol. All patients underwent hepatic vein catheterization and had a primed continuous intravenous infusion of ICG. Azygos vein catheterization was performed in six patients. Splanchnic (hepatic-intestinal) oxygen uptake (median control 68 ml/min vs. beta-blockade 56 ml/min, P less than 0...

  16. Reflex sympathetic dystrophy in hemiplegia.

    Science.gov (United States)

    Gokkaya, Nilufer Kutay Ordu; Aras, Meltem; Yesiltepe, Elcin; Koseoglu, Fusun

    2006-12-01

    There is a high incidence of reflex sympathetic dystrophy of the upper limbs in patients with hemiplegia, and its painful and functional consequences present a problem to specialists in physical medicine and rehabilitation. This study was designed to assess the role of several factors in the occurrence of reflex sympathetic dystrophy in patients with hemiplegia. Ninety-five consecutive stroke patients (63 male and 32 female, mean age 59+/-12 years) admitted to our hospital were evaluated. Of the study group, 29 patients (30.5%) were found to develop reflex sympathetic dystrophy. There were no significant differences between the hemiplegic patient groups with or without reflex sympathetic dystrophy regarding age, gender, etiology, side of involvement, disease duration and the presence of comorbidities. The recovery stages of hemiplegia, as shown by Brunnstrom functional classification, were significantly different between the two groups; patients in lower recovery stages tended to develop reflex sympathetic dystrophy more frequently (Preflex sympathetic dystrophy. Glenohumeral subluxation was present in 37 patients (38.9%) in our study group and the presence of this complication was related to the occurrence of reflex sympathetic dystrophy. The presence of glenohumeral subluxation was significantly higher in patients with reflex sympathetic dystrophy (21/29, 72.4%) when compared to the patients without reflex sympathetic dystrophy (16/66, 24.2%) (Preflex sympathetic dystrophy. These results suggest that lower recovery stages, reduced tonus and glenohumeral subluxation significantly contribute to the occurrence of reflex sympathetic dystrophy in the hemiplegic patient. We believe that preventive and treatment measures should consider these factors as they seem to have in common a higher risk of traumatizing the paralyzed upper limb and causing reflex sympathetic dystrophy.

  17. Outcome of splanchnic blood flow determination in patients with suspected chronic intestinal ischaemia. A retrospective survey

    DEFF Research Database (Denmark)

    Møller, Søren; Madsen, Jan Lysgård

    2002-01-01

    BACKGROUND: Different diagnostic examinations have been applied in the management of patients with suspected intestinal ischaemia. In some centres, invasive determination of a meal-induced increase in splanchnic blood flow is used in the diagnostic process and in the selection of patients......: Seventy-three consecutive patients with suspected intestinal ischaemia were included during a 5-year period. Splanchnic blood flow was determined at baseline and after a standardized meal. The patients were classified into three groups according to the level of meal-induced increase in splanchnic blood...... a normal meal-induced response, 23 patients had a possible abnormal response and 10 patients had a definitive abnormal response, which gave evidence of chronic intestinal ischaemia. In the total patient population, the increase in splanchnic blood flow was significantly correlated to an increase in hepatic...

  18. Outcome of splanchnic blood flow determination in patients with suspected chronic intestinal ischaemia. A retrospective survey

    DEFF Research Database (Denmark)

    Møller, Søren; Madsen, Jan Lysgård

    2002-01-01

    a normal meal-induced response, 23 patients had a possible abnormal response and 10 patients had a definitive abnormal response, which gave evidence of chronic intestinal ischaemia. In the total patient population, the increase in splanchnic blood flow was significantly correlated to an increase in hepatic......BACKGROUND: Different diagnostic examinations have been applied in the management of patients with suspected intestinal ischaemia. In some centres, invasive determination of a meal-induced increase in splanchnic blood flow is used in the diagnostic process and in the selection of patients......: Seventy-three consecutive patients with suspected intestinal ischaemia were included during a 5-year period. Splanchnic blood flow was determined at baseline and after a standardized meal. The patients were classified into three groups according to the level of meal-induced increase in splanchnic blood...

  19. Splanchnic and systemic hemodynamic derangement in decompensated cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Bendtsen, Flemming; Henriksen, Jens Henrik

    2001-01-01

    Patients with cirrhosis and portal hypertension exhibit characteristic hemodynamic changes with hyperkinetic systemic circulation, abnormal distribution of blood volume and neurohumoral dysregulation. Their plasma and noncentral blood volumes are increased. Splanchnic vasodilation is of pathogenic...... significance to the low systemic vascular resistance and abnormal volume distribution of blood, which are important elements in the development of the concomitant cardiac dysfunction, recently termed 'cirrhotic cardiomyopathy'. Systolic and diastolic functions are impaired with direct relation to the degree...... of liver dysfunction. Significant pathophysiological mechanisms are reduced beta-adrenergic receptor signal transduction, defective cardiac excitation-contraction coupling and conductance abnormalities. Vasodilators such as nitric oxide and calcitonin gene-related peptide are among the candidates...

  20. Effect of meal and propranolol on whole body and splanchnic oxygen consumption in patients with cirrhosis

    DEFF Research Database (Denmark)

    Krag, Aleksander; Simonsen, Lene; Henriksen, Jens H

    2006-01-01

    Our aim was to measure whole body energy expenditure after a mixed liquid meal, with and without simultaneous propranolol infusion, in patients with cirrhosis. We also wanted to investigate the effect of propranolol on substrate fluxes and oxygen uptake in the tissues drained by the hepatic vein ...... as splanchnic oxygen uptake. The splanchnic reduction in oxygen consumption can explain almost the entire reduction in whole body oxygen consumption....

  1. Normal sympathetic nervous system response in reflex sympathetic dystrophy.

    Science.gov (United States)

    Figuerola, María de Lourdes; Levin, Gloria; Bertotti, Alicia; Ferreiro, Jorge; Barontini, Marta

    2002-01-01

    We evaluated sympathetic nervous system activity by sympathetic skin response (SSR) recording and we further investigated sympathetic and opioid outflow indirectly in patients with features of reflex sympathetic dystrophy by measuring concentrations of plasma catecholamines (CAs) and their metabolites and plasma metenkephalin (ME), before and after corticoid treatment. Six patients were studied. Basal SSR latencies, morphologies and amplitudes were normal in five patients. In one woman, latency and amplitude were also normal but the morphology was disturbed. Basal plasma ME, CA and metabolite levels were similar in the affected and non-affected limbs and a significant increase in plasma ME concentrations was observed in both affected and non-affected limbs after two weeks of steroid treatment. Altogether these results point to an adaptive supersensitivity rather than a sympathetic hyperactivity in this syndrome; also, they indicate that the therapeutic effect of steroids adds, to their known anti-inflammatory action, a stimulatory action on the endogenous opioid system.

  2. Measurement of splanchnic photoplethysmographic signals using a new reflectance fiber optic sensor

    Science.gov (United States)

    Hickey, Michelle; Samuels, Neal; Randive, Nilesh; Langford, Richard M.; Kyriacou, Panayiotis A.

    2010-03-01

    Splanchnic organs are particularly vulnerable to hypoperfusion. Currently, there is no technique that allows for the continuous estimation of splanchnic blood oxygen saturation (SpO2). As a preliminary to developing a suitable splanchnic SpO2 sensor, a new reflectance fiber optic photoplethysmographic (PPG) sensor and processing system are developed. An experimental procedure to examine the effect of fiber source detector separation distance on acquired PPG signals is carried out before finalizing the sensor design. PPG signals are acquired from four volunteers for separation distances of 1 to 8 mm. The separation range of 3 to 6 mm provides the best quality PPG signals with large amplitudes and the highest signal-to-noise ratios (SNRs). Preliminary calculation of SpO2 shows that distances of 3 and 4 mm provide the most realistic values. Therefore, it is suggested that the separation distance in the design of a fiber optic reflectance pulse oximeter be in the range of 3 to 4 mm. Preliminary PPG signals from various splanchnic organs and the periphery are obtained from six anaesthetized patients. The normalized amplitudes of the splanchnic PPGs are, on average, approximately the same as those obtained simultaneously from the periphery. These observations suggest that fiber optic pulse oximetry may be a valid monitoring technique for splanchnic organs.

  3. Meal-induced changes in splanchnic blood flow and oxygen uptake in middle-aged healthy humans

    DEFF Research Database (Denmark)

    Madsen, Jan L; Søndergaard, Susanne B; Møller, Søren

    2006-01-01

    OBJECTIVE: For decades, the determination of changes in splanchnic blood flow and oxygen uptake after a meal has been used in the management of patients with suspected chronic intestinal ischaemia. However, little is known about the normal meal-induced responses. The aim of the present study...... was therefore to measure the splanchnic blood flow and oxygen uptake before and after a standardized meal in a group of middle-aged normal volunteers. MATERIAL AND METHODS: Splanchnic blood flow and oxygen uptake were determined at baseline and after a 3600-kJ mixed meal in 8 healthy women (50-70 years) and 10...... healthy men (52-76 years). Splanchnic blood flow was measured during hepatic vein catheterization by indirect Fick principle with indocyanine green as the indicator. Splanchnic oxygen uptake was calculated from splanchnic blood flow and the arteriovenous oxygen difference. RESULTS: The meal induced...

  4. AMPUTATION AND REFLEX SYMPATHETIC DYSTROPHY

    NARCIS (Netherlands)

    GEERTZEN, JHB; EISMA, WH

    Reflex sympathetic dystrophy is a chronic pain syndrome characterized by chronic burning pain, restricted range of motion, oedema and vasolability. Patients are difficult to treat and the prognosis is very often poor. This report emphasizes that an amputation in case of a reflex sympathetic

  5. Sympathetic Blocks Provided Sustained Pain Relief in a Patient with Refractory Painful Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Jianguo Cheng

    2012-01-01

    Full Text Available The sympathetic nervous system has been implicated in pain associated with painful diabetic neuropathy. However, therapeutic intervention targeted at the sympathetic nervous system has not been established. We thus tested the hypothesis that sympathetic nerve blocks significantly reduce pain in a patient with painful diabetic neuropathy who has failed multiple pharmacological treatments. The diagnosis of small fiber sensory neuropathy was based on clinical presentations and confirmed by skin biopsies. A series of 9 lumbar sympathetic blocks over a 26-month period provided sustained pain relief in his legs. Additional thoracic paravertebral blocks further provided control of the pain in the trunk which can occasionally be seen in severe diabetic neuropathy cases, consequent to extensive involvement of the intercostal nerves. These blocks provided sustained and significant pain relief and improvement of quality of life over a period of more than two years. We thus provided the first clinical evidence supporting the notion that sympathetic nervous system plays a critical role in painful diabetic neuropathy and sympathetic blocks can be an effective management modality of painful diabetic neuropathy. We concluded that the sympathetic nervous system is a valuable therapeutic target of pharmacological and interventional modalities of treatments in painful diabetic neuropathy patients.

  6. Suppression of sympathetic detonation

    Science.gov (United States)

    Foster, J. C., Jr.; Gunger, M. E.; Craig, B. G.; Parsons, G. H.

    1984-08-01

    There are two basic approaches to suppression of sympathetic detonation. Minimizing the shock sensitivity of the explosive to long duration pressure will obviously reduce interround separation distances. However, given that the explosive sensitivity is fixed, then much can be gained through the use of simple barriers placed between the rounds. Researchers devised calculational methods for predicting shock transmission; experimental methods have been developed to characterize explosive shock sensitivity and observe the response of acceptors to barriers. It was shown that both EAK and tritonal can be initiated to detonation with relatively low pressure shocks of long durations. It was also shown that to be an effective barrier between the donor and acceptor, the material must attenuate shock and defect fragments. Future actions will concentrate on refining the design of barriers to minimize weight, volume, and cost.

  7. Effects of chronic metabolic acidosis on splanchnic protein turnover and oxygen consumption in human beings.

    Science.gov (United States)

    Tessari, Paolo; Sofia, Antonella; Saffioti, Stefano; Vettore, Monica; Verzola, Daniela; Millioni, Renato; Puricelli, Lucia; Garibotto, Giacomo

    2010-04-01

    Although metabolic acidosis stimulates protein catabolism, its effects on splanchnic protein turnover and energy expenditure have not been measured in human beings. We investigated the effects of chronic metabolic acidosis (CMA) on splanchnic protein dynamics and oxygen consumption in human beings by using a leucine tracer and mass-balance techniques. Five subjects were studied after 6 days of HCl-, CaCl(2)-, and NH(4)Cl-induced acidosis; 8 subjects served as controls. Blood samples were collected from the radial artery and the hepatic veins. Measurements were performed on plasma and whole-blood samples. Based on plasma measurements, subjects who had undergone CMA had lower rates of splanchnic proteolysis (-35%) and protein synthesis (-50%; P controls, as well as a negative leucine kinetic balance (-6.81 +/- 2.48 micromol/kg/min/1.73 m(2) body surface [BS](-1)), compared with the neutral balance in control plasma samples (0.76 +/- 2.11 micromol/kg/min/1.73; P control samples, and the net leucine kinetic balance was neutral in both groups (CMA, -0.69 +/- 1.57; controls, -0.74 +/- 3.45 micromol/kg/min/1.73). In CMA whole-blood measurements, splanchnic oxygen consumption (44.8 +/- 4.3 mL/min/1.73 m(2) BS) was slightly lower than in controls (57.5 +/- 8.4 mL/min/1.73 m(2) BS; P = NS). Splanchnic protein synthesis correlated with oxygen consumption (r = 0.82; P < .001). CMA reduces splanchnic protein turnover and results in a negative leucine balance--an effect that apparently is offset by the contribution of blood cells to organ leucine (and protein) dynamics. Protein synthesis is a major contributor (about 67%) to energy expenditure in splanchnic organs. 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia A. Thorp

    2015-01-01

    Full Text Available Sympathetic tone is well recognised as being implicit in cardiovascular control. It is less readily acknowledged that activation of the sympathetic nervous system is integral in energy homeostasis and can exert profound metabolic effects. Accumulating data from animal and human studies suggest that central sympathetic overactivity plays a pivotal role in the aetiology and complications of several metabolic conditions that can cluster to form the Metabolic Syndrome (MetS. Given the known augmented risk for type 2 diabetes, cardiovascular disease, and premature mortality associated with the MetS understanding the complex pathways underlying the metabolic derangements involved has become a priority. Many factors have been proposed to contribute to increased sympathetic nerve activity in metabolic abnormalities including obesity, impaired baroreflex sensitivity, hyperinsulinemia, and elevated adipokine levels. Furthermore there is mounting evidence to suggest that chronic sympathetic overactivity can potentiate two of the key metabolic alterations of the MetS, central obesity and insulin resistance. This review will discuss the regulatory role of the sympathetic nervous system in metabolic control and the proposed pathophysiology linking sympathetic overactivity to metabolic abnormalities. Pharmacological and device-based approaches that target central sympathetic drive will also be discussed as possible therapeutic options to improve metabolic control in at-risk patient cohorts.

  9. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

    Science.gov (United States)

    Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Zuckerman, Julie H.; Diedrich, Andre; Biaggioni, Italo; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi; hide

    2002-01-01

    Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two-thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre-flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts approximately 72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (+/- S.E.M.) stroke volume was lower (46 +/- 5 vs. 76 +/- 3 ml, P = 0.017) and heart rate was higher (93 +/- 1 vs. 74 +/- 4 beats min(-1), P = 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 +/- 256 vs. 1372 +/- 62 dynes s cm(-5), P = 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 +/- 4 vs. 17 +/- 2 bursts min(-1), P = 0.04) and tilted (46 +/- 4 vs. 38 +/- 3 bursts min(-1), P = 0.01) positions. A strong (r(2) = 0.91-1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal.

  10. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system.

    Science.gov (United States)

    Molkov, Yaroslav I; Zoccal, Daniel B; Baekey, David M; Abdala, Ana P L; Machado, Benedito H; Dick, Thomas E; Paton, Julian F R; Rybak, Ilya A

    2014-01-01

    Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory-sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states. © 2014 Elsevier B.V. All rights reserved.

  11. Sonographic assessment of splanchnic arteries and the bowel wall

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, C.F. [Medical Department II, Caritas-Krankenhaus, Uhlandstr. 7, D-97980 Bad Mergentheim (Germany)], E-mail: Christoph.dietrich@ckbm.de; Jedrzejczyk, M.; Ignee, A. [Medical Department II, Caritas-Krankenhaus, Uhlandstr. 7, D-97980 Bad Mergentheim (Germany)

    2007-11-15

    The intestinal wall can be visualized using high resolution transabdominal ultrasound. The normal intestinal wall thickness in the terminal ileum, cecum, and right and left colon is <2 mm when examined with graded compression. It is important to appreciate that a contracted intestinal segment can be misinterpreted as a thickened wall. Vascularisation can be mainly displayed in the second hyperechoic layer (submucosal layer) as well as vessels penetrating the muscularis propria. Imaging of the gastrointestinal wall is dependent on the experience of the examiner as well dependent on the equipment used. Acute or chronic inflammation of the intestinal wall is accompanied by increased perfusion of the mesentery, which can be displayed non-quantitatively with colour duplex. In contrast, ischemia is characterised by hypoperfusion of the mesenteric arteries and the bowel wall. The most promising sonographic approach in assessing splanchnic arteries and the bowel wall is combining the analysis of superior and inferior mesenteric inflow by pulsed Doppler scanning (systolic and diastolic velocities, resistance index) with the end-organ vascularity by colour Doppler imaging diminishing the influence of examination technique only displaying bowel wall vascularity. Colour Doppler imaging has been described as helpful in a variety of gastrointestinal disorders, particularly in patients with Crohn's disease, celiac disease, mesenteric artery stenosis and other ischemic gastrointestinal diseases, graft versus host disease and hemorrhagic segmental colitis.

  12. Clinical approach to splanchnic vein thrombosis: risk factors and treatment.

    Science.gov (United States)

    Riva, Nicoletta; Donadini, Marco P; Dentali, Francesco; Squizzato, Alessandro; Ageno, Walter

    2012-10-01

    Splanchnic vein thrombosis (SVT) is an unusual manifestation of venous thromboembolism which involves one or more abdominal veins (portal, splenic, mesenteric and supra-hepatic veins). SVT may be associated with different underlying disorders, either local (abdominal cancer, liver cirrhosis, intra-abdominal inflammation or surgery) or systemic (hormonal treatment, thrombophilic conditions). In the last decades, myeloproliferative neoplasm (MPN) emerged as the leading systemic cause of SVT. JAK2 mutation, even in the absence of known MPN, showed a strong association with the development of SVT, and SVT was suggested to be the first clinical manifestation of MPN. Recently, an association between SVT, in particular supra-hepatic vein thrombosis, and paroxysmal nocturnal hemoglobinuria has also been reported. SVT occurs with heterogeneous clinical presentations, ranging from incidentally detected events to extensive thrombosis associated with overt gastrointestinal bleeding, thus representing a clinical challenge for treatment decisions. In the absence of major contraindications, anticoagulant therapy is generally recommended for all patients presenting with acute symptomatic SVT, but there is no consensus about the use of anticoagulant drugs in chronic or incidentally detected SVT. High quality evidence on the acute and long-term management is substantially lacking and the risk to benefit-ratio of anticoagulant therapy in SVT still needs to be better assessed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Splanchnic Vein Thrombosis - an Uncommon Complication after Laparoscopic Sleeve Gastrectomy

    Directory of Open Access Journals (Sweden)

    Tanja Carli

    2016-04-01

    Full Text Available Background: Laparoscopic sleeve gastrectomy (LSG is an innovative and relatively safe surgical approach for weight reduction in morbidly obese people. Splanchnic vein thrombosis (SVT is an extremely rare complication of LSG and, if not recognized, carries a high mortality rate. This paper highlights a potentially lethal condition of SVT after LSG. Case Report: A 37-year-old morbidly obese woman was referred to our institution for LSG. Three weeks after the intervention, she was readmitted with abdominal pain, vomiting, nausea, diarrhea, and fever with positive family anamnesis to viral disease. Abdominal X-ray as well as utrasonography were both normal, and no X-ray contrast medium leakage was observed. One week later, she was readmitted with septic condition. An abdominal computed tomography scan diagnosed lienal vein thrombosis along its whole length and partial thrombosis of the superior mesenteric vein. Conclusion: SVT presents very heterogeneously, which makes it extremely challenging to diagnose and to make an appropriate treatment decision. With regard to the high prevalence of obesity and the increasing frequency of LSG, prompt diagnosis and management are crucial.

  14. [Reflex sympathetic dystrophy].

    Science.gov (United States)

    Oliveira, Marta; Manuela, Manuela; Cantinho, Guilhermina

    2011-01-01

    Reflex Sympathetic Dystrophy is rare in pediatrics. It is a complex regional pain syndrome, of unknown etiology, usually post-traumatic, characterized by dysfunctions of the musculoskeletal, vascular and skin systems: severe persistent pain of a limb, sensory and vascular alterations, associated disability and psychosocial dysfunction. The diagnosis is based in high clinical suspection. In children and adolescents there are aspects that are different from the adult ones. Excessive tests may result in worsening of the clinical symptoms. Bone scintigraphy can help. Pain treatment is difficult, not specific. Physical therapies and relaxation technics give some relief. Depression must be treated. This syndrome includes fibromyalgia and complex regional pain syndrome type I. We present a clinical report of an adolescent girl, referred for pain, cold temperature, pallor and functional disability of an inferior limb, all signals disclosed by a minor trauma. She had been diagnosed depression the year before. The bone scintigraphy was a decisive test. The treatment with gabapentin, C vitamin, physiotherapy and pshycotherapy has been effective.

  15. Pathophysiological Effects of Pancreatic Sympathetic Denervation in Acute Necrotizing Pancreatitis in Dogs.

    Science.gov (United States)

    Sun, Junjun; Qi, Shifang; Liu, Weifeng; Xin, Shiyong; Chang, Yongchao; Yang, Yanhui; Zhou, Liqing; Zhang, Yuming; Chu, Zhijie

    2015-10-01

    The aim of this study was to investigate the influence of the greater splanchnic nerve (GSN) transection on the pathophysiological process of acute necrotizing pancreatitis (ANP). The dogs were divided into a sham operation (SO) group, ANP group, and ANP with bilateral GSN transection (GSNT) group. Dogs in the GSNT group underwent bilateral GSNT immediately after ANP induction. The levels of serum pancreatic amylase (AMY), calcium, high-sensitivity C-reactive protein (HCRP), tumor necrosis factor α (TNF-α), interleukin 10 (IL-10), and neutrophile granulocyte (NEU) counts were monitored dynamically, and the pathological examinations of the pancreas was performed at postoperative day 7. All the parameters among the 3 groups showed no differences before the experiment (P > 0.05). At different postoperative times, the NEU count and serum AMY, TNF-α, HCRP, and IL-10 were significantly increased; however, the serum calcium had decreased in the ANP group versus SO (P 0.05). The pancreas pathological scoring of the GSNT group was lower versus the ANP group (P < 0.05). Greater splanchnic nerve transection can alleviate development of pathophysiological processes in ANP.

  16. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Heung Yong Jin

    2015-12-01

    Full Text Available Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM and type 2 diabetes mellitus (T2DM. Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN. Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed.

  17. Sympathetic Overactivity in Chronic Kidney Disease: Consequences and Mechanisms

    Directory of Open Access Journals (Sweden)

    Jasdeep Kaur

    2017-08-01

    Full Text Available The incidence of chronic kidney disease (CKD is increasing worldwide, with more than 26 million people suffering from CKD in the United States alone. More patients with CKD die of cardiovascular complications than progress to dialysis. Over 80% of CKD patients have hypertension, which is associated with increased risk of cardiovascular morbidity and mortality. Another common, perhaps underappreciated, feature of CKD is an overactive sympathetic nervous system. This elevation in sympathetic nerve activity (SNA not only contributes to hypertension but also plays a detrimental role in the progression of CKD independent of any increase in blood pressure. Indeed, high SNA is associated with poor prognosis and increased cardiovascular morbidity and mortality independent of its effect on blood pressure. This brief review will discuss some of the consequences of sympathetic overactivity and highlight some of the potential pathways contributing to chronically elevated SNA in CKD. Mechanisms leading to chronic sympathoexcitation in CKD are complex, multifactorial and to date, not completely understood. Identification of the mechanisms and/or signals leading to sympathetic overactivity in CKD are crucial for development of effective therapeutic targets to reduce the increased cardiovascular risk in this patient group.

  18. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Kirby, M.; Stewart, D.

    1984-01-01

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [ 3 H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [ 3 H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [ 3 H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  19. Metabolic effects of interleukin-6 in human splanchnic and adipose tissue

    DEFF Research Database (Denmark)

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    Interleukin-6 (IL-6) was infused intravenously for 2.5 h in seven healthy human volunteers at a dose giving rise to a circulating IL-6 concentration of approximately 35 ng l(-1). The metabolic effects of this infusion were studied in subcutaneous adipose tissue on the anterior abdominal wall...... and in the splanchnic tissues by the Fick principle after catheterizations of an artery, a subcutaneous vein draining adipose tissue, and a hepatic vein, and measurements of regional adipose tissue and splanchnic blood flows. In control studies without IL-6 infusion subcutaneous adipose tissue metabolism was studied...... infusion. It is concluded that IL-6 elicits lipolytic effects in human adipose tissue in vivo, and that IL-6 also has effects on the splanchnic lipid and carbohydrate metabolism....

  20. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  1. Anatomical variations of rami communicantes in the upper thoracic sympathetic trunk.

    Science.gov (United States)

    Cho, Hyun Min; Lee, Doo Yun; Sung, Sook Whan

    2005-02-01

    The aim of this study was to clearly delineate the anatomical variations of the communicating rami in the upper thoracic sympathetic nervous system and to help develop better surgical method for essential palmar hyperhidrosis. Anatomical dissections of the upper thoracic sympathetic chains with sympathetic ganglia and communicating rami have been carried out in 42 adult Korean cadavers (male 26, female 16). The rami communicantes were classified into three types (Normal: transverse or oblique rami connected to the intercostal nerve of the same level; AR: ascending rami connected to the higher level; DR: descending rami to the lower level) based on the anatomical relationship of the thoracic sympathetic ganglia to the intercostal nerves. Both sides of the upper thoracic sympathetic nervous system were compared in the same individual. The number of the communicating rami was recorded in 32 cadavers (64 sides). The distance from the rami communicantes to the sympathetic trunk was measured in 26 cadavers (52 sides). The incidence of AR (ascending rami) and DR (descending rami) arising from the second sympathetic ganglion was 53.6% (45/84), 46.4% (39/84). From the third thoracic sympathetic ganglion, the incidence of AR was 5.9% (5/84) and that of DR was 26.2% (22/84). And in the fourth thoracic sympathetic ganglion, the incidence of AR was 4.8% (4/84) and DR was 8.3% (7/84), respectively. When we compared anatomical structures of both sides among the 42 cadavers dissected, only 14.3% (6/42) had similar anatomy of the rami communicantes bilaterally. Among 32 cadavers (64 sides), the mean number of rami communicantes at the second thoracic sympathetic ganglion was 2.1/2.5 in the left and the right side. At the third and the fourth thoracic sympathetic ganglion, the mean number was 1.9/1.6 and 1.7/1.7 in each side. The mean distance from the thoracic sympathetic chain to the most distal communicating rami of the left and right side at the second intercostal nerve was 7

  2. Effect of oxygen inhalation on systemic, central, and splanchnic haemodynamics in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Becker, Povl Ulrik; Schifter, S

    1996-01-01

    BACKGROUND/AIMS: Patients with cirrhosis exhibit a hyperdynamic circulation with increased cardiac output and low arterial blood pressure. The aim of the present study was to assess the effects of oxygen inhalation on systemic, central, and splanchnic haemodynamics and vasoactive systems in patie......BACKGROUND/AIMS: Patients with cirrhosis exhibit a hyperdynamic circulation with increased cardiac output and low arterial blood pressure. The aim of the present study was to assess the effects of oxygen inhalation on systemic, central, and splanchnic haemodynamics and vasoactive systems...

  3. Regional fat metabolism in human splanchnic and adipose tissues; the effect of exercise

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Bülow, Jens; Sacchetti, Massimo

    2002-01-01

    This study was conducted to investigate the role of splanchnic and adipose tissue in the regulation of fatty acid (FA) metabolism at rest, during 1 h of semi-recumbent cycle exercise at 60 % of maximal power output and 3 h of recovery. In six post-absorptive healthy volunteers catheters were placed...... in a radial artery, hepatic vein and a subcutaneous vein on the anterior abdominal wall. Whole body, and regional splanchnic and adipose tissue FA metabolism were measured by a constant infusion of the stable isotopes [U-(13)C]palmitate and [(2)H(5)]glycerol and according to Fick's principle. The whole body...... that adipose tissue can metabolize glycerol....

  4. No net splanchnic release of glutathione in man during N-acetylcysteine infusion

    DEFF Research Database (Denmark)

    Poulsen, H E; Vilstrup, H; Almdal, T

    1993-01-01

    Glutathione and amino acid concentrations were measured in arterial and hepatic vein plasma in four healthy volunteers and two patients with cirrhosis. There was no significant splanchnic efflux of glutathione (95% confidence limits, -0.501 to 0.405 mumol/min). After infusion of N-acetylcysteine ......Glutathione and amino acid concentrations were measured in arterial and hepatic vein plasma in four healthy volunteers and two patients with cirrhosis. There was no significant splanchnic efflux of glutathione (95% confidence limits, -0.501 to 0.405 mumol/min). After infusion of N...

  5. Splanchnic vein thrombosis and variceal rebleeding in patients with cirrhosis.

    Science.gov (United States)

    Amitrano, Lucio; Guardascione, Maria A; Scaglione, Mariano; Menchise, Antonella; Martino, Rossana; Manguso, Francesco; Lanza, Alfonso G; Lampasi, Filippo

    2012-12-01

    Splanchnic vein thrombosis (SVT) affects the short-term prognosis of acute variceal bleeding in cirrhotic patients. This study evaluated whether SVT also affects the rebleeding rate of patients included in a program of secondary prophylaxis after variceal bleeding. A total of 387 patients with variceal bleeding were included from January 2001 to December 2010. Band ligation was carried out every 3-4 weeks. Follow-up included endoscopy at 1, 3, and every 6 months, Echo-Doppler, and biochemical examination every 6 months. From 2005, patients with SVT received anticoagulation with enoxaparin 200 UI/kg/day for at least 6 months. The therapy was started after variceal eradication. SVT was diagnosed in 41 patients at variceal bleeding, in eight before and in 18 patients during the follow-up. Variceal eradication was achieved in 89.2 and 86.6% in no-SVT and SVT patients. Rebleeding occurred in 9.5 and 11.9% of no-SVT and SVT patients at 12 months. Varices relapsed more frequently in SVT than in no-SVT patients (25.4 vs. 14.67%, P=0.03). The rates of variceal rebleeding and relapse were similar in patients who received or did not receive anticoagulation, but mortality was significantly lower in patients who received anticoagulation. SVT favors the relapse of esophageal varices, but rebleeding can be effectively prevented by standard scheduled band ligations. Anticoagulation does not prevent variceal relapse. The improvement in the survival of patients treated with anticoagulation needs to be confirmed in future studies.

  6. [Complex regional pain syndrome. Reflex sympathetic dystrophy and causalgia].

    Science.gov (United States)

    Baron, R; Binder, A; Ulrich, W; Maier, C

    2002-04-01

    Complex regional pain syndromes (CRPS) occur as the inadequate response to painful trauma in a distal extremity. With CRPS I (sympathetic reflex dystrophy), no lesion of the nerve is present. Aside from sensory disturbances, burning deep spontaneous pain and mechanical allodynia are characteristic. Disturbances in the skin blood circulation, sweating, edema, and trophic disturbances of the skin, joints, and bones are typical. Reduction in muscle strength, tremor, and late dystonic changes comprise the motor disturbances. All symptoms are distributed in the distal extremity and not limited to the region of the peripheral nerves. Complex regional pain syndrome II (causalgia), develops following a partial peripheral nerve lesion. The distally generalized symptoms are identical. Successful therapy depends on an early start of interdisciplinary treatment. In addition to the pain therapy, physiotherapy plays a decisive role in rehabilitation. During the acute phase, freedom from pain at rest and retrogression of the edema must be achieved. With slight spontaneous pain, a conservative therapeutic method may be applied (analgesics, rest, raised position). In case of insufficient improvement and in difficult cases, the effect of intervention (sympathetic blockade) should be tested and possibly a blockade series performed. After reduced spontaneous pain, physiotherapy should be increased stepwise.

  7. Antiallodynic Effect of Pregabalin in Rat Models of Sympathetically Maintained and Sympathetic Independent Neuropathic Pain

    Science.gov (United States)

    Han, Dong Woo; Kweon, Tae Dong; Lee, Jong Seok

    2007-01-01

    Pregabalin binds to the voltage-dependent calcium channel α2δ subunit and modulates the release of neurotransmitters, resulting in analgesic effects on neuropathic pain. Neuropathic pain has both sympathetically maintained pain (SMP) and sympathetic independent pain (SIP) components. We studied the antiallodynic effects of pregabalin on tactile allodynia (TA) and cold allodynia (CA) in SMP-and SIP-dominant neuropathic pain models. Allodynia was induced by ligation of the L5 & L6 spinal nerves (SMP model) or by transection of the tibial and sural nerves (SIP model) in rats. For intrathecal drug administration, a PE-10 catheter was implanted through the atlantooccipital membrane to the lumbar enlargement. Pregabalin was administered either intraperitoneally (IP) or intrathecally (IT) and dosed up incrementally until an antiallodynic effect without sedation or motor impairment was apparent. TA was assessed using von Frey filaments, and CA was assessed using acetone drops. IP-administered pregabalin dose-dependently attenuated TA in both models and CA in the SMP model, but not CA in the SIP model. IT-administered pregabalin dose-dependently attenuated both TA and CA in both models. However, the dose response curve of IT-administered pregabalin in SMP was shifted to left from that of SIP and the ED50 of IT-administered pregabalin for CA in SMP was about 900 times less than that in SIP. These findings suggest that pregabalin exerts its antiallodynic effect mainly by acting at the spinal cord, and that IT-administered pregabalin has more potent antiallodynic effects in SMP. The α2δ subunit might be less involved in the CA in SIP. PMID:17326244

  8. Continuous blood pressure monitoring in cirrhosis. Relations to splanchnic and systemic haemodynamics

    DEFF Research Database (Denmark)

    Møller, Søren; Christensen, E; Henriksen, Jens Henrik

    1997-01-01

    . CONCLUSIONS: Although the 24-h blood pressure and the intra-arterial blood pressure were determined by different variables, the overall results indicate that abnormalities in both splanchnic and central haemodynamics and sodium-water retention are important in the pathophysiology of arterial hypotension...

  9. Continuous blood pressure monitoring in cirrhosis. Relations to splanchnic and systemic haemodynamics

    DEFF Research Database (Denmark)

    Møller, Søren; Christensen, E; Henriksen, Jens Henrik

    1997-01-01

    with cirrhosis than in matched controls (p .... CONCLUSIONS: Although the 24-h blood pressure and the intra-arterial blood pressure were determined by different variables, the overall results indicate that abnormalities in both splanchnic and central haemodynamics and sodium-water retention are important in the pathophysiology of arterial hypotension...

  10. Baseline characteristics and management of patients with splanchnic vein thrombosis: Results of an international registry

    NARCIS (Netherlands)

    Ageno, W.; Riva, N.; Schulman, S.; Bang, S.-M.; Sartori, M.T.; Grandone, E.; Beyer, J.; Pasca, S.; Di Minno, D.; Duce, R.; Malato, A.; Santoro, R.; Poli, D.; Verhamme, P.; Passamonti, S.; Kamphuisen, P.; Alatri, A.; Becattini, C.; Bucherini, E.; Piana, A.; De Stefano, V.; Vidili, G.; Bazzan, M.; Di Nisio, M.; Dentali, F.; Martinelli, I.; Barillari, G.; Poggio, R.; Colaizzo, D.; Vaccarino, A.

    2012-01-01

    Background Splanchnic vein thrombosis (SVT) is a challenging disease. The aim of this international registry was to describe the characteristics of a large cohort of patients with SVT and their management in clinical practice. Patients and Methods Consecutive patients with objectively diagnosed SVT

  11. Antithrombotic Treatment of Splanchnic Vein Thrombosis : Results of an International Registry

    NARCIS (Netherlands)

    Ageno, Walter; Riva, Nicoletta; Bang, Soo-Mee; Sartori, Maria Teresa; Grandone, Elvira; Beyer-Westendorf, Jan; Barillari, Giovanni; Di Minno, Matteo N. D.; Duce, Rita; Malato, Alessandra; Santoro, Rita; Poli, Daniela; Verhamme, Peter; Martinelli, Ida; Kamphuisen, Pieter W.; Alatri, Adriano; Oh, Doyeun; Amico, Elbio D.; Schulman, Sam; Dentali, Francesco

    2012-01-01

    Background: Treatment of splanchnic vein thrombosis (SVT) is a clinical challenge due to heterogeneity of clinical presentations, increased bleeding risk and lack of evidences from clinical trials. We carried out an international registry aimed to describe current treatment strategies and factors

  12. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic AA metabolism. The experimental design was a split plot, with cow as the whole...

  13. A new fibre optic pulse oximeter probe for monitoring splanchnic organ arterial blood oxygen saturation.

    Science.gov (United States)

    Hickey, M; Samuels, N; Randive, N; Langford, R; Kyriacou, P A

    2012-12-01

    A new, continuous method of monitoring splanchnic organ oxygen saturation (SpO(2)) would make the early detection of inadequate tissue oxygenation feasible, reducing the risk of hypoperfusion, severe ischaemia, and, ultimately, death. In an attempt to provide such a device, a new fibre optic based reflectance pulse oximeter probe and processing system were developed followed by an in vivo evaluation of the technology on seventeen patients undergoing elective laparotomy. Photoplethysmographic (PPG) signals of good quality and high signal-to-noise ratio were obtained from the small bowel, large bowel, liver and stomach. Simultaneous peripheral PPG signals from the finger were also obtained for comparison purposes. Analysis of the amplitudes of all acquired PPG signals indicated much larger amplitudes for those signals obtained from splanchnic organs than those obtained from the finger. Estimated SpO(2) values for splanchnic organs showed good agreement with those obtained from the finger fibre optic probe and those obtained from a commercial device. These preliminary results suggest that a miniaturized 'indwelling' fibre optic sensor may be a suitable method for pre-operative and post-operative evaluation of splanchnic organ SpO(2) and their health. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Role of the Sympathetic Nervous System and Its Modulation in Renal Hypertension

    Directory of Open Access Journals (Sweden)

    Yusuke Sata

    2018-03-01

    Full Text Available The kidneys are densely innervated with renal efferent and afferent nerves to communicate with the central nervous system. Innervation of major structural components of the kidneys, such as blood vessels, tubules, the pelvis, and glomeruli, forms a bidirectional neural network to relay sensory and sympathetic signals to and from the brain. Renal efferent nerves regulate renal blood flow, glomerular filtration rate, tubular reabsorption of sodium and water, as well as release of renin and prostaglandins, all of which contribute to cardiovascular and renal regulation. Renal afferent nerves complete the feedback loop via central autonomic nuclei where the signals are integrated and modulate central sympathetic outflow; thus both types of nerves form integral parts of the self-regulated renorenal reflex loop. Renal sympathetic nerve activity (RSNA is commonly increased in pathophysiological conditions such as hypertension and chronic- and end-stage renal disease. Increased RSNA raises blood pressure and can contribute to the deterioration of renal function. Attempts have been made to eliminate or interfere with this important link between the brain and the kidneys as a neuromodulatory treatment for these conditions. Catheter-based renal sympathetic denervation has been successfully applied in patients with resistant hypertension and was associated with significant falls in blood pressure and renal protection in most studies performed. The focus of this review is the neural contribution to the control of renal and cardiovascular hemodynamics and renal function in the setting of hypertension and chronic kidney disease, as well as the specific roles of renal efferent and afferent nerves in this scenario and their utility as a therapeutic target.

  15. Origins of the sympathetic innervation to the nasal-associated lymphoid tissue (NALT): an anatomical substrate for a neuroimmune connection.

    Science.gov (United States)

    Marafetti, Lucas E; Romeo, Horacio E

    2014-11-15

    The participation of sympathetic nerve fibers in the innervation of the nasal-associated lymphoid tissues (NALT) was investigated in hamsters. Vesicular monoamine transporter 2 (VMAT2), an established sympathetic marker, is expressed in all neurons of superior cervical ganglia (SCG). In addition, VMAT2 -immunoreactive nerve fibers were localized in the NALT as well as in adjacent anatomical structures of the upper respiratory tract. Unilateral surgical ablation of the SCG abolished VMAT2 innervation patterns ipsilaterally while the contra lateral side is unaffected. These results provide the anatomical substrate for a neuroimmune connection in the NALT. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Sympathetic and sensory innervation of small intensely fluorescent (SIF) cells in rat superior cervical ganglion.

    Science.gov (United States)

    Takaki, Fumiya; Nakamuta, Nobuaki; Kusakabe, Tatsumi; Yamamoto, Yoshio

    2015-02-01

    The sympathetic ganglion contains small intensely fluorescent (SIF) cells derived from the neural crest. We morphologically characterize SIF cells and focus on their relationship with ganglionic cells, preganglionic nerve fibers and sensory nerve endings. SIF cells stained intensely for tyrosine hydroxylase (TH), with a few cells also being immunoreactive for dopamine β-hydroxylase (DBH). Vesicular acetylcholine transporter (VAChT)-immunoreactive puncta were distributed around some clusters of SIF cells, whereas some SIF cells closely abutted DBH-immunoreactive ganglionic cells. SIF cells contained bassoon-immunoreactive products beneath the cell membrane at the attachments and on opposite sites to the ganglionic cells. Ganglion neurons and SIF cells were immunoreactive to dopamine D2 receptors. Immunohistochemistry for P2X3 revealed ramified nerve endings with P2X3 immunoreactivity around SIF cells. Triple-labeling for P2X3, TH and VAChT allowed the classification of SIF cells into three types based on their innervation: (1) with only VAChT-immunoreactive puncta, (2) with only P2X3-immunoreactive nerve endings, (3) with both P2X3-immunoreactive nerve endings and VAChT-immunoreactive puncta. The results of retrograde tracing with fast blue dye indicated that most of these nerve endings originated from the petrosal ganglion. Thus, SIF cells in the superior cervical ganglion are innervated by preganglionic fibers and glossopharyngeal sensory nerve endings and can be classified into three types. SIF cells might modulate sympathetic activity in the superior cervical ganglion.

  17. Chronic intestinal ischaemia: measurement of the total splanchnic blood flow.

    Science.gov (United States)

    Zacho, Helle D

    2013-04-01

    A redundant collateral network between the intestinal arteries is present at all times. In case of ischaemia in the gastrointestinal tract, the collateral blood supply can develop further, thus accommodating the demand for oxygen even in the presence of significant stenosis or occlusion of the intestinal arteries without clinical symptoms of intestinal ischaemia. Symptoms of ischemia develop when the genuine and collateral blood supply no longer can accommodate the need for oxygen. Atherosclerosis is the most common cause of obliteration in the intestinal arteries. In chronic intestinal ischaemia (CII), the fasting splanchnic blood flow (SBF) is sufficient, but the postprandial increase in SBF is inadequate and abdominal pain will therefore develop in relation to food intake causing the patient to eat smaller meals at larger intervals with a resulting weight loss. Traditionally, the CII-diagnosis has exclusively been based upon morphology (angiography) of the intestinal arteries; however, substantial discrepancies between CII-symptoms and the presence of atherosclerosis/stenosis in the intestinal arteries have been described repeatedly in the literature impeding the diagnosis of CII. This PhD thesis explores a method to determine the total SBF and its potential use as a diagnostic tool in patients suspected to suffer from CII. The SBF can be measured using a continuous infusion of a tracer and catheterisation of a hepatic vein and an artery. By measuring the SBF before and after a standard meal it is possible to assess the ability or inability to enhance the SBF and thereby diagnosing CII. In Study I, measurement of SBF was tested against angiography in a group of patients suspected to suffer from CII due to pain and weight loss. A very good agreement between the postprandial increase in SBF and angiography was found. The method was validated against a well-established method independent of the hepatic extraction of tracer using pAH in a porcine model (study II

  18. How a Simple Ankle Sprain Turned Into Neuropathic Pain: Complex Reflex Sympathetic Dystrophy Versus Erythromelalgia.

    Science.gov (United States)

    Lurati, Ann Regina

    2018-04-01

    A 36-year-old woman sustained a Grade 2 ankle sprain at work. Two days after the injury, the ankle and foot became red and she complained of "intense burning pain." First diagnosed with complex reflex sympathetic dystrophy, the employee was prescribed medications that provided some pain relief; a subsequent temporary nerve block provided additional relief. However, the symptoms returned and she was treated unsuccessfully with surgical sympathectomy. The employee was referred to a neurologist and diagnosed with primary erythromelalgia, a rare pain disorder that can be mistaken as complex reflex sympathetic dystrophy.

  19. The human sympathetic nervous system: its relevance in hypertension and heart failure.

    Science.gov (United States)

    Parati, Gianfranco; Esler, Murray

    2012-05-01

    Evidence assembled in this review indicates that sympathetic nervous system dysfunction is crucial in the development of heart failure and essential hypertension. This takes the form of persistent and adverse activation of sympathetic outflows to the heart and kidneys in both conditions. An important goal for clinical scientists is translation of the knowledge of pathophysiology, such as this, into better treatment for patients. The achievement of this 'mechanisms to management' transition is at different stages of development with regard to the two disorders. Clinical translation is mature in cardiac failure, knowledge of cardiac neural pathophysiology having led to the introduction of beta-adrenergic blockers, an effective therapy. With essential hypertension perhaps we are on the cusp of effective translation, with recent successful testing of selective catheter-based renal sympathetic nerve ablation in patients with resistant hypertension, an intervention firmly based on the demonstration of activation of the renal sympathetic outflow. Additional evidence in this regard is provided by the results of pilot studies exploring the possibility to reduce blood pressure in resistant hypertensives through electrical stimulation of the area of carotid baroreceptors. Despite the general importance of the sympathetic nervous system in blood pressure regulation, and the specific demonstration that the blood pressure elevation in essential hypertension is commonly initiated and sustained by sympathetic nervous activation, drugs antagonizing this system are currently underutilized in the care of patients with hypertension. Use of beta-adrenergic blocking drugs is waning, given the propensity of this drug class to have adverse metabolic effects, including predisposition to diabetes development. The blood pressure lowering achieved with carotid baroreceptor stimulation and with the renal denervation device affirms the importance of the sympathetic nervous system in

  20. Effect of octreotide on systemic, central, and splanchnic haemodynamics in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Brinch, K; Henriksen, Jens Henrik

    1997-01-01

    BACKGROUND/AIMS: Cirrhosis with portal hypertension is associated with changes in the splanchnic and systemic haemodynamics, and subsequent complications, such as bleeding from oesophageal varices, have led to the introduction of long-acting somatostatin analogues in the treatment of portal...... hypertension. However, reports on the splanchnic and systemic effects of octreotide are contradictory and therefore the aim of the present study was to assess the effects of continuous infusion of octreotide on central and systemic haemodynamics, portal pressures, and hepatic blood flow. METHODS: Thirteen...... patients with cirrhosis underwent liver vein catheterisation. Portal and arterial blood pressures were determined at baseline and 10, 30, and 50 min after a bolus injection of octreotide 100 micrograms, followed by continuous infusion of octreotide 100 micrograms/ h for 1 h. Hepatic blood flow, cardiac...

  1. Splanchnic vein thrombosis in myeloproliferative neoplasms: pathophysiology and molecular mechanisms of disease

    Science.gov (United States)

    How, Joan; Zhou, Amy; Oh, Stephen T.

    2016-01-01

    Myeloproliferative neoplasms (MPNs) are the most common underlying prothrombotic disorder found in patients with splanchnic vein thrombosis (SVT). Clinical risk factors for MPN-associated SVTs include younger age, female sex, concomitant hypercoagulable disorders, and the JAK2 V617F mutation. These risk factors are distinct from those associated with arterial or deep venous thrombosis (DVT) in MPN patients, suggesting disparate disease mechanisms. The pathophysiology of SVT is thought to derive from local interactions between activated blood cells and the unique splanchnic endothelial environment. Other mutations commonly found in MPNs, including CALR and MPL, are rare in MPN-associated SVT. The purpose of this article is to review the clinical and molecular risk factors for MPN-associated SVT, with particular focus on the possible mechanisms of SVT formation in MPN patients. PMID:28246554

  2. Splanchnic and peripheral release of 3-methylhistidine in relation to its urinary excretion in human infection

    DEFF Research Database (Denmark)

    Sjölin, J; Stjernström, H; Henneberg, S

    1989-01-01

    The present investigation was undertaken in order to determine the release of 3-methylhistidine (3MH) from the splanchnic region and from the leg, and the contributions these make to the increase in urinary 3MH excretion in infection. Thirteen febrile patients with infection were investigated...... that skeletal muscle is the source, and these results thus validate the use of urinary 3MH excretion as a marker of myofibrillar protein catabolism in infected patients.......) and from the splanchnic region 0.012 +/- 0.013 mumol/min. These releases of 3MH constitute 27% +/- 2% and 8% +/- 6% of the individual urinary excretions, respectively. With increasing degree of catabolism, measured as individual 3MH increase above baseline excretion or as the 3MH to creatinine ratio (3MH...

  3. Sympathetic and parasympathetic regulation of rectal motility in rats.

    Science.gov (United States)

    Ridolfi, Timothy J; Tong, Wei-Dong; Takahashi, Toku; Kosinski, Lauren; Ludwig, Kirk A

    2009-11-01

    The colon and rectum are regulated by the autonomic nervous system (ANS). Abnormalities of the ANS are associated with diseases of the colon and rectum while its modulation is a putative mechanism for sacral nerve stimulation. The purpose of this study is to establish a rat model elucidating the role of the efferent ANS on rectal motility. Rectal motility following transection or stimulation of parasympathetic pelvic nerves (PN) or sympathetic hypogastric nerves (HGN) was measured with rectal strain gauge transducers and quantified as a motility index (MI). Colonic transit was measured 24 hours after transection by calculating the geometric center (GC) of distribution of (51)Cr Transection of PN and HGN decreased MI to 518 +/- 185 g*s (p < 0.05) and increased MI to 5,029 +/- 1,954 g*s (p < 0.05), respectively, compared to sham (975 +/- 243 g*s). Sectioning of PN and HGN decreased transit with GC = 4.9 +/- 0.2 (p < 0.05) and increased transit with GC = 8.1 +/- 0.7 (p < 0.02), respectively, compared to sham (GC = 5.8 +/- 0.3). Stimulation of PN and HGN increased MI to 831 +/- 157% (p < 0.01) and decreased MI to 251 +/- 24% (p < 0.05), respectively. Rectal motility is significantly altered by sectioning or stimulating either HGN or PN. This model may be useful in studying how sacral nerve stimulation exerts its effects and provide insight into the maladies of colonic motility.

  4. Post-Bypass Extensive Ascites due to Splanchnic Bypass and the Effectiveness of Hyperalimentation Treatment

    Directory of Open Access Journals (Sweden)

    Veysel Temizkan

    2013-04-01

    Full Text Available Reperfusion edema may develop in the early periods of chronic ischemic tissue reperfusion. Reperfusion edema may be represented after the splanchnic bypass with ascites, abdominal distension, and liver and kidney function impairment. In this article, we are reporting the hyperalimentation treatment and its results for the common ascites and hepatorenal syndrome, after a coeliac and superior mesenteric artery bypass. [Arch Clin Exp Surg 2013; 2(2.000: 124-128

  5. Room air versus carbon dioxide pneumoperitoneum: effects on oxidative state, apoptosis and histology of splanchnic organs.

    Science.gov (United States)

    Ypsilantis, Petros; Lambropoulou, Maria; Tentes, Ioannis; Chryssidou, Maria; Georgantas, Themistoklis; Simopoulos, Constantinos

    2016-04-01

    Although CO2 is the insufflation gas of choice in laparoscopic procedures, room air is usually used in natural orifice transluminal endoscopic surgery. The aim of the present study was to compare the safety of room air versus CO2 pneumoperitoneum in terms of their effect on the oxidative state, apoptosis and tissue injury of splanchnic organs. Eighteen Wistar rats were assigned to three groups (n = 6 per group) and were subjected to 8 mm Hg room air (group Pne-Air) or CO2 pneumoperitoneum (group Pne-CO2) or sham operation for 60 min. Forty-five minutes postdeflation, tissue samples were excised from the liver, stomach, ileum and kidneys for reduced glutathione-to-glutathione disulfide (GSH/GSSG) ratio, caspase-8 and caspase-3 and hypoxia-inducible factor-1α (HIF-1α) immunohistochemical assessment and histopathologic examination. GSH/GSSG ratio substantially declined in both pneumoperitoneum groups. No change was noted in HIF-1α expression. Mild upregulation of caspase-8 and caspase-3 was noted in both pneumoperitoneum groups being less pronounced in group Pne-Air. Histopathologic score was increased in all organs studied, but the stomach, in both pneumoperitoneum groups. Pneumoperitoneum established by either room air or CO2 induced substantial oxidative stress, mild apoptosis and mild tissue injury in splanchnic organs. While air pneumoperitoneum conferred a less pronounced apoptotic effect, the oxidative state and histopathologic profile of splanchnic organs did not differ between insufflation gases.

  6. Sympathetic activity during passive heat stress in healthy aged humans.

    Science.gov (United States)

    Gagnon, Daniel; Schlader, Zachary J; Crandall, Craig G

    2015-05-01

    Cardiovascular adjustments to heat stress are attenuated in healthy aged individuals, which could contribute to their greater prevalence of heat-related illnesses and deaths during heat waves. The attenuated cardiovascular adjustments in the aged could be due to lower increases in sympathetic nerve activity during heat stress. We examined muscle sympathetic nerve activity (MSNA) and plasma catecholamine concentrations in healthy young and aged individuals during whole-body passive heat stress. The main finding of this study is that increases in MSNA and plasma catecholamine concentrations did not differ between young and aged healthy individuals during passive heating. Furthermore, the increase in these variables did not differ when a cold pressor test and lower body negative pressure were superimposed upon heating. These findings suggest that attenuated cardiovascular adjustments to heat stress in healthy aged individuals are unlikely to be related to attenuated increases in sympathetic activity. Cardiovascular adjustments during heat stress are generally attenuated in healthy aged humans, which could be due to lower increases in sympathetic activity compared to the young. We compared muscle sympathetic nerve activity (MSNA) between 11 young (Y: 28 ± 4 years) and 10 aged (A: 70 ± 5 years) subjects prior to and during passive heating. Furthermore, MSNA responses were compared when a cold pressor test (CPT) and lower body negative pressure (LBNP) were superimposed upon heating. Baseline MSNA burst frequency (Y: 15 ± 4 vs. A: 31 ± 3 bursts min(-1) , P ≤ 0.01) and burst incidence (Y: 26 ± 8 vs. A: 50 ± 7 bursts (100 cardiac cycles (CC))(-1) , P ≤ 0.01) were greater in the aged. Heat stress increased core temperature to a similar extent in both groups (Y: +1.2 ± 0.1 vs. A: +1.2 ± 0.0°C, P = 0.99). Absolute levels of MSNA remained greater in the aged during heat stress (burst frequency: Y: 47 ± 6 vs. A: 63 ± 11

  7. [Reflex sympathetic dystrophy of childhood: one case].

    Science.gov (United States)

    Jouary, T; Boralevi, F; Pillet, P; Taieb, A; Léauté-Labrèze, C

    2002-10-01

    Reflex sympathetic dystrophy (Complex Regional Pain Syndrome type 1) is little known by dermatologists. We report a pediatric case of reflex sympathetic dystrophy with predominant cutaneous involvement. A 10 year-old girl presented a warm, painful and relapsing right hand edema for seven months (three outbreaks). The hand was cyanotic, pigmented and painful. Routine blood tests were normal. Radiography and radionuclide bone scan were consistent with stage 1 reflex sympathetic dystrophy. Physiotherapy led to dramatic improvement. Reflex sympathetic dystrophy is known since the XVIIIth century. In the last decade, progress in radiology and bone scan have provided elements for understanding the physiopathology of the disease. Microvascular abnormalities under the control of sympathetic nervous system are characteristic of different stages of reflex sympathetic dystrophy. Recently, neurovascular system experiments showed that sympathetic reflex tonus changes may be controlled by the central nervous system. Dermatologic changes of reflex sympathetic dystrophy are well known: edema and erythema in first stage, cyanosis in second stage, sclerosis and atrophia in third stage, but pediatric cases are rarely reported. Reflex sympathetic dystrophy is a complex disease, however its physiopathology is now understood. The clinical presentation can be atypical and the dermatologist may be the first to be consulted.

  8. Sympathetic Innervation Induced in Engrafted Engineered Cardiomyocyte Sheets by Glial Cell Line Derived Neurotrophic Factor In Vivo

    Directory of Open Access Journals (Sweden)

    Xian-ming Fu

    2013-01-01

    Full Text Available The aim of myocardial tissue engineering is to repair or regenerate damaged myocardium with engineered cardiac tissue. However, this strategy has been hampered by lack of functional integration of grafts with native myocardium. Autonomic innervation may be crucial for grafts to function properly with host myocardium. In this study, we explored the feasibility of in vivo induction of autonomic innervation to engineered myocardial tissue using genetic modulation by adenovirus encoding glial cell line derived neurotrophic factor (GDNF. GFP-transgene (control group or GDNF overexpressing (GDNF group engineered cardiomyocyte sheets were transplanted on cryoinjured hearts in rats. Nerve fibers in the grafts were examined by immunohistochemistry at 1, 2, and 4 weeks postoperatively. Growth associated protein-43 positive growing nerves and tyrosine hydroxylase positive sympathetic nerves were first detected in the grafts at 2 weeks postoperatively in control group and 1 week in GDNF group. The densities of growing nerve and sympathetic nerve in grafts were significantly increased in GDNF group. No choline acetyltransferase immunopositive parasympathetic nerves were observed in grafts. In conclusion, sympathetic innervation could be effectively induced into engrafted engineered cardiomyocyte sheets using GDNF.

  9. [Improvement of approach to performance of lumbar sympathetic blockade in patients with tissue ischemia of the lower extremities].

    Science.gov (United States)

    Panov, V M; Fesenko, U A; Kutsyn, V M

    2014-06-01

    New access for performance of sympathic blockade in region of aortal bifurcation, was elaborated, basing on calculations, conducted on 30 spiral computeric tomograms of lumbar and sacral parts of vertebral column. Application of the method permits to escape such complications, as a renal and the main vessels damage, the sympathetic nerves blockade, do not demand roentgenological control.

  10. Increased peripherin in sympathetic axons innervating plantar metatarsal arteries in STZ-induced type I diabetic rats

    Directory of Open Access Journals (Sweden)

    Niloufer Jahan Johansen

    2014-05-01

    Full Text Available A common characteristic of axonopathy is the abnormal accumulation of cytoskeletal proteins. We recently reported that streptozotocin (STZ-induced type 1 diabetes produced a change in the morphology of sympathetic nerve fibers supplying rat plantar metatarsal arteries (PMAs. Here we investigated whether these morphological changes are associated with axonal accumulation of the type III intermediate filament peripherin and the microtubule protein β-tubulin III, as both are implicated in axonal remodeling. PMAs from hyperglycemic STZ-treated rats receiving a low dose of insulin (STZ-LI were compared with those from normoglycemic STZ-treated rats receiving a high dose of insulin (STZ-HI and vehicle-treated controls. Western blotting revealed an increase in protein expression level for peripherin in PMAs from STZ-LI rats but no change in that for β-tubulin III. In addition, there was an increase in the number of peripherin immunoreactive nerve fibers in the perivascular nerve plexus of PMAs from STZ-LI rats. Co-labeling for peripherin and neuropeptide Y (a marker for sympathetic axons revealed that peripherin immunoreactivity increased in sympathetic axons. None of these changes were detected in PMAs from STZ-HI rats, indicating that increased peripherin in sympathetic axons of STZ-LI rats is likely due to hyperglycemia and provides a marker of diabetes-induced nerve damage.

  11. Anatomic Variation of Rami Communicantes in the Upper Thoracic Sympathetic Chain: A Human Cadaveric Study.

    Science.gov (United States)

    Street, Elliot; Ashrafi, Mohammed; Greaves, Nicholas; Gouldsborough, Ingrid; Baguneid, Mohamed

    2016-07-01

    Hyperhidrosis is secondary to over activation of the sympathetic nervous system and surgical sympathectomy is the treatment of choice when other modalities have failed. This study investigated anatomic variation in the upper thoracic sympathetic chain and associated rami communicantes among cadaveric specimens. It considers the implications of these findings on surgical techniques to treat hyperhidrosis. The upper 4 thoracic sympathetic ganglia, intercostal nerves, and connecting rami were dissected, measured and mapped in 40 sides of 20 adult human cadavers. Ganglia location was recorded. The incidence, orientation, and distance travelled by rami communicantes was compared across different ganglionic levels and between sides. The percentage of ganglia located below their associated intercostal space was 6.25% with stellate ganglions present in 70% of specimens and Kuntz fibers noted in 40%. There was a stepwise reduction in incidence of rami from superior to inferior placed ganglia. The number of rami identified across all levels was significantly greater on the right (P = 0.03). The horizontal distance between the sympathetic chain and union of the rami on the intercostal nerves was significantly greater on the right across all levels (P = 0.04). There was substantial variation in the rami communicantes across the upper 4 ganglia and between right and left sides. Consideration of this variation should be given when planning surgical sympathectomy for hyperhidrosis particularly to avoid symptom recurrence. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. AJU 3098.indd

    African Journals Online (AJOL)

    mn

    Fibers from the celiac plexus and the first 4 lumbar splanchnic nerves form the superior hypogastric plexus, which is divided into two hypogastric nerves. The parasympathetic fibers in the nervi erigentes and hypogastric nerves join the fibers from the sacral sympathetic ganglia and form the pelvic (inferior hypogastric).

  13. Effects of sympathetic histamine on vasomotor responses of blood vessels in rabbit ear to electrical stimulation.

    Science.gov (United States)

    Chen, Ying-Ying; Lv, Jun; Xue, Xiao-Yan; He, Gong-Hao; Zhou, Ying; Jia, Min; Luo, Xiao-Xing

    2010-06-01

    To investigate the effects of histamine receptor antagonists on vasoconstriction induced by electrical stimulation (ES) on posterior auricular nerve, and to explore the pre- and post-synaptic effects of sympathetic histamine on the vasomotor responses of vascular smooth muscle in rabbit ear. ES was applied to posterior auricular nerves of the whole rabbit ear at 10 Hz, 20 Hz and 40 Hz, respectively. Besides, the whole ear was perfused with different histamine receptor antagonists under constant perfusion pressure, and the changes in the flow rate of perfusate were observed. The flow rate of venous outflow was decreased by ES at all the 3 frequencies. The ES-induced vasoconstriction at 20 Hz and 40 Hz could be partly inhibited by H(1) receptor antagonist chlorpheniramine (P functions of sympathetic histamine vary from pre-synaptic modulation to post-synaptic vasoconstriction or vasodilatation, via activation of different histamine receptors.

  14. Angiotensin-(1-7 in Paraventricular Nucleus Contributes to the Enhanced Cardiac Sympathetic Afferent Reflex and Sympathetic Activity in Chronic Heart Failure Rats

    Directory of Open Access Journals (Sweden)

    Xingsheng Ren

    2017-08-01

    Full Text Available Background/Aims: Cardiac sympathetic afferent reflex (CSAR enhancement contributes to exaggerated sympathetic activation in chronic heart failure (CHF. The current study aimed to investigate the roles of angiotensin (Ang-(1-7 in CSAR modulation and sympathetic activation and Ang-(1-7 signaling pathway in paraventricular nucleus of CHF rats. Methods: CHF was induced by coronary artery ligation. Responses of renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP to epicardial application of capsaicin were used to evaluate CSAR in rats with anesthesia. Results: Ang-(1-7 increased RSNA, MAP, CSAR activity, cAMP level, NAD(PH oxidase activity and superoxide anion level more significantly in CHF than in sham-operated rats, while Mas receptor antagonist A-779 had the opposite effects. Moreover, Ang-(1-7 augmented effects of Ang II in CHF rats. The effects of Ang-(1-7 were blocked by A-779, adenylyl cyclase inhibitor SQ22536, protein kinase A inhibitor Rp-cAMP, superoxide anion scavenger tempol and NAD(PH oxidase inhibitor apocynin. Mas and AT1 receptor protein expressions, Ang-(1-7 and Ang II levels in CHF increased. Conclusions: These results indicate that Ang-(1-7 in paraventricular nucleus enhances CSAR and sympathetic output not only by exerting its own effects but also by augmenting the effects of Ang II through Mas receptor in CHF. Endogenous Ang-(1-7/Mas receptor activity contributes to CSAR enhancement and sympathetic activation in CHF, and NAD(PH oxidase-derived superoxide anions and the cAMP-PKA signaling pathway are involved in mediating the effects of Ang-(1-7 in CHF.

  15. Nerve conduction

    Science.gov (United States)

    ... the central nervous system (CNS) and peripheral nervous system (PNS). The CNS contains the brain and the spinal cord and the PNS consists of thousands of nerves that connect the spinal cord to muscles and sensory receptors. A peripheral nerve is composed of nerve ...

  16. Sympathetic actions on the skeletal muscle.

    Science.gov (United States)

    Roatta, Silvestro; Farina, Dario

    2010-01-01

    The sympathetic nervous system (SNS) modulates several functions in skeletal muscle fibers, including metabolism, ionic transport across the membrane, and contractility. These actions, together with the sympathetic control of other organ systems, support intense motor activity. However, some SNS actions on skeletal muscles may not always be functionally advantageous. Implications for motor control and sport performance are discussed.

  17. Magnitude of Morning Surge in Blood Pressure Is Associated with Sympathetic but Not Cardiac Baroreflex Sensitivity.

    Science.gov (United States)

    Johnson, Aaron W; Hissen, Sarah L; Macefield, Vaughan G; Brown, Rachael; Taylor, Chloe E

    2016-01-01

    The ability of the arterial baroreflex to regulate blood pressure may influence the magnitude of the morning surge in blood pressure (MSBP). The aim was to investigate the relationships between sympathetic and cardiac baroreflex sensitivity (BRS) and the morning surge. Twenty-four hour ambulatory blood pressure was recorded in 14 young individuals. The morning surge was defined via the pre-awakening method, which is calculated as the difference between mean blood pressure values 2 h before and 2 h after rising from sleep. The mean systolic morning surge, diastolic morning surge, and morning surge in mean arterial pressures were 15 ± 2, 13 ± 1, and 11 ± 1 mmHg, respectively. During the laboratory protocol, continuous measurements of blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) were made over a 10-min period of rest. Sympathetic BRS was quantified by plotting MSNA burst incidence against diastolic pressure (sympathetic BRSinc), and by plotting total MSNA against diastolic pressure (sympathetic BRStotal). Cardiac BRS was quantified using the sequence method. The mean values for sympathetic BRSinc, sympathetic BRStotal and cardiac BRS were -1.26 ± 0.26 bursts/100 hb/mmHg, -1.60 ± 0.37 AU/beat/mmHg, and 13.1 ± 1.5 ms/mmHg respectively. Significant relationships were identified between sympathetic BRSinc and the diastolic morning surge (r = 0.62, p = 0.02) and the morning surge in mean arterial pressure (r = 0.57, p = 0.03). Low sympathetic BRS was associated with a larger morning surge in mean arterial and diastolic blood pressure. Trends for relationships were identified between sympathetic BRStotal and the diastolic morning surge (r = 0.52, p = 0.066) and the morning surge in mean arterial pressure (r = 0.48, p = 0.095) but these did not reach significance. There were no significant relationships between cardiac BRS and the morning surge. These findings indicate that the ability of the baroreflex to buffer increases in blood pressure

  18. Near-infrared spectroscopy is a promising noninvasive technique for monitoring the effects of feeding regimens on the cerebral and splanchnic regions.

    Science.gov (United States)

    Grometto, Alice; Pizzo, Benedetta; Strozzi, Maria Chiara; Gazzolo, Francesca; Gazzolo, Diego

    2018-02-01

    The effects of different milk and, or, administration regimens on cerebro-splanchnic perfusion are still a matter of debate. We investigated the effects of the bolus administration of breast milk or formula on cerebro-splanchnic oximetry, function and perfusion, assessed by near-infrared spectroscopy (NIRS). This observational study of 30 infants fed with breast (n = 15) or formula (n = 15) milk, and matched for gestational age and birth weight, was carried out in the neonatal intensive care unit of the C Arrigo Children's Hospital, Alessandria, Italy, a tertiary-level referral centre, from October 2015 to December 2016. NIRS monitoring parameters, such as cerebral and splanchnic oximetry, fraction of tissue oxygen extraction and the cerebral-splanchnic ratio, were recorded before, during and after feeding. Breast milk led to a significant increase in cerebro-splanchnic oximetry and tissue oxygen extraction (p < 0.001) during and after feeding, and the cerebro-splanchnic perfusion ratio was significantly higher (p < 0.001) in the breast than formula group. Our study results suggest that breast milk was better tolerated than formula, requiring lower energy expenditure and lower cerebro-splanchnic haemodynamic redistribution. The findings could prompt investigations using NIRS as a promising noninvasive tool for cerebral and splanchnic longitudinal monitoring during neonatal feeding. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  19. [Reflex sympathetic dystrophy secondary to piriformis syndrome: a case report].

    Science.gov (United States)

    Akçali, Didem; Taş, Ayça; Cizmeci, Pelin; Oktar, Suna; Zinnuroğlu, Murat; Arslan, Emre; Köseoğlu, Hüseyin; Babacan, Avni

    2009-04-01

    Piriformis syndrome is a rare cause of hip and foot pain which may be due to sciatic nerve irritation because of anatomic abnormalities of sciatic nerve and piriformis muscle or herniated disc, facet syndrome, trochanteric bursit, sacroiliac joint dysfunction, endometriosis and other conditions where sciatic nerve is irritated. There has been no reflex sympathetic dystrophy (RSD) case presented due to piriformis syndrome before. A sixty-two-year-old female patient had right foot and hip pain (VNS: 8), redness and swelling in the foot since 15 days. Her history revealed long walks and travelling 3 weeks ago and sitting on the foot for a long time for a couple of days. Physical examination revealed painful hip movement, positive straight leg rise. Erythema and hyperalgesia was present in dorsum of the right foot. Right foot dorsiflexion was weak and hyperesthesia was found in right L4-5 dermatome. Medical treatment and ultrasound treatment to piriformis muscle was not effective. The patient was injected 40 mg triamcinolon and local anesthetic in right piriformis muscle under floroscopy by diagnosis of piriformis syndrome, neuropathic pain and RSD. Pain and hyperalgesia resolved and motor weakness was better. During follow-up right foot redness resolved and pain decreased (VNS: 1). In this case report, there was vascular, muscle and skeletal signs supporting RSD, which shows us the therapoetic effect of diagnostic piriformis injection. The patient history, physical examination and diagnostic tests were evaluated by a multidisciplinary team which contributed to the treatment.

  20. Tension neuropathy of the superficial peroneal nerve: associated conditions and results of release.

    Science.gov (United States)

    Johnston, E C; Howell, S J

    1999-09-01

    We reviewed eight patients who sustained superficial peroneal nerve neuralgia after an inversion ankle sprain. Surgical exploration found anatomic abnormalities that tethered the nerve from movement during plantarflexion and inversion of the ankle. Most patients' pain improved dramatically after release and anterior transposition of the nerve. Seven joints also underwent arthroscopy, which showed intra-articular disease that was consistent with the original trauma. Five patients had reflex sympathetic dystrophy, three of which resolved after nerve release. Nerve conduction studies were not helpful. Careful physical examination and local nerve blocks were most important in making the diagnosis and prescribing treatment. All conservative measures should be exhausted before surgery is considered.

  1. [Mechanism of post-stroke reflex sympathetic dystrophy: study with needle electromyography].

    Science.gov (United States)

    Wang, Xiao-yan; Zhang, Tong; Li, Jing

    2006-10-10

    To explore the mechanism of post-stroke reflex sympathetic dystrophy (RSD) patients electromyographic abnormality and confirm its clinical value. Fifty patients with first-onset stroke, aged 33 - 78, including 30 with RSD and 20 without RSD, underwent needle electromyography (EMG) to test the nerve conduction velocity (NCV) and sensory nerve conduction velocity (SCV) of bilateral median nerves, and the number and position of spontaneous EMG activity of bilateral short abductor muscles of thumb and abductor muscles little finger. The median nerve compound muscle action potential (CMAP) amplitude of the affected upper extremities of the RSD group was 8.6 mV +/- 2.9 mV, significantly lower than that of the non-RSD group (13.2 mV +/- 4.6 mV, P < 0.01). The incidence of spontaneous electrical potential of the RSD group was 100%; significantly higher than hat of the non-RSD group (65%, P < 0.001). The quantity of spontaneous EMG activity on the short abductor muscles of thumb and abductor muscles little finger was increased in the RSD group (P < 0.01). The motor nerve conduction velocity and electrophysiological presentation of sensory nerve of these 2 groups were all normal and without significant differences between them. Partial axonal degeneration occurs on the distal motor never fibers of the affected upper extremity of the RSD patients, which may be related to subsequent peripheral nerve injury after central nerve system impairment.

  2. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary amino acid metabolism

    DEFF Research Database (Denmark)

    Larsen, Mogens; Galindo, C; Ouellet, D R

    2015-01-01

    Nine Holstein cows with rumen cannulas and indwelling catheters in splanchnic blood vessels were used in a generalized randomized incomplete block design with repeated measures to study the effect of increased early postpartum AA supply on splanchnic and mammary AA metabolism. At calving, cows were...... blocked according to parity (second and third or greater) and allocated to 2 treatments: abomasal infusion of water (CTRL; n=4) or free AA with casein profile (AA-CN; n=5) in addition to a basal diet. The AA-CN infusion started with half of the maximal dose at the calving day (1 d in milk; DIM......, and Lys tended to be greater for AA-CN, and the net PDV recovery of these infused AA ranged from 69 to 73%, indicating increased PDV metabolism with AA-CN. The fractional hepatic removal of these AA did not differ from zero and was unaffected by the increased supply. Consequently, the splanchnic release...

  3. Emergent embolization for control of massive hemorrhage from a splanchnic artery with a new coaxial catheter system

    International Nuclear Information System (INIS)

    Okazaki, M.; Higashihara, H.; Koganemaru, F.; Ono, H.; Fujimitsu, R.; Yamasaki, S.; Toyoshima, H.; Sato, S.; Hoashi, T.; Kimura, T.

    1992-01-01

    Emergent superselective embolization with a 3.0 F (1 mm) coaxial catheter and a steerable guidewire was performed in 27 patients with massive hemorrhage from a small-caliber splanchnic artery. Eight patients had intraperitoneal hemorrhage, 3 had hemobilia, 9 had gastric hemorrhage, and 7 had intestinal hemorrhage. Out of 27 patients, 7 had hemorrhage from a splanchnic artery pseudoaneurysm. Complete cessation of bleeding was obtained in all patients initially, but in 3 patients gastric hemorrhage recurred later. Otherwise, there was no rebleeding nor any major complication such as marked infarction of tissue or misplacement of embolic materials. This coaxial catheter system was highly reliable for achieving superselective catheterization in small-caliber arteries, minimizing the volume of infarcted tissue and allowing maximal preservation of splanchnic organic function. We conclude that this system represents a major advance in interventional radiology. (orig.)

  4. Sympathetic stimulation alters left ventricular relaxation and chamber size.

    Science.gov (United States)

    Burwash, I G; Morgan, D E; Koilpillai, C J; Blackmore, G L; Johnstone, D E; Armour, J A

    1993-01-01

    Alterations in left ventricular (LV) contractility, relaxation, and chamber dimensions induced by efferent sympathetic nerve stimulation were investigated in nine anesthetized open-chest dogs in sinus rhythm. Supramaximal stimulation of acutely decentralized left stellate ganglia augmented heart rate, LV systolic pressure, and rate of LV pressure rise (maximum +dP/dt, 1,809 +/- 191 to 6,304 +/- 725 mmHg/s) and fall (maximum -dP/dt, -2,392 +/- 230 to -4,458 +/- 482 mmHg/s). It also reduced the time constant of isovolumic relaxation, tau (36.5 +/- 4.8 to 14.9 +/- 1.1 ms). Simultaneous two-dimensional echocardiography recorded reductions in end-diastolic and end-systolic LV cross-sectional chamber areas (23 and 31%, respectively), an increase in area ejection fraction (32%), and increases in end-diastolic and end-systolic wall thicknesses (14 and 13%, respectively). End-systolic and end-diastolic wall stresses were unchanged by stellate ganglion stimulation (98 +/- 12 to 95 +/- 9 dyn x 10(3)/cm2; 6.4 +/- 2.4 to 2.4 +/- 0.3 dyn x 10(3)/cm2, respectively). Atrial pacing to similar heart rates did not alter monitored indexes of contractility. Dobutamine and isoproterenol induced changes similar to those resulting from sympathetic neuronal stimulation. These data indicate that when the efferent sympathetic nervous system increases left ventricular contractility and relaxation, concomitant reductions in systolic and diastolic dimensions of that chamber occur that are associated with increasing wall thickness such that LV wall stress changes are minimized.

  5. Numerical modeling of sympathetic detonation

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, A.L.; Kershner, J.D.; Mader, C.L.

    1979-11-01

    The sympathetic detonation of small cubes of solid rocket propellant was modeled numerically, using the Eulerian reactive hydrodynamic code 2DE with Forest Fire burn rates. The model was applied to cubes of 1 to 3 in., with excellent agreement between calculated and experimental results. The model also was applied to several propellants and to different experimental arrangements. The blast-wave pressures in the air gap and the induced shock pressures in the acceptor were obtained from the model. The correlation between these pressures was coupled with a study of the effect of the length-to-diameter ratio of a donor cylinder and the necessary conditions for detonation of the acceptor to provide a semiquantitative predictive capability.

  6. [Reflex sympathetic dystrophy: still a poorly defined entity].

    Science.gov (United States)

    Ornetti, Paul; Maillefert, Jean-Francis

    2004-01-31

    The reflex sympathetic dystrophy (algodystrophy) constitutes a large nosological field of which the main characteristics are the appearance of algic and vasomotor symptoms at a segmental level of a limb, in consequence to diverse pathologies (trauma, cardiovascular disease, etc.). The widely accepted theory of a dysregulation of the sympathetic nervous system is nowadays counter-balanced by recent work highlighting the preponderant role of polymodal afferent nerves in the pathophysiology of this disease. The diagnosis, being above-all clinical, is marked by two distinct phases appearing in a variable chronology; a warm phase associating fluctionating pain, stiffness and vasomotor symptoms, and then a cold phase characterized by fibrosis, leading to disabling trophic symptoms. Spontaneous recovery is usual and can be delayed by up to two years, however irreversible sequelae can occur. Paraclinical investigations are necessary to confirm the diagnosis: absence of a biological inflammatory syndrome, early hyperfixation on bone scintography or an abnormality in the MRI signal in the sub-chondral zones. The X-ray shows late local demineralization that is often non-homogenous. The treatment is poorly codified. First-line treatment in France, other than antalgics, often rests on the calcitonins. Intravenous diphosphonates are proposed by some in case of treatment failure. Regional venous blocks are sometimes performed in resistant and disabling forms. Rehabilitation and psychological support have a primordial place throughout the evolution of the illness.

  7. Hyperpolarizing `α2'-adrenoceptors in rat sympathetic ganglia

    Science.gov (United States)

    Brown, D.A.; Caulfield, M.P.

    1979-01-01

    1 Receptors mediating catecholamine-induced hyperpolarization of isolated superior cervical sympathetic ganglia of the rat have been characterized by means of an extracellular recording method. 2 (-)-Noradrenaline (EC50, 1.7 ± 0.6 μM) produced an immediate low-amplitude (oxymetazoline (0.01 to 1 μM) and ergometrine (0.1 to 10 μM) produced a persistent, low-amplitude hyperpolarization, as though they were partial agonists. Responses to the agonists were blocked by yohimbine (1 μM) but not be prazosin (1 μM). 7 It is concluded that the adrenergic cell bodies in the ganglion were hyperpolarized through activation of the same type of α-receptor (`α2-receptors') as those present at adrenergic nerve terminals. PMID:218668

  8. Effect of abomasal glucose infusion on splanchnic and whole-body glucose metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism.......Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism....

  9. Effect of octreotide on systemic, central, and splanchnic haemodynamics in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Brinch, K; Henriksen, Jens Henrik

    1997-01-01

    hypertension. However, reports on the splanchnic and systemic effects of octreotide are contradictory and therefore the aim of the present study was to assess the effects of continuous infusion of octreotide on central and systemic haemodynamics, portal pressures, and hepatic blood flow. METHODS: Thirteen...... infusion of octreotide. CONCLUSIONS: Octreotide does not affect the portal pressure or hepatic blood flow, whereas it may further contract the central blood volume and thereby exert a potentially harmful effect on central hypovolaemia in patients with cirrhosis. However, these early effects do not exclude...... the possibility that administration of longacting somatostatin analogues over a longer period may have a beneficial effect....

  10. Terminal nerve: cranial nerve zero

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Duque Parra

    2006-12-01

    Full Text Available It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH. In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a common nerve that integrates the terminal nerve with the olfactory nerves and the vomeronasals nerves which seem to carry out the odors detection function as well as in the food search, pheromone detection and nasal vascular regulation.

  11. Control of ketogenesis in the perfused rat liver by the sympathetic innervation.

    Science.gov (United States)

    Beuers, U; Beckh, K; Jungermann, K

    1986-07-01

    The regulation of ketogenesis by the hepatic nerves was investigated in the rat liver perfused in situ. Electrical stimulation of the hepatic nerves around the portal vein and the hepatic artery caused a reduction of basal ketogenesis owing to a decrease in acetoacetate release to 30% with essentially no change in 3-hydroxybutyrate release. At the same time, as observed before [Hartmann et al. (1982) Eur. J. Biochem. 123, 521-526], nerve stimulation increased glucose output, shifted lactate uptake to output and decreased perfusion flow. Ketogenesis from oleate, which enters the mitochondria via the carnitine system, was also lowered after nerve stimulation owing to a decrease of acetoacetate release to 30% with no alteration in 3-hydroxybutyrate release. Ketogenesis from octanoate, which enters the mitochondria independently of the carnitine system, was decreased after nerve stimulation as a result of a drastic decrease of acetoacetate output to 15% and a less pronounced decrease of 3-hydroxybutyrate release to 65%. Noradrenaline mimicked the metabolic nerve effects on ketogenesis only at the highly unphysiological concentration of 0.1 microM under basal conditions and in the presence of oleate as well as partly in the presence of octanoate. It was essentially not effective at a concentration of 0.01 microM, which might be reached in the sinusoids owing to overflow from the hepatic vasculature. Sodium nitroprusside prevented the hemodynamic changes after nerve stimulation; it did not affect the nerve-dependent reduction of ketogenesis under basal conditions and in the presence of oleate, yet it diminished the nerve effect on octanoate-dependent ketogenesis. Phentolamine clearly reduced the metabolic and hemodynamic nerve effects, while propranolol was without effect. The present data suggest that hepatic ketogenesis was inhibited by stimulation of alpha-sympathetic liver nerves directly rather than indirectly via hemodynamic changes or noradrenaline overflow from

  12. Effects of meal and incretins in the regulation of splanchnic blood flow.

    Science.gov (United States)

    Koffert, Jukka; Honka, Henri; Teuho, Jarmo; Kauhanen, Saila; Hurme, Saija; Parkkola, Riitta; Oikonen, Vesa; Mari, Andrea; Lindqvist, Andreas; Wierup, Nils; Groop, Leif; Nuutila, Pirjo

    2017-04-01

    Meal ingestion is followed by a redistribution of blood flow (BF) within the splanchnic region contributing to nutrient absorption, insulin secretion and glucose disposal, but factors regulating this phenomenon in humans are poorly known. The aim of the present study was to evaluate the organ-specific changes in BF during a mixed-meal and incretin infusions. A non-randomized intervention study of 10 healthy adults to study splanchnic BF regulation was performed. Effects of glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) infusions and mixed-meal were tested in 10 healthy, glucose tolerant subjects using PET-MRI multimodal imaging technology. Intestinal and pancreatic BF and blood volume (BV) were measured with 15 O-water and 15 O-carbon monoxide, respectively. Ingestion of a mixed-meal led to an increase in pancreatic and jejunal BF, whereas duodenal BF was unchanged. Infusion of GIP and GLP-1 reduced BF in the pancreas. However, GIP infusion doubled blood flow in the jejunum with no effect of GLP-1. Together, our data suggest that meal ingestion leads to increases in pancreatic BF accompanied by a GIP-mediated increase in jejunal but not duodenal blood flow. © 2017 The authors.

  13. Effects of meal and incretins in the regulation of splanchnic blood flow

    Directory of Open Access Journals (Sweden)

    Jukka Koffert

    2017-04-01

    Full Text Available Objective: Meal ingestion is followed by a redistribution of blood flow (BF within the splanchnic region contributing to nutrient absorption, insulin secretion and glucose disposal, but factors regulating this phenomenon in humans are poorly known. The aim of the present study was to evaluate the organ-specific changes in BF during a mixed-meal and incretin infusions. Design: A non-randomized intervention study of 10 healthy adults to study splanchnic BF regulation was performed. Methods: Effects of glucose-dependent insulinotrophic polypeptide (GIP and glucagon-like peptide 1 (GLP-1 infusions and mixed-meal were tested in 10 healthy, glucose tolerant subjects using PET-MRI multimodal imaging technology. Intestinal and pancreatic BF and blood volume (BV were measured with 15O-water and 15O-carbon monoxide, respectively. Results: Ingestion of a mixed-meal led to an increase in pancreatic and jejunal BF, whereas duodenal BF was unchanged. Infusion of GIP and GLP-1 reduced BF in the pancreas. However, GIP infusion doubled blood flow in the jejunum with no effect of GLP-1. Conclusion: Together, our data suggest that meal ingestion leads to increases in pancreatic BF accompanied by a GIP-mediated increase in jejunal but not duodenal blood flow.

  14. Sympathetic Cooling of Trapped Cd+ Isotopes

    OpenAIRE

    Blinov, B. B.; Deslauriers, L.; Lee, P.; Madsen, M. J.; Miller, R.; Monroe, C.

    2001-01-01

    We sympathetically cool a trapped 112Cd+ ion by directly Doppler-cooling a 114Cd+ ion in the same trap. This is the first demonstration of optically addressing a single trapped ion being sympathetically cooled by a different species ion. Notably, the experiment uses a single laser source, and does not require strong focusing. This paves the way toward reducing decoherence in an ion trap quantum computer based on Cd+ isotopes.

  15. Terminal nerve: cranial nerve zero

    OpenAIRE

    Jorge Eduardo Duque Parra; Carlos Alberto Duque Parra

    2006-01-01

    It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH). In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a co...

  16. Genetic variation in thrombin-activatable fibrinolysis inhibitor (TAFI) is associated with the risk of splanchnic vein thrombosis

    NARCIS (Netherlands)

    de Bruijne, Emile L. E.; Darwish Murad, Sarwa; de Maat, Moniek P. M.; Tanck, Michael W. T.; Haagsma, Elizabeth B.; van Hoek, Bart; Rosendaal, Frits R.; Janssen, Harry L. A.; Leebeek, Frank W. G.

    2007-01-01

    Splanchnic vein thrombosis (SVT) has been associated with a hypercoagulable state. Thrombin-activatable fibrinolysis inhibitor (TAFI) may contribute to a hypercoagulable state, and therefore we were interested in the role of TAFI in SVT. Since the disease is frequently associated with liver

  17. Genetic variation in thrombin-activatable fibrinolysis inhibitor (TAR) is associated with the risk of splanchnic vein thrombosis

    NARCIS (Netherlands)

    de Bruijne, Emile L. E.; Murad, Sarwa Darwish; de Maat, Moniek P. M.; Tanck, Michael W. T.; Haagsma, Elizabeth B.; van Hoeks, Bart; Rosendaal, Frits R.; Janssen, Harry L. A.; Leebeek, Frank W. G.

    Splanchnic vein thrombosis (SVT) has been associated with a hypercoagulable state. Thrombin-activatable fibrinolysis inhibitor (TAFI) may contribute to a hypercoagulable state, and therefore we were interested in the role of TAR in SVT. Since the disease is frequently associated with liver

  18. Thoracic epidural anesthesia attenuates hemorrhagic-induced splanchnic hypo-perfusion in post-resuscitation experimental hemorrhagic shock

    Directory of Open Access Journals (Sweden)

    Amir S Madjid

    2008-06-01

    Full Text Available The purpose of present study was to assess the effects of thoracic epidural anesthesia on splanchnic perfusion, bacterial translocation and histopathologic changes in experimental hemorrhagic shock in short-tailed macaques (Macaca nemestrina. Sixteen Macaca nemestrinas were randomly assigned to one of two groups i.e. the lidocaine group (n = 8, receiving general anesthesia plus lidocaine thoracic epidural anesthesia; and the saline group (n = 8, receiving general anesthesia alone as control. Hemorrhagic shock was induced by withdrawing blood gradually to a mean arterial pressure (MAP of 40 mm Hg, and maintained for 60 minutes. Animals were then resuscitated with their own blood and ringer lactate solution (RL. After resuscitation, epidural lidocaine 2% was given in the lidocaine group and saline in the control group. Resuscitation that was performed after one hour hemorrhagic shock, with hemodynamic variables and urine output returned to normal, revealed there was no improvement of splanchnic perfusion. PgCO2, P(g-aCO2, and pHi remained in critical value and tended to deteriorate in the saline group. Contrast to saline group, splanchnic perfusion in lidocaine group tended to improve. This condition was supported by the finding of less bacterial translocation and better histopathologic changes in lidocaine thoracic epidural anesthesia group than in saline group. This study concludes that lidocaine thoracic epidural anesthesia attenuates splachnic hypoperfusion in post-resuscitation hemorrhagic shock in Macaca nemestrina. (Med J Indones 2008; 17: 73-81Keywords: thoracic epidural anesthesia, lidocaine, hemorrhagic shock, splanchnic hypoperfusion, bacterial translocation

  19. Morbidity in reflex sympathetic dystrophy

    Science.gov (United States)

    Murray, C.; Cohen, A.; Perkins, T.; Davidson, J.; Sills, J.

    2000-01-01

    Reflex sympathetic dystrophy (RSD), an unusual diagnosis in general paediatrics, is well recognised by paediatric rheumatologists. This study reports the presentation and the clinical course of 46 patients (35 female, age range 8-15.2) with RSD. The patients saw professionals from an average of 2.3 specialties (range 1-5). Twenty five (54%) had a history of trauma. Median time to diagnosis was 12 weeks (range 1-130). Many children had multiple investigations and treatments. Once diagnosis was made, treatment followed with physiotherapy and analgesics. Median time to recovery was seven weeks (range 1-140), with 27.5% relapsing. Nine children required assessment by the child and adolescent psychiatry team. This disease, though rare, has significant morbidity and it is therefore important to raise clinicians' awareness of RSD in childhood. Children with the condition may then be recognised and referred for appropriate management earlier, and spared unnecessary investigations and treatments which may exacerbate the condition.

 PMID:10685927

  20. An autocrine Wnt5a-Ror signaling loop mediates sympathetic target innervation.

    Science.gov (United States)

    Ryu, Yun Kyoung; Collins, Sarah Ellen; Ho, Hsin-Yi Henry; Zhao, Haiqing; Kuruvilla, Rejji

    2013-05-01

    During nervous system development, axon branching at nerve terminals is an essential step in the formation of functional connections between neurons and target cells. It is known that target tissues exert control of terminal arborization through secretion of trophic factors. However, whether the in-growing axons themselves produce diffusible cues to instruct target innervation remains unclear. Here, we use conditional mutant mice to show that Wnt5a derived from sympathetic neurons is required for their target innervation in vivo. Conditional deletion of Wnt5a resulted in specific deficits in the extension and arborization of sympathetic fibers in their final target fields, while no defects were observed in the overall tissue patterning, proliferation, migration or differentiation of neuronal progenitors. Using compartmentalized neuronal cultures, we further demonstrate that the Ror receptor tyrosine kinases are required locally in sympathetic axons to mediate Wnt5a-dependent branching. Thus, our study suggests an autocrine Wnt5a-Ror signaling pathway that directs sympathetic axon branching during target innervation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Sympathetic skin response in incomplete spinal cord injury with urinary incontinence

    Directory of Open Access Journals (Sweden)

    Reza Emad

    2013-01-01

    Full Text Available Objectives: Sympathetic skin response (SSR is a test for evaluation of the sympathetic sweat gland pathways, and it has been used to study the central sympathetic pathways in spinal cord injury (SCI. This study aimed to assess the autonomic pathways according to normal or abnormal SSR in urinary incontinence patients due to incomplete spinal cord injury. Materials and Methods: Suprapubic, palmar, and plantar SSR to the peripheral nerve electrical stimulation were recorded in 16 urinary incontinence patients with incomplete spinal cord injury at various neurological levels and in 30 healthy control subjects. Results: All the recordings of SSR from the incomplete SCI patients with urinary incontinence as compared with their counterparts in the control group showed significantly reduced amplitudes with more prominent reduction in the suprapubic area recording site (P value < 0.0004. SSR with significantly prolonged latencies were recorded from palm and plantar areas in response to suprapubic area and tibial N stimuli, respectively (P value < 0.02. In this study, a significantly higher stimulus intensity (P value < 0.01 was needed to elicit SSR in the cases compared with the control group. Conclusion: This study showed abnormal SSR in urinary incontinence patients due to incomplete SCI. In addition, for the first time we have described recording of abnormal SSR from the suprapubic area as another way to show bladder sympathetic system involvement.

  2. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease.

    Science.gov (United States)

    Malpas, Simon C

    2010-04-01

    This review examines how the sympathetic nervous system plays a major role in the regulation of cardiovascular function over multiple time scales. This is achieved through differential regulation of sympathetic outflow to a variety of organs. This differential control is a product of the topographical organization of the central nervous system and a myriad of afferent inputs. Together this organization produces sympathetic responses tailored to match stimuli. The long-term control of sympathetic nerve activity (SNA) is an area of considerable interest and involves a variety of mediators acting in a quite distinct fashion. These mediators include arterial baroreflexes, angiotensin II, blood volume and osmolarity, and a host of humoral factors. A key feature of many cardiovascular diseases is increased SNA. However, rather than there being a generalized increase in SNA, it is organ specific, in particular to the heart and kidneys. These increases in regional SNA are associated with increased mortality. Understanding the regulation of organ-specific SNA is likely to offer new targets for drug therapy. There is a need for the research community to develop better animal models and technologies that reflect the disease progression seen in humans. A particular focus is required on models in which SNA is chronically elevated.

  3. Sympathetic responses during saline infusion into the veins of an occluded limb.

    Science.gov (United States)

    Cui, Jian; McQuillan, Patrick; Moradkhan, Raman; Pagana, Charles; Sinoway, Lawrence I

    2009-07-15

    Animal studies have shown that the increased intravenous pressure stimulates the group III and IV muscle afferent fibres, and in turn induce cardiovascular responses. However, this pathway of autonomic regulation has not been examined in humans. The aim of this study was to examine the hypothesis that infusion of saline into the venous circulation of an arterially occluded vascular bed evokes sympathetic activation in healthy individuals. Blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) responses were assessed in 19 young healthy subjects during local infusion of 40 ml saline into a forearm vein in the circulatory arrested condition. From baseline (11.8 +/- 1.2 bursts min(-1)), MSNA increased significantly during the saline infusion (22.5 +/- 2.6 bursts min(-1), P Blood pressure also increased significantly during the saline infusion. Three control trials were performed during separate visits. The results from the control trial show that the observed MSNA and blood pressure responses were not due to muscle ischaemia. The present data show that saline infusion into the venous circulation of an arterially occluded vascular bed induces sympathetic activation and an increase in blood pressure. We speculate that the infusion under such conditions stimulates the afferent endings near the vessels, and evokes the sympathetic activation.

  4. Potential Role of Semaphorin 3A and Its Receptors in Regulating Aberrant Sympathetic Innervation in Peritoneal and Deep Infiltrating Endometriosis

    Science.gov (United States)

    Liang, Yanchun; Wang, Wei; Huang, Jiaming; Tan, Hao; Liu, Tianyu; Shang, Chunliang; Liu, Duo; Guo, Luyan; Yao, Shuzhong

    2015-01-01

    Previous studies have demonstrated the involvement of nerve repellent factors in regulation of the imbalanced innervation of endometriosis. This prospective study aims to explore the role of Sema 3A in regulating aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis. Ectopic endometriotic lesion were collected from patients with peritoneal endometriosis (n = 24) and deep infiltrating endometriosis of uterosacral ligament (n = 20) undergoing surgery for endometriosis. Eutopic endometrial samples were collected from patients with endometriosis (n = 22) or without endometriosis (n = 26). Healthy peritoneum (n = 13) from the lateral pelvic wall and healthy uterosacral ligament (n = 13) were obtained from patients who had no surgical and histological proof of endometriosis during hysterectomy for uterine fibroids. Firstly, we studied the immunostaining of Sema 3A, Plexin A1 and NRP-1 in all the tissues described above. Then we studied the nerve fiber density (NFD) of endometriosis-associated (sympathetic) nerve and para-endometriotic (sympathetic) nerve by double immunofluorescence staining. Finally we analyzed the relationship between expression of Sema 3A in stromal cells of endometriotic lesion and the aberrant innervation of endometriosis. Semi-quantitative immunostaining demonstrated that (1) Higher immunostaining of Sema 3A were found in the eutopic endometrial glandular epithelial cells from patients with endometriosis (p = 0.041) than those without endometriosis; (2) Sema 3A immunostaining was higher in glandular epithelial cells of peritoneal endometriosis (Pendometriosis, while its expression in ectopic stormal cells in both groups were significantly lower than that from eutopic endometrium of women without endometirosis (Pendometriosis-associated sympathetic nerve of peritoneal endometriosis (pendometriosis of uterosacral ligament (pendometriosis. PMID:26720585

  5. Potential Role of Semaphorin 3A and Its Receptors in Regulating Aberrant Sympathetic Innervation in Peritoneal and Deep Infiltrating Endometriosis.

    Science.gov (United States)

    Liang, Yanchun; Wang, Wei; Huang, Jiaming; Tan, Hao; Liu, Tianyu; Shang, Chunliang; Liu, Duo; Guo, Luyan; Yao, Shuzhong

    2015-01-01

    Previous studies have demonstrated the involvement of nerve repellent factors in regulation of the imbalanced innervation of endometriosis. This prospective study aims to explore the role of Sema 3A in regulating aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis. Ectopic endometriotic lesion were collected from patients with peritoneal endometriosis (n = 24) and deep infiltrating endometriosis of uterosacral ligament (n = 20) undergoing surgery for endometriosis. Eutopic endometrial samples were collected from patients with endometriosis (n = 22) or without endometriosis (n = 26). Healthy peritoneum (n = 13) from the lateral pelvic wall and healthy uterosacral ligament (n = 13) were obtained from patients who had no surgical and histological proof of endometriosis during hysterectomy for uterine fibroids. Firstly, we studied the immunostaining of Sema 3A, Plexin A1 and NRP-1 in all the tissues described above. Then we studied the nerve fiber density (NFD) of endometriosis-associated (sympathetic) nerve and para-endometriotic (sympathetic) nerve by double immunofluorescence staining. Finally we analyzed the relationship between expression of Sema 3A in stromal cells of endometriotic lesion and the aberrant innervation of endometriosis. Semi-quantitative immunostaining demonstrated that (1) Higher immunostaining of Sema 3A were found in the eutopic endometrial glandular epithelial cells from patients with endometriosis (p = 0.041) than those without endometriosis; (2) Sema 3A immunostaining was higher in glandular epithelial cells of peritoneal endometriosis (Pendometriosis, while its expression in ectopic stormal cells in both groups were significantly lower than that from eutopic endometrium of women without endometirosis (Pendometriosis-associated sympathetic nerve of peritoneal endometriosis (pendometriosis of uterosacral ligament (pperitoneal and deep infiltrating endometriosis.

  6. Role of myocardial hypertrophy in trophic stimulation of indices of sympathetic cardiac innervation.

    Science.gov (United States)

    Lindpaintner, K; Lund, D D; Schmid, P G

    1987-01-01

    innervation may be a common feature of the early, compensated stage of cardiac hypertrophy, regardless of its time course. Sympathetic neural mechanisms do not appear to play a stimulatory or trophic role in the hypertrophic process. Conversely, they seem to be secondary in nature, suggesting a possible stimulatory influence of hypertrophying myocardium on sympathetic cardiac nerves.

  7. Reflex sympathetic dystrophy syndrome and neuromediators.

    Science.gov (United States)

    Pham, Thao; Lafforgue, Pierre

    2003-02-01

    Concepts related to the pathophysiology of reflex sympathetic dystrophy syndrome (RSDS) are changing. Although sympathetic influences are still viewed as the most likely mechanism underlying the development and/or perpetuation of RSDS, these influences are no longer ascribed to an increase in sympathetic tone. Rather, the most likely mechanism may be increased sensitivity to catecholamines due to sympathetic denervation with an increase in the number and/or sensitivity of peripheral axonal adrenoceptors. Several other pathophysiological mechanisms have been suggested, including neurogenic inflammation with the release of neuropeptides by primary nociceptive afferents and sympathetic efferents. These neuromediators, particularly substance P, calcitonin gene-related peptide, and neuropeptide Y (NPY), may play a pivotal role in the genesis of pain in RSDS. They induce an inflammatory response (cutaneous erythema and edema) and lower the pain threshold. Neurogenic inflammation at the site of the lesion with neuromediator accumulation or depletion probably contributes to the pathophysiology of RSDS. However, no single neuromediator has been proved responsible, and other hypotheses continue to arouse interest.

  8. [Professional outcome of reflex sympathetic dystrophy].

    Science.gov (United States)

    Dauty, M; Renaud, P; Deniaud, C; Tortellier, L; Dubois, C

    2001-03-01

    In spite of physical medicine and rehabilitation care, post-traumatic reflex sympathetic dystrophy can be at the origin of articular deficiency, which decrease the capacity to return to work. The aim of this study is to know the professional future of patients who present post-traumatic reflex sympathetic dystrophy. Eighteen months prospective study, carried out from patients in age to work, hospitalized in physical medicine and rehabilitation unit for ostéo-articular traumatism complicated by reflex sympathetic dystrophy. Description of the population and comorbidity factors preventing professional resumption. Determination of the duration of medical certificate and the modalities of professional resumption. From 16 patients in age to work, only 12 were able to resume a full time profession with an average period of 10.5 months +/- 5. The importance of the, the distale articular location of reflex sympathetic dystrophy (wrist - hand, ankle - foot), the association with a comorbidity such as chronic alcoholism represent pejorative factors of working resumption. Organizations of workstation are often necessary in six cases over eight, if the job is not sedentary. In the most complicated cases, inaptitudes in the work are pronounced with demand of professional reclassifying. Post-traumatic reflex sympathetic dystrophy represents a real challenge for the rehabilitation team, to minimize deficiencies and to help the patient to become again a worker.

  9. Skin temperature measured by infrared thermography after specific ultrasound-guided blocking of the musculocutaneous, radial, ulnar, and median nerves in the upper extremity

    DEFF Research Database (Denmark)

    Lange, K H W; Jansen, T; Asghar, S

    2011-01-01

    Sympathetic block causes vasodilatation and increases in skin temperature (T(s)). However, the T(s) response after specific nerve blocking is unknown. In this study, we hypothesized that T(s) would increase after specific blocking of the nerve innervating that area.......Sympathetic block causes vasodilatation and increases in skin temperature (T(s)). However, the T(s) response after specific nerve blocking is unknown. In this study, we hypothesized that T(s) would increase after specific blocking of the nerve innervating that area....

  10. Endothelin-1 and endothelin-3 in cirrhosis: relations to systemic and splanchnic haemodynamics

    DEFF Research Database (Denmark)

    Møller, Søren; Gülberg, V; Henriksen, Jens Henrik

    1995-01-01

    haemodynamics. METHODS: Endothelin-1 and endothelin-3 were measured in samples from a hepatic vein and the femoral artery in 42 patients with cirrhosis, eight hypertensive controls and 10 normotensive controls. RESULTS: Hepatic venous endothelin-1 was significantly higher in the patients with cirrhosis, mean 21.......2 +/- 0.9 pg/ml (SEM) than in the hypertensive controls, 12.4 +/- 2.4 pg/ml, and normotensive controls, 9.6 +/- 1.6 pg/ml (p arterial endothelin-1 was significantly higher in the patients with cirrhosis than in the controls (p ...BACKGROUND/AIMS: Endothelins are isopeptides with potent vasoactive properties, but their implications in the hyperkinetic syndrome in cirrhosis are obscure. Therefore, the aim of the present study was to relate hepatic venous and circulating endothelin-1 and endothelin-3 to systemic and splanchnic...

  11. Continuous blood pressure monitoring in cirrhosis. Relations to splanchnic and systemic haemodynamics

    DEFF Research Database (Denmark)

    Møller, S; Christensen, E; Henriksen, Jens Henrik Sahl

    1997-01-01

    BACKGROUND/AIMS: Low arterial blood pressure is recognised as a distinctive factor in the hyperdynamic circulation in cirrhosis. 24-hour monitoring of the blood pressure and heart rate has recently revealed a reduced circadian variation with relation to liver function. However, associations...... with other clinical and haemodynamic characteristics have not been investigated and the aim of the present study was to identify splanchnic and systemic determinants of the 24-h blood pressure and heart rate in cirrhosis. METHODS: The variables were measured by an automatic ambulant device for monitoring...... blood pressure and related to the results of an invasive haemodynamic investigation, including measurements of intra-arterial blood pressure (9.00-11.00 h) in 37 patients with cirrhosis. RESULTS: The 24-h blood pressures were significantly lower and the heart rate was significantly higher in patients...

  12. The combined effects of exercise and food intake on adipose tissue and splanchnic metabolism

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Simonsen, L; Macdonald, I A

    2004-01-01

    were measured by Fick's Principle. Food intake before exercise reduced whole-body lipid combustion during exercise to about 50% of the combustion rate found during exercise in the fasted state. The increase in subcutaneous, abdominal adipose tissue lipolysis during exercise was not influenced...... by preexercise food intake, while the fatty acid mobilization was increased by only 1.5-fold during postprandial exercise compared to a fourfold increase during exercise in the fasted state. During exercise, catecholamine concentrations increased similarly in the fasted and the postprandial state, while...... for by changes in the regional splanchnic tissue or adipose tissue triacylglycerol metabolism. Exercise was able to increase hepatic glucose production irrespective of food intake before exercise. It is concluded that exercise performed in the fasted state shortly before a meal leads to a more favourable lipid...

  13. Effect of octreotide on systemic, central, and splanchnic haemodynamics in cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Brinch, K; Henriksen, Jens Henrik Sahl

    1997-01-01

    patients with cirrhosis underwent liver vein catheterisation. Portal and arterial blood pressures were determined at baseline and 10, 30, and 50 min after a bolus injection of octreotide 100 micrograms, followed by continuous infusion of octreotide 100 micrograms/ h for 1 h. Hepatic blood flow, cardiac...... output, central and arterial blood volume, and central circulation time were determined at baseline and 50 min after the start of the octreotide infusion. RESULTS: The mean arterial blood pressure increased during the first 10 min (p ... hypertension. However, reports on the splanchnic and systemic effects of octreotide are contradictory and therefore the aim of the present study was to assess the effects of continuous infusion of octreotide on central and systemic haemodynamics, portal pressures, and hepatic blood flow. METHODS: Thirteen...

  14. Subfornical Organ Mediates Sympathetic and Hemodynamic Responses to Blood-borne Pro-Inflammatory Cytokines

    Science.gov (United States)

    Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G.; Yu, Yang; Johnson, Alan Kim; Felder, Robert B.

    2013-01-01

    Pro-inflammatory cytokines play an important role in regulating autonomic and cardiovascular function in hypertension and heart failure. Peripherally administered pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) act upon the brain to increase blood pressure (BP), heart rate (HR) and sympathetic nerve activity. These molecules are too large to penetrate blood brain barrier (BBB), and so the mechanisms by which they elicit these responses remain unknown. We tested the hypothesis that the subfornical organ (SFO), a forebrain circumventricular organ that lacks a BBB, plays a major role in mediating the sympathetic and hemodynamic responses to circulating pro-inflammatory cytokines. Intracarotid artery (ICA) injection of TNF-α (200 ng) or IL-1β (200 ng) dramatically increased mean BP (MBP), HR and renal sympathetic nerve activity (RSNA) in rats with sham lesions of the SFO (SFO-s). These excitatory responses to ICA TNF-α and IL-1β were significantly attenuated in SFO-lesioned (SFO-x) rats. Similarly, the increases in MBP, HR and RSNA in response to intravenous (IV) injections of TNF-α (500 ng) or IL-1β (500 ng) in SFO-s rats were significantly reduced in the SFO-x rats. Immunofluorescent staining revealed a dense distribution of the p55 TNF-α receptor and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, in the SFO. These data suggest that SFO is a predominant site in the brain at which circulating pro-inflammatory cytokines act to elicit cardiovascular and sympathetic responses. PMID:23670302

  15. The association of the JAK2 46/1 haplotype with non-splanchnic venous thrombosis.

    Science.gov (United States)

    Zerjavic, Katja; Zagradisnik, Boris; Lokar, Lidija; Krasevac, Marjana G; Vokac, Nadja K

    2013-08-01

    The inherited JAK2 46/1 haplotype is strongly associated with the development of myeloproliferative neoplasms (MPNs), and its increased frequency has also been reported in splanchnic venous thrombosis (SVT). In the present study, the role of the JAK2 46/1 haplotype in non-splanchnic venous thrombosis (non-SVT) was investigated. We genotyped 438 patients with non-SVT, 226 patients with MPNs and 459 healthy controls for three single nucleotide polymorphisms (SNPs) which tag the JAK2 46/1 haplotype (rs12342421 G>C, rs12343867 T>C and rs10974944 C>G). We found statistically significant association of the rs12342421 GC+CC genotypes (OR=1.40; p=0.023) and the rs12343867 TC+CC genotypes (OR=1.83; p=7.02 x 10(-5)) with non-SVT. We also found that the CC haplotype of these two SNPs was associated with an increased risk of the disease (OR=1.68; p=0.009). Stratification analysis indicated that the observed association of the JAK2 46/1 haplotype with non-SVT was probably largely free of confounding effect of thrombophilic risk factors. In addition, we established a strong association of SNPs rs12342421 and rs10974944 and their CG haplotype with MPNs and with JAK2 V617F-positive MPNs. This study provides statistical evidence that SNPs rs12342421 and rs12343867 are associated with an increased risk of non-SVT. Consistently, haplotypes of the SNPs were also associated with non-SVT risk, suggesting that inherited genetic variation in the JAK2 gene may play a role in the pathogenesis of non-SVT. Furthermore, the reported associations of the JAK2 46/1 haplotype with MPNs as well as with the occurrence of the JAK2 V617F mutation in MPNs were confirmed. © 2013.

  16. The mast cell integrates the splanchnic and systemic inflammatory response in portal hypertension

    Directory of Open Access Journals (Sweden)

    Arias Jorge-Luis

    2007-09-01

    Full Text Available Abstract Portal hypertension is a clinical syndrome that is difficult to study in an isolated manner since it is always associated with a greater or lesser degree of liver functional impairment. The aim of this review is to integrate the complications related to chronic liver disease by using both, the array of mast cell functions and mediators, since they possibly are involved in the pathophysiological mechanisms of these complications. The portal vein ligated rat is the experimental model most widely used to study this syndrome and it has been considered that a systemic inflammatory response is produced. This response is mediated among other inflammatory cells by mast cells and it evolves in three linked pathological functional systems. The nervous functional system presents ischemia-reperfusion and edema (oxidative stress and would be responsible for hyperdynamic circulation; the immune functional system causes tissue infiltration by inflammatory cells, particularly mast cells and bacteria (enzymatic stress and the endocrine functional system presents endothelial proliferation (antioxidative and antienzymatic stress and angiogenesis. Mast cells could develop a key role in the expression of these three phenotypes because their mediators have the ability to produce all the aforementioned alterations, both at the splanchnic level (portal hypertensive enteropathy, mesenteric adenitis, liver steatosis and the systemic level (portal hypertensive encephalopathy. This hypothetical splanchnic and systemic inflammatory response would be aggravated during the progression of the chronic liver disease, since the antioxidant ability of the body decreases. Thus, a critical state is produced, in which the appearance of noxious factors would favor the development of a dedifferentiation process protagonized by the nervous functional system. This system rapidly induces an ischemia-reperfusion phenotype with hydration and salinization of the body (hepatorenal

  17. Effect of burn and first-pass splanchnic leucine extraction on protein kinetics in rats

    International Nuclear Information System (INIS)

    Karlstad, M.D.; DeMichele, S.J.; Istfan, N.; Blackburn, G.L.; Bistrian, B.R.

    1988-01-01

    The effects of burn and first-pass splanchnic leucine extraction (FPE) on protein kinetics and energy expenditure were assessed by measuring O 2 consumption, CO 2 production, nitrogen balance, leucine kinetics, and tissue fractional protein synthetic rates (FSR-%/day) in enterally fed rats. Anesthetized male rats (200 g) were scalded on their dorsum with boiling water (25-30% body surface area) and enterally fed isovolemic diets that provided 60 kcal/day and 2.4 g of amino acids/day for 3 days. Controls were not burned. An intravenous or intragastric infusion of L-[1- 14 C]leucine was used to assess protein kinetics on day 3. FPE was taken as the ratio of intragastric to intravenous plasma leucine specific activity. There was a 69% reduction in cumulative nitrogen balance (P less than 0.001) and a 17-19% increase in leucine oxidation (P less than 0.05) and total energy expenditure (P less than 0.01) in burned rats. A 15% decrease in plasma leucine clearance (P less than 0.05) was accompanied by a 20% increase in plasma [leucine] (P less than 0.01) in burned rats. Burn decreased rectus muscle FSR from 5.0 +/- 0.4 to 3.5 +/- 0.5 (P less than 0.05) and increased liver FSR from 19.0 +/- 0.5 to 39.2 +/- 3.4 (P less than 0.01). First pass extraction of dietary leucine by the splanchnic bed was 8% in controls and 26% in burned rats. Leucine kinetics corrected for FPE showed increased protein degradation with burn that was not evident without FPE correction. This hypermetabolic burn model can be useful in the design of enteral diets that optimize rates of protein synthesis and degradation

  18. Nerve endings in the heart of teleosts.

    Science.gov (United States)

    Kumar, S

    1979-01-01

    The nerve endings in the heart of fishes were studied using silver impregnation techniques. The heart chambers are profusely innervated by the sympathetic, parasympathetic (vagal) and postganglionic fibers of the intracardiac ganglia situated at the sinuatrial and the atrioventricular junctions. The plexuses are composed of medullated and nonmedullated fibers. The nerve fibers generally end freely and are slightly branched or unbranched terminations of myelinated and unmyelinated fibers. Moreover, a few nerve fibers end redundant in the form of end-rings, bulb-like, bush-like, club-shaped end end-coil like structures. The complex unencapsulated types of endings are also found in the myocardium of the atrium and the ventricle. The encapsulated endings (Vater-Pacinian; Krause end-bulb) could not be observed.

  19. Splanchnic and renal elimination and release of catecholamines in cirrhosis. Evidence of enhanced sympathetic nervous activity in patients with decompensated cirrhosis

    DEFF Research Database (Denmark)

    Ring-Larsen, H; Kanstrup, I L; Christensen, N J

    1984-01-01

    Plasma noradrenaline (NA) and adrenaline (A) concentrations were determined in different vascular areas in 32 patients with cirrhosis and in nine controls during a right sided heart, liver, and renal vein catheterisation. The patients were divided into four groups: (I) Compensated (without ascites......, respectively, the three last mentioned values being significantly raised (p less than 0.01). Median arterial adrenaline concentrations were not significantly increased. In patients arterial-hepatic venous extraction ratios of noradrenaline and adrenaline were on the average 25% (p less than 0.01) and 20% (p...... differences were significantly increased in groups II, III and IV (0.47, 0.53 and 0.68 nmol/l, p less than 0.01), indicating a significant net release of noradrenaline from the kidneys in recompensated and decompensated patients. Renal extraction of adrenaline was normal. In conclusion, increased arterial...

  20. Reflex sympathetic dystrophy: reflections from a clinician.

    Science.gov (United States)

    Small, Eric

    2007-05-01

    Reflex sympathetic dystrophy is defined as chronic musculoskeletal pain and autonomic dysfunction. It is a difficult diagnosis to make, and the adolescent often sees many specialists before arriving at the correct diagnosis. In this article I review reflex sympathetic dystrophy and reflect on the differential diagnosis, pertinent medical history, personal characteristics of patients with reflex sympathetic dystrophy, physical examination, and laboratory evaluation. Principles of management are considered, including physical therapy, pharmacology, psychological therapy, and alternative therapies. Accurate diagnosis and management are critical for not prolonging the adolescent's and the family's suffering. It is important to provide aggressive physical therapy, stress management, relaxation training, and close follow-up. It is also critical to avoid immobilization, surgery, or invasive procedures and unnecessary tests.

  1. Sympathetically-induced changes in microvascular cerebral blood flow and in the morphology of its low-frequency waves.

    Science.gov (United States)

    Deriu, F; Roatta, S; Grassi, C; Urciuoli, R; Micieli, G; Passatore, M

    1996-06-10

    The effect of bilateral cervical sympathetic nerve stimulation on microvascular cerebral blood flow, recorded at various depths in the parietal lobe and in ponto-mesencephalic areas, was investigated by laser-Doppler flowmetry in normotensive rabbits. These areas were chosen as representative of the vascular beds supplied by the carotid and vertebro-basilar systems, which exhibit different degrees of sympathetic innervation, the former being richer than the latter. Sympathetic stimulation at 30 imp/s affects cerebral blood flow in 77% of the parietal lobe and in 43% of the ponto-mesencephalic tested areas. In both cases the predominant effect was a reduction in blood flow (14.7 +/- 5.1% and 4.1 +/- 2.4%, respectively). The extent of the reduction in both areas was less if the stimulation frequency was decreased. Sometimes mean cerebral blood flow showed a small and transient increase, mainly in response to low-frequency stimulation. The morphology was analysed of low-frequency spontaneous oscillations in cerebral blood flow, attributed to vasomotion. Present in 41% of the tested areas (frequency 4-12 cycles/min, peak-to-peak amplitude 10-40% of mean value), these waves decreased in amplitude and increased in frequency during sympathetic stimulation, irrespective of changes in mean flow. The possibility has been proposed that the sympathetic action on low-frequency spontaneous oscillations may contribute to the protective influence that this system is known to exert on the blood-brain barrier in hypertension.

  2. Sympathetic control of skeletal muscle function: possible co-operation between noradrenaline and neuropeptide Y in rabbit jaw muscles.

    Science.gov (United States)

    Grassi, C; Deriu, F; Roatta, S; Santarelli, R; Azzena, G B; Passatore, M

    1996-07-19

    Stimulation of the cervical sympathetic nerve at 10/s increases by 12.9 +/- 0.7% peak tension of maximal twitches in the directly stimulated jaw muscles and markedly depresses (41.6 +/- 1.3%) the tonic vibration reflex (TVR) elicited in the same muscles by vibration of the mandible. Both effects are not significantly influenced by administration of beta-adrenoceptor antagonists. When both alpha- and beta-adrenergic receptors are blocked, sympathetic stimulation induces a very small increase in twitch tension (3.8 +/- 0.7%), while no detectable change in the TVR is observed. Close arterial injection of alpha 1-adrenoceptor agonist phenylephrine mimics the effects induced by sympathetic stimulation on twitch tension and TVR, dose-dependently. The noradrenaline co-transmitter neuropeptide Y also produces a long-lasting, dose-dependent increase in the twitch tension which is unaffected by blockade of adrenergic receptors as well as of the neuromuscular junctions. Contribution of neuropeptide Y to the sympathetically-induced reduction of the stretch reflex is not clearly demonstrated. These data suggest that co-operation between noradrenaline and neuropeptide Y may be effective in determining sympathetic modulation of skeletal muscle function.

  3. Morning blood pressure surge is associated with arterial stiffness and sympathetic baroreflex sensitivity in hypertensive seniors

    Science.gov (United States)

    Okada, Yoshiyuki; Galbreath, M. Melyn; Shibata, Shigeki; Jarvis, Sara S.; Bivens, Tiffany B.; Vongpatanasin, Wanpen; Levine, Benjamin D.

    2013-01-01

    Morning blood pressure (BP) surge is considered to be an independent risk factor for cardiovascular diseases. We tested the hypothesis that increased large-artery stiffness and impaired sympathetic baroreflex sensitivity (BRS) contribute to augmented morning surge in elderly hypertensive subjects. Morning surge was assessed as morning systolic BP averaged for 2 h just after waking up minus minimal sleeping systolic BP by using ambulatory BP monitoring (ABPM) in 40 untreated hypertensive [68 ± 1 (SE) yr] and 30 normotensive (68 ± 1 yr) subjects. Beat-by-beat finger BP and muscle sympathetic nerve activity (MSNA) were recorded in the supine position and at 60° upright tilt. We assessed arterial stiffness with carotid-to-femoral pulse wave velocity (cfPWV) and sympathetic BRS during spontaneous breathing. Awake and asleep ABPM-BPs and morning surge were higher in hypertensive than normotensive subjects (all P morning surge ≥35 mmHg (median value) had higher cfPWV (11.9 ± 0.5 vs. 9.9 ± 0.4 m/s, P = 0.002) and lower sympathetic BRS (supine: −2.71 ± 0.25 vs. −3.73 ± 0.29, P = 0.011; upright: −2.62 ± 0.22 vs. −3.51 ± 0.35 bursts·100 beats−1·mmHg−1, P = 0.052) than those with morning surge 0.05), while upright total peripheral resistance was higher in hypertensive subjects with greater morning surge than those with lesser morning surge (P = 0.050). Morning surge was correlated positively with cfPWV (r = 0.59, P morning BP surge is associated with arterial stiffness and sympathetic BRS, as well as vasoreactivity during orthostasis in hypertensive seniors. PMID:23832695

  4. The MEK-ERK pathway negatively regulates bim expression through the 3' UTR in sympathetic neurons

    Science.gov (United States)

    2011-01-01

    Background Apoptosis plays a critical role during neuronal development and disease. Developing sympathetic neurons depend on nerve growth factor (NGF) for survival during the late embryonic and early postnatal period and die by apoptosis in its absence. The proapoptotic BH3-only protein Bim increases in level after NGF withdrawal and is required for NGF withdrawal-induced death. The regulation of Bim expression in neurons is complex and this study describes a new mechanism by which an NGF-activated signalling pathway regulates bim gene expression in sympathetic neurons. Results We report that U0126, an inhibitor of the prosurvival MEK-ERK pathway, increases bim mRNA levels in sympathetic neurons in the presence of NGF. We find that this effect is independent of PI3-K-Akt and JNK-c-Jun signalling and is not mediated by the promoter, first exon or first intron of the bim gene. By performing 3' RACE and microinjection experiments with a new bim-LUC+3'UTR reporter construct, we show that U0126 increases bim expression via the bim 3' UTR. We demonstrate that this effect does not involve a change in bim mRNA stability and by using PD184352, a specific MEK1/2-ERK1/2 inhibitor, we show that this mechanism involves the MEK1/2-ERK1/2 pathway. Finally, we demonstrate that inhibition of MEK/ERK signalling independently reduces cell survival in NGF-treated sympathetic neurons. Conclusions These results suggest that in sympathetic neurons, MEK-ERK signalling negatively regulates bim expression via the 3' UTR and that this regulation is likely to be at the level of transcription. This data provides further insight into the different mechanisms by which survival signalling pathways regulate bim expression in neurons. PMID:21762482

  5. Effects of sympathetic stimulation on the rhythmical jaw movements produced by electrical stimulation of the cortical masticatory areas of rabbits.

    Science.gov (United States)

    Roatta, S; Windhorst, U; Djupsjöbacka, M; Lytvynenko, S; Passatore, M

    2005-03-01

    The somatomotor and sympathetic nervous systems are intimately linked. One example is the influence of peripheral sympathetic fibers on the discharge characteristics of muscle spindles. Since muscle spindles play important roles in various motor behaviors, including rhythmic movements, the working hypothesis of this research was that changes in sympathetic outflow to muscle spindles can change rhythmic movement patterns. We tested this hypothesis in the masticatory system of rabbits. Rhythmic jaw movements and EMG activity induced by long-lasting electrical cortical stimulation were powerfully modulated by electrical stimulation of the peripheral stump of the cervical sympathetic nerve (CSN). This modulation manifested itself as a consistent and marked reduction in the excursion of the mandibular movements (often preceded by a transient modest enhancement), which could be attributed mainly to corresponding changes in masseter muscle activity. These changes outlasted the duration of CSN stimulation. In some of the cortically evoked rhythmic jaw movements (CRJMs) changes in masticatory frequency were also observed. When the jaw-closing muscles were subjected to repetitive ramp-and-hold force pulses, the CRMJs changed characteristics. Masseter EMG activity was strongly enhanced and digastric EMG slightly decreased. This change was considerably depressed during CSN stimulation. These effects of CSN stimulation are similar in sign and time course to the depression exerted by sympathetic activity on the jaw-closing muscle spindle discharge. It is suggested that the change in proprioceptive information induced by an increase in sympathetic outflow (a) has important implications even under normal conditions for the control of motor function in states of high sympathetic activity, and (b) is one of the mechanisms responsible for motor impairment under certain pathological conditions such as chronic musculoskeletal head-neck disorders, associated with stress conditions.

  6. Effects of glucogenic and ketogenic feeding strategies on splanchnic glucose and amino acid metabolism in postpartum transition Holstein cows.

    Science.gov (United States)

    Larsen, M; Kristensen, N B

    2012-10-01

    Nine periparturient Holstein cows catheterized in major splanchnic vessels were used in a complete randomized design with repeated measurements to investigate effects of glucogenic and ketogenic feeding strategies on splanchnic metabolism of glucose and amino acids. At parturition, cows were assigned to 1 of 3 feeding strategies: a glucogenic diet (GLCG) based on sodium hydroxide treated wheat grain (56.5% of diet dry matter); a ketogenic diet (KETO) based on fodder beets (40.5% of diet dry matter); or an alfalfa-glucogenic strategy (ALF-GLCG) supplying 100% alfalfa (Medicago sativa L.) haylage at the day of parturition, followed by a 6-d linear shift to the GLCG diet. Samples were obtained 14 d before expected parturition as well as at 4, 15, and 29 d in milk (DIM). The net portal release of glucose was greatest with GLCG, reflecting the higher intake of ruminal escape starch with GLCG, as compared with a lower starch intake with KETO. Postpartum, the portal recovery of feed starch was greater (28 ± 3%, mean ± SEM) with KETO as compared with GLCG (15 ± 4%). At 4 DIM, the net hepatic release of glucose was greatest with KETO and least with ALF-GLCG, whereafter it increased as lactation progressed with ALF-GLCG and GLCG, but not with KETO. The high alfalfa haylage allowance at 4 DIM with the ALF-GLCG treatment induced the lowest net release of nutrients from the splanchnic tissues at 4 DIM. The hepatic removal of lactate as percent of total influx (mean ± SEM) increased from 27 ± 3% prepartum to 56 ± 3% at 4 DIM. The hepatic removal of lactate as percent of net portal release increased from 144 ± 10% prepartum to 329 ± 17% at 4 DIM with ALF-GLCG and KETO as compared with 242 ± 20% in GLCG. No clear evidence for an amino acid sparing effect in splanchnic tissues from increasing small intestinal glucose absorption was observed. In conclusion, the glucogenic feeding strategy induced the highest glucogenic status among the tested feeding strategies due to

  7. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2017-11-14

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity and metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympatho-excitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel

  8. Munchausen's syndrome simulating reflex sympathetic dystrophy.

    Science.gov (United States)

    Rodriguez-Moreno, J; Ruiz-Martin, J M; Mateo-Soria, L; Rozadilla, A; Roig-Escofet, D

    1990-01-01

    A 15 year old girl who had pain, oedema of her left hand, and fever of four months' duration is described. Marked demineralisation of her hand was shown by radiography, and increased articular uptake by technetium-99m bone scan. All these changes were indistinguishable from reflex sympathetic dystrophy. After two admissions to hospital and multiple explorations we discovered that she had induced her symptoms herself and a diagnosis of Munchausen's syndrome was made. As far as we know this presentation has not been previously reported and might help to explain the physiopathology of some signs of reflex sympathetic dystrophy. Images PMID:2270960

  9. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  10. The Potential Role of Catheter-Based Renal Sympathetic Denervation in Chronic and End-Stage Kidney Disease.

    Science.gov (United States)

    Sata, Yusuke; Schlaich, Markus P

    2016-07-01

    Sympathetic activation is a hallmark of chronic and end-stage renal disease and adversely affects cardiovascular prognosis. Hypertension is present in the vast majority of these patients and plays a key role in the progressive deterioration of renal function and the high rate of cardiovascular events in this patient cohort. Augmentation of renin release, tubular sodium reabsorption, and renal vascular resistance are direct consequences of efferent renal sympathetic nerve stimulation and the major components of neural regulation of renal function. Renal afferent nerve activity directly influences sympathetic outflow to the kidneys and other highly innervated organs involved in blood pressure control via hypothalamic integration. Renal denervation of the kidney has been shown to reduce blood pressure in many experimental models of hypertension. Targeting the renal nerves directly may therefore be specifically useful in patients with chronic and end-stage renal disease. In this review, we will discuss the potential role of catheter-based renal denervation in patients with impaired kidney function and also reflect on the potential impact on other cardiovascular conditions commonly associated with chronic kidney disease such as heart failure and arrhythmias. © The Author(s) 2016.

  11. Sympathetic modulation of muscle spindle afferent sensitivity to stretch in rabbit jaw closing muscles.

    Science.gov (United States)

    Roatta, S; Windhorst, U; Ljubisavljevic, M; Johansson, H; Passatore, M

    2002-04-01

    Previous reports showed that sympathetic stimulation affects the activity of muscle spindle afferents (MSAs). The aim of the present work is to study the characteristics of sympathetic modulation of MSA response to stretch: (i) on the dynamic and static components of the stretch response, and (ii) on group Ia and II MSAs to evaluate potentially different effects. In anaesthetised rabbits, the peripheral stump of the cervical sympathetic nerve (CSN) was stimulated at 10 impulses s(-1) for 45-90 s. The responses of single MSAs to trapezoidal displacement of the mandible were recorded from the mesencephalic trigeminal nucleus. The following characteristic parameters were determined from averaged trapezoidal responses: initial frequency (IF), peak frequency at the end of the ramp (PF), and static index (SI). From these, other parameters were derived: dynamic index (DI = PF - SI), dynamic difference (DD = PF - IF) and static difference (SD = SI - IF). The effects of CSN stimulation were also evaluated during changes in the state of intrafusal muscle fibre contraction induced by succinylcholine and curare. In a population of 124 MSAs, 106 units (85.4 %) were affected by sympathetic stimulation. In general, while changes in resting discharge varied among different units (Ia vs. II) and experimental conditions (curarised vs. non-curarised), ranging from enhancement to strong depression of firing, the amplitude of the response to muscle stretches consistently decreased. This was confirmed and detailed in a quantitative analysis performed on 49 muscle spindle afferents. In both the non-curarised (23 units) and curarised (26 units) condition, stimulation of the CSN reduced the response amplitude in terms of DD and SD, but hardly affected DI. The effects were equally present in both Ia and II units; they were shown to be independent from gamma drive and intrafusal muscle tone and not secondary to muscle hypoxia. Sympathetic action on the resting discharge (IF) was less

  12. Effects of glucogenic and ketogenic feeding strategies on splanchnic glucose and amino acid metabolism in postpartum transition Holstein cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2012-01-01

    assigned to 1 of 3 feeding strategies: a glucogenic diet (GLCG) based on sodium hydroxide treated wheat grain (56.5% of diet dry matter); a ketogenic diet (KETO) based on fodder beets (40.5% of diet dry matter); or an alfalfa-glucogenic strategy (ALF-GLCG) supplying 100% alfalfa (Medicago sativa L......Nine periparturient Holstein cows catheterized in major splanchnic vessels were used in a complete randomized design with repeated measurements to investigate effects of glucogenic and ketogenic feeding strategies on splanchnic metabolism of glucose and amino acids. At parturition, cows were.......) haylage at the day of parturition, followed by a 6-d linear shift to the GLCG diet. Samples were obtained 14 d before expected parturition as well as at 4, 15, and 29 d in milk (DIM). The net portal release of glucose was greatest with GLCG, reflecting the higher intake of ruminal escape starch with GLCG...

  13. Prevalence of Splanchnic Vein Thrombosis in Pancreatitis: A Systematic Review and Meta-Analysis of Observational Studies

    OpenAIRE

    Xu, Wenda; Qi, Xingshun; Chen, Jiang; Su, Chunping; Guo, Xiaozhong

    2015-01-01

    Splanchnic vein thrombosis (SVT) may be negatively associated with the prognosis of pancreatitis. We performed a systematic review and meta-analysis of literatures to explore the prevalence of SVT in pancreatitis. All observational studies regarding the prevalence of SVT in pancreatitis were identified via PubMed and EMBASE databases. The prevalence of SVT was pooled in the total of patients with pancreatitis. And it was also pooled in the subgroup analyses according to the stage and causes o...

  14. A Salicylate Sympathetic Ink from Consumer Chemicals

    Science.gov (United States)

    Journal of Chemical Education, 2005

    2005-01-01

    A new sympathetic ink that produces a violet color upon development was developed to develop chemical demonstrations using consumer chemicals. The demonstration was to have a simple, relatively safe reagent system that could be used to make a brightly colored, highly visible "magic sign" for use in science outreach programs.

  15. The Use of an Upper-limb-artery Approach and Long Sheaths in Splanchnic Angiography and Interventional Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Shimohira, Masashi; Ogino, Hiroyuki; Mori, Yuji; Shibamoto, Yuta (Dept. of Radiology, Nagoya City Univ. Graduate School of Medical Sciences, Nagoya (Japan)); Omiya, Hiroko; Suzuki, Hirochika (Dept. of Radiology, Tsushima City Hospital, Tsushima (Japan))

    2009-08-15

    Background: The prolonged bed-rest required achieving hemostasis after splanchnic angiography and interventional procedures can be avoided if the upper limb arteries are used. In such procedures, the use of long sheaths capable of reaching the descending aorta may be advantageous. Purpose: To analyze the results of procedures that utilizes an upper-limb-artery approach and long sheaths. Material and Methods: Two hundred forty-two patients with a mean age of 64 years underwent splanchnic angiography and interventional procedures via an upper limb artery using a long sheath (85 cm, 4-French). Repeat examinations were performed on 48 patients and the total number of examinations was 296. The records of these 296 examinations were reviewed and the success rate and complications were evaluated. Results: Overall, 295 of 296 (99.7%) examinations were successful, and one (0.3%) failed. Complications and side effects occurred in six cases (2.0%), a painful sheath manipulation occurred in two examinations (0.7%), and arterial occlusion (including temporary occlusion), hematoma of the puncture site, and pseudoaneurysm occurred in two (0.7%), one (0.3%), and one (0.3%) patient, respectively. Conclusion: The use of a long sheath capable of reaching the descending aorta enables the performance of splanchnic angiography and interventional procedures via the upper limb arteries

  16. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno......Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...

  17. Splanchnic Compression Improves the Efficacy of Compression Stockings to Prevent Orthostatic Intolerance

    Science.gov (United States)

    Platts, Steven H.; Brown, A. K.; Lee, S. M.; Stenger, M. B.

    2009-01-01

    Purpose: Post-spaceflight orthostatic intolerance (OI) is observed in 20-30% of astronauts. Previous data from our laboratory suggests that this is largely a result of decreased venous return. Currently, NASA astronauts wear an anti-gravity suit (AGS) which consists of inflatable air bladders over the calves, thighs and abdomen, typically pressurized from 26 to 78 mmHg. We recently determined that, thigh-high graded compression stockings (JOBST , 55 mmHg at ankle, 6 mmHg at top of thigh) were effective, though to a lesser degree than the AGS. The purpose of this study was to evaluate the addition of splanchnic compression to prevent orthostatic intolerance. Methods: Ten healthy volunteers (6M, 4F) participated in three 80 head-up tilts on separate days while (1) normovolemic (2) hypovolemic w/ breast-high compression stockings (BS)(JOBST(R), 55 mmHg at the ankle, 6 mmHg at top of thigh, 12 mmHg over abdomen) (3) hypovolemic w/o stockings. Hypovolemia was induced by IV infusion of furosemide (0.5 mg/kg) and 48 hrs of a low salt diet to simulate plasma volume loss following space flight. Hypovolemic testing occurred 24 and 48 hrs after furosemide. One-way repeated measures ANOVA, with Bonferroni corrections, was used to test for differences in blood pressure and heart rate responses to head-up tilt, stand times were compared using a Kaplan-Meyer survival analysis. Results: BS were effective in preventing OI and presyncope in hypovolemic test subjects ( p = 0.015). BS prevented the decrease in systolic blood pressure seen during tilt in normovolemia (p < 0.001) and hypovolemia w/o countermeasure (p = 0.005). BS also prevented the decrease in diastolic blood pressure seen during tilt in normovolemia (p = 0.006) and hypovolemia w/o countermeasure (p = 0.041). Hypovolemia w/o countermeasure showed a higher tilt-induced heart rate increase (p = 0.022) than seen in normovolemia; heart rate while wearing BS was not different than normovolemia (p = 0.353). Conclusion: BS may

  18. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno......Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...... skeletal muscle, cutaneous and subcutaneous tissues of the limbs indicate that the situation is more complex. Measurements have been carried out during acute as well as chronic sympathetic denervation. Spinal sympathetic reflex mechanisms have been evaluated in tetraplegic patients, where supraspinal...

  19. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF.

    Directory of Open Access Journals (Sweden)

    Keiko Miwa

    Full Text Available Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs and sympathetic neurons (SNs isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml or nerve growth factor (50 ng/ml. As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  20. MR-guided Periarterial Ethanol Injection for Renal Sympathetic Denervation: A Feasibility Study in Pigs

    Energy Technology Data Exchange (ETDEWEB)

    Streitparth, F., E-mail: florian.streitparth@charite.de; Walter, A.; Stolzenburg, N.; Heckmann, L.; Breinl, J. [Charite, Humboldt University, Department of Radiology (Germany); Rinnenthal, J. L. [Charite, Humboldt University, Department of Neuropathology (Germany); Beck, A.; De Bucourt, M.; Schnorr, J. [Charite, Humboldt University, Department of Radiology (Germany); Bernhardt, U. [InnoRa GmbH (Germany); Gebauer, B.; Hamm, B.; Guenther, R. W. [Charite, Humboldt University, Department of Radiology (Germany)

    2013-06-15

    Purpose. To evaluate the feasibility and efficacy of image-guided periarterial ethanol injection as an alternative to transluminal radiofrequency ablation. Methods. Unilateral renal periarterial ethanol injection was performed under general anesthesia in 6 pigs with the contralateral kidney serving as control. All interventions were performed in an open 1.0 T MRI system under real-time multiplanar guidance. The injected volume was 5 ml (95 % ethanol labelled marked MR contrast medium) in 2 pigs and 10 ml in 4 pigs. Four weeks after treatment, the pigs underwent MRI including MRA and were killed. Norepinephrine (NE) concentration in the renal parenchyma served as a surrogate parameter to analyze the efficacy of sympathetic denervation. In addition, the renal artery and sympathetic nerves were examined histologically to identify evidence of vascular and neural injury. Results. In pigs treated with 10 ml ethanol, treatment resulted in neural degeneration. We found a significant reduction of NE concentration in the kidney parenchyma of 53 % (p < 0.02) compared with the untreated contralateral kidney. In pigs treated with 5 ml ethanol, no significant changes in histology or NE were observed. There was no evidence of renal arterial stenosis in MRI, macroscopy or histology in any pig. Conclusion. MR-guided periarterial ethanol injection was feasible and efficient for renal sympathetic denervation in a swine model. This technique may be a promising alternative to the catheter-based approach in the treatment of resistant arterial hypertension.

  1. Baroreflex activation in conscious rats modulates the joint inflammatory response via sympathetic function.

    Science.gov (United States)

    Bassi, Gabriel S; Brognara, Fernanda; Castania, Jaci A; Talbot, Jhimmy; Cunha, Thiago M; Cunha, Fernando Q; Ulloa, Luis; Kanashiro, Alexandre; Dias, Daniel P Martins; Salgado, Helio C

    2015-10-01

    The baroreflex is a critical physiological mechanism controlling cardiovascular function by modulating both the sympathetic and parasympathetic activities. Here, we report that electrical activation of the baroreflex attenuates joint inflammation in experimental arthritis induced by the administration of zymosan into the femorotibial cavity. Baroreflex activation combined with lumbar sympathectomy, adrenalectomy, celiac subdiaphragmatic vagotomy or splenectomy dissected the mechanisms involved in the inflammatory modulation, highlighting the role played by sympathetic inhibition in the attenuation of joint inflammation. From the immunological standpoint, baroreflex activation attenuates neutrophil migration and the synovial levels of inflammatory cytokines including TNF, IL-1β and IL-6, but does not affect the levels of the anti-inflammatory cytokine IL-10. The anti-inflammatory effects of the baroreflex system are not mediated by IL-10, the vagus nerve, adrenal glands or the spleen, but by the inhibition of the sympathetic drive to the knee. These results reveal a novel physiological neuronal network controlling peripheral local inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Reflex sympathetic dystrophy--a complex regional pain syndrome.

    Science.gov (United States)

    Turner-Stokes, L

    2002-12-15

    Reflex sympathetic dystrophy (RSD) is a complex and poorly-understood condition characterized by: (a) pain and altered sensation; (b) motor disturbance and soft tissue change; (c) vasomotor and autonomic changes; and (d) psychosocial disturbance. Neurological symptoms typically do not conform to any particular pattern of nerve damage. Many different names have been ascribed to this condition and most recently the term 'complex regional pain syndrome' has been coined to emphasize the complex interaction of somatic, psychological and behavioural factors. Diagnostic criteria have been proposed by the International Association for the Study of Pain, but are still subject to debate. This review article describes the clinical features which may present as part of the condition, and the patho-physiology and pre-disposing factors so far identified. The evidence for effectiveness of different interventions is presented and a treatment approach outlined for inter-disciplinary management. While RSD is traditionally associated with pain in the extremities, the possibility is raised that the same process may underlie chronic pain syndromes affecting more central structures, such as testicular or pelvic pain.

  3. Vagal nerve stimulation therapy: what is being stimulated?

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  4. Polysialic Acid Regulates Sympathetic Outflow by Facilitating Information Transfer within the Nucleus of the Solitary Tract.

    Science.gov (United States)

    Bokiniec, Phillip; Shahbazian, Shila; McDougall, Stuart J; Berning, Britt A; Cheng, Delfine; Llewellyn-Smith, Ida J; Burke, Peter G R; McMullan, Simon; Mühlenhoff, Martina; Hildebrandt, Herbert; Braet, Filip; Connor, Mark; Packer, Nicolle H; Goodchild, Ann K

    2017-07-05

    Expression of the large extracellular glycan, polysialic acid (polySia), is restricted in the adult, to brain regions exhibiting high levels of plasticity or remodeling, including the hippocampus, prefrontal cortex, and the nucleus of the solitary tract (NTS). The NTS, located in the dorsal brainstem, receives constant viscerosensory afferent traffic as well as input from central regions controlling sympathetic nerve activity, respiration, gastrointestinal functions, hormonal release, and behavior. Our aims were to determine the ultrastructural location of polySia in the NTS and the functional effects of enzymatic removal of polySia, both in vitro and in vivo polySia immunoreactivity was found throughout the adult rat NTS. Electron microscopy demonstrated polySia at sites that influence neurotransmission: the extracellular space, fine astrocytic processes, and neuronal terminals. Removing polySia from the NTS had functional consequences. Whole-cell electrophysiological recordings revealed altered intrinsic membrane properties, enhancing voltage-gated K + currents and increasing intracellular Ca 2+ Viscerosensory afferent processing was also disrupted, dampening low-frequency excitatory input and potentiating high-frequency sustained currents at second-order neurons. Removal of polySia in the NTS of anesthetized rats increased sympathetic nerve activity, whereas functionally related enzymes that do not alter polySia expression had little effect. These data indicate that polySia is required for the normal transmission of information through the NTS and that changes in its expression alter sympathetic outflow. polySia is abundant in multiple but discrete brain regions, including sensory nuclei, in both the adult rat and human, where it may regulate neuronal function by mechanisms identified here. SIGNIFICANCE STATEMENT All cells are coated in glycans (sugars) existing predominantly as glycolipids, proteoglycans, or glycoproteins formed by the most complex form of

  5. Visceral Congestion in Heart Failure: Right Ventricular Dysfunction, Splanchnic Hemodynamics, and the Intestinal Microenvironment.

    Science.gov (United States)

    Polsinelli, Vincenzo B; Sinha, Arjun; Shah, Sanjiv J

    2017-12-01

    Visceral venous congestion of the gut may play a key role in the pathogenesis of right-sided heart failure (HF) and cardiorenal syndromes. Here, we review the role of right ventricular (RV) dysfunction, visceral congestion, splanchnic hemodynamics, and the intestinal microenvironment in the setting of right-sided HF. We review recent literature on this topic, outline possible mechanisms of disease pathogenesis, and discuss potential therapeutics. There are several mechanisms linking RV-gut interactions via visceral venous congestion which could result in (1) hypoxia and acidosis in enterocytes, which may lead to enhanced sodium-hydrogen exchanger 3 (NHE3) expression with increased sodium and fluid retention; (2) decreased luminal pH in the intestines, which could lead to alteration of the gut microbiome which could increase gut permeability and inflammation; (3) alteration of renal hemodynamics with triggering of the cardiorenal syndrome; and (4) altered phosphate metabolism resulting in increased pulmonary artery stiffening, thereby increasing RV afterload. A wide variety of therapeutic interventions that act on the RV, pulmonary vasculature, intestinal microenvironment, and the kidney could alter these pathways and should be tested in patients with right-sided HF. The RV-gut axis is an important aspect of HF pathogenesis that deserves more attention. Modulation of the pathways interconnecting the right heart, visceral congestion, and the intestinal microenvironment could be a novel avenue of intervention for right-sided HF.

  6. Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Zoran [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Roessle, Martin; Schultheiss, Michael [University Medical Center Freiburg, Department of Gastroenterology, Freiburg (Germany); Euringer, Wulf; Langer, Mathias [University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Salem, Riad; Barker, Alex; Carr, James; Collins, Jeremy D. [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)

    2015-09-15

    To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. (orig.)

  7. Effects of the carbonic anhydrase inhibitor acetazolamide on splanchnic blood flow in anaesthetized rats.

    Science.gov (United States)

    Carlsson, P O; Lindberg, M; Jansson, L

    1998-12-01

    The aim of the present study was to evaluate whether inhibition of the enzyme carbonic anhydrase with acetazolamide interfered with pancreatic islet and whole splanchnic blood perfusion in rats. Carbonic anhydrase is present both in the endocrine cells and, in particular, the endothelium of the pancreatic islet. Thiobutabarbital-anaesthetized, male Sprague-Dawley rats were used in all experiments, and acetazolamide (50 mg/kg body weight) was given to untreated control rats or rats pretreated with glucose, i.e. to normoglycaemic and hyperglycaemic animals. No acetazolamide-induced effects on blood glucose or serum insulin concentrations, mean arterial blood pressure, whole pancreatic or islet blood flow were seen in any of the animals. There were no effects on duodenal or colonic blood flow recorded in the control rats, whereas an increase in duodenal blood flow (P<0.02) was observed in the hyperglycaemic animals. A tendency to an increase was seen in colonic blood flow in hyperglycaemic animals, although this was not statistically significant (P = 0.069). Inhibition of carbonic anhydrase seems to induce only minor effects on pancreatic blood flow, while duodenal blood flow is slightly enhanced in hyperglycaemic animals.

  8. JAK2V617F: Is It Sufficient as a Single Player in Splanchnic Venous Thrombosis?

    Directory of Open Access Journals (Sweden)

    Pratibha Dhiman

    2015-01-01

    Full Text Available Splanchnic venous thrombosis (SVT includes thrombosis of the hepatic, portal, and mesenteric venous system. Myeloproliferative neoplasms (MPNs are important factors of SVT in adults. Addition of JAK2V617F mutation in WHO criteria for diagnosis of MPNs has made this test a useful tool for diagnosis. JAK2 is an intracytoplasmic tyrosine kinase that plays a critical role in signal transduction from multiple hematopoietic factor receptors. The mutation is found frequently in patients with SVT; many such patients have no other manifestations of an MPN. Although the correlation of JAK2V617F mutation with thrombotic risk in MPNs has been shown in many studies, the impact of presence of additional thrombophilic factors in these cases is yet not known. As the management of MPNs remains highly dependent on the patient’s thrombotic risk, it is important to assess the thrombotic risk factors in detail. Here, we report two cases of JAK2V617F positive MPN who also had other thrombophilic conditions and presented with recurrent thrombosis.

  9. Effect of oral propranolol on splanchnic oxygen uptake and haemodynamics in patients with cirrhosis

    DEFF Research Database (Denmark)

    Bendtsen, Flemming; Henriksen, Jens Henrik; Becker, Povl Ulrik

    1987-01-01

    .01), azygos venous oxygen saturation (76 vs. 67%, P less than 0.05), ICG clearance (263 vs. 226 ml/min, P less than 0.01), wedged-to-free hepatic vein pressure (16 vs. 13.5 mm Hg, P less than 0.01), hepatic blood flow (1.18 vs. 0.78 l/min, P less than 0.01), cardiac index (3.42 vs. 2.53 l/min . min 2, P less...... mg propranolol. All patients underwent hepatic vein catheterization and had a primed continuous intravenous infusion of ICG. Azygos vein catheterization was performed in six patients. Splanchnic (hepatic-intestinal) oxygen uptake (median control 68 ml/min vs. beta-blockade 56 ml/min, P less than 0...... than 0.01), and heart rate (72 vs. 56 beats per min, P less than 0.01) decreased significantly after oral beta-blockade. The hepatic extraction ratio of ICG increased significantly (0.32 vs. 0.45, P less than 0.01), whereas estimated 'intrinsic' ICG clearance (289 vs. 300 ml/min, n.s.), arterial blood...

  10. Underwater sympathetic detonation of pellet explosive

    Science.gov (United States)

    Kubota, Shiro; Saburi, Tei; Nagayama, Kunihito

    2017-06-01

    The underwater sympathetic detonation of pellet explosives was taken by high-speed photography. The diameter and the thickness of the pellet were 20 and 10 mm, respectively. The experimental system consists of the precise electric detonator, two grams of composition C4 booster and three pellets, and these were set in water tank. High-speed video camera, HPV-X made by Shimadzu was used with 10 Mfs. The underwater explosions of the precise electric detonator, the C4 booster and a pellet were also taken by high-speed photography to estimate the propagation processes of the underwater shock waves. Numerical simulation of the underwater sympathetic detonation of the pellet explosives was also carried out and compared with experiment.

  11. Reflex sympathetic dystrophy syndrome in a child.

    Science.gov (United States)

    Badri, Talel; Ben Jennet, Salima; Fenniche, Samy; Benmously, Rym; Mokhtar, Inçaf; Hammami, Hatem

    2011-06-01

    Reflex sympathetic dystrophy syndrome (RSDS) is a painful condition that usually follows regional trauma. We report the case of a 13-year-old girl that was seen for a painful swelling of the right hand associated with palmar hyperhidrosis, which occurred after a trauma to the hand. Bone scan images showed early tissue abnormality, which was more significant on the right hand and wrist, as well as moderate bone uptake on the right side. Nonsteroidal anti-inflammatory drugs and alternating hot and cold baths led to a marked improvement. RSDS occurs following trauma or subsequent to various diseases or drug intake. This syndrome is related to impaired tissue microvasculature under the influence of abnormal sympathetic reflex hyperactivity. Bone scan is the diagnostic procedure of choice in RSDS, but it may be normal. Physiotherapy should be preferred in pediatric cases.

  12. Sympathetic blocks for visceral cancer pain management

    DEFF Research Database (Denmark)

    Mercadante, Sebastiano; Klepstad, Pal; Kurita, Geana Paula

    2015-01-01

    The neurolytic blocks of sympathetic pathways, including celiac plexus block (CPB) and superior hypogastric plexus block (SHPB) , have been used for years. The aim of this review was to assess the evidence to support the performance of sympathetic blocks in cancer patients with abdominal visceral...... pain. Only comparison studies were included. All data from the eligible trials were analyzed using the GRADE system. Twenty-seven controlled studies were considered. CPB, regardless of the technique used, improved analgesia and/or decrease opioid consumption, and decreased opioid-induced adverse...... effects in comparison with a conventional analgesic treatment. In one study patients treated with superior hypogastric plexus block (SHPB) had a decrease in pain intensity and a less morphine consumption, while no statistical differences in adverse effects were found. The quality of these studies...

  13. Skin temperature measured by infrared thermography after specific ultrasound-guided blocking of the musculocutaneous, radial, ulnar, and median nerves in the upper extremity

    DEFF Research Database (Denmark)

    Lange, K H W; Jansen, T; Asghar, S

    2011-01-01

    Sympathetic block causes vasodilatation and increases in skin temperature (T(s)). However, the T(s) response after specific nerve blocking is unknown. In this study, we hypothesized that T(s) would increase after specific blocking of the nerve innervating that area....

  14. Revision on Renal Sympathetic Ablation in the Treatment of Resistant Hypertension.

    Science.gov (United States)

    Saraiva, Ana Filipa

    2016-01-01

    Hypertension is one of the most prevalent diseases in the world, with about 1 billion people affected and a possible increase to 1.5 billion by 2025. Despite advances in treatment, a proportion of patients remain resistant to conventional treatment and uncontrolled, and this can adversely affect future cardiovascular events and mortality. This alarming growth is already reflected in an important public health problem and one of the largest economic burdens of health, requiring new approaches and development of different strategies to fight this problem. This review will focus on the definition of resistant hypertension and its etiology, as well as in contemporary evidence supporting the usefulness of renal sympathetic denervation while addressing current and emerging devices, potential treatment indications in the future and unresolved issues that need to be addressed before renal sympathetic denervation can be adopted not only as a last resort exclusively for resistant hypertension. Finally an evaluation algorithm for patients with resistant hypertension which should be implemented before the execution of this technique will be proposed. Renal sympathetic denervation is a technique that possibly could have future implications in the population with hypertension, especially those with true resistant hypertension. This technique aims to reduce the renal sympathetic activation (a component in the pathophysiology of hypertension) through the destruction of the renal sympathetic nerves located in the adventitia of the renal arteries. There are several catheters that can be used; each with its specifications and therefore their selection should be made individually depending on the profile of the patient. However, a detailed pre-procedure evaluation is extremely important to exclude the large percentage of individuals with uncontrolled hypertension due to several factors that make it impossible to control blood pressure, but are likely to be corrected and as such should

  15. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  16. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.

    Science.gov (United States)

    Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan

    2017-01-01

    The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.

  17. [Autonomic angiotensinergic fibres in the human heart with an efferent sympathetic cophenotype].

    Science.gov (United States)

    Bohlender, J; Nussberger, J; Tevaearai, H; Imboden, H

    2015-06-01

    The autonomic innervation of the heart consists of sympathetic and parasympathetic nerve fibres, and fibres of the intrinsic ganglionated plexus with noradrenaline and acytylcholine as principal neurotransmitters. The fibres co-release neuropeptides to modulate intracardiac neurotransmission by specific presynaptic and postsynaptic receptors. The coexpression of angiotensin II in sympathetic fibres of the human heart and its role are not known so far. Autopsy specimens of human hearts were studied (n=3; ventricles). Using immunocytological methods, cryostat sections were stained by a murine monoclonal antibody (4B3) directed against angiotensin II and co-stained by polyclonal antibodies against tyrosine hydroxylase, a catecholaminergic marker. Visualisation of the antibodies was by confocal light microscopy or laser scanning microscopy. Angiotensin II-positive autonomic fibres with and without a catecholaminergic cophenotype (hydroxylase-positive) were found in all parts of the human ventricles. In the epicardium, the fibres were grouped in larger bundles of up to 100 and more fibres. They followed the preformed anatomic septa and epicardial vessels towards the myocardium and endocardium where the bundles dissolved and the individual fibres spread between myocytes and within the endocardium. Generally, angiotensinergic fibres showed no synaptic enlargements or only a few if they were also catecholaminergic. The exclusively catechalominergic fibres were characterised by multiple beaded synapses. The autonomic innervation of the human heart contains angiotensinergic fibres with a sympathetic efferent phenotype and exclusively angiotensinergic fibers representing probably afferents. Angiotensinergic neurotransmission may modulate intracardiac sympathetic and parasympathetic activity and thereby influence cardiac and circulatory function. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  19. Radiotracers for Cardiac Sympathetic Innervation: Transport Kinetics and Binding Affinities for the Human Norepinephrine Transporter

    Science.gov (United States)

    Raffel, David M.; Chen, Wei; Jung, Yong-Woon; Jang, Keun Sam; Gu, Guie; Cozzi, Nicholas V.

    2013-01-01

    Introduction Most radiotracers for imaging of cardiac sympathetic innervation are substrates of the norepinephrine transporter (NET). The goal of this study was to characterize the NET transport kinetics and binding affinities of several sympathetic nerve radiotracers, including [11C]-(−)-meta-hydroxyephedrine, [11C]-(−)-epinephrine, and a series of [11C]-labeled phenethylguanidines under development in our laboratory. For comparison, the NET transport kinetics and binding affinities of some [3H]-labeled biogenic amines were also determined. Methods Transport kinetics studies were performed using rat C6 glioma cells stably transfected with the human norepinephrine transporter (C6-hNET cells). For each radiolabeled NET substrate, saturation transport assays with C6-hNET cells measured the Michaelis-Menten transport constants Km and Vmax for NET transport. Competitive inhibition binding assays with homogenized C6-hNET cells and [3H]mazindol provided estimates of binding affinities (KI) for NET. Results Km, Vmax and KI values were determined for each NET substrate with a high degree of reproducibility. Interestingly, C6-hNET transport rates for ‘tracer concentrations’ of substrate, given by the ratio Vmax/Km, were found to be highly correlated with neuronal transport rates measured previously in isolated rat hearts (r2 = 0.96). This suggests that the transport constants Km and Vmax measured using the C6-hNET cells accurately reflect in vivo transport kinetics. Conclusion The results of these studies show how structural changes in NET substrates influence NET binding and transport constants, providing valuable insights that can be used in the design of new tracers with more optimal kinetics for quantifying regional sympathetic nerve density. PMID:23306137

  20. Diabetic cardiac autonomic dysfunction. Parasympathetic versus sympathetic

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Akihiko; Kurata, Chinori; Sugi, Toshihiko; Mikami, Tadashi; Shouda, Sakae [Hamamatsu Univ. School of Medicine, Shizuoka (Japan)

    1999-04-01

    Diabetic cardiac autonomic dysfunction often causes lethal arrhythmia and sudden cardiac death. {sup 123}I-Metaiodobenzylguanidine (MIBG) can evaluate cardiac sympathetic dysfunction, and analysis of heart rate variability (HRV) can reflect cardiac parasympathetic activity. We examined whether cardiac parasympathetic dysfunction assessed by HRV may correlate with sympathetic dysfunction assessed by MIBG in diabetic patients. In 24-hour electrocardiography, we analyzed 4 HRV parameters: high-frequency power (HF), HF in the early morning (EMHF), rMSSD and pNN50. MIBG planar images and SPECT were obtained 15 minutes (early) and 150 minutes (late) after injection and the heart washout rate was calculated. The defect score in 9 left ventricular regions was scored on a 4 point scale (0=normal - 3=severe defect). In 20 selected diabetic patients without congestive heart failure, coronary artery disease and renal failure, parasympathetic HRV parameters had a negative correlation with the sum of defect scores (DS) in the late images (R=-0.47 to -0.59, p<0.05) and some parameters had a negative correlation with the washout rate (R=-0.50 to -0.55, p<0.05). In a total of 64 diabetic patients also, these parameters had a negative correlation with late DS (R=-0.28 to -0.35, p<0.05) and early DS (R=-0.27 to -0.32, p<0.05). The progress of diabetic cardiac parasympathetic dysfunction may parallel the sympathetic one. (author)

  1. Ganglioneuroma of Lumbar Nerve Root: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Min Hye; Lee, Seung Hun; Joo, Kyung Bin; Jang, Ki Seok [Dept. of Hanyang University Seoul Hospital, Seoul (Korea, Republic of); Bae, Ji Yoon [Dept. of Pathology, National Police Hospital, Seoul (Korea, Republic of)

    2013-02-15

    Ganglioneuroma is a rare, benign, slow-growing, well-differentiated tumor consisting of ganglion cells and Schwann cells. Ganglioneuromas originate from neural crest cells and can affect any part of the sympathetic tissue from the skull base to the pelvis. However, ganglioneuroma occurring in the nerve root is extremely rare. We describe a 50-year-old man with ganglioneuroma involving the right 5th lumbar nerve root. The ganglioneuroma showed intermediate signal intensity on the T1-weighted image and high signal intensity on the T2-weighted image with homogeneous enhancement on the gadolinium-enhanced T1-weighted image.

  2. Unusually large quiescent ancient schwannoma of hypoglossal nerve

    Directory of Open Access Journals (Sweden)

    Sangeeta P Wanjari

    2013-01-01

    Full Text Available Ancient schwannoma is considered as a variant of schwannoma, comprising about 10% of all schwanommas. Schwannoma is a benign neoplasm derived from the nerve sheath of peripheral motor, sensory and sympathetic nerves and from the cranial nerve pairs. It usually presents as a solitary soft-tissue lesion which is slow growing, encapsulated and is often associated with nerve attached peripherally. Diagnosis is often confirmed with the microscopic examination. The long standing schwannoma attributes to degenerative changes and is termed "ancient" schwannoma. Present case is of a 68-year-old female patient who reported with an asymptomatic large swelling below mandible on the left side since last 23 years. The lesion was surgically excised under general anesthesia.

  3. Resetting of the Baroreflex Control of Sympathetic Vasomotor Activity during Natural Behaviors: Description and Conceptual Model of Central Mechanisms

    Directory of Open Access Journals (Sweden)

    Roger A. L. Dampney

    2017-08-01

    Full Text Available The baroreceptor reflex controls arterial pressure primarily via reflex changes in vascular resistance, rather than cardiac output. The vascular resistance in turn is dependent upon the activity of sympathetic vasomotor nerves innervating arterioles in different vascular beds. In this review, the major theme is that the baroreflex control of sympathetic vasomotor activity is not constant, but varies according to the behavioral state of the animal. In contrast to the view that was generally accepted up until the 1980s, I argue that the baroreflex control of sympathetic vasomotor activity is not inhibited or overridden during behaviors such as mental stress or exercise, but instead is reset under those conditions so that it continues to be highly effective in regulating sympathetic activity and arterial blood pressure at levels that are appropriate for the particular ongoing behavior. A major challenge is to identify the central mechanisms and neural pathways that subserve such resetting in different states. A model is proposed that is capable of simulating the different ways in which baroreflex resetting is occurred. Future studies are required to determine whether this proposed model is an accurate representation of the central mechanisms responsible for baroreflex resetting.

  4. Resetting of the Baroreflex Control of Sympathetic Vasomotor Activity during Natural Behaviors: Description and Conceptual Model of Central Mechanisms

    Science.gov (United States)

    Dampney, Roger A. L.

    2017-01-01

    The baroreceptor reflex controls arterial pressure primarily via reflex changes in vascular resistance, rather than cardiac output. The vascular resistance in turn is dependent upon the activity of sympathetic vasomotor nerves innervating arterioles in different vascular beds. In this review, the major theme is that the baroreflex control of sympathetic vasomotor activity is not constant, but varies according to the behavioral state of the animal. In contrast to the view that was generally accepted up until the 1980s, I argue that the baroreflex control of sympathetic vasomotor activity is not inhibited or overridden during behaviors such as mental stress or exercise, but instead is reset under those conditions so that it continues to be highly effective in regulating sympathetic activity and arterial blood pressure at levels that are appropriate for the particular ongoing behavior. A major challenge is to identify the central mechanisms and neural pathways that subserve such resetting in different states. A model is proposed that is capable of simulating the different ways in which baroreflex resetting is occurred. Future studies are required to determine whether this proposed model is an accurate representation of the central mechanisms responsible for baroreflex resetting. PMID:28860965

  5. Recovery of colonic transit following extrinsic nerve damage in rats.

    Science.gov (United States)

    Ridolfi, Timothy J; Tong, Wei Dong; Kosinski, Lauren; Takahashi, Toku; Ludwig, Kirk A

    2011-06-01

    Injury to pelvic sympathetic and parasympathetic nerves from surgical and obstetrical trauma has long been cited as a cause for abnormal colorectal motility in humans. Using a rat model, acute transaction of these extrinsic nerves has been shown to effect colorectal motility. The aim of this study is to determine in a rat model how transection of these extrinsic nerves affects colonic transit over time. Eighty-two Sprague-Dawley rats underwent placement of a tunneled catheter into the proximal colon. Bilateral hypogastric, pelvic nerves (HGN and PN) or both were transected in 66 rats. The remaining 16 rats received a sham operation. Colonic transit was evaluated at postoperative days (PODs) 1, 3, and 7 by injecting and calculating the geometric center (GC) of the distribution of (51)Cr after 3 h of propagation. At POD 1, transection of PNs significantly delayed colonic transit (GC = 4.9, p < 0.05), while transection of HGNs (GC = 8.5, p < 0.05) or transection of both nerves (GC = 7.8, p < 0.05) significantly accelerated colonic transit, when compared with sham operation (GC = 6.0). A significant trend toward recovery was noted in both the HGN and PN transection groups at POD 7. Damage to the extrinsic sympathetic and/or parasympathetic PNs affects colonic transit acutely. These changes in large bowel motor function normalize over time implicating a compensatory mechanism within the bowel itself.

  6. Is reflex sympathetic dystrophy/complex regional pain syndrome type I a small-fiber neuropathy?

    Science.gov (United States)

    Oaklander, Anne Louise; Fields, Howard L

    2009-06-01

    Neurologist S. Weir Mitchell first described "causalgia" following wartime nerve injury, with its persistent distal limb burning pain, swelling, and abnormal skin color, temperature, and sweating. Similar post-traumatic symptoms were later identified in patients without overt nerve injuries after trauma. This was labeled reflex sympathetic dystrophy (RSD; now complex regional pain syndrome type I [CRPS-I]). The pathophysiology of symptoms is unknown and treatment options are limited. We propose that persistent RSD/CRPS-I is a post-traumatic neuralgia associated with distal degeneration of small-diameter peripheral axons. Small-fiber lesions are easily missed on examination and are undetected by standard electrophysiological testing. Most CRPS features-spreading pain and skin hypersensitivity, vasomotor instability, osteopenia, edema, and abnormal sweating-are explicable by small-fiber dysfunction. Small fibers sense pain and temperature but also regulate tissue function through neuroeffector actions. Indeed, small-fiber-predominant polyneuropathies cause CRPS-like abnormalities, and pathological studies of nerves from chronic CRPS-I patients confirm small-fiber-predominant pathology. Small distal nerve injuries in rodents reproduce many CRPS features, further supporting this hypothesis. CRPS symptoms likely reflect combined effects of axonal degeneration and plasticity, inappropriate firing and neurosecretion by residual axons, and denervation supersensitivity. The resulting tissue edema, hypoxia, and secondary central nervous system changes can exacerbate symptoms and perpetuate pathology. Restoring the interest of neurologists in RSD/CRPS should improve patient care and broaden our knowledge of small-fiber functions.

  7. Nerve growth factor in bladder dysfunction: contributing factor, biomarker, and therapeutic target

    NARCIS (Netherlands)

    Ochodnický, Peter; Cruz, Célia D.; Yoshimura, Naoki; Michel, Martin C.

    2011-01-01

    In the last two decades, nerve growth factor (NGF), initially described as a prototypical trophic factor in the development of sensory and sympathetic innervation, has emerged as a complex regulator of neural plasticity along the micturition pathways. This review aims to summarize the current

  8. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism

    DEFF Research Database (Denmark)

    Vagn Nielsen, H; Hasselström, K; Feldt-Rasmussen, U

    1987-01-01

    Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic vasoconstrict......Sympathetic reflex regulation of subcutaneous blood flow (SBF) in the forearm was studied in eight patients with primary hypothyroidism. Diastolic arterial pressure was greater than or equal to 95 mmHg in five patients. SBF was determined by local clearance of Na99mTcO4. Sympathetic.......02)). In conclusion sympathetic vasoconstrictor activity in adipose tissue is markedly increased in primary hypothyroidism. Sympathetic tone and arterial pressure are reduced during treatment....

  9. Measurement of L-[1-14C]leucine kinetics in splanchnic and leg tissues in humans. Effect of amino acid infusion

    International Nuclear Information System (INIS)

    Gelfand, R.A.; Glickman, M.G.; Castellino, P.; Louard, R.J.; DeFronzo, R.A.

    1988-01-01

    Although whole-body leucine flux is widely measured to study body protein turnover in humans, the contribution of specific tissues to the total-body measurement remains unknown. By combining the organ-balance technique with the systemic infusion of L-[1-14C]leucine, we quantitated leucine production and disposal by splanchnic and leg tissues and by the whole body, simultaneously, in six normal men before and during amino acid infusion. At steady state, disposal of arterial leucine by splanchnic and leg tissues was calculated from the percent extraction (E) of L-[1-14C]leucine counts: uptake = E x [Leu]a x flow. Tissue release of cold leucine (from protein turnover) into vein was calculated as the difference between leucine uptake and the net tissue leucine balance. In the postabsorptive state, despite substantial (P less than .01) extraction of L-[1-14C]leucine by splanchnic (23 +/- 1%) and leg (18 +/- 2%) tissues, net leucine balance across both tissue beds was small, indicating active simultaneous disposal and production of leucine at nearly equivalent rates. Splanchnic tissues accounted for approximately 50% of the measured total-body leucine flux. During amino acid infusion, the net leucine balance across splanchnic and leg tissues became positive, reflecting not only an increase in leucine uptake but also a marked suppression (by approximately 50%, P less than .02) of cold leucine release. This reduction in splanchnic and leg leucine release was indicated by a sharp decline in whole-body endogenous leucine flux

  10. Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans.

    Science.gov (United States)

    Luiking, Yvette C; Deutz, Nicolaas E P; Jäkel, Martin; Soeters, Peter B

    2005-05-01

    Dietary protein quality is considered to be dependent on the degree and velocity with which protein is digested, absorbed as amino acids, and retained in the gut as newly synthesized protein. Metabolic animal studies suggest that the quality of soy protein is inferior to that of casein protein, but confirmatory studies in humans are lacking. The study objective was to assess the quality of casein and soy protein by comparing their metabolic effects in healthy human subjects. Whole-body protein kinetics, splanchnic leucine extraction, and urea production rates were measured in the postabsorptive state and during 8-h enteral intakes of isonitrogenous [0.42 g protein/(kg body weight . 8 h)] protein-based test meals, which contained either casein (CAPM; n = 12) or soy protein (SOPM; n = 10) in 2 separate groups. Stable isotope techniques were used to study metabolic effects. With enteral food intake, protein metabolism changed from net protein breakdown to net protein synthesis. Net protein synthesis was greater in the CAPM group than in the SOPM group [52 +/- 14 and 17 +/- 14 nmol/(kg fat-free mass (FFM) . min), respectively; P CAPM (P = 0.07). Absolute splanchnic extraction of leucine was higher in the subjects that consumed CAPM [306 +/- 31 nmol/(kg FFM . min)] vs. those that consumed SOPM [235 +/- 29 nmol/(kg FFM . min); P < 0.01]. In conclusion, a significantly larger portion of soy protein is degraded to urea, whereas casein protein likely contributes to splanchnic utilization (probably protein synthesis) to a greater extent. The biological value of soy protein must be considered inferior to that of casein protein in humans.

  11. Long-term effects of oral propranolol on splanchnic and systemic haemodynamics in patients with cirrhosis and oesophageal varices

    DEFF Research Database (Denmark)

    Bendtsen, Flemming; Henriksen, Jens Henrik; Sørensen, T I

    1991-01-01

    Splanchnic and systemic haemodynamics were measured in 24 patients with cirrhosis and oesophageal varices and no previous bleeding. The patients were randomized either to long-term treatment with propranolol (14 patients) or no active treatment (controls, 10 patients). Catheterization was performed...... 1 year of treatment with propranolol, whereas a decrease in azygos blood flow was observed only in the propranolol group. The beneficial effect of propranolol on the risk of bleeding from oesophageal varices may, therefore, mostly be due to a selective decrease in collateral blood flow and thereby...... variceal blood flow....

  12. Splanchnic Compression Improves the Efficacy of Compression Stockings to Prevent Orthostatic Intolerance

    Science.gov (United States)

    Platts, Steven H.; Brown, A. K.; Lee, S. M.; Stenger, M. B.

    2009-01-01

    Purpose: Post-spaceflight orthostatic intolerance (OI) is observed in 20-30% of astronauts. Previous data from our laboratory suggests that this is largely a result of decreased venous return. Currently, NASA astronauts wear an anti-gravity suit (AGS) which consists of inflatable air bladders over the calves, thighs and abdomen, typically pressurized from 26 to 78 mmHg. We recently determined that, thigh-high graded compression stockings (JOBST , 55 mmHg at ankle, 6 mmHg at top of thigh) were effective, though to a lesser degree than the AGS. The purpose of this study was to evaluate the addition of splanchnic compression to prevent orthostatic intolerance. Methods: Ten healthy volunteers (6M, 4F) participated in three 80 head-up tilts on separate days while (1) normovolemic (2) hypovolemic w/ breast-high compression stockings (BS)(JOBST(R), 55 mmHg at the ankle, 6 mmHg at top of thigh, 12 mmHg over abdomen) (3) hypovolemic w/o stockings. Hypovolemia was induced by IV infusion of furosemide (0.5 mg/kg) and 48 hrs of a low salt diet to simulate plasma volume loss following space flight. Hypovolemic testing occurred 24 and 48 hrs after furosemide. One-way repeated measures ANOVA, with Bonferroni corrections, was used to test for differences in blood pressure and heart rate responses to head-up tilt, stand times were compared using a Kaplan-Meyer survival analysis. Results: BS were effective in preventing OI and presyncope in hypovolemic test subjects ( p = 0.015). BS prevented the decrease in systolic blood pressure seen during tilt in normovolemia (p high garments. These stockings are readily available, inexpensive, and can be worn for days following landing as astronauts re-adapt to Earth gravity.

  13. Effect of preceding exercise on cerebral and splanchnic vascular responses to mental task

    Directory of Open Access Journals (Sweden)

    Someya Nami

    2012-06-01

    Full Text Available Abstract Background To investigate the effect of preceding acute exercise on the peripheral vascular response to a mental task, we measured splanchnic and cerebral blood flow responses to performing a mental task after exercise and resting. Methods In the exercise trial, 11 males exercised for 30 min on a cycle ergometer with a workload set at 70% of the age-predicted maximal heart rate for each individual. After a 15-min recovery period, the subjects rested for 5 min for pre-task baseline measurement and then performed mental arithmetic for 5 min followed by 5 min of post-task measurement. In the resting trial, they rested for 45 min and pre-task baseline data was obtained for 5 min. Then mental arithmetic was performed for 5 min followed by post-task measurement. We measured the mean blood velocity in the middle cerebral artery and superior mesenteric artery and the mean arterial pressure. Results Mean arterial pressure and mean blood velocity in the middle cerebral artery were significantly higher than the baseline during mental arithmetic in both exercise and resting trials. Mean blood velocity in the middle cerebral artery during mental arithmetic was greater in the control trial than the exercise trial. Mean blood velocity in the superior mesenteric artery showed no significant change during mental arithmetic from baseline in both trials. Conclusion These results suggest that acute exercise can moderate the increase in cerebral blood flow induced by a mental task.

  14. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria phenotype in patients with splanchnic vein thrombosis.

    Science.gov (United States)

    Ageno, Walter; Dentali, Francesco; De Stefano, Valerio; Barco, Stefano; Lerede, Teresa; Bazzan, Mario; Piana, Antonietta; Santoro, Rita; Duce, Rita; Poli, Daniela; Martinelli, Ida; Siragusa, Sergio; Barillari, Giovanni; Cattaneo, Marco; Vidili, Gianpaolo; Carpenedo, Monica; Rancan, Elena; Giaretta, Ilaria; Tosetto, Alberto

    2014-06-01

    Splanchnic vein thrombosis (SVT) is a serious complication in patients with paroxysmal nocturnal hemoglobinuria (PNH). Mutant PNH clones can be associated with an increased risk of SVT even in the absence of overt disease, but their prevalence in non-selected SVT patients remains unknown. Patients with objective diagnosis of SVT and without known PNH were tested for the presence of PNH clone using high-sensitivity flow cytometric analysis. A total of 202 SVT patients were eligible, 58.4% were males, mean age was 54.6years (range 17-94), site of thrombosis was portal in 103 patients, mesenteric in 67, splenic in 37, and supra-hepatic in 10. SVT was associated with JAK2 V6167F in 28 of 126 (22.2%) screened patients, liver cirrhosis in 15.3% patients, recent surgery in 10.9%, and myeloproliferative neoplasm in 10.6%, whereas in 34.6% of patients neither permanent nor transient risk factors were detected. None of the patients had a clearly demonstrable PNH clone, but in two patients (0.99%, 95% CI 0.17-3.91) we observed very small PNH clones (size 0.014% and 0.16%) confirmed in two independent samples. One patient had portal vein thrombosis and no associated risk factors, the second had superior mesenteric vein thrombosis and inflammatory bowel disease. Very small PNH clones can be detected in patients with SVT and no clinical manifestations of disease. Future studies are needed to explore the potential role of this finding in the pathogenesis of SVT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Predictive factors of splanchnic vein thrombosis in acute pancreatitis: A 6-year single-center experience.

    Science.gov (United States)

    Toqué, Laurence; Hamy, Antoine; Hamel, Jean-Francois; Cesbron, Elodie; Hulo, Pauline; Robert, Solen; Aube, Christophe; Lermite, Emilie; Venara, Aurélien

    2015-12-01

    Splanchnic vein thrombosis (SVT) is a potentially severe complication of pancreatitis. The aim of this single-center, retrospective cohort study was to investigate the incidence of SVT and to determine the connected risk factors. All consecutive patients with acute pancreatitis (AP) managed in our hospital were included. The primary outcome was the occurrence of SVT and data was collected in accordance with Ranson's criteria. A total of 318 patients were included, of whom 124 (39.0%) were women. Biliary lithiasis was the main cause of pancreatitis (n = 156, 49.1%). A total of 19 (6.0%) SVT were identified. In univariate analysis, alcohol intake, smoking and male gender were associated with SVT (P = 0.005, 0.003 and 0.007, respectively). Biological parameters significantly associated with thrombosis were lactate dehydrogenase (LDH) 75% was a protective factor against thrombosis (OR 0.148, P = 0.019). Leukocytes >10 × 10(9)/L (OR 6.397, P = 0.034), hyperglycemia (≥ 10 mmol/L) (OR 6.845, P = 0.023), LDH SVT. Alcohol intake, male gender and smoking should focus the physician's attention on the risk of SVT. When further associated with certain biological parameters, the physicians should consider therapeutic anticoagulation to prevent SVT. © 2014 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  16. Outcomes during anticoagulation in patients with symptomatic vs. incidental splanchnic vein thrombosis.

    Science.gov (United States)

    Tufano, Antonella; Ageno, Walter; Di Micco, Pierpaolo; Niglio, Alferio; Rosa, Vladimir; Ballaz, Aitor; Braester, Andrei; Rubio, Carmen Mª; Isern, Virginia; Imbalzano, Egidio; Monreal, Manuel

    2018-02-27

    Current guidelines recommend the use of anticoagulant therapy in patients with symptomatic splanchnic vein thrombosis (SVT) and suggest no routine anticoagulation in those with incidental SVT. We used the RIETE (Registro Informatizado Enfermedad Trombo Embólica) registry to assess the rate and severity of symptomatic venous thromboembolism (VTE) recurrences and major bleeding events appearing during the course of anticoagulation in patients with symptomatic or incidental SVT. In March 2017, 521 patients with SVT were recruited. Of them, 212 (41%) presented with symptomatic SVT and 309 had incidental SVT. Most (93%) patients received anticoagulant therapy (median, 147 days). During the course of anticoagulation, 20 patients developed symptomatic VTE recurrences (none died) and 26 had major bleeding (fatal bleeding, 5). On multivariable analysis, patients with incidental SVT had a non-significantly higher risk for symptomatic VTE recurrences (adjusted hazard ratio [HR]: 2.04; 95%CI: 0.71-5.88) and a similar risk for major bleeding (HR: 1.12; 95%CI: 0.47-2.63) than those with symptomatic SVT. Active cancer was associated with at increased risk for VTE recurrences (HR: 3.06; 95%CI: 1.14-8.17) and anaemia (HR: 4.11; 95%CI: 1.45-11.6) or abnormal prothrombin time (HR: 4.10; 95%CI: 1.68-10.1) were associated with at increased risk for major bleeding. The rates of recurrent SVT and major bleeding were similar between patients with incidental or symptomatic SVT. Because the severity of bleeding complications during anticoagulation may outweigh the severity of VTE recurrences in both groups, further studies should identify those SVT patients who benefit from anticoagulant therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Risk factors and outcome of splanchnic venous thrombosis in patients with necrotizing acute pancreatitis.

    Science.gov (United States)

    Zhou, Jing; Ke, Lu; Tong, Zhihui; Li, Gang; Li, Weiqin; Li, Ning; Li, Jieshou

    2015-01-01

    Splanchnic venous thrombosis (SVT) is considered a rare but important complication in patients with acute pancreatitis (AP) and literatures regarding this topic were sparse. The aim of the present study was to investigate the risk factors of SVT in necrotizing acute pancreatitis (NAP) and assess the prognosis of these patients. Both univariate and multivariate logistic regression analyses were applied using 15 indices including age, gender, Acute Physiology and Chronic Health Evaluation II scores (APACHE II), CRP (C - reactive protein) levels, etc to explore potential risk factors for the development of SVT in NAP patients. Moreover, clinical outcome measures such as mortality, organ failure and length of hospital and ICU stay were also compared between NAP patients with or without SVT. According to the statistical results, only intra-abdominal pressure (IAP) was proved to be an independent risk factor for SVT (OR, 1.283; 95% CI, 1.091-1.509,P=0.003). In addition, Balthazar's CT score and occurrence of IPN (infected pancreatic necrosis) also reached statistical significance (P=0.040 and 0.047, respectively), but the 95% confidence interval shown in the multivariate logistic regression suggested that the observed ORs are not significant (1.326;95% CI 0.984-1.787 and 2.61;95 CI 0.972-7.352, respectively), which indicates weaker association between the two parameters and SVT. Regarding the clinical outcomes, patients with SVT showed higher mortality, longer hospital and intensive care unit duration, higher rates of a variety of complications and more utilization of invasive interventions. IAP is an independent risk factor for the development of SVT in patients with NAP, while Balthazar's CT score and occurrence of IPN are also associated with SVT, although not as strong as IAP. Moreover, occurrence of SVT relates with extremely poor prognosis in NAP patients, evidenced by increased mortality, morbidity and need for invasive interventions. Copyright © 2014 Elsevier

  18. Role and Effectiveness of Percutaneous Arterial Embolization in Hemodynamically Unstable Patients with Ruptured Splanchnic Artery Pseudoaneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Dohan, Anthony, E-mail: anthony.dohan@lrb.aphp.fr [Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Abdominal and Interventional Imaging (France); Eveno, Clarisse, E-mail: clarisse.eveno@lrb.aphp.fr [Université Paris-Diderot, Sorbonne Paris Cité (France); Dautry, Raphael, E-mail: raphael.dautry@lrb.aphp.fr; Guerrache, Youcef, E-mail: docyoucef05@yahoo.fr [Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Abdominal and Interventional Imaging (France); Camus, Marine, E-mail: marine.camus@lrb.aphp.fr [Université Paris-Diderot, Sorbonne Paris Cité (France); Boudiaf, Mourad, E-mail: mourad.boudiaf@lrb.aphp.fr [Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Abdominal and Interventional Imaging (France); Gayat, Etienne, E-mail: etienne.gayat@lrb.aphp.fr [Université Paris-Diderot, Sorbonne Paris Cité (France); Dref, Olivier Le, E-mail: olivier.ledref@lrb.aphp.fr; Sirol, Marc, E-mail: marc.sirol@lrb.aphp.fr; Soyer, Philippe, E-mail: philippe.soyer@lrb.aphp.fr [Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Abdominal and Interventional Imaging (France)

    2015-08-15

    PurposeTo assess the role and effectiveness of percutaneous arterial embolization (TAE) in patients with hemodynamic instability due to hypovolemic shock secondary to ruptured splanchnic artery pseudoaneurysms (SAPA).Materials and MethodsSeventeen patients (11 men, 6 women; mean age, 53 years) with hemodynamic instability (systolic blood pressure <90 mmHg) due to hypovolemic shock secondary to ruptured SAPA were treated by TAE. Clinical files, multidetector row computed tomography angiography, and angiographic examinations along with procedure details were reviewed.ResultsSeventeen SAPAs were present, predominantly located on gastroduodenal or pancreatic arteries (9/17; 53 %). Angiography showed extravasation of contrast medium from SAPA in 15/17 patients (88 %). Technical success rate of TAE was 100 %. TAE was performed using metallic coils in all patients (100 %), in association with gelatin sponge in 5/17 patients (29 %). TAE allowed controlling the bleeding and returning to normal hemodynamic status in 16/17 patients (94 %). In 1/17 patient (6 %), surgery was needed to definitively control the bleeding. The mortality and morbidity rate of TAE at 30 days were 0 and 12 %, respectively. Morbidity consisted in coil migration in 1/17 patient (6 %) and transient serum liver enzyme elevation in 1/17 patient (6 %).ConclusionTAE is an effective and safe treatment option for ruptured SAPA in hemodynamically unstable patients, with a success rate of 94 %. Our results suggest that TAE should be the favored option in patients with hemodynamic instability due to ruptured SAPA.

  19. The role of the renal afferent and efferent nerve fibers in heart failure

    Science.gov (United States)

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  20. Reflex sympathetic dystrophy following pacemaker insertion.

    Science.gov (United States)

    Londhey, Vikram A; Singh, Nishant; Kini, Seema

    2011-09-01

    A 55 year old male presented with pain and swelling over dorsum of right hand and small joints, and loss of sweating over right hand since two months. He was a known case of mitral valve prolapse (MVP) with mitral regurgitation and complete heart block for which pacemaker was implanted 1 year back. Bilateral wrist X-ray was suggestive of pronounced demineralization (osteopenia) in the right hand. He was thus diagnosed to have reflex sympathetic dystrophy syndrome (RSDS) considered to be induced by pacemaker insertion. After treatment with amitryptiline and indomethacin his symptoms dramatically improved.

  1. Macrophage and nerve interaction in endometriosis.

    Science.gov (United States)

    Wu, Jinjie; Xie, Hongyu; Yao, Shuzhong; Liang, Yanchun

    2017-03-14

    Dysregulation of the immune system in endometriotic milieus has been considered to play a pivotal role in the pathogenesis of endometriosis. Macrophage recruitment and nerve fiber infiltration are the two major characteristics of this aberrant immune environment. First, the recruitment of macrophages and their polarization phenotype within the endometriotic lesion have been demonstrated to facilitate the development and maintenance of endometriosis. M1 phenotype of macrophages has the capacity to secrete multiple cytokines for inflammatory response, while M2 macrophage possesses an opposite property that can mediate the process of immunosuppression and neuroangiogenesis. Upon secretion of multiple abnormal signal molecules by the endometriotic lesion, macrophages could alter their location and phenotype. These changes facilitate the accommodation of the aberrant microenvironment and the exacerbation of disease progression. Second, the infiltration of nerve fibers and their abnormal distribution are proved to be involved in the generation of endometriosis-associated pain and inflammatory response. An imbalance in sensory and sympathetic innervation and the abnormal secretion of different cytokines could mediate neurogenesis and subsequent peripheral neuroinflammation in endometriosis. Although endometriosis creates an inflammatory milieu promoting macrophage infiltration and an imbalanced innervation, interaction between macrophages and nerve fibers in this process remains unknown. The aim of this review is to highlight the role of macrophage and nerve interaction in endometriosis, where macrophage recruitment and neurogenesis can be the underlying mechanism of neuroinflammation and pathogenesis of endometriosis.

  2. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency?

    Science.gov (United States)

    Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H

    2003-05-01

    Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency.

  3. Intrathecal Intermittent Orexin-A Causes Sympathetic Long-Term Facilitation and Sensitizes the Peripheral Chemoreceptor Response to Hypoxia in Rats.

    Science.gov (United States)

    Kim, Seung Jae; Pilowsky, Paul M; Farnham, Melissa M J

    2016-09-01

    Intermittent hypoxia causes a persistent increase in sympathetic nerve activity (SNA), which progresses to hypertension in conditions such as obstructive sleep apnea. Orexins (A and B) are hypothalamic neurotransmitters with arousal-promoting and sympathoexcitatory effects. We investigated whether the sustained elevation of SNA, termed sympathetic long-term facilitation, after acute intermittent hypoxia (AIH) is caused by endogenous orexin acting on spinal sympathetic preganglionic neurons. The role of orexin in the increased SNA response to AIH was investigated in urethane-anesthetized, vagotomized, and artificially ventilated Sprague-Dawley rats (n = 58). A spinally infused subthreshold dose of orexin-A (intermittent; 0.1 nmol × 10) produced long-term enhancement in SNA (41.4% ± 6.9%) from baseline. This phenomenon was not produced by the same dose of orexin-A administered as a bolus intrathecal infusion (1 nmol; 7.3% ± 2.3%). The dual orexin receptor blocker, Almorexant, attenuated the effect of sympathetic long-term facilitation generated by intermittent orexin-A (20.7% ± 4.5% for Almorexant at 30 mg∙kg(-1) and 18.5% ± 1.2% for 75 mg∙kg(-1)), but not in AIH. The peripheral chemoreflex sympathoexcitatory response to hypoxia was greatly enhanced by intermittent orexin-A and AIH. In both cases, the sympathetic chemoreflex sensitization was reduced by Almorexant. Taken together, spinally acting orexin-A is mechanistically sufficient to evoke sympathetic long-term facilitation. However, AIH-induced sympathetic long-term facilitation appears to rely on mechanisms that are independent of orexin neurotransmission. Our findings further reveal that the activation of spinal orexin receptors is critical to enhance peripheral chemoreceptor responses to hypoxia after AIH. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. [A case of prolonged paroxysmal sympathetic hyperactivity].

    Science.gov (United States)

    Yamamoto, Akiko; Ide, Shuhei; Iwasaki, Yuji; Kaga, Makiko; Arima, Masataka

    2016-03-01

    We report the case of a 4-year-old girl who presented with paroxysmal sympathetic hyperactivity (PSH), after developing severe hypoxic-ischemic-encephalopathy because of cardiopulmonary arrest. She showed dramatic paroxysmal sympathetic activity with dystonia. She was treated with wide variety of medications against PSH, which were found to be effective in previous studies. Among them, morphine, bromocriptine, propranolol, and clonidine were effective in reducing the frequency of her attacks while gabapentin, baclofen, dantrolene, and benzodiazepine were ineffective. Though the paroxysms decreased markedly after the treatment, they could not be completely controlled beyond 500 days. Following the treatment, levels of plasma catecholamines and their urinary metabolites decreased to normal during inter- paroxysms. However, once a paroxysm had recurred, these levels were again very high. This case study is considered significant for two rea- sons. One is that PSH among children have been rarely reported, and the other is that this case of prolonged PSH delineated the transition of plasma catecholamines during the treatment. The excitatory: inhibitory ratio (EIR) model proposed by Baguley was considered while dis- cussing drug sensitivity in this case. Accumulation of similar case studies will help establish more effective treatment strategies and elucidate the pathophysiology of PSH.

  5. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  6. The Effect of Sympathetic Antagonists on the Antidepressant Action ...

    African Journals Online (AJOL)

    Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor ...

  7. Epithelioid sarcoma presenting as the reflex sympathetic dystrophy syndrome.

    Science.gov (United States)

    Summers, C. L.; Shahi, M.

    1987-01-01

    A case of reflex sympathetic dystrophy caused by an epithelioid sarcoma is presented. This is the first report of a local peripheral tumour associated with the reflex sympathetic dystrophy syndrome. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3671265

  8. Reflex sympathetic dystrophy: Early treatment and psychological aspects

    NARCIS (Netherlands)

    Geertzen, J.H.B.; De Bruijn, H.; De Bruijn-Kofman, A.T.; Arendzen, J.H.

    1994-01-01

    We report the results of two prospective studies of early treatment and psychological aspects in a series of 26 patients with sympathetic reflex dystrophy of the hand in which treatment was started within 3 months after diagnosis. Ismelin blocks is an often used therapy in sympathetic reflex

  9. Tonic aortic depressor nerve stimulation does not impede baroreflex dynamic characteristics concomitantly mediated by the stimulated nerve.

    Science.gov (United States)

    Kawada, Toru; Turner, Michael J; Shimizu, Shuji; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru

    2018-03-01

    Although electrical activation of the carotid sinus baroreflex (baroreflex activation therapy) is being explored as a device therapy for resistant hypertension, possible effects on baroreflex dynamic characteristics of interaction between electrical stimulation and pressure inputs are not fully elucidated. To examine whether the electrical stimulation of the baroreceptor afferent nerve impedes normal short-term arterial pressure (AP) regulation mediated by the stimulated nerve, we electrically stimulated the right aortic depressor nerve (ADN) while estimating the baroreflex dynamic characteristics by imposing pressure inputs to the isolated baroreceptor region of the right ADN in nine anesthetized rats. A Gaussian white noise signal with a mean of 120 mmHg and standard deviation of 20 mmHg was used for the pressure perturbation. A tonic ADN stimulation (2 or 5 Hz, 10 V, 0.1-ms pulse width) decreased mean sympathetic nerve activity (367.0 ± 70.9 vs. 247.3 ± 47.2 arbitrary units, P ADN stimulation did not affect the slope of dynamic gain in the neural arc transfer function from pressure perturbation to sympathetic nerve activity (16.9 ± 1.0 vs. 14.7 ± 1.6 dB/decade, not significant). These results indicate that electrical stimulation of the baroreceptor afferent nerve does not significantly impede the dynamic characteristics of the arterial baroreflex concomitantly mediated by the stimulated nerve. Short-term AP regulation by the arterial baroreflex may be preserved during the baroreflex activation therapy.

  10. Differential Toxicities of Intraneurally Injected Mercuric Chloride for Sympathetic and Somatic Motor Fibers: An Ultrastructural Study

    Directory of Open Access Journals (Sweden)

    Shih-Jung Cheng

    2011-02-01

    Conclusion: This study demonstrated an undue susceptibility of sympathetic fibers to mercury intoxication. The mechanisms that underlie the selective reaction of sympathetic fibers to mercury warrant further investigation.

  11. Analysis of five cases of splanchnic artery aneurysm associated with coeliac artery stenosis due to compression by the median arcuate ligament

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, K. [Department of Radiology, Seirei Numazu Hospital, Shichitanda Matsushita Hon-aza, Numazu, Shizuoka (Japan)]. E-mail: koichiss37@yahoo.co.jp; Takehara, Y. [Department of Radiology, Hamamatsu University School of Medicine, Handayama, Hamamatsu, Shizuoka (Japan)

    2007-07-15

    Aim: To elucidate the mechanism of occurrence of splanchnic artery aneurysm associated with coeliac artery stenosis due to compression by the median arcuate ligament, and also to discuss the management for this relatively rare condition. Materials and methods: Five consecutive cases of splanchnic artery aneurysm associated with coeliac axis stenosis due to compression by the median arcuate ligament, including four cases of pancreaticoduodenal artery aneurysm and one case of epiploic artery aneurysm, were investigated. These cases were collected over a 5-year period in our local and affiliated hospitals. Among these five cases, three were discovered because of rupture of the aneurysm, and two were found incidentally in annual medical check-ups. Results: In all cases, conspicuously developed collateral arteries, which were of the dilated pancreaticoduodenal arcade and its branches, were conspicuously found on digital subtraction angiography of the superior mesenteric artery. The findings suggested that haemodynamic changes in the splanchnic arterial networks (an increase in blood flow mainly through the pancreaticoduodenal arcade), were the possible cause of the corresponding aneurysms. Conclusion: Compression by the median arcuate ligament might be a frequent cause of splanchnic aneurysm, which, on rupture of the aneurysm, could be life-threatening.

  12. Selective testing for calreticulin gene mutations in patients with splanchnic vein thrombosis: A prospective cohort study.

    Science.gov (United States)

    Poisson, Johanne; Plessier, Aurélie; Kiladjian, Jean-Jacques; Turon, Fanny; Cassinat, Bruno; Andreoli, Annalisa; De Raucourt, Emmanuelle; Goria, Odile; Zekrini, Kamal; Bureau, Christophe; Lorre, Florence; Cervantes, Francisco; Colomer, Dolors; Durand, François; Garcia-Pagan, Juan-Carlos; Casadevall, Nicole; Valla, Dominique-Charles; Rautou, Pierre-Emmanuel; Marzac, Christophe

    2017-09-01

    Myeloproliferative neoplasms (MPN) are the leading cause of splanchnic vein thrombosis (SVT). Janus kinase 2 gene (JAK2) V617F mutations are found in 80 to 90% of patients with SVT and MPN. Mutations of the calreticulin (CALR) gene have also been reported. However, as their prevalence ranges from 0 to 2%, the utility of routine testing is questionable. This study aimed to identify a group of patients with SVT at high risk of harboring CALR mutations and thus requiring this genetic testing. CALR, JAK2 V617F and thrombopoietin receptor gene (MPL) mutations were analysed in a test cohort that included 312 patients with SVT. Criteria to identify patients at high risk of CALR mutations in this test cohort was used and evaluated in a validation cohort that included 209 patients with SVT. In the test cohort, 59 patients had JAK2 V617F , five had CALR and none had MPL mutations. Patients with CALR mutations had higher spleen height and platelet count than patients without these mutations. All patients with CALR mutations had a spleen height ⩾16cm and platelet count >200×10 9 /L. These criteria had a positive predictive value of 56% (5/9) and a negative predictive value of 100% (0/233) for the identification of CALR mutations. In the validation cohort, these criteria had a positive predictive value of 33% (2/6) and a negative predictive value of 99% (1/96). CALR mutations should be tested in patients with SVT, a spleen height ⩾16cm, platelet count >200×10 9 /L, and no JAK2 V617F . This strategy avoids 96% of unnecessary CALR mutations testing. Lay summary: Mutations of the CALR gene are detected in 0 to 2% of patients with SVT, thus the utility of systematic CALR mutation testing to diagnose MPN is questionable. This study demonstrates that CALR mutations testing can be restricted to patients with SVT, a spleen height ⩾16cm, a platelet count >200×10 9 /L, and no JAK2 V617F . This strategy avoids 96% of unnecessary CALR mutations testing. Copyright © 2017 European

  13. Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons.

    Science.gov (United States)

    Raffel, D M; Corbett, J R; del Rosario, R B; Gildersleeve, D L; Chiao, P C; Schwaiger, M; Wieland, D M

    1996-12-01

    The sympathomimetic drug phenylephrine recently has been labeled with 11C for use in PET studies of cardiac sympathetic innervation. Previous reports using isolated perfused rat heart models indicate that phenylephrine is metabolized by intraneuronal monoamine oxidase (MAO). This report compares the imaging characteristics, neuronal selectivity and kinetics of (-)-[11C]phenylephrine (PHEN) to the structurally similar but MAO-resistant analog (-)-[11C]-meta-hydroxyephedrine (HED), an established heart neuronal marker. Fourteen healthy volunteers were studied with PET and PHEN. Ten had paired studies with HED; four of the 10 were scanned a second time with each tracer after oral administration of desipramine, a selective neuronal transport blocker. Hemodynamic and electrocardiographic responses were monitored. Blood levels of intact radiotracer and radiolabeled metabolites were determined from venous blood samples taken during the PET study. Myocardial retention indices for both tracers were calculated. No hemodynamic or electrocardiographic effects were observed with either tracer. PHEN showed reduced myocardial retention at 50 min compared to HED; however, image quality and uniformity of distribution were comparable. PHEN cleared from myocardium with a mean half-time of 59 +/- 5 min, while myocardial levels of HED remained constant. PHEN metabolites appeared in the blood approximately three times faster than HED metabolites. Desipramine pretreatment markedly reduced (> 60%) myocardial retention of both PHEN and HED. PHEN provides PET images of human heart comparable in quality and uniformity to HED. Like HED, PHEN localizes in the sympathetic nerves of the heart. However, the more rapid efflux of PHEN, that is likely mediated by MAO, may provide information on the functional status of cardiac sympathetic neurons unobtainable with HED.

  14. Glycinergic inhibition of BAT sympathetic premotor neurons in rostral raphe pallidus.

    Science.gov (United States)

    Conceição, Ellen Paula Santos da; Madden, Christopher J; Morrison, Shaun F

    2017-06-01

    The rostral raphe pallidus (rRPa) contains sympathetic premotor neurons controlling thermogenesis in brown adipose tissue (BAT). We sought to determine whether a tonic activation of glycine A receptors (Gly A R) in the rRPa contributes to the inhibitory regulation of BAT sympathetic nerve activity (SNA) and of cardiovascular parameters in anesthetized rats. Nanoinjection of the Gly A R antagonist, strychnine (STR), into the rRPa of intact rats increased BAT SNA (peak: +495%), BAT temperature (T BAT , +1.1°C), expired CO 2 , (+0.4%), core body temperature (T CORE , +0.2°C), mean arterial pressure (MAP, +4 mmHg), and heart rate (HR, +57 beats/min). STR into rRPa in rats with a postdorsomedial hypothalamus transection produced similar increases in BAT thermogenic and cardiovascular parameters. Glycine nanoinjection into the rRPa evoked a potent inhibition of the cooling-evoked increases in BAT SNA (nadir: -74%), T BAT (-0.2°C), T CORE (-0.2°C), expired CO 2 (-0.2%), MAP (-8 mmHg), and HR (-22 beats/min) but had no effect on the increases in these variables evoked by STR nanoinjection into rRPa. Nanoinjection of GABA into the rRPa inhibited the STR-evoked BAT SNA (nadir: -86%) and reduced the expired CO 2 (-0.4%). Blockade of glutamate receptors in rRPa reduced the STR-evoked increases in BAT SNA (nadir: -61%), T BAT (-0.5°C), expired CO 2 (-0.3%), MAP (-9 mmHg), and HR (-33 beats/min). We conclude that a tonically active glycinergic input to the rRPa contributes to the inhibitory regulation of the discharge of BAT sympathetic premotor neurons and of BAT thermogenesis and energy expenditure. Copyright © 2017 the American Physiological Society.

  15. Neuroanatomy and clinical analysis of the cervical sympathetic trunk and longus colli

    Science.gov (United States)

    Yin, Zhaoyang; Yin, Jian; Cai, Jun; Sui, Tao; Cao, Xiaojian

    2015-01-01

    Abstract Anterior cervical surgery is commonly used for cervical vertebral body lesions. However, the structure of blood vessels and nerve tissues along the route of anterior cervical surgery is complex. We aimed to measure the data of the longus colli, the sympathetic trunk and the cervical sympathetic trunk (CST) ganglia in Chinese cadaver specimens. A total of 32 adult cadavers were studied. We delineated the surgical anatomy of the CST. The superior and inferior/cervicothoracic ganglia of the sympathetic trunk consistently appeared. The middle ganglion was observed in 28.1% of the specimens and there were 2 cases of unilateral double middle cervical ganglia. The inferior ganglion was observed in 25.0% of the specimens and the cervicothoracic ganglion was observed in the remaining specimens. The distance between the CST gradually decreased from the top to the bottom, and the distance between the medial edges of the longus colli gradually broadened from the top down. The average angle between the bilateral CST and the midline of the vertebra was 11.2°±1.8° on the left side and 10.3°±1.4° on the right side. The average angle between the medial margins of longus colli of both sides was 11.1°±1.9°. The CST is at high risk when LC muscle is cut transversely or is dragged heavily, especially at the levels of C6 and C7. Awareness of the regional anatomy of the CST could help surgeons to identify and preserve it during anterior cervical surgeries. PMID:26668584

  16. Analysis of Heart Rate Variability and Cardiac Autonomic Nerve Remodeling in Streptozotocin-induced Diabetic Rats.

    Science.gov (United States)

    Li, X; Jiang, Y-H; Jiang, P; Lin, H-Q; Yang, J-L; Ma, D-f; Wang, X; Yang, C-H

    2015-05-01

    Diabetes mellitus (DM) is associated with both cardiovascular and autonomic nervous system dysfunction. Spectral analysis of heart rate variability (HRV) can be used to monitor changes in response to autonomic innervation and stimulation of the heart. In this study, conducted in a rat model of diabetes, HRV and changes in associated neurotransmitters and neurotrophic factors in the right atrium (RA) were monitored. Diabetes was induced by streptozotocin (STZ) (60 mg/kg) in male Wistar rats, and HRV data were collected for 10 weeks by telemetry. Time and frequency domains of HRV data were analyzed using established metrics. The levels of various neural enzymes in the RA were determined by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence to characterize autonomic nerve remodeling. Insulin and methycobal were used to block the effects of STZ. HRV parameters reflecting parasympathetic tone (SDNN, RMSSD and HF domains) sharply decreased in the first 3 weeks after STZ administration; measures of sympathetic tone (SDANN) increased. After a series of adjustments, cardiac autonomic nerve innervation reached a new equilibrium, with a dominance of sympathetic tone. RA levels of tyrosine hydroxylase (TH) increased, and choline acetyltransferase (ChAT) decreased, indicating autonomic nerve remodeling. Levels of growth associated protein-43 (GAP43) and nerve growth factor (NGF) increased during the period of diabetes-induced cardiac-nerve damage; however, the level of ciliary neurotrophic factor (CNTF) decreased. The physical condition and indexes of rats were normalized in different degree after administration of the insulin and methycobal, but not completely recovered. STZ-induced diabetes was associated with cardiac autonomic nerve dysfunction at both the organ and molecular levels. Parasympathetic nerves exhibited severe damage and/or weak recovery; remodeling of sympathetic nerves predominated during 10-weeks of STZ-induced diabetes. © Georg Thieme Verlag

  17. Lymphocytic Meningitis in Patients with Sympathetic Ophthalmia.

    Science.gov (United States)

    Goudot, Mathilde; Groh, Matthieu; Salah, Sawsen; Monnet, Dominique; Blanche, Philippe; Brézin, Antoine P

    2017-04-01

    This study aimed at reporting lymphocytic meningitis in patients diagnosed with sympathetic ophthalmia (SO). In this single-center retrospective observational case series, we reviewed cases diagnosed with SO. We analyzed the patients' inciting injuries, the characteristics of uveitis and the cerebrospinal fluid (CSF) analyses. Nine patients were diagnosed with SO and CSF analyses were available in all cases. Four cases had lymphocytic pleocytosis, 3 of which showed marked CSF inflammation with more than 300 lymphocytes/mm 3 . The inciting event in these 3 patients was a globe perforation injury, whereas 4 patients without meningitis had SO following a surgical intervention. In this case series of patients with SO, lymphocytic meningitis was a common finding. The prevalence of meningitis in patients with SO and its value for the diagnosis of the disease needs to be further studied.

  18. Sympathetic Nervous System Synchrony in Couple Therapy.

    Science.gov (United States)

    Karvonen, Anu; Kykyri, Virpi-Liisa; Kaartinen, Jukka; Penttonen, Markku; Seikkula, Jaakko

    2016-07-01

    The aim of this study was to test whether there is statistically significant sympathetic nervous system (SNS) synchrony between participants in couple therapy. To our knowledge, this is the first study to measure psychophysiological synchrony during therapy in a multiactor setting. The study focuses on electrodermal activity (EDA) in the second couple therapy session from 10 different cases (20 clients, 10 therapists working in pairs). The EDA concordance index was used as a measure of SNS synchrony between dyads, and synchrony was found in 85% of all the dyads. Surprisingly, co-therapists exhibited the highest levels of synchrony, whereas couples exhibited the lowest synchrony. The client-therapist synchrony was lower than that of the co-therapists, but higher than that of the couples. A Video Abstract is available next to the online version of this article on the JMFT web site. © 2016 American Association for Marriage and Family Therapy.

  19. Sensory and sympathetic disorders in chronic non-specific neck pain.

    Science.gov (United States)

    Zaproudina, Nina; Ming, Zhiyong; Närhi, Matti

    2015-01-01

    The signs of sympathetic and sensory nerve-related disorders are not widely investigated in chronic nonspecific neck pain (NNP) patients. Thus, we performed skin temperature (Tsk), evaporation and touch threshold (TT) measurements to reveal possible dysfunctions at the fingertips of NNP patients (n=60) compared with healthy controls (n=11). Neck pain intensity was the main modifier of Tsk, and age the main modifier of TT in a multivariate model. On comparisons of the subgroups of NNP patients with unilateral (n=26) and bilateral (n=34) symptoms and controls, TT differed and Tsk tended to differ, the unilateral pain patients being found to demonstrate higher TT values on both sides. Interrelations between the measured parameters were found in the controls, but not in the patients. The NNP patients exhibited signs of functional impairment of innervation reflected in changes in tactile sensitivity and vasoactive sympathetic function. These changes may be based on both central and peripheral mechanisms, which possibly differ in patients with unilateral and bilateral symptoms.

  20. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    International Nuclear Information System (INIS)

    DiCicco-Bloom, E.; Black, I.B.

    1988-01-01

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [ 3 H]thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [ 3 H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain

  1. Sympathetic Denervation Accelerates Wound Contraction but Inhibits Reepithelialization and Pericyte Proliferation in Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Zhifang Zheng

    2017-01-01

    Full Text Available Previous studies focused on the effects of sympathetic denervation with 6-hydroxydopamine (6-OHDA on nondiabetic wounds, but the effects of 6-OHDA on diabetic wounds have not been previously reported. In this study, treated mice received intraperitoneal 6-OHDA, and control mice received intraperitoneal injections of normal saline. Full-thickness wounds were established on the backs of mice. The wounds were sectioned (four mice per group for analysis at 2, 5, 7, 10, 14, 17, and 21 days after injury. The wound areas in the control group were larger than those in the treatment group. Histological scores for epidermal and dermal regeneration were reduced in the 6-OHDA-treated group on day 21. The mast cells (MCs in each field decreased after sympathectomy on days 17 and 21. The expression levels of norepinephrine, epidermal growth factor (EGF, interleukin-1 beta, NG2 proteoglycan, and desmin in the treatment group were less than those in the control group. In conclusion, 6-OHDA delays reepithelialization during wound healing in diabetic mice by decreasing EGF, but increases wound contraction by reducing IL-1β levels and the number of MCs. Besides, 6-OHDA led to reduced pericyte proliferation in diabetic wounds, which might explain the vascular dysfunction after sympathetic nerve loss in diabetic wounds.

  2. Coping with dehydration: sympathetic activation and regulation of glutamatergic transmission in the hypothalamic PVN

    Science.gov (United States)

    Bardgett, Megan E.; Chen, Qing-Hui; Guo, Qing; Calderon, Alfredo S.; Andrade, Mary Ann

    2014-01-01

    Autonomic and endocrine profiles of chronic hypertension and heart failure resemble those of acute dehydration. Importantly, all of these conditions are associated with exaggerated sympathetic nerve activity (SNA) driven by glutamatergic activation of the hypothalamic paraventricular nucleus (PVN). Here, studies sought to gain insight into mechanisms of disease by determining the role of PVN ionotropic glutamate receptors in supporting SNA and mean arterial pressure (MAP) during dehydration and by elucidating mechanisms regulating receptor activity. Blockade of PVN N-methyl-d-aspartate (NMDA) receptors reduced (P dehydrated (DH) (48 h water deprivation) rats, but had no effect in euhydrated (EH) controls. Blockade of PVN α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors had no effect in either group. NMDA in PVN caused dose-dependent increases of renal SNA and MAP in both groups, but the maximum agonist evoked response (Emax) of the renal SNA response was greater (P dehydration increases excitatory NMDA receptor tone in PVN. Reduced glial-mediated glutamate uptake was identified as a key contributing factor. Defective glutamate uptake in PVN could therefore be an important, but as yet unexplored, mechanism driving sympathetic hyperactivity in chronic cardiovascular diseases. PMID:24671240

  3. Assessing the strength of cardiac and sympathetic baroreflex controls via transfer entropy during orthostatic challenge

    Science.gov (United States)

    Porta, Alberto; Marchi, Andrea; Bari, Vlasta; De Maria, Beatrice; Esler, Murray; Lambert, Elisabeth; Baumert, Mathias

    2017-05-01

    The study assesses the strength of the causal relation along baroreflex (BR) in humans during an incremental postural challenge soliciting the BR. Both cardiac BR (cBR) and sympathetic BR (sBR) were characterized via BR sequence approaches from spontaneous fluctuations of heart period (HP), systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and muscle sympathetic nerve activity (MSNA). A model-based transfer entropy method was applied to quantify the strength of the coupling from SAP to HP and from DAP to MSNA. The confounding influences of respiration were accounted for. Twelve young healthy subjects (20-36 years, nine females) were sequentially tilted at 0°, 20°, 30° and 40°. We found that (i) the strength of the causal relation along the cBR increases with tilt table inclination, while that along the sBR is unrelated to it; (ii) the strength of the causal coupling is unrelated to the gain of the relation; (iii) transfer entropy indexes are significantly and positively associated with simplified causality indexes derived from BR sequence analysis. The study proves that causality indexes are complementary to traditional characterization of the BR and suggests that simple markers derived from BR sequence analysis might be fruitfully exploited to estimate causality along the BR. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  4. Current management of reflex sympathetic dystrophy syndrome (complex regional pain syndrome type I).

    Science.gov (United States)

    Berthelot, Jean-Marie

    2006-10-01

    Although no major advances have occurred in the curative treatment of reflex sympathetic dystrophy syndrome (RSDS), new pathogenic insights may soon lead to innovative approaches, which may also prove effective in alleviating some forms of neuropathic pain. Preventing nerve compression and ischemia-reperfusion injury constitute valuable measures for preventing RSDS. Vitamin C administration can also prevent RSDS, together with clonidine in high-risk patients. Short-term glucocorticoid therapy has been found effective in preventing RSDS after stroke but has not been evaluated in other situations. Beneficial effects of bisphosphonates have been documented in several placebo-controlled trials. Placebo-controlled trials of ketamine and spinal cord stimulation are in order to confirm or refute the promising results obtained in open-label studies. Mirror visual feedback was introduced recently for the rehabilitation of patients with RSDS but needs to be evaluated in randomized controlled trials.

  5. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  6. Sympathetic neural and hemodynamic responses to head-up tilt during isoosmotic and hyperosmotic hypovolemia.

    Science.gov (United States)

    Posch, Alexander M; Luippold, Adam J; Mitchell, Katherine M; Bradbury, Karleigh E; Kenefick, Robert W; Cheuvront, Samuel N; Charkoudian, Nisha

    2017-10-01

    We hypothesized that muscle sympathetic nerve activity (MSNA) during head-up tilt (HUT) would be augmented during exercise-induced (hyperosmotic) dehydration but not isoosmotic dehydration via an oral diuretic. We studied 26 young healthy subjects (7 female, 19 male) divided into three groups: euhydrated (EUH, n = 7), previously exercised in 40°C while maintaining hydration; dehydrated (DEH, n = 10), previously exercised in 40°C during which ~3% of body weight was lost via sweat loss; and diuretic (DIUR, n = 9), a group that did not exercise but lost ~3% of body weight via diuresis (furosemide, 80 mg by mouth). We measured MSNA, heart rate (HR), and blood pressure (BP) during supine rest and 30° and 45° HUT. Plasma volume (PV) decreased similarly in DEH (-8.5 ± 3.3%) and DIUR (-11.4 ± 5.7%) ( P > 0.05). Plasma osmolality was similar between DIUR and EUH (288 ± 4 vs. 284 ± 5 mmol/kg, respectively) but was significantly higher in DEH (299 ± 5 mmol/kg) ( P HR and MSNA increased in all subjects during HUT (main effect of position; P HR were higher in DEH compared with DIUR ( P HR with HUT were larger in both hypovolemic groups compared with EUH ( P controlling HR responses during dehydration, and a stronger role for osmolality in control of SNA. NEW & NOTEWORTHY Interactions of volume regulation with control of vascular sympathetic nerve activity (SNA) have important implications for blood pressure regulation. Here, we demonstrate that SNA and heart rate (HR) during hyperosmotic hypovolemia (exercise-induced) were augmented during supine and tilt compared with isoosmotic hypovolemia (diuretic), which primarily augmented the HR response. Our data suggest that hypovolemia per se had a larger role in controlling HR responses, whereas osmolality had a stronger role in control of SNA.

  7. Divergent muscle sympathetic responses to dynamic leg exercise in heart failure and age-matched healthy subjects.

    Science.gov (United States)

    Notarius, Catherine F; Millar, Philip J; Murai, Hisayoshi; Morris, Beverley L; Marzolini, Susan; Oh, Paul; Floras, John S

    2015-02-01

    People with diminished ventricular contraction who develop heart failure have higher sympathetic nerve firing rates at rest compared with healthy individuals of a similar age and this is associated with less exercise capacity. During handgrip exercise, sympathetic nerve activity to muscle is higher in patients with heart failure but the response to leg exercise is unknown because its recording requires stillness. We measured sympathetic activity from one leg while the other leg cycled at a moderate level and observed a decrease in nerve firing rate in healthy subjects but an increase in subjects with heart failure. Because these nerves release noradrenaline, which can restrict muscle blood flow, this observation helps explain the limited exercise capacity of patients with heart failure. Lower nerve traffic during exercise was associated with greater peak oxygen uptake, suggesting that if exercise training attenuated sympathetic outflow functional capacity in heart failure would improve. The reflex fibular muscle sympathetic nerve (MSNA) response to dynamic handgrip exercise is elicited at a lower threshold in heart failure with reduced ejection fraction (HFrEF). The present aim was to test the hypothesis that the contralateral MSNA response to mild to moderate dynamic one-legged exercise is augmented in HFrEF relative to age- and sex-matched controls. Heart rate (HR), blood pressure and MSNA were recorded in 16 patients with HFrEF (left ventricular ejection fraction = 31 ± 2%; age 62 ± 3 years, mean ± SE) and 13 healthy control subjects (56 ± 2 years) before and during 2 min of upright one-legged unloaded cycling followed by 2 min at 50% of peak oxygen uptake (V̇O2,peak). Resting HR and blood pressure were similar between groups whereas MSNA burst frequency was higher (50.0 ± 2.0 vs. 42.3 ± 2.7 bursts min(-1), P = 0.03) and V̇O2,peak lower (18.0 ± 2.0 vs. 32.6 ± 2.8 ml kg(-1) min(-1), P Exercise increased HR (P exercise in the healthy controls but

  8. Molecular Mechanisms Underlying β-Adrenergic Receptor-Mediated Cross-Talk between Sympathetic Neurons and Immune Cells

    Directory of Open Access Journals (Sweden)

    Dianne Lorton

    2015-03-01

    Full Text Available Cross-talk between the sympathetic nervous system (SNS and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs in immune cells activates the cAMP-protein kinase A (PKA intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells.

  9. Hypothalamic CRF and Norepinephrine Mediate Sympathetic and Cardiovascular Responses to Acute Intracarotid Injection of TNF-α in the Rat

    Science.gov (United States)

    Zhang, Zhi-Hua; Felder, Robert B.

    2009-01-01

    Systemic administration of tumour necrosis factor - alpha (TNF-α) induces the release of norepinephrine (NE) in the paraventricular nucleus (PVN) of hypothalamus and an increase in expression of corticotrophin-releasing-factor (CRF) and CRF type 1 receptors. We explored the hypothesis that CRF and NE in PVN mediate the cardiovascular and sympathetic responses to acute systemic administration of TNF-α. In anaesthetised rats, the increases in arterial pressure and heart rate induced by intracarotid artery injection of TNF-α were attenuated by intracerebroventricular (ICV) injection of either the α1-adrenergic antagonist prazosin or the CRF antagonist α-helical CRF. Prazosin blocked the TNF-α-induced increase in renal sympathetic nerve activity (RSNA), while α-helical CRF substantially reduced the RSNA response. Conversely, CRF and the α1-adrenergic agonist phenylephrine (PE), administered ICV, both elicited increases in PVN neuronal activity, RSNA, arterial pressure and heart rate. Microinjection of CRF and PE directly into PVN evoked smaller responses. These results are consistent with the hypothesis that NE and CRF in the PVN mediate the cardiovascular and sympathetic responses to acute systemic administration of TNF-α. PMID:18777604

  10. Distribution of ganglionic sympathetic neurons supplying the subcutaneous, perirenal and mesentery fat tissue depots in the pig.

    Science.gov (United States)

    Czaja, Krzysztof; Kraeling, Robert; Klimczuk, Magdalena; Franke-Radowiecka, Amelia; Sienkiewicz, Waldemar; Lakomy, Mirosław

    2002-01-01

    Previous morphological studies revealed that the adipose tissue is innervated by adrenergic nerve fibers. Furthermore, physiological studies showed that the metabolism of adipose tissue is controlled by the adrenergic component of the nervous system. However, nothing is known on the sources of innervation of different fat tissue depots. Therefore, we decided to study the distribution of ganglionic sympathetic neurons innervating adipose tissue in the pig by means of a retrograde tracing method. We used 9 male and 9 female pigs of approximately 50 kg body weight. The retrograde tracer, Fast Blue (FB), was injected into the subcutaneous, perirenal and mesentery fat tissue depots. Results of the present study showed that numerous centers of the sympathetic nervous system innervate adipose tissue in the pig. FB+ neurons projecting to the subcutaneous fat tissue were placed in the thoraco-lumbar region of the sympathetic chain ganglia (SChG). However, neurons supplying perirenal and mesentery fat tissue depots were found in both the SChG and prevertebral ganglia (PVG). We conclude that different adipose tissue depots (subcutaneous, perirenal and mesentery) have different sources of innervation and that there is no significant difference in the distribution of neurons innervating adipose tissue in male and female pigs.

  11. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism.

    Science.gov (United States)

    Galindo, C; Larsen, M; Ouellet, D R; Maxin, G; Pellerin, D; Lapierre, H

    2015-11-01

    Nine Holstein cows fitted with rumen cannulas and indwelling catheters in splanchnic blood vessels were used to study the effects of supplementing AA on milk lactose secretion, whole-body rate of appearance (WB-Ra) of glucose, and tissue metabolism of glucose, lactate, glycerol, and β-OH-butyrate (BHBA) in postpartum dairy cows according to a generalized randomized incomplete block design with repeated measures in time. At calving, cows were blocked according to parity (second and third or greater) and were allocated to 2 treatments: abomasal infusion of water (n=4) or abomasal infusion of free AA with casein profile (AA-CN; n=5) in addition to the same basal diet. The AA-CN infusion started with half the maximal dose at 1 d in milk (DIM) and then steadily decreased from 791 to 226 g/d from DIM 2 to 29 to cover the estimated essential AA deficit. On DIM 5, 15, and 29, D[6,6-(2)H2]-glucose (23.7 mmol/h) was infused into a jugular vein for 5h, and 6 blood samples were taken from arterial, portal, hepatic, and mammary sources at 45-min intervals, starting 1h after the initiation of the D[6,6-(2)H2]glucose infusion. Trans-organ fluxes were calculated as veno-arterial differences times plasma flow (splanchnic: downstream dilution of deacetylated para-aminohippurate; mammary: Fick principle using Phe+Tyr). Energy-corrected milk and lactose yields increased on average with AA-CN by 6.4 kg/d and 353 g/d, respectively, with no DIM × treatment interaction. Despite increased AA supply and increased demand for lactose secretion with AA-CN, net hepatic release of glucose remained unchanged, but WB-Ra of glucose tended to increase with AA-CN. Portal true flux of glucose increased with AA-CN and represented, on average, 17% of WB-Ra. Splanchnic true flux of glucose was unaltered by treatments and was numerically equivalent to WB-Ra, averaging 729 and 741 mmol/h, respectively. Mammary glucose utilization increased with AA-CN infusion, averaging 78% of WB-Ra, and increased

  12. Pseudodystrophy. A conversion disorder mimicking reflex sympathetic dystrophy.

    Science.gov (United States)

    Driessens, M; Blockx, P; Geuens, G; Dijs, H; Verheyen, G; Stassijns, G

    2002-10-01

    The authors suggest some criteria by which pseudodystrophy and reflex sympathetic dystrophy, although sharing some similar clinical features, can be distinguished as two different conditions, each requiring its own approach and management. The most important distinction is found on bone scintigraphy. In reflex sympathetic dystrophy the bone scan shows a typical increased tracer uptake (at least during stages I and II); in pseudodystrophy there is a normal or decreased tracer uptake in the affected region. Moreover the vascularization is increased in reflex sympathetic dystrophy stage I, whereas in pseudodystrophy hypovascularization is found from the beginning. The clinical features, as well as the results of technical investigations, psychological evaluation and treatment of 4 patients with pseudodystrophy are presented. The importance of distinguishing this condition from reflex sympathetic dystrophy is stressed.

  13. Cardiovascular Response Patterns to Sympathetic Stimulation by Central Hypovolemia

    NARCIS (Netherlands)

    Bronzwaer, Anne-Sophie G. T.; Verbree, Jasper; Stok, Wim J.; van Buchem, Mark A.; Daemen, Mat J. A. P.; van Osch, Matthias J. P.; van Lieshout, Johannes J.

    2016-01-01

    In healthy subjects, variation in cardiovascular responses to sympathetic stimulation evoked by submaximal lower body negative pressure (LBNP) is considerable. This study addressed the question whether inter-subject variation in cardiovascular responses coincides with consistent and reproducible

  14. Impact of lung inflation cycle frequency on rat muscle and skin sympathetic activity recorded using suction electrodes.

    Science.gov (United States)

    Huang, Chunhua; Marina, Nephtali; Gilbey, Michael P

    2009-10-05

    Microneurography has been used in humans to study sympathetic activity supplying targets within skeletal muscle and skin. Comparable animal studies are relatively few, probably due to the technical demands of traditional fibre picking techniques. Here we apply a simple suction electrode technique to record cutaneous (CVC) and muscle (MVC) vasoconstrictor activities and describe and investigate the basis of the frequency dependence of lung inflation related modulation. Hindlimb MVC and CVC activities were recorded concurrently. The magnitude of MVC and CVC activities at the lung inflation cycle frequency was significantly less at 2.0 Hz than at lung inflation cycle frequencies inflation cycle frequency was increased the coherence between lung inflation cycle or BP and MVC or CVC waveforms decreased. Consistent with the hypothesis that much of the coherence between lung inflation cycle and nerve activity waveforms is secondary to oscillating baroreceptor activity attributable to BP waves, partialization with the BP waveform significantly decreased the coherence between lung inflation cycle and nerve waveforms, and there was an absence of coherence between these waveforms following sinus and aortic denervation. Our data extend findings from other laboratories and establish the value of a suction electrode technique for recording MVC and CVC activities. Furthermore, our observations describe the rates of positive pressure ventilation that avoid strong and regular gating of sympathetic activity.

  15. Schwanomma From Cervical Sympathetic Chain Ganglion – A Rare Presentation

    Science.gov (United States)

    Asma, A. Affee

    2015-01-01

    Schwanommas arising from cervical sympathetic chain are tumours that are rare in occurrence. These lesions are usually difficult to differentiate from a vagal schwanomma and a carotid body tumour during the initial workup. In this report, a rarely seen huge cervical sympathetic chain schwanomma case with partial Horner’s syndrome is being presented in detail, which to our known knowledge, is one of the few cases reported in literature. PMID:26557566

  16. Schwanomma From Cervical Sympathetic Chain Ganglion - A Rare Presentation.

    Science.gov (United States)

    Asma, A Affee; Kannah, E

    2015-10-01

    Schwanommas arising from cervical sympathetic chain are tumours that are rare in occurrence. These lesions are usually difficult to differentiate from a vagal schwanomma and a carotid body tumour during the initial workup. In this report, a rarely seen huge cervical sympathetic chain schwanomma case with partial Horner's syndrome is being presented in detail, which to our known knowledge, is one of the few cases reported in literature.

  17. [Regional transient osteoporosis, and reflex sympathetic dystrophy: the same disease?].

    Science.gov (United States)

    Castellano, Karina; Plantalech, Luisa

    2005-01-01

    Complex regional pain syndrome, reflex sympathetic dystrophy, regional, transient and migratory osteoporosis, are known as a spectrum of medical conditions that present with pain, edema, erythema, localized osteoporosis and sometimes sympathetic dysfunction. Many factors which are present in these conditions, such as clinical presentation, radiologic findings and a variety of still unclear physiopathologic mechanisms are correlated. We propose that all these conditions are different periods of the same pathology.

  18. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    Science.gov (United States)

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  19. Nerve Injuries in Athletes.

    Science.gov (United States)

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  20. RESTING SYMPATHETIC BAROREFLEX SENSITIVITY IN SUBJECTS WITH LOW AND HIGH TOLERANCE TO CENTRAL HYPOVOLEMIA INDUCED BY LOWER BODY NEGATIVE PRESSURE

    Directory of Open Access Journals (Sweden)

    Carmen eHinojosa-Laborde

    2014-06-01

    Full Text Available Central hypovolemia elicited by orthostasis or hemorrhage triggers sympathetically-mediated baroreflex responses to maintain organ perfusion; these reflexes are less sensitive in patients with orthostatic intolerance, and during conditions of severe blood loss, may result in cardiovascular collapse (decompensatory or circulatory shock. The ability to tolerate central hypovolemia is variable and physiological factors contributing to tolerance are emerging. We tested the hypothesis that resting muscle sympathetic nerve activity (MSNA and sympathetic baroreflex sensitivity (BRS are attenuated in male and female subjects who have low tolerance (LT to central hypovolemia induced by lower body negative pressure (LBNP. MSNA and diastolic arterial pressure (DAP were recorded in 47 human subjects who subsequently underwent LBNP to tolerance (onset of presyncopal symptoms. LT subjects experienced presyncopal symptoms prior to completing LBNP of -60 mm Hg, and subjects with high tolerance (HT experienced presyncopal symptoms after completing LBNP after -60 mmHg. Contrary to our hypothesis, resting MSNA burst incidence was not different between LT and HT subjects, and was not related to time to presyncope. BRS was assessed as the slope of the relationship between spontaneous fluctuations in DAP and MSNA during 5 min of supine rest. MSNA burst incidence/DAP correlations were greater than or equal to 0.5 in 37 subjects (LT: n= 9; HT: n=28, and BRS was not different between LT and HT (-1.8 ± 0.3 vs. -2.2 ± 0.2 bursts•(100 beats-1•mmHg-1, p=0.29. We conclude that tolerance to central hypovolemia is not related to either resting MSNA or sympathetic BRS.

  1. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    Science.gov (United States)

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  2. Renal nerves and nNOS

    DEFF Research Database (Denmark)

    Kompanowska-Jezierska, Elzbieta; Wolff, Helle; Kuczeriszka, Marta

    2008-01-01

    It was hypothesized that renal sympathetic nerve activity (RSNA) and neuronal nitric oxide synthase (nNOS) are involved in the acute inhibition of renin secretion and the natriuresis following slow NaCl loading (NaLoad) and that RSNA participates in the regulation of arterial blood pressure (MABP......). This was tested by NaLoad after chronic renal denervation with and without inhibition of nNOS by S-methyl-thiocitrulline (SMTC). In addition, the acute effects of renal denervation on MABP and sodium balance were assessed. Rats were investigated in the conscious, catheterized state, in metabolic cages...... of acutely and chronically denervated rats were less than control (15% and 9%, respectively, P renal denervation (14.5 +/- 0.2 vs. 19.3 +/- 1.3 mIU/l, P

  3. Scintigraphic evaluation of regional myocardial sympathetic activity in patients with hypertrophic cardiomyopathy. Comparison between asymmetrical hypertrophic cardiomyopathy and apical hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Eno, Shin; Takeo, Eiichiro; Sasaki, Satoshi; Matsuda, Keiji; Fujii, Hideaki; Kanazawa, Ikuo [Chugoku Rosai General Hospital, Kure, Hiroshima (Japan)

    1998-02-01

    Using {sup 123}I-MIBG (metaiodobenzylguanidine) and {sup 201}Tl imagings, an examination concerning the relation between the hypertrophic region and its sympathetic nervous function was done. Subjects were 12 normal adults (4 males and 8 females, mean age 61.3 yr), 13 patients with asymmetrical hypertrophic cardiomyopathy (10 males and 3 females, 63.9 yr) and 13 patients with apical hypertrophy (9 males and 4 females, 67.2 yr). The SPECT apparatus was Toshiba two-gated gamma camera GCA 7200A. At 20 min and 3 hr after intravenous injection of 111 MBq of {sup 123}I-MIBG, myocardial SPECT and planar images were obtained with collimator LEHR under following conditions: photoelectric peak 159 KeV, window width 20%, matrix size 64 x 64 (256 x 256 for the planar image), step angle 6deg, 40 sec/step and 180deg for 1 camera. In another day, {sup 201}Tl SPECT and planar imagings were performed 10 min after intravenous injection of 111 MBq of {sup 201}Tl for the photoelectric peak 72 KeV under similar conditions to above. SPECT images were reconstructed using Butterworth filter and Shepp and Logan filter. Images were examined for the defect score, myocardium/mediastinum ratio, whole heart washout rate and regional washout rate. In the asymmetrical hypertrophic myopathy, abnormal sympathetic nerve function was recognized on the regions regardless of their disease severity while in the apical hypertrophy, abnormality was restricted on the apical region. Therefore, the two diseases were found different from each other from the aspect of sympathetic nerve functions. (K.H.)

  4. Doppler sonographic assessment of posttraumatic reflex sympathetic dystrophy.

    Science.gov (United States)

    Pekindil, Gökhan; Pekindil, Yesim; Sarikaya, Ali

    2003-04-01

    To reveal the arterial Doppler sonographic findings in cases of posttraumatic reflex sympathetic dystrophy Eleven patients had hand reflex sympathetic dystrophy, and 9 had foot reflex sympathetic dystrophy. The duration of symptoms ranged from 1 to 28 weeks, and the history of fracture ranged from 6 to 48 weeks. Bilateral brachial or popliteal arteries proximal to injuries were evaluated by Doppler sonography with a 7.5-MHz linear transducer. All patients also had triphasic bone scintigraphy and extremity thermography Two patients had monophasic waveforms and 4 had low-pulsatility triphasic waveforms on the affected limbs when compared with the asymptomatic limbs. All opposite asymptomatic limbs had normal triphasic waveforms in these 6 cases. Spectral analysis revealed a loss or decrease of a normal reversed flow component with a reduced pulsatility index on the affected limb. Fourteen other patients had symmetric triphasic waveforms. We observed that the patients who had stage 1 reflex sympathetic dystrophy and warm limbs with durations of symptoms of more than 2 weeks had positive Doppler sonographic findings, whereas all patients with stage 2 reflex sympathetic dystrophy and all with normal skin temperature, regardless of stage, had normal waveforms. Doppler sonography revealed loss of normal triphasic arterial waveforms in some of the cases of stage 1 disease, whereas many cases of stage 1 disease and all cases of stage 2 disease had normal findings. Therefore, we think that Doppler sonography cannot be used for the diagnosis of reflex sympathetic dystrophy but may help in assessing hemodynamic stages of the disease.

  5. Optic Nerve Pit

    Science.gov (United States)

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  6. Involvement of the peripheral sensory and sympathetic nervous system in the vascular endothelial expression of ICAM-1 and the recruitment of opioid-containing immune cells to inhibit inflammatory pain.

    Science.gov (United States)

    Mousa, Shaaban A; Shaqura, Mohammed; Brendl, Ute; Al-Khrasani, Mahmoud; Fürst, Susanna; Schäfer, Michael

    2010-11-01

    Endogenous opioids are known to be released within certain brain areas following stressful stimuli. Recently, it was shown that also leukocytes are a potential source of endogenously released opioid peptides following stress. They activate sensory neuron opioid receptors and result in the inhibition of local inflammatory pain. An important prerequisite for the recruitment of such leukocytes is the expression of intracellular adhesion molecule-1 (ICAM-1) in blood vessels of inflamed tissue. Here, we investigated the contribution of peripheral sensory and/or sympathetic nerves to the enhanced expression of ICAM-1 simultaneously with the increased recruitment of opioid peptide-containing leukocytes to promote the inhibition of inflammatory pain. Selective degeneration of either peripheral sensory or sympathetic nerve fibers by their respective neurotoxins, capsaicin or 6-hydroxydopamime, significantly reduced the subcutaneous immigration of β-endorphin- (END-) and met-enkephalin- (ENK-)-containing polymorphonuclear leukocytes (PMN) (in the early phase) and mononuclear cells (in the late phase) during painful Freund's complete adjuvant (FCA) rat hind paw inflammation. In contrast, this treatment did not alter the percentage of opioid peptide-containing leukocytes in the circulation. Calcitonin gene-related peptide- (CGRP-) and tyrosine hydroxylase- (TH-) immunoreactive (IR) nerve fibers were in close contact to ICAM-1 IR blood vessels within inflamed subcutaneous tissue. The selective degeneration of sensory or sympathetic nerve fibers attenuated the enhanced expression of vascular endothelial ICAM-1 after intraplantar (i.pl.) FCA and abolished endogenous opioid peptide-mediated peripheral analgesia. Our results suggest that, during localized inflammatory pain, peripheral sensory and sympathetic nerve fibers augment the expression of vascular endothelial ICAM-1 simultaneously with the increased recruitment of opioid peptide-containing leukocytes which consequently

  7. Cardiac sympathetic dysfunction in an athlete's heart detected by 1''2''3I-metaiodobenzylguanidine scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Shinro; Nakamura, Yasuyuki; Takahashi, Masayuki; Matsui, Toshiki; Kusukawa, Junya; Yoshida, Shintaro; Hamamoto, Hajime; Kinoshita, Masahiko [Shiga Univ. of Medical Sciences, Otsu (Japan)

    2001-05-01

    The athlete's heart is commonly characterized by an increase in left ventricular mass because of an increase in the left ventricular diastolic cavity dimensions or wall thickness or both. Endurance exercise also induces numerous cardiovascular adaptations, including increased vagal tone. However, the sympathetic function has not yet been precisely elucidated, so the present study evaluated cardiac sympathetic nerve function from metaiodobenzylguanidine (MIBG) images obtained 15 and 180 min after the injection of {sup 123}I-MIBG at a dose of 111MBq. The ratio of heart/mediastinum count (H/M) and the washout rates of {sup 123}I-MIBG (WR) were calculated in 25 consecutive patients who were athletes (aged 52{+-}13 years) and 23 normal subjects. There was a significant difference in the H/M between the athletic and normal hearts (2.3{+-}0.3 vs 2.6{+-}0.3, p<0.01, Scheffe's test). An increased WR was observed in the athletes group when compared with the normal group (34{+-}4 vs 28{+-}3, p<0.01), and there was a significant correlation between WR and the left ventricular mass index (r=0.578, p<0.01). Prolonged exercise training may alter cardiac sympathetic nerve function, which can be detected by MIBG imaging. (author)

  8. Effect of oral propranolol on circulating catecholamines in cirrhosis: relationship to severity of liver disease and splanchnic haemodynamics

    DEFF Research Database (Denmark)

    Bendtsen, Flemming; Henriksen, Jens Henrik; Sørensen, T I

    1990-01-01

    propranolol. A borderline significant correlation was observed between the decrease in azygos blood flow and the increase in NA (r = 0.64, p = 0.06). Our results suggest that besides a relationship to liver function and severity of disease, sympathetic nervous activity, as reflected by circulating NA...

  9. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension.

    Science.gov (United States)

    Hering, Dagmara; Marusic, Petra; Walton, Antony S; Lambert, Elisabeth A; Krum, Henry; Narkiewicz, Krzysztof; Lambert, Gavin W; Esler, Murray D; Schlaich, Markus P

    2014-07-01

    Renal denervation (RDN) reduces muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in resistant hypertension. Although a persistent BP-lowering effect has been demonstrated, the long-term effect on MSNA remains elusive. We investigated whether RDN influences MSNA over time. Office BP and MSNA were obtained at baseline, 3, 6, and 12 months after RDN in 35 patients with resistant hypertension. Office BP averaged 166±22/88±19 mm Hg, despite the use of an average of 4.8±2.1 antihypertensive drugs. Baseline MSNA was 51±11 bursts/min ≈2- to 3-fold higher than the level observed in healthy controls. Mean office systolic and diastolic BP significantly decreased by -12.6±18.3/-6.5±9.2, -16.1±25.6/-8.6±12.9, and -21.2±29.1/-11.1±12.9 mm Hg (Phypertension and high baseline MSNA. These observations are compatible with the hypothesis of a substantial contribution of afferent renal nerve signaling to increased BP in resistant hypertension and argue against a relevant reinnervation at 1 year after procedure. © 2014 American Heart Association, Inc.

  10. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans

    Science.gov (United States)

    Cui, Jian; McQuillan, Patrick M.; Blaha, Cheryl; Kunselman, Allen R.

    2012-01-01

    We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects. PMID:22707559

  11. High frequency of endothelial colony forming cells marks a non-active myeloproliferative neoplasm with high risk of splanchnic vein thrombosis.

    Directory of Open Access Journals (Sweden)

    Vittorio Rosti

    Full Text Available Increased mobilization of circulating endothelial progenitor cells may represent a new biological hallmark of myeloproliferative neoplasms. We measured circulating endothelial colony forming cells (ECFCs in 106 patients with primary myelofibrosis, fibrotic stage, 49 with prefibrotic myelofibrosis, 59 with essential thrombocythemia or polycythemia vera, and 43 normal controls. Levels of ECFC frequency for patient's characteristics were estimated by using logistic regression in univariate and multivariate setting. The sensitivity, specificity, likelihood ratios, and positive predictive value of increased ECFC frequency were calculated for the significantly associated characteristics. Increased frequency of ECFCs resulted independently associated with history of splanchnic vein thrombosis (adjusted odds ratio = 6.61, 95% CI = 2.54-17.16, and a summary measure of non-active disease, i.e. hemoglobin of 13.8 g/dL or lower, white blood cells count of 7.8×10(9/L or lower, and platelet count of 400×10(9/L or lower (adjusted odds ratio = 4.43, 95% CI = 1.45-13.49 Thirteen patients with splanchnic vein thrombosis non associated with myeloproliferative neoplasms were recruited as controls. We excluded a causal role of splanchnic vein thrombosis in ECFCs increase, since no control had elevated ECFCs. We concluded that increased frequency of ECFCs represents the biological hallmark of a non-active myeloproliferative neoplasm with high risk of splanchnic vein thrombosis. The recognition of this disease category copes with the phenotypic mimicry of myeloproliferative neoplasms. Due to inherent performance limitations of ECFCs assay, there is an urgent need to arrive to an acceptable standardization of ECFC assessment.

  12. Distribution of adrenergic and cholinergic nerve fibres within intrinsic nerves at the level of the human heart hilum.

    Science.gov (United States)

    Petraitiene, Viktorija; Pauza, Dainius H; Benetis, Rimantas

    2014-06-01

    The disbalance between adrenergic (sympathetic) and cholinergic (parasympathetic) cardiac inputs facilitates cardiac arrhythmias, including the lethal ones. In spite of the fact that the morphological pattern of the epicardiac ganglionated subplexuses (ENsubP) has been previously described in detail, the distribution of functionally distinct axons in human intrinsic nerves was not investigated thus far. Therefore, the aim of the present study was to quantitatively evaluate the distribution of tyrosine hydroxylase (TH)- and choline acetyltransferase (ChAT)-positive axons within intrinsic nerves at the level of the human heart hilum (HH), since they are of pivotal importance for determining proper treatment options for different arrhythmias. Tissue samples containing the intrinsic nerves from seven epicardiac subplexuses were obtained from nine human hearts without cardiac pathology and processed for immunofluorescent detection of TH and ChAT. The nerve area was measured and the numbers of axons were counted using microphotographs of nerve profiles. The densities of fibres were extrapolated and compared between subplexuses. ChAT-immunoreactive (IR) fibres were evidently predominant (>56%) in nerves of dorsal (DRA) and ventral right atrial (VRA) ENsubP. Within both left (LC) and right coronary ENsubP, the most abundant (70.9 and 83.0%, respectively) were TH-IR axons. Despite subplexal dependence, ChAT-IR fibres prevailed in comparatively thinner nerves, whereas TH-IR fibres in thicker ones. Morphometry showed that at the level of HH: (i) LC subplexal nerves were found to be the thickest (25 737 ± 4131 μm(2)) ones, whereas the thinnest (2604 ± 213 μm(2)) nerves concentrated in DRA ENsubP; (ii) the density of ChAT-IR axons was highest (6.8 ± 0.6/100 μm(2)) in the ventral left atrial nerves and lowest (3.2 ± 0.1/100 μm(2)) in left dorsal ENsubP and (iii) the density of TH-IR fibres was highest (15.9 ± 2.1/100 μm(2)) in LC subplexal nerves and lowest (4.4 ± 0

  13. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect...... the optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen...... at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  14. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...... glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen......-oxygenase inhibitor, indomethacin, which indicates that prostaglandin metabolism plays a role. Laboratory studies suggest that carbonic anhydrase inhibitors might be useful for medical treatment of optic nerve and retinal ischemia, potentially in diseases such as glaucoma and diabetic retinopathy. However, clinical...

  15. Sympathetic cooling of ytterbium with rubidium

    International Nuclear Information System (INIS)

    Tassy, S.

    2007-01-01

    Within the scope of this thesis, a mixture of ultracold ytterbium and rubidium atoms was experimentally realized and investigated. For these experiments, a novel trap geometry was developed which allows simultaneous trapping and cooling of diamagnetic and paramagnetic atomic species. The main focus was put on the investigation of the interspecies scattering properties, where sympathetic cooling of ytterbium through elastic collisions with rubidium could be demonstrated. In addition, the interspecies scattering length could be determined. In the current configuration the combined trap allows the preparation of up to 2.10 5 atoms of 170 Yb, 171 Yb, 172 Yb, 174 Yb or 176 Yb at a temperature of 40..60 μK and a density in the range of 10 12 cm -3 , and of about 10 7 87 Rb atoms at a temperature of 25 μK and a density in the range of 5.10 11 cm -3 . Detailed studies of the thermalization of bosonic 170 Yb, 172 Yb, 174 Yb and 176 Yb and of fermionic 171 Yb each with 87 Rb were performed under varying experimental conditions. The deduced total scattering cross section was clearly found to increase with higher mass of the ytterbium isotope. In general, a mass scaling of the scattering properties is in agreement with theoretical models and former experimental work. With the assumption of pure s-wave scattering, which is approximately fulfilled for the given experimental parameters, the interspecies scattering length could be derived from the measured thermalization data and was found to be (in units of the Bohr radius a 0 ): 170 Yb- 87 Rb:(18 +12 -4 )a 0 , 171 Yb- 87 Rb:(25 +14 -7 )a 0 , 172 Yb- 87 Rb:(33 +23 -7 )a 0 , 174 Yb- 87 Rb:(83 +89 -25 )a 0 , 176 Yb- 87 Rb:(127 +245 -45 )a 0 . (orig./HSI)

  16. Bisphosphonate therapy of reflex sympathetic dystrophy syndrome

    Science.gov (United States)

    Adami, S; Fossaluzza, V; Gatti, D; Fracassi, E; Braga, V

    1997-01-01

    OBJECTIVE—The reflex sympathetic dystrophy syndrome (RSDS) is a painful limb disorder, for which a consistently effective treatment has not yet been identified. The disease is associated with increased bone resorption and patchy osteoporosis, which might benefit from treatment with bisphosphonates, powerful inhibitors of bone resorption.
METHODS—Twenty patients with RSDS of foot and hand, were randomly assigned to blind administration of either alendronate intravenously (Istituto Gentili, Pisa, Italy) 7.5 mg dissolved in 250 ml saline solution or placebo saline infusions daily for three days. Two weeks later all patients had an identical treatment course with open labelled alendronate (7.5 mg/day for three days), independent from the results of the first blind treatment.
RESULTS—In the patients treated with blind alendronate the diminution in spontaneous pain, tenderness, and swelling (circumference of the affected limb) and the improvement in motion were significantly different from baseline (p<0.001), from those observed within the first two weeks in the control group (p<0.01), and from week 2 to week 4 (p<0.01). In the patients given blind placebo infusions no relevant symptomatic changes were observed after the first two weeks of follow up, but they responded to the open alendronate therapy given afterwards. In 12 patients with RSDS of the hand the ultradistal bone mineral content (BMC) of the affected arm was considerably lower than that of the controlateral arm (mean (SD)) (426(82) mg/cm versus 688(49)). Six weeks after the beginning of the trial BMC rose by 77(12) mg/cm (p<0.001) in the affected arm, but it did not change in the controlateral.
CONCLUSIONS—These results indicate that bisphosphonates should be considered for the treatment of RSDS, producing consistent and rapid remission of the disease.

 PMID:9135227

  17. Transient sixth cranial nerve palsy following orgasm abrogated by treatment with sympathomimetic amines.

    Science.gov (United States)

    Check, J H; Katsoff, B

    2014-01-01

    To describe a unique disorder where a transient 6th nerve palsy leading to diploplia following orgasm developed in a 28-year-old woman. This coincided with a weight gain of 100 pounds in a short time without a corresponding change in dietary habits. She was treated with the sympathomimetic amine dextroamphetamine sulfate. Indeed she immediately responded to treatment with dextroamphetamine sulfate sustained release capsules with complete resolution of the episodes of 6th nerve palsy following orgasm. The main importance of this case is that it suggests that orgasm causes a transient generalized decrease in sympathetic nervous system activity and that the achievement of an orgasm may require an increase in the sympathetic nervous system activity.

  18. Evaluation of sympathetic nerve system activity with MIBG. Comparison with heart rate variability

    International Nuclear Information System (INIS)

    Kurata, Chinori; Wakabayashi, Yasushi; Shouda, Sakae; Mikami, Tadashi; Tawarahara, Kei; Sugiyama, Tsuyoshi; Nakano, Tomoyasu; Suzuki, Toshihiko.

    1997-01-01

    Authors attempted to elucidate the relations of plasma concentration of norepinephrine (pNE) and findings of heart rate variability and MIBG myocardial scintigraphy and evaluated cardiac autonomic nervous activity in chronic renal failure. Subjects were 211 patients with various heart diseases (coronary artery lesion, cardiomyopathy, hypertension, diabetes mellitus, renal failure and so on), 60 patients with artificial kidney due to chronic renal failure, 13 of whom were found to have coronary arterial disease by Tl myocardial scintigraphy, and 14 normal volunteers. ECG was recorded with the portable recorder for heart rate variability. Together with collection of blood for pNE measurement, myocardial scintigraphy was done at 15 and 150 min after intravenous administration of 111 MBq of MIBG for acquisition of early and delayed, respectively, images of the frontal breast. Accumulation at and elimination during the time points of MIBG were computed in cps unit. Variability of heart rate was found to have the correlation positive with MIBG delayed accumulation and negative with the elimination, and pNE, negative with heart rate variability and the delayed accumulation and positive with the elimination. Thus cardiac autonomic nervous abnormality was suggested to occur before uremic cardiomyopathy. (K.H.)

  19. Short-latency local actions of nerve growth factor at the growth cone.

    OpenAIRE

    Seeley, P J; Greene, L A

    1983-01-01

    Cultures of neurite-bearing pheochromocytoma (PC12) cells and of sympathetic neurons have been examined by time-lapse video microscopy. In the presence of nerve growth factor (NGF), the neurites of such cultures elongated and their growth cones changed geometry, via microspike and lamellipodial motion, on a time scale of minutes. Withdrawal of NGF caused process extension to cease and a progressive reduction in growth-cone area as a result of retraction of lamellipodia and microspikes. By app...

  20. [Developmental changes of neurotransmitter properties in sympathetic neurons].

    Science.gov (United States)

    Masliukov, P M; Emanuilov, A I; Nozdrachev, A D

    2016-01-01

    Sympathetic ganglia consist of neurochemically and functionally distinct populations of neurons, characterized by a specific projection pattern and a set of neutransmitters including classical mediators (catecholamines and acetylcholine), neuropeptides and small molecules such as NO, H2S, CO. The majority of the principal ganglionic sympathetic neurons is noradrenergic and expresses tyrosine hydroxylase (TH), i.e., a key enzyme in catecholamine synthesis. In mammals, two third of catecholaminergic neurons also co-localizes neuropeptide Y. A small number of ganglionic sympathetic neurons contains enzyme of acetylcholine synthesis and some neuropeptides, such as somatostatin, vasoactive intestinal (poly)peptide (VIP), calcitonin gene-related peptide (CGRP). Acetylcholine-containing sympathetic neurons in most cases colocalize VIP and/or CGRP. Phenotype of autonomic neurons is regulated by both target-independent and target-dependent mechanisms. The most of transmitters are expressed during embryogenesis. TH appears during embryonic development and the percentage of TH-positive neurons remains virtually identical during ontogenesis. After birth, cholinergic neurons exhibit a noradrenergic phenotype. Expression of different neuropeptides changes in pre- and postnatal development. Neurotransmitter expression in sympathetic neurons is influenced by growth factor signaling via innervated target tissues. Multiple growth factors including bone morphogenetic proteins, neurotrophins, glial cell line-derived neurotrophic factor family ligands and neuropoietic cytokines play instructive role at different stages of neurotransmitter development.

  1. [MRI symptomology in reflex sympathetic dystrophy of the foot].

    Science.gov (United States)

    Darbois, H; Boyer, B; Dubayle, P; Lechevalier, D; David, H; Aït-Ameur, A

    1999-08-01

    To describe the MRI findings of reflex sympathetic dystrophy of the foot and ankle. Retrospective study of 50 patients with reflex sympathetic dystrophy of the foot (5 with the cold form, and 45 with the warm form) diagnosed based on clinical and scintigraphic findings. All patients underwent MR imaging. The MRI findings were correlated with the clinical and scintigraphic findings. Patients with the cold form of reflex sympathetic dystrophy had no abnormality of signal at MR imaging. All patients with the warm from of reflex sympathetic dystrophy showed periarticular marrow edema at MR, typically involving more than one bone (mean of 4). Other findings were inconstant: soft tissue edema, joint effusion, and rarely, subchondral band of low T1W signal intensity of unclear etiology. MR imaging, including fat-suppressed T2W or STIR images and noncontrast T1W images, is helpful in patients with the warm or acute form of reflex sympathetic dystrophy of the foot. In patients with the cold form, MR imaging is helpful to exclude another underlying etiology for the symptoms and identify patients with the warm form of the process.

  2. Imaging the trigeminal nerve

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Radiology Department, Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Rua Prof. Lima Basto, 1093, Lisboa (Portugal)], E-mail: borgalexandra@gmail.com; Casselman, Jan [Department of Radiology, A. Z. St Jan Brugge and A. Z. St Augustinus Antwerpen Hospitals (Belgium)

    2010-05-15

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  3. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure.

    Science.gov (United States)

    Liao, Song-Yan; Liu, Yuan; Zuo, Mingliang; Zhang, Yuelin; Yue, Wensheng; Au, Ka-Wing; Lai, Wing-Hon; Wu, Yangsong; Shuto, Chika; Chen, Peter; Siu, Chung-Wah; Schwartz, Peter J; Tse, Hung-Fat

    2015-12-01

    Thoracic spinal cord stimulation (SCS) has been shown to improve left ventricular ejection fraction (LVEF) in heart failure (HF). Nevertheless, the optimal duration (intermittent vs. continuous) of stimulation and the mechanisms of action remain unclear. We performed chronic thoracic SCS at the level of T1-T3 (50 Hz, pulse width 0.2 ms) in 30 adult pigs with HF induced by myocardial infarction and rapid ventricular pacing for 4 weeks. All the animals were treated with daily oral metoprolol succinate (25 mg) plus ramipril (2.5 mg), and randomized to a control group (n = 10), intermittent SCS (4 h ×3, n = 10) or continuous SCS (24 h, n = 10) for 10 weeks. Serial measurements of LVEF and +dP/dt and serum levels of norepinephrine and B-type natriuretic peptide (BNP) were measured. After sacrifice, immunohistological studies of myocardial sympathetic and parasympathetic nerve sprouting and innervation were performed. Echocardiogram revealed a significant increase in LVEF and +dP/dt at 10 weeks in both the intermittent and continuous SCS group compared with controls (P < 0.05). In both SCS groups, there was diffuse sympathetic nerve sprouting over the infarct, peri-infarct, and normal regions compared with only the peri-infarct and infarct regions in the control group. In addition, sympathetic innervation at the peri-infarct and infarct regions was increased following SCS, but decreased in the control group. Myocardium norepinephrine spillover and serum BNP at 10 weeks was significantly decreased only in the continuous SCS group (P < 0.05). In a porcine model of HF, SCS induces significant remodelling of cardiac sympathetic innervation over the peri-infarct and infarct regions and is associated with improved LV function and reduced myocardial norepinephrine spillover. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  4. MR-guided high-focused ultrasound for renal sympathetic denervation-a feasibility study in pigs.

    Science.gov (United States)

    Freyhardt, Patrick; Heckmann, Lilian; Beck, Alexander; Stolzenburg, Nicola; Schnorr, Jörg; Kamp, Julia; Rinnenthal, Jan L; Hamm, Bernd; Günther, Rolf W; Streitparth, Florian

    2014-01-01

    Renal sympathetic denervation has recently gained clinical relevance for the treatment of therapy-resistant hypertension. Denervation is currently mainly performed using catheter-based transarterial radiofrequency ablation of periarterial sympathetic nerve fibers. Since this approach has numerous limitations, we conducted a study to evaluate the feasibility, safety, and efficacy of magnetic resonance-guided high-focused ultrasound (MRgHiFUS) for renal sympathetic denervation in pigs as an alternative to catheter-based ablation. Renal periarterial MRgHiFUS was performed under general anesthesia in ten pigs. Blood pressure measurements and magnetic resonance imaging (MRI) of the kidneys, renal arteries, and surrounding structures were obtained immediately before and after the interventions and after 4 weeks. Histological examinations of periarterial tissues and determination of renal norepinephrine (NE) concentration were performed to assess treatment efficacy. In each pig, 9.8 ± 2.6 sonications with a mean energy deposition of 2,670 ± 486 J were performed. The procedure was well tolerated by all pigs. No major complications occurred. MRgHiFUS induced periarterial edema in three pigs, but only one pig showed corresponding histological changes. The NE level of the treated kidney was lower in five pigs (-8% to -38%) compared to the untreated side. Overall, there was no significant difference between the NE values of both kidneys in any of the treated pigs. Postinterventional MRI indicated absorption of ultrasound energy at the transverse process and fascia. MRgHiFUS had some thermal periarterial effects but failed to induce renal denervation. Insufficient energy deposition is most likely attributable to a small acoustic window with beam path impediment in the porcine model. Since HiFUS treatment in humans is expected to be easier to perform due to better access to renal sympathetic nerves, further studies of this method are desirable to investigate the

  5. The Renal Nerves in Chronic Heart Failure: Afferent and Efferent Mechanisms

    Directory of Open Access Journals (Sweden)

    Alicia Marie Schiller

    2015-08-01

    Full Text Available The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF. Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent

  6. Hypertension in kidney transplantation is associated with an early renal nerve sprouting.

    Science.gov (United States)

    Mauriello, Alessandro; Rovella, Valentina; Borri, Filippo; Anemona, Lucia; Giannini, Elena; Giacobbi, Erica; Saggini, Andrea; Palmieri, Giampiero; Anselmo, Alessandro; Bove, Pierluigi; Melino, Gerry; Valentina, Guardini; Tesauro, Manfredi; Gabriele, D'Urso; Di Daniele, Nicola

    2017-06-01

    Normalization of arterial pressure occurs in just a few patients with hypertensive chronic kidney disease undergoing kidney transplantation. Hypertension in kidney transplant recipients may be related to multiple factors. We aimed to assess whether hypertension in kidney-transplanted patients may be linked to reinnervation of renal arteries of the transplanted kidney. We investigated renal arteries innervation from native and transplanted kidneys in three patients 5 months, 2 years and 11 years after transplantation, respectively. Four transplanted kidneys from non-hypertensive patients on immunosuppressive treatment without evidence of hypertensive arteriolar damage were used as controls. . Evidence of nerve sprouting was observed as early as 5 months following transplantation, probably originated from ganglions of recipient patient located near the arterial anastomosis and was associated with mild hypertensive arteriolar damage. Regeneration of periadventitial nerves was already complete 2 years after transplantation. Nerve density tended to reach values observed in native kidney arteries and was associated with hypertension-related arteriolar lesions in transplanted kidneys. Control kidneys, albeit on an immunosuppressive regimen, presented only a modest regeneration of sympathetic nerves. . Our results suggest that the considerable increase in sympathetic nerves, as found in patients with severe arterial damage, may be correlated to hypertension rather than to immunosuppressive therapy, thus providing a morphological basis for hypertension recurrence despite renal denervation. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA.

  7. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages

    NARCIS (Netherlands)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Kodama, Itsuo

    2010-01-01

    Molecular signaling of sympathetic innervation of myocardium is an unresolved issue. The purpose of this study was to investigate the effect of neurotrophic factors on sympathetic neurite growth towards cardiomyocytes. Cardiomyocytes (CMs) and sympathetic neurons (SNs) were isolated from neonatal

  8. Propranolol for Paroxysmal Sympathetic Hyperactivity with Lateralizing Hyperhidrosis after Stroke

    Directory of Open Access Journals (Sweden)

    Jason W. Siefferman

    2015-01-01

    Full Text Available Brain injury can lead to impaired cortical inhibition of the hypothalamus, resulting in increased sympathetic nervous system activation. Symptoms of paroxysmal sympathetic hyperactivity may include hyperthermia, tachycardia, tachypnea, vasodilation, and hyperhidrosis. We report the case of a 41-year-old man who suffered from a left middle cerebral artery stroke and subsequently developed central fever, contralateral temperature change, and hyperhidrosis. His symptoms abated with low-dose propranolol and then returned upon discontinuation. Restarting propranolol again stopped his symptoms. This represents the first report of propranolol being used for unilateral dysautonomia after stroke. Propranolol is a lipophilic nonselective beta-blocker which easily crosses the blood-brain barrier and may be used to treat paroxysmal sympathetic hyperactivity.

  9. Alternating myocardial sympathetic neural function of athlete's heart in professional cycle racers examined with iodine-123-MIBG myocardial scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Keiko; Inoue, Tomio; Hasegawa, Akira; Oriuchi, Noboru; Okamoto, Eiichi; Tomaru, Yumi; Endo, Keigo [Gunma Univ., Maebashi (Japan). School of Medicine

    2001-08-01

    Myocardial sympathetic neural function in professional athletes who had the long-term tremendous cardiac load has not been fully investigated by myocardial iodine-123-metaiodobenzylguanidine (MIBG) uptake in comparison with power spectral analysis (PSA) in electrocardiography. Eleven male professional cycle racers and age-matched 11 male healthy volunteers were enrolled in this study. The low frequency components in the power spectral density (LF), the high frequency components in the power spectral density (HF), the LF/HF ratio and mean R-R interval were derived from PSA and time-domain analysis of heart rate variability in electrocardiography. The mean heart-to-mediastinum uptake ratio (H/M ratio) of the MIBG uptake, in professional cycle racers was significantly lower than that in healthy volunteers (p<0.01) and HF power in professional cycle racers was significantly higher than that in healthy volunteers (p<0.05). In the group of professional cycle racers, the H/M ratio showed a significant correlation with the R-R interval, as indices of parasympathetic nerve activity (r=0.80, p<0.01), but not with the LF/HF ratio as an index of sympathetic nerve activity. These results may indicate that parasympathetic nerve activity has an effect on MIBG uptake in a cyclist's heart. (author)

  10. Intermedin in the paraventricular nucleus attenuates cardiac sympathetic afferent reflex in chronic heart failure rats.

    Directory of Open Access Journals (Sweden)

    Xian-Bing Gan

    Full Text Available BACKGROUND AND AIM: Intermedin (IMD is a member of calcitonin/calcitonin gene-related peptide (CGRP family together with adrenomedullin (AM and amylin. It has a wide distribution in the central nervous system (CNS especially in hypothalamic paraventricular nucleus (PVN. Cardiac sympathetic afferent reflex (CSAR is enhanced in chronic heart failure (CHF rats. The aim of this study is to determine the effect of IMD in the PVN on CSAR and its related mechanisms in CHF rats. METHODOLOGY/PRINCIPAL FINDINGS: Rats were subjected to left descending coronary artery ligation to induce CHF or sham-operation (Sham. Renal sympathetic nerve activity (RSNA, mean arterial pressure (MAP and heart rate (HR were recorded. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Acute experiments were carried out 8 weeks after coronary ligation or sham surgery under anesthesia. IMD and angiotensin II (Ang II levels in the PVN were up-regulated in CHF rats. Bilateral PVN microinjection of IMD caused greater decreases in CSAR and the baseline RSNA and MAP in CHF rats than those in Sham rats. The decrease of CSAR caused by IMD was prevented by pretreatment with AM receptor antagonist AM22-52, but not CGRP receptor antagonist CGRP8-37. Ang II in the PVN significantly enhanced CSAR and superoxide anions level, which was inhibited by PVN pretreatment with IMD or tempol (a superoxide anions scavenger in Sham and CHF rats. CONCLUSION: IMD in the PVN inhibits CSAR via AM receptor, and attenuates the effects of Ang II on CSAR and superoxide anions level in CHF rats. PVN superoxide anions involve in the effect of IMD on attenuating Ang II-induced CSAR response.

  11. Superoxide anions in paraventricular nucleus modulate adipose afferent reflex and sympathetic activity in rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Adipose afferent reflex (AAR is a sympatho-excitatory reflex induced by chemical stimulation of white adipose tissue (WAT. Ionotropic glutamate receptors including NMDA receptors (NMDAR and non-NMDA receptors (non-NMDAR in paraventricular nucleus (PVN mediate the AAR. Enhanced AAR contributes to sympathetic activation and hypertension in obesity rats. This study was designed to investigate the role and mechanism of superoxide anions in PVN in modulating the AAR.Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded in anesthetized rats. AAR was evaluated by the RSNA and MAP responses to injections of capsaicin into four sites of right inguinal WAT (8.0 nmol in 8.0 µl for each site. Microinjection of polyethylene glycol-superoxide dismutase (PEG-SOD, the superoxide anion scavenger tempol or the NAD(PH oxidase inhibitor apocynin into the PVN decreased the baseline RSNA and MAP, and attenuated the AAR. Unilateral WAT injection of capsaicin increased superoxide anions in bilateral PVN, which was prevented by the WAT denervation. WAT injection of capsaicin increased superoxide anion level and NAD(PH oxidase activity in the PVN, which was abolished by the PVN pretreatment with the combined NMDAR antagonist AP5 and non-NMDAR antagonist CNQX. Microinjection of the NMDAR agonist NMDA or the non-NMDAR agonist AMPA increased superoxide anion level and NAD(PH oxidase activity in the PVN.NAD(PH oxidase-derived superoxide anions in the PVN contributes to the tonic modulation of AAR. Activation of ionotropic glutamate receptors in the PVN is involved in the AAR-induced production of superoxide anions in the PVN.

  12. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    J.E. Hall

    2000-06-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  13. Prevalence of Splanchnic Vein Thrombosis in Pancreatitis: A Systematic Review and Meta-Analysis of Observational Studies.

    Science.gov (United States)

    Xu, Wenda; Qi, Xingshun; Chen, Jiang; Su, Chunping; Guo, Xiaozhong

    2015-01-01

    Splanchnic vein thrombosis (SVT) may be negatively associated with the prognosis of pancreatitis. We performed a systematic review and meta-analysis of literatures to explore the prevalence of SVT in pancreatitis. All observational studies regarding the prevalence of SVT in pancreatitis were identified via PubMed and EMBASE databases. The prevalence of SVT was pooled in the total of patients with pancreatitis. And it was also pooled in the subgroup analyses according to the stage and causes of pancreatitis, location of SVT, and regions where the studies were performed. After the review of 714 studies, 44 studies fulfilled the inclusion criteria. Meta-analyses showed a pooled prevalence of SVT of 13.6% in pancreatitis. According to the stage of pancreatitis, the pooled prevalence of SVT was 16.6% and 11.6% in patients with acute and chronic pancreatitis, respectively. According to the causes of pancreatitis, the pooled prevalence of SVT was 12.2% and 14.6% in patients with hereditary and autoimmune pancreatitis. According to the location of SVT, the pooled prevalence of portal vein, splenic vein, and mesenteric vein thrombosis was 6.2%, 11.2%, and 2.7% in pancreatitis. The prevalence of SVT in pancreatitis was 16.9%, 11.5%, and 8.5% in Europe, America, and Asia, respectively.

  14. Recurrent Thrombotic Events after Discontinuation of Vitamin K Antagonist Treatment for Splanchnic Vein Thrombosis: A Multicenter Retrospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Nicoletta Riva

    2015-01-01

    Full Text Available It is generally recommended that patients with splanchnic vein thrombosis (SVT should receive a minimum of 3 months of anticoagulant treatment. However, little information is available on the long-term risk of recurrent thrombotic events. The aim of this study was to evaluate the risk of venous and arterial thrombosis after discontinuation of vitamin K antagonist (VKA in SVT patients. Retrospective information from a cohort of SVT patients treated with VKA and followed by 37 Italian Anticoagulation Clinics, up to June 2013, was collected. Only patients who discontinued VKA and did not receive any other anticoagulant drug were enrolled in this study. Thrombotic events during follow-up were centrally adjudicated. Ninety patients were included: 33 unprovoked SVT, 27 SVT secondary to transient risk factors, and 30 with permanent risk factors. During a median follow-up of 1.6 years, 6 venous and 1 arterial thrombosis were documented, for an incidence of 3.3/100 patient-years (pt-y. The recurrence rate was highest in the first year after VKA discontinuation (8.2/100’pt-y and in patients with permanent risk factors (10.2/100’pt-y. Liver cirrhosis significantly increased the risk of recurrence. In conclusion, the rate of recurrent vascular complications after SVT is not negligible, at least in some patient subgroups.

  15. Prevalence of Splanchnic Vein Thrombosis in Pancreatitis: A Systematic Review and Meta-Analysis of Observational Studies

    Directory of Open Access Journals (Sweden)

    Wenda Xu

    2015-01-01

    Full Text Available Splanchnic vein thrombosis (SVT may be negatively associated with the prognosis of pancreatitis. We performed a systematic review and meta-analysis of literatures to explore the prevalence of SVT in pancreatitis. All observational studies regarding the prevalence of SVT in pancreatitis were identified via PubMed and EMBASE databases. The prevalence of SVT was pooled in the total of patients with pancreatitis. And it was also pooled in the subgroup analyses according to the stage and causes of pancreatitis, location of SVT, and regions where the studies were performed. After the review of 714 studies, 44 studies fulfilled the inclusion criteria. Meta-analyses showed a pooled prevalence of SVT of 13.6% in pancreatitis. According to the stage of pancreatitis, the pooled prevalence of SVT was 16.6% and 11.6% in patients with acute and chronic pancreatitis, respectively. According to the causes of pancreatitis, the pooled prevalence of SVT was 12.2% and 14.6% in patients with hereditary and autoimmune pancreatitis. According to the location of SVT, the pooled prevalence of portal vein, splenic vein, and mesenteric vein thrombosis was 6.2%, 11.2%, and 2.7% in pancreatitis. The prevalence of SVT in pancreatitis was 16.9%, 11.5%, and 8.5% in Europe, America, and Asia, respectively.

  16. [Reflex sympathetic dystrophy: description of a case with skin lesions].

    Science.gov (United States)

    Vergara, Aránzazu; Isarría, María J; Prado Sánchez-Caminero, María; Guerra, Aurora

    2005-10-01

    Reflex sympathetic dystrophy or algodystrophy is a poorly defined syndrome in which the patient develops pain disproportionate to the cause. It is included among the complex regional pain syndromes. The symptoms are triggered by some type of trauma, at times trivial, and consist of burning pain, edema, changes in skin color, alterations in vascularization, temperature changes, hyperhidrosis and skin disorders, which primarily consist of atrophic changes. Other less frequent cutaneous manifestations have been described in patients with this syndrome. These include papules, blisters, inflammatory lesions and reticulated hyperpigmentation. We discuss the case of a patient with reflex sympathetic dystrophy who presented with superficial ulcers on the affected limb, which mimicked dermatitis artefacta.

  17. Cardiorenal axis and arrhythmias: Will renal sympathetic denervation provide additive value to the therapeutic arsenal?

    NARCIS (Netherlands)

    van Brussel, Peter M.; Lieve, Krystien V. V.; de Winter, Robbert J.; Wilde, Arthur A. M.

    2015-01-01

    Disruption of sympathetic tone may result in the occurrence or maintenance of cardiac arrhythmias. Multiple arrhythmic therapies that intervene by influencing cardiac sympathetic tone are common in clinical practice. These vary from pharmaceutical (β-blockers, angiotensin-converting enzyme

  18. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    Science.gov (United States)

    2016-04-01

    project was to develop an alternative to autologous nerve grafts used in repair of peripheral nerve injuries in war and civilian life. Based on our...gradient compositions tested in Aim 1 in preparation to studies in the large animal model of peripheral nerve injury and repair . As it was not...this specific aim was to test the efficacy of optimized nanofiber nerve guide in a canine model of peripheral nerve injury and repair . Peripheral nerve

  19. Distribution of lymphatic tissues and autonomic nerves in supporting ligaments around the cervix uteri.

    Science.gov (United States)

    Zhang, Jianping; Feng, Lanlan; Lu, Yi; Guo, Dongxia; Xi, Tengteng; Wang, Xiaochun

    2013-05-01

    To investigate the distribution of lymphatic tissues and nerves in the supporting ligaments around the cervix uteri for their tomographical relationship, 9 adult female cadavers were used in this study. Following the incision of all supporting ligaments around the cervix, hematoxylin and esosin (H&E) and immunohistochemical staining of various sections of these ligaments was performed to enable the distribution of lymph tissues and autonomic nerves to be observed. Four lymph nodes were identified in three cadaver specimens. Three lymph nodes were present at a distance of 2.0 cm from the cervix in the cranial side of the cardinal ligaments (CLs), and one lymph node was located at a distance of 4.0 cm from the cervix in the cranial side of the uterosacral ligament (USL). The lymphatic vessels were dispersed in the CLs, scattered in the cervical side of the USLs, and occasionally distributed in the vesicouterine ligaments (VULs). In the CLs, parasympathetic nerves were located at the pelvic lateral wall and went downwards and medially into the cervix, while sympathetic fibers were located in the middle and lower parts of the ligaments. In the USLs, the autonomic nerves, which consisted primarily of sympathetic fibers, went downwards and laterally from the pelvic wall to the cervix. In the VULs, parasympathetic and sympathetic nerves were located in the inner sides of the vesical veins in the deep layers of the ligaments. It is concluded that there are few lymphatic tissues in the supporting ligaments around the cervix uteri, and that nerve‑sparing radical hysterectomy (NSRH) may be a safe method for the treatment of early‑stage cervical cancer.

  20. Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress

    Science.gov (United States)

    El Sayed, Khadigeh; Macefield, Vaughan G.; Hissen, Sarah L.; Joyner, Michael J.

    2016-01-01

    Key points Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress.In this study, we examined the early blood pressure responses (including the peak, time of peak and rate of rise in blood pressure) to mental stress in positive and negative responders.Negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex‐mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA‐driven.This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. Abstract Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. The aim was to examine the early blood pressure response to stress in positive and negative responders and thus its influence on the direction of change in MSNA. Blood pressure and MSNA were recorded continuously in 21 healthy young males during 2 min mental stressors (mental arithmetic, Stroop test) and physical stressors (cold pressor, handgrip exercise, post‐exercise ischaemia). Participants were classified as negative or positive responders according to the direction of the mean change in MSNA during the stressor tasks. The peak changes, time of peak and rate of changes in blood pressure were compared between groups. During mental arithmetic negative responders experienced a significantly greater rate of rise in diastolic blood pressure in the first minute of the task (1.3 ± 0.5 mmHg s−1) compared with positive responders (0.4 ± 0.1 mmHg s−1; P = 0.03). Similar results were found for the Stroop test. Physical tasks elicited robust parallel increases in blood

  1. Isolated optic nerve pseudotumour

    International Nuclear Information System (INIS)

    Patankar, T.; Prasad, S.; Krishnan, A.; Laxminarayan, R.

    2000-01-01

    Isolated optic nerve involvement by the idiopathic inflammatory process is a rare finding and very few reports are available. Here a case of an isolated optic nerve inflammatory pseudotumour presenting with gradually progressive unilateral loss of vision is described. It showed dramatic response to a trial of steroids and its differential diagnoses are discussed. Copyright (1999) Blackwell Science Pty Ltd

  2. Diabetic Nerve Problems

    Science.gov (United States)

    ... vessels that bring oxygen to your nerves. Damaged nerves may stop sending messages, or may send messages slowly or at the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get it. Symptoms may include Numbness in your ...

  3. The clinical value of cardiac sympathetic imaging in heart failure

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Kjaer, Andreas; Hasbak, Philip

    2014-01-01

    The autonomic nervous system plays an important role in the pathology of heart failure. The single-photon emission computed tomography tracer iodine-123-metaiodobenzylguanidine ((123) I-MIBG) can be used to investigate the activity of the predominant neurotransmitter of the sympathetic nervous...

  4. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  5. Sympathetic neural responses to smoking are age dependent

    Czech Academy of Sciences Publication Activity Database

    Hering, D.; Somers, V. K.; Kára, T.; Kucharska, W.; Jurák, Pavel; Bieniaszewski, L.; Narkiewicz, K.

    2006-01-01

    Roč. 24, č. 4 (2006), s. 691-695 ISSN 0263-6352 R&D Projects: GA ČR(CZ) GA102/05/0402 Institutional research plan: CEZ:AV0Z20650511 Keywords : sympathetic neural response * blood pressure * heart rate * smoking Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 4.021, year: 2006

  6. Causes and consequences of increased sympathetic activity in renal disease

    NARCIS (Netherlands)

    Joles, JA; Koomans, HA

    Much evidence indicates increased sympathetic nervous activity (SNA) in renal disease. Renal ischemia is probably a primary event leading to increased SNA. Increased SNA often occurs in association with hypertension. However, the deleterious effect of increased SNA on the diseased kidney is not only

  7. Functional imaging of sympathetic activation during mental stress.

    Science.gov (United States)

    Fechir, M; Gamer, M; Blasius, I; Bauermann, T; Breimhorst, M; Schlindwein, P; Schlereth, T; Birklein, F

    2010-04-01

    Activation of the sympathetic nervous system (SNS) is essential in adapting to environmental stressors and in maintaining homeostasis. This reaction can also turn into maladaptation, associated with a wide spectrum of stress-related diseases. Up to now, the cortical mechanisms of sympathetic activation in acute mental stress have not been sufficiently characterized. We therefore investigated cerebral activation applying functional magnetic resonance imaging (fMRI) during performance of a mental stress task with graded levels of difficulty, i.e. four versions of a Stroop task (Colour Word Interference Test, CWT) in healthy subjects. To analyze stress-associated sympathetic activation, skin conductance and heart rate were continuously recorded. The results show that sympathetic activation through mental stress is associated with distinct cerebral regions being immediately involved in task performance (visual, motor, and premotor areas). Other activated regions (right insula, dorsolateral superior frontal gyrus, cerebellar regions) are unrelated to task performance. These latter regions have previously been considered to be involved in mediating different stress responses. The results might furthermore serve as a basis for future investigations of the connection between these cortical regions in the generation of stress-related diseases. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Modulation of sympathetic outflow by centrally acting antihypertensive drugs

    NARCIS (Netherlands)

    van Zwieten, P. A.

    1996-01-01

    The modulation of peripheral sympathetic activity by the central nervous system (CNS) has been intensely investigated as a potential target of antihypertensive drugs. In particular, clonidine, guanfacine, and alpha-methyl-DOPA (acting via its metabolite alpha-methylnoradrenaline) have been developed

  9. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    Science.gov (United States)

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  10. Juxta-articular erosions in reflex sympathetic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, H.J.; Virtama, P.

    Thirty-one patients with documented reflex sympathetic dystrophy syndrome (RSDS) were reviewed for their radiographic changes. Juxta-articular and metaphyseal bone loss was found in the majority of the patients. Juxta-articular bone loss closely resembling erosions seen in rheumatoid arthritis was found in all the patients. The significance of these findings is discussed.

  11. Reflex sympathetic dystrophy/complex regional pain syndrome.

    Science.gov (United States)

    Gann, Charlotte

    2008-02-01

    Occupational health nurses are usually the first to assess workers with reflex sympathetic dystrophy/complex regional pain syndrome. Therefore, they must be aware of the signs and symptoms, implications for lost time, and higher incidence of disability related to this disorder.

  12. Reflex sympathetic dystrophy syndrome due to arteriovenous fistula.

    Science.gov (United States)

    Unek, Ilkay Tugba; Birlik, Merih; Cavdar, Caner; Ersoy, Rifki; Onen, Fatos; Celik, Ali; Camsari, Taner

    2005-10-01

    A patient with end-stage renal disease presented with reflex sympathetic dystrophy syndrome (RSDS) on her left hand 1 month after arteriovenous fistula (AVF) surgery. Magnetic resonance angiography revealed steal syndrome at the AVF level. Bone scintigraphy revealed early-stage RSDS. We considered that arterial insufficiency because of steal phenomenon following AVF surgery and underlying occlusive arterial disease triggered RSDS development.

  13. Complex regional pain syndrome/reflex sympathetic dystrophy.

    Science.gov (United States)

    Jakubowicz, Brian; Aner, Musa

    2010-06-01

    Questions from patients about analgesic pharmacotherapy and responses from the authors are presented to help educate patients and make them more effective self-advocates. The topics addressed in this issue are the signs, symptoms, and diagnosis of complex regional pain syndrome/reflex sympathetic dystrophy.

  14. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    International Nuclear Information System (INIS)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C.; Irigoyen, M.C.; De Angelis, K.

    2015-01-01

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation

  15. Reflex sympathetic dystrophy/complex regional pain syndrome, type 1

    African Journals Online (AJOL)

    Enrique

    over the left ankle was also present. (Fig. 6 and Figs 7a and 7b). There was contradiction between the two diagnoses of stress fractures and CPRS type 1. As CPRS type 1 is a clinical diagnosis the boy was treated as such. He was admitted into hospital and received epidural narcotic infusion with sympathetic blockage for a ...

  16. Baroreflex control of sympathetic activity in experimental hypertension

    Directory of Open Access Journals (Sweden)

    M.C.C. Irigoyen

    1998-09-01

    Full Text Available The arterial baroreceptor reflex system is one of the most powerful and rapidly acting mechanisms for controlling arterial pressure. The purpose of the present review is to discuss data relating sympathetic activity to the baroreflex control of arterial pressure in two different experimental models: neurogenic hypertension by sinoaortic denervation (SAD and high-renin hypertension by total aortic ligation between the renal arteries in the rat. SAD depresses baroreflex regulation of renal sympathetic activity in both the acute and chronic phases. However, increased sympathetic activity (100% was found only in the acute phase of sinoaortic denervation. In the chronic phase of SAD average discharge normalized but the pattern of discharges was different from that found in controls. High-renin hypertensive rats showed overactivity of the renin angiotensin system and a great depression of the baroreflexes, comparable to the depression observed in chronic sinoaortic denervated rats. However, there were no differences in the average tonic sympathetic activity or changes in the pattern of discharges in high-renin rats. We suggest that the difference in the pattern of discharges may contribute to the increase in arterial pressure lability observed in chronic sinoaortic denervated rats.

  17. Prolonged Paroxysmal Sympathetic Storming Associated with Spontaneous Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2013-01-01

    Full Text Available Paroxysmal sympathetic storming (PSS is a rare disorder characterized by acute onset of nonstimulated tachycardia, hypertension, tachypnea, hyperthermia, external posturing, and diaphoresis. It is most frequently associated with severe traumatic brain injuries and has been reported in intracranial tumors, hydrocephalous, severe hypoxic brain injury, and intracerebral hemorrhage. Although excessive release of catecholamine and therefore increased sympathetic activities have been reported in subarachnoid hemorrhage (SAH, there is no descriptive report of PSS primarily caused by spontaneous SAH up to date. Here, we report a case of prolonged PSS in a patient with spontaneous subarachnoid hemorrhage and consequent vasospasm. The sympathetic storming started shortly after patient was rewarmed from hypothermia protocol and symptoms responded to Labetalol, but intermittent recurrence did not resolve until 3 weeks later with treatment involving Midazolam, Fentanyl, Dexmedetomidine, Propofol, Bromocriptine, and minimizing frequency of neurological and vital checks. In conclusion, prolonged sympathetic storming can also be caused by spontaneous SAH. In this case, vasospasm might be a precipitating factor. Paralytics and hypothermia could mask the manifestations of PSS. The treatment of the refractory case will need both timely adjustment of medications and minimization of exogenous stressors or stimuli.

  18. The low frequency power of heart rate variability is neither a measure of cardiac sympathetic tone nor of baroreflex sensitivity.

    Science.gov (United States)

    Martelli, Davide; Silvani, Alessandro; McAllen, Robin M; May, Clive N; Ramchandra, Rohit

    2014-10-01

    The lack of noninvasive approaches to measure cardiac sympathetic nerve activity (CSNA) has driven the development of indirect estimates such as the low-frequency (LF) power of heart rate variability (HRV). Recently, it has been suggested that LF HRV can be used to estimate the baroreflex modulation of heart period (HP) rather than cardiac sympathetic tone. To test this hypothesis, we measured CSNA, HP, blood pressure (BP), and baroreflex sensitivity (BRS) of HP, estimated with the modified Oxford technique, in conscious sheep with pacing-induced heart failure and in healthy control sheep. We found that CSNA was higher and systolic BP and HP were lower in sheep with heart failure than in control sheep. Cross-correlation analysis showed that in each group, the beat-to-beat changes in HP correlated with those in CSNA and in BP, but LF HRV did not correlate significantly with either CSNA or BRS. However, when control sheep and sheep with heart failure were considered together, CSNA correlated negatively with HP and BRS. There was also a negative correlation between CSNA and BRS in control sheep when considered alone. In conclusion, we demonstrate that in conscious sheep, LF HRV is neither a robust index of CSNA nor of BRS and is outperformed by HP and BRS in tracking CSNA. These results do not support the use of LF HRV as a noninvasive estimate of either CSNA or baroreflex function, but they highlight a link between CSNA and BRS. Copyright © 2014 the American Physiological Society.

  19. Changes of Sympathetic Activity in Patient with Chronic Atrial Fibrillation and Severe Congestive Heart Failure Treated with Biventricular Pacing

    Directory of Open Access Journals (Sweden)

    Kohei Matsushita, MD

    2006-01-01

    Full Text Available The patient was a 64-year-old man with chronic atrial fibrillation with bradycardia. Left ventricular ejection fraction was 34%. He was treated with biventricular pacing. Heart failure improved from NYHA class III to II. Sympathetic nerve activity (SNA. was recorded during 6 minutes of biventricular (BV, right ventricular apical (RVA. and left ventricular (LV. pacing. SNA was significantly lower during biventricular pacing (49.5 ± 4.0/min. compared with RVA (58.8 ±6:9/min, p = 0.016. and LV (63.3 ± 4.3/min, p = 0.002. pacing. BV pacing improves hemodynamics and decreases SNA compared with RVA or LV pacing.

  20. Relationship between three phase bone scintigram and prognosis after sympathetic blockade in reflex sympathetic dystrophy of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Yokono, Atsuko; Yokono, Satoshi; Oguri, Kenji (Kagawa Medical School, Miki (Japan))

    1990-11-01

    The authors attempted to correlate the changes in three phase bone scintigram (TPBS) with prognosis after sympathetic blockade in reflex sympathetic dystrophy (RSD) of the hand. Subjects were 12 patients of RSD in acute or dystrophic stage, who all had increased images on TPBS. Either intravenous regional sympathectomy with guanethidine or stellate ganglion block was performed repeatedly. We compared TPBS obtained just before and after this series of sympathetic blocks and evaluated the eventual recovery of function of the hand. In 8 patients, blood flow (phase 1) image of TPBS decreased after the blockade. Of these patients, those who showed almost normalized tracer activity not only on flow image but on blood pool (phase 2) and delayed (phase 3) image, returned to normal. But others with normalized blood flow and still increased activity in blood pool and delayed image, remained with mild contracture of the hand. These results suggest that normalization of blood pool and delayed image on TPBS is a predictor of subsequent recovery after sympathetic blockade in RSD. (author).

  1. Neurophysiological approach to disorders of peripheral nerve

    DEFF Research Database (Denmark)

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves...

  2. Effects of glucose, propionate and splanchnic hormones on neuropeptide mRNA concentrations in the ovine hypothalamus.

    Science.gov (United States)

    Relling, A E; Lee, K; Loerch, S C; Reynolds, C K

    2012-08-01

    The capacity for glucose, propionate or hormones of splanchnic origin to influence appetite by directly regulating the expression of neuropeptides in the feeding centres of the hypothalamus of the ruminant is not described. Therefore, our objective was to measure the direct effect of metabolites (glucose and propionate) or hormones [insulin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY)] on hypothalamic mRNA concentrations for neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) following in vitro incubation. Hypothalamic tissue from 4- to 5-month-old lambs was obtained at slaughter and immediately incubated in culture media for 2 h at 36 °C. Treatments included a control Dulbecco's modified Eagle medium (DMEM) containing 1 mm glucose or DMEM with the following additions: 10 mm glucose, 1 mm propionate, 1 nm insulin, 120 pm GLP-1, 100 pm PYY, 80 pm CCK or 10 mm glucose plus 1 nm insulin. The abundance of mRNA for NPY, AgRP and POMC was measured using quantitative reverse transcriptase PCR. Fisher's protected LSD test was used to compare changes in relative mRNA concentrations for the hypothalamus incubated in the control media vs. the rest of the treatments. The media containing glucose plus insulin increased POMC mRNA concentration (p 0.20). Results of the present study are consistent with the concept that effects of propionate on feed intake in ruminants is not mediated through direct effects on the hypothalamus, and that insulin is required for an effect of glucose on hypothalamic POMC expression. © 2011 Blackwell Verlag GmbH.

  3. Comparison of effects of uncomplicated canine babesiosis and canine normovolaemic anaemia on abdominal splanchnic Doppler characteristics - a preliminary investigation

    Directory of Open Access Journals (Sweden)

    L.M. Koma

    2005-06-01

    Full Text Available A preliminary study was conducted to compare uncomplicated canine babesiosis (CB and experimentally induced normovolaemic anaemia (EA using Doppler ultrasonography of abdominal splanchnic vessels. Fourteen dogs with uncomplicated CB were investigated together with 11 healthy Beagles during severe EA, moderate EA and the physiological state as a control group. Canine babesiosis was compared with severe EA, moderate EA and the physiological state using Doppler variables of the abdominal aorta, cranial mesenteric artery (CMA, coeliac, left renal and interlobar, and hilar splenic arteries, and the main portal vein. Patterns of haemodynamic changes during CB and EA were broadly similar and were characterised by elevations in velocities and reductions in resistance indices in all vessels except the renal arteries when compared with the physiological state. Aortic and CMA peak systolic velocities and CMA end diastolic and time-averaged mean velocities in CB were significantly lower (P < 0.023 than those in severe EA. Patterns of renal haemodynamic changes during CB and EA were similar. However, the renal patterns differed from those of aortic and gastrointestinal arteries, having elevations in vascular resistance indices, a reduction in end diastolic velocity and unchanged time-averaged mean velocity. The left renal artery resistive index in CB was significantly higher (P < 0.025 than those in EA and the physiological state. Renal interlobar artery resistive and pulsatility indices in CB were significantly higher (P < 0.016 than those of moderate EA and the physiological state. The similar haemodynamic patterns in CB and EA are attributable to anaemia, while significant differencesmayadditionally be attributed to pathophysiological factors peculiar to CB.

  4. EFFICACY OF SERVO-CONTROLLED SPLANCHNIC VENOUS COMPRESSION IN THE TREATMENT OF ORTHOSTATIC HYPOTENSION. A RANDOMIZED COMPARISON WITH MIDODRINE

    Science.gov (United States)

    Okamoto, Luis E.; Diedrich, André; Baudenbacher, Franz J.; Harder, René; Whitfield, Jonathan S.; Iqbal, Fahad; Gamboa, Alfredo; Shibao, Cyndya A.; Black, Bonnie K.; Raj, Satish R.; Robertson, David; Biaggioni, Italo

    2016-01-01

    Splanchnic venous pooling is a major hemodynamic determinant of orthostatic hypotension (OH), but is not specifically targeted by pressor agents, the mainstay of treatment. We developed an automated inflatable abdominal binder that provides sustained servo-controlled venous compression (40 mmHg) and can be activated only on standing. We tested the efficacy of this device against placebo and compared it to midodrine in nineteen autonomic failure patients randomized to receive either placebo, midodrine (2.5–10 mg) or placebo combined with binder on separate days in a single-blind, crossover study. Systolic blood pressure (SBP) was measured seated and standing before and 1-hour post-medication; the binder was inflated immediately before standing. Only midodrine increased seated SBP (31±5 vs. 9±4 placebo and 7±5 binder, P=0.003); whereas orthostatic tolerance (defined as area under the curve of upright SBP [AUCSBP]) improved similarly with binder and midodrine (AUCSBP, 195±35 and 197±41 vs. 19±38 mmHg*min for placebo, P=0.003). Orthostatic symptom burden decreased with the binder (from 21.9±3.6 to 16.3±3.1, P=0.032) and midodrine (from 25.6±3.4 to 14.2±3.3, Pmidodrine and binder, with midodrine alone. The combination produced a greater increase in orthostatic tolerance (AUCSBP, 326±65 vs. 140±53 mmHg*min for midodrine alone, P=0.028, n=21), and decreased orthostatic symptoms (from 21.8±3.2 to 12.9±2.9, Pmidodrine, the standard of care, in the management of OH. Combining both therapies produces greater improvement in orthostatic tolerance. PMID:27271310

  5. Efficacy of Servo-Controlled Splanchnic Venous Compression in the Treatment of Orthostatic Hypotension: A Randomized Comparison With Midodrine.

    Science.gov (United States)

    Okamoto, Luis E; Diedrich, André; Baudenbacher, Franz J; Harder, René; Whitfield, Jonathan S; Iqbal, Fahad; Gamboa, Alfredo; Shibao, Cyndya A; Black, Bonnie K; Raj, Satish R; Robertson, David; Biaggioni, Italo

    2016-08-01

    Splanchnic venous pooling is a major hemodynamic determinant of orthostatic hypotension, but is not specifically targeted by pressor agents, the mainstay of treatment. We developed an automated inflatable abdominal binder that provides sustained servo-controlled venous compression (40 mm Hg) and can be activated only on standing. We tested the efficacy of this device against placebo and compared it to midodrine in 19 autonomic failure patients randomized to receive either placebo, midodrine (2.5-10 mg), or placebo combined with binder on separate days in a single-blind, crossover study. Systolic blood pressure (SBP) was measured seated and standing before and 1-hour post medication; the binder was inflated immediately before standing. Only midodrine increased seated SBP (31±5 versus 9±4 placebo and 7±5 binder, P=0.003), whereas orthostatic tolerance (defined as area under the curve of upright SBP [AUCSBP]) improved similarly with binder and midodrine (AUCSBP, 195±35 and 197±41 versus 19±38 mm Hg×minute for placebo; P=0.003). Orthostatic symptom burden decreased with the binder (from 21.9±3.6 to 16.3±3.1, P=0.032) and midodrine (from 25.6±3.4 to 14.2±3.3, Pmidodrine and binder with midodrine alone. The combination produced a greater increase in orthostatic tolerance (AUCSBP, 326±65 versus 140±53 mm Hg×minute for midodrine alone; P=0.028, n=21) and decreased orthostatic symptoms (from 21.8±3.2 to 12.9±2.9, Pmidodrine, the standard of care, in the management of orthostatic hypotension. Combining both therapies produces greater improvement in orthostatic tolerance. URL: https://www.clinicaltrials.gov. Unique identifier: NCT00223691. © 2016 American Heart Association, Inc.

  6. Modifications of the sympathetic skin response in workers chronically exposed to lead

    Directory of Open Access Journals (Sweden)

    D.B. Nora

    2007-01-01

    Full Text Available The long-term effects of low-level lead intoxication are not known. The sympathetic skin response (SSR was evaluated in a group of 60 former workers of a primary lead smelter, located in Santo Amaro, BA, Brazil. The individuals participating in the study were submitted to a clinical-epidemiological evaluation including questions related to potential risk factors for intoxication, complaints related to peripheral nervous system (PNS involvement, neurological clinical examination, and also to electromyography and nerve conduction studies and SSR evaluation. The sample consisted of 57 men and 3 women aged 34 to 69 years (mean ± SD: 46.8 ± 6.9. The neurophysiologic evaluation showed the presence of lumbosacral radiculopathy in one of the individuals (1.7%, axonal sensorimotor polyneuropathy in 2 (3.3%, and carpal tunnel syndrome in 6 (10%. SSR was abnormal or absent in 12 cases, representing 20% of the sample. More than half of the subjects (53.3% reported a history of acute abdominal pain requiring hospitalization during the period of work at the plant. A history of acute palsy of radial and peroneal nerves was reported by about 16.7 and 8.3% of the individuals, respectively. Mean SSR amplitude did not differ significantly between patients presenting or not the various characteristics in the current neurological situation, except for diaphoresis. The results suggest that chronic lead intoxication induces PNS damage, particularly affecting unmyelinated small fibers. Further systematic study is needed to more precisely define the role of lead in inducing PNS injury.

  7. Continuous Thoracic Sympathetic Ganglion Block in Complex Regional Pain Syndrome Patients with Spinal Cord Stimulation Implantation

    Directory of Open Access Journals (Sweden)

    EungDon Kim

    2016-01-01

    Full Text Available The sympathetic block is widely used for treating neuropathic pain such as complex regional pain syndrome (CRPS. However, single sympathetic block often provides only short-term effect. Moreover, frequent procedures for sympathetic block may increase the risk of complications. The use of epidural route may be limited by concern of infection in case of previous implantation of the spinal cord stimulation (SCS. In contrast, a continuous sympathetic block can be administered without such concerns. The continuous thoracic sympathetic block (TSGB has been used to treat the ischemic disease and other neuropathic conditions such as postherpetic neuralgia. We administered continuous thoracic sympathetic block using catheter in CRPS patients who underwent SCS implantations and achieved desirable outcomes. We believe a continuous sympathetic block is a considerable option before performing neurolysis or radiofrequency rhizotomy and even after SCS implantation.

  8. Perinatal exposure to a high-fat diet is associated with reduced hepatic sympathetic innervation in one-year old male Japanese macaques.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    Full Text Available Our group recently demonstrated that maternal high-fat diet (HFD consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD, when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR, is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction.

  9. Role of the rostral ventrolateral medulla (RVLM) in the patterning of vestibular system influences on sympathetic nervous system outflow to the upper and lower body.

    Science.gov (United States)

    Sugiyama, Yoichiro; Suzuki, Takeshi; Yates, Bill J

    2011-05-01

    Research on animal models as well as human subjects has demonstrated that the vestibular system contributes to regulating the distribution of blood in the body through effects on the sympathetic nervous system. Elimination of vestibular inputs results in increased blood flow to the hindlimbs during vestibular stimulation, because it attenuates the increase in vascular resistance that ordinarily occurs in the lower body during head-up tilts. Additionally, the changes in vascular resistance produced by vestibular stimulation differ between body regions. Electrical stimulation of vestibular afferents produces an inhibition of most hindlimb vasoconstrictor fibers and a decrease in hindlimb vascular resistance, but an initial excitation of most upper body vasoconstrictor fibers accompanied by an increase in upper body vascular resistance. The present study tested the hypothesis that neurons in the principal vasomotor region of the brainstem, the rostral ventrolateral medulla (RVLM), whose projections extended past the T10 segment, to spinal levels containing sympathetic preganglionic neurons regulating lower body blood flow, respond differently to electrical stimulation of the vestibular nerve than RVLM neurons whose axons terminate rostral to T10. Contrary to our hypothesis, the majority of RVLM neurons were excited by vestibular stimulation, despite their level of projection in the spinal cord. These findings indicate that the RVLM is not solely responsible for establishing the patterning of vestibular-sympathetic responses. This patterning apparently requires the integration by spinal circuitry of labyrinthine signals transmitted from the brainstem, likely from regions in addition to the RVLM.

  10. The sympathetic skin response in diabetic neuropathy and its relationship to autonomic symptoms

    International Nuclear Information System (INIS)

    Al-Moallem, Mansour A.; Zaidan, Radwan M.; Alkali, Nura H.

    2008-01-01

    Objective was to examine the utility of the sympathetic skin response (SSR) as a measure of impaired autonomic function among diabetic patients in Saudi Arabia. In this case-control study, baseline SSR was obtained from 18 healthy subjects, followed by nerve conduction studies and SSR testing on a consecutive cohort of 50 diabetic patients with peripheral neuropathy. The SSR in diabetic patients was compared between those with autonomic neuropathy and those without autonomic neuropathy. This study was conducted at the King Khalid University Hospital, Riyadh, Saudi Arabia, from June 2006 to June 2007. The SSR was present in all healthy subjects and in 32 diabetic patients. Among 16 patients with autonomic neuropathy, the SSR was absent in 14 and present in 2, while 4 of 34 patients lacking evidence of autonomic neuropathy had absent SSR. Using Fisher's exact test, we found a strong association between absent SSR and autonomic neuropathy (p<0.001), however, not with age or duration of diabetes mellitus. As a diagnostic test of autonomic neuropathy, the SSR had a sensitivity of 87.5%, a specificity of 88.2%, a positive predictive value of 77.8%, and a negative predictive value of 93.7%. Absence of the SSR is a reliable indicator of autonomic neuropathy among patients with diabetes mellitus in Saudi Arabia. (author)

  11. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents.

    Science.gov (United States)

    Madsen, Andreas N; Jelsing, Jacob; van de Wall, Esther H E M; Vrang, Niels; Larsen, Philip J; Schwartz, Gary J

    2009-01-02

    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac-superior mesenteric ganglionectomy (CGX). Irrespective of the operational procedure, rimonabant (10mg/kg) effectively reduced standard chow as well as palatable diet (ensure) intake. In conclusion, the data clearly demonstrate that neither vagal gut afferents, nor gut afferents traveling via the sympathetic nervous system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia.

  12. No relation between sympathetic outflow to muscles and respiratory function in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Shindo, Kazumasa; Tsuchiya, Mai; Ichinose, Yuta; Onohara, Akiko; Fukumoto, Megumi; Koh, Kishin; Takaki, Ryusuke; Yamashiro, Nobuo; Kobayashi, Fumikazu; Nagasaka, Takamura; Takiyama, Yoshihisa

    2015-11-15

    In amyotrophic lateral sclerosis (ALS), not only impairment of motor neurons but also impairment of the autonomic nervous system has been demonstrated by previous physiological studies. Several investigators have reported a correlation between autonomic dysfunction and respiratory dysfunction in ALS. This study analyzed the relation between parameters of respiratory function and muscle sympathetic nerve activity (MSNA) in a large number of ALS patients. In 50 patients with ALS (mean age (SD): 62.1 (11.7) years), MSNA, heart rate (HR), and blood pressure (BP) were recorded simultaneously. The arterial oxygen content (PaO2), arterial carbon dioxide content (PaCO2), and forced vital capacity expressed as a percentage of the predicted value for healthy controls (%VC) were determined as parameters of respiratory function. There were no significant correlations between MSNA and PaO2, PaCO2, %VC, or the disability score. Analysis of chronological changes in 14 patients examined twice showed that the disability score and PaCO2 were significantly increased, and %VC was significantly more decreased at the second examination compared with the first examination (prespiratory function in ALS patients is not associated with changes of quantitative MSNA parameters, which may suggest that abnormality of the autonomic nervous system is a primary feature of ALS. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Modification of sympathetic neuronal function in the rat tail artery by dietary lipid treatment

    International Nuclear Information System (INIS)

    Panek, R.L.; Dixon, W.R.; Rutledge, C.O.

    1985-01-01

    The effect of dietary lipid treatment on sympathetic neuronal function was examined in isolated perfused tail arteries of adult rats. The hypothesis that dietary manipulations alter the lipid environment of receptor proteins which may result in the perturbation of specific membrane-associated processes that regulate peripheral adrenergic neurotransmission in the vasculature was the basis for this investigation. In the present study, rats were fed semisynthetic diets enriched in either 16% coconut oil (saturated fat) or 16% sunflower oil (unsaturated fat). The field stimulation-evoked release of endogenous norepinephrine and total 3 H was decreased significantly in rats receiving the coconut oil diet when compared to either sunflower oil- or standard lab chow-fed rats. Norepinephrine content in artery segments from coconut oil-treated rats was significantly higher compared to either sunflower oil- or standard lab chow-fed rats. Tail arteries from rats receiving the coconut oil diet displayed significantly lower perfusion pressure responses to nerve stimulation at all frequencies tested when compared to the sunflower oil- or standard lab chow-fed rats. Vasoconstrictor responses of perfused tail arteries exposed to exogenous norepinephrine resulted in an EC50 for norepinephrine that was not changed by the dietary treatment, but adult rats receiving the sunflower oil diet displayed a significantly greater maximum response to exogenous norepinephrine (10(-5) M) compared to arteries from either coconut oil- or standard lab chow-fed rats

  14. Renal Sympathetic Denervation by CT-scan-Guided Periarterial Ethanol Injection in Sheep

    Energy Technology Data Exchange (ETDEWEB)

    Firouznia, Kavous, E-mail: k-firouznia@yahoo.com; Hosseininasab, Sayed jaber, E-mail: dr.hosseininasab@gmail.com [Tehran University of Medical Sciences (TMUS), Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital Complex (Iran, Islamic Republic of); Amanpour, Saeid, E-mail: saeidamanpour@yahoo.com [Tehran University of Medical Science, Cancer Models Research Center, Cancer Institute of Iran (Iran, Islamic Republic of); Haj-Mirzaian, Arya, E-mail: arya.mirzaian@gmail.com [Tehran University of Medical Science, Department of Radiology and Imaging, MIC, Imam Khomeini Hospital (Iran, Islamic Republic of); Miri, Roza, E-mail: rosa.miri@yahoo.com [Tehran University of Medical Science, Department of Pathology, Imam Khomeini Hospital Complex (Iran, Islamic Republic of); Muhammadnejad, Ahad, E-mail: mohamadnejad@yahoo.com [Tehran University of Medical Science, Cancer Research Center, Cancer Institute of Iran (Iran, Islamic Republic of); Muhammadnejad, Samad, E-mail: s-muhammadnejad@sina.tums.ac.ir [Tehran University of Medical Sciences, Research Center for Molecular and Cellular Imaging (Iran, Islamic Republic of); Jalali, Amir H., E-mail: amirjalali51@yahoo.com [Tehran University of Medical Sciences (TMUS), Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital Complex (Iran, Islamic Republic of); Ahmadi, Farrokhlagha, E-mail: ahmadi@tums.ac.ir [Tehran University of Medical Sciences, Nephrology Research Center, Imam Khomeini Hospital Complex (Iran, Islamic Republic of); Rokni-Yazdi, Hadi, E-mail: rokniyaz@tums.ac.ir [Tehran University of Medical Sciences (TMUS), Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital Complex (Iran, Islamic Republic of)

    2015-08-15

    BackgroundRenal nerves are a recent target in the treatment of hypertension. Renal sympathetic denervation (RSD) is currently performed using catheter-based radiofrequency ablation (RFA) and because this method has limitations, percutaneous magnetic resonance (MR)-guided periarterial ethanol injection is a suggested alternative. However, few studies have been conducted on the effectiveness of percutaneous ethanol injection for RSD.AimTo evaluate the feasibility, efficacy, and complications of computed tomography (CT)-guided periarterial ethanol injection.MethodsEthanol (10 ml, 99.6 %) was injected around the right renal artery in six sheep under CT guidance with the left kidney serving as a control. Before and after the intervention, the sheep underwent MR imaging studies and the serum creatinine level was measured. One month after the intervention, the sheep were euthanized and norepinephrine (NE) concentration in the renal parenchyma was measured to evaluate the efficacy of the procedure. The treated tissues were also examined histopathologically to evaluate vascular, parenchymal, and neural injury.ResultsThe right kidney parenchymal NE concentration decreased significantly compared with the left kidney after intervention (average reduction: 40 %, P = 0.0016). Histologic examination revealed apparent denervation with no other vascular or parenchymal injuries observed in the histological and imaging studies.ConclusionEffective and feasible RSD was achieved using CT-guided periarterial ethanol injection. This technique may be a potential alternative to catheter-based RFA in the treatment of hypertension.

  15. [The renin-angiotensin system and the sympathetic nervous system in essential hypertension].

    Science.gov (United States)

    Vincent, M; Milon, H; Revol, T; Annat, G; Froment, A; Sassard, J; Cier, J F

    1982-06-01

    In 112 patients with essential hypertension (HTA), f