WorldWideScience

Sample records for spitzer infrared spectrograph

  1. CRYSTALLINE SILICATES IN EVOLVED STARS. I. SPITZER/INFRARED SPECTROGRAPH SPECTROSCOPY OF IRAS 16456-3542, 18354-0638, AND 23239+5754

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, B. W.; Zhang, Ke [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li, Aigen [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Lisse, C. M., E-mail: bjiang@bnu.edu.cn, E-mail: kzhang@caltech.edu, E-mail: lia@missouri.edu, E-mail: carey.lisse@jhuapl.edu [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2013-03-01

    We report the Spitzer Infrared Spectrograph (IRS) observations of three evolved stars: IRAS 16456-3542, 18354-0638, and 23239+5754. The 9.9-37.2 {mu}m Spitzer/IRS high-resolution spectra of these three sources exhibit rich sets of enstatite-dominated crystalline silicate emission features. IRAS 16456-3542 is extremely rich in crystalline silicates, with >90% of its silicate mass in crystalline form, the highest to date ever reported for crystalline silicate sources.

  2. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    de Messières, G.E.; O'Connell, R.W.; McNamara, B.R.; Donahue, M.; Nulsen, P.E.J.; Voit, G.M.; Wise, M.W.; Smith, B.; Higdon, J.; Higdon, S.; Bastian, N.

    2010-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  3. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF T TAURI STARS IN TAURUS

    International Nuclear Information System (INIS)

    Furlan, E.; Luhman, K. L.; Espaillat, C.

    2011-01-01

    We present 161 Spitzer Infrared Spectrograph (IRS) spectra of T Tauri stars and young brown dwarfs in the Taurus star-forming region. All of the targets were selected based on their infrared excess and are therefore surrounded by protoplanetary disks; they form the complete sample of all available IRS spectra of T Tauri stars with infrared excesses in Taurus. We also present the IRS spectra of seven Class 0/I objects in Taurus to complete the sample of available IRS spectra of protostars in Taurus. We use spectral indices that are not significantly affected by extinction to distinguish between envelope- and disk-dominated objects. Together with data from the literature, we construct spectral energy distributions for all objects in our sample. With spectral indices derived from the IRS spectra we infer disk properties such as dust settling and the presence of inner disk holes and gaps. We find a transitional disk frequency, which is based on objects with unusually large 13-31 μm spectral indices indicative of a wall surrounding an inner disk hole, of about 3%, and a frequency of about 20% for objects with unusually large 10 μm features, which could indicate disk gaps. The shape and strength of the 10 μm silicate emission feature suggests weaker 10 μm emission and more processed dust for very low mass objects and brown dwarfs (spectral types M6-M9). These objects also display weaker infrared excess emission from their disks, but do not appear to have more settled disks than their higher-mass counterparts. We find no difference for the spectral indices and properties of the dust between single and multiple systems.

  4. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Forrest, William J.; Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M. [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A., E-mail: cchen@stsci.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

  5. LOCAL LUMINOUS INFRARED GALAXIES. II. ACTIVE GALACTIC NUCLEUS ACTIVITY FROM SPITZER/INFRARED SPECTROGRAPH SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel [Centro de Astrobiologia, INTA-CSIC, E-28850 Torrejon de Ardoz, Madrid (Spain); Rieke, George H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Rigopoulou, Dimitra [Astrophysics Department, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2012-01-01

    We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8-1000 {mu}m) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs, L{sub IR} = 10{sup 11}-10{sup 12} L{sub Sun }). We decompose the Spitzer Infrared Spectrograph low-resolution 5-38 {mu}m spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features, and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is {approx}62%. The derived AGN bolometric luminosities are in the range L{sub bol}(AGN) = (0.4-50) Multiplication-Sign 10{sup 43} erg s{sup -1}. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having L{sub bol}[AGN]/L{sub IR} {<=} 0.05. Only {approx_equal} 8% of local LIRGs have a significant AGN bolometric contribution L{sub bol}[AGN]/L{sub IR} > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies (L{sub IR} = 10{sup 12}-10{sup 13} L{sub Sun }), we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for 5%{sub -3%}{sup +8%} of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of {Omega}{sup AGN

  6. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    Science.gov (United States)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  7. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. II. SILICATE FEATURE ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive Baltimore, MD 21218 (United States); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M., E-mail: cchen@stsci.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2015-01-10

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  8. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  9. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-01-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  10. Spitzer/infrared spectrograph investigation of mipsgal 24 μm compact bubbles: low-resolution observations

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, M. [Département de Physique, École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan (France); Flagey, N. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Noriega-Crespo, A.; Carey, S. J.; Van Dyk, S. D. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, MC 314-6, Pasadena, CA 91125 (United States); Billot, N. [Instituto de Radio Astronomía Milimétrica, Avenida Divina Pastora, 7, Local 20, E-18012 Granada (Spain); Paladini, R., E-mail: mathias.nowak@ens-cachan.fr [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-12-01

    We present Spitzer/InfraRed Spectrograph (IRS) low-resolution observations of 11 compact circumstellar bubbles from the MIPSGAL 24 μm Galactic plane survey. We find that this set of MIPSGAL bubbles (MBs) is divided into two categories and that this distinction correlates with the morphologies of the MBs in the mid-infrared (IR). The four MBs with central sources in the mid-IR exhibit dust-rich, low-excitation spectra, and their 24 μm emission is accounted for by the dust continuum. The seven MBs without central sources in the mid-IR have spectra dominated by high-excitation gas lines (e.g., [O IV] 26.0 μm, [Ne V] 14.3 and 24.3 μm, and [Ne III] 15.5 μm), and the [O IV] line accounts for 50% to almost 100% of the 24 μm emission in five of them. In the dust-poor MBs, the [Ne V] and [Ne III] line ratios correspond to high-excitation conditions. Based on comparisons with published IRS spectra, we suggest that the dust-poor MBs are highly excited planetary nebulae (PNs) with peculiar white dwarfs (e.g., Wolf-Rayet [WR] and novae) at their centers. The central stars of the four dust-rich MBs are all massive star candidates. Dust temperatures range from 40 to 100 K in the outer shells. We constrain the extinction along the lines of sight from the IRS spectra. We then derive distance, dust masses, and dust production rate estimates for these objects. These estimates are all consistent with the nature of the central stars. We summarize the identifications of MBs made to date and discuss the correlation between their mid-IR morphologies and natures. Candidate Be/B[e]/luminous blue variable and WR stars are mainly 'rings' with mid-IR central sources, whereas PNs are mostly 'disks' without mid-IR central sources. Therefore we expect that most of the 300 remaining unidentified MBs will be classified as PNs.

  11. SPITZER INFRARED LOW-RESOLUTION SPECTROSCOPIC STUDY OF BURIED ACTIVE GALACTIC NUCLEI IN A COMPLETE SAMPLE OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi; Maiolino, Roberto; Nakagawa, Takao

    2010-01-01

    We present the results of Spitzer Infrared Spectrograph low-resolution infrared 5-35 μm spectroscopy of 17 nearby ultraluminous infrared galaxies (ULIRGs) at z 12 L sun , are found in eight sources. We combine these results with those of our previous research to investigate the energy function of buried AGNs in a complete sample of optically non-Seyfert ULIRGs in the local universe at z < 0.3 (85 sources). We confirm a trend that we previously discovered: that buried AGNs are more common in galaxies with higher infrared luminosities. Because optical Seyferts also show a similar trend, we argue more generally that the energetic importance of AGNs is intrinsically higher in more luminous galaxies, suggesting that the AGN-starburst connections are luminosity dependent. This may be related to the stronger AGN feedback scenario in currently more massive galaxy systems, as a possible origin of the galaxy downsizing phenomenon.

  12. Recent SPIRITS discoveries of Infrared Transients and Variables with Spitzer/IRAC

    Science.gov (United States)

    Jencson, J. E.; Kasliwal, M. M.; Adams, S.; Cook, D.; Tinyanont, S.; Kwan, S.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Bond, H. E.; Monson, A.; Bally, J.; Khan, R.; Levesque, E.; Fox, O.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2018-04-01

    We report the discoveries of mid-infrared transients/strong variables found in the course of the Spitzer InfraRed Intensive Transients Survey (SPIRITS) using Spitzer Early Release Data (ATel #6644, #7929, #8688, #8940, #9434, #10171, #10172, #10488, #10903).

  13. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    Science.gov (United States)

    Kasliwal, Mansi; Jencson, Jacob; Lau, Ryan; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andrew; Hankins, Matthew; Goldman, Steven; Jacob, Jencson

    2018-05-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 78 explosive transients and 2457 eruptive variables. Of these 78 infrared transients, 60 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28 um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of those 106 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEs. Scaling from the SPIRITS discovery rate, we estimate finding 10 new SPRITEs and 2-3 new supernovae in Cycle 14. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  14. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD : HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME?

    NARCIS (Netherlands)

    Oliveira, Isa; Pontoppidan, Klaus M.; Merin, Bruno; van Dishoeck, Ewine F.; Lahuis, Fred; Geers, Vincent C.; Jorgensen, Jes K.; Olofsson, Johan; Augereau, Jean-Charles; Brown, Joanna M.

    2010-01-01

    We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35 mu m) spectra of a complete flux-limited sample (>= 3 mJy at 8 mu m) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and

  15. Cold disks : Spitzer spectroscopy of disks around young stars with large gaps

    NARCIS (Netherlands)

    Blake, G. A.; Dullemond, C. P.; Merin, B.; Augereau, J. C.; Boogert, A. C. A.; Evans, N. J.; Geers, V. C.; Lahuis, F.; Kessler-Silacci, J. E.; Pontoppidan, K. M.; van Dishoeck, E. F.; Brown, J.M.

    2007-01-01

    We have identified four circumstellar disks with a deficit of dust emission from their inner 15-50 AU. All four stars have F-G spectral type and were uncovered as part of the Spitzer Space Telescope "Cores to Disks" Legacy Program Infrared Spectrograph (IRS) first-look survey of similar to 100 pre -

  16. LUMINOUS BURIED ACTIVE GALACTIC NUCLEI AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi

    2009-01-01

    We present the results of Spitzer Infrared Spectrograph 5-35 μm low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z> 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried active galactic nuclei (AGNs) in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z IR 12 L sun . We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L IR > 10 12 L sun . For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by the detected buried AGN and modestly obscured (A V < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue less-massive galaxies in the local universe. Our results may support the widely proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star formation originating infrared luminosities, and have finished their major star formation more quickly, due to stronger AGN feedback.

  17. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David; Bally, John; Masci, Frank; Armus, Lee; Cody, Ann Marie; Bond, Howard E.; Contreras, Carlos; Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph; Boyer, Martha; Cantiello, Matteo; Fox, Ori D.

    2017-01-01

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr −1 to >7 mag yr −1 . SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  18. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Bally, John [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Masci, Frank; Armus, Lee [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Bond, Howard E. [Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Contreras, Carlos [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Boyer, Martha [NASA Goddard Space Flight Center, MC 665, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Cantiello, Matteo [Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010 (United States); Fox, Ori D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2017-04-20

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr{sup −1} to >7 mag yr{sup −1}. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  19. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    Science.gov (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  20. THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY

    International Nuclear Information System (INIS)

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Kennicutt, R. C.; Block, M.; Marble, A. R.; Gil de Paz, A.; Lee, J. C.; Begum, A.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Sakai, S.; Skillman, E. D.; Van Zee, L.; Walter, F.

    2009-01-01

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Hα, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Hα and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 μm polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  1. SPITZER IRS SPECTRA OF DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Chen, Christine H.; Mittal, Tushar; Lisse, Carey M. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005 (India); Watson, Dan [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Nesvold, Erika; Kuchner, Marc [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  2. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  3. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H. [Korea Astronomy and Space Science Institute (KASI), 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Watson, Dan M.; Manoj, P.; Forrest, W. J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Furlan, Elise [Infrared Processing and Analysis Center, Caltech, 770 S. Wilson Avenue, Pasadena, CA 91125 (United States); Najita, Joan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Sargent, Benjamin [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, NY 14623 (United States); Hernández, Jesús [Centro de Investigaciones de Astronomía, Apdo. Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Adame, Lucía [Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, C.P. 66451, México (Mexico); Espaillat, Catherine [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Megeath, S. T. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Muzerolle, James, E-mail: quarkosmos@kasi.re.kr [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with those of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.

  4. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  5. MID-INFRARED PROPERTIES OF OH MEGAMASER HOST GALAXIES. I. SPITZER IRS LOW- AND HIGH-RESOLUTION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-01-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 10 2.3 L sun . The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H 2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO 2 , HCN, C 2 H 2 , and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  6. Mid-Infrared Properties of OH Megamaser Host Galaxies. I. Spitzer IRS Low- and High-Resolution Spectroscopy

    Science.gov (United States)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-03-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 102.3 L sun. The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO2, HCN, C2H2, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  7. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    Science.gov (United States)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; hide

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  8. Spectrographic analysis

    International Nuclear Information System (INIS)

    Quinn, C.A.

    1983-01-01

    The article deals with spectrographic analysis and the analytical methods based on it. The theory of spectrographic analysis is discussed as well as the layout of a spectrometer system. The infrared absorption spectrum of a compound is probably its most unique property. The absorption of infrared radiation depends on increasing the energy of vibration and rotation associated with a covalent bond. The infrared region is intrinsically low in energy thus the design of infrared spectrometers is always directed toward maximising energy throughput. The article also considers atomic absorption - flame atomizers, non-flame atomizers and the source of radiation. Under the section an emission spectroscopy non-electrical energy sources, electrical energy sources and electrical flames are discussed. Digital computers form a part of the development on spectrographic instrumentation

  9. Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation

    Science.gov (United States)

    Sakanoi, Takeshi; Kasaba, Yasumasa; Kagitani, Masato; Nakagawa, Hiromu; Kuhn, Jeff; Okano, Shoichi

    2014-08-01

    We report the development of infrared Echelle spectrograph covering 1 - 4 micron and mid-infrared heterodyne spectrometer around 10 micron installed on the 60-cm telescope at the summit of Haleakala, Hawaii (alt.=3000m). It is essential to carry out continuous measurement of planetary atmosphere, such as the Jovian infrared aurora and the volcanoes on Jovian satellite Io, to understand its time and spatial variations. A compact and easy-to-use high resolution infrared spectrometer provide the good opportunity to investigate these objects continuously. We are developing an Echelle spectrograph called ESPRIT: Echelle Spectrograph for Planetary Research In Tohoku university. The main target of ESPRIT is to measure the Jovian H3+ fundamental line at 3.9 micron, and H2 nu=1 at 2.1 micron. The 256x256 pixel CRC463 InSb array is used. An appropriate Echelle grating is selected to optimize at 3.9 micron and 2.1 micron for the Jovian infrared auroral observations. The pixel scale corresponds to the atmospheric seeing (0.3 arcsec/pixel). This spectrograph is characterized by a long slit field-of-view of ~ 50 arcsec with a spectral resolution is over 20,000. In addition, we recently developed a heterodyne spectrometer called MILAHI on the 60 cm telescope. MILAHI is characterized by super high-resolving power (more than 1,500,000) covering from 7 - 13 microns. Its sensitivity is 2400 K at 9.6 micron with a MCT photo diode detector of which bandwidth of 3000 MHz. ESPRIT and MILAHI is planned to be installed on 60 cm telescope is planned in 2014.

  10. Serendipitous discovery of an infrared bow shock near PSR J1549–4848 with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongxiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Morrell, Nidia [Las Campanas Observatory, Observatories of the Carnegie Institution of Washington, La Serena (Chile); Kaspi, Victoria M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada)

    2013-06-01

    We report on the discovery of an infrared cometary nebula around PSR J1549–4848 in our Spitzer survey of a few middle-aged radio pulsars. Following the discovery, multi-wavelength imaging and spectroscopic observations of the nebula were carried out. We detected the nebula in Spitzer Infrared Array Camera 8.0, Multiband Imaging Photometer for Spitzer 24 and 70 μm imaging, and in Spitzer IRS 7.5-14.4 μm spectroscopic observations, and also in the Wide-field Infrared Survey Explorer all-sky survey at 12 and 22 μm. These data were analyzed in detail, and we find that the nebula can be described with a standard bow shock shape, and that its spectrum contains polycyclic aromatic hydrocarbon and H{sub 2} emission features. However, it is not certain which object drives the nebula. We analyze the field stars and conclude that none of them can be the associated object because stars with a strong wind or mass ejection that usually produce bow shocks are much brighter than the field stars. The pulsar is approximately 15'' away from the region in which the associated object is expected to be located. In order to resolve the discrepancy, we suggest that a highly collimated wind could be emitted from the pulsar and produce the bow shock. X-ray imaging to detect the interaction of the wind with the ambient medium- and high-spatial resolution radio imaging to determine the proper motion of the pulsar should be carried out, which will help verify the association of the pulsar with the bow shock nebula.

  11. OBSERVATIONAL 5-20 μm INTERSTELLAR EXTINCTION CURVES TOWARD STAR-FORMING REGIONS DERIVED FROM SPITZER IRS SPECTRA

    International Nuclear Information System (INIS)

    McClure, M.

    2009-01-01

    Using Spitzer Infrared Spectrograph observations of G0-M4 III stars behind dark clouds, I construct 5-20 μm empirical extinction curves for 0.3 ≤ A K V between ∼3 and 50. For A K K > 1, the curve exhibits lower contrast between the silicate and absorption continuum, develops ice absorption, and lies closer to the Weingartner and Draine R V = 5.5 Case B curve, a result which is consistent with that of Flaherty et al. and Chiar et al. Recently, work using Spitzer Infrared Array Camera data by Chapman et al. independently reaches a similar conclusion that the shape of the extinction curve changes as a function of increasing A K . By calculating the optical depths of the 9.7 μm silicate and 6.0, 6.8, and 15.2 μm ice features, I determine that a process involving ice is responsible for the changing shape of the extinction curve and speculate that this process is a coagulation of ice-mantled grains rather than ice-mantled grains alone.

  12. Silicates in Alien Asteroids

    Science.gov (United States)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  13. MOONS: a multi-object optical and near-infrared spectrograph for the VLT

    NARCIS (Netherlands)

    Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Evans, C.; Kaper, L.; Oliva, Ernesto; Vanzi, Leonardo; Abreu, Manuel; Atad-Ettedgui, Eli; Babusiaux, Carine; Bauer, Franz E.; Best, Philip; Bezawada, Naidu; Bryson, Ian R.; Cabral, Alexandre; Caputi, Karina; Centrone, Mauro; Chemla, Fanny; Cimatti, Andrea; Cioni, Maria-Rosa; Clementini, Gisella; Coelho, João.; Daddi, Emanuele; Dunlop, James S.; Feltzing, Sofia; Ferguson, Annette; Flores, Hector; Fontana, Adriano; Fynbo, Johan; Garilli, Bianca; Glauser, Adrian M.; Guinouard, Isabelle; Hammer, Jean-François; Hastings, Peter R.; Hess, Hans-Joachim; Ivison, Rob J.; Jagourel, Pascal; Jarvis, Matt; Kauffman, G.; Lawrence, A.; Lee, D.; Li Causi, G.; Lilly, S.; Lorenzetti, D.; Maiolino, R.; Mannucci, F.; McLure, R.; Minniti, D.; Montgomery, D.; Muschielok, B.; Nandra, K.; Navarro, R.; Norberg, P.; Origlia, L.; Padilla, N.; Peacock, J.; Pedicini, F.; Pentericci, L.; Pragt, J.; Puech, M.; Randich, S.; Renzini, A.; Ryde, N.; Rodrigues, M.; Royer, F.; Saglia, R.; Sánchez, A.; Schnetler, H.; Sobral, D.; Speziali, R.; Todd, S.; Tolstoy, E.; Torres, M.; Venema, L.; Vitali, F.; Wegner, M.; Wells, M.; Wild, V.; Wright, G.

    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol field offered by

  14. The infrared imaging spectrograph (IRIS) for TMT: latest science cases and simulations

    Science.gov (United States)

    Wright, Shelley A.; Walth, Gregory; Do, Tuan; Marshall, Daniel; Larkin, James E.; Moore, Anna M.; Adamkovics, Mate; Andersen, David; Armus, Lee; Barth, Aaron; Cote, Patrick; Cooke, Jeff; Chisholm, Eric M.; Davidge, Timothy; Dunn, Jennifer S.; Dumas, Christophe; Ellerbroek, Brent L.; Ghez, Andrea M.; Hao, Lei; Hayano, Yutaka; Liu, Michael; Lopez-Rodriguez, Enrique; Lu, Jessica R.; Mao, Shude; Marois, Christian; Pandey, Shashi B.; Phillips, Andrew C.; Schoeck, Matthias; Subramaniam, Annapurni; Subramanian, Smitha; Suzuki, Ryuji; Tan, Jonathan C.; Terai, Tsuyoshi; Treu, Tommaso; Simard, Luc; Weiss, Jason L.; Wincentsen, James; Wong, Michael; Zhang, Kai

    2016-07-01

    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.

  15. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    Science.gov (United States)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 250 μJy and 1.5 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  16. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    Science.gov (United States)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  17. SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE

    International Nuclear Information System (INIS)

    Temi, Pasquale; Brighenti, Fabrizio; Mathews, William G.

    2009-01-01

    We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 μm) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 μm luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs.

  18. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. II. ANALYSIS OF MID- TO FAR-INFRARED SPITZER OBSERVATIONS OF THE 2JY SAMPLE

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Morganti, R.; Inskip, K. J.; Holt, J.; Delgado, R. Gonzalez; Groves, B.

    2009-01-01

    We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05

  19. Spitzer sage survey of the large magellanic cloud. II. Evolved stars and infrared color-magnitude diagrams

    NARCIS (Netherlands)

    Blum, R. D.; Mould, J. R.; Olsen, K. A.; Frogel, J. A.; Meixner, M.; Markwick-Kemper, F.; Indebetouw, R.; Whitney, B.; Meade, M.; Babler, B.; Churchwell, E. B.; Gordon, K.; Engelbracht, C.; For, B. -Q.; Misselt, K.; Vijh, U.; Leitherer, C.; Volk, K.; Points, S.; Reach, W.; Hora, J. L.; Bernard, J. -P.; Boulanger, F.; Bracker, S.; Cohen, M.; Fukui, Y.; Gallagher, J.; Gorjian, V.; Harris, J.; Kelly, D.; Kawamura, A.; Latter, W. B.; Madden, S.; Mizuno, A.; Mizuno, N.; Oey, M. S.; Onishi, T.; Paladini, R.; Panagia, N.; Perez-Gonzalez, P.; Shibai, H.; Sato, S.; Smith, L.; Staveley-Smith, L.; Tielens, A.G.G.M; Ueta, T.; Van Dyk, S.; Zaritsky, D.; Werner, M.J.

    Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 mu m epoch 1 data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in

  20. Spitzer Digs Up Galactic Fossil

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2 This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way. Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky. The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight. Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila. Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered. This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the visible-light image (left) shows a dark sky speckled

  1. SPITZER IRS SPECTRA OF LUMINOUS 8 μm SOURCES IN THE LARGE MAGELLANIC CLOUD: TESTING COLOR-BASED CLASSIFICATIONS

    International Nuclear Information System (INIS)

    Buchanan, Catherine L.; Kastner, Joel H.; Hrivnak, Bruce J.; Sahai, Raghvendra

    2009-01-01

    We present archival Spitzer Infrared Spectrograph (IRS) spectra of 19 luminous 8 μm selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on Two Micron All Sky Survey (2MASS)/MSX (J, H, K, and 8 μm) colors in order to test the 'JHK8' (Kastner et al.) classification scheme. The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich envelopes, such objects are still far outnumbered by carbon stars (C-rich AGB stars). We show that Spitzer IRAC/MIPS color-color diagrams provide improved discrimination between red supergiants and oxygen-rich and carbon-rich AGB stars relative to those based on 2MASS/MSX colors. These diagrams will enable the most luminous IR sources in Local Group galaxies to be classified with high confidence based on their Spitzer colors. Such characterizations of stellar populations will continue to be possible during Spitzer's warm mission through the use of IRAC [3.6]-[4.5] and 2MASS colors.

  2. THE TAURUS SPITZER SURVEY: NEW CANDIDATE TAURUS MEMBERS SELECTED USING SENSITIVE MID-INFRARED PHOTOMETRY

    International Nuclear Information System (INIS)

    Rebull, L. M.; Padgett, D. L.; McCabe, C.-E.; Noriega-Crespo, A.; Carey, S. J.; Brooke, T.; Hillenbrand, L. A.; Stapelfeldt, K. R.; Angione, J. R.; Huard, T.; Terebey, S.; Audard, M.; Baldovin-Saavedra, C.; Monin, J.-L.; Menard, F.; Bouvier, J.; Fukagawa, M.; Guedel, M.; Knapp, G. R.; Allen, L. E.

    2010-01-01

    We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in seven mid- and far-infrared bands with the Spitzer Space Telescope. There are 215 previously identified members of the Taurus star-forming region in our ∼44 deg 2 map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ∼20% of the bona fide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided by extensive optical, X-ray, and ultraviolet imaging, and found 148 new candidate members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, three probable new members, and 10 possible new members, an increase of 15%-20% in Taurus members. Of the objects for which we have spectroscopy, seven are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candidate objects await additional analysis and/or data to be confirmed or rejected as Taurus members. Most of the new members are Class II M stars and are located along the same cloud filaments as the previously identified Taurus members. Among non-members with Spitzer colors similar to young, dusty stars are evolved Be stars, planetary nebulae, carbon stars, galaxies, and active galactic nuclei.

  3. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-01-01

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of ∼1 μJy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S 3.6μm ∼ 0.2 μJy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  4. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  5. Brown dwarf distances and atmospheres: Spitzer Parallaxes and the Keck/NIRSPEC upgrade

    Science.gov (United States)

    Martin, Emily C.

    2018-01-01

    Advances in infrared technology have been essential towards improving our understanding of the solar neighborhood, revealing a large population of brown dwarfs, which span the mass regime between planets and stars. My thesis combines near-infrared (NIR) spectroscopic and astrometric analysis of nearby low-mass stars and brown dwarfs with instrumentation work to upgrade the NIRSPEC instrument for the Keck II Telescope. I will present results from a program using Spitzer/IRAC data to measure precise locations and distances to 22 of the coldest and closest brown dwarfs. These distances allow us to constrain absolute physical properties, such as mass, radius, and age, of free-floating planetary-mass objects through comparison to atmospheric and evolutionary models. NIR spectroscopy combined with the Spitzer photometry reveals a detailed look into the atmospheres of brown dwarfs and gaseous extrasolar planets. Additionally, I will discuss the improvements we are making to the NIRSPEC instrument at Keck. NIRSPEC is a NIR echelle spectrograph, capable of R~2000 and R~25,000 observations in the 1-5 μm range. As part of the upgrade, I performed detector characterization, optical design of a new slit-viewing camera, mechanical testing, and electronics design. NIRSPEC’s increased efficiency will allow us to obtain moderate- and high-resolution NIR spectra of objects up to a magnitude fainter than the current NIRSPEC design. Finally, I will demonstrate the utility of a NIR laser frequency comb as a high-resolution calibrator. This new technology will revolutionize precision radial velocity measurements in the coming decade.

  6. Spitzer - Hot & Colorful Student Activities

    Science.gov (United States)

    McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.

    2009-01-01

    In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.

  7. The infrared imaging spectrograph (IRIS) for TMT: volume phase holographic grating performance testing and discussion

    Science.gov (United States)

    Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc

    2014-07-01

    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.

  8. SPRITE: the Spitzer proposal review website

    Science.gov (United States)

    Crane, Megan K.; Storrie-Lombardi, Lisa J.; Silbermann, Nancy A.; Rebull, Luisa M.

    2008-07-01

    The Spitzer Science Center (SSC), located on the campus of the California Institute of Technology, supports the science operations of NASA's infrared Spitzer Space Telescope. The SSC issues an annual Call for Proposals inviting investigators worldwide to submit Spitzer Space Telescope proposals. The Spitzer Proposal Review Website (SPRITE) is a MySQL/PHP web database application designed to support the SSC proposal review process. Review panel members use the software to view, grade, and write comments about the proposals, and SSC support team members monitor the grading and ranking process and ultimately generate a ranked list of all the proposals. The software is also used to generate, edit, and email award letters to the proposers. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  9. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Armus, L.; Stierwalt, S.; Díaz-Santos, T.; Surace, J.; Howell, J.; Marshall, J. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Groves, B. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kewley, L. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Petric, A. [Department of Astronomy, California Institute of Technology, MS 320-47, Pasadena, CA 91125 (United States); Rich, J. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Haan, S. [CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Mazzarella, J.; Lord, S. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. [NASA Herschel Science Center, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Spoon, H. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Matsuhara, H., E-mail: inami@noao.edu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (Japan); and others

    2013-11-10

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]{sub 18.7{sub μm}}, [O IV], [Fe II], [S III]{sub 33.5{sub μm}}, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z{sub ☉}, and ionization parameters of 2-8 × 10{sup 7} cm s{sup –1}. Based on the [S III]{sub 33.5{sub μm}}/[S III]{sub 18.7{sub μm}} ratios, the electron density in LIRG nuclei is typically one to a few hundred cm{sup –3}, with a median electron density of ∼300 cm{sup –3}, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s{sup –1}) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s{sup –1}. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential

  10. Mid-Infrared Spectral Properties of IR QSOs

    International Nuclear Information System (INIS)

    Xia, X. Y.; Cao, C.; Mao, S.; Deng, Z. G.

    2008-01-01

    We analyse mid-infrared (MIR) spectroscopic properties for 19 ultra-luminous infrared quasars (IR QSOs) in the local universe based on the spectra from the Infrared Spectrograph on board the Spitzer Space Telescope. The MIR properties of IR QSOs are compared with those of optically-selected Palomar-Green QSOs (PG QSOs) and ultra-luminous infrared galaxies (ULIRGs). The average MIR spectral features from ∼5 to 30 μm, including the spectral slopes, 6.2 μm PAH emission strengths and [NeII] 12.81 μm luminosities of IR QSOs, differ from those of PG QSOs. In contrast, IR QSOs and ULIRGs have comparable PAH and [NeII] luminosities. These results are consistent with IR QSOs being at a transitional stage from ULIRGs to classical QSOs. We also find the correlation between the EW (PAH 6.2 μm) and outflow velocities suggests that star formation activities are suppressed by feedback from AGNs and/or supernovae.

  11. SPITZER SAGE INFRARED PHOTOMETRY OF MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Bonanos, A. Z.; Massa, D. L.; Sewilo, M.

    2009-01-01

    We present a catalog of 1750 massive stars in the Large Magellanic Cloud (LMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 to 24 μm in the UBVIJHK s +IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant, and luminous blue variable (LBV) stars are among the brightest infrared point sources in the LMC, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ∼900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/L sun ≥ 4) and the rare, dusty progenitors of the new class of optical transients (e.g., SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.

  12. IPHAS A-TYPE STARS WITH MID-INFRARED EXCESSES IN SPITZER SURVEYS

    International Nuclear Information System (INIS)

    Hales, Antonio S.; Barlow, Michael J.; Drew, Janet E.; Unruh, Yvonne C.; Greimel, Robert; Irwin, Michael J.; Gonzalez-Solares, Eduardo

    2009-01-01

    We have identified 17 A-type stars in the Galactic Plane that have mid-infrared (mid-IR) excesses at 8 μm. From observed colors in the (r' - Hα) - (r' - i') plane, we first identified 23,050 early A-type main-sequence (MS) star candidates in the Isaac Newton Photometric H-Alpha Survey (IPHAS) point source database that are located in Spitzer Galactic Legacy Mid-Plane Survey Extraordinaire Galactic plane fields. Imposing the requirement that they be detected in all seven Two Micron All Sky Survey and Infrared Astronomical Satellite bands led to a sample of 2692 candidate A-type stars with fully sampled 0.6 to 8 μm spectral energy distributions (SEDs). Optical classification spectra of 18 of the IPHAS candidate A-type MS stars showed that all but one could be well fitted using MS A-type templates, with the other being an A-type supergiant. Out of the 2692 A-type candidates 17 (0.6%) were found to have 8 μm excesses above the expected photospheric values. Taking into account non-A-Type contamination estimates, the 8 μm excess fraction is adjusted to ∼0.7%. The distances to these sources range from 0.7 to 2.5 kpc. Only 10 out of the 17 excess stars had been covered by Spitzer MIPSGAL survey fields, of which five had detectable excesses at 24 μm. For sources with excesses detected in at least two mid-IR wavelength bands, blackbody fits to the excess SEDs yielded temperatures ranging from 270 to 650 K, and bolometric luminosity ratios L IR /L * from 2.2 x 10 -3 - 1.9 x 10 -2 , with a mean value of 7.9 x 10 -3 (these bolometric luminosities are lower limits as cold dust is not detectable by this survey). Both the presence of mid-IR excesses and the derived bolometric luminosity ratios are consistent with many of these systems being in the planet-building transition phase between the early protoplanetary disk phase and the later debris disk phase.

  13. The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification - III

    Science.gov (United States)

    Jones, O. C.; Woods, P. M.; Kemper, F.; Kraemer, K. E.; Sloan, G. C.; Srinivasan, S.; Oliveira, J. M.; van Loon, J. Th.; Boyer, M. L.; Sargent, B. A.; McDonald, I.; Meixner, M.; Zijlstra, A. A.; Ruffle, P. M. E.; Lagadec, E.; Pauly, T.; Sewiło, M.; Clayton, G. C.; Volk, K.

    2017-09-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope observed nearly 800 point sources in the Large Magellanic Cloud (LMC), taking over 1000 spectra. 197 of these targets were observed as part of the SAGE-Spec Spitzer Legacy program; the remainder are from a variety of different calibration, guaranteed time and open time projects. We classify these point sources into types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information, using a decision-tree classification method. We then refine the classification using supplementary information from the astrophysical literature. We find that our IRS sample is comprised substantially of YSO and H II regions, post-main-sequence low-mass stars: (post-)asymptotic giant branch stars and planetary nebulae and massive stars including several rare evolutionary types. Two supernova remnants, a nova and several background galaxies were also observed. We use these classifications to improve our understanding of the stellar populations in the LMC, study the composition and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. We discover that some widely used catalogues of objects contain considerable contamination and others are missing sources in our sample.

  14. THE SPITZER INFRARED NEARBY GALAXIES SURVEY: A HIGH-RESOLUTION SPECTROSCOPY ANTHOLOGY

    International Nuclear Information System (INIS)

    Dale, D. A.; Schlawin, E. A.; Cohen, S. A.; Johnson, L. C.; Staudaher, S.; Smith, J. D. T.; Armus, L.; Helou, G.; Jarrett, T. H.; Murphy, E. J.; Sheth, K.; Buckalew, B. A.; Moustakas, J.; Roussel, H.; Bot, C.; Calzetti, D.; Engelbracht, C. W.; Gordon, K. D.; Hollenbach, D. J.; Kennicutt, R. C.

    2009-01-01

    High-resolution mid-infrared spectra are presented for 155 nuclear and extranuclear regions from the Spitzer Infrared Nearby Galaxies Survey (SINGS). The fluxes for nine atomic forbidden and three molecular hydrogen mid-infrared emission lines are also provided, along with upper limits in key lines for infrared-faint targets. The SINGS sample shows a wide range in the ratio of [S III] 18.71 μm/[S III] 33.48 μm, but the average ratio of the ensemble indicates a typical interstellar electron density of 300-400 cm -3 on ∼23'' x 15'' scales and 500-600 cm -3 using ∼11'' x 9'' apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an active galactic nuclei (AGN) environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [Ne III] 15.56 μm/[Ne II] 12.81 μm, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [Ne III] 15.56 μm/[Ne II] 12.81 μm ratios. Finally, [Fe II] 25.99 μm/[Ne II] 12.81 μm versus [Si II] 34.82 μm/[S III] 33.48 μm also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [Ne III] 15.56 μm/[Ne II] 12.81 μm, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  15. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    Science.gov (United States)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  16. The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5

    Science.gov (United States)

    Elsner, F.; Feulner, G.; Hopp, U.

    2008-01-01

    Aims:We estimate stellar masses of galaxies in the high redshift universe with the intention of determining the influence of newly available Spitzer/IRAC infrared data on the analysis. Based on the results, we probe the mass assembly history of the universe. Methods: We use the GOODS-MUSIC catalog, which provides multiband photometry from the U-filter to the 8 μm Spitzer band for almost 15 000 galaxies with either spectroscopic (for ≈7% of the sample) or photometric redshifts, and apply a standard model fitting technique to estimate stellar masses. We than repeat our calculations with fixed photometric redshifts excluding Spitzer photometry and directly compare the outcomes to look for systematic deviations. Finally we use our results to compute stellar mass functions and mass densities up to redshift z = 5. Results: We find that stellar masses tend to be overestimated on average if further constraining Spitzer data are not included into the analysis. Whilst this trend is small up to intermediate redshifts z ⪉ 2.5 and falls within the typical error in mass, the deviation increases strongly for higher redshifts and reaches a maximum of a factor of three at redshift z ≈ 3.5. Thus, up to intermediate redshifts, results for stellar mass density are in good agreement with values taken from literature calculated without additional Spitzer photometry. At higher redshifts, however, we find a systematic trend towards lower mass densities if Spitzer/IRAC data are included.

  17. A Cometary Bow Shock and Mid-Infrared Emission Variations Revealed in Spitzer Observations of HD 34078 and IC 405

    OpenAIRE

    France, Kevin; McCandliss, Stephan R.; Lupu, Roxana E.

    2006-01-01

    We present new infrared observations of the emission/reflection nebula IC 405 obtained with the Spitzer Space Telescope. Infrared images in the four IRAC bands (3.6, 4.5, 5.8, and 8.0 um) and two MIPS bands (24 and 70 um) are complemented by IRS spectroscopy (5-30 um) of two nebular filaments. The IRAC (8.0 um) and MIPS imaging shows evidence of a bow shock associated with the runaway O9.5V star, HD 34078, created by the interaction between the star and nebular material. The ratio of emission...

  18. THE SPITZER DEEP, WIDE-FIELD SURVEY

    International Nuclear Information System (INIS)

    Ashby, M. L. N.; Brodwin, M.; Stern, D.; Griffith, R.; Eisenhardt, P.; Gorjian, V.; Kozlowski, S.; Kochanek, C. S.; Bock, J. J.; Borys, C.; Brand, K.; Grogin, N. A.; Brown, M. J. I.; Cool, R.; Cooray, A.; Croft, S.; Dey, A.; Eisenstein, D.; Gonzalez, A. H.; Ivison, R. J.

    2009-01-01

    The Spitzer Deep, Wide-Field Survey (SDWFS) is a four-epoch infrared survey of 10 deg. 2 in the Booetes field of the NOAO Deep Wide-Field Survey using the IRAC instrument on the Spitzer Space Telescope. SDWFS, a Spitzer Cycle 4 Legacy project, occupies a unique position in the area-depth survey space defined by other Spitzer surveys. The four epochs that make up SDWFS permit-for the first time-the selection of infrared-variable and high proper motion objects over a wide field on timescales of years. Because of its large survey volume, SDWFS is sensitive to galaxies out to z ∼ 3 with relatively little impact from cosmic variance for all but the richest systems. The SDWFS data sets will thus be especially useful for characterizing galaxy evolution beyond z ∼ 1.5. This paper explains the SDWFS observing strategy and data processing, presents the SDWFS mosaics and source catalogs, and discusses some early scientific findings. The publicly released, full-depth catalogs contain 6.78, 5.23, 1.20, and 0.96 x 10 5 distinct sources detected to the average 5σ, 4''-diameter, aperture-corrected limits of 19.77, 18.83, 16.50, and 15.82 Vega mag at 3.6, 4.5, 5.8, and 8.0 μm, respectively. The SDWFS number counts and color-color distribution are consistent with other, earlier Spitzer surveys. At the 6 minute integration time of the SDWFS IRAC imaging, >50% of isolated Faint Images of the Radio Sky at Twenty cm radio sources and >80% of on-axis XBooetes sources are detected out to 8.0 μm. Finally, we present the four highest proper motion IRAC-selected sources identified from the multi-epoch imaging, two of which are likely field brown dwarfs of mid-T spectral class.

  19. Hunting Elusive SPRITEs with Spitzer

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    In recent years, astronomers have developed many wide-field imaging surveys in which the same targets are observed again and again. This new form of observing has allowed us to discover optical and radio transients explosive or irregular events with durations ranging from seconds to years. The dynamic infrared sky, however, has remained largely unexplored until now.Infrared ExplorationExample of a transient: SPIRITS 14ajc was visible when imaged by SPIRITS in 2014 (left) but it wasnt there during previous imaging between 2004 and 2008 (right). The bottom frame shows the difference between the two images. [Adapted from Kasliwal et al. 2017]Why hunt for infrared transients? Optical wavelengths dont allow us to observe events that are obscured, such that their own structure or their surroundings hide them from our view. Both supernovae and luminous red novae (associated with stellar mergers) are discoverable as infrared transients, and there may well be new types of transients in infrared that we havent seen before!To explore this uncharted territory, a team of scientists developed SPIRITS, the Spitzer Infrared Intensive Transients Survey. Begun in 2014, SPIRITS is a five-year long survey that uses the Spitzer Space Telescope to conduct a systematic search for mid-infrared transients in nearby galaxies.In a recent publication led by Mansi Kasliwal (Caltech and the Carnegie Institution for Science), the SPIRITS team has now detailed how their survey works and what theyve discovered in its first year.The light curves of SPRITEs (red stars) lie in the mid-infared luminosity gap between novae (orange) and supernovae (blue). [Kasliwal et al. 2017]Mystery TransientsKasliwal and collaborators used Spitzer to monitor 190 nearby galaxies. In SPIRITS first year, they found over 1958 variable stars and 43 infrared transient sources. Of these 43 transients, 21 were known supernovae, 4 were in the luminosity range of novae, and 4 had optical counterparts. The remaining 14 events

  20. CONTINUOUS MID-INFRARED STAR FORMATION RATE INDICATORS: DIAGNOSTICS FOR 0 < z < 3 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Battisti, A. J.; Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Johnson, B. D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Elbaz, D., E-mail: abattist@astro.umass.edu [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu, CNRS, Université Paris Diderot, Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France)

    2015-02-20

    We present continuous, monochromatic star formation rate (SFR) indicators over the mid-infrared wavelength range of 6–70 μm. We use a sample of 58 star-forming galaxies (SFGs) in the Spitzer–SDSS–GALEX Spectroscopic Survey at z < 0.2, for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through to the infrared. The data from the Spitzer Infrared Spectrograph (IRS) of these galaxies, which spans 5–40 μm, is anchored to their photometric counterparts. The spectral region between 40–70 μm is interpolated using dust model fits to the IRS spectrum and Spitzer 70 and 160 μm photometry. Since there are no sharp spectral features in this region, we expect these interpolations to be robust. This spectral range is calibrated as a SFR diagnostic using several reference SFR indicators to mitigate potential bias. Our band-specific continuous SFR indicators are found to be consistent with monochromatic calibrations in the local universe, as derived from Spitzer, WISE, and Herschel photometry. Our local composite template and continuous SFR diagnostics are made available for public use through the NASA/IPAC Infrared Science Archive (IRSA) and have typical dispersions of 30% or less. We discuss the validity and range of applicability for our SFR indicators in the context of unveiling the formation and evolution of galaxies. Additionally, in the era of the James Webb Space Telescope this will become a flexible tool, applicable to any SFG up to z ∼ 3.

  1. Stellar mass estimation based on IRAC photometry for Spitzer SWIRE-field galaxies

    International Nuclear Information System (INIS)

    Zhu Yinan; Wu Hong; Li Haining; Cao Chen

    2010-01-01

    We analyze the feasibility of estimating the stellar mass of galaxies by mid-infrared luminosities based on a large sample of galaxies cross-identified from Spitzer SWIRE fields and the SDSS spectrographic survey. We derived the formulae to calculate the stellar mass by using IRAC 3.6 μm and 4.5 μm luminosities. The mass-to-luminosity ratios of IRAC 3.6 μm and 4.5 μm luminosities are more sensitive to the star formation history of galaxies than to other factors, such as the intrinsic extinction, metallicity and star formation rate. To remove the effect of star formation history, we used g - r color to recalibrate the formulae and obtain a better result. Researchers must be more careful when estimating the stellar mass of low metallicity galaxies using our formulae. Due to the emission from dust heated by the hottest young stars, luminous infrared galaxies present higher IRAC 4.5 μm luminosities compared to IRAC 3.6 μm luminosities. For most of type-II AGNs, the nuclear activity cannot enhance 3.6 μm and 4.5 μm luminosities compared with normal galaxies. Star formation in our AGN-hosting galaxies is also very weak, almost all of which are early-type galaxies.

  2. THE SPITZER-WISE SURVEY OF THE ECLIPTIC POLES

    International Nuclear Information System (INIS)

    Jarrett, T. H.; Masci, F.; Cutri, R. M.; Marsh, K.; Padgett, D.; Tsai, C. W.; Cohen, M.; Wright, E.; Petty, S.; Stern, D.; Eisenhardt, P.; Mainzer, A.; Ressler, M.; Benford, D.; Blain, A.; Carey, S.; Surace, J.; Lonsdale, C.; Skrutskie, M.; Stanford, S.

    2011-01-01

    We have carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). The primary objective was to cross-calibrate WISE with the Spitzer and Midcourse Space Experiment (MSX) photometric systems by developing a set of calibration stars that are common to these infrared missions. The ecliptic poles were continuous viewing zones for WISE due to its polar-crossing orbit, making these areas ideal for both absolute and internal calibrations. The Spitzer IRAC and MIPS imaging survey covers a complete area of 0.40 deg 2 for the EP-N and 1.28 deg 2 for the EP-S. WISE observed the whole sky in four mid-infrared bands, 3.4, 4.6, 12, and 22 μm, during its eight-month cryogenic mission, including several hundred ecliptic polar passages; here we report on the highest coverage depths achieved by WISE, an area of ∼1.5 deg 2 for both poles. Located close to the center of the EP-N, the Sy-2 galaxy NGC 6552 conveniently functions as a standard calibrator to measure the red response of the 22 μm channel of WISE. Observations from Spitzer-IRAC/MIPS/IRS-LL and WISE show that the galaxy has a strong red color in the mid-infrared due to star-formation and the presence of an active galactic nucleus (AGN), while over a baseline >1 year the mid-IR photometry of NGC 6552 is shown to vary at a level less than 2%. Combining NGC 6552 with the standard calibrator stars, the achieved photometric accuracy of the WISE calibration, relative to the Spitzer and MSX systems, is 2.4%, 2.8%, 4.5%, and 5.7% for W1 (3.4 μm), W2 (4.6 μm), W3 (12 μm), and W4 (22 μm), respectively. The WISE photometry is internally stable to better than 0.1% over the cryogenic lifetime of the mission. The secondary objective of the Spitzer-WISE Survey was to explore the poles at greater flux-level depths, exploiting the higher angular resolution Spitzer observations and the exceptionally deep (in total

  3. Efficient Mosaicking of Spitzer Space Telescope Images

    Science.gov (United States)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  4. A SPITZER c2d LEGACY SURVEY TO IDENTIFY AND CHARACTERIZE DISKS WITH INNER DUST HOLES

    International Nuclear Information System (INIS)

    Merin, Bruno; Brown, Joanna M.; Herczeg, Gregory J.; Van Dishoeck, Ewine F.; Oliveira, Isa; Lahuis, Fred; Bottinelli, Sandrine; Augereau, Jean-Charles; Olofsson, Johan; Evans, Neal J.; Harvey, Paul M.; Cieza, Lucas; Spezzi, Loredana; Prusti, Timo; Alcala, Juan M.; Blake, Geoffrey A.; Bayo, Amelia; Geers, Vincent G.; Walter, Frederick M.; Chiu, Kuenley

    2010-01-01

    Understanding how disks dissipate is essential to studies of planet formation. However, identifying exactly how dust and gas dissipate is complicated due to the difficulty of finding objects that are clearly in the transition phase of losing their surrounding material. We use Spitzer Infrared Spectrograph (IRS) spectra to examine 35 photometrically selected candidate cold disks (disks with large inner dust holes). The infrared spectra are supplemented with optical spectra to determine stellar and accretion properties and 1.3 mm photometry to measure disk masses. Based on detailed spectral energy distribution modeling, we identify 15 new cold disks. The remaining 20 objects have IRS spectra that are consistent with disks without holes, disks that are observed close to edge-on, or stars with background emission. Based on these results, we determine reliable criteria to identify disks with inner holes from Spitzer photometry, and examine criteria already in the literature. Applying these criteria to the c2d surveyed star-forming regions gives a frequency of such objects of at least 4% and most likely of order 12% of the young stellar object population identified by Spitzer. We also examine the properties of these new cold disks in combination with cold disks from the literature. Hole sizes in this sample are generally smaller than in previously discovered disks and reflect a distribution in better agreement with exoplanet orbit radii. We find correlations between hole size and both disk and stellar masses. Silicate features, including crystalline features, are present in the overwhelming majority of the sample, although the 10 μm feature strength above the continuum declines for holes with radii larger than ∼7 AU. In contrast, polycyclic aromatic hydrocarbons are only detected in 2 out of 15 sources. Only a quarter of the cold disk sample shows no signs of accretion, making it unlikely that photoevaporation is the dominant hole-forming process in most cases.

  5. NEW DEBRIS DISKS AROUND YOUNG, LOW-MASS STARS DISCOVERED WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Plavchan, Peter; Werner, M. W.; Stapelfeldt, K. R.; Chen, C. H.; Su, K. Y. L.; Stauffer, J. R.; Song, I.

    2009-01-01

    We present 24 μm and 70 μm Multiband Imaging Photometer for Spitzer (MIPS) observations of 70 A through M-type dwarfs with estimated ages from 8 Myr to 1.1 Gyr, as part of a Spitzer guaranteed time program, including a re-analysis of some previously published source photometry. Our sample is selected from stars with common youth indicators such as lithium abundance, X-ray activity, chromospheric activity, and rapid rotation. We compare our MIPS observations to empirically derived K s -[24] colors as a function of the stellar effective temperature to identify 24 μm and 70 μm excesses. We place constraints or upper limits on dust temperatures and fractional infrared luminosities with a simple blackbody dust model. We confirm the previously published 70 μm excesses for HD 92945, HD 112429, and AU Mic, and provide updated flux density measurements for these sources. We present the discovery of 70 μm excesses for five stars: HD 7590, HD 10008, HD 59967, HD 73350, and HD 135599. HD 135599 is also a known Spitzer IRS (InfraRed Spectrograph) excess source, and we confirm the excess at 24 μm. We also present the detection of 24 μm excesses for 10 stars: HD 10008, GJ 3400A, HD 73350, HD 112429, HD 123998, HD 175742, AT Mic, BO Mic, HD 358623 and Gl 907.1. We find that large 70 μm excesses are less common around stars with effective temperatures of less than 5000 K (3.7 +7.6 -1.1 %) than around stars with effective temperatures between 5000 K and 6000 K (21.4 +9.5 -5.7 %), despite the cooler stars having a younger median age in our sample (12 Myr vs. 340 Myr). We find that the previously reported excess for TWA 13A at 70 μm is due to a nearby background galaxy, and the previously reported excess for HD 177724 is due to saturation of the near-infrared photometry used to predict the mid-infrared stellar flux contribution. In the Appendix, we present an updated analysis of dust grain removal timescales due to grain-grain collisions and radiation pressure, Poynting

  6. NEAR-INFRARED SPECTRA OF GALACTIC STELLAR CLUSTERS DETECTED ON SPITZER/GLIMPSE IMAGES

    International Nuclear Information System (INIS)

    Messineo, Maria; Davies, Ben; Figer, Donald F.; Ivanov, Valentin D.; Schuller, Frederic; Menten, Karl M.; Habing, Harm J.; Petr-Gotzens, Monika G.

    2009-01-01

    We present near-infrared spectroscopic observations of massive stars in three stellar clusters located in the direction of the inner Galaxy. One of them, the Quartet, is a new discovery while the other two were previously reported as candidate clusters identified on mid-infrared Spitzer images (GLIMPSE20 and GLIMPSE13). Using medium-resolution (R = 900-1320) H and K spectroscopy, we firmly establish the nature of the brightest stars in these clusters, yielding new identifications of an early WC and two Ofpe/WN9 stars in the Quartet and an early WC star in GLIMPSE20. We combine this information with the available photometric measurements from Two Micron All Sky Survey, to estimate cluster masses, ages, and distances. The presence of several massive stars places the Quartet and GLIMPSE20 among the small sample of known Galactic stellar clusters with masses of a few 10 3 M sun , and ages from 3 to 8 Myr. We estimate a distance of about 3.5 kpc for GLIMPSE20 and 6.0 kpc for Quartet. The large number of giant stars identified in GLIMPSE13 indicates that it is another massive (∼6500 M sun ) cluster, but older, with an age between 30 and 100 Myr, at a distance of about 3 kpc.

  7. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    Science.gov (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  8. Young Stars in the Camelopardalis Dust and Molecular Clouds. VI. YSOs Verified by Spitzer and Akari Infrared Photometry

    Directory of Open Access Journals (Sweden)

    Straižys V.

    2010-06-01

    Full Text Available Using photometric data of infrared surveys, young stellar object (YSO status is verified for 141 objects selected in our previous papers in the Cassiopeia and Camelopardalis segment of the Milky Way bounded by Galactic coordinates (l, b = (132-158°, ±12°. The area includes the known star- forming regions in the emission nebulae W3, W4 and W5 and the massive YSO AFGL490. Spectral energy distribution (SED curves between 700 nm and 160 μm, constructed from the GSC 2, 2MASS, IRAS, MSX, Spitzer and AKARI data, are used to estimate the evolutionary stages of these stars. We confirm the YSO status for most of the objects. If all of the investigated objects were YSOs, 45% of them should belong to Class I, 41% to class II and 14% to Class III. However, SEDs of some of these objects can be affected by nearby extended infrared sources, like compact H II regions, infrared clusters or dusty galaxies.

  9. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Travis C.; Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Machuca, C.; Crenshaw, D. M.; Baron, F.; Revalski, M.; Pope, C. L. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Diniz, M. R.; Riffel, R. A. [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Storchi-Bergmann, T., E-mail: travis.c.fischer@nasa.gov [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  10. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    Science.gov (United States)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  11. SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Novati, S. Calchi; Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W.; Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Bryden, G.; Henderson, C. B.; Shvartzvald, Y. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carey, S. [Spitzer, Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Udalski, A.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Collaboration: Spitzer team; OGLE group; and others

    2015-12-01

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.

  12. SPITZER SAGE-SMC INFRARED PHOTOMETRY OF MASSIVE STARS IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Bonanos, A. Z.; Lennon, D. J.; Massa, D. L.

    2010-01-01

    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE-SMC survey database, for which we present uniform photometry from 0.3to24 μm in the UBVIJHK s +IRAC+MIPS24 bands. We compare the color-magnitude diagrams and color-color diagrams to those of stars in the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 μm in the SMC are a few very luminous hypergiants, four B-type stars with peculiar, flat spectral energy distributions, and all three known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in our SMC catalog, respectively, when compared to the LMC catalog, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A and F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.

  13. SPITZER SPECTROSCOPY OF THE CIRCUMPRIMARY DISK IN THE BINARY BROWN DWARF 2MASS J04414489+2301513

    International Nuclear Information System (INIS)

    Adame, Lucia; Calvet, Nuria; McClure, M. K.; Hartmann, Lee; Luhman, K. L.; D'Alessio, Paola; Furlan, Elise; Forrest, William J.; Watson, Dan M.

    2011-01-01

    Using the Spitzer Infrared Spectrograph, we have performed mid-infrared spectroscopy on the young binary brown dwarf 2MASS J04414489+2301513 (15 AU) in the Taurus star-forming region. The spectrum exhibits excess continuum emission that likely arises from a circumstellar disk around the primary. Silicate emission is not detected in these data, indicating the presence of significant grain growth. This is one of the few brown dwarf disks at such a young age (∼1 Myr) that has been found to lack silicate emission. To quantitatively constrain the properties of the disk, we have compared the spectral energy distribution of 2MASS J04414489+2301513 to the predictions of our vertical structure codes for irradiated accretion disks. Our models suggest that the remaining atmospheric grains of moderately depleted layers may have grown to a size of ∼>5 μm. In addition, our model fits indicate an outer radius of 0.2-0.3 AU for the disk. The small size of this circumprimary disk could be due to truncation by the secondary. The absence of an outer disk containing a reservoir of small, primordial grains, combined with a weak turbulent mechanism, may be responsible for the advanced grain growth in this disk.

  14. FAR-INFRARED PROPERTIES OF SPITZER-SELECTED LUMINOUS STARBURSTS

    International Nuclear Information System (INIS)

    Kovacs, A.; Omont, A.; Fiolet, N.; Beelen, A.; Dole, H.; Lagache, G.; Lonsdale, C.; Polletta, M.; Greve, T. R.; Borys, C.; Dowell, C. D.; Bell, T. A.; Cox, P.; De Breuck, C.; Farrah, D.; Menten, K. M.; Owen, F.

    2010-01-01

    We present SHARC-2 350 μm data on 20 luminous z ∼ 2 starbursts with S 1.2 m m > 2 mJy from the Spitzer-selected samples of Lonsdale et al. and Fiolet et al. All the sources were detected, with S 350 μ m > 25 mJy for 18 of them. With the data, we determine precise dust temperatures and luminosities for these galaxies using both single-temperature fits and models with power-law mass-temperature distributions. We derive appropriate formulae to use when optical depths are non-negligible. Our models provide an excellent fit to the 6 μm-2 mm measurements of local starbursts. We find characteristic single-component temperatures T 1 ≅ 35.5 ± 2.2 K and integrated infrared (IR) luminosities around 10 12.9±0.1 L sun for the SWIRE-selected sources. Molecular gas masses are estimated at ≅4 x 10 10 M sun , assuming κ 850 μ m = 0.15 m 2 kg -1 and a submillimeter-selected galaxy (SMG)-like gas-to-dust mass ratio. The best-fit models imply ∼>2 kpc emission scales. We also note a tight correlation between rest-frame 1.4 GHz radio and IR luminosities confirming star formation as the predominant power source. The far-IR properties of our sample are indistinguishable from the purely submillimeter-selected populations from current surveys. We therefore conclude that our original selection criteria, based on mid-IR colors and 24 μm flux densities, provides an effective means for the study of SMGs at z ∼ 1.5-2.5.

  15. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    Science.gov (United States)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  16. Asteroid (16) Psyche: Evidence for a silicate regolith from spitzer space telescope spectroscopy

    Science.gov (United States)

    Landsman, Zoe A.; Emery, Joshua P.; Campins, Humberto; Hanuš, Josef; Lim, Lucy F.; Cruikshank, Dale P.

    2018-04-01

    Asteroid (16) Psyche is a unique, metal-rich object belonging to the "M" taxonomic class. It may be a remnant protoplanet that has been stripped of most silicates by a hit-and-run collision. Because Psyche offers insight into the planetary formation process, it is the target of NASA's Psyche mission, set to launch in 2023. In order to constrain Psyche's surface properties, we have carried out a mid-infrared (5-14 μm) spectroscopic study using data collected with the Spitzer Space Telescope's Infrared Spectrograph. Our study includes two observations covering different rotational phases. Using thermophysical modeling, we find that Psyche's surface is smooth and likely has a thermal inertia Γ = 5-25 J/m2/K/s1/2 and bolometric emissivity ɛ = 0.9, although a scenario with ɛ = 0.7 and thermal inertia up to 95 J/m2/K/s1/2 is possible if Psyche is somewhat larger than previously determined. The smooth surface is consistent with the presence of a metallic bedrock, which would be more ductile than silicate bedrock, and thus may not readily form boulders upon impact events. From comparisons with laboratory spectra of silicate and meteorite powders, Psyche's 7-14 μm emissivity spectrum is consistent with the presence of fine-grained (Psyche's surface. We conclude that Psyche is likely covered in a fine silicate regolith, which may also contain iron grains, overlying an iron-rich bedrock.

  17. Infrared Astronomy and Education: Linking Infrared Whole Sky Mapping with Teacher and Student Research

    Science.gov (United States)

    Borders, Kareen; Mendez, Bryan; Thaller, Michelle; Gorjian, Varoujan; Borders, Kyla; Pitman, Peter; Pereira, Vincent; Sepulveda, Babs; Stark, Ron; Knisely, Cindy; Dandrea, Amy; Winglee, Robert; Plecki, Marge; Goebel, Jeri; Condit, Matt; Kelly, Susan

    The Spitzer Space Telescope and the recently launched WISE (Wide Field Infrared Survey Explorer) observe the sky in infrared light. Among the objects WISE will study are asteroids, the coolest and dimmest stars, and the most luminous galaxies. Secondary students can do authentic research using infrared data. For example, students will use WISE data to mea-sure physical properties of asteroids. In order to prepare students and teachers at this level with a high level of rigor and scientific understanding, the WISE and the Spitzer Space Tele-scope Education programs provided an immersive teacher professional development workshop in infrared astronomy.The lessons learned from the Spitzer and WISE teacher and student pro-grams can be applied to other programs engaging them in authentic research experiences using data from space-borne observatories such as Herschel and Planck. Recently, WISE Educator Ambassadors and NASA Explorer School teachers developed and led an infrared astronomy workshop at Arecibo Observatory in PuertoRico. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance and age of objects in the Universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and the Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. We will outline specific steps for sec-ondary astronomy professional development, detail student involvement in infrared telescope data analysis, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional secondary professional development and student involvement in infrared astronomy. Funding was

  18. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based ...

    Indian Academy of Sciences (India)

    54

    NIRIS is a large field-of-view imaging spectrograph which is sensitive to fluctuation in ..... enhancement over low-latitudes has been shown to be developed as a ..... step forward towards passive remote sensing of the mesospheric dynamics.

  19. Updated Spitzer emission spectroscopy of bright transiting hot Jupiter HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Kamen O. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Grillmair, Carl J., E-mail: todorovk@phys.ethz.ch [Spitzer Science Center, California Institute of Technology, Mail Stop 220-6, Pasadena, CA 91125 (United States)

    2014-12-01

    We analyze all existing secondary eclipse time series spectroscopy of hot Jupiter HD 189733b acquired with the now defunct Spitzer/Infrared Spectrograph (IRS) instrument. We describe the novel approaches we develop to remove the systematic effects and extract accurate secondary eclipse depths as a function of wavelength in order to construct the emission spectrum of the exoplanet. We compare our results with a previous study by Grillmair et al. that did not examine all data sets available to us. We are able to confirm the detection of a water feature near 6 μm claimed by Grillmair et al. We compare the planetary emission spectrum to three model families—based on isothermal atmosphere, gray atmosphere, and two realizations of the complex radiative transfer model by Burrows et al., adopted in Grillmair et al.'s study. While we are able to reject the simple isothermal and gray models based on the data at the 97% level just from the IRS data, these rejections hinge on eclipses measured within a relatively narrow wavelength range, between 5.5 and 7 μm. This underscores the need for observational studies with broad wavelength coverage and high spectral resolution, in order to obtain robust information on exoplanet atmospheres.

  20. SPITZER survey of dust grain processing in stable discs around binary post-AGB stars

    NARCIS (Netherlands)

    Gielen, C.; van Winckel, H.; Min, M.; Waters, L.B.F.M.; Lloyd Evans, T.

    2008-01-01

    Aims. We investigate the mineralogy and dust processing in the circumbinary discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER infrared spectra. Methods: We perform a full spectral fitting to the infrared spectra using the most recent opacities of amorphous and crystalline dust

  1. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2014-01-01

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H 2 and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H 2 emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster

  2. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexíco, Unidad Académica en Ensenada, Km 103 Carr. Tijuana-Ensenada, 22860 Ensenada BC (Mexico); Lada, Elizabeth A., E-mail: jybarra@astro.unam.mx [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States)

    2014-10-20

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.

  3. Thermal-Infrared Surveys of Near-Earth Object Diameters and Albedos with Spitzer and IRTF/MIRSI

    Science.gov (United States)

    Mommert, Michael; Trilling, David; Hora, Joseph L.; Chesley, Steven; Emery, Josh; Fazio, Giovanni; Harris, Alan W.; Moskovitz, Nick; Mueller, Michael; Smith, Howard

    2015-08-01

    More than 12000 Near-Earth Objects (NEOs) have been discovered over the past few decades and current discovery surveys find on average 4 new NEOs every night. In comparison to asteroid discovery, the physical characterization of NEOs lags far behind: measured diameters and albedos exist only for roughly 10% of all known NEOs. We describe a current and a future observing program that provide diameter and albedo measurements of a large number of NEOs.In our Spitzer Space Telescope Exploration Science program 'NEOSurvey', we are performing a fast and efficient flux-limited survey in which we measure the diameters and albedos of ~600 NEOs in a total of 710 hrs of observing time. We measure the thermal emission of our targets at 4.5 micron and combine these measurements with optical data in a thermal model. Our diameters and albedos come with highly realistic uncertainties that account for a wide range of potential asteroid properties. Our primary goal is to create a large and uniform catalog of NEO properties, including diameters, albedos, and flux density data. This catalog is publicly accessible and provides the latest results usually within 2 weeks after the observation.Starting in 2016, we will also make use of the refurbished and recommissioned MIRSI mid-infrared imaging camera on NASA's InfraRed Telescope Facility (IRTF) to derive the diameters and albedos of up to 750 NEOs over a period of 3 yrs. MIRSI will be equipped with an optical camera that will allow for simultaneous optical imaging, which will improve our thermal modeling results. With MIRSI, we will focus on newly discovered NEOs that are close to Earth and hence relatively bright.The results from both programs, together with already exisiting diameter and albedo results from the literature, will form the largest database of NEO physical properties available to date. With this data set, we will be able to refine the size distribution of small NEOs and the corresponding impact frequency, and compare the

  4. Cosmic Infrared Background Fluctuations in Deep Spitzer Infrared Array Camera Images: Data Processing and Analysis

    Science.gov (United States)

    Arendt, Richard; Kashlinsky, A.; Moseley, S.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale ([greater, similar]30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the [approx]1-5 [mu]m mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low ([greater, similar]1 nW m-2 sr-1 at 3-5 [mu]m), and thus consistent with current [gamma]-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs

  5. COSMIC INFRARED BACKGROUND FLUCTUATIONS IN DEEP SPITZER INFRARED ARRAY CAMERA IMAGES: DATA PROCESSING AND ANALYSIS

    International Nuclear Information System (INIS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale (∼>30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the ∼1-5 μm mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low (∼>1 nW m -2 sr -1 at 3-5 μm), and thus consistent with current γ-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs inhabited by the populations producing these

  6. RESOLVING THE ACTIVE GALACTIC NUCLEUS AND HOST EMISSION IN THE MID-INFRARED USING A MODEL-INDEPENDENT SPECTRAL DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005, Santander (Spain); Hatziminaoglou, Evanthia [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Spoon, Henrik W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Almeida, Cristina Ramos [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Santos, Tanio Díaz [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Southampton SO18 1BJ (United Kingdom); González-Martín, Omaira [Centro de Radioastronomía y Astrofísica (CRyA-UNAM), 3-72 (Xangari), 8701, Morelia (Mexico); Esquej, Pilar, E-mail: ahernan@ifca.unican.es [Departamento de Astrofísica, Facultad de CC. Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2015-04-20

    We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGNs) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum with a 1σ dispersion of 0.12 dex in luminosity and typical uncertainties of ∼0.19 in the spectral index and ∼0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGNs. This allows for unbiased studies of the AGN emission in intermediate- and high-redshift galaxies—currently inaccesible to ground-based observations—with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope. The decomposition code and templates are available at http://denebola.org/ahc/deblendIRS.

  7. SPITZER OBSERVATIONS OF LONG-TERM INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN CHAMAELEON I

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Kevin M.; Herbst, William [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); DeMarchi, Lindsay [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Balog, Zoltan [Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg (Germany); Megeath, S. Thomas [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Furlan, Elise [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Avenue, Pasadena, CA 91125 (United States); Gutermuth, Robert [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2016-12-10

    Infrared variability is common among young stellar objects, with surveys finding daily to weekly fluctuations of a few tenths of a magnitude. Space-based observations can produce highly sampled infrared light curves, but are often limited to total baselines of about 1 month due to the orientation of the spacecraft. Here we present observations of the Chameleon I cluster, whose low declination makes it observable by the Spitzer Space Telescope over a 200-day period. We observe 30 young stellar objects with a daily cadence to better sample variability on timescales of months. We find that such variability is common, occurring in ∼80% of the detected cluster members. The change in [3.6]–[4.5] color over 200 days for many of the sources falls between that expected for extinction and fluctuations in disk emission. With our high cadence and long baseline we can derive power spectral density curves covering two orders of magnitude in frequency and find significant power at low frequencies, up to the boundaries of our 200-day survey. Such long timescales are difficult to explain with variations driven by the interaction between the disk and stellar magnetic field, which has a dynamical timescale of days to weeks. The most likely explanation is either structural or temperature fluctuations spread throughout the inner ∼0.5 au of the disk, suggesting that the intrinsic dust structure is highly dynamic.

  8. VizieR Online Data Catalog: IR-bright MSX sources in the SMC with Spitzer/IRS (Kraemer+, 2017)

    Science.gov (United States)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-07-01

    Our original set of infrared spectra of MSX SMC sources was obtained in Spitzer Cycle 1 (Program ID 3277, P.I. M. Egan). This program included 35 targets from the MSX SMC catalog. 24 targets were discussed in previous papers; this paper examines the remaining 11 sources in the sample. We also selected 4 objects in the MSX SMC catalog with similar photometric characteristics in an effort to uncover additional sources with crystalline dust. We observed these targets in Spitzer Cycle 3 (Program ID 30355, P.I. J. Houck). See tables 1 and 2 for observation data and basic properties of the targets. Table 3 lists 20 additional MSX SMC sources that were observed by other Spitzer IRS programs. Overall, 59 MSX SMC sources were observed with the IRS. The spectra were observed using the low-resolution modules of the IRS, Short-Low (SL) and Long-Low (LL), which provided spectra in the 5-14 and 14-37um ranges, respectively, at a resolution between ~60 and 120. For 10 evolved stars with oxygen-rich dust in our Cycle 1 program, we obtained spectra from 0.45 to 1.03um with the Double-Beam Spectrograph at the 2.3m telescope of the Australian National University at Siding Spring Observatory. A 0.45-0.89um spectrum for one of the stars in program 30355 was also observed. These spectra have a resolution of 10Å. Tables 5-7: catalog based on the 243 sources detected in the MSX survey of the SMC, updated with positions and photometry from more recent space-based missions and ground-based surveys. See the Appendix section for more details. The SMC catalog from MSX consists of the 243 sources in the main MSX catalog (Egan+ 2003, see V/114) that lie within the region 7°

  9. SPITZER SPECTROSCOPY OF CIRCUMSTELLAR DISKS IN THE 5 Myr OLD UPPER SCORPIUS OB ASSOCIATION

    International Nuclear Information System (INIS)

    Dahm, S. E.; Carpenter, John M.

    2009-01-01

    We present mid-infrared spectra between 5.2 and 38 μm for 26 disk-bearing members of the ∼5 Myr old Upper Scorpius OB association obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. We find clear evidence for changes in the spectral characteristics of dust emission between the early-type (B+A) and late-type (K+M) infrared excess stars. The early-type members exhibit featureless continuum excesses that become apparent redward of ∼8 μm. In contrast, 10 and 20 μm silicate features or polycyclic aromatic hydrocarbon emission are present in all but one of the late-type excess members of Upper Scorpius. The strength of silicate emission among late-type Upper Scorpius members is spectral-type dependent, with the most prominent features being associated with K5-M2-type stars. By fitting the spectral energy distributions (SED) of a representative sample of low-mass stars with accretion disk models, we find that the SEDs are consistent with models having inner disk radii ranging from ∼0.2 to 1.2 AU. Complementary high-resolution (R ∼ 33, 000) optical (λλ4800-9200) spectra for the Upper Scorpius excess stars were examined for signatures of gaseous accretion. Of the 35 infrared excess stars identified in Upper Scorpius, only seven (all late-type) exhibit definitive signatures of accretion. Mass-accretion rates for these stars were estimated to range from 10 -11 to 10 -8.9 M sun yr -1 . Compared to Class II sources in Taurus-Auriga, the disk population in Upper Scorpius exhibits reduced levels of near- and mid-infrared excess emission and an order of magnitude lower mass-accretion rates. These results suggest that the disk structure has changed significantly over the 2-4 Myr in age separating these two stellar populations. The ubiquity of depleted inner disks in the Upper Scorpius excess sample implies that such disks are a common evolutionary pathway that persists for some time.

  10. SPITZER OBSERVATIONS OF HOTSPOTS IN RADIO LOBES

    International Nuclear Information System (INIS)

    Werner, Michael W.; Murphy, David W.; Livingston, John H.; Gorjian, Varoujan; Jones, Dayton L.; Meier, David L.; Lawrence, Charles R.

    2012-01-01

    We have carried out a systematic search with Spitzer Warm Mission and archival data for infrared emission from the hotspots in radio lobes that have been described by Hardcastle et al. These hotspots have been detected with both radio and X-ray observations, but an observation at an intermediate frequency in the infrared can be critical to distinguish between competing models for particle acceleration and radiation processes in these objects. Between the archival and warm mission data, we report detections of 18 hotspots; the archival data generally include detections at all four IRAC bands, the Warm Mission data only at 3.6 μm. Using a theoretical formalism adopted from Godfrey et al., we fit both archival and warm mission spectral energy distributions (SEDs)—including radio, X-ray, and optical data from Hardcastle as well as the Spitzer data—with a synchrotron self-Compton (SSC) model, in which the X-rays are produced by Compton scattering of the radio frequency photons by the energetic electrons which radiate them. With one exception, an SSC model requires that the magnetic field be less or much less than the equipartition value which minimizes total energy and has comparable amounts of energy in the magnetic field and in the energetic particles. This conclusion agrees with those of comparable recent studies of hotspots, and with the analysis presented by Hardcastle et al. We also show that the infrared data rule out the simplest synchrotron-only models for the SEDs. We briefly discuss the implications of these results and of alternate interpretations of the data.

  11. Project overview of OPTIMOS-EVE: the fibre-fed multi-object spectrograph for the E-ELT

    NARCIS (Netherlands)

    Navarro, R.; Chemla, F.; Bonifacio, P.; Flores, H.; Guinouard, I.; Huet, J.-M.; Puech, M.; Royer, F.; Pragt, J.H.; Wulterkens, G.; Sawyer, E.C.; Caldwell, M.E.; Tosh, I.A.J.; Whalley, M.S.; Woodhouse, G.F.W.; Spanò, P.; Di Marcantonio, P.; Andersen, M.I.; Dalton, G.B.; Kaper, L.; Hammer, F.

    2010-01-01

    OPTIMOS-EVE (OPTical Infrared Multi Object Spectrograph - Extreme Visual Explorer) is the fibre fed multi object spectrograph proposed for the European Extremely Large Telescope (E-ELT), planned to be operational in 2018 at Cerro Armazones (Chile). It is designed to provide a spectral resolution of

  12. A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR z ∼ 7 LYMAN-BREAK GALAXIES: SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203

    International Nuclear Information System (INIS)

    Watson, D.; French, J.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Castro Cerón, J. M.; Christensen, L.; O'Halloran, B.; Michałowski, M.; Gordon, K. D.; Covino, S.; Reinfrank, R. F.

    2011-01-01

    Gamma-ray burst (GRB) host galaxies have been studied extensively in optical photometry and spectroscopy. Here we present the first mid-infrared spectrum of a GRB host, HG 031203. It is one of the nearest GRB hosts at z = 0.1055, allowing both low- and high-resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS). Medium-resolution UV to K-band spectroscopy with the X-shooter spectrograph on the Very Large Telescope is also presented, along with Spitzer IRAC and MIPS photometry, as well as radio and submillimeter observations. These data allow us to construct a UV to radio spectral energy distribution with almost complete spectroscopic coverage from 0.3 to 35 μm of a GRB host galaxy for the first time, potentially valuable as a template for future model comparisons. The IRS spectra show strong, high-ionization fine structure line emission indicative of a hard radiation field in the galaxy—in particular the [S IV]/[S III] and [Ne III]/[Ne II] ratios—suggestive of strong ongoing star formation and a very young stellar population. The absence of any polycyclic aromatic hydrocarbon emission supports these conclusions, as does the probable hot peak dust temperature, making HG 031203 similar to the prototypical blue compact dwarf galaxy (BCD), II Zw 40. The selection of HG 031203 via the presence of a GRB suggests that it might be a useful analog of very young star-forming galaxies in the early universe, and hints that local BCDs may be used as more reliable analogs of star formation in the early universe than typical local starbursts. We look at the current debate on the ages of the dominant stellar populations in z ∼ 7 and z ∼ 8 galaxies in this context. The nebular line emission is so strong in HG 031203 that at z ∼ 7, it can reproduce the spectral energy distributions of z-band dropout galaxies with elevated IRAC 3.6 and 4.5 μm fluxes without the need to invoke a 4000 Å break. Indeed, photometry of HG 031203 shows elevation of the broadband V

  13. PLANETARY NEBULAE DETECTED IN THE SPITZER SPACE TELESCOPE GLIMPSE II LEGACY SURVEY

    International Nuclear Information System (INIS)

    Zhang Yong; Sun Kwok

    2009-01-01

    We report the result of a search for the infrared counterparts of 37 planetary nebulae (PNs) and PN candidates in the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire II (GLIMPSE II) survey. The photometry and images of these PNs at 3.6, 4.5, 5.8, 8.0, and 24 μm, taken through the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS), are presented. Most of these nebulae are very red and compact in the IRAC bands, and are found to be bright and extended in the 24 μm band. The infrared morphology of these objects are compared with Hα images of the Macquarie-AAO-Strasbourg (MASH) and MASH II PNs. The implications for morphological difference in different wavelengths are discussed. The IRAC data allow us to differentiate between PNs and H II regions and be able to reject non-PNs from the optical catalog (e.g., PNG 352.1 - 00.0). Spectral energy distributions are constructed by combing the IRAC and MIPS data with existing near-, mid-, and far-IR photometry measurements. The anomalous colors of some objects allow us to infer the presence of aromatic emission bands. These multi-wavelength data provide useful insights into the nature of different nebular components contributing to the infrared emission of PNs.

  14. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: baspci@rit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  15. ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER

    International Nuclear Information System (INIS)

    Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.; Gallagher, S. C.; Johnson, K. E.; Reines, A. E.; Gronwall, C.; Hoversten, E.; Charlton, J. C.

    2010-01-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby ( -1 ) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 A) photometry to estimate the dust-unobscured component, SFR UV , of the total star formation rate, SFR TOTAL . We use Spitzer MIPS 24 μm photometry to estimate SFR IR , the component of SFR TOTAL that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR TOTAL estimates for all HCG galaxies. We obtain total stellar mass, M * , estimates by means of Two Micron All Sky Survey K s -band luminosities, and use them to calculate specific star formation rates, SSFR ≡ SFR TOTAL /M * . SSFR values show a clear and significant bimodality, with a gap between low (∼ -11 yr -1 ) and high-SSFR (∼>1.2 x 10 -10 yr -1 ) systems. We compare this bimodality to the previously discovered bimodality in α IRAC , the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 μm data for these galaxies. We find that all galaxies with α IRAC ≤ 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and α IRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total

  16. POLYCYCLIC AROMATIC HYDROCARBON EMISSION IN SPITZER/IRS MAPS. I. CATALOG AND SIMPLE DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D. J.; Choi, W. D.-Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Peeters, E. [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada); Allamandola, L. J. [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States); Tielens, A. G. G. M., E-mail: dstock4@uwo.ca [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA (Netherlands)

    2016-03-01

    We present a sample of resolved galactic H ii regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5–15 μm. For each object we have spectral maps at a spatial resolution of ∼4″ in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 μm, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 μm. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H ii regions and the second the reflection nebulae (RNe). Three sources—the reflection nebula NGC 7023, the Horsehead nebula PDR (an interface between the H ii region IC 434 and the Orion B molecular cloud), and M17—resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC 7023 observations.

  17. CHARACTERIZING THE POPULATION OF BRIGHT INFRARED SOURCES IN THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Sloan, G. C. [Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853-6801 (United States); Wood, P. R. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611 (Australia); Jones, O. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Egan, M. P., E-mail: kathleen.kraemer@bc.edu, E-mail: sloan@astro.cornell.edu, E-mail: wood@mso.anu.edu.au, E-mail: michael.p.egan@nga.mil [National Geospatial Intelligence Agency, 7500 GEOINT Drive, Springfield, VA 22150 (United States)

    2017-01-10

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks more like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μ m. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z  = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer , and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope ( JWST ). Color–color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.

  18. CHARACTERIZING THE POPULATION OF BRIGHT INFRARED SOURCES IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-01-01

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks more like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μ m. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z  = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer , and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope ( JWST ). Color–color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.

  19. A Search for Faint, Diffuse Halo Emission in Edge-On Galaxies with Spitzer/IRAC

    Science.gov (United States)

    Ashby, Matthew; Arendt, R. G.; Pipher, J. L.; Forrest, W. J.; Marengo, M.; Barmby, P.; Willner, S. P.; Stauffer, J. R.; Fazio, G. G.

    2006-12-01

    We present deep infrared mosaics of the nearby edge-on spiral galaxies NGC 891, 4244, 4565, and 5907. These data were acquired at 3.6, 4.5, 5.8, and 8.0 microns using the Infrared Array Camera aboard Spitzer as part of GTO program number 3. This effort is designed to detect the putative faint, diffuse emission from halos and thick disks of spiral galaxies in the near-mid infrared under the thermally stable, low-background conditions of space. These conditions in combination with the advantageous viewing angles presented by these well-known edge-on spirals provide arguably the best opportunity to characterize the halo/thick disk components of such galaxies in the infrared. In this contribution we describe our observations, data reduction techniques, corrections for artifacts in the data, and the modeling approach we applied to analyze this unique dataset. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  20. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William [Spitzer Science Center (SSC), California Institute of Technology, Pasadena, CA 91125 (United States); Marley, Mark S. [NASA Ames Research Center, Space Sciences and Astrobiology Division, MS245-3, Moffett Field, CA 94035 (United States); Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Simon, Amy A. [NASA Goddard Space Flight Center, Solar System Exploration Division (690.0), 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Wong, Michael H. [University of California, Department of Astronomy, Berkeley CA 94720-3411 (United States)

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.

  1. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    Science.gov (United States)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  2. Mid-Infrared Silicate Dust Features in Seyfert 1 Spectra

    Science.gov (United States)

    Thompson, Grant D.; Levenson, N. A.; Sirocky, M. M.; Uddin, S.

    2007-12-01

    Silicate dust emission dominates the mid-infrared spectra of galaxies, and the dust produces two spectral features, at 10 and 18 μm. These features' strengths (in emission or absorption) and peak wavelengths reveal the geometry of the dust distribution, and they are sensitive to the dust composition. We examine mid-infrared spectra of 32 Seyfert 1 active galactic nuclei (AGN), observed with the Infrared Spectrograph aboard the Spitzer Space Telescope. In the spectra, we typically find the shorter-wavelength feature in emission, at an average peak wavelength of 10.0 μm, although it is known historically as the "9.7 μm" feature. In addition, peak wavelength increases with feature strength. The 10 and 18 μm feature strengths together are sensitive to the dust geometry surrounding the central heating engine. Numerical calculations of radiative transfer distinguish between clumpy and smooth distributions, and we find that the surroundings of these AGN (the obscuring "tori" of unified AGN schemes) are clumpy. Polycyclic aromatic hydrocarbon (PAH) features are associated with star formation, and we find strong PAH emission (luminosity ≥ 1042 erg/s) in only four sources, three of which show independent evidence for starbursts. We will explore the effects of luminosity on dust geometry and chemistry in a comparison sample of quasars. We acknowledge work supported by the NSF under grant number 0237291.

  3. Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere

    Science.gov (United States)

    Orton, Glenn S.; Fletcher, Leigh N.; Moses, Julianne I.; Mainzer, Amy K.; Hines, Dean; Hammel, Heidi B.; Martin-Torres, F. Javier; Burgdorf, Martin; Merlet, Cecile; Line, Michael R.

    2014-11-01

    On 2007 December 16-17, spectra were acquired of the disk of Uranus by the Spitzer Infrared Spectrometer (IRS), ten days after the planet's equinox, when its equator was close to the sub-Earth point. This spectrum provides the highest-resolution broad-band spectrum ever obtained for Uranus from space, allowing a determination of the disk-averaged temperature and molecule composition to a greater degree of accuracy than ever before. The temperature profiles derived from the Voyager radio occultation experiment by Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001) and revisions suggested by Sromovsky et al. (Sromovsky, L.A., Fry, P.A., Kim, J.H. [2011]. Icarus 215, 292-312) that match these data best are those that assume a high abundance of methane in the deep atmosphere. However, none of these model profiles provides a satisfactory fit over the full spectral range sampled. This result could be the result of spatial differences between global and low-latitudinal regions, changes in time, missing continuum opacity sources such as stratospheric hazes or unknown tropospheric constituents, or undiagnosed systematic problems with either the Voyager radio-occultation or the Spitzer IRS data sets. The spectrum is compatible with the stratospheric temperatures derived from the Voyager ultraviolet occultations measurements by Herbert et al. (Herbert, F. et al. [1987]. J. Geophys. Res. 92, 15093-15109), but it is incompatible with the hot stratospheric temperatures derived from the same data by Stevens et al. (Stevens, M.H., Strobel, D.F., Herbert, F.H. [1993]. Icarus 101, 45-63). Thermospheric temperatures determined from the analysis of the observed H2 quadrupole emission features are colder than those derived by Herbert et al. at pressures less than ∼1 μbar. Extrapolation of the nominal model spectrum to far-infrared through millimeter wavelengths shows that the spectrum arising solely from H2

  4. SPITZER SECONDARY ECLIPSES OF WASP-18b

    International Nuclear Information System (INIS)

    Nymeyer, Sarah; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Campo, Christopher J.; Blecic, Jasmina; Bowman, William C.; Britt, Christopher B. T.; Cubillos, Patricio; Madhusudhan, Nikku; Collier-Cameron, Andrew; Maxted, Pierre F. L.; Loredo, Thomas J.; Hellier, Coel; Anderson, David R.; Gillon, Michael; Hebb, Leslie; Wheatley, Peter J.; Pollacco, Don

    2011-01-01

    The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets project. The Spitzer Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using Spitzer's Infrared Array Camera in the 3.6 μm and 5.8 μm bands on 2008 December 20, and in the 4.5 μm and 8.0 μm bands on 2008 December 24. We report eclipse depths of 0.30% ± 0.02%, 0.39% ± 0.02%, 0.37% ± 0.03%, 0.41% ± 0.02%, and brightness temperatures of 3100 ± 90, 3310 ± 130, 3080 ± 140, and 3120 ± 110 K in order of increasing wavelength. WASP-18b is one of the hottest planets yet discovered—as hot as an M-class star. The planet's pressure-temperature profile most likely features a thermal inversion. The observations also require WASP-18b to have near-zero albedo and almost no redistribution of energy from the day side to the night side of the planet.

  5. Early 2017 observations of TRAPPIST-1 with Spitzer

    Science.gov (United States)

    Delrez, L.; Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; de Wit, J.; Ingalls, J. G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A. J.; Carey, S. J.; Jehin, E.; Leconte, J.; Lederer, S.; Queloz, D.; Selsis, F.; Van Grootel, V.

    2018-04-01

    The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth-sized worlds. To further advance our understanding of these planets' compositions, energy budgets, and dynamics, we are carrying out an intensive photometric monitoring campaign of their transits with the Spitzer Space Telescope. In this context, we present 60 new transits of the TRAPPIST-1 planets observed with Spitzer/Infrared Array Camera (IRAC) in 2017 February and March. We combine these observations with previously published Spitzer transit photometry and perform a global analysis of the resulting extensive data set. This analysis refines the transit parameters and provides revised values for the planets' physical parameters, notably their radii, using updated properties for the star. As part of our study, we also measure precise transit timings that will be used in a companion paper to refine the planets' masses and compositions using the transit timing variations method. TRAPPIST-1 shows a very low level of low-frequency variability in the IRAC 4.5-μm band, with a photometric RMS of only 0.11 per cent at a 123-s cadence. We do not detect any evidence of a (quasi-)periodic signal related to stellar rotation. We also analyse the transit light curves individually, to search for possible variations in the transit parameters of each planet due to stellar variability, and find that the Spitzer transits of the planets are mostly immune to the effects of stellar variations. These results are encouraging for forthcoming transmission spectroscopy observations of the TRAPPIST-1 planets with the James Webb Space Telescope.

  6. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements

    Science.gov (United States)

    Singh, Ravindra P.; Pallamraju, Duggirala

    2017-08-01

    This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6°N, 72.8°E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm^{-1} and 1024× 1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80° along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, cz, is calculated and along with the coherent GW time period `τ ', the vertical wavelength, λ z, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, λ y, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (τ , cz, λ z, and λ y), and results on the statistical study of MTIs that exist in the earth's mesospheric

  7. Optical design and performance of a dual-grating, direct-reading spectrograph for spectrochemical analyses

    International Nuclear Information System (INIS)

    Steinhaus, D.W.; Kline, J.V.; Bieniewski, T.M.; Dow, G.S.; Apel, C.T.

    1979-01-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph

  8. Optical Design And Performance Of A Dual-Grating, Direct-Reading Spectrograph For Spectrochemical Analyses

    Science.gov (United States)

    Steinhaus, David W.; Kline, John V.; Bieniewski, Thomas M.; Dow, Grove S.; Apel, Charles T.

    1980-11-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph.

  9. From laboratory to the sky: Th-Ar wavelength standards for the cryogenic infrared echelle spectrograph (CRIRES)

    Energy Technology Data Exchange (ETDEWEB)

    Kerber, Florian; Bristow, Paul [European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching (Germany); Nave, Gillian; Sansonetti, Craig J [National Institute of Standards and Technology, Gaithersburg, MD (United States)], E-mail: fkerber@eso.org, E-mail: gillian.nave@nist.gov, E-mail: craig.sansonetti@nist.gov, E-mail: bristowp@eso.org

    2009-05-15

    We report on the collaborative effort of the European Southern Observatory (ESO) and the National Institute of Standards and Technology (NIST) to establish-through laboratory measurements-wavelength standards in the near-infrared (IR) emission line spectrum of a low current Th-Ar hollow cathode lamp. These standards are now routinely used for the wavelength calibration of the cryogenic infrared echelle spectrograph (CRIRES) operated at one of the unit telescopes of the very large telescope (VLT) at ESO's La Silla Paranal Observatory in Chile. The availability of highly accurate wavelength standards from a commercially available calibration source permits a shift to a new operational paradigm for high-resolution IR spectroscopy. Wavelength calibration no longer has to rely on atmospheric features but can make use of laboratory traceable reference data as is normally done in the ultraviolet and visible regions. This opens the door for more quantitative spectroscopic work in the near-IR. To illustrate the potential impact of this development, we briefly review the current state of affairs in IR astronomy and its projected future. With the advent of the next generation of extremely large ground-based telescopes the IR region will become the most powerful window on the universe within the next 10-15 years. We conclude with a short outlook on the contribution atomic physics can make to this evolution.

  10. THE SPITZER -HETDEX EXPLORATORY LARGE-AREA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; DePoy, D. L.; Kawinwanichakij, L. [Department of Physics and Astronomy, Texas A and M University, College Station, TX, 77843-4242 (United States); Lacy, M. [North American ALMA Science Center, NRAO Headquarters, Charlottesville, VA 22903 (United States); Ciardullo, R.; Gronwall, C. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Finkelstein, S. L.; Drory, N.; Gebhardt, K.; Hill, G. J.; Jogee, S. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Bassett, R. [International Centre for Radio Astronomy Research, University of Western Australia, 7 Fairway, Crawley, WA 6009 (Australia); Behroozi, P. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Blanc, G. A. [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile); Jong, R. S. de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Gawiser, E. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Hopp, U., E-mail: papovich@physics.tamu.edu, E-mail: papovich@tamu.edu [Max-Planck-Institut für Extraterrestrische Physik, D-85741, Garching (Germany); and others

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μ m with the Infrared Array Camera (IRAC) of the Spitzer /HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg{sup 2} of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ∼ 800 spectroscopy will produce ∼200,000 redshifts from the Ly α emission for galaxies in the range 1.9 <  z  < 3.5, and an additional ∼200,000 redshifts from the [O ii] emission for galaxies at z  < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K -band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ∼0.5 Gpc{sup 3} at 1.9 <  z  < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μ m images. The catalogs reach limiting sensitivities of 1.1  μ Jy at both 3.6 and 4.5 μ m (1 σ , for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  11. THE SPITZER -HETDEX EXPLORATORY LARGE-AREA SURVEY

    International Nuclear Information System (INIS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; DePoy, D. L.; Kawinwanichakij, L.; Lacy, M.; Ciardullo, R.; Gronwall, C.; Finkelstein, S. L.; Drory, N.; Gebhardt, K.; Hill, G. J.; Jogee, S.; Bassett, R.; Behroozi, P.; Blanc, G. A.; Jong, R. S. de; Gawiser, E.; Hopp, U.

    2016-01-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μ m with the Infrared Array Camera (IRAC) of the Spitzer /HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg 2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ∼ 800 spectroscopy will produce ∼200,000 redshifts from the Ly α emission for galaxies in the range 1.9 <  z  < 3.5, and an additional ∼200,000 redshifts from the [O ii] emission for galaxies at z  < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K -band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ∼0.5 Gpc 3 at 1.9 <  z  < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μ m images. The catalogs reach limiting sensitivities of 1.1  μ Jy at both 3.6 and 4.5 μ m (1 σ , for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  12. Charting Ingredients for Life

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Spectrum Charts Light from a Faraway Galaxy This graph, or spectrum, charts light from a faraway galaxy located 10 billion light years from Earth. It tracks mid-infrared light from an extremely luminous galaxy when the universe was only 1/4 of its current age. Spectra are created when an instrument called a spectrograph spreads light out into its basic parts, like a prism turning sunlight into a rainbow. They reveal the signatures, or 'fingerprints,' of molecules that make up a galaxy and contribute to its light. Spitzer's infrared spectrometer identified characteristic fingerprints of complex organic molecules called polycyclic aromatic hydrocarbons, illustrated in the artist's concept in the inset. These large molecules comprised of carbon and hydrogen, are considered among the building blocks of life. Scientists determined it took 10 billion years for photons from this galaxy to reach Spitzer's infrared eyes. These complex carbon and hydrogen molecules are from a young galaxy which is undergoing intense star formation, at the time the universe was only 3.5 billion years old. These distant galaxies with enormous amounts of gas being converted into young stars are some of the most luminous objects in the sky. Enshrouded by dust, they are only faint, inconspicuous little dots in optical images. They are as bright as 10 trillion suns put together and 10 times brighter than starburst galaxies seen in our local universe. This prompts a fascinating question as to what physical process is driving such enormous energy production in these galaxies when the universe is so young. These data were taken by Spitzer's infrared spectrograph in August and September 2004.

  13. Dayside atmospheric structure of HD209458b from Spitzer eclipses

    Science.gov (United States)

    Reinhard, Matthew; Harrington, Joseph; Challener, Ryan; Cubillos, Patricio; Blecic, Jasmina

    2017-10-01

    HD209458b is a hot Jupiter with a radius of 1.26 ± 0.08 Jupiter radii (Richardson et al, 2006) and a mass of 0.64 ± 0.09 Jupiter masses (Snellen et al, 2010). The planet orbits a G0 type star with an orbital period of 3.52472 ± 2.81699e-05 days, and a relatively low eccentricity of 0.0082 +0.0078/-0.0082 (Wang and Ford 2013). We report the analysis of observations of HD209458b during eclipse, taken in the 3.6 and 4.5 micron channels by the Spitzer Space Telescope's Infrared Array Camera (Program 90186). We produce a photometric light curve of the eclipses in both channels, using our Photometry for Orbits Eclipses and Transits (POET) code, and calculate the brightness temperatures and eclipse depths. We also present best estimates of the atmospheric parameters of HD209458b using our Bayesian Atmospheric Radiative Transfer (BART) code. These are some preliminary results of what will be an analysis of all available Spitzer data for HD209458b. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  14. Study of an integral field spectrograph for the SNAP satellite. Prototype, simulation and performances

    International Nuclear Information System (INIS)

    Aumeunier, Marie-Helene

    2007-01-01

    The SNAP (Supernovae/Acceleration Probe) project plans to measure very precisely the cosmological parameters and to determine the nature of dark energy by observations of type Ia supernovae and weak lensing. The SNAP instrument consists in a 2-meter telescope with a one square-degree imager and a spectrograph in the visible and infrared range. A dedicated optimized integral field spectrograph based on an imager slicer technology has been developed. To test and validate the performances, two approaches have been developed: a complete simulation of the complete instrument at the pixel level and the manufacturing and test of a spectrograph prototype operating at room temperature and in cryogenic environment. In this thesis we will test the optical and functional performances of the SNAP spectrograph: especially diffraction losses, stray-light and spectro-photometric calibration. We present an original approach for the spectro-photometric calibration adapted for the slicer and the optical performances resulting from the first measurement campaign in the visible range. (author) [fr

  15. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. II. ANALYSIS OF MID- TO FAR-INFRARED SPITZER OBSERVATIONS OF THE 2JY SAMPLE

    International Nuclear Information System (INIS)

    Dicken, D.; Tadhunter, C.; Axon, D.; Morganti, R.; Inskip, K. J.; Holt, J.; Groves, B.; Delgado, R. Gonzalez

    2009-01-01

    We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05 < z < 0.7), conducting a statistical investigation of the links between radio jet, active galactic nucleus (AGN), starburst activity and MFIR properties. This is part of an ongoing extensive study of powerful radio galaxies that benefits from both complete optical emission line information and a uniquely high detection rate in the far-infrared (far-IR). We find tight correlations between the MFIR and [O III]λ5007 emission luminosities, which are significantly better than those between MFIR and extended radio luminosities, or between radio and [O III] luminosities. Since [O III] is a known indicator of intrinsic AGN power, these correlations confirm AGN illumination of the circumnuclear dust as the primary heating mechanism for the dust producing thermal MFIR emission at both 24 and 70 μm. We demonstrate that AGN heating is energetically feasible, and identify the narrow-line region clouds as the most likely location of the cool, far-IR emitting dust. Starbursts make a major contribution to the heating of the cool dust in only 15%-28% of our targets. We also investigate the orientation dependence of the continuum properties, finding that the broad- and narrow-line objects in our sample with strong emission lines have similar distributions of MFIR luminosities and colors. Therefore our results are entirely consistent with the orientation-based unified schemes for powerful radio galaxies. However, the weak line radio galaxies form a separate class of objects with intrinsically low-luminosity AGNs in which both the optical emission lines and the MFIR continuum are weak.

  16. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    International Nuclear Information System (INIS)

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P; Stark, Daniel P

    2013-01-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy

  17. REPEATABILITY OF SPITZER/IRAC EXOPLANETARY ECLIPSES WITH INDEPENDENT COMPONENT ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Morello, G.; Waldmann, I. P.; Tinetti, G., E-mail: giuseppe.morello.11@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom)

    2016-04-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  18. REPEATABILITY OF SPITZER/IRAC EXOPLANETARY ECLIPSES WITH INDEPENDENT COMPONENT ANALYSIS

    International Nuclear Information System (INIS)

    Morello, G.; Waldmann, I. P.; Tinetti, G.

    2016-01-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  19. AKARI/IRC source catalogues and source counts for the IRAC Dark Field, ELAIS North and the AKARI Deep Field South

    Science.gov (United States)

    Davidge, H.; Serjeant, S.; Pearson, C.; Matsuhara, H.; Wada, T.; Dryer, B.; Barrufet, L.

    2017-12-01

    We present the first detailed analysis of three extragalactic fields (IRAC Dark Field, ELAIS-N1, ADF-S) observed by the infrared satellite, AKARI, using an optimized data analysis toolkit specifically for the processing of extragalactic point sources. The InfaRed Camera (IRC) on AKARI complements the Spitzer Space Telescope via its comprehensive coverage between 8-24 μm filling the gap between the Spitzer/IRAC and MIPS instruments. Source counts in the AKARI bands at 3.2, 4.1, 7, 11, 15 and 18 μm are presented. At near-infrared wavelengths, our source counts are consistent with counts made in other AKARI fields and in general with Spitzer/IRAC (except at 3.2 μm where our counts lie above). In the mid-infrared (11 - 18 μm), we find our counts are consistent with both previous surveys by AKARI and the Spitzer peak-up imaging survey with the InfraRed Spectrograph (IRS). Using our counts to constrain contemporary evolutionary models, we find that although the models and counts are in agreement at mid-infrared wavelengths there are inconsistencies at wavelengths shortward of 7 μm, suggesting either a problem with stellar subtraction or indicating the need for refinement of the stellar population models. We have also investigated the AKARI/IRC filters, and find an active galactic nucleus selection criteria out to z < 2 on the basis of AKARI 4.1, 11, 15 and 18 μm colours.

  20. The Carnegie-Spitzer-IMACS redshift survey of galaxy evolution since z = 1.5. I. Description and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2014-03-10

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ∼ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg{sup 2} of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ {sub z}/(1 + z) ≲ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ {sub z}/(1 + z) = 0.011 for galaxies at 0.7 ≤ z ≤ 0.9, and σ {sub z}/(1 + z) = 0.014 for galaxies at 0.9 ≤ z ≤ 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ {sub z}/(1 + z) = 0.008 and σ {sub z}/(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.

  1. INFRARED SPECTROGRAPH SPECTROSCOPY AND MULTI-WAVELENGTH STUDY OF LUMINOUS STAR-FORMING GALAXIES AT z ≅ 1.9

    International Nuclear Information System (INIS)

    Huang, J.-S.; Lai, K.; Younger, J. D.; Fazio, G. G.; Faber, S. M.; Koo, D.; Daddi, E.; Laird, E. S.; Omont, A.; Wu, Y.; Bundy, K.; Cattaneo, A.; Chapman, S. C.; Conselice, C. J.; Dickinson, M.; Egami, E.; Im, M.; Le Floc'h, E.; Papovich, C.; Rigopoulou, D.

    2009-01-01

    We analyze a sample of galaxies chosen to have F 24μm > 0.5 mJy and satisfy a certain IRAC color criterion. Infrared Spectrograph (IRS) spectra yield redshifts, spectral types, and polycyclic aromatic hydrocarbons (PAH) luminosities, to which we add broadband photometry from optical through IRAC wavelengths, MIPS from 24-160 μm, 1.1 mm, and radio at 1.4 GHz. Stellar population modeling and IRS spectra together demonstrate that the double criteria used to select this sample have efficiently isolated massive star-forming galaxies at z ∼ 1.9. This is the first starburst (SB)-dominated ultraluminous infrared galaxies (ULIRG) sample at high redshift with total infrared luminosity measured directly from FIR and millimeter photometry, and as such gives us the first accurate view of broadband spectral energy distributions for SB galaxies at extremely high luminosity and at all wavelengths. Similar broadband data are assembled for three other galaxy samples-local SB galaxies, local active galactic nucleus (AGN)/ULIRGs, and a second 24 μm-luminous z ∼ 2 sample dominated by AGN. L PAH /L IR for the new z ∼ 2 SB sample is the highest ever seen, some three times higher than in local SBs, whereas in AGNs this ratio is depressed below the SB trend, often severely. Several pieces of evidence imply that AGNs exist in this SB-dominated sample, except two of which even host very strong AGN, while they still have very strong PAH emission. The Advanced Camera for Surveys images show that most objects have very extended morphologies in the rest-frame ultraviolet band, thus extended distribution of PAH molecules. Such an extended distribution prevents further destruction PAH molecules by central AGNs. We conclude that objects in this sample are ULIRGs powered mainly by SB; and the total infrared luminosity density contributed by this type of objects is 0.9-2.6 x 10 7 L sun Mpc -3 .

  2. Spitzer Observations of M33 & M83 and the Hot Star, Hii Region Connection

    Science.gov (United States)

    Rubin, R.; Simpson, J.; Colgan, S.; Dufour, R.; Citron, R.; Ray, K.; Erickson, E.; Haas, M.; Pauldrach, A.

    2007-05-01

    H II regions play a crucial role in the measurement of current interstellar abundances. They also serve as laboratories for atomic physics and provide fundamental data about heavy element abundances that serve to constrain models of galactic chemical evolution. We observed emission lines of [S IV] 10.5, H (7-6) 12.4, [Ne II] 12.8, [Ne III] 15.6, & [S III] 18.7 micron cospatially with the Spitzer Space Telescope using the Infrared Spectrograph (IRS) in short-high mode (SH). Here we concentrate on the galaxy M33 and compare the results with our earlier similar study of M83. In each of these substantially face-on spirals, we observed ˜25 H II regions, covering a full range of galactocentric radii (RG). For most of the M33 H II regions, we were able to measure the H (7-6) line while none were detectable in M83. This limited our M83 study to a determination of the Ne++/Ne+, /, and S3+/S++ abundance ratios vs. RG. Angular brackets denote fractional ionizations. As well as having the addition of fluxes for the H(7-6) line, the M33 H II regions are generally of much higher ionization than those in M83, resulting in larger Ne++/Ne+ and S3+/ S++ abundance ratios. For M33, in addition to what we derived for those nebulae in M83, we are also able to derive Ne/H, S/H and Ne/S vs. RG. Important advantages compared with prior optical studies are: 1) the IR lines have a weak and similar electron temperature (Te) dependence while optical lines vary exponentially with Te and 2) the IR lines suffer far less from interstellar extinction. Additionally, these data may be used as constraints on the ionizing spectral energy distribution for the stars exciting these nebulae by comparing the above ionic ratios with predictions using stellar atmosphere models from several different non-LTE model sets. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407

  3. Observations of Hot-Jupiter occultations combining Spitzer and Kepler photometry

    Directory of Open Access Journals (Sweden)

    Knutson H.

    2011-02-01

    Full Text Available We present the status of an ongoing program which aim at measuring occultations by their parent stars of transiting hot giant exoplanets discovered recently by Kepler. The observations are obtained in the near infrared with WarmSpitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of measuring the mid-occultation times and the relative occultation depths in each band-passes. Our measurements of occultations depths in the Kepler bandpass is turned into the determination of the optical geometric albedo Ag in this wavelength domain. The brightness temperatures of these planets are deduced from the infrared observations. We combine the optical and near infrared planetary emergent fluxes to obtain broad band emergent spectra of individual planet. We finally compare these spectra to hot Jupiter atmospheric models in order broadly distinguishing these atmospheres between different classes of models.

  4. Direct HST Dust Lane Detection in Powerful Narrow-Line Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Edgar A.; Aretxaga, Itziar [Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla (Mexico); Tadhunter, Clive N. [Department of Physics and Astronomy, University of Sheffield, Sheffield (United Kingdom); Lopez-Rodriguez, Enrique [NASA Ames Research Center, SOFIA Science Center, SOFIA/USRA, Mountain View, CA (United States); Department of Astronomy, University of Texas at Austin, Austin, TX (United States); McDonald Observatory, University of Texas at Austin, Austin, TX (United States); Packham, Chris, E-mail: e.ramirez@inaoep.mx [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); National Astronomical Observatory of Japan, Tokyo (Japan)

    2017-11-22

    We present the analysis of near-infrared Hubble Space Telescope imaging of 10 Fanaroff Riley II powerful radio galaxies at low redshift (0.03 < z < 0.11) optically classified as narrow-line radio galaxies. The photometric properties of the host galaxy are measured using galfit, and compared with those from the literature. Our high resolution near-infrared observations provide new and direct information on the central kpc-scale dust lanes in our sample that could be connected to the pc-scale torus structure. Moreover, analyzing the infrared spectrograph Spitzer spectra of our sample, we suggest properties of the dust size of the torus.

  5. Emergent Exoplanet Flux: Review of the Spitzer Results

    OpenAIRE

    Deming, Drake

    2008-01-01

    Observations using the Spitzer Space Telescope provided the first detections of photons from extrasolar planets. Spitzer observations are allowing us to infer the temperature structure, composition, and dynamics of exoplanet atmospheres. The Spitzer studies extend from many hot Jupiters, to the hot Neptune orbiting GJ436. Here I review the current status of Spitzer secondary eclipse observations, and summarize the results from the viewpoint of what is robust, what needs more work, and what th...

  6. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Harris, A. W.

    2006-09-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a target of the planned ESA mission Don Quijote. Unfortunately, little is known about the physical properties of 1989 ML, in particular its size and albedo are unknown. Its exhibits an X type reflection spectrum, so depending on its albedo, 1989 ML may be an E, M, or P type asteroid. Provisional results from thermal-infrared observations carried out with Spitzer indicate that the albedo of 1989 ML is compatible with an M- or E-type classification. We will discuss our results and their implications for the physical properties and the rotation period of 1989 ML, and its importance as a potential spacecraft target. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  7. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    Science.gov (United States)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  8. OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES

    International Nuclear Information System (INIS)

    Moustakas, John; Kennicutt, Robert C. Jr.; Tremonti, Christy A.; Dale, Daniel A.; Smith, John-David T.; Calzetti, Daniela

    2010-01-01

    We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publicly available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGNs), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H II regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H II-region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally averaged) gas-phase oxygen abundances of all 75 SINGS galaxies. We conclude with an in-depth discussion of the absolute uncertainty in the nebular oxygen abundance scale.

  9. MULTIPLE SHELLS AROUND G79.29+0.46 REVEALED FROM NEAR-IR TO MILLIMETER DATA

    International Nuclear Information System (INIS)

    Jimenez-Esteban, F. M.; Rizzo, J. R.; Palau, Aina

    2010-01-01

    Aiming to perform a study of the warm dust and gas in the luminous blue variable star G79.29+0.46 and its associated nebula, we present infrared Spitzer imaging and spectroscopy, and new CO J = 2 → 1 and 4 → 3 maps obtained with the IRAM 30 m radio telescope and the Submillimeter Telescope, respectively. We have analyzed the nebula detecting multiple shells of dust and gas connected to the star. Using Infrared Spectrograph-Spitzer spectra, we have compared the properties of the central object, the nebula, and their surroundings. These spectra show a rich variety of solid-state features (amorphous silicates, polycyclic aromatic hydrocarbons, and CO 2 ices) and narrow emission lines, superimposed on a thermal continuum. We have also analyzed the physical conditions of the nebula, which point to the existence of a photo-dissociation region.

  10. A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE

    International Nuclear Information System (INIS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets (∼15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at ∼1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

  11. SPITZER OBSERVATIONS OF YOUNG RED QUASARS

    International Nuclear Information System (INIS)

    Urrutia, Tanya; Lacy, Mark; Spoon, Henrik; Glikman, Eilat; Petric, Andreea; Schulz, Bernhard

    2012-01-01

    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 Å emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.

  12. SPITZER OBSERVATIONS OF WHITE DWARFS: THE MISSING PLANETARY DEBRIS AROUND DZ STARS

    International Nuclear Information System (INIS)

    Xu, S.; Jura, M.

    2012-01-01

    We report a Spitzer/Infrared Array Camera search for infrared excesses around white dwarfs, including 14 newly observed targets and 16 unpublished archived stars. We find a substantial infrared excess around two warm white dwarfs—J220934.84+122336.5 and WD 0843+516, the latter apparently being the hottest white dwarf known to display a close-in dust disk. Extending previous studies, we find that the fraction of white dwarfs with dust disks increases as the star's temperature increases; for stars cooler than 10,000 K, even the most heavily polluted ones do not have ∼1000 K dust. There is tentative evidence that the dust disk occurrence is correlated with the volatility of the accreted material. In the Appendix, we modify a previous analysis to clarify how Poynting-Robertson drag might play an important role in transferring materials from a dust disk into a white dwarf's atmosphere.

  13. The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. III. CH4

    NARCIS (Netherlands)

    Oberg, Karin I.; Boogert, A. C. Adwin; Pontoppidan, Klaus M.; Blake, Geoffrey A.; Evans, Neal J.; Lahuis, Fred; van Dishoeck, Ewine F.

    2008-01-01

    CH4 is proposed to be the starting point of a rich organic chemistry. Solid CH4 abundances have previously been determined mostly toward high-mass star-forming regions. Spitzer IRS now provides a unique opportunity to probe solid CH4 toward low-mass star-forming regions as well. Infrared spectra

  14. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    Science.gov (United States)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  15. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Stark, Daniel P, E-mail: schenker@astro.caltech.edu [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-11-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy.

  16. Spectra of Th/Ar and U/Ne hollow cathode lamps for spectrograph calibration

    Science.gov (United States)

    Nave, Gillian; Shlosberg, Ariel; Kerber, Florian; Den Hartog, Elizabeth; Neureiter, Bianca

    2018-01-01

    Low-current Th/Ar hollow cathode lamps have long been used for calibration of astronomical spectrographs on ground-based telescopes. Thorium is an attractive element for calibration as it has a single isotope, has narrow spectral lines, and has a dense spectrum covering the whole of the visible region. However, the high density of the spectrum that makes it attractive for calibrating high-resolution spectrographs is a detriment for lower resolution spectrographs and this is not obvious by examination of existing linelists. In addition, recent changes in regulations regarding the handling of thorium have led to a degradation in the quality of Th/Ar calibration lamps, with contamination by molecular ThO lines that are strong enough to obscure the calibration lines of interest.We are pursuing two approaches to these problems. First, we have expanded and improved the NIST Standard Reference Database 161, "Spectrum of Th-Ar Hollow Cathode Lamps" to cover the region 272 nm to 5500 nm. Spectra of hollow cathode lamps at up to 3 different currents can now be displayed simultaneously. Interactive zooming and the ability to convolve any of the spectra with a Gaussian or uploaded instrument profile enable the user to see immediately what the spectrum would look like at the particular resolution of their spectrograph. Second, we have measured the spectrum of a recent, contaminated Th/Ar hollow cathode lamp using a high-resolution Echelle spectrograph (Madison Wisconsin) at a resolving power (R~ 250,000). This significantly exceeds the resolving power of most astronomical spectrographs and resolves many of the molecular lines of ThO. With these spectra we are measuring and calibrating the positions of these molecular lines in order to make them suitable for spectrograph calibration.In the near infrared region, U/Ne hollow cathode lamps give a higher density of calibration lines than Th/Ar lamps and will be implemented on the upgraded CRIRES+ spectrograph on ESO’s Very Large

  17. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    International Nuclear Information System (INIS)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Dasyra, Kalliopi M.; Calzoletti, Luca; Malkan, Matthew A.; Tommasin, Silvia

    2015-01-01

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10 4  cm –3 . Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions

  18. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Dasyra, Kalliopi M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Av. de l' Observatoire, F-75014, Paris (France); Calzoletti, Luca [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma) (Italy); Malkan, Matthew A. [Astronomy Division, University of California, Los Angeles, CA 90095-1547 (United States); Tommasin, Silvia, E-mail: luigi.spinoglio@iaps.inaf.it [Weizmann Institute of Science, Department of Neurobiology, Rehovot 76100 (Israel)

    2015-01-20

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10{sup 4} cm{sup –3}. Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions.

  19. Hot Dust! Late-Time Infrared Emission From Supernovae

    Science.gov (United States)

    Fox, Ori; Skrutskie, M. F.; Chevalier, R. A.

    2010-01-01

    Supernovae light curves typically peak and fade in the course of several months. Some supernovae , however, exhibit late-time infrared emission that in some cases can last for several years. These supernovae tend to be of the Type IIn subclass, which is defined by narrow hydrogen and helium emission lines arising from a dense, pre-existing circumstellar medium excited by the supernova radiation. Such a late-time ``IR excess'' with respect to the optical blackbody counterpart typically indicates the presence of warm dust. The origin and heating mechanism of the dust is not, however, always well constrained. In this talk, I will explore several scenarios that explain the observed late-time emission. In particular, I will discuss the case of the Type IIn SN 2005ip, which has displayed an ``IR excess'' for over 3 years. The results allow us to interpret the progenitor system and better understand the late stages of stellar evolution. Much of the data used for this analysis were obtained with TripleSpec, a medium-resolution near-infrared spectrograph located at Apache Point Observatory, NM, and FanCam, a JHK imager located at Fan Mountain Observatory, just outside of Charlottesville, VA. These two instruments were designed, fabricated, built, and commissioned by our instrumentation group at the University of Virginia. I will also spend some time discussing these instruments. I would like to thank the following for financial support of this work throughout my graduate career: NASA GSRP, NSF AAG-0607737, Spitzer PID 50256, Achievement Reward for College Scientists (ARCS), and the Virginia Space Grant Consortium.

  20. A Spitzer Survey for Dust in Type IIn Supernovae

    Science.gov (United States)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (greater than 100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (less than 10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days postdiscovery. The detection of late-time emission from ten targets (approximately 15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at approximately 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.

  1. The Infrared Imaging Spectrograph (IRIS) for TMT: multi-tiered wavefront measurements and novel mechanical design

    Science.gov (United States)

    Dunn, Jennifer; Andersen, David; Chapin, Edward; Reshetov, Vlad; Wierzbicki, Ramunas; Herriot, Glen; Chalmer, Dean; Isbrucker, Victor; Larkin, James E.; Moore, Anna M.; Suzuki, Ryuji

    2016-08-01

    The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS's superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of

  2. VizieR Online Data Catalog: Spitzer observations of Taurus members (Luhman+, 2010)

    Science.gov (United States)

    Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N.

    2016-03-01

    For our census of the disk population in Taurus, we use images at 3.6, 4.5, 5.8, and 8.0um obtained with Spitzer's Infrared Array Camera (IRAC) and images at 24um obtained with the Multiband Imaging Photometer for Spitzer (MIPS). The cameras produced images with FWHM=1.6"-1.9" from 3.6 to 8.0um and FWHM=5.9" at 24um. The available data were obtained through Guaranteed Time Observations for PID = 6, 36, 37 (G. Fazio), 53 (G. Rieke), 94 (C. Lawrence), 30540 (G. Fazio, J. Houck), and 40302 (J. Houck), Director's Discretionary Time for PID = 462 (L. Rebull), Legacy programs for PID = 139, 173 (N. Evans), and 30816 (D. Padgett), and General Observer programs for PID = 3584 (D. Padgett), 20302 (P. Andre), 20386 (P. Myers), 20762 (J. Swift), 30384 (T. Bourke), 40844 (C. McCabe), and 50584 (D. Padgett). The IRAC and MIPS observations were performed through 180 and 137 Astronomical Observation Requests (AORs), respectively. The characteristics of the resulting images are summarized in Tables 1 and 2. (6 data files).

  3. SALT Spectroscopy of Evolved Massive Stars

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  4. SUBMILLIMETER ARRAY AND SPITZER OBSERVATIONS OF BOK GLOBULE CB 17: A CANDIDATE FIRST HYDROSTATIC CORE?

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas, E-mail: xuepeng.chen@yale.edu [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We present high angular resolution Submillimeter Array (SMA) and Spitzer observations toward the Bok globule CB 17. SMA 1.3 mm dust continuum images reveal within CB 17 two sources with an angular separation of {approx}21'' ({approx}5250 AU at a distance of {approx}250 pc). The northwestern continuum source, referred to as CB 17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low-luminosity Class 0/I transition object (L{sub bol} {approx} 0.5 L{sub Sun }). The southeastern continuum source, referred to as CB 17 MMS, has faint dust continuum emission in the SMA 1.3 mm observations ({approx}6{sigma} detection; {approx}3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 {mu}m. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are {<=}0.04 L{sub Sun} and {<=}16 K, respectively. The SMA CO (2-1) observations suggest that CB 17 MMS may drive a low-velocity molecular outflow ({approx}2.5 km s{sup -1}), extending in the east-west direction. Comparisons with prestellar cores and Class 0 protostars suggest that CB 17 MMS is more evolved than prestellar cores but less evolved than Class 0 protostars. The observed characteristics of CB 17 MMS are consistent with the theoretical predictions from radiative/magnetohydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB 17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB 17 MMS and to address more precisely its evolutionary stage.

  5. THE MID-INFRARED PERIOD-LUMINOSITY RELATIONS FOR THE SMALL MAGELLANIC CLOUD CEPHEIDS DERIVED FROM SPITZER ARCHIVAL DATA

    International Nuclear Information System (INIS)

    Ngeow, Chow-Choong; Kanbur, Shashi M.

    2010-01-01

    In this paper, we derive the Spitzer IRAC band period-luminosity (P-L) relations for the Small Magellanic Cloud (SMC) Cepheids, by matching the Spitzer archival SAGE-SMC data with the OGLE-III SMC Cepheids. We find that the 3.6 μm and 4.5 μm band P-L relations can be better described using two P-L relations with a break period at log(P) = 0.4: this is consistent with similar results at optical wavelengths for SMC P-L relations. The 5.8 μm and 8.0 μm band P-L relations do not extend to sufficiently short periods to enable a similar detection of a slope change at log(P) = 0.4. The slopes of the SMC P-L relations, for log(P) > 0.4, are consistent with their Large Magellanic Cloud counterparts that were derived from a similar data set. They are also in agreement with those obtained from a small sample of Galactic Cepheids with parallax measurements.

  6. THE ATMOSPHERES OF THE HOT-JUPITERS KEPLER-5b AND KEPLER-6b OBSERVED DURING OCCULTATIONS WITH WARM-SPITZER AND KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Desert, Jean-Michel; Charbonneau, David; Fressin, Francois; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Knutson, Heather A. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Deming, Drake [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Brown, Timothy M. [Las Cumbres Observatory Global Telescope, Goleta, CA 93117 (United States); Caldwell, Douglas [SETI Institute, Mountain View, CA 94043 (United States); Ford, Eric B. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Gilliland, Ronald L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Marcy, Geoffrey W. [Berkeley Astronomy Department, University of California, Berkeley, CA 94720 (United States); Seager, Sara, E-mail: jdesert@cfa.harvard.edu [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States)

    2011-11-01

    This paper reports the detection and the measurements of occultations of the two transiting hot giant exoplanets Kepler-5b and Kepler-6b by their parent stars. The observations are obtained in the near-infrared with Warm-Spitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of constraining the eccentricities of these systems and of obtaining broadband emergent photometric data for individual planets. For both targets, the occultations are detected at the 3{sigma} level at each wavelength with mid-occultation times consistent with circular orbits. The brightness temperatures of these planets are deduced from the infrared observations and reach T{sub Spitzer} = 1930 {+-} 100 K and T{sub Spitzer} = 1660 {+-} 120 K for Kepler-5b and Kepler-6b, respectively. We measure optical geometric albedos A{sub g} in the Kepler bandpass and find A{sub g} = 0.12 {+-} 0.04 for Kepler-5b and A{sub g} = 0.11 {+-} 0.04 for Kepler-6b, leading to upper an limit for the Bond albedo of A{sub B} {<=} 0.17 in both cases. The observations for both planets are best described by models for which most of the incident energy is redistributed on the dayside, with only less than 10% of the absorbed stellar flux redistributed to the nightside of these planets.

  7. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z ≈ 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    International Nuclear Information System (INIS)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Armus, Lee; Pope, Alexandra; Alberts, Stacey; Dey, Arjun; Jannuzi, B. T.; Bussmann, R. S.

    2012-01-01

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 10 12 L ☉ ). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10 11.6 L ☉ IR (8-1000 μm) 13.6 L ☉ . 90% of the Herschel-detected DOGs in this sample are ULIRGs and 30% have L IR > 10 13 L ☉ . The rest-frame near-IR (1-3 μm) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 μm flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 μm flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ∼25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 μm luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 μm luminosity (the IR8 = L IR (8-1000 μm)/νL ν (8 μm) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up

  8. The Formation of Massive Stars: from Herschel to Near-Infrared

    Directory of Open Access Journals (Sweden)

    Paolo Persi

    2014-12-01

    Full Text Available We have studied a number of selected high mass star forming regions, including high resolution near-infrared broad- and narrow-band imaging, Herschel (70, 160, 250, 350 and 500 μm and Spitzer (3.6, 4.5, 5.8 and 8.0 m images. The preliminary results of one of this region, IRAS 19388+2357(MOL110 are discussed. In this region a dense core has been detected in the far-infrared, and a young stellar cluster has been found around this core. Combining near-IR data with Spitzer and Herschel photometry we have derived the spectral energy distribution of Mol110. Finally comparing our H2 and Kc narrow-band images, we have found an H2 jet in this region.

  9. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    Science.gov (United States)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  10. Wavelength standards in the infrared

    CERN Document Server

    Rao, KN

    2012-01-01

    Wavelength Standards in the Infrared is a compilation of wavelength standards suitable for use with high-resolution infrared spectrographs, including both emission and absorption standards. The book presents atomic line emission standards of argon, krypton, neon, and xenon. These atomic line emission standards are from the deliberations of Commission 14 of the International Astronomical Union, which is the recognized authority for such standards. The text also explains the techniques employed in determining spectral positions in the infrared. One of the techniques used includes the grating con

  11. TOTAL INFRARED LUMINOSITY ESTIMATION OF RESOLVED AND UNRESOLVED GALAXIES

    International Nuclear Information System (INIS)

    Boquien, M.; Calzetti, D.; Bendo, G.; Dale, D.; Engelbracht, C.; Kennicutt, R.; Lee, J. C.; Van Zee, L.; Moustakas, J.

    2010-01-01

    The total infrared (TIR) luminosity from galaxies can be used to examine both star formation and dust physics. We provide here new relations to estimate the TIR luminosity from various Spitzer bands, in particular from the 8 μm and 24 μm bands. To do so, we use data for 45'' subregions within a subsample of nearby face-on spiral galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) that have known oxygen abundances as well as integrated galaxy data from the SINGS, the Local Volume Legacy survey (LVL), and Engelbracht et al. samples. Taking into account the oxygen abundances of the subregions, the star formation rate intensity, and the relative emission of the polycyclic aromatic hydrocarbons at 8 μm, the warm dust at 24 μm, and the cold dust at 70 μm and 160 μm, we derive new relations to estimate the TIR luminosity from just one or two of the Spitzer bands. We also show that the metallicity and the star formation intensity must be taken into account when estimating the TIR luminosity from two wave bands, especially when data longward of 24 μm are not available.

  12. The All-Wavelength Extended Groth Strip International Survey(AEGIS) Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.; Guhathakurta, P.; Konidaris, N.P.; Newman, J.A.; Ashby, M.L.N.; Biggs, A.D.; Barmby, P.; Bundy, K.; Chapman, S.C.; Coil,A.L.; Conselice, C.J.; Cooper, M.C.; Croton, D.J.; Eisenhardt, P.R.M.; Ellis, R.S.; Faber, S.M.; Fang, T.; Fazio, G.G.; Georgakakis, A.; Gerke,B.F.; Goss, W.M.; Gwyn, S.; Harker, J.; Hopkins, A.M.; Huang, J.-S.; Ivison, R.J.; Kassin, S.A.; Kirby, E.N.; Koekemoer, A.M.; Koo, D.C.; Laird, E.S.; Le Floc' h, E.; Lin, L.; Lotz, J.M.; Marshall, P.J.; Martin,D.C.; Metevier, A.J.; Moustakas, L.A.; Nandra, K.; Noeske, K.G.; Papovich, C.; Phillips, A.C.; Rich,R. M.; Rieke, G.H.; Rigopoulou, D.; Salim, S.; Schiminovich, D.; Simard, L.; Smail, I.; Small,T.A.; Weiner,B.J.; Willmer, C.N.A.; Willner, S.P.; Wilson, G.; Wright, E.L.; Yan, R.

    2006-10-13

    In this the first of a series of Letters, we present a description of the panchromatic data sets that have been acquired in the Extended Groth Strip region of the sky. Our survey, the All-wavelength Extended Groth Strip International Survey (AEGIS), is intended to study the physical properties and evolutionary processes of galaxies at z{approx}1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS X-ray (0.5-10 keV), GALEX ultraviolet (1200-2500 Angstroms), CFHT/MegaCam Legacy Survey optical (3600-9000 Angstroms), CFHT/CFH12K optical (4500-9000 Angstroms), Hubble Space Telescope/ACS optical (4400-8500 Angstroms), Palomar/WIRC near-infrared (1.2-2.2 {micro}m), Spitzer/IRAC mid-infrared (3.6-8.0 {micro}m), Spitzer/MIPS far-infrared (24-70 {micro}m), and VLA radio continuum (6-20 cm). In addition, this region of the sky has been targeted for extensive spectroscopy using the DEIMOS spectrograph on the Keck II 10 m telescope. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.

  13. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Ave., Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2012-01-10

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 {mu}m. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 {mu}m. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 {mu}m observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of {approx}3 pc. Assuming a velocity of 100 km s{sup -1} for the jet material gives an age of 3 Multiplication-Sign 10{sup 4} yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  14. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    International Nuclear Information System (INIS)

    Winston, E.; Wolk, S. J.; Bourke, T. L.; Spitzbart, B.; Megeath, S. T.; Gutermuth, R.

    2012-01-01

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 μm. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 μm. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 μm observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of ∼3 pc. Assuming a velocity of 100 km s –1 for the jet material gives an age of 3 × 10 4 yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  15. Using commercial amateur astronomical spectrographs

    CERN Document Server

    Hopkins, Jeffrey L

    2014-01-01

    Amateur astronomers interested in learning more about astronomical spectroscopy now have the guide they need. It provides detailed information about how to get started inexpensively with low-resolution spectroscopy, and then how to move on to more advanced  high-resolution spectroscopy. Uniquely, the instructions concentrate very much on the practical aspects of using commercially-available spectroscopes, rather than simply explaining how spectroscopes work. The book includes a clear explanation of the laboratory theory behind astronomical spectrographs, and goes on to extensively cover the practical application of astronomical spectroscopy in detail. Four popular and reasonably-priced commercially available diffraction grating spectrographs are used as examples. The first is a low-resolution transmission diffraction grating, the Star Analyser spectrograph. The second is an inexpensive fiber optic coupled bench spectrograph that can be used to learn more about spectroscopy. The third is a newcomer, the ALPY ...

  16. MSE spectrograph optical design: a novel pupil slicing technique

    Science.gov (United States)

    Spanò, P.

    2014-07-01

    The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.

  17. The Performance and Scientific Rationale for an Infrared Imaging Fourier Transform Spectrograph on a Large Space Telescope

    National Research Council Canada - National Science Library

    Graham, James R; Abrams, Mark; Bennett, C; Carr, J; Cook, K; Dey, A; Najita, J; Wishnow, E

    1998-01-01

    .... We consider the relationship between pixel size, spectral resolution, and diameter of the beam splitter for imaging and nonimaging Fourier transform spectrographs and give the condition required...

  18. Spitzer deep and wide legacy mid- and far-infrared number counts and lower limits of cosmic infrared background

    Science.gov (United States)

    Béthermin, M.; Dole, H.; Beelen, A.; Aussel, H.

    2010-03-01

    Aims: We aim to place stronger lower limits on the cosmic infrared background (CIB) brightness at 24 μm, 70 μm and 160 μm and measure the extragalactic number counts at these wavelengths in a homogeneous way from various surveys. Methods: Using Spitzer legacy data over 53.6 deg2 of various depths, we build catalogs with the same extraction method at each wavelength. Completeness and photometric accuracy are estimated with Monte-Carlo simulations. Number count uncertainties are estimated with a counts-in-cells moment method to take galaxy clustering into account. Furthermore, we use a stacking analysis to estimate number counts of sources not detected at 70 μm and 160 μm. This method is validated by simulations. The integration of the number counts gives new CIB lower limits. Results: Number counts reach 35 μJy, 3.5 mJy and 40 mJy at 24 μm, 70 μm, and 160 μm, respectively. We reach deeper flux densities of 0.38 mJy at 70, and 3.1 at 160 μm with a stacking analysis. We confirm the number count turnover at 24 μm and 70 μm, and observe it for the first time at 160 μm at about 20 mJy, together with a power-law behavior below 10 mJy. These mid- and far-infrared counts: 1) are homogeneously built by combining fields of different depths and sizes, providing a legacy over about three orders of magnitude in flux density; 2) are the deepest to date at 70 μm and 160 μm; 3) agree with previously published results in the common measured flux density range; 4) globally agree with the Lagache et al. (2004) model, except at 160 μm, where the model slightly overestimates the counts around 20 and 200 mJy. Conclusions: These counts are integrated to estimate new CIB firm lower limits of 2.29-0.09+0.09 nW m-2 sr-1, 5.4-0.4+0.4 nW m-2 sr-1, and 8.9-1.1+1.1 nW m-2 sr-1 at 24 μm, 70 μm, and 160 μm, respectively, and extrapolated to give new estimates of the CIB due to galaxies of 2.86-0.16+0.19 nW m-2 sr-1, 6.6-0.6+0.7 nW m-2 sr-1, and 14.6-2.9+7.1 nW m-2 sr-1

  19. PROPER MOTIONS OF YOUNG STELLAR OUTFLOWS IN THE MID-INFRARED WITH SPITZER (IRAC). I. THE NGC 1333 REGION

    International Nuclear Information System (INIS)

    Raga, A. C.; Noriega-Crespo, A.; Carey, S. J.; Arce, H. G.

    2013-01-01

    We use two 4.5 μm Spitzer (IRAC) maps of the NGC 1333 region taken over a ∼7 yr interval to determine proper motions of its associated outflows. This is a first successful attempt at obtaining proper motions of stellars' outflow from Spitzer observations. For the outflow formed by the Herbig-Haro objects HH7, 8, and 10, we find proper motions of ∼9-13 km s –1 , which are consistent with previously determined optical proper motions of these objects. We determine proper motions for a total of eight outflows, ranging from ∼10 to 100 km s –1 . The derived proper motions show that out of these eight outflows, three have tangential velocities ≤20 km s –1 . This result shows that a large fraction of the observed outflows have low intrinsic velocities and that the low proper motions are not merely a projection effect.

  20. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD: HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME?

    International Nuclear Information System (INIS)

    Oliveira, Isa; Van Dishoeck, Ewine F.; Lahuis, Fred; Pontoppidan, Klaus M.; MerIn, Bruno; Geers, Vincent C.; Joergensen, Jes K.; Olofsson, Johan; Augereau, Jean-Charles; Brown, Joanna M.

    2010-01-01

    We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35 μm) spectra of a complete flux-limited sample (≥3 mJy at 8 μm) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and classified. Background stars (with slope consistent with a reddened stellar spectrum and silicate features in absorption), galaxies (with redshifted polycyclic aromatic hydrocarbon (PAH) features), and a planetary nebula (with high ionization lines) amount to 22% of contamination in this sample, leaving 115 true YSOs. Sources with rising spectra and ice absorption features, classified as embedded Stage I protostars, amount to 18% of the sample. The remaining 82% (94) of the disk sources are analyzed in terms of spectral energy distribution shapes, PAHs, and silicate features. The presence, strength, and shape of these silicate features are used to infer disk properties for these systems. About 8% of the disks have 30/13 μm flux ratios consistent with cold disks with inner holes or gaps, and 3% of the disks show PAH emission. Comparison with models indicates that dust grains in the surface of these disks have sizes of at least a few μm. The 20 μm silicate feature is sometimes seen in the absence of the 10 μm feature, which may be indicative of very small holes in these disks. No significant difference is found in the distribution of silicate feature shapes and strengths between sources in clusters and in the field. Moreover, the results in Serpens are compared with other well-studied samples: the c2d IRS sample distributed over five clouds and a large sample of disks in the Taurus star-forming region. The remarkably similar distributions of silicate feature characteristics in samples with different environment and median ages-if significant-imply that the dust population in the disk surface results from an equilibrium between dust growth and destructive collision processes

  1. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    Science.gov (United States)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  2. Physical Characterization of Warm Spitzer Observed Near-Earth Objects

    NARCIS (Netherlands)

    Thomas, C. A.; Emery, J. P.; Trilling, D. E.; Delbo, M.; Hora, J. L.; Mueller, M.

    2012-01-01

    We have undertaken a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program. The combination of Spitzer derived albedos and diameters with spectroscopic data will enhance our understanding of the NEO population.

  3. Spitzer/IRS Observations Of Multiple Main-Belt And Binary Near-Earth Asteroids

    Science.gov (United States)

    Enriquez, J. Emilio; Marchis, F.; Emery, J. P.; Im, S.

    2010-10-01

    Since the discovery of Ida's companion in 1993, 195 companions of asteroids have been discovered. To understand the formation process of these interesting bodies, their physical properties such as their bulk density, size, shape, and surface roughness need to be determined. During the Spitzer Cycle-4, we obtained IRS thermal emission spectra (5-42 um) of 23 known binary systems. The majority of asteroids are from the main-belt (16), while the rest are NEOs (7). After extracting the thermal spectra, we used a modified Standard Thermal Model (STM) to calculate their equivalent diameter (from 0.8 km to 237 km), their albedo (from 0.04 for C-type to 0.394 for a V-type) and their beaming factor related to the surface roughness and thermal inertia. We derive their emissivity spectra, which is useful to detect silicate features. Combining these measurements with 3D-models of these multiple asteroid systems obtained by lightcurve inversion, we should be able to derive an accurate estimate of their bulk-density and contrast them with their taxonomic classes. Preliminary studies by Marchis et al. (2008)1, suggested a relationship between bulk density and the taxonomic class of asteroids, which varies from 0.9 g/cc for C-complex to 2.4 g/cc for S-complex asteroids. The National Science Foundation supported this research under award number AAG-0807468. It was conducted with the Spitzer space telescope, which is operated by JPL under a contract with NASA. 1 Marchis et al. , 2008, "Mid-infrared Spectra of Binary Asteroids With Spitzer/IRS", 40th DPS Meeting, Bulletin of the American Astronomical Society, 40, 508

  4. A SPITZER IRS STUDY OF INFRARED VARIABILITY IN TRANSITIONAL AND PRE-TRANSITIONAL DISKS AROUND T TAURI STARS

    International Nuclear Information System (INIS)

    Espaillat, C.; Furlan, E.; D'Alessio, P.; Sargent, B.; Muzerolle, J.; Nagel, E.; Calvet, N.; Watson, Dan M.

    2011-01-01

    We present a Spitzer IRS study of variability in 14 T Tauri stars in the Taurus and Chamaeleon star-forming regions. The sample is composed of transitional and pre-transitional objects which contain holes and gaps in their disks. We detect variability between 5 and 38 μm in all but two of our objects on timescales of 2-3 years. Most of the variability observed can be classified as seesaw behavior, whereby the emission at shorter wavelengths varies inversely with the emission at longer wavelengths. For many of the objects we can reasonably reproduce the observed variability using irradiated disk models, particularly by changing the height of the inner disk wall by ∼20%. When the inner wall is taller, the emission at the shorter wavelengths is higher since the inner wall dominates the emission at 2-8 μm. The taller inner wall casts a larger shadow on the outer disk wall, leading to less emission at wavelengths beyond 20 μm where the outer wall dominates. We discuss how the possible presence of planets in these disks could lead to warps that cause changes in the height of the inner wall. We also find that crystalline silicates are common in the outer disks of our objects and that in the four disks in the sample with the most crystalline silicates, variability on timescales of 1 week is present. In addition to explaining the infrared variability described above, planets can create shocks and collisions which can crystallize the dust and lead to short timescale variability.

  5. Tomographic extreme-ultraviolet spectrographs: TESS.

    Science.gov (United States)

    Cotton, D M; Stephan, A; Cook, T; Vickers, J; Taylor, V; Chakrabarti, S

    2000-08-01

    We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 10(6) photons/(4pi str cm(2)s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80-140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

  6. Long Term Preservation of Data Analysis Software at the NASA/IPAC Infrared Science Archive

    NARCIS (Netherlands)

    Teplitz, H.I.; Groom, S.; Brooke, T.; Desai, V.; Engler, D.; Fowler, J.; Good, J.; Khan, I.; Levine, D.; Alexov, A.

    2012-01-01

    The NASA/IPAC Infrared Science Archive (IRSA) curates both data and analysis tools from NASA's infrared missions. As part of our primary goal, we provide long term access to mission-specific software from projects such as IRAS and Spitzer. We will review the efforts by IRSA (and within the greater

  7. SPITZER OBSERVATIONS OF GX17+2: CONFIRMATION OF A PERIODIC SYNCHROTRON SOURCE

    International Nuclear Information System (INIS)

    Harrison, Thomas E.; McNamara, Bernard J.; Bornak, Jillian; Gelino, Dawn M.; Wachter, Stefanie; Rupen, Michael P.; Gelino, Christopher R.

    2011-01-01

    GX17+2 is a low-mass X-ray binary (LMXB) that is also a member of a small family of LMXBs known as 'Z-sources' that are believed to have persistent X-ray luminosities that are very close to the Eddington limit. GX17+2 is highly variable at both radio and X-ray frequencies, a feature common to Z-sources. What sets GX17+2 apart is its dramatic variability in the near-infrared, where it changes by ΔK ∼ 3 mag. Previous investigations have shown that these brightenings are periodic, recurring every 3.01 days. Given its high extinction (A V ≥ 9 mag), it has not been possible to ascertain the nature of these events with ground-based observations. We report mid-infrared Spitzer observations of GX17+2 which indicate a synchrotron spectrum for the infrared brightenings. In addition, GX17+2 is highly variable in the mid-infrared during these events. The combination of the large-scale outbursts, the presence of a synchrotron spectrum, and the dramatic variability in the mid-infrared suggest that the infrared brightening events are due to the periodic transit of a synchrotron jet across our line of sight. An analysis of both new, and archival, infrared observations has led us to revise the period for these events to 3.0367 days. We also present new Rossi X-Ray Timing Explorer (RXTE) data for GX17+2 obtained during two predicted infrared brightening events. Analysis of these new data, and data from the RXTE archive, indicates that there is no correlation between the X-ray behavior of this source and the observed infrared brightenings. We examine various scenarios that might produce periodic jet emission.

  8. A MID-INFRARED IMAGING SURVEY OF SUBMILLIMETER-SELECTED GALAXIES WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Hainline, Laura J.; Blain, A. W.; Smail, Ian; Frayer, D. T.; Chapman, S. C.; Ivison, R. J.; Alexander, D. M.

    2009-01-01

    We present Spitzer-IRAC and MIPS mid-IR observations of a sample of 73 radio-detected submillimeter-selected galaxies (SMGs) with spectroscopic redshifts, the largest such sample published to date. From our data, we find that IRAC colors of SMGs are much more uniform as compared with rest-frame UV and optical colors, and z>1.5 SMGs tend to be redder in their mid-IR colors than both field galaxies and lower-z SMGs. However, the IRAC colors of the SMGs overlap those of field galaxies sufficiently that color-magnitude and color-color selection criteria suggested in the literature to identify SMG counterparts produce ambiguous counterparts within an 8'' radius in 20%-35% of cases. We use a rest-frame J-H versus H-K color-color diagram and a S 24 /S 8.0 versus S 8.0 /S 4.5 color-color diagram to determine that 13%-19% of our sample are likely to contain active galactic nuclei which dominate their mid-IR emission. We observe in the rest-frame JHK colors of our sample that the rest-frame near-IR emission of SMGs does not resemble that of the compact nuclear starburst observed in local ultraluminous IR galaxies and is consistent with more widely distributed star formation. We take advantage of the fact that many high-z galaxy populations selected at different wavelengths are detected by Spitzer to carry out a brief comparison of mid-IR properties of SMGs to UV-selected high-z galaxies, 24 μm-selected galaxies, and high-z radio galaxies, and find that SMGs have mid-IR fluxes and colors which are consistent with being more massive and more reddened than UV-selected galaxies, while the IRAC colors of SMGs are most similar to powerful high-z radio galaxies.

  9. VLT/SINFONI Observations of Spitzer /MIPSGAL 24 μ m Circumstellar Shells: Revealing the Natures of Their Central Sources

    Energy Technology Data Exchange (ETDEWEB)

    Silva, K. M. [Physics and Astronomy Department, University of Hawaii Hilo, 200 W Kawili Street, Hilo, HI 96720 (United States); Flagey, N. [Canada–France–Hawaii Telescope Corporation, 65-1238 Mamalahoa Highway, Kamuela, HI 96743 (United States); Noriega-Crespo, A. [Space Telescope Science Institue, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Carey, S. [Infrared Processing Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Ingallinera, A., E-mail: silvakm@hawaii.edu [INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, I-95123 Catania (Italy)

    2017-03-01

    We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H - and K -band spectra of potential central stars within the inner 8″-by-8″ regions of 55 MIPSGAL “bubbles” (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer /MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. We also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf–Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells’ morphologies in the mid-IR and central sources spectral types.

  10. The Geometry of the Infrared and X-Ray Obscurer in a Dusty Hyperluminous Quasar

    DEFF Research Database (Denmark)

    Farrah, Duncan; Baloković, Mislav; Stern, Daniel

    2016-01-01

    We study the geometry of the active galactic nucleus (AGN) obscurer in IRAS 09104+4109, an IR-luminous, radio-intermediate FR-I source at z = 0.442, using infrared data from Spitzer and Herschel, X-ray data from NuSTAR, Swift, Suzaku, and Chandra, and an optical spectrum from Palomar. The infrare...

  11. SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Shvartzvald, Y.; Bryden, G.; Henderson, C. B. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Bozza, V.; Novati, S. Calchi [Dipartimento di Fisica “E. R. Caianiello,” Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Friedmann, M. [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hundertmark, M. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen K (Denmark); Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Carey, S. [Spitzer, Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Kerr, T.; Varricatt, W. [UKIRT, 660 N. Aohoku Place, University Park, Hilo, HI 96720 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Collaboration: and; Spitzer team; OGLE group; KMTNet group; Wise group; RoboNet; MiNDSTEp; and others

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M{sub 1} > 1.35 M{sub ⊙} (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r{sub ⊥} = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  12. Mid-Infrared Observations of the White Dwarf Brown Dwarf Binary GD 1400

    OpenAIRE

    Farihi, J.; Zuckerman, B.; Becklin, E. E.

    2005-01-01

    Fluxes are measured for the DA white dwarf plus brown dwarf pair GD 1400 with the Infrared Array Camera on the {\\em Spitzer Space Telescope}. GD 1400 displays an infrared excess over the entire $3-8\\mu$m region consistent with the presence of a mid- to late-type L dwarf companion. A discussion is given regarding current knowledge of this unique system.

  13. Physical Characterization of Warm Spitzer-observed Near-Earth Objects

    Science.gov (United States)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbo, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling et al., 2010). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (approx. 0.7-2.5 microns) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of Explore-NEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with band area ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed.The results of our

  14. Advancing toward far-infrared interferometry in space through coordinated international efforts

    NARCIS (Netherlands)

    Leisawitz, D.; Baryshev, A.; Griffin, M. J.; Helmich, F. P.; Ivison, R. J.; Rinehart, S. A.; Savini, G.; Shibai, H.

    2013-01-01

    The international far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation, Active Galactic Nuclei, chemical enrichment in

  15. X-ray Counterparts of Infrared Faint Radio Sources

    Science.gov (United States)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2IFRS, but if confirmed, the increased AGN numbers at these redshifts will account for the unresolved part of the X-ray background. The identification of X-ray counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  16. Spitzer Observations of the X-ray Sources of NGC 4485/90

    Science.gov (United States)

    Vazquez, Gerardo A.; Colbert, E.; Hornschemeier, A.; Malhotra, S.; Roberts, T.; Ward, M.

    2006-06-01

    The mechanism for forming (or igniting) so-called Ultra-Luminous X- ray sources (ULXs) is very poorly understood. In order to investigate the stellar and gaseous environment of ULXs, we have observed the nearby starburst galaxy system NGC 4485/90 with Spitzer's IRAC and IRS instruments. High-quality mid-infrared images and spectra are used to characterize the stellar history of stars near the ULXs, and the ionization state of the surrounding gas. NGC 4485/90 fortuitively hosts six ULXs, and we have analyzed IRAC images and IRS spectra of all six regions. We also observed two "comparison" regions with no X-ray sources. Here we present our preliminary findings on the similarities and differences between the stellar and gaseous components near the ULXs.

  17. THE MID-INFRARED EVOLUTION OF THE FU ORIONIS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Green, Joel D.; Jones, Olivia C.; Poteet, Charles A.; Sargent, Benjamin A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Keller, Luke D. [Department of Physics and Astronomy, Ithaca College, Ithaca, NY (United States); Yang, Yao-Lun; Evans II, Neal J. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Fischer, William J. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rebull, Luisa M. [IPAC, Pasadena, CA 91125 (United States)

    2016-11-20

    We present new SOFIA-FORCAST observations obtained in 2016 February of the archetypal outbursting low-mass young stellar object FU Orionis, and we compare the continuum, solid-state, and gas properties with mid-infrared data obtained at the same wavelengths in 2004 with Spitzer -IRS. In this study, we conduct the first mid-infrared spectroscopic comparison of an FUor over a long time period. Over a 12-year period, UBVR monitoring indicates that FU Orionis has continued its steady decrease in overall brightness by ∼14%. We find that this decrease in luminosity occurs only at wavelengths ≲20 μ m. In particular, the continuum shortward of the silicate emission complex at 10 μ m exhibits a ∼12% (∼3 σ ) drop in flux density but no apparent change in slope; both the Spitzer and SOFIA spectra are consistent with a 7200 K blackbody. Additionally, the detection of water absorption is consistent with the Spitzer spectrum. The silicate emission feature at 10 μ m continues to be consistent with unprocessed grains, unchanged over 12 years. We conclude that either the accretion rate in FU Orionis has decreased by ∼12–14% over this time baseline or the inner disk has cooled, but the accretion disk remains in a superheated state outside the innermost region.

  18. Sky Subtraction with Fiber-Fed Spectrograph

    Science.gov (United States)

    Rodrigues, Myriam

    2017-09-01

    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  19. THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, G. C. [Cornell Center for Astrophysics and Planetary Science, Cornell Univ., Ithaca, NY 14853-6801 (United States); Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); McDonald, I.; Zijlstra, A. A. [Jodrell Bank Centre for Astrophysics, Univ. of Manchester, Manchester M13 9PL (United Kingdom); Groenewegen, M. A. T. [Koninklijke Sterrenwacht van België, Ringlaan 3, B-1180 Brussels (Belgium); Wood, P. R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Lagadec, E. [Observatoire de la Côte d’Azur, F-06300, Nice (France); Boyer, M. L. [CRESST and Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD, 20771 (United States); Kemper, F.; Srinivasan, S. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C. (China); Matsuura, M. [School of Physics and Astronomy, Cardiff University, Queen’s Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Van Loon, J. Th. [Lennard Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Volk, K., E-mail: sloan@isc.astro.cornell.edu [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2016-07-20

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C{sub 2}H{sub 2} at 7.5 μ m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.

  20. THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS

    International Nuclear Information System (INIS)

    Sloan, G. C.; Kraemer, K. E.; McDonald, I.; Zijlstra, A. A.; Groenewegen, M. A. T.; Wood, P. R.; Lagadec, E.; Boyer, M. L.; Kemper, F.; Srinivasan, S.; Matsuura, M.; Sahai, R.; Sargent, B. A.; Van Loon, J. Th.; Volk, K.

    2016-01-01

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C 2 H 2 at 7.5 μ m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.

  1. The deterministic optical alignment of the HERMES spectrograph

    Science.gov (United States)

    Gers, Luke; Staszak, Nicholas

    2014-07-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.

  2. Physical characterization of Near Earth Objects with Spitzer

    Science.gov (United States)

    Trilling, David; Hora, Joseph; Mommert, Michael; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Migo; Smith, Howard

    2018-05-01

    We propose here an efficient, flux-limited survey of 426 optically discovered NEOs in order to measure their diameters and albedos. We include only targets not previously detected by Spitzer or NEOWISE and includes all NEOs available to Spitzer in Cycle 14. This program will maintain the fraction of all known NEOs with measured diameters and albedos at around 20% even in the face of increasingly successful NEO discovery surveys. By the conclusion of this program nearly 3500 NEOs will have measured diameters and albedos, with nearly 3000 of those observations being made by Spitzer and our team. We will determine an independent size distribution of NEOs at 100 meters that is free from albedo assumptions, addressing a current controversy. We will also derive, through our albedo measurements, the compositional distribution of NEOs as a function of size. We will measure or constrain lightcurves for more than 400 NEOs, thus constraining their shapes in addition to sizes and compositions. This catalog will enable a number of other science cases to be pursued by us and other researchers. Our team has unmatched experience observing NEOs with Spitzer.

  3. On the sensitivity of heterodyne detectors in far infrared astronomy

    International Nuclear Information System (INIS)

    Bueren, H.G. van

    1976-01-01

    The signal-to-noise ratio of astronomical heterodyne detection infrared spectrographs is considered, taking into account background, linewidth and seeing effects. A comparison with incoherent detector systems is presented. (author)

  4. MID-INFRARED SPECTRA OF TRANSITIONAL DISKS IN THE CHAMAELEON I CLOUD

    International Nuclear Information System (INIS)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Sargent, B.; McClure, M. K.; Green, J. D.; Harrold, Samuel T.; Furlan, E.; Najita, J.; Espaillat, C.; Calvet, N.; Luhman, K. L.

    2009-01-01

    We present 5-40 μm Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleon I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.

  5. NRES: The Network of Robotic Echelle Spectrographs

    Science.gov (United States)

    Siverd, Robert; Brown, Tim; Henderson, Todd; Hygelund, John; Barnes, Stuart; de Vera, Jon; Eastman, Jason; Kirby, Annie; Smith, Cary; Taylor, Brook; Tufts, Joseph; van Eyken, Julian

    2018-01-01

    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four (up to six in the future) identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12 once the system reaches full capability. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities.Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. After several more months of additional testing and commissioning, regular science operations began with this node in September 2017. The second NRES spectrograph was installed at McDonald Observatory in September 2017 and released to the network after its own brief commissioning period, extending spectroscopic capability to the Northern hemisphere. The third NRES spectrograph was installed at SAAO in November 2017 and released to our science community just before year's end. The fourth NRES unit shipped in October and is currently en route to Wise Observatory in Israel with an expected release to the science community in early 2018.We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first three units, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of

  6. Exoplanet Characterization With Spitzer Eclipses

    Science.gov (United States)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  7. SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Fraine, Jonathan D.; Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Gillon, Michaeel; Jehin, Emmanueel [Institute d' Astrophysique et de Geophysique, Universite de Liege, Liege (Belgium); Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Desert, Jean-Michel, E-mail: jfraine@astro.umd.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2013-03-10

    We observed the transiting super-Earth exoplanet GJ1214b using warm Spitzer at 4.5 {mu}m wavelength during a 20 day quasi-continuous sequence in 2011 May. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a reanalysis of previous transit observations by Desert et al. In total, we analyze 14 transits of GJ1214b at 4.5 {mu}m, 3 transits at 3.6 {mu}m, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe and Burrows. Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke and Seager and Howe and Burrows using a {chi}{sup 2} analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe and Burrows tholin-haze model remains the best fit, even when systematic differences among observers are considered.

  8. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    International Nuclear Information System (INIS)

    Smee, Stephen A.; Barkhouser, Robert H.; Gunn, James E.; Carr, Michael A.; Lupton, Robert H.; Loomis, Craig; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M.; Leger, French; Owen, Russell; Anderson, Lauren; Dawson, Kyle S.; Olmstead, Matthew D.; Brinkmann, Jon; Long, Dan; Honscheid, Klaus; Harding, Paul; Annis, James

    2013-01-01

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyα absorption of 160,000 high redshift quasars over 10,000 deg 2 of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = λ/FWHM ∼ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < λ < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances

  9. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Smee, Stephen A.; Barkhouser, Robert H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gunn, James E.; Carr, Michael A.; Lupton, Robert H.; Loomis, Craig [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Uomoto, Alan [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Roe, Natalie; Schlegel, David [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rockosi, Constance M. [UC Observatories and Department of Astronomy and Astrophysics, University of California, Santa Cruz, 375 Interdisciplinary Sciences Building (ISB) Santa Cruz, CA 95064 (United States); Leger, French; Owen, Russell; Anderson, Lauren [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 09195 (United States); Dawson, Kyle S.; Olmstead, Matthew D. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Brinkmann, Jon; Long, Dan [Apache Point Observatory, Sunspot, NM 88349 (United States); Honscheid, Klaus [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Annis, James, E-mail: smee@pha.jhu.edu [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); and others

    2013-08-01

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Ly{alpha} absorption of 160,000 high redshift quasars over 10,000 deg{sup 2} of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = {lambda}/FWHM {approx} 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < {lambda} < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.

  10. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Smee, Stephen A.; Gunn, James E.; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M.; Carr, Michael A.; Leger, French; Dawson, Kyle S.; Olmstead, Matthew D.; Brinkmann, Jon; Owen, Russell; Barkhouser, Robert H.; Honscheid, Klaus; Harding, Paul; Long, Dan; Lupton, Robert H.; Loomis, Craig; Anderson, Lauren; Annis, James; Bernardi, Mariangela; Bhardwaj, Vaishali; Bizyaev, Dmitry; Bolton, Adam S.; Brewington, Howard; Briggs, John W.; Burles, Scott; Burns, James G.; Castander, Francisco Javier; Connolly, Andrew; Davenport, James R. A.; Ebelke, Garrett; Epps, Harland; Feldman, Paul D.; Friedman, Scott D.; Frieman, Joshua; Heckman, Timothy; Hull, Charles L.; Knapp, Gillian R.; Lawrence, David M.; Loveday, Jon; Mannery, Edward J.; Malanushenko, Elena; Malanushenko, Viktor; Merrelli, Aronne James; Muna, Demitri; Newman, Peter R.; Nichol, Robert C.; Oravetz, Daniel; Pan, Kaike; Pope, Adrian C.; Ricketts, Paul G.; Shelden, Alaina; Sandford, Dale; Siegmund, Walter; Simmons, Audrey; Smith, D. Shane; Snedden, Stephanie; Schneider, Donald P.; SubbaRao, Mark; Tremonti, Christy; Waddell, Patrick; York, Donald G.

    2013-07-12

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.

  11. A Statistical Approach to Exoplanetary Molecular Spectroscopy Using Spitzer Eclipses

    Science.gov (United States)

    Deming, Drake; Garhart, Emily; Burrows, Adam; Fortney, Jonathan; Knutson, Heather; Todorov, Kamen

    2018-01-01

    Secondary eclipses of exoplanets observed using the Spitzer Space Telescope measure the total emission emergent from exoplanetary atmospheres integrated over broad photometric bands. Spitzer photometry is excellent for measuring day side temperatures, but is less well suited to the detection of molecular absorption or emission features. Even for very hot exoplanets, it can be difficult to attain the accuracy on eclipse depth that is needed to unambiguously interpret the Spitzer results in terms of molecular absorption or emission. However, a statistical approach, wherein we seek deviations from a simple blackbody planet as a function of the planet's equilibrium temperature, shows promise for defining the nature and strength of molecular absorption in ensembles of planets. In this paper, we explore such an approach using secondary eclipses observed for tens of hot exoplanets during Spitzer's Cycles 10, 12, and 13. We focus on the possibility that the hottest planets exhibit molecular features in emission, due to temperature inversions.

  12. Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet stars

    Science.gov (United States)

    Morello, Giuseppe; Morris, P. W.; Van Dyk, S. D.; Marston, A. P.; Mauerhan, J. C.

    2018-01-01

    We have investigated and applied machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet (WR) candidates. Objects taken from the Spitzer Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) catalogue of the infrared objects in the Galactic plane can be classified into different stellar populations based on the colours inferred from their broad-band photometric magnitudes [J, H and Ks from 2 Micron All Sky Survey (2MASS), and the four Spitzer/IRAC bands]. The algorithms tested in this pilot study are variants of the k-nearest neighbours approach, which is ideal for exploratory studies of classification problems where interrelations between variables and classes are complicated. The aims of this study are (1) to provide an automated tool to select reliable WR candidates and potentially other classes of objects, (2) to measure the efficiency of infrared colour selection at performing these tasks and (3) to lay the groundwork for statistically inferring the total number of WR stars in our Galaxy. We report the performance results obtained over a set of known objects and selected candidates for which we have carried out follow-up spectroscopic observations, and confirm the discovery of four new WR stars.

  13. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    International Nuclear Information System (INIS)

    Kun, M.; Moór, A.; Wolf-Chase, G.; Apai, D.; Balog, Z.; O’Linger-Luscusk, J.; Moriarty-Schieven, G. H.

    2016-01-01

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27 flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.

  14. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    Energy Technology Data Exchange (ETDEWEB)

    Kun, M.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Wolf-Chase, G. [Astronomy Department, Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States); Apai, D. [Steward Observatory, 933 N. Cherry Avenue, Tucson, AZ 85719 (United States); Balog, Z. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); O’Linger-Luscusk, J. [On leave from California Institute of Technology, 1200 E. California Avenue, Pasadena, CA 91125 (United States); Moriarty-Schieven, G. H., E-mail: kun@konkoly.hu [National Research Council—Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2016-06-01

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27 flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.

  15. Magnetic spectrograph for the Holifield heavy ion research facility

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.; Enge, H.A.; Erskine, J.R.; Hendrie, D.L.; LeVine, M.J.

    1977-01-01

    The need for a new generation magnetic spectrograph for the Holifield Heavy Ion Research Facility is discussed. The advantages of a magnetic spectrograph for heavy ion research are discussed, as well as some of the types of experiments for which such an instrument is suited. The limitations which the quality of the incident beam, target and spectrograph itself impose on high resolution heavy ion measurements are discussed. Desired features of an ideal new spectrograph are: (1) intrinsic resolving power E/ΔE greater than or equal to 3000; (2) maximum solid angle greater than or equal to 20 msr; (3) dispersion approx. 4-8m; (4) maximum energy interval approx. 30%; and (5) mass-energy product greater than or equal to 200. Various existing and proposed spectrographs are compared with the specifications for a new heavy ion magnet design

  16. The star formation history of the universe as viewed in the infrared

    International Nuclear Information System (INIS)

    Magnelli, Benjamin

    2009-01-01

    This thesis is devoted to the estimation of the cosmic star formation history of the Universe through the study of spectral properties of galaxies observed by the Spitzer satellite in the mid-and-far- infrared. My work begins with the extraction of sources contained in the Spitzer images and with the creation of multi- wavelengths catalogs. Using those catalogs I study the spectral properties of infrared galaxies and their evolution with redshift. From the comparison of these properties with the predictions of standard spectral libraries, I show that galaxies situated beyond z∼1.3 present significant evolutions in their spectral properties. Based on these spectral properties, I estimate the cosmic star formation history of the Universe from z∼0 to z∼2.3. This history is characterized by a sharp increase of the star formation density of the Universe form z∼0 and z∼1, followed by a stabilisation phase up to z∼2. This star formation density is dominated between z∼0.8 and z∼2 by luminous infrared galaxies with high star formation rate. Finally, I study the presence of the 3.3 um PAH signature in the spectrum of distant galaxies (0.5 3. (author) [fr

  17. Second generation spectrograph for the Hubble Space Telescope

    Science.gov (United States)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  18. Design of FHiRE: the Fiber High Resolution Echelle Spectrograph

    Science.gov (United States)

    Pierce, Michael J.; McLane, Jacob N.; Pilachowski, C. A.; Kobulnicky, Henry; Jang-Condell, Hannah

    2018-01-01

    The enormous success of the Kepler mission in the discovery of transiting exoplanets implies that the majority of stars have planetary systems. NASA's upcomming Transiting Exoplanet Survey Satellite (TESS) is designed to survey the brightest stars over the entire sky, systems that are accessible to spectroscopic follow-up with mid-sized telescopes. We have undertaken the development of a precision radial velocity spectrograph with the goal of providing ground-based suppoert for TESS. The instrument, known as FHiRE (Fiber High Resolution Echelle spectrograph), is being developed in collaboration with Indiana University and will deployed at the 2.3-meter telescope of the Wyoming InfraRed Observatory (WIRO). FHiRE features a traditional white pupil echelle design with R ~ 60,000 that is fed via two optical fibers from the telescope. Both the science fiber and a simultaneously sampled Thorium-Argon comparison fiber will make use of double mode scramblers. FHiRE itself will be housed within a vacuum enclosure in order to minimize any temperatue variations of the instrument and maximize its radial velocity precision. Together, these two features should enable FHiRE to reach a long-term velocity precision of < 1 m/s. We present the design of FHiRE and its expected performance. In a companion poster (Jang-Condell et al.) we will present the exoplanet science goals of the project.

  19. The All-wavelength Extended Groth Strip International Survey (AEGIS) Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.; Guhathakurta, P.; Konidaris, N.; Newman, J.A.; Ashby, M.L.N.; Biggs, A.D.; Barmby, P.; Bundy, K.; Chapman, S.; Coil, A.L.; Conselice, C.; Cooper, M.; Croton,; Eisenhardt, P.; Ellis, R.; Faber, S.; Fang, T.; Fazio, G.G.; Georgakakis, A.; Gerke, B.; Goss, W.M.; /UC, Berkeley, Astron. Dept. /Lick Observ. /LBL, Berkeley

    2006-07-21

    In this the first of a series of ''Letters'', we present a description of the panchromatic data sets that have been acquired in the Extended Groth Strip region of the sky. Our survey, the All-wavelength Extended Groth Strip International Survey (AEGIS), is intended to study the physical properties and evolutionary processes of galaxies at z {approx} 1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS{sup 30} X-ray (0.5-10 keV), GALEX{sup 31} ultraviolet (1200-2500 A), CFHT/MegaCam Legacy Survey{sup 32} optical (3600-9000 {angstrom}), CFHT/CFH12K optical (4500-9000 {angstrom}), Hubble Space Telescope/ACS{sup 33} optical (4400-8500 {angstrom}), Palomar/WIRC{sup 34} near-infrared (1.2-2.2 {micro}m), Spitzer/IRAC{sup 35} mid-infrared (3.6-8.0 {micro}m), Spitzer/MIPS far-infrared (24-70 {micro}m), and VLA{sup 36} radio continuum (6-20 cm). In addition, this region of the sky has been targeted for extensive spectroscopy using the DEIMOS spectrograph on the Keck II 10 m telescope{sup 37}. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.

  20. Curved VPH gratings for novel spectrographs

    Science.gov (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  1. SPITZER'S MID-INFRARED VIEW ON AN OUTER-GALAXY INFRARED DARK CLOUD CANDIDATE TOWARD NGC 7538

    NARCIS (Netherlands)

    Frieswijk, W. F.; Spaans, M.; Shipman, R. F.; Teyssier, D.; Carey, S. J.; Tielens, A. G. G. M.

    2008-01-01

    Infrared dark clouds (IRDCs) represent the earliest observed stages of clustered star formation, characterized by large column densities of cold and dense molecular material observed in silhouette against a bright background of mid-IR emission. Up to now, IRDCs were predominantly known toward the

  2. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  3. The Size Distribution of Very Small Near Earth Objects As Measured by Warm Spitzer

    NARCIS (Netherlands)

    Trilling, David E.; Hora, J.; Burt, B.; Delbo, M.; Emery, J.; Fazio, G.; Fuentes, C.; Harris, A.; Mueller, M.; Mommert, M.; Smith, H.

    2013-01-01

    We have carried out a pilot search for Near Earth Objects (NEOs) with 84 hours of Warm Spitzer time in April, 2013. Results are obtained through a multi-step process: implanting synthetic objects in the Spitzer data stream; processing the Spitzer data; linking non-sidereal sources to form plausible

  4. Spitzer secondary eclipses of Qatar-1b

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather; Fortney, Jonathan J.

    2018-02-01

    Aims: Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slightly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. Methods: We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 μm wavelengths. We used pixel-level decorrelation to correct for Spitzer's intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Results: Our 3.6 μm eclipse depth is 0.149 ± 0.051% and the 4.5 μm depth is 0.273 ± 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 ± 71 K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day-side only. The day side temperature of the planet is unlikely to be as high (1885 K) as indicated by the ground-based eclipses in the Ks band, unless the planet's emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 ± 0.0017, yielding e cos ω = -0.0028 ± 0.0027. Our results are consistent with a circular orbit, and we constrain e cos ω much more strongly than has been possible with previous observations. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A55

  5. A SPITZER MIPS STUDY OF 2.5-2.0 M{sub Sun} STARS IN SCORPIUS-CENTAURUS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H.; Bitner, Martin [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Pecaut, Mark; Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Su, Kate Y. L., E-mail: cchen@stsci.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2012-09-10

    We have obtained Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m and 70 {mu}m observations of 215 nearby, Hipparcos B- and A-type common proper-motion single and binary systems in the nearest OB association, Scorpius-Centaurus. Combining our MIPS observations with those of other ScoCen stars in the literature, we estimate 24 {mu}m B+A-type disk fractions of 17/67 (25{sup +6}{sub -5}%), 36/131 (27{sup +4}{sub -4}%), and 23/95 (24{sup +5}{sub -4}%) for Upper Scorpius ({approx}11 Myr), Upper Centaurus Lupus ({approx}15 Myr), and Lower Centaurus Crux ({approx}17 Myr), respectively, somewhat smaller disk fractions than previously obtained for F- and G-type members. We confirm previous IRAS excess detections and present new discoveries of 51 protoplanetary and debris disk systems, with fractional infrared luminosities ranging from L{sub IR}/L{sub *} = 10{sup -6} to 10{sup -2} and grain temperatures ranging from T{sub gr} = 40 to 300 K. In addition, we confirm that the 24 {mu}m and 70 {mu}m excesses (or fractional infrared luminosities) around B+A-type stars are smaller than those measured toward F+G-type stars and hypothesize that the observed disk property dependence on stellar mass may be the result of a higher stellar companion fraction around B- and A-type stars at 10-200 AU. Finally, we note that the majority of the ScoCen 24 {mu}m excess sources also possess 12 {mu}m excess, indicating that Earth-like planets may be forming via collisions in the terrestrial planet zone at {approx}10-100 Myr.

  6. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Cappelluti, N.; Urry, M. [Yale Center for Astronomy and Astrophysics, P.O. Box 208120, New Haven, CT 06520 (United States); Arendt, R. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kashlinsky, A. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Li, Y.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Helgason, K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Natarajan, P. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741, Garching bei München (Germany)

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5 σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.

  7. THE c2d SPITZER SPECTROSCOPIC SURVEY OF ICES AROUND LOW-MASS YOUNG STELLAR OBJECTS. IV. NH3 AND CH3OH

    International Nuclear Information System (INIS)

    Bottinelli, Sandrine; Van Dishoeck, Ewine F.; Lahuis, Fred; Boogert, A. C. Adwin; Bouwman, Jordy; Beckwith, Martha; Oeberg, Karin I.; Linnartz, Harold; Pontoppidan, Klaus M.; Blake, Geoffrey A.; Evans, Neal J.

    2010-01-01

    NH 3 and CH 3 OH are key molecules in astrochemical networks leading to the formation of more complex N- and O-bearing molecules, such as CH 3 CN and CH 3 OCH 3 . Despite a number of recent studies, little is known about their abundances in the solid state. This is particularly the case for low-mass protostars, for which only the launch of the Spitzer Space Telescope has permitted high-sensitivity observations of the ices around these objects. In this work, we investigate the ∼8-10 μm region in the Spitzer IRS (InfraRed Spectrograph) spectra of 41 low-mass young stellar objects (YSOs). These data are part of a survey of interstellar ices in a sample of low-mass YSOs studied in earlier papers in this series. We used both an empirical and a local continuum method to correct for the contribution from the 10 μm silicate absorption in the recorded spectra. In addition, we conducted a systematic laboratory study of NH 3 - and CH 3 OH-containing ices to help interpret the astronomical spectra. We clearly detect a feature at ∼9 μm in 24 low-mass YSOs. Within the uncertainty in continuum determination, we identify this feature with the NH 3 ν 2 umbrella mode and derive abundances with respect to water between ∼2% and 15%. Simultaneously, we also revisited the case of CH 3 OH ice by studying the ν 4 C-O stretch mode of this molecule at ∼9.7 μm in 16 objects, yielding abundances consistent with those derived by Boogert et al. based on a simultaneous 9.75 and 3.53 μm data analysis. Our study indicates that NH 3 is present primarily in H 2 O-rich ices, but that in some cases, such ices are insufficient to explain the observed narrow FWHM. The laboratory data point to CH 3 OH being in an almost pure methanol ice, or mixed mainly with CO or CO 2 , consistent with its formation through hydrogenation on grains. Finally, we use our derived NH 3 abundances in combination with previously published abundances of other solid N-bearing species to find that up to 10%-20% of

  8. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-Millimetre Spectrograph (BLISS) for SPICA

    Science.gov (United States)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M.; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda = 35-435 microns and with R = lambda/(delta)lambda approx. 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10(exp -20) W/Hz(1/2) and response time t or = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(1/2) and tapprox.5ms for straight-beam TESs. In fact, we expected NEPapprox.1.5x10(exp -19)W/Hz(1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10(exp -19)W/Hz(1/2) in our single-pixel test system and NEP=(1.6+0.3)x10(exp -19)W/Hz(1/2) in our array test system.

  9. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    International Nuclear Information System (INIS)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Arnold, Laura; Najita, Joan; Furlan, Elise; Sargent, Benjamin; Espaillat, Catherine; Muzerolle, James; Megeath, S. T.; Calvet, Nuria; Green, Joel D.

    2013-01-01

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' age 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks—those objects with gaps that separate inner and outer disks—have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.

  10. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    International Nuclear Information System (INIS)

    Désert, Jean-Michel; Brown, Timothy M.; Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Latham, David W.; Bryson, Stephen T.; Borucki, William J.; Knutson, Heather A.; Batalha, Natalie M.; Deming, Drake; Ford, Eric B.; Fortney, Jonathan J.; Gilliland, Ronald L.; Seager, Sara

    2015-01-01

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated

  11. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Désert, Jean-Michel; Brown, Timothy M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bryson, Stephen T.; Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Batalha, Natalie M. [San Jose State University, San Jose, CA 95192 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Ford, Eric B. [University of Florida, Gainesville, FL 32611 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Seager, Sara, E-mail: desert@colorado.edu [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States)

    2015-05-01

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated

  12. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    Science.gov (United States)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  13. DEEP CHANDRA OBSERVATIONS OF THE CRAB-LIKE PULSAR WIND NEBULA G54.1+0.3 AND SPITZER SPECTROSCOPY OF THE ASSOCIATED INFRARED SHELL

    International Nuclear Information System (INIS)

    Temim, Tea; Slane, Patrick; Raymond, John C.; Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2010-01-01

    G54.1+0.3 is a young pulsar wind nebula (PWN), closely resembling the Crab, for which no thermal shell emission has been detected in X-rays. Recent Spitzer observations revealed an infrared (IR) shell containing a dozen point sources arranged in a ring-like structure, previously proposed to be young stellar objects. An extended knot of emission located in the NW part of the shell appears to be aligned with the pulsar's X-ray jet, suggesting a possible interaction with the shell material. Surprisingly, the IR spectrum of the knot resembles the spectrum of freshly formed dust in Cas A, and is dominated by an unidentified dust emission feature at 21 μm. The spectra of the shell also contain various emission lines and show that some are significantly broadened, suggesting that they originate in rapidly expanding supernova (SN) ejecta. We present the first evidence that the PWN is driving shocks into expanding SN ejecta and we propose an alternative explanation for the origin of the IR emission in which the shell is composed entirely of SN ejecta. In this scenario, the freshly formed SN dust is being heated by early-type stars belonging to a cluster in which the SN exploded. Simple dust models show that this interpretation can give rise to the observed shell emission and the IR point sources.

  14. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    International Nuclear Information System (INIS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-01-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  15. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Chisari, Nora E. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Kelson, Daniel D., E-mail: nchisari@astro.princeton.edu [Observatories of the Carnegie Institution of Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  16. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  17. SPITZER OBSERVATIONS OF THE λ ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS

    International Nuclear Information System (INIS)

    Hernandez, Jesus; Morales-Calderon, Maria; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.; Luhman, K. L.; Stauffer, J.

    2010-01-01

    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young (∼5 Myr) λ Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M sun to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with 'evolved disks' (with smaller excesses than optically thick disk systems), and 'transitional disk' candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from ∼6% for K-type stars (R C - J C - J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the λ Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as ∼5 Myr.

  18. LRS2: A New Integral Field Spectrograph for the HET

    Science.gov (United States)

    Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie

    2016-01-01

    Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.

  19. SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wanggi [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Carey, Sean J. [Infrared Processing Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States)

    2015-11-20

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  20. SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs

    International Nuclear Information System (INIS)

    Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.

    2015-01-01

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions

  1. Spitzer Trigonometric Parallaxes of L, T, and Y Dwarfs: Complementing Gaia's Optically-selected Census of Nearby Stars

    Science.gov (United States)

    Kirkpatrick, J. Davy; Smart, Richard; Marocco, Federico; Martin, Emily; Faherty, Jacqueline; Tinney, Christopher; Cushing, Michael; Beichman, Charles; Gelino, Christopher; Schneider, Adam; Wright, Edward; Lowrance, Patrick; Ingalls, James

    2018-05-01

    We now find ourselves at a moment in history where a parallax-selected census of nearby objects from the hottest A stars to the coldest Y dwarfs is almost a reality. With the release of Gaia DR2 in April of this year, we will be able to extract a volume-limited sample of stars out to 20 pc down to a spectral type of L5. Extending the census to colder types is much more difficult but nonetheless possible and essential. Ground-based astrometric monitoring of some of these colder dwarfs can be done with deep infrared detections on moderate to large (4+ meter) telescopes, but given the amount of time needed, only a portion of the colder objects believed to lie within 20 pc has been monitored. Our prior Spitzer observations have already enabled direct distance measures for T6 through Y dwarfs, but many 20-pc objects with spectral types between L5 and T5.5 have still not been astrometrically monitored, leaving a hole in our knowledge of this important all-sky sample. Spitzer Cycle 14 observations of modest time expenditure can rectify this problem by providing parallaxes for the 150+ objects remaining. Analysis of the brown dwarfs targeted by Spitzer is particularly important because it will provide insight into the low-mass cutoff of star formation, the shape of the mass function as inferred from the observed temperature distribution, the binary fraction of near-equal mass doubles, and the prevalence of extremely young (low-gravity) and extremely old (low metallicity) objects within the sample - all of which can be used to test and further refine model predictions of the underlying mass function.

  2. A deep Spitzer survey of circumstellar disks in the young double cluster, h and χ Persei

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, Ryan; Currie, Thayne; Jayawardhana, Ray [University of Toronto, 50 St. George Street, Toronto, ON, M5S 2J7 (Canada); Rieke, George H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Kenyon, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02140 (United States); Balog, Zoltan, E-mail: cloutier@cita.utoronto.ca, E-mail: currie@astro.utoronto.ca, E-mail: grieke@as.arizona.edu, E-mail: skenyon@cfa.harvard.edu [Max Planck Institute for Astrophysics, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-12-01

    We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ∼12, 500 members of the 14 Myr old Double Cluster, h and χ Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 μm and 24 μm, indicative of circumstellar dust. The frequency of stars with 8 μm excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 μm reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times (τ{sub 0}) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ≈1 Myr. Finally, 24 μm excess frequencies for 4-6 M {sub ☉} stars appear lower than for 1-2.5 M {sub ☉} stars in other 10-30 Myr old clusters.

  3. VizieR Online Data Catalog: WASP-31b:HST/Spitzer transmission spectral survey (Sing+, 2015)

    Science.gov (United States)

    Sing, D. K.; Wakeford, H. R.; Showman, A. P.; Nikolov, N.; Fortney, J. J.; Burrows, A. S.; Ballester, G. E.; Deming, D.; Aigrain, S.; Desert, J.-M.; Gibson, N. P.; Henry, G. W.; Knutson, H.; Lecavelier Des Etangs, A.; Pont, F.; Vidal-Madjar, A.; Williamson, M. W.; Wilson, P. A.

    2017-11-01

    We observed two transits of WASP-31b with the HST STIS G430L grating during 2012 June 13 and 26, as well as one transit with the STIS G750L during 2012 July 10. In addition to the STIS data, observations of WASP-31b were also conducted in the infrared with WFC3 on the HST. Observations began on 2012 May 13 at 12:53 using the IR G141 grism in forward spatial scan mode over five HST orbits. We analyse two transit observations obtained using the Infrared Array Camera (IRAC) instrument (Programme 90092 with P.I. Desert) on the Spitzer space telescope in the 3.6 μm and 4.5 μm channels in subarray mode (32x32 pixel, or 39 centred on the planets host). The 3.6 μm observation was performed on UT 2013 March 9 (between 06:59 and 11:37) and the 4.5 observation was performed on UT 2013 March 19 (between 12:19 and 16:58). (1 data file).

  4. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-mm Spectrograph (BLISS) for SPICA

    Science.gov (United States)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M .; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda=35-435 micron and with R=lambda/delta lambda approximately equals 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10 (sup -20) W/Hz(exp 1/2) and response time tau = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(sub 1/2) and Tau approximately equals 5ms for straight-beam TESs. In fact, we expected NEP approximately equals 1.5x10(exp -19)?W/Hz(sup 1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10 (sup -19)W/Hz(exp 1/2) in our single-pixel test system and NEP=(1.6+/-0.3)x10(sup -19)W/Hz(sup 1/2) in our array test system.

  5. The kilometer-sized Main Belt asteroid population revealed by Spitzer

    Science.gov (United States)

    Ryan, E. L.; Mizuno, D. R.; Shenoy, S. S.; Woodward, C. E.; Carey, S. J.; Noriega-Crespo, A.; Kraemer, K. E.; Price, S. D.

    2015-06-01

    Aims: Multi-epoch Spitzer Space Telescope 24 μm data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. Methods: Infrared detections are matched to known asteroids and average diameters and albedos are derived using the near Earth asteroid thermal model (NEATM) for 1865 asteroids ranging in size from 0.2 to 169 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from these data are within the uncertainties of the IRAS and/or MSX derived albedos and diameters and available occultation diameters, which demonstrates the robustness of our technique. Results: The mean geometric albedo of the small Main Belt asteroids in this sample is pV = 0.134 with a sample standard deviation of 0.106. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the Main Belt at small diameters is directly derived and a 3σ deviation from the fitted size-frequency distribution slope is found near 8 km. Completeness limits of the optical and infrared surveys are discussed. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A42

  6. Quantitative imaging through a spectrograph. 1. Principles and theory.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Mooij, J.M.; Maassen, J.D.M.

    2004-01-01

    Laser-based optical diagnostics, such as planar laser-induced fluorescence and, especially, Raman imaging, often require selective spectral filtering. We advocate the use of an imaging spectrograph with a broad entrance slit as a spectral filter for two-dimensional imaging. A spectrograph in this

  7. THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Nordon, R.; Lutz, D.; Genzel, R.; Berta, S.; Wuyts, S.; Magnelli, B.; Foerster Schreiber, N. M.; Poglitsch, A.; Popesso, P. [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, 85741 Garching (Germany); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, ESA, Villanueva de al Canada, 28691 Madrid (Spain); Andreani, P. [ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Aussel, H.; Daddi, E. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, Bat.709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Bongiovanni, A.; Cepa, J.; Perez Garcia, A. M. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Cimatti, A. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, 40127 Bologna (Italy); Fadda, D. [IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Lagache, G. [Institut d' Astrophysique Spatiale (IAS), Bat 121, Universite de Paris XI, 91450 Orsay Cedex (France); Maiolino, R., E-mail: nordon@mpe.mpg.de [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monte Porzio Catone (Italy); and others

    2012-02-01

    We combine Herschel-Photodetector Array Camera and Spectrometer (PACS) data from the PACS Evolutionary Probe (PEP) program with Spitzer 24 {mu}m and 16 {mu}m photometry and ultra deep Infrared Spectrograph (IRS) mid-infrared spectra to measure the mid- to far-infrared spectral energy distribution (SED) of 0.7 < z < 2.5 normal star-forming galaxies (SFGs) around the main sequence (the redshift-dependent relation of star formation rate (SFR) and stellar mass). Our very deep data confirm from individual far-infrared detections that z {approx} 2 SFRs are overestimated if based on 24 {mu}m fluxes and SED templates that are calibrated via local trends with luminosity. Galaxies with similar ratios of rest-frame {nu}L{sub {nu}}(8) to 8-1000 {mu}m infrared luminosity (LIR) tend to lie along lines of constant offset from the main sequence. We explore the relation between SED shape and offset in specific star formation rate (SSFR) from the redshift-dependent main sequence. Main-sequence galaxies tend to have a similar {nu}L{sub {nu}}(8)/LIR regardless of LIR and redshift, up to z {approx} 2.5, and {nu}L{sub {nu}}(8)/LIR decreases with increasing offset above the main sequence in a consistent way at the studied redshifts. We provide a redshift-independent calibration of SED templates in the range of 8-60 {mu}m as a function of {Delta}log(SSFR) offset from the main sequence. Redshift dependency enters only through the evolution of the main sequence with time. Ultra deep IRS spectra match these SED trends well and verify that they are mostly due to a change in ratio of polycyclic aromatic hydrocarbon (PAH) to LIR rather than continua of hidden active galactic nuclei (AGNs). Alternatively, we discuss the dependence of {nu}L{sub {nu}}(8)/LIR on LIR. The same {nu}L{sub {nu}}(8)/LIR is reached at increasingly higher LIR at higher redshift, with shifts relative to local by 0.5 and 0.8 dex in log(LIR) at redshifts z {approx} 1 and z {approx} 2. Corresponding SED template calibrations

  8. EVIDENCE FOR DYNAMICAL CHANGES IN A TRANSITIONAL PROTOPLANETARY DISK WITH MID-INFRARED VARIABILITY

    International Nuclear Information System (INIS)

    Muzerolle, James; Flaherty, Kevin; Balog, Zoltan; Smith, Paul S.; Rieke, George H.; Furlan, Elise; Allen, Lori; Muench, August; Calvet, Nuria; D'Alessio, Paola; Megeath, S. Thomas; Sherry, William H.

    2009-01-01

    We present multi-epoch Spitzer Space Telescope observations of the transitional disk LRLL 31 in the 2-3 Myr old star-forming region IC 348. Our measurements show remarkable mid-infrared variability on timescales as short as one week. The infrared continuum emission exhibits systematic wavelength-dependent changes that suggest corresponding dynamical changes in the inner disk structure and variable shadowing of outer disk material. We propose several possible sources for the structural changes, including a variable accretion rate or a stellar or planetary companion embedded in the disk. Our results indicate that variability studies in the infrared can provide important new constraints on protoplanetary disk behavior.

  9. THE GREAT OBSERVATORIES ALL-SKY LIRG SURVEY: COMPARISON OF ULTRAVIOLET AND FAR-INFRARED PROPERTIES

    International Nuclear Information System (INIS)

    Howell, Justin H.; Armus, Lee; Surace, Jason A.; Petric, Andreea; Bridge, Carrie; Haan, Sebastian; Inami, Hanae; Mazzarella, Joseph M.; Chan, Ben H. P.; Madore, Barry F.; Evans, Aaron S.; Kim, Dong-Chan; Sanders, David B.; Appleton, Phil; Frayer, David T.; Lord, Steven; Schulz, Bernhard; Bothun, Greg; Charmandaris, Vassilis; Melbourne, Jason

    2010-01-01

    The Great Observatories All-sky LIRG Survey (GOALS) consists of a complete sample of 202 luminous infrared galaxies (LIRGs) selected from the IRAS Revised Bright Galaxy Sample (RBGS). The galaxies span the full range of interaction stages, from isolated galaxies to interacting pairs to late stage mergers. We present a comparison of the UV and infrared properties of 135 galaxies in GOALS observed by GALEX and Spitzer. For interacting galaxies with separations greater than the resolution of GALEX and Spitzer (∼2''-6''), we assess the UV and IR properties of each galaxy individually. The contribution of the FUV to the measured star formation rate (SFR) ranges from 0.2% to 17.9%, with a median of 2.8% and a mean of 4.0% ± 0.4%. The specific star formation rate (SSFR) of the GOALS sample is extremely high, with a median value (3.9 x 10 -10 yr -1 ) that is comparable to the highest SSFRs seen in the Spitzer Infrared Nearby Galaxies Survey sample. We examine the position of each galaxy on the IR excess-UV slope (IRX-β) diagram as a function of galaxy properties, including IR luminosity and interaction stage. The LIRGs on average have greater IR excesses than would be expected based on their UV colors if they obeyed the same relations as starbursts with L IR 11 L sun or normal late-type galaxies. The ratio of L IR to the value one would estimate from the IRX-β relation published for lower luminosity starburst galaxies ranges from 0.2 to 68, with a median value of 2.7. A minimum of 19% of the total IR luminosity in the RBGS is produced in LIRGs and ultraluminous infrared galaxies with red UV colors (β>0). Among resolved interacting systems, 32% contain one galaxy which dominates the IR emission while the companion dominates the UV emission. Only 21% of the resolved systems contain a single galaxy which dominates both wavelengths.

  10. The Demographics and Properties of Wide-Orbit, Planetary-Mass Companions from PSF Fitting of Spitzer/IRAC Images

    Science.gov (United States)

    Martinez, Raquel; Kraus, Adam L.

    2017-06-01

    Over the past decade, a growing population of planetary-mass companions ( 100 AU) from their host stars, challenging existing models of both star and planet formation. It is unclear whether these systems represent the low-mass extreme of stellar binary formation or the high-mass and wide-orbit extreme of planet formation theories, as various proposed formation pathways inadequately explain the physical and orbital aspects of these systems. Even so, determining which scenario best reproduces the observed characteristics of the PMCs will come once a statistically robust sample of directly-imaged PMCs are found and studied.We are developing an automated pipeline to search for wide-orbit PMCs to young stars in Spitzer/IRAC images. A Markov Chain Monte Carlo (MCMC) algorithm is the backbone of our novel point spread function (PSF) subtraction routine that efficiently creates and subtracts χ2-minimizing instrumental PSFs, simultaneously measuring astrometry and infrared photometry of these systems across the four IRAC channels (3.6 μm, 4.5 μm, 5.8 μm, and 8 μm). In this work, we present the results of a Spitzer/IRAC archival imaging study of 11 young, low-mass (0.044-0.88 M⊙ K3.5-M7.5) stars known to have faint, low-mass companions in 3 nearby star-forming regions (Chameleon, Taurus, and Upper Scorpius). We characterize the systems found to have low-mass companions with non-zero [I1] - [I4] colors, potentially signifying the presence of a circum(sub?)stellar disk. Plans for future pipeline improvements and paths forward will also be discussed. Once this computational foundation is optimized, the stage is set to quickly scour the nearby star-forming regions already imaged by Spitzer, identify potential candidates for further characterization with ground- or space-based telescopes, and increase the number of widely-separated PMCs known.

  11. REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa [Spitzer Science Center, California Institute of Technology, 1200 E California Boulevard, Mail Code 314-6, Pasadena, CA 91125 (United States); Buzasi, Derek [Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Diamond-Lowe, Hannah; Stevenson, Kevin B. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Evans, Thomas M. [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Morello, G. [Department of Physics and Astronomy, University College London, Gower Street, WC1 E6BT (United Kingdom); Wong, Ian, E-mail: ingalls@ipac.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μ m data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble,  5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.

  12. Visible photometry of NEOs in support of a Warm Spitzer program

    Science.gov (United States)

    Trilling, David E.; Jones, Sarah; Penprase, Bryan; Emery, Josh; Harris, Alan; Spahr, Tim; Delbo, Marco

    2009-08-01

    Near Earth Objects (NEOs) may act as dynamical and compositional tracers of the history of near-Earth space. However, despite their scientific importance, key characteristics of the NEO population -- such as the size distribution, mix of albedos and mineralogies, and contributions from so-called dead or dormant comets -- remain largely unexplored; some 99% of all presently known NEOs are essentially uncharacterized. We have been awarded 500 hours of Warm Spitzer time to study some 700 NEOs. The Spitzer data will allow us to measure thermal fluxes and, in combination with optical data, derive albedos and diameters for a large fraction of all known NEOs. Remarkably, the primary uncertainty in our Spitzer results will derive from a lack of good optical photometry for our targets. Fortunately, our targets are generally bright, and obtaining good V band measurements of them requires only a modest amount of time on modest aperture telescopes. We propose here for 36 hours of SMARTS 1.3-m time or 54 hours of SMARTS 0.9-m time to obtain visible photometry of the 72 southern moderately bright ``B'' semester targets in our Warm Spitzer program. These program is ideal for queue/service observing because each observation requires only ~30 minutes and our targets are all over the sky.

  13. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    Science.gov (United States)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  14. The Mitchell Spectrograph: Studying Nearby Galaxies with the VIRUS Prototype

    Directory of Open Access Journals (Sweden)

    Guillermo A. Blanc

    2013-01-01

    Full Text Available The Mitchell Spectrograph (a.k.a. VIRUS-P on the 2.7 m Harlan J. Smith telescope at McDonald Observatory is currently the largest field of view (FOV integral field unit (IFU spectrograph in the world (1.7′×1.7′. It was designed as a prototype for the highly replicable VIRUS spectrograph which consists of a mosaic of IFUs spread over a 16′ diameter FOV feeding 150 spectrographs similar to the Mitchell. VIRUS will be deployed on the 9.2 meter Hobby-Eberly Telescope (HET and will be used to conduct the HET Dark Energy Experiment (HETDEX. Since seeing first light in 2007 the Mitchell Spectrograph has been widely used, among other things, to study nearby galaxies in the local universe where their internal structure and the spatial distribution of different physical parameters can be studied in great detail. These observations have provided important insight into many aspects of the physics behind the formation and evolution of galaxies and have boosted the scientific impact of the 2.7 meter telescope enormously. Here I review the contributions of the Mitchell Spectrograph to the study of nearby galaxies, from the investigation the spatial distribution of dark matter and the properties of supermassive black holes, to the studies of the process of star formation and the chemical composition of stars and gas in the ISM, which provide important information regarding the formation and evolution of these systems. I highlight the fact that wide field integral field spectrographs on small and medium size telescopes can be powerful cost effective tools to study the astrophysics of galaxies. Finally I briefly discuss the potential of HETDEX for conducting studies on nearby galaxies. The survey parameters make it complimentary and competitive to ongoing and future surveys like SAMI and MANGA.

  15. Near-infrared imaging survey of faint companions around young dwarfs in the Pleiades cluster

    International Nuclear Information System (INIS)

    Itoh, Yoichi; Funayama, Hitoshi; Hashiguchi, Toshio; Oasa, Yumiko; Hayashi, Masahiko; Fukagawa, Misato; Currie, Thayne

    2011-01-01

    We conducted a near-infrared imaging survey of 11 young dwarfs in the Pleiades cluster using the Subaru Telescope and the near-infrared coronagraph imager. We found ten faint point sources, with magnitudes as faint as 20 mag in the K-band, with around seven dwarfs. Comparison with the Spitzer archive images revealed that a pair of the faint sources around V 1171 Tau is very red in infrared wavelengths, which indicates very low-mass young stellar objects. However, the results of our follow-up proper motion measurements implied that the central star and the faint sources do not share common proper motions, suggesting that they are not physically associated.

  16. GNIRS-DQS: A Gemini Near Infrared Spectrograph Distant Quasar Survey

    Science.gov (United States)

    Matthews, Brandon; Shemmer, Ohad; Brotherton, Michael S.; Andruchow, Ileana; Boroson, Todd A.; Brandt, W. Niel; Cellone, Sergio; Ferrero, Gabriel; Gallagher, Sarah; Green, Richard F.; Hennawi, Joseph F.; Lira, Paulina; Myers, Adam D.; Plotkin, Richard; Richards, Gordon T.; Runnoe, Jessie; Schneider, Donald P.; Shen, Yue; Strauss, Michael A.; Willott, Chris J.; Wills, Beverley J.

    2018-06-01

    We describe an ongoing three-year Gemini survey, launched in 2017, that will obtain near-infrared spectroscopy of 416 Sloan Digital Sky Survey (SDSS) quasars between redshifts of 1.5 and 3.5 in the ~1.0-2.5 μm band. These spectra will cover critical diagnostic emission lines, such as Mg II, Hβ, and [O III], in each source. This project will more than double the existing inventory of near-infrared spectra of luminous quasars at these redshifts, including the era of fast quasar growth. Additional rest frame ultraviolet coverage of at least the C IV emission line is provided by the SDSS spectrum of each source. We will utilize the spectroscopic inventory to determine the most accurate and precise quasar black hole masses, accretion rates, and redshifts, and use the results to derive improved prescriptions for UV-based proxies for these parameters. The improved redshifts will establish velocities of quasar outflows that interact with the host galaxies, and will help constrain how imprecise distance estimates bias quasar clustering measurements. Furthermore, our measurements will facilitate a more complete understanding of how the rest-frame UV-optical spectral properties depend on redshift and luminosity, and test whether the physical properties of the quasar central engine evolve over cosmic time. We will make our data immediately available to the public, provide reduced spectra via a dedicated website, and produce a catalog of measurements and fundamental quasar properties.

  17. Spitzer ’s View of the Candidate Cluster and Protocluster Catalog (CCPC)

    Energy Technology Data Exchange (ETDEWEB)

    Franck, J. R.; McGaugh, S. S. [Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106 (United States)

    2017-02-10

    The Candidate Cluster and Protocluster Catalog contains 218 galaxy overdensities composed of more than 2000 galaxies with spectroscopic redshifts spanning the first few Gyr after the Big Bang (2.0 ≤ z < 6.6). We use Spitzer archival data to track the underlying stellar mass of these overdense regions in various temporal cross sections by building rest-frame near-infrared luminosity functions (LFs) across the span of redshifts. This exercise maps the stellar growth of protocluster galaxies, as halos in the densest environments should be the most massive from hierarchical accretion. The characteristic apparent magnitude, m *( z ), is relatively flat from 2.0 ≤ z < 6.6, consistent with a passive evolution of an old stellar population. This trend maps smoothly to lower redshift results of cluster galaxies from other works. We find no difference in the LFs of galaxies in the field versus protoclusters at a given redshift apart from their density.

  18. Spitzer Observations of GRB Hosts: A Legacy Approach

    Science.gov (United States)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  19. The Wasp-Waist Nebula: VLA Ammonia Observations of the Molecular Core Envelope In a Unique Class 0 Protostellar System

    Science.gov (United States)

    Wiseman, Jennifer

    2010-01-01

    The Wasp-Waist Nebula was discovered in the IRAC c2d survey of the Ophiuchus starforming clouds. It is powered by a well-isolated, low-luminosity, low-mass Class 0 object. Its weak outflow has been mapped in the CO (3-2) transition with the JCMT, in 2.12 micron H2 emission with WIRC (the Wide-Field Infrared Camera) on the Hale 5-meter, and, most recently, in six H2 mid-infrared lines with the IRS (InfraRed Spectrograph) on-board the Spitzer Space Telescope; possible jet twisting structure may be evidence of unique core dynamics. Here, we report results of recent VLA ammonia mapping observations of the dense gas envelope feeding the central core protostellar system. We describe the morphology, kinematics, and angular momentum characteristics of this unique system. The results are compared with the envelope structure deduced from IRAC 8-micron absorption of the PAH (polycyclic aromatic hydrocarbon) background emission from the cloud.

  20. The Origin of the Infrared Emission in Radio Galaxies : III. Analysis of 3CRR Objects

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Robinson, A.; Morganti, R.; Kharb, P.

    2010-01-01

    We present Spitzer photometric data for a complete sample of 19 low-redshift (z <0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid-to far-infrared (MFIR) emission from radio-loud active galactic nuclei (AGNs). Our results show a correlation between AGN

  1. Spitzer MIPS Limits on Asteroidal Dust in the Pulsar Planetary System PSR B1257+12

    Science.gov (United States)

    Bryden, G.; Beichman, C. A.; Rieke, G. H.; Stansberry, J. A.; Stapelfeldt, K. R.; Trilling, D. E.; Turner, N. J.; Wolszczan, A.

    2006-01-01

    With the MIPS camera on Spitzer, we have searched for far-infrared emission from dust in the planetary system orbiting pulsar PSR B1257+12. With accuracies of 0.05 mJy at 24 microns and 1.5 mJy at 70 microns, photometric measurements find no evidence for emission at these wavelengths. These observations place new upper limits on the luminosity of dust with temperatures between 20 and 1000 K. They are particularly sensitive to dust temperatures of 100-200 K, for which they limit the dust luminosity to below 3 x 10(exp -5) of the pulsar's spin-down luminosity, 3 orders of magnitude better than previous limits. Despite these improved constraints on dust emission, an asteroid belt similar to the solar system's cannot be ruled out.

  2. Improved Emission Spectrographic Facility

    International Nuclear Information System (INIS)

    Goergen, C.R.; Lethco, A.J.; Hosken, G.B.; Geckeler, D.R.

    1980-10-01

    The Savannah River Plant's original Emission Spectrographic Laboratory for radioactive samples had been in operation for 25 years. Due to the deteriorated condition and the fire hazard posed by the wooden glove box trains, a project to update the facility was funded. The new laboratory improved efficiency of operation and incorporated numerous safety and contamination control features

  3. Understanding the formation and evolution of early-type galaxies based on newly developed single-burst stellar population synthesis models in the infrared

    Science.gov (United States)

    Roeck, Benjamin

    2015-12-01

    The detailed study of the different stellar populations which can be observed in galaxies is one of the most promising methods to shed light on the evolutionary histories of galaxies. So far, stellar population analysis has been carried out mainly in the optical wavelength range. The infrared spectral range, on the other hand, has been poorly studied so far, although it provides very important insights, particularly into the cooler stellar populations which are present in galaxies. However, in the last years, space telescopes like the Spitzer Space Telescope or the Wide-field Infrared Survey Explorer and instruments like the spectrograph X-Shooter on the Very Large Telescope have collected more and more photometric and spectroscopic data in this wavelength range. In order to analyze these observations, it is necessary to dispose of reliable and accurate stellar population models in the infrared. Only a small number of stellar population models in the infrared exist in the literature. They are mostly based on theoretical stellar libraries and very often cover only the near-infrared wavelength range at a rather low resolution. Hence, we developed new single-burst stellar population models between 8150 and 50000Å which are exclusively based on 180 spectra from the empirical Infrared Telescope Facility stellar library. We computed our single stellar population models for two different sets of isochrones and various types of initial mass functions of different slopes. Since the stars of the Infrared Telescope Facility library present only a limited coverage of the stellar atmospheric parameter space, our models are of sufficient quality only for ages larger than 1 Gyr and metallicities between [Fe/H] = 0.40 and 0.26. By combining our single stellar population models in the infrared with the extended medium-resolution Isaac Newton Telescope library of empirical spectra in the optical spectral range, we created the first single stellar population models covering the

  4. DEEP JHKs AND SPITZER IMAGING OF FOUR ISOLATED MOLECULAR CLOUD CORES

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Mundy, Lee G.

    2009-01-01

    We present observations in eight wavebands from 1.25 to 24 μm of four dense cores: L204C-2, L1152, L1155C-2, and L1228. Our goals are to study the young stellar object (YSO) population of these cores and to measure the mid-infrared extinction law. With our combined near-infrared and Spitzer photometry, we classify each source in the cores as, among other things, background stars, galaxies, or embedded YSOs. L1152 contains three YSOs and L1228 has seven, but neither L204C-2 nor L1155C-2 appear to contain any YSOs. We estimate an upper limit of 7 x 10 -5 to 5 x 10 -4 L sun for any undiscovered YSOs in our cores. We also compute the line-of-sight extinction law toward each background star. These measurements are averaged spatially, to create χ 2 maps of the changes in the mid-infrared extinction law throughout our cores, and also in different ranges of extinction. From the χ 2 maps, we identify two small regions in L1152 and L1228 where the outflows in those cores appear to be destroying the larger dust grains, thus altering the extinction law in those regions. On average, however, our extinction law is relatively flat from 3.6 to 24 μm for all ranges of extinction and in all four cores. From 3.6 to 8 μm, this law is consistent with a dust model that includes larger dust grains than the diffuse interstellar medium, which suggests grain growth has occurred in our cores. At 24 μm, our extinction law is two to four times higher than predicted by dust models. However, it is similar to other empirical measurements.

  5. Princeton Cyclotron QDDD spectrograph system

    International Nuclear Information System (INIS)

    Kouzes, R.T.

    1985-01-01

    A review of experiments involving the Princeton Quadrupole-Dipole-Dipole- Dipole (QDDD) spectrograph is given. The QDDD is a high resolution, large solid angle device which is combined with the azymuthally varying field (AVF) cyclotron. Some reactions involving 3 He beams are discussed

  6. Spectrographic analysis of plutonium (1960)

    International Nuclear Information System (INIS)

    Artaud, J.; Chaput, M.; Robichet, J.

    1960-01-01

    Various possibilities for the spectrographic determination of impurities in plutonium are considered. The application of the 'copper spark' method, of sparking on graphite and of fractional distillation in the arc are described and discussed in some detail (apparatus, accessories, results obtained). (author) [fr

  7. First light results from the Hermes spectrograph at the AAT

    NARCIS (Netherlands)

    Sheinis, A.; Barden, S.; Birchall, M.; Carollo, D.; Bland-Hawthorn, J.; Brzeski, J.; Case, S.; Cannon, R.; Churilov, V.; Couch, W.; Dean, R.; De Silva, G.; D'Orazi, V.; Farrell, T.; Fiegert, K.; Freeman, K.; Frost, G.; Gers, L.; Goodwin, M.; Gray, D.; Heald, R.; Heijmans, J.A.C.; Jones, D.; Keller, S.; Klauser, U.; Kondrat, Y.; Lawrence, J.; Lee, S.; Mali, S.; Martell, S.; Mathews, D.; Mayfield, D.; Miziarski, S.; Muller, R.; Pai, N.; Patterson, R.; Penny, E.; Orr, D.; Shortridge, K.; Simpson, J.; Smedley, S.; Smith, G.; Stafford, D.; Staszak, N.; Vuong, M.; Waller, L.; Wylie de Boer, E.; Xavier, P.; Zheng, J.; Zhelem, R.; Zucker, D.

    2014-01-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of

  8. INFRARED CONTINUUM AND LINE EVOLUTION OF THE EQUATORIAL RING AROUND SN 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G. [CRESST/UMBC (United States); Dwek, Eli [Observational Cosmology Lab, Code 665, NASA/GSFC, Greenbelt, MD 20771 (United States); Bouchet, Patrice [Laboratoire AIM Paris-Saclay, CEA-IRFU/SAp, CNRS, Université Paris Diderot, F-91191 Gif-sur-Yvette (France); Danziger, I. John [INAF-Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Frank, Kari A. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Gehrz, Robert D.; Woodward, Charles E. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, SE, Minneapolis, MN 55455 (United States); Park, Sangwook, E-mail: richard.g.arendt@nasa.gov [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2016-03-15

    Spitzer observations of SN 1987A have now spanned more than a decade. Since day ∼4000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6000 to 8000 days after the explosion, Spitzer observations included broadband photometry at 3.6–24 μm, and low and moderate resolution spectroscopy at 5–35 μm. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 μm. These data show that the 3.6 and 4.5 μm brightness has clearly begun to fade after day ∼8500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on timescales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe ii] and [Si ii] lines show different, peculiar velocity structures.

  9. The gas-rich circumbinary disk of HR 4049. I. A detailed study of the mid-infrared spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Malek, S. E.; Cami, J., E-mail: sarahemalek@gmail.com, E-mail: jcami@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada)

    2014-01-01

    We present a detailed analysis of the mid-infrared spectrum of the peculiar evolved object HR 4049. The full Spitzer-IRS high-resolution spectrum shows a wealth of emission with prominent features from CO{sub 2} and H{sub 2}O and possible contributions from HCN and OH. We model the molecular emission and find that it originates from a massive (M ≳ 8 × 10{sup –3} M {sub ☉}), warm (T {sub ex} ≈ 500 K) and radially extended gas disk that is optically thick at infrared wavelengths. We also report less enrichment in {sup 17}O and {sup 18}O than previously found and a comparison of the Spitzer observations to earlier data obtained by the Short Wavelength Spectrometer on board the Infrared Space Observatory reveals that the CO{sub 2} flux has more than doubled in 10 yr time, indicating active and ongoing chemical evolution in the circumbinary disk. If the gas originates from interaction between the stellar wind and the dust, this suggests that the dust could be oxygen-rich in nature. The molecular gas plays a crucial role in the thermal properties of the circumbinary disk by allowing visible light to heat the dust and then trapping the infrared photons emitted by the dust. This results in higher temperatures and a more homogeneous temperature structure in the disk.

  10. Design of a simple magnetic spectrograph for the Karlsruhe isochronous cyclotron

    International Nuclear Information System (INIS)

    Gils, H.J.

    1980-12-01

    The ion-optical design of a simple magnetic spectrograph for studies of nuclear reactions on the Karlsruhe cyclotron is described. The spectrograph allows to determine the nuclear charge, the mass number, the reaction angle and the impulse (energy) of charged particles, which are emitted from the target. The spectrographs possibilities cover an appropriate range of likely nuclear reactions which are induced by light and heavy particles up to mass number A=20 and energies of 26 MeV per nucleon [de

  11. FAR-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wanggi [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States)

    2014-01-10

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e., dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of near-infrared and, more recently, mid-infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at far-infrared (FIR) wavelengths as long as ∼100 μm! Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, Σ. The method builds on that developed for MIR extinction mapping by Butler and Tan, in particular involving a search for independently saturated, i.e., very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in the Infrared Dark Cloud (IRDC) G028.37+00.07, deriving mass surface density maps from 3.5 to 70 μm. A by-product of this analysis is the measurement of the spectral energy distribution of the diffuse foreground emission. The lower opacity at 70 μm allows us to probe to higher Σ values, up to ∼1 g cm{sup –2} in the densest parts of the core/clumps. Comparison of the Σ maps at different wavelengths constrains the shape of the MIR-FIR dust opacity law in IRDCs. We find that it is most consistent with the thick ice mantle models of Ossenkopf and Henning. There is tentative evidence for grain ice mantle growth as one goes from lower to higher Σ regions.

  12. FAR-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS

    International Nuclear Information System (INIS)

    Lim, Wanggi; Tan, Jonathan C.

    2014-01-01

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e., dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of near-infrared and, more recently, mid-infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at far-infrared (FIR) wavelengths as long as ∼100 μm! Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, Σ. The method builds on that developed for MIR extinction mapping by Butler and Tan, in particular involving a search for independently saturated, i.e., very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in the Infrared Dark Cloud (IRDC) G028.37+00.07, deriving mass surface density maps from 3.5 to 70 μm. A by-product of this analysis is the measurement of the spectral energy distribution of the diffuse foreground emission. The lower opacity at 70 μm allows us to probe to higher Σ values, up to ∼1 g cm –2 in the densest parts of the core/clumps. Comparison of the Σ maps at different wavelengths constrains the shape of the MIR-FIR dust opacity law in IRDCs. We find that it is most consistent with the thick ice mantle models of Ossenkopf and Henning. There is tentative evidence for grain ice mantle growth as one goes from lower to higher Σ regions

  13. The Spitzer Infrared Nearby Galaxies Survey: A High-Resolution Spectroscopy Anthology

    Science.gov (United States)

    Dale, Daniel A.; SINGS Team

    2009-05-01

    Results from high resolution mid-infrared spectroscopy are presented for 155 nuclear and extranuclear regions from SINGS. The SINGS sample shows a wide range in the ratio of [SIII]18.71/[SIII]33.48, but the average ratio of the ensemble indicates a typical interstellar electron density of 300--400 cm-3 on 23"x15" scales and 500--600 cm-3 using 11"x9" apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an AGN environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [NeIII]15.56/[NeII]12.81, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [NeIII]15.56/[NeII]12.81 ratios. Finally, [FeII]25.99/[NeII]12.81 versus [SiII]34.82/[SIII]33.48 also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [NeIII]15.56/[NeII]12.81, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  14. Mineralogy and Thermal Properties of V-Type Asteroid 956 Elisa: Evidence for Diogenitic Material from the Spitzer IRS (5-35 Micrometers) Spectrum

    Science.gov (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2010-01-01

    We present the thermal infrared (5-35 micrometer) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph ("IRS"; Houck,1.R. et .11. [20041. Astrophys, 1. SuppL 154, 18-24) together with new ground-based lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 +/- 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (Hv) at that rotational phase to be 12.58 +/- 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 +/- 0.4 km with a visible albedo pv = 0.142+/- 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 +/- 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 +/- 2.8 K and beaming parameter eta = 1.16 +/- 0.05. Thermophysical modeling places a lower limit of 20 J m(exp -2)K(exp -1)s(exp -1/2) on the thermal inertia of the asteroid's surface layer (if the surface is very smooth) but more likely values fall between 30 and 150 J m(exp -2)K(exp -1)s(exp -1/2) depending on the sense of rotation. The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 micrometer reststrahlen band, the 15-16.5 micrometer Si-O-Si stretching region, and the 16-25 micrometer reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range W0(sub 2+/-1)En(sub 74+/-2)Fs(sub 24+/-1). Spectral deconvolution of the 9-12 micrometer reststrahlen features indicates that up to approximately 20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non

  15. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  16. THE LAST GASP OF GAS GIANT PLANET FORMATION: A SPITZER STUDY OF THE 5 Myr OLD CLUSTER NGC 2362

    International Nuclear Information System (INIS)

    Currie, Thayne; Lada, Charles J.; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.; Plavchan, Peter

    2009-01-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm and Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ ≥ 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical 'transition disks') and 'homologously depleted' disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these 'evolved primordial disks' greatly outnumber primordial disks, our results undermine standard arguments in favor of a ∼ 5 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 10 5 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ∼10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (∼>1.4 M sun ) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer

  17. The Space Infrared Interferometric Telescope (SPIRIT)

    Science.gov (United States)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  18. Auroral spectrograph data annals of the international geophysical year, v.25

    CERN Document Server

    Carrigan, Anne; Norman, S J

    1964-01-01

    Annals of the International Geophysical Year, Volume 25: Auroral Spectrograph Data is a five-chapter text that contains tabulations of auroral spectrograph data. The patrol spectrograph built by the Perkin-Elmer Corporation for the Aurora and Airglow Program of the IGY is a high-speed, low-dispersion, automatic instrument designed to photograph spectra of aurora occurring along a given magnetic meridian of the sky. Data from each spectral frame were recorded on an IBM punched card. The data recorded on the cards are printed onto the tabulations in this volume. These tabulations are available

  19. Morphology and astrometry of Infrared-Faint Radio Sources

    Science.gov (United States)

    Middelberg, Enno; Norris, Ray; Randall, Kate; Mao, Minnie; Hales, Christopher

    2008-10-01

    Infrared-Faint Radio Sources, or IFRS, are an unexpected class of object discovered in the Australia Telescope Large Area Survey, ATLAS. They are compact 1.4GHz radio sources with no visible counterparts in co-located (relatively shallow) Spitzer infrared and optical images. We have detected two of these objects with VLBI, indicating the presence of an AGN. These observations and our ATLAS data indicate that IFRS are extended on scales of arcseconds, and we wish to image their morphologies to obtain clues about their nature. These observations will also help us to select optical counterparts from very deep, and hence crowded, optical images which we have proposed. With these data in hand, we will be able to compare IFRS to known object types and to apply for spectroscopy to obtain their redshifts.

  20. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    International Nuclear Information System (INIS)

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.; Sewiło, M.; Vijh, U. P.; Terrazas, M.; Meixner, M.

    2015-01-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S 3 MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  1. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    Energy Technology Data Exchange (ETDEWEB)

    Polsdofer, Elizabeth; Marengo, M. [Iowa State University, Department of Physics and Astronomy, 12 Physics Hall, Ames, Iowa 50011 (United States); Seale, J.; Sewiło, M. [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Vijh, U. P.; Terrazas, M. [Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43606 (United States); Meixner, M., E-mail: empolsdofer@gmail.com [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  2. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    International Nuclear Information System (INIS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L.; Arendt, R.; Barmby, P.; Barro, G.; Faber, S.; Guhathakurta, P.; Bell, E. F.; Bouwens, R.; Cattaneo, A.; Croton, D.; Davé, R.; Dunlop, J. S.; Egami, E.; Finlator, K.; Grogin, N. A.

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg 2 to a depth of 26 AB mag (3σ) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 μm. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 ± 1.0 and 4.4 ± 0.8 nW m –2 sr –1 at 3.6 and 4.5 μm to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  3. Spectrographical method for determining temperature variations of cosmic rays

    International Nuclear Information System (INIS)

    Dorman, L.I.; Krest'yannikov, Yu.Ya.; AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln)

    1977-01-01

    A spectrographic method for determining [sigmaJsup(μ)/Jsup(μ)]sub(T) temperature variations in cosmic rays is proposed. The value of (sigmaJsup(μ)/Jsup(μ)]sub(T) is determined from three equations for neutron supermonitors and the equation for the muon component of cosmic rays. It is assumed that all the observation data include corrections for the barometric effect. No temperature effect is observed in the neutron component. To improve the reliability and accuracy of the results obtained the surface area of the existing devices and the number of spectrographic equations should be increased as compared with that of the unknown values. The value of [sigmaJsup(μ)/Jsup(μ)]sub(T) for time instants when the aerological probing was carried out, was determined from the data of observations of cosmic rays with the aid of a spectrographic complex of devices of Sib IZMIR. The r.m.s. dispersion of the difference is about 0.2%, which agrees with the expected dispersion. The agreement obtained can be regarded as an independent proof of the correctness of the theory of meteorological effects of cosmic rays. With the existing detection accuracy the spectrographic method can be used for determining the hourly values of temperature corrections for the muon component

  4. Spectrographic Determination of Trace Constituents in Rare Earths

    International Nuclear Information System (INIS)

    Capdevila, C.; Alvarez, F.

    1962-01-01

    A spectrographic method was developed for the determination of 18 trace elements in lanthanum, cerium, praseodimium, neodimium and samarium compounds. The concentrations of the impurities cover the range of 0,5 to 500 ppm. Most of these impurities are determined by the carrier distillation method. Several more refractory elements have been determined by total burning of the sample with a direct current arc or by the conduction briquet excitation technique with a high voltage condensed spark. The work has been carried out with a Hilger Automatic Large Quartz Spectrograph. (Author) 5 refs

  5. SPITZER PARALLAX of OGLE-2015-BLG-0966

    DEFF Research Database (Denmark)

    Street, R. A.; Udalski, A.; Novati, S. Calchi

    2016-01-01

    We report the detection of a cold Neptune mplanet = 21 ± 2 M⊕ orbiting a 0.38 M⊙ M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real...

  6. The problem of scattering in fibre-fed VPH spectrographs and possible solutions

    Science.gov (United States)

    Ellis, S. C.; Saunders, Will; Betters, Chris; Croom, Scott

    2014-07-01

    All spectrographs unavoidably scatter light. Scattering in the spectral direction is problematic for sky subtraction, since atmospheric spectral lines are blurred. Scattering in the spatial direction is problematic for fibre fed spectrographs, since it limits how closely fibres can be packed together. We investigate the nature of this scattering and show that the scattering wings have both a Lorentzian component, and a shallower (1/r) component. We investigate the causes of this from a theoretical perspective, and argue that for the spectral PSF the Lorentzian wings are in part due to the profile of the illumination of the pupil of the spectrograph onto the diffraction grating, whereas the shallower component is from bulk scattering. We then investigate ways to mitigate the diffractive scattering by apodising the pupil. In the ideal case of a Gaussian apodised pupil, the scattering can be significantly improved. Finally we look at realistic models of the spectrograph pupils of fibre fed spectrographs with a centrally obstructed telescope, and show that it is possible to apodise the pupil through non-telecentric injection into the fibre.

  7. THE SPATIAL EXTENT OF (U)LIRGs IN THE MID-INFRARED. I. THE CONTINUUM EMISSION

    International Nuclear Information System (INIS)

    DIaz-Santos, T.; Charmandaris, V.; Armus, L.; Petric, A. O.; Howell, J. H.; Murphy, E. J.; Inami, H.; Haan, S.; Marshall, J. A.; Stierwalt, S.; Surace, J. A.; Mazzarella, J. M.; Veilleux, S.; Bothun, G.; Appleton, P. N.; Evans, A. S.; Sanders, D. B.

    2010-01-01

    We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey sample based on 5-15 μm low-resolution spectra obtained with the Infrared Spectrograph on Spitzer. We calculate the fraction of extended emission (FEE) as a function of wavelength for the galaxies in the sample, FEE λ , defined as the fraction of the emission which originates outside of the unresolved component of a source at a given distance. We find that the FEE λ varies from one galaxy to another, but we can identify three general types of FEE λ : one where FEE λ is constant, one where features due to emission lines and polycyclic aromatic hydrocarbons appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7 μm. More than 30% of the galaxies have a median FEE λ larger than 0.5, implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0 ∼ 13.2 μ m ∼ 13.2 μ m that we find in many LIRGs suggest that the extended component of their MIR continuum emission originates in scales up to 10 kpc and may contribute as much as the nuclear region to their total MIR luminosity. The mean size of the LIRG cores at 13.2 μm is 2.6 kpc. However, once the IR luminosity of the systems reaches the threshold of L IR ∼ 10 11.8 L sun , slightly below the regime of Ultra-luminous Infrared Galaxies (ULIRGs), all sources become clearly more compact, with FEE 13.2 μ m ∼ IR ∼> 10 11.25 L sun strongly increases in those classified as mergers in their final stage of interaction. The FEE 13.2 μ m is also related to the contribution of an active galactic nucleus (AGN) to the MIR emission. Galaxies which are more AGN dominated are less extended, independently of their L IR . We finally find that the extent of the MIR continuum emission is correlated with the far-IR IRAS log(f 60 μ m /f 100 μ m

  8. SPRAT: Spectrograph for the Rapid Acquisition of Transients

    Science.gov (United States)

    Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.

    2014-07-01

    We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.

  9. Workshop for cascade project, physics using large acceptance spectrograph and its technical considerations

    International Nuclear Information System (INIS)

    1989-03-01

    The Workshop for Cascade, subtitled 'Physics Using Large Acceptance Spectrograph and Its Technical Considerations', was held on July 13, 1988 by the Nuclear Physics Research Center, Osaka University. The present proceedings carry a total of 18 reports, which are entitled 'RCNP Large Acceptance Spectrograph (plan)', 'Correlation Experiments with a System Consisting of a Small Number of Nucleons', 'Measurement of (d,d) and (d, 2 He) Reactions with Large Solid Angle Spectrograph', 'The (p,2p) and (p,pn) Reactions', 'Correlation Experiments with Large Acceptance Spectrograph', 'Efforts at Determination of Various Correlations in Alpha Particles', 'Two-Nucleon Correlation in Nucleus', 'A Study on Particle Migration Reaction with Broad-Band Spectrograph', 'Measurement of Response in Highly Excited State during Nucleon Migration Reaction', 'A Study on Δ-Excitation within Nucleus', 'A Few Problems Related with Response in Highly Excited State', 'Spin-Isospin Modes in Continuum', '(p,π) and (p,xπ) Reactions', 'Formation of π - in (p,2p) Reaction', 'Formation of π-Mesonic Atom with Consistent Momentum', 'Measurement of Excitation Functions by Means of 'Inconsistent' Dispersion in Magnetic Spectrograph', 'Deeply Bound π - States by 'π - Transfer' (n,p) Reactions', and 'On High Resolution (n,p) Facilities'. (N.K.)

  10. X-ray spectrometer spectrograph telescope system. [for solar corona study

    Science.gov (United States)

    Bruner, E. C., Jr.; Acton, L. W.; Brown, W. A.; Salat, S. W.; Franks, A.; Schmidtke, G.; Schweizer, W.; Speer, R. J.

    1979-01-01

    A new sounding rocket payload that has been developed for X-ray spectroscopic studies of the solar corona is described. The instrument incorporates a grazing incidence Rowland mounted grating spectrograph and an extreme off-axis paraboloic sector feed system to isolate regions of the sun of order 1 x 10 arc seconds in size. The focal surface of the spectrograph is shared by photographic and photoelectric detection systems, with the latter serving as a part of the rocket pointing system control loop. Fabrication and alignment of the optical system is based on high precision machining and mechanical metrology techniques. The spectrograph has a resolution of 16 milliangstroms and modifications planned for future flights will improve the resolution to 5 milliangstroms, permitting line widths to be measured.

  11. MID-INFRARED PHOTOMETRY OF COLD BROWN DWARFS: DIVERSITY IN AGE, MASS, AND METALLICITY

    International Nuclear Information System (INIS)

    Leggett, S. K.; Burningham, Ben; Jones, H. R. A.; Lucas, P. W.; Pinfield, D. J.; Saumon, D.; Marley, M. S.; Warren, S. J.; Smart, R. L.; Tamura, Motohide

    2010-01-01

    We present new Spitzer Infrared Array Camera (IRAC) photometry of 12 very late-type T dwarfs: nine have [3.6], [4.5], [5.8], and [8.0] photometry and three have [3.6] and [4.5] photometry only. Combining this with previously published photometry, we investigate trends with type and color that are useful for both the planning and interpretation of infrared surveys designed to discover the coldest T or Y dwarfs. The online appendix provides a collation of MKO-system YJHKL'M' and IRAC photometry for a sample of M, L, and T dwarfs. Brown dwarfs with effective temperature (T eff ) below 700 K emit more than half their flux at wavelengths longer than 3 μm, and the ratio of the mid-infrared flux to the near-infrared flux becomes very sensitive to T eff at these low temperatures. We confirm that the color H (1.6 μm) - [4.5] is a good indicator of T eff with a relatively weak dependence on metallicity and gravity. Conversely, the colors H - K (2.2 μm) and [4.5] - [5.8] are sensitive to metallicity and gravity. Thus, near- and mid-infrared photometry provide useful indicators of the fundamental properties of brown dwarfs, and if temperature and gravity are known, then mass and age can be reliably determined from evolutionary models. There are 12 dwarfs currently known with H- [4.5] >3.0, and 500 K ∼ eff ∼<800 K, which we examine in detail. The ages of the dwarfs in the sample range from very young (0.1-1.0 Gyr) to relatively old (3-12 Gyr). The mass range is possibly as low as 5 Jupiter masses to up to 70 Jupiter masses, i.e., near the hydrogen burning limit. The metallicities also span a large range, from [m/H] = -0.3 to [m/H] = +0.3. The small number of T8-T9 dwarfs found in the UK Infrared Telescope Infrared Deep Sky Survey to date appear to be predominantly young low-mass dwarfs. Accurate mid-infrared photometry of cold brown dwarfs is essentially impossible from the ground, and extensions to the mid-infrared space missions, warm-Spitzer and Wide-Field Infrared

  12. Probing the nuclear and circumnuclear activity of NGC 1365 in the infrared

    Science.gov (United States)

    Alonso-Herrero, A.; Sánchez-Portal, M.; Ramos Almeida, C.; Pereira-Santaella, M.; Esquej, P.; García-Burillo, S.; Castillo, M.; González-Martín, O.; Levenson, N.; Hatziminaoglou, E.; Acosta-Pulido, J. A.; González-Serrano, J. I.; Pović, M.; Packham, C.; Pérez-García, A. M.

    2012-09-01

    We present new far-infrared (70-500 μm) Herschel Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) imaging observations as well as new mid-IR Gemini/Thermal-Region Camera Spectrograph imaging (8.7 and 18.3 μm) and spectroscopy of the inner Lindblad resonance (ILR) region (R Linares Senior Research Fellow.

  13. Laboratory Studies of Solid CO2 Ices at Different Temperatures and Annealing Times in Support of Spitzer Space Telescope Observations

    Science.gov (United States)

    White, Douglas; Gerakines, P. A.

    2007-12-01

    The infrared absorption features of solid carbon dioxide have been detected by space observatories in nearly all lines of sight probing the dense interstellar medium (ISM). It has also been shown that the absorption feature of solid CO2 near 658 cm-1 (15.2 μm) should be a sensitive indicator of the physical conditions of the ice (e.g., temperature and composition). However, the profile structure of this feature is not well understood, and previous laboratory studies have concentrated on a limited range of temperatures and compositions for comparisons to observed spectra from both the Infrared Space Observatory and the Spitzer Space Telescope. In the laboratory study described here, the infrared spectra of ices bearing H2O, CH3OH, and CO2 have been measured with systematically varying compositions and temperatures that span the range of the values expected in the interstellar medium. The mid-infrared spectra (λ = 2.5-25 µm) were measured for 47 different ice compositions at temperatures ranging from 5 K to evaporation (at 5 K intervals). Additionally, annealing experiments of some of these ice compositions have been investigated. These data may be used to determine thermal histories of interstellar ices. This research was supported by NASA award NNG05GE44G under the Astronomy and Physics Research & Analysis Program (APRA).

  14. CROSS-CORRELATION BETWEEN X-RAY AND OPTICAL/NEAR-INFRARED BACKGROUND INTENSITY FLUCTUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell-Wynne, Ketron; Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Xue, Yongquan [CAS Key Laboratory for Researches in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Luo, Bin [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Brandt, William [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA, 16802 (United States); Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-01

    Angular power spectra of optical and infrared background anisotropies at wavelengths between 0.5 and 5 μ m are a useful probe of faint sources present during reionization, in addition to faint galaxies and diffuse signals at low redshift. The cross-correlation of these fluctuations with backgrounds at other wavelengths can be used to separate some of these signals. A previous study on the cross-correlation between X-ray and Spitzer fluctuations at 3.6 μ m and 4.5 μ m has been interpreted as evidence for direct collapse black holes present at z  > 12. Here we return to this cross-correlation and study its wavelength dependence from 0.5 to 4.5 μ m using Hubble and Spitzer data in combination with a subset of the 4 Ms Chandra observations in GOODS-S/ECDFS. Our study involves five Hubble bands at 0.6, 0.7, 0.85, 1.25, and 1.6 μ m, and two Spitzer -IRAC bands at 3.6 μ m and 4.5 μ m. We confirm the previously seen cross-correlation between 3.6 μ m (4.5 μ m) and X-rays with 3.7 σ (4.2 σ ) and 2.7 σ (3.7 σ ) detections in the soft [0.5–2] keV and hard [2–8] keV X-ray bands, respectively, at angular scales above 20 arcsec. The cross-correlation of X-rays with Hubble is largely anticorrelated, ranging between the levels of 1.4 σ –3.5 σ for all the Hubble and X-ray bands. This lack of correlation in the shorter optical/NIR bands implies the sources responsible for the cosmic infrared background at 3.6 and 4.5 μ m are at least partly dissimilar to those at 1.6 μ m and shorter.

  15. Mid-infrared followup of cold brown dwarfs: diversity in age, mass and metallicity

    Energy Technology Data Exchange (ETDEWEB)

    Saumon, Didier [Los Alamos National Laboratory; Leggett, Sandy K [GEMINI OBSERVATORY; Burningham, Ben [HERTFORDSHITE UNIV; Marley, Mark S [NASA AMES; Waren, S J [IMPERIAL COLLEGE LONDON; Jones, H R A [HERTFORDSHIRE U; Pinfield, D J [HERTFORDSHIRE U; Smart, R L [ASTRONOMICAL OBS

    2009-01-01

    We present new Spitzer IRAC [3.6], [4.5], [5.8] and [8.0] photometry of nine very late-type T dwarfs. Combining this with previously published photometry, we investigate trends with type and color that are useful for both the planning and interpretation of infrared surveys designed to discover the coldest T or Y dwarfs. Brown dwarfs with effective temperature (T{sub eff}) below 700 K emit more than half their flux at wavelengths longer than 3 {micro}m, and the ratio of the mid-infrared flux to the near-infrared flux becomes very sensitive to T{sub eff} at these low temperatures. We confirm that the color H (1.6 {micro}m) - [4.5] is a good indicator of T{sub eff} with a relatively weak dependence on metallicity and gravity. Conversely, the colors H - K (2.2 {micro}m) and [4.5] - [5.8] are sensitive to metallicity and gravity. Thus near- and mid-infrared photometry provide useful indicators of the fundamental properties of brown dwarfs, and if temperature and gravity are known, then mass and age can be reliably determined from evolutionary models. There are twelve dwarfs currently known with H - [4.5] > 3.0, and {approx} 500 < T{sub eff} K {approx}< 800, which we examine in detail. The ages of the dwarfs in the sample range from very young (0.1 - 1.0 Gyr) to relatively old (3 - 12 Gyr). The mass range is possibly as low as 5 Jupiter masses to up to 70 Jupiter masses, i.e. near the hydrogen burning limit. The metallicities also span a large range, from [m/H]= -0.3 to [m/H]= +0.2. The small number of T8 - T9 dwarfs found in the UKIRT Infrared Deep Sky Survey to date appear to be predominantly young low-mass dwarfs. Accurate mid-infrared photometry of cold brown dwarfs is essentially impossible from the ground, and extensions to the mid-infrared space missions warm-Spitzer and WISE are desirable in order to obtain the vital mid-infrared data for cold brown dwarfs, and to discover more of these rare objects.

  16. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  17. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    International Nuclear Information System (INIS)

    Helton, L. Andrew; Vacca, William D.; Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P.; Wagner, R. Mark; Evans, Aneurin; Krautter, Joachim; Schwarz, Greg J.; Starrfield, Sumner

    2012-01-01

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  18. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Helton, L. Andrew; Vacca, William D. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N232-11, Moffett Field, CA 94035 (United States); Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Wagner, R. Mark [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Evans, Aneurin [Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Krautter, Joachim [Landessternwarte-Zentrum fuer Astronomie der Universitaet, Koenigstuhl, D-69117 Heidelberg (Germany); Schwarz, Greg J. [American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009 (United States); Starrfield, Sumner, E-mail: ahelton@sofia.usra.edu [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States)

    2012-08-10

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  19. Hybrid active pixel sensors in infrared astronomy

    International Nuclear Information System (INIS)

    Finger, Gert; Dorn, Reinhold J.; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Joerg; Moorwood, Alan

    2005-01-01

    Infrared astronomy is currently benefiting from three main technologies providing high-performance hybrid active pixel sensors. In the near infrared from 1 to 5 μm two technologies, both aiming for buttable 2Kx2K mosaics, are competing, namely InSb and HgCdTe grown by LPE or MBE on Al 2 O 3 , Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 μm. Adaptive optics combined with multiple integral field units feeding high-resolution spectrographs drive the requirements for the array format of infrared sensors used at ground-based infrared observatories. The pixel performance is now approaching fundamental limits. In view of this development, a detection limit for the photon flux of the ideal detector will be derived, depending only on the temperature and the impedance of the detector. It will be shown that this limit is approximated by state of the art infrared arrays for long on-chip integrations. Different detector materials are compared and strategies to populate large focal planes are discussed. The need for the development of small-format low noise sensors for adaptive optics and interferometry will be pointed out

  20. Constraints on the OH-to-H Abundance Ratio in Infrared-bright Galaxies Derived from the Strength of the OH 35 μm Absorption Feature

    Science.gov (United States)

    Stone, Myra; Veilleux, Sylvain; González-Alfonso, Eduardo; Spoon, Henrik; Sturm, Eckhard

    2018-02-01

    We analyze Spitzer/InfraRed Spectrograph (IRS) observations of the OH 35 μm feature in 15 nearby (z ≲ 0.06) (ultra-)luminous infrared galaxies (U/LIRGs). All objects exhibit OH 35 μm purely in absorption, as expected. The small optical depth of this transition makes the strength of this feature a good indicator of the true OH column density. The measured OH 35 μm equivalent widths imply an average OH column density and a 1-σ standard deviation to the mean of {N}{OH}=1.31+/- 0.22× {10}17 cm‑2. This number is then compared with the hydrogen column density for a typical optical depth at 35 μm of ∼0.5 and gas-to-dust ratio of 125 to derive an OH-to-H abundance ratio of {X}{OH}=1.01+/- 0.15× {10}-6. This abundance ratio is formally a lower limit. It is consistent with the values generally assumed in the literature. The OH 35 μm line profiles predicted from published radiative transfer models constrained by observations of OH 65, 79, 84, and 119 μm in 5 objects (Mrk 231, Mrk 273, IRAS F05189-2524, IRAS F08572+3915, and IRAS F20551-4250) are also found to be consistent with the IRS OH 35 μm spectra.

  1. A Shocking Surprise in Stephan's Quintet

    Science.gov (United States)

    2006-01-01

    This false-color composite image of the Stephan's Quintet galaxy cluster clearly shows one of the largest shock waves ever seen (green arc). The wave was produced by one galaxy falling toward another at speeds of more than one million miles per hour. The image is made up of data from NASA's Spitzer Space Telescope and a ground-based telescope in Spain. Four of the five galaxies in this picture are involved in a violent collision, which has already stripped most of the hydrogen gas from the interiors of the galaxies. The centers of the galaxies appear as bright yellow-pink knots inside a blue haze of stars, and the galaxy producing all the turmoil, NGC7318b, is the left of two small bright regions in the middle right of the image. One galaxy, the large spiral at the bottom left of the image, is a foreground object and is not associated with the cluster. The titanic shock wave, larger than our own Milky Way galaxy, was detected by the ground-based telescope using visible-light wavelengths. It consists of hot hydrogen gas. As NGC7318b collides with gas spread throughout the cluster, atoms of hydrogen are heated in the shock wave, producing the green glow. Spitzer pointed its infrared spectrograph at the peak of this shock wave (middle of green glow) to learn more about its inner workings. This instrument breaks light apart into its basic components. Data from the instrument are referred to as spectra and are displayed as curving lines that indicate the amount of light coming at each specific wavelength. The Spitzer spectrum showed a strong infrared signature for incredibly turbulent gas made up of hydrogen molecules. This gas is caused when atoms of hydrogen rapidly pair-up to form molecules in the wake of the shock wave. Molecular hydrogen, unlike atomic hydrogen, gives off most of its energy through vibrations that emit in the infrared. This highly disturbed gas is the most turbulent molecular hydrogen ever seen. Astronomers were surprised not only by the turbulence

  2. Use of an ultra-high resolution magnetic spectrograph for materials research

    NARCIS (Netherlands)

    Boerma, DO; Arnoldbik, WM; Wolfswinkel, W; Balogh, AG; Walter, G

    1997-01-01

    A brief description is given of a magnetic spectrograph for RBS and ERD analysis with MeV beams, delivered by a Tandem accelerator. With a number of examples of thin layer analysis it is shown that the spectrograph is uniquely suited for the measurement of concentration depth profiles up to a depth

  3. A Direct Imaging Survey of Spitzer-detected Debris Disks: Occurrence of Giant Planets in Dusty Systems

    Science.gov (United States)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed

    2017-12-01

    We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  4. NEAR-INFRARED LINEAR POLARIZATION OF ULTRACOOL DWARFS

    International Nuclear Information System (INIS)

    Zapatero Osorio, M. R.; Bejar, V. J. S.; Rebolo, R.; Acosta-Pulido, J. A.; Manchado, A.; Pena Ramirez, K.; Goldman, B.; Caballero, J. A.

    2011-01-01

    We report on near-infrared J- and H-band linear polarimetric photometry of eight ultracool dwarfs (two late-M, five L0-L7.5, and one T2.5) with known evidence for photometric variability due to dust clouds, anomalous red infrared colors, or low-gravity atmospheres. The polarimetric data were acquired with the LIRIS instrument on the William Herschel Telescope. We also provide mid-infrared photometry in the interval 3.4-24 μm for some targets obtained with Spitzer and WISE, which has allowed us to confirm the peculiar red colors of five sources in the sample. We can impose modest upper limits of 0.9% and 1.8% on the linear polarization degree for seven targets with a confidence of 99%. Only one source, 2MASS J02411151-0326587 (L0), appears to be strongly polarized (P ∼ 3%) in the J band with a significance level of P/σ P ∼ 10. The likely origin of its linearly polarized light and rather red infrared colors may reside in a surrounding disk with an asymmetric distribution of grains. Given its proximity (66 ± 8 pc), this object becomes an excellent target for the direct detection of the disk.

  5. Design and realization of the real-time spectrograph controller for LAMOST based on FPGA

    Science.gov (United States)

    Wang, Jianing; Wu, Liyan; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Wu, Zhen; Chen, Yi

    2008-08-01

    A large Schmitt reflector telescope, Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST), is being built in China, which has effective aperture of 4 meters and can observe the spectra of as many as 4000 objects simultaneously. To fit such a large amount of observational objects, the dispersion part is composed of a set of 16 multipurpose fiber-fed double-beam Schmidt spectrographs, of which each has about ten of moveable components realtimely accommodated and manipulated by a controller. An industrial Ethernet network connects those 16 spectrograph controllers. The light from stars is fed to the entrance slits of the spectrographs with optical fibers. In this paper, we mainly introduce the design and realization of our real-time controller for the spectrograph, our design using the technique of System On Programmable Chip (SOPC) based on Field Programmable Gate Array (FPGA) and then realizing the control of the spectrographs through NIOSII Soft Core Embedded Processor. We seal the stepper motor controller as intellectual property (IP) cores and reuse it, greatly simplifying the design process and then shortening the development time. Under the embedded operating system μC/OS-II, a multi-tasks control program has been well written to realize the real-time control of the moveable parts of the spectrographs. At present, a number of such controllers have been applied in the spectrograph of LAMOST.

  6. Spitzer IRAC Confirmation of z850-Dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at z ~ 7

    Science.gov (United States)

    Labbé, Ivo; Bouwens, Rychard; Illingworth, G. D.; Franx, M.

    2006-10-01

    Using Spitzer IRAC mid-infrared imaging from the Great Observatories Origins Deep Survey, we study z850-dropout sources in the Hubble Ultra Deep Field. After carefully removing contaminating flux from foreground sources, we clearly detect two z850 dropouts at 3.6 and 4.5 μm, while two others are marginally detected. The mid-infrared fluxes strongly support their interpretation as galaxies at z~7, seen when the universe was only 750 Myr old. The IRAC observations allow us for the first time to constrain the rest-frame optical colors, stellar masses, and ages of the highest redshift galaxies. Fitting stellar population models to the spectral energy distributions, we find photometric redshifts in the range 6.7-7.4, rest-frame colors U-V=0.2-0.4, V-band luminosities LV=(0.6-3)×1010 Lsolar, stellar masses (1-10)×109 Msolar, stellar ages 50-200 Myr, star formation rates up to ~25 Msolar yr-1, and low reddening AV~8, during the era of cosmic reionization, but the star formation rate density derived from their stellar masses and ages is not nearly sufficient to reionize the universe. The simplest explanation for this deficiency is that lower mass galaxies beyond our detection limit reionized the universe. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through contract 125790 issued by JPL/Caltech. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based on service mode observations collected at the European Southern Observatory, Paranal, Chile (ESO program 073.A-0764A).

  7. AN IN-DEPTH VIEW OF THE MID-INFRARED PROPERTIES OF POINT SOURCES AND THE DIFFUSE ISM IN THE SMC GIANT H II REGION, N66

    International Nuclear Information System (INIS)

    Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Rémy; Lebouteiller, Vianney; Galliano, Frédéric; Peeters, Els; Bernard-Salas, Jeronimo; Brandl, Bernhard R.

    2013-01-01

    The focus of this work is to study mid-infrared point sources and the diffuse interstellar medium (ISM) in the low-metallicity (∼0.2 Z ☉ ) giant H II region N66 in order to determine properties that may shed light on star formation in these conditions. Using the Spitzer Space Telescope's Infrared Spectrograph, we study polycyclic aromatic hydrocarbon (PAH), dust continuum, silicate, and ionic line emission from 14 targeted infrared point sources as well as spectra of the diffuse ISM that is representative of both the photodissociation regions (PDRs) and the H II regions. Among the point source spectra, we spectroscopically confirm that the brightest mid-infrared point source is a massive embedded young stellar object, we detect silicates in emission associated with two young stellar clusters, and we see spectral features of a known B[e] star that are commonly associated with Herbig Be stars. In the diffuse ISM, we provide additional evidence that the very small grain population is being photodestroyed in the hard radiation field. The 11.3 μm PAH complex emission exhibits an unexplained centroid shift in both the point source and ISM spectra that should be investigated at higher signal-to-noise and resolution. Unlike studies of other regions, the 6.2 μm and 7.7 μm band fluxes are decoupled; the data points cover a large range of I 7.7 /I 11.3 PAH ratio values within a narrow band of I 6.2 /I 11.3 ratio values. Furthermore, there is a spread in PAH ionization, being more neutral in the dense PDR where the radiation field is relatively soft, but ionized in the diffuse ISM/PDR. By contrast, the PAH size distribution appears to be independent of local ionization state. Important to unresolved studies of extragalactic low-metallicity star-forming regions, we find that emission from the infrared-bright point sources accounts for only 20%-35% of the PAH emission from the entire region. These results make a comparative data set to other star-forming regions with

  8. Detection of Planetary Emission from the Exoplanet TrES-2 Using Spitzer/IRAC

    Science.gov (United States)

    Donovan, Francis T.; Charbonneau, David; Harrington, Joseph; Madhusudhan, N.; Seager, Sara; Deming, Drake; Knutson, Heather A.

    2010-01-01

    We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +/- 0.021%, 0.230% +/- 0.024%, 0.199% +/- 0.054%, and 0.359% +/- 0.060% at 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T(sub eff) = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in all four lRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet. Key words: eclipses - infrared: stars - planetary systems - stars: individual (OSC 03549-02811) - techniques: photometric

  9. Near-infrared imaging of white dwarfs with candidate debris disks

    International Nuclear Information System (INIS)

    Wang, Zhongxiang; Tziamtzis, Anestis; Wang, Xuebing

    2014-01-01

    We have carried out JHK s imaging of 12 white dwarf debris disk candidates from the WIRED Sloan Digital Sky Survey Data Release 7 catalog, aiming to confirm or rule out disks among these sources. On the basis of positional identification and the flux density spectra, we find that seven white dwarfs have excess infrared emission, but mostly at Wide-field Infrared Survey Explorer W1 and W2 bands. Four are due to nearby red objects consistent with background galaxies or very low mass dwarfs, and one exhibits excess emission at JHK s consistent with an unresolved L0 companion at the correct distance. While our photometry is not inconsistent with all seven excesses arising from disks, the stellar properties are distinct from the known population of debris disk white dwarfs, making the possibility questionable. In order to further investigate the nature of these infrared sources, warm Spitzer imaging is needed, which may help resolve galaxies from the white dwarfs and provide more accurate flux measurements.

  10. Detection Of Alterations In Audio Files Using Spectrograph Analysis

    Directory of Open Access Journals (Sweden)

    Anandha Krishnan G

    2015-08-01

    Full Text Available The corresponding study was carried out to detect changes in audio file using spectrograph. An audio file format is a file format for storing digital audio data on a computer system. A sound spectrograph is a laboratory instrument that displays a graphical representation of the strengths of the various component frequencies of a sound as time passes. The objectives of the study were to find the changes in spectrograph of audio after altering them to compare altering changes with spectrograph of original files and to check for similarity and difference in mp3 and wav. Five different alterations were carried out on each audio file to analyze the differences between the original and the altered file. For altering the audio file MP3 or WAV by cutcopy the file was opened in Audacity. A different audio was then pasted to the audio file. This new file was analyzed to view the differences. By adjusting the necessary parameters the noise was reduced. The differences between the new file and the original file were analyzed. By adjusting the parameters from the dialog box the necessary changes were made. The edited audio file was opened in the software named spek where after analyzing a graph is obtained of that particular file which is saved for further analysis. The original audio graph received was combined with the edited audio file graph to see the alterations.

  11. INFRARED CLASSIFICATION AND LUMINOSITIES FOR DUSTY ACTIVE GALACTIC NUCLEI AND THE MOST LUMINOUS QUASARS

    International Nuclear Information System (INIS)

    Weedman, Daniel; Sargsyan, Lusine; Houck, James; Barry, Donald; Lebouteiller, Vianney

    2012-01-01

    Mid-infrared spectroscopic measurements from the Infrared Spectrometer (IRS) on Spitzer are given for 125 hard X-ray active galactic nuclei (AGNs; 14-195 keV) from the Swift Burst Alert Telescope (BAT) sample and for 32 AGNs with black hole masses (BHMs) from reverberation mapping. The 9.7 μm silicate feature in emission or absorption defines an infrared AGN classification describing whether AGNs are observed through dust clouds, indicating that 55% of the BAT AGNs are observed through dust. The mid-infrared dust continuum luminosity is shown to be an excellent indicator of intrinsic AGN luminosity, scaling closely with the hard X-ray luminosity, log νL ν (7.8 μm)/L(X) = –0.31 ± 0.35, and independent of classification determined from silicate emission or absorption. Dust luminosity scales closely with BHM, log νL ν (7.8 μm) = (37.2 ± 0.5) + 0.87 log BHM for luminosity in erg s –1 and BHM in M ☉ . The 100 most luminous type 1 quasars as measured in νL ν (7.8 μm) are found by comparing Sloan Digital Sky Survey (SDSS) optically discovered quasars with photometry at 22 μm from the Wide-Field Infrared Survey Explorer (WISE), scaled to rest frame 7.8 μm using an empirical template determined from IRS spectra. The most luminous SDSS/WISE quasars have the same maximum infrared luminosities for all 1.5 IR = 10 14.4 L ☉ . Comparing with dust-obscured galaxies from Spitzer and WISE surveys, we find no evidence of hyperluminous obscured quasars whose maximum infrared luminosities exceed the maximum infrared luminosities of optically discovered quasars. Bolometric luminosities L bol estimated from rest-frame optical or ultraviolet luminosities are compared to L IR . For the local AGN, the median log L IR /L bol = –0.35, consistent with a covering factor of 45% for the absorbing dust clouds. For the SDSS/WISE quasars, the median log L IR /L bol = 0.1, with extremes indicating that ultraviolet-derived L bol can be seriously underestimated even for type 1

  12. The evolution of hydrocarbons past the asymptotic giant branch: the case of MSX SMC 029

    Science.gov (United States)

    Pauly, Tyler; Sloan, Gregory C.; Kraemer, Kathleen E.; Bernard-Salas, Jeronimo; Lebouteiller, Vianney; Goes, Christopher; Barry, Donald

    2015-01-01

    We present an optimally extracted high-resolution spectrum of MSX SMC 029 obtained by the Infrared Spectrograph on the Spitzer Space Telescope. MSX SMC 029 is a carbon-rich object in the Small Magellanic Cloud that has evolved past the asymptotic giant branch (AGB). The spectrum reveals a cool carbon-rich dust continuum with emission from polycyclic aromatic hydrocarbons (PAHs) and absorption from simpler hydrocarbons, both aliphatic and aromatic, including acetylene and benzene. The spectrum shows many similarities to the carbon-rich post-AGB objects SMP LMC 011 in the Large Magellanic Cloud and AFGL 618 in the Galaxy. Both of these objects also show infrared absorption features from simple hydrocarbons. All three spectra lack strong atomic emission lines in the infrared, indicating that we are observing the evolution of carbon-rich dust and free hydrocarbons in objects between the AGB and planetary nebulae. These three objects give us a unique view of the elusive phase when hydrocarbons exist both as relatively simple molecules and the much more complex and ubiquitous PAHs. We may be witnessing the assembly of amorphous carbon into PAHs.

  13. SPATIAL VARIATIONS OF PAH PROPERTIES IN M17SW REVEALED BY SPITZER /IRS SPECTRAL MAPPING

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara 252-5210 (Japan); Kaneda, H.; Ishihara, D.; Oyabu, S.; Suzuki, T.; Nishimura, A.; Kohno, M. [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Onaka, T.; Ohashi, S. [Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagayama, T.; Matsuo, M. [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Umemoto, T.; Minamidani, T.; Fujita, S. [Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Tsuda, Y., E-mail: yamagish@ir.isas.jaxa.jp [Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-0042 (Japan)

    2016-12-20

    We present Spitzer /IRS mid-infrared spectral maps of the Galactic star-forming region M17 as well as IRSF/SIRIUS Br γ and Nobeyama 45 m/FOREST {sup 13}CO ( J = 1–0) maps. The spectra show prominent features due to polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, 11.3, 12.0, 12.7, 13.5, and 14.2  μ m. We find that the PAH emission features are bright in the region between the H ii region traced by Br γ and the molecular cloud traced by {sup 13}CO, supporting that the PAH emission originates mostly from photo-dissociation regions. Based on the spatially resolved Spitzer /IRS maps, we examine spatial variations of the PAH properties in detail. As a result, we find that the interband ratio of PAH 7.7  μ m/PAH 11.3  μ m varies locally near M17SW, but rather independently of the distance from the OB stars in M17, suggesting that the degree of PAH ionization is mainly controlled by local conditions rather than the global UV environments determined by the OB stars in M17. We also find that the interband ratios of the PAH 12.0  μ m, 12.7  μ m, 13.5  μ m, and 14.2  μ m features to the PAH 11.3  μ m feature are high near the M17 center, which suggests structural changes of PAHs through processing due to intense UV radiation, producing abundant edgy irregular PAHs near the M17 center.

  14. ExploreNEOs: The Warm Spitzer Near Earth Object Survey

    NARCIS (Netherlands)

    Trilling, D. E.; Hora, J. L.; Mueller, M.; Thomas, C. A.; Harris, A. W.; Hagen, A. R.; Mommert, M.; Benner, L.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbo, M.; Emery, J. P.; Fazio, G.; Kistler, J. L.; Mainzer, A.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.

    2012-01-01

    We have observed some 600 near Earth objects (NEOs) at 3.6 and 4.5 microns with the Warm Spitzer Space Telescope. We derive the albedo and diameter for each NEO to characterize global properties of the NEO population, among other goals.

  15. Optical design of a versatile FIRST high-resolution near-IR spectrograph

    Science.gov (United States)

    Zhao, Bo; Ge, Jian

    2012-09-01

    We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.

  16. VizieR Online Data Catalog: Deconvolved Spitzer images of 89 protostars (Velusamy+, 2014)

    Science.gov (United States)

    Velusamy, T.; Langer, W. D.; Thompson, T.

    2016-03-01

    The sample of Class 0 protostars, H2 jets, and outflow sour selected for HiRes deconvolution of Spitzer images are listed in Table1. The majority of our target protostellar objects were selected from "The Youngest Protostars" webpage hosted by the University of Kent (http://astro.kent.ac.uk/protostars/old/), which are based on the young Class 0 objects compiled by Froebrich 2005 (cat. J/ApJS/156/169). In addition to these objects, our sample includes some Herbig-Haro (HH) sources and a few well known jet outflow sources. Our sample also includes one high-mass protostar (IRAS20126+4104; cf. Caratti o Garatti et al., 2008A&A...485..137C) to demonstrate the use of HiRes for such sources. Our choice for target selection was primarily based on the availability of Spitzer images in IRAC and MIPS bands in the archives and the feasibility for reprocessing based on the published Spitzer images wherever available. (1 data file).

  17. Spitzer ultra faint survey program (surfs up). I. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Bradač, Maruša; Huang, Kuang-Han; Cain, Benjamin; Hall, Nicholas; Lubin, Lori [Department of Physics, University of California, Davis, CA 95616 (United States); Ryan, Russell; Casertano, Stefano [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lemaux, Brian C. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Schrabback, Tim; Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Allen, Steve; Von der Linden, Anja [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gladders, Mike [The University of Chicago, The Kavli Institute for Cosmological Physics, 933 East 56th Street, Chicago, IL 60637 (United States); Hinz, Joannah; Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Treu, Tommaso, E-mail: marusa@physics.ucdavis.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-04-20

    Spitzer UltRa Faint SUrvey Program is a joint Spitzer and Hubble Space Telescope Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z ≳ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest-frame optical light, which only Spitzer can probe for sources at z ≳ 7, for a large enough sample of typical galaxies. Our program consists of 550 hr of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ∼30 hr exposure time in both 3.6 μm and 4.5 μm in the central 4' × 4' field and ∼15 hr in the flanking fields. This results in 3σ sensitivity limits of ∼26.6 and ∼26.2 AB magnitudes for the central field in the IRAC 3.6 and 4.5 μm bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z ≳ 7 sources (using a z = 9.5 galaxy behind MACS J1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical point-spread function models. In the future we plan to release these data products for the entire survey.

  18. Mid-Infrared Observations of Possible Intergalactic Star Forming Regions in the Leo Ring

    Science.gov (United States)

    Giroux, Mark; Smith, B.; Struck, C.

    2011-05-01

    Within the Leo group of galaxies lies a gigantic loop of intergalactic gas known as the Leo Ring. Not clearly associated with any particular galaxy, its origin remains uncertain. It may be a primordial intergalactic cloud alternatively, it may be a collision ring, or have a tidal origin. Combining archival Spitzer images of this structure with published UV and optical data, we investigate the mid-infrared properties of possible knots of star formation in the ring. These sources are very faint in the mid-infrared compared to star forming regions in the tidal features of interacting galaxies. This suggests they are either deficient in dust, or they may not be associated with the ring.

  19. MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS

    International Nuclear Information System (INIS)

    Stern, Daniel; Assef, Roberto J.; Eisenhardt, Peter; Benford, Dominic J.; Blain, Andrew; Cutri, Roc; Griffith, Roger L.; Jarrett, T. H.; Masci, Frank; Tsai, Chao-Wei; Yan, Lin; Dey, Arjun; Lake, Sean; Petty, Sara; Wright, E. L.; Stanford, S. A.; Harrison, Fiona; Madsen, Kristin

    2012-01-01

    The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 – W2 ≥ 0.8 (i.e., [3.4]–[4.6] ≥0.8, Vega), which identifies 61.9 ± 5.4 active galactic nucleus (AGN) candidates per deg 2 to a depth of W2 ∼ 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 μJy at 4.6 μm, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field.

  20. SHOCKS AND A GIANT PLANET IN THE DISK ORBITING BP PISCIUM?

    International Nuclear Information System (INIS)

    Melis, C.; Zuckerman, B.; Gielen, C.; Chen, C. H.; Rhee, Joseph H.; Song, Inseok

    2010-01-01

    Spitzer Infrared Spectrograph data support the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Piscium's spectral energy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ∼75 K crystalline, magnesium-rich olivine; ∼75 K crystalline, magnesium-rich pyroxene; ∼200 K amorphous, magnesium-rich pyroxene; and ∼200 K annealed silica (cristobalite). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.

  1. Obituary: James Houck (1940 - 2015)

    Science.gov (United States)

    Weedman, Daniel; Barry, Donald; Soifer, Thomas

    water on Mars from infrared absorption at 2.85 microns. The analysis that "this bound water comprises about one percent by weight of the surface material" was confirmed forty years later when the Mars Rover Curiosity determined water content by vaporizing Martian soil. Jim was a crucial participant in NASA's first major infrared space mission, the Infrared Astronomical Satellite (IRAS), especially because of his detector expertise which solved a major focal plane problem for the mission. His archive contains a napkin from a British pub on which he sketched a wiring diagram to show his colleagues how to save the 25 micron detector array. Once the results began from IRAS, Jim's scientific interests moved to extragalactic astronomy. He was a major participant in two of the most significant discoveries from IRAS, announced in 1984: an extended population of optically faint, infrared bright galaxies, and the presence of galaxies with exceptional infrared luminosities (now known as the Ultraluminous Infrared Galaxies, ULIRGs). After the great success of IRAS, NASA begin planning a major infrared mission, first labeled "Shuttle Infrared Telescope Facility" but soon becoming the Space Infrared Telescope Facility (SIRTF), and now operating as the Spitzer Space Telescope. Although hundreds contributed, Jim was among the few individuals who contributed most to the success of Spitzer. His colleagues acknowledged this by awarding him both the NASA Exceptional Scientific Achievement Medal in 2005 and the American Astronomical Society's 2008 Joseph Weber Award for Astronomical Instrumentation, with the citation stating, "It is no exaggeration to say that without Dr. Houck's contributions, modern IR astronomy would never have reached its current level of maturity." Jim was the Principal Investigator for the infrared spectrograph on Spitzer (IRS), initially chosen for the original SIRTF mission. Jim became the vital infrared representative on the review panel setting astronomy

  2. Red but not dead: unveiling the star-forming far-infrared spectral energy distribution of SpARCS brightest cluster galaxies at 0 < z < 1.8

    Science.gov (United States)

    Bonaventura, N. R.; Webb, T. M. A.; Muzzin, A.; Noble, A.; Lidman, C.; Wilson, G.; Yee, H. K. C.; Geach, J.; Hezaveh, Y.; Shupe, D.; Surace, J.

    2017-08-01

    We present the results of a Spitzer/Herschel infrared photometric analysis of the largest (716) and the highest-redshift (z = 1.8) sample of brightest cluster galaxies (BCGs), those from the Spitzer Adaptation of the Red-Sequence Cluster Survey Given the tension that exists between model predictions and recent observations of BCGs at z energy distributions (SEDs) to a variety of model templates in the literature, we identify the major sources of their infrared energy output, in multiple redshift bins between 0 solar masses per year down to z = 0.5. This discovery challenges the accepted belief that BCGs should only passively evolve through a series of gas-poor, minor mergers since z ˜ 4, but agrees with an improved semi-analytic model of hierarchical structure formation that predicts star-forming BCGs throughout the epoch considered. We attribute the star formation inferred from the stacked infrared SEDs to both major and minor 'wet' (gas-rich) mergers, based on a lack of key signatures (to date) of cooling-flow-induced star formation, as well as a number of observational and simulation-based studies that support this scenario.

  3. Solar glint suppression in compact planetary ultraviolet spectrographs

    Science.gov (United States)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  4. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set

    Science.gov (United States)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.

    2014-08-01

    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  5. SECONDARY ECLIPSE PHOTOMETRY OF THE EXOPLANET WASP-5b WITH WARM SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Nathaniel J.; Knutson, Heather A.; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 05844 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, IL 60208 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-08-20

    We present secondary eclipse photometry of the extrasolar planet WASP-5b taken in the 3.6 and 4.5 {mu}m bands with the Spitzer Space Telescope's Infrared Array Camera as part of the extended warm mission. By estimating the depth of the secondary eclipse in these two bands we can place constraints on the planet's atmospheric pressure-temperature profile and chemistry. We measure secondary eclipse depths of 0.197% {+-} 0.028% and 0.237% {+-} 0.024% in the 3.6 {mu}m and 4.5 {mu}m bands, respectively. For the case of a solar-composition atmosphere and chemistry in local thermal equilibrium, our observations are best matched by models showing a hot dayside and, depending on our choice of model, a weak thermal inversion or no inversion at all. We measure a mean offset from the predicted center of eclipse of 3.7 {+-} 1.8 minutes, corresponding to ecos {omega} = 0.0025 {+-} 0.0012 and consistent with a circular orbit. We conclude that the planet's orbit is unlikely to have been perturbed by interactions with another body in the system as claimed by Fukui et al.

  6. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST-AFTA

    Science.gov (United States)

    Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory (JPL) and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) configurations. We discuss why the lenslet array based IFS was selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to reduce the diffraction from the edge of the lenslets. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  7. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA

    Science.gov (United States)

    Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST/AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) cofigurations. We discuss why the lenslet array based IFS is selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to further suppress star light introduced speckles. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  8. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  9. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  10. The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy

    International Nuclear Information System (INIS)

    Leggett, S. K.; Tremblin, P.; Esplin, T. L.; Luhman, K. L.; Morley, Caroline V.

    2017-01-01

    The survey of the mid-infrared sky by the Wide-field Infrared Survey Explorer ( WISE ) led to the discovery of extremely cold, low-mass brown dwarfs, classified as Y dwarfs, which extend the T class to lower temperatures. Twenty-four Y dwarfs are known at the time of writing. Here we present improved parallaxes for four of these, determined using Spitzer images. We give new photometry for four late-type T and three Y dwarfs and new spectra of three Y dwarfs, obtained at Gemini Observatory. We also present previously unpublished photometry taken from HST , ESO, Spitzer , and WISE archives of 11 late-type T and 9 Y dwarfs. The near-infrared data are put onto the same photometric system, forming a homogeneous data set for the coolest brown dwarfs. We compare recent models to our photometric and spectroscopic data set. We confirm that nonequilibrium atmospheric chemistry is important for these objects. Nonequilibrium cloud-free models reproduce well the near-infrared spectra and mid-infrared photometry for the warmer Y dwarfs with 425 ≤ T eff (K) ≤ 450. A small amount of cloud cover may improve the model fits in the near-infrared for the Y dwarfs with 325 ≤ T eff (K) ≤ 375. Neither cloudy nor cloud-free models reproduce the near-infrared photometry for the T eff = 250 K Y dwarf W0855. We use the mid-infrared region, where most of the flux originates, to constrain our models of W0855. We find that W0855 likely has a mass of 1.5–8 Jupiter masses and an age of 0.3–6 Gyr. The Y dwarfs with measured parallaxes are within 20 pc of the Sun and have tangential velocities typical of the thin disk. The metallicities and ages we derive for the sample are generally solar-like. We estimate that the known Y dwarfs are 3 to 20 Jupiter-mass objects with ages of 0.6–8.5 Gyr.

  11. The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, S. K. [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Tremblin, P. [Maison de la Simulation, CEA-CNRS-INRIA-UPS-UVSQ, USR 3441, Centre d’étude de Saclay, F-91191 Gif-Sur-Yvette (France); Esplin, T. L.; Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Morley, Caroline V., E-mail: sleggett@gemini.edu [Harvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA 02138 (United States)

    2017-06-20

    The survey of the mid-infrared sky by the Wide-field Infrared Survey Explorer ( WISE ) led to the discovery of extremely cold, low-mass brown dwarfs, classified as Y dwarfs, which extend the T class to lower temperatures. Twenty-four Y dwarfs are known at the time of writing. Here we present improved parallaxes for four of these, determined using Spitzer images. We give new photometry for four late-type T and three Y dwarfs and new spectra of three Y dwarfs, obtained at Gemini Observatory. We also present previously unpublished photometry taken from HST , ESO, Spitzer , and WISE archives of 11 late-type T and 9 Y dwarfs. The near-infrared data are put onto the same photometric system, forming a homogeneous data set for the coolest brown dwarfs. We compare recent models to our photometric and spectroscopic data set. We confirm that nonequilibrium atmospheric chemistry is important for these objects. Nonequilibrium cloud-free models reproduce well the near-infrared spectra and mid-infrared photometry for the warmer Y dwarfs with 425 ≤ T {sub eff} (K) ≤ 450. A small amount of cloud cover may improve the model fits in the near-infrared for the Y dwarfs with 325 ≤ T {sub eff} (K) ≤ 375. Neither cloudy nor cloud-free models reproduce the near-infrared photometry for the T {sub eff} = 250 K Y dwarf W0855. We use the mid-infrared region, where most of the flux originates, to constrain our models of W0855. We find that W0855 likely has a mass of 1.5–8 Jupiter masses and an age of 0.3–6 Gyr. The Y dwarfs with measured parallaxes are within 20 pc of the Sun and have tangential velocities typical of the thin disk. The metallicities and ages we derive for the sample are generally solar-like. We estimate that the known Y dwarfs are 3 to 20 Jupiter-mass objects with ages of 0.6–8.5 Gyr.

  12. The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies

    Science.gov (United States)

    Wright, Jason Thomas; Povich, Matthew; Griffith, Roger; Maldonado, Jessica; Sigurdsson, Steinn; Star Cartier, Kimberly

    2015-08-01

    The WISE and Spitzer large-area surveys of the mid-infrared sky bring a new opportunity to search for evidence of the energy supplies of very large extraterrestrial civilizations. If these energy supplies rival the output of a civilization's parent star (Kardashev Type II), or if a galaxy-spanning supercivilization's use rivals that of the total galactic luminosity (Type III), they would be detectable as anomolously mid-infrared-bright stars and galaxies, respectively. We have already performed the first search for this emission from Type III civilizations using the WISE all-sky survey, and put the first upper limits on them in the local universe, and discuss ways to improve on these limits. We also discuss some detectable forms of and limits on Type II civilizations in the Mliky Way.

  13. The Fourier-Kelvin Stellar Interferometer (FKSI): Infrared Detection and Characterization of Exozodiacal Dust to Super-Earths, A Progress Report

    Science.gov (United States)

    Danchi, W.

    2010-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a structurally connected infrared space interferometer with 0.5 m diameter telescopes on a 12.5 m baseline, and is passively cooled to approx.60K. The FKSI operates in the thermal infrared from 3-8 microns in a nulling (or starlight suppressing) mode for the detection and characterization of exoplanets, debris disks, extrasolar zodiacal dust levels. The FKSI will have the highest angular resolution of any infrared space instrument ever made with its nominal resolution of 40 mas at a 5 micron center wavelength. This resolution exceeds that of Spitzer by a factor of 38 and JWST by a factor of 5. The FKSI mission is conceived as a "probe class" or "mid-sized" strategic mission that utilizes technology advances from flagship projects like JWST, SIM, Spitzer, and the technology programs of TPF-I/Darwin. During the past year we began investigating an enhanced version of FKSI with 1-2 m diameter telescopes, passively cooled to 40K, on a 20-m baseline, with a sunshade giving a +/- 45 degree Field-of-Regard. This enhanced design is capable of detecting and characterizing the atmospheres of many 2 Earth-radius super-Earths and a few Earth-twins. We will report progress on the design of the enhanced mission concept and current status of the technologies needed for this mission.

  14. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. VI. THE PROTOSTARS OF LYNDS DARK NEBULA 1221

    International Nuclear Information System (INIS)

    Young, Chadwick H.; Young, Kaisa E.; Popa, Victor; Bourke, Tyler L.; Dunham, Michael M.; Evans, Neal J.; Joergensen, Jes K.; Shirley, Yancy L.; De Vries, Christopher; Claussen, Mark J.

    2009-01-01

    Observations of Lynds Dark Nebula 1221 from the Spitzer Space Telescope are presented. These data show three candidate protostars toward L1221, only two of which were previously known. The infrared observations also show signatures of outflowing material, an interpretation which is also supported by radio observations with the Very Large Array. In addition, molecular line maps from the Five College Radio Astronomy Observatory are shown. One-dimensional dust continuum modeling of two of these protostars, IRS1 and IRS3, is described. These models show two distinctly different protostars forming in very similar environments. IRS1 shows a higher luminosity and a larger inner radius of the envelope than IRS3. The disparity could be caused by a difference in age or mass, orientation of outflow cavities, or the impact of a binary in the IRS1 core.

  15. A SPITZER CENSUS OF STAR FORMATION ACTIVITY IN THE PIPE NEBULA

    International Nuclear Information System (INIS)

    Forbrich, Jan; Lada, Charles J.; Muench, August A.; Alves, Joao; Lombardi, Marco

    2009-01-01

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In order to quantitatively determine the current level of star formation activity in the Pipe Nebula, we analyzed 13 deg 2 of sensitive mid-infrared maps of the entire cloud, obtained with the Multiband Imaging Photometer for Spitzer at wavelengths of 24 μm and 70 μm, to search for candidate young stellar objects (YSOs) in the high-extinction regions. We argue that our search is complete for class I and typical class II YSOs with luminosities of L bol ∼ 0.2 L sun and greater. We find only 18 candidate YSOs in the high-extinction regions of the entire Pipe cloud. Twelve of these sources are previously known members of a small cluster associated with Barnard 59, the largest and most massive dense core in the cloud. With only six candidate class I and class II YSOs detected toward extinction cores outside of this cluster, our findings emphatically confirm the notion of an extremely low level of star formation activity in the Pipe Nebula. The resulting star formation efficiency for the entire cloud mass is only ∼0.06%.

  16. The Cosmic Infrared Background Experiment

    Science.gov (United States)

    Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-01-01

    We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.

  17. AN AROMATIC INVENTORY OF THE LOCAL VOLUME

    International Nuclear Information System (INIS)

    Marble, A. R.; Engelbracht, C. W.; Block, M.; Van Zee, L.; Dale, D. A.; Cohen, S. A.; Schuster, M. D.; Smith, J. D. T.; Gordon, K. D.; Wu, Y.; Lee, J. C.; Kennicutt, R. C.; Skillman, E. D.; Johnson, L. C.; Calzetti, D.; Lee, H.

    2010-01-01

    Using infrared photometry from the Spitzer Space Telescope, we perform the first inventory of aromatic feature emission (also commonly referred to as polycyclic aromatic hydrocarbon emission) for a statistically complete sample of star-forming galaxies in the local volume. The photometric methodology involved is calibrated and demonstrated to recover the aromatic fraction of the Infrared Array Camera 8 μm flux with a standard deviation of 6% for a training set of 40 SINGS galaxies (ranging from stellar to dust dominated) with both suitable mid-infrared Spitzer Infrared Spectrograph spectra and equivalent photometry. A potential factor of 2 improvement could be realized with suitable 5.5 μm and 10 μm photometry, such as what may be provided in the future by the James Webb Space Telescope. The resulting technique is then applied to mid-infrared photometry for the 258 galaxies from the Local Volume Legacy (LVL) survey, a large sample dominated in number by low-luminosity dwarf galaxies for which obtaining comparable mid-infrared spectroscopy is not feasible. We find the total LVL luminosity due to five strong aromatic features in the 8 μm complex to be 2.47 x 10 10 L sun with a mean volume density of 8.8 x 10 6 L sun Mpc -3 . Twenty-four of the LVL galaxies, corresponding to a luminosity cut at M B = -18.22, account for 90% of the aromatic luminosity. Using oxygen abundances compiled from the literature for 129 of the 258 LVL galaxies, we find a correlation between metallicity and the aromatic-to-total infrared emission ratio but not the aromatic-to-total 8 μm dust emission ratio. A possible explanation is that metallicity plays a role in the abundance of aromatic molecules relative to the total dust content, but other factors, such as star formation and/or the local radiation field, affect the excitation of those molecules.

  18. The Oxford SWIFT Spectrograph: first commissioning and on-sky results

    OpenAIRE

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Goodsall, Timothy; Fogarty, Lisa; Houghton, Ryan; Salter, Graeme; Scott, Nicholas; Davies, Roger L.; Bouchez, Antonin; Dekany, Richard

    2010-01-01

    The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/▵λ)~4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235";, 0.16", and 0.08" per spaxel. It employs two 250μ...

  19. Using a new, free spectrograph program to critically investigate acoustics

    Science.gov (United States)

    Ball, Edward; Ruiz, Michael J.

    2016-11-01

    We have developed an online spectrograph program with a bank of over 30 audio clips to visualise a variety of sounds. Our audio library includes everyday sounds such as speech, singing, musical instruments, birds, a baby, cat, dog, sirens, a jet, thunder, and screaming. We provide a link to a video of the sound sources superimposed with their respective spectrograms in real time. Readers can use our spectrograph program to view our library, open their own desktop audio files, and use the program in real time with a computer microphone.

  20. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design

    Science.gov (United States)

    France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason

    2017-08-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2

  1. Spectrographic determination of impurities in uranium tetrafluoride matrices

    International Nuclear Information System (INIS)

    Reino, Luiz Carlos de Paula

    1980-01-01

    A direct spectrographic method for the determination of UF 4 impurities was developed. Investigations using spectrochemical carriers were carried out so to avoid uranium distillation, which as fluoride is much more volatile than the U 3 O 8 refractory matrix. The best results were obtained by using a mixture of MgO and NaCl carriers in the proportion of 20% and 10%, respectively, with respect to UF 4 matrix. An original spectrographic technique was introduced aiming to avoid the projection of sample particles outside the electrode during excitation. This new technique is based on the addition of a small quantity of a 0.5% gelatinous solution on the UF 4 tablet. The precision of the method was studied for each element analysed. The variation coefficients are within the range of 10 of 20%

  2. Star Formation In Nearby Clouds (SFiNCs): X-Ray and Infrared Source Catalogs and Membership

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Broos, Patrick S.; Feigelson, Eric D.; Richert, Alexander J. W.; Ota, Yosuke [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Kuhn, Michael A. [Instituto de Fisica y Astronomia, Universidad de Valparaiso, Gran Bretana 1111, Playa Ancha, Valparaiso (Chile); Millennium Institute of Astrophysics, MAS (Chile); Bate, Matthew R. [Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4SB (United Kingdom); Garmire, Gordon P. [Huntingdon Institute for X-Ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2017-04-01

    The Star Formation in Nearby Clouds (SFiNCs) project is aimed at providing a detailed study of the young stellar populations and of star cluster formation in the nearby 22 star-forming regions (SFRs) for comparison with our earlier MYStIX survey of richer, more distant clusters. As a foundation for the SFiNCs science studies, here, homogeneous data analyses of the Chandra X-ray and Spitzer mid-infrared archival SFiNCs data are described, and the resulting catalogs of over 15,300 X-ray and over 1,630,000 mid-infrared point sources are presented. On the basis of their X-ray/infrared properties and spatial distributions, nearly 8500 point sources have been identified as probable young stellar members of the SFiNCs regions. Compared to the existing X-ray/mid-infrared publications, the SFiNCs member list increases the census of YSO members by 6%–200% for individual SFRs and by 40% for the merged sample of all 22 SFiNCs SFRs.

  3. ExploreNEOs: The Warm Spitzer Near Earth Object survey

    NARCIS (Netherlands)

    Mueller, M.; Trilling, D. E.; Hora, J. L.; Harris, A. W.; Benner, L. A. M.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbó, M.; Emery, J. P.; Fazio, G.; Hagen, A. R.; Kistler, J. L.; Mainzer, A.; Mommert, M.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2011-01-01

    We are carrying out the ExploreNEOs project in which we observe more than 600 near Earth Objects (NEOs) at 3.6 and 4.5 microns with Warm Spitzer. For each NEO we derive diameter and albedo. We present our results to date, which include studies of individual objects, results for our entire observed

  4. NASA/IPAC Infrared Science Archive (IRSA) in the 2020s.

    Science.gov (United States)

    Desai, Vandana; Rebull, Luisa M.; IRSA Team

    2018-06-01

    I will discuss challenges faced by IRSA in the next decade due to changes in our user base: the dissolution of wavelength boundaries among astronomers, and the education of astronomers as data scientists. While the fraction of astronomers who use infrared data has increased drastically in the era of Spitzer, Herschel, and WISE, most people who do science with those data sets don’t use infrared data exclusively or identify as “Infrared astronomers”. Our archive, and others, need to be responsive to the needs of an increasingly multiwavelength community, and those exploring time domain astronomy. That means making the archives interlink seamlessly, while preserving expert knowledge so that data don’t get misused. As astronomical data sets grow in volume, users will increasingly expect server side resources, including both storage and analysis resources. These expectations come with a host of ramifications, from cost to security. Our archives must be built to satisfy the needs of both the power user and the beginning astronomer. I will discuss how IRSA plans to meet the evolving needs of our user community.

  5. Robert Spitzer and psychiatric classification: technical challenges and ethical dilemmas.

    Science.gov (United States)

    Jacob, K S

    2016-01-01

    Dr Robert Leopold Spitzer (May 22, 1932-December 25, 2015), the architect of modern psychiatric diagnostic criteria and classification, died recently at the age of 83 in Seattle. Under his leadership, the American Psychiatric Association's (APA) Diagnostic and Statistical Manuals (DSM) became the international standard.

  6. Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT*

    Directory of Open Access Journals (Sweden)

    Cody Ann Marie

    2014-01-01

    Full Text Available Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 (“CSI 2264”– a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway.

  7. The UK Infrared Telescope M33 monitoring project - I. Variable red giant stars in the central square kiloparsec

    Science.gov (United States)

    Javadi, Atefeh; van Loon, Jacco Th.; Mirtorabi, Mohammad Taghi

    2011-02-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive data set was obtained in the K band with the UIST instrument for the central 4 × 4 arcmin2 (1 kpc2) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18 398 stars in this region; of these, 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the variability survey and the photometric catalogue - which is made publicly available at the Centre de Données astronomiques de Strasbourg - and discuss the properties of the variable stars. The most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey.

  8. Supernova remnant W49B and its environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Tian, W. W.; Zuo, P., E-mail: zhuhui@bao.ac.cn, E-mail: tww@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-10-01

    We study gamma-ray supernova remnant (SNR) W49B and its environment using recent radio and infrared data. Spitzer Infrared Spectrograph low resolution data of W49B shows shocked excitation lines of H{sub 2} (0,0) S(0)-S(7) from the SNR-molecular cloud interaction. The H{sub 2} gas is composed of two components with temperatures of ∼260 K and ∼1060 K, respectively. Various spectral lines from atomic and ionic particles are detected toward W49B. We suggest that the ionic phase has an electron density of ∼500 cm{sup –3} and a temperature of ∼10{sup 4} K by the spectral line diagnoses. The mid- and far-infrared data from MSX, Spitzer, and Herschel reveal a 151 ± 20 K hot dust component with a mass of 7.5 ± 6.6 × 10{sup –4} M {sub ☉} and a 45 ± 4 K warm dust component with a mass of 6.4 ± 3.2 M {sub ☉}. The hot dust is likely from materials swept up by the shock of W49B. The warm dust may possibly originate from the evaporation of clouds interacting with W49B. We build the H I absorption spectra of W49B and four nearby H II regions (W49A, G42.90+0.58, G42.43-0.26, and G43.19-0.53) and study the relation between W49B and the surrounding molecular clouds by employing the 2.12 μm infrared and CO data. We therefore obtain a kinematic distance of ∼10 kpc for W49B and suggest that the remnant is likely associated with the CO cloud at about 40 km s{sup –1}.

  9. Technical aspects of the Space Telescope Imaging Spectrograph Repair (STIS-R)

    Science.gov (United States)

    Rinehart, S. A.; Domber, J.; Faulkner, T.; Gull, T.; Kimble, R.; Klappenberger, M.; Leckrone, D.; Niedner, M.; Proffitt, C.; Smith, H.; Woodgate, B.

    2008-07-01

    In August 2004, the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) ceased operation due to a failure of the 5V mechanism power converter in the Side 2 Low Voltage Power Supply (LVPS2). The failure precluded movement of any STIS mechanism and, because of the earlier (2001) loss of the Side 1 electronics chain, left the instrument shuttered and in safe mode after 7.5 years of science operations. A team was assembled to analyze the fault and to determine if STIS repair (STIS-R) was feasible. The team conclusively pinpointed the Side 2 failure to the 5V mechanism converter, and began studying EVA techniques for opening STIS during Servicing Mission 4 (SM4) to replace the failed LVPS2 board. The restoration of STIS functionality via surgical repair by astronauts has by now reached a mature and final design state, and will, along with a similar repair procedure for the Advanced Camera for Surveys (ACS), represent a first for Hubble servicing. STIS-R will restore full scientific functionality of the spectrograph on Side 2, while Side 1 will remain inoperative. Because of the high degree of complementarity between STIS and the new Cosmic Origins Spectrograph (COS, to be installed during SM4)), successful repair of the older spectrograph is an important scientific objective. In this presentation, we focus on the technical aspects associated with STIS-R.

  10. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-01-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of

  11. Vacuum Predisperser For A Large Plane-Grating Spectrograph

    Science.gov (United States)

    Engleman, R.; Palmer, B. A.; Steinhaus, D. W.

    1980-11-01

    A plane grating predisperser has been constructed which acts as an "order-sorter" for a large plane-grating spectrograph. This combination can photograph relatively wide regions of spectra in a single exposure with no loss of resolution.

  12. bHROS: A New High-Resolution Spectrograph Available on Gemini South

    Science.gov (United States)

    Margheim, S. J.; Gemini bHROS Team

    2005-12-01

    The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.

  13. Mission Concept for the Single Aperture Far-Infrared (SAFIR) Observatory

    Science.gov (United States)

    Benford, Dominic J.; Amato, Michael J.; Mather, John C.; Moseley, S. Harvey, Jr.

    2004-01-01

    We have developed a preliminary but comprehensive mission concept for SAFIR, as a 10 m-class far-infrared and submillimeter observatory that would begin development later in this decade to meet the needs outlined above. Its operating temperature ( or approx. 40 microns. This would provide a point source sensitivity improvement of several orders of magnitude over that of the Spitzer Space Telescope (previously SIRTF) or the Herschel Space Observatory. Additionally, it would have an angular resolution 12 times finer than that of Spitzer and three times finer than Herschel. This sensitivity and angular resolution are necessary to perform imaging and spectroscopic studies of individual galaxies in the early universe. We have considered many aspects of the SAFIR mission, including the telescope technology (optical design, materials, and packaging), detector needs and technologies, cooling method and required technology developments, attitude and pointing, power systems, launch vehicle, and mission operations. The most challenging requirements for this mission are operating temperature and aperture size of the telescope, and the development of detector arrays. SAFIR can take advantage of much of the technology under development for JWST, but with much less stringent requirements on optical accuracy.

  14. The SPT+Herschel+ALMA+Spitzer Legacy Survey: The stellar content of high redshift strongly lensed systems

    Science.gov (United States)

    Vieira, Joaquin; Ashby, Matt; Carlstrom, John; Chapman, Scott; DeBreuck, Carlos; Fassnacht, Chris; Gonzalez, Anthony; Phadke, Kedar; Marrone, Dan; Malkan, Matt; Reuter, Cassie; Rotermund, Kaja; Spilker, Justin; Weiss, Axel

    2018-05-01

    The South Pole Telescope (SPT) has systematically identified 90 high-redshift strongly gravitationally lensed submillimeter galaxies (SMGs) in a 2500 square-degree cosmological survey of the millimeter (mm) sky. These sources are selected by their extreme mm flux, which is largely independent of redshift and lensing configuration. We are undertaking a comprehensive and systematic followup campaign to use these "cosmic magnifying glasses" to study the infrared background in unprecedented detail, inform the condition of the interstellar medium in starburst galaxies at high redshift, and place limits on dark matter substructure. Here we ask for 115.4 hours of deep Spitzer/IRAC imaging to complete our survey of 90 systems to a uniform depth of 30min integrations at 3.6um and 60min at 4.5um. In our sample of 90 systems, 16 have already been fully observed, 30 have been partially observed, and 44 have not been observed at all. Our immediate goals are to: 1) constrain the specific star formation rates of the background high-redshift submillimeter galaxies by combining these Spitzer observations with our APEX, Herschel, and ALMA data, 2) robustly determine the stellar masses and mass-to-light ratios of all the foreground lensing galaxies in the sample by combining these observations with our VLT and Gemini data, the Dark Energy Survey, and ALMA; and 3) provide complete, deep, and uniform NIR coverage of our entire sample of lensed systems to characterize the environments of high redshift SMGs, maximize the discovery potential for additional spectacular and rare sources, and prepare for JWST. This program will provide the cornerstone data set for two PhD theses: Kedar Phadke at Illinois will lead the analysis of stellar masses for the background SMGs, and Kaja Rotermund at Dalhousie will lead the analysis of stellar masses for the foreground lenses.

  15. Spectrographic determination of impurities in uranium tetrafluoride matrices

    International Nuclear Information System (INIS)

    Reino, L.C.P.; Lordello, A.R.

    1980-01-01

    A direct spectrographic method for the determination of UF 4 impurities was developed. Investigations using spectrochemical carriers were carried out so to avoid uranium distillation, which as fluoride is much more volatile than the U 3 O 8 refractory matrix. The best results were obtained by using a mixture of MgO and NaCl carriers in the proportion of 20 and 10%, respectively, with respect to UF 4 matrix. An original spectrographic technique was introduced aiming to avoid the projection of sample particles outside the electrode during excitation. This new technique is based on the addition of a small quantity of a 0.5% gellatinous solution on the UF 4 tablet. The precision of the method was studied for each element analysed. The variation coefficients are within the range of 10 of 20%. (C.L.B.) [pt

  16. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Ridgway, S. E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Gates, E. L. [UCO/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Nielsen, D. M. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Petric, A. O. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Sajina, A. [Department of Physics and Astronomy, Tuffs University, 212 College Avenue, Medford, MA 02155 (United States); Urrutia, T. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Cox Drews, S. [946 Mangrove Avenue 102, Sunnyvale, CA 94086 (United States); Harrison, C. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Seymour, N. [CSIRO, P.O. Box 76, Epping, NSW 1710 (Australia); Storrie-Lombardi, L. J. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ∼ 10{sup 10} L {sub ☉} to highly luminous quasars (L {sub bol} ∼ 10{sup 14} L {sub ☉}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 μm flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ∼> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ∼ 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ☉}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared—emission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  17. A Spitzer Search for Activity in Dormant Comets

    Science.gov (United States)

    Mommert, Michael; Trilling, David; Hora, Joseph; Smith, Howard

    2018-05-01

    Dormant comets are inactive cometary nuclei hiding in the asteroid populations. Due to their cometary origin, it is possible that volatiles are still retained in their interiors. This hypothesis is supported by the case of near-Earth asteroid Don Quixote, which had been known as an asteroid for 30 yr before activity was discovered in this team's prior Spitzer observations. Interestingly, Don Quixote showed outgassing of CO or CO2, but no dust activity. This significant observation was repeated in 2017 with the same result, suggesting that Don Quixote is continuously outgassing - and still an active comet. Don Quixote's case suggests that other dormant comets might be outgassing with low dust production rates, concealing their activity to optical surveys. The implication of this scenario is that the volatile inventory of the asteroid populations might be significantly larger than currently assumed. We propose 48.8 hr of deep IRAC observations of eight dormant comets in search of faint activity in them. For each target, we will (1) measure (or provide upper limits on) gas and dust production rates from our IRAC CH1 and CH2 observations, (2) derive the diameters and albedos of five of our targets using asteroid thermal modeling, (3) measure the near-infrared spectral slope between CH1 and CH2 for three of our targets, and (4) obtain lightcurve observations of the nuclei of all of our targets. Our observations, which are combined with ground-based observations as part of a NASA-funded program, will provide important constraints on the volatile content of the asteroid population, as well as the origin, evolution, and physical properties of cometary nuclei.

  18. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES: JET AND MOLECULAR OUTFLOW ASSOCIATED WITH A YOUNG STELLAR OBJECT IN CORE A OF L1251

    International Nuclear Information System (INIS)

    Lee, Jeong-Eun; Kim, Il-Suk; Choi, Yunhee; Lee, Ho-Gyu; Shinn, Jong-Ho; Dunham, Michael M.; Evans, Neal J.; Kim, Chang Hee; Bourke, Tyler L.

    2010-01-01

    A long infrared jet has been discovered by the Spitzer c2d Legacy Program in core A of L1251. It is associated with a very embedded Class 0 object with an accretion luminosity of about 0.9 L sun derived by radiative transfer model fitting to the observed spectral energy distribution. Comparing the observed Infrared Array Camera colors along the infrared jet with those calculated from a model of an admixture of gas with a power-law temperature distribution indicates that the jet is possibly created by a paraboloidal bow shock propagating into the ambient medium of n(H 2 ) = 10 5 cm -3 . In addition, the variation of the power-law index along the jet suggests that the portion of hot gas decreases with distance from the jet engine. The molecular outflow in this region has been mapped for the first time using CO data. From the calculated outflow momentum flux, a very strong lower limit to the average accretion luminosity is 3.6 sin i/cos 3 i L sun , indicative of a decrease in the accretion rate with time.

  19. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.

    2011-07-01

    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  20. Lead shielded cells for the spectrographic analysis of radioisotope solutions

    International Nuclear Information System (INIS)

    Roca, M.; Capdevila, C.; Cruz, F. de la

    1967-01-01

    Two lead shielded cells for the spectrochemical analysis of radioisotope samples are described. One of them is devoted to the evaporation of samples before excitation and the other one contains a suitable spectrographic excitation stand for the copper spark technique. A special device makes it possible the easy displacement of the excitation cell on wheels and rails for its accurate and reproducible position as well as its replacement by a glove box for plutonium analysis. In order to guarantee safety the room in which the spectrograph and the source are set up in separated from the active laboratory by a wall with a suitable window. (Author) 1 refs

  1. Ultraviolet spectrographs for thermospheric and ionospheric remote sensing

    International Nuclear Information System (INIS)

    Dymond, K.F.; McCoy, R.P.

    1993-01-01

    The Naval Research Laboratory (NRL) has been developing far- and extreme-ultraviolet spectrographs for remote sensing the Earth's upper atmosphere and ionosphere. The first of these sensors, called the Special Sensor Ultraviolet Limb Imager (SSULI), will be flying on the Air Force's Defense Meteorological Satellite Program (DMSP) block 5D3 satellites as an operational sensor in the 1997-2010 time frame. A second sensor, called the High-resolution ionospheric and Thermospheric Spectrograph (HITS), will fly in late 1995 on the Air Force Space Test Program's Advanced Research and Global Observation Satellite (ARGOS, also known as P91-1) as part of NRL's High Resolution Airglow and Auroral Spectroscopy (HIRAAS) experiment. Both of these instruments are compact and do not draw much power and would be good candidates for small satellite applications. The instruments and their capabilities are discussed. Possible uses of these instruments in small satellite applications are also presented

  2. Application of charge coupled devices as spatially-resolved detectors for X-ray spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Attelan-Langlet, S; Etlicher, B [Ecole Polytechnique, Palaiseau (France); Mishenskij, V O; Papazyan, Yu V; Smirnov, V P; Volkov, G S; Zajtsev, V I [Inst. for Thermonuclear and Innovation Investigations, Troitsk (Russian Federation)

    1997-12-31

    An X-ray crystal spectrograph which contains a CCD linear array as the position-sensitive detector is described. Radiation detection is performed directly onto CCD. The spectrograph has a limit of sensitivity at about 2 J/(A.ster), spectral resolution about 1000 and dynamic range 100-120. The device operates on-line with IBM-PC based control system. Software provides all data acquisition and treatment. Output spectra are presented in absolute units. The device was used during composite Z-pinch experiments at pulse-power installations ``Angara-5-1`` (TRINITI, Troitsk, Russia) and ``GAEL`` (Ecole Polytechnique, Palaiseau, France). Currently the spectrograph is included in the set of diagnostics of the ``Angara-5-1`` facility. Some of the spectra obtained are presented and discussed. (author). 4 figs., 9 refs.

  3. VizieR Online Data Catalog: High quality Spitzer/MIPS obs. of F4-K2 stars (Sierchio+, 2014)

    Science.gov (United States)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Gaspar, A.

    2016-11-01

    We used specific criteria to draw samples of stars from the entire Spitzer Debris Disk Database (see section 2.1.1). V magnitudes were taken from Hipparcos and transformed to Johnson V. All stars were also required to have observations on the Two Micron All Sky Survey (2MASS) Ks system. Additional measurements were obtained at SAAO on the 0.75m telescope using the MarkII Infrared Photometer (transformed as described by Koen et al. 2007MNRAS.380.1433K), and at the Steward Observatory 61 in telescope using a NICMOS2-based camera with a 2MASS filter set and a neutral density filter to avoid saturation. These measurements will be described in a forthcoming paper (K. Y. L. Su et al., in preparation). The original programs in which our sample stars were measured are identified in Table 1. A large majority (93%) come from seven Spitzer programs: (1) the MIPS Guaranteed Time Observer (GTO) Sun-like star observations (Trilling+ 2008ApJ...674.1086T); (2) Formation and Evolution of Planetary Systems (FEPS; Meyer+ 2006, J/PASP/118/1690); (3) Completing the Census of Debris Disks (Koerner+ 2010ApJ...710L..26K); (4) potential Space Interferometry Mission/Terrestrial Planet Finder (SIM/TPF) targets (Beichman+ 2006ApJ...652.1674B); (5) an unbiased sample of F-stars (Trilling+ 2008ApJ...674.1086T); and (6) two coordinated programs selecting stars on the basis of indicators of youth (Low+ 2005ApJ...631.1170L; Plavchan+ 2009ApJ...698.1068P). See section 2.1.2. (1 data file).

  4. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    International Nuclear Information System (INIS)

    Lane, Ryan A.; Shemmer, Ohad; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2011-01-01

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 ≤ z ≤ 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame ∼0.1-5 μm spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  5. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ryan A.; Shemmer, Ohad [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States); Fan Xiaohui [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Plotkin, Richard M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Strauss, Michael A., E-mail: RyanLane@my.unt.edu, E-mail: ohad@unt.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

    2011-12-20

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 {<=} z {<=} 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame {approx}0.1-5 {mu}m spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  6. Spectrographic analysis of stainless steels

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1984-01-01

    Two spectrogaphyic solution techniques, 'Porous Cup' and 'Vacuum Cup', were investigated in order to determine the minor constituents (Cr, Ni, Mo, Mn, Cu and V) of stainless steels. Iron and cobalt were experimented as internal standards. The precision varied from 4 to 11% for both spectrographic techniques, in which cobalt was used as international standard. Certified standards from National Bureau of Standards and Instituto de Pesquisas Tecnologicas were analysed to verify the accuracy of both techniques. The best accuracy was obtained with the Vacuum Cup techniques. (Author) [pt

  7. The VISTA Carina Nebula Survey. II. Spatial distribution of the infrared-excess-selected young stellar population

    Science.gov (United States)

    Zeidler, P.; Preibisch, T.; Ratzka, T.; Roccatagliata, V.; Petr-Gotzens, M. G.

    2016-01-01

    We performed a deep wide-field (6.76 sq. deg) near-infrared survey with the VISTA telescope that covers the entire extent of the Carina nebula complex (CNC). The point-source catalog created from these data contains around four million individual objects down to masses of 0.1 M⊙. We present a statistical study of the large-scale spatial distribution and an investigation of the clustering properties of infrared-excesses objects, which are used to trace disk-bearing young stellar objects (YSOs). A selection based on a near-infrared (J-H) versus (H-Ks) color-color diagram shows an almost uniform distribution over the entire observed area. We interpret this as a result of the very high degree of background contamination that arises from the Carina Nebula's location close to the Galactic plane. Complementing the VISTA near-infrared catalog with Spitzer IRAC mid-infrared photometry improves the situation of the background contamination considerably. We find that a (J-H) versus (Ks- [4.5]) color-color diagram is well suited to tracing the population of YSO-candidates (cYSOs) by their infrared excess. We identify 8781 sources with strong infrared excess, which we consider as cYSOs. This sample is used to investigate the spatial distribution of the cYSOs with a nearest-neighbor analysis. The surface density distribution of cYSOs agrees well with the shape of the clouds as seen in our Herschel far-infrared survey. The strong decline in the surface density of excess sources outside the area of the clouds supports the hypothesis that our excess-selected sample consists predominantly of cYSOs with a low level of background contamination. This analysis allows us to identify 14 groups of cYSOs outside the central area.Our results suggest that the total population of cYSOs in the CNC comprises about 164 000 objects, with a substantial fraction (~35%) located in the northern, still not well studied parts. Our cluster analysis suggests that roughly half of the cYSOs constitute a

  8. HOT-DUST-POOR QUASARS IN MID-INFRARED AND OPTICALLY SELECTED SAMPLES

    International Nuclear Information System (INIS)

    Hao Heng; Elvis, Martin; Civano, Francesca; Lawrence, Andy

    2011-01-01

    We show that the hot-dust-poor (HDP) quasars, originally found in the X-ray-selected XMM-COSMOS type 1 active galactic nucleus (AGN) sample, are just as common in two samples selected at optical/infrared wavelengths: the Richards et al. Spitzer/SDSS sample (8.7% ± 2.2%) and the Palomar-Green-quasar-dominated sample of Elvis et al. (9.5% ± 5.0%). The properties of the HDP quasars in these two samples are consistent with the XMM-COSMOS sample, except that, at the 99% (∼ 2.5σ) significance, a larger proportion of the HDP quasars in the Spitzer/SDSS sample have weak host galaxy contributions, probably due to the selection criteria used. Either the host dust is destroyed (dynamically or by radiation) or is offset from the central black hole due to recoiling. Alternatively, the universality of HDP quasars in samples with different selection methods and the continuous distribution of dust covering factor in type 1 AGNs suggest that the range of spectral energy distributions could be related to the range of tilts in warped fueling disks, as in the model of Lawrence and Elvis, with HDP quasars having relatively small warps.

  9. A soft X-Ray flat field grating spectrograph and its experimental applications

    International Nuclear Information System (INIS)

    Ni Yuanlong; Mao Chusheng

    2001-01-01

    The principle, structure, and application results of a flat field grating spectrograph for X-ray laser research is presented. There are two kinds of the spectrograph. One uses a varied space grating with nominal line spacing 1200 l/mm, the spectral detection range is 5 - 50 nm, and another uses a 2400 l/mm varied line space grating, detection range is 1 - 10 nm. The experimental results of the former is introduced only. Both experimental results of this instrument using the soft X-ray film and a streak camera as the detecting elements are given. The spectral resolutions are 0.01 nm and 0.05 nm, respectively. The temporal resolution is 30 ps. Finally, the stigmatic structure of the spectrograph is introduced, which uses cylindrical mirror and spherical mirror as a focusing system. The magnification is 5, spatial resolution is 25 μm. The experimental results are given as well

  10. Bulk Densities of Binary Asteroids from the Warm Spitzer NEO Survey

    NARCIS (Netherlands)

    Kistler, John; Trilling, D. E.; Mueller, M.; Hora, J. L.; Harris, A. W.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Emery, J. P.; Fazo, G.; Mainzer, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2010-01-01

    The Warm Spitzer NEO survey, ExploreNEOs, will observe approximately 700 Near Earth Asteroids. Several of these objects are known to be binary asteroid systems. Binary systems are interesting due to the unique opportunity they present for determining the masses and densities of their constituent

  11. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Graham, M. L.; Pritchet, C. J.; Balam, D.; Fabbro, S.; Sullivan, M.; Hook, I. M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Carlberg, R. G.; Perrett, K.; Conley, A.; Fouchez, D.; Rich, J.

    2010-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ∼1-5 times the rate in all early-type galaxies, and that any enhancement is always ∼<2σ. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.

  12. Multi-wavelength study of infrared galaxies

    International Nuclear Information System (INIS)

    Marcillac, Delphine

    2005-01-01

    This thesis deals with a panchromatic study of luminous infrared galaxies (LIRGs) detected at 15 microns by ISOCAM (camera aboard ISO) and at 24 microns by MIPS (camera aboard the recently launched Spitzer satellite). These galaxies are today considered to be the Rosetta Stone of galaxy evolution since they are found to be far more numerous at high redshift and it is thought that a large part of stars seen in the local universe are born in such phases. The first part of this thesis presents a new study dedicated to dust emission of distant LIRGs in the mid-infrared range. Their dust emission has been compared to those of a local sample of LIRGs in addition to the prediction of several spectral energy distributions (SEDs) built on data available in the local universe. It has been shown that distant and local LIRGs present similar mid infrared spectral energy distribution: similar PAH bumps are detected in both local and distant LIRGs, however distant LIRGs show evidence of a stronger silicate absorption at 10 microns associated silicate grains. It also shows that distant LIRG mid infrared emission can be used together with local SEDs in order to estimate the total infrared luminosity. The second part of this thesis is dedicated to the burst of star formation and to the recent star formation history of these galaxies, which is responsible for the dust emission. This study was done thanks to a combination of high resolution spectra (R=2000 in the rest frame) obtained at VLT/FORS2 and the stellar population synthesis models called GALAXEV (Bruzual and Charlot, 2003). It has been shown that the burst of star formation has a duration of about 0.1 Gyear. About 10 % of the stellar content is formed during this burst of star formation. (author) [fr

  13. A TALE OF THREE GALAXIES: ANOMALOUS DUST PROPERTIES IN IRAS F10398+1455, IRAS F21013–0739, AND SDSS J0808+3948

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yanxia; Hao, Lei [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Aigen, E-mail: haol@shao.ac.cn [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2014-10-20

    On a galactic scale, the 9.7 μm silicate emission is usually only seen in type 1 active galactic nuclei (AGNs). They usually also display a flat emission continuum at ∼5-8 μm and the absence of polycyclic aromatic hydrocarbon (PAH) emission bands. In contrast, starburst galaxies, luminous infrared (IR) galaxies, and ultraluminous IR galaxies exhibit a red 5-8 μm emission continuum, strong 9.7 μm and 18 μm silicate absorption features, and strong PAH emission bands. Here, we report the detection of anomalous dust properties by the Spitzer/Infrared Spectrograph in three galaxies (IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948) which are characterized by the simultaneous detection of a red 5-8 μm emission continuum, the 9.7 and 18 μm silicate emission features, as well as strong PAH emission bands. These apparently contradictory dust IR emission properties are discussed in terms of iron-poor silicate composition, carbon dust deficit, small grain size, and low dust temperature in the young AGN phase of these three galaxies.

  14. Spectrographic determination of lithium in nuclear grade calcium

    International Nuclear Information System (INIS)

    Artaud, J.; Cittanova, J.

    1957-01-01

    A method is described for the spectrographic determination of lithium in calcium. The samples are converted directly to CaCO 3 . A method of fractional distillation in the arc, using KCl as carrier, makes it possible to detect and measure the Li content to 0,1 ppm. (author) [fr

  15. General method of quantitative spectrographic analysis

    International Nuclear Information System (INIS)

    Capdevila, C.; Roca, M.

    1966-01-01

    A spectrographic method was developed to determine 23 elements in a wide range of concentrations; the method can be applied to metallic or refractory samples. Previous melting with lithium tetraborate and germanium oxide is done in order to avoid the influence of matrix composition and crystalline structure. Germanium oxide is also employed as internal standard. The resulting beads ar mixed with graphite powder (1:1) and excited in a 10 amperes direct current arc. (Author) 12 refs

  16. MODELS OF THE η CORVI DEBRIS DISK FROM THE KECK INTERFEROMETER, SPITZER, AND HERSCHEL

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, J.; Beichman, C.; Millan-Gabet, R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Bryden, G.; Mennesson, B. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91107 (United States); Defrère, D. [Department of Astronomy, University of Arizona, 993 N. Cherry Avenue, Tucson, AZ, 85721 (United States); Boccaletti, A., E-mail: lebretoj@gmail.com [LESIA, Observatoire de Paris, CNRS, University Pierre et Marie Curie Paris 6 and University Denis Diderot Paris 7, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-02-01

    Debris disks are signposts of analogs to small-body populations of the solar system, often, however, with much higher masses and dust production rates. The disk associated with the nearby star η Crv is especially striking, as it shows strong mid- and far-infrared excesses despite an age of ∼1.4 Gyr. We undertake constructing a consistent model of the system that can explain a diverse collection of spatial and spectral data. We analyze Keck Interferometer Nuller measurements and revisit Spitzer and additional spectrophotometric data, as well as resolved Herschel images, to determine the dust spatial distribution in the inner exozodi and in the outer belt. We model in detail the two-component disk and the dust properties from the sub-AU scale to the outermost regions by fitting simultaneously all measurements against a large parameter space. The properties of the cold belt are consistent with a collisional cascade in a reservoir of ice-free planetesimals at 133 AU. It shows marginal evidence for asymmetries along the major axis. KIN enables us to establish that the warm dust consists of a ring that peaks between 0.2 and 0.8 AU. To reconcile this location with the ∼400 K dust temperature, very high albedo dust must be invoked, and a distribution of forsterite grains starting from micron sizes satisfies this criterion, while providing an excellent fit to the spectrum. We discuss additional constraints from the LBTI and near-infrared spectra, and we present predictions of what James Webb Space Telescope can unveil about this unusual object and whether it can detect unseen planets.

  17. THE SPITZER c2d SURVEY OF WEAK-LINE T TAURI STARS. III. THE TRANSITION FROM PRIMORDIAL DISKS TO DEBRIS DISKS

    International Nuclear Information System (INIS)

    Wahhaj, Zahed; Cieza, Lucas; Koerner, David W.; Case, April; Stapelfeldt, Karl R.; Chapman, Nicholas; Padgett, Deborah L.; Brooke, Tim; Keller, James R.; MerIn, Bruno; Evans, Neal J.; Harvey, Paul; Sargent, Anneila; Van Dishoeck, Ewine F.; Allen, Lori; Blake, Geoff; Mundy, Lee; Myers, Philip C.

    2010-01-01

    We present 3.6 to 70 μm Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 μm) and the 24 μm MIPS band. In the 70 μm MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r = 3-50 AU) around WTTSs. The 70 μm photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. and Cieza et al., are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTSs, but just 5% for off-cloud WTTSs, similar to the value reported in the earlier works. WTTSs exhibit spectral energy distributions that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than L disk /L * = 2 x 10 -3 in 2 Myr and more tenuous than L disk /L * = 5 x 10 -4 in 4 Myr.

  18. VLBI observations of Infrared-Faint Radio Sources

    Science.gov (United States)

    Middelberg, Enno; Phillips, Chris; Norris, Ray; Tingay, Steven

    2006-10-01

    We propose to observe a small sample of radio sources from the ATLAS project (ATLAS = Australia Telescope Large Area Survey) with the LBA, to determine their compactness and map their structures. The sample consists of three radio sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubbed Infrared-Faint Radio Sources, or IFRS, is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations: we will map their structure to test whether they resemble core-jet or double-lobed morphologies, and we will measure the flux densities on long baselines, to determine their compactness. Previous snapshot-style LBA observations of two other IFRS yielded no detections, hence we propose to use disk-based recording with 512 Mbps where possible, for highest sensitivity. With the observations proposed here, we will increase the number of VLBI-observed IFRS from two to five, soon allowing us to draw general conclusions about this intriguing new class of objects.

  19. WAS: the data archive for the WEAVE spectrograph

    NARCIS (Netherlands)

    Guerra, Jose; Molinari, Emilio; Lodi, Marcello; Martin, Adrian; Dalton, Gavin B.; Trager, Scott C.; Jin, Shoko; Abrams, Don Carlos; Bonifacio, Piercarlo; López Aguerri, Jose Alfonso; Vallenari, Antonella; Carrasco Licea, Esperanza E.; Middleton, Kevin F.

    2016-01-01

    The WAS1(WEAVE Archive System) is a software architecture for archiving and delivering the data releases for the WEAVE7 instrument at WHT (William Herschel Telescope). The WEAVE spectrograph will be mounted at the 4.2-m WHT telescope and will provide millions of spectra in a 5-year program, starting

  20. Magnetic spectrograph with a semicircular focusing for studies on the energy distribution of a high-current relativistic electron beam

    International Nuclear Information System (INIS)

    Gosteva, T.S.; Zablotskaya, G.R.; Ivanov, B.A.; Kolyubakin, S.A.; Chernobrovin, V.I.

    1975-01-01

    Specific features of a magnetic spectrograph with a semicircular focusing are described; the spectrograph has been designed to study, using the REP-5 pulsed accelerator, the energy spectra of electrons with a current of 50 kA, pulse duration of 20 ns in the energy range 0.2 to 3 MeV. The beam has been transported in a drift chamber where the air pressure varies from 10 -3 to 40 torr. The chamber is 50 cm long and 12 cm in diameter. The spectrograph vacuum chamber is made in the form of a plane rectangular box with a degassing fitting. The uniform magnetic field in the spectrograph gap is provided with permanent magnets (ferrite-barium plates). The collimator and the chamber walls on which the magnets are located, are made of low-carbon electrotechnical steel. The diameters of the collimator entrance and exit windows are 2 and 0.2 mm, respectively. To screen the photofilm in the spectrograph chamber from x-radiation, there are three disks on the spectrograph flange on the part of the drift chamber, they are made of lead, steel, and aluminium. The steel disk, besides, screens the space in front of the collimator entrance window from the scattered magnetic field. During the experiments the pressure in the spectrograph chamber has varied from 7x10 -3 to 10 -1 torr. Electrons are registered using the RT-1 and RT-5 x-ray films 1x18 cm in size. The spectrograph described makes it possible to have well-resolved electron spectrum during a pulse. The electron spectra obtained by means of the spectrograph at a pressure of 4.10 -1 torr in the drift chamber and a charge voltage of 3.2 MV in the line, are shown [ru

  1. Computation of the Spitzer function in stellarators and tokamaks with finite collisionality

    Directory of Open Access Journals (Sweden)

    Kernbichler Winfried

    2015-01-01

    Full Text Available The generalized Spitzer function, which determines the current drive efficiency in toka- maks and stellarators is modelled for finite plasma collisionality with help of the drift kinetic equation solver NEO-2 [1]. The effect of finite collisionality on the global ECCD efficiency in a tokamak is studied using results of the code NEO-2 as input to the ray tracing code TRAVIS [2]. As it is known [3], specific features of the generalized Spitzer function, which are absent in asymptotic (collisionless or highly collisional regimes result in current drive from a symmetric microwave spectrum with respect to parallel wave numbers. Due to this effect the direction of the current may become independent of the microwave beam launch angle in advanced ECCD scenarii (O2 and X3 where due to relatively low optical depth a significant amount of power is absorbed by trapped particles.

  2. Using a helium--neon laser to convert infrared radiation to visible emission on lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aurtyunyan, E.A.; Kostanyan, R.B.; Mkrtchyan, V.S.; Mkrtchyan, M.A.

    1975-01-01

    The conversion of infrared emission to the visible region was investigated by mixing with helium-neon laser emission in lithium niobate crystals. The infrared source was a Globar, and the laser was the LG-75. Emission of the sum frequencies was filtered out. The spectral composition of the converted radiation was analyzed by the ISP-51 spectrograph with an FEU-79 photomultiplier at the output. The amplified photomultiplier signal was recorded by the ChZ-33 frequency meter. By varying the angle between the optical axis of the crystal and the incident emission, infrared radiation in the 1.75 to 3.3 ..mu..m wavelength band could be converted to visible emission. It is suggested that measurement of the wavelength of converted emission might be used to study the distribution of concentration nonhomogeneities in crystals.

  3. The Coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald observatory

    Science.gov (United States)

    Tull, R. G.

    1972-01-01

    The design of the Coude spectrograph of the 2.7 m McDonald telescope is discussed. A description is given of the Coude scanner which uses the spectrograph optics, the configuration of the large echelle and the computer scanner control and data systems.

  4. A Wealth of Dust Grains in Quasar Winds

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version This plot of data captured by NASA's Spitzer Space Telescope reveals dust entrained in the winds rushing away from a quasar, or growing black hole. The quasar, called PG2112+059, is located deep inside a galaxy 8 billion light-years away. Astronomers believe the dust might have been forged in the winds, which would help explain where dust in the very early universe came from. The data were captured by Spitzer's infrared spectrograph, an instrument that splits apart light from the quasar into a spectrum that reveals telltale signs of different minerals. Each type of mineral, or dust grain, has a unique signature, as can be seen in the graph, or spectrum, above. The strongest features are from the mineral amorphous olivine, or glass (purple); the mineral forsterite found in sand (blue); and the mineral corundum found in rubies (light blue). The detection of forsterite and corundum is highly unusual in galaxies without quasars. Therefore, their presence is a key clue that these grains might have been created in the quasar winds and not by dying stars as they are in our Milky Way galaxy. Forsterite is destroyed quickly in normal galaxies by radiation, so it must be continually produced to be detected by Spitzer. Corundum is hard, and provides a seed that softer, more common minerals usually cover up. As a result, corundum is usually not seen in spectra of galaxies. Since Spitzer did detect the mineral, it is probably forming in a clumpy environment, which is expected in quasar winds. All together, the signatures of the unusual minerals in this spectrum point towards dust grains forming in the winds blowing away from quasars.

  5. Spitzer Secondary Eclipses of HAT-P-13b

    Science.gov (United States)

    Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.

    2013-10-01

    HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.

  6. SPITZER OBSERVATIONS OF COMET 67P/CHURYUMOV-GERASIMENKO AT 5.5-4.3 AU FROM THE SUN

    International Nuclear Information System (INIS)

    Kelley, Michael S.; Wooden, Diane H.; Tubiana, Cecilia; Boehnhardt, Hermann; Woodward, Charles E.; Harker, David E.

    2009-01-01

    We report Spitzer Space Telescope observations of comet 67P/Churyumov-Gerasimenko at 5.5 and 4.3 AU from the Sun, post-aphelion. Comet 67P is the primary target of the European Space Agency's Rosetta mission. The Rosetta spacecraft will rendezvous with the nucleus at heliocentric distances similar to our observations. Rotationally resolved observations at 8 and 24 μm (at a heliocentric distance, r h , of 4.8 AU) that sample the size and color-temperature of the nucleus are combined with aphelion R-band light curves observed at the Very Large Telescope (VLT) and yield a mean effective radius of 2.04 ± 0.11 km, and an R-band geometric albedo of 0.054 ± 0.006. The amplitudes of the R-band and mid-infrared light curves agree, which suggests that the variability is dominated by the shape of the nucleus. We also detect the dust trail of the comet at 4.8 and 5.5 AU, constrain the grain sizes to be ∼ h = 4 AU in 2014.

  7. SPECTRALLY RESOLVED PURE ROTATIONAL LINES OF WATER IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Pontoppidan, Klaus M.; Salyk, Colette; Blake, Geoffrey A.; Kaeufl, Hans Ulrich

    2010-01-01

    We present ground-based high-resolution N-band spectra (Δv = 15 km s -1 ) of pure rotational lines of water vapor in two protoplanetary disks surrounding the pre-main-sequence stars AS 205N and RNO 90, selected based on detections of rotational water lines by the Spitzer InfraRed Spectrograph. Using VISIR on the Very Large Telescope, we spectrally resolve individual lines and show that they have widths of 30-60 km s -1 , consistent with an origin in Keplerian disks at radii of ∼1 AU. The water lines have similar widths to those of the CO at 4.67 μm, indicating that the mid-infrared water lines trace similar radii. The rotational temperatures of the water are 540 and 600 K in the two disks, respectively. However, the line ratios show evidence of non-LTE excitation, with low-excitation line fluxes being overpredicted by two-dimensional disk LTE models. Due to the limited number of observed lines and the non-LTE line ratios, an accurate measure of the water ortho/para (O/P) ratio is not available, but a best estimate for AS 205N is O/P =4.5 ± 1.0, apparently ruling out a low-temperature origin of the water. The spectra demonstrate that high-resolution spectroscopy of rotational water lines is feasible from the ground, and further that ground-based high-resolution spectroscopy is likely to significantly improve our understanding of the inner disk chemistry revealed by recent Spitzer observations.

  8. Phono-spectrographic analysis of heart murmur in children

    Directory of Open Access Journals (Sweden)

    Angerla Anna

    2007-06-01

    Full Text Available Abstract Background More than 90% of heart murmurs in children are innocent. Frequently the skills of the first examiner are not adequate to differentiate between innocent and pathological murmurs. Our goal was to evaluate the value of a simple and low-cost phonocardiographic recording and analysis system in determining the characteristic features of heart murmurs in children and in distinguishing innocent systolic murmurs from pathological. Methods The system consisting of an electronic stethoscope and a multimedia laptop computer was used for the recording, monitoring and analysis of auscultation findings. The recorded sounds were examined graphically and numerically using combined phono-spectrograms. The data consisted of heart sound recordings from 807 pediatric patients, including 88 normal cases without any murmur, 447 innocent murmurs and 272 pathological murmurs. The phono-spectrographic features of heart murmurs were examined visually and numerically. From this database, 50 innocent vibratory murmurs, 25 innocent ejection murmurs and 50 easily confusable, mildly pathological systolic murmurs were selected to test whether quantitative phono-spectrographic analysis could be used as an accurate screening tool for systolic heart murmurs in children. Results The phono-spectrograms of the most common innocent and pathological murmurs were presented as examples of the whole data set. Typically, innocent murmurs had lower frequencies (below 200 Hz and a frequency spectrum with a more harmonic structure than pathological cases. Quantitative analysis revealed no significant differences in the duration of S1 and S2 or loudness of systolic murmurs between the pathological and physiological systolic murmurs. However, the pathological murmurs included both lower and higher frequencies than the physiological ones (p Conclusion Phono-spectrographic analysis improves the accuracy of primary heart murmur evaluation and educates inexperienced listener

  9. Spectrographic determination of trace impurities in reactor grade aluminium

    International Nuclear Information System (INIS)

    Chandola, L.C.; Machado, I.J.

    1975-01-01

    A spectrographic method enabling the determination of 21 trace impurities in aluminium oxide is described. The technique involves mixing the sample with graphite buffer in the ratio 1:1, loading it in a graphite electrode and arcing it for 30 sec. in a dc arc to 10 A current against a pointed graphite cathode. The spectra are photographed on Ilford N.30 emulsion employing a large quartz spectrograph. The aluminium line at 2669.2 A 0 serves as the internal standard. The impurities determined are Ag, B, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mg, Mo, Ni, Pb, Sb, Si, Sn, Ti, V and Zn. The sensitivity varies from 5 to 100 ppm and the precision from +- 5 to +- 22% for different elements. A method for converting aluminium metal to aluminium oxide is described. It is found that boron is not lost during this conversion. (author)

  10. The impact of endorsing Spitzer's proposed criteria for PTSD in the forthcoming DSM-V on male and female Veterans.

    Science.gov (United States)

    Miller, Lyndsey N; Chard, Kathleen M; Schumm, Jeremiah A; O'Brien, Carol

    2011-06-01

    This study explored differences between Spitzer's proposed model of posttraumatic stress disorder (PTSD) and the current DSM-IV diagnostic classification scheme in 353 Veterans. The majority of Veterans (89%) diagnosed with PTSD as specified in the DSM-IV also met Spitzer's proposed criteria. Veterans who met both DSM-IV and Spitzer's proposed criteria had significantly higher Clinician Administered PTSD Scale severity scores than Veterans only meeting DSM-IV criteria. Logistic regression indicated that being African American and having no comorbid diagnosis of major depressive disorder or history of a substance use disorder were found to predict those Veterans who met current, but not proposed criteria. These findings have important implications regarding proposed changes to the diagnostic classification criteria for PTSD in the forthcoming DSM-V. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Spitzer/IRAC observations of the variability of Sgr A* and the object G2 at 4.5 μm

    Energy Technology Data Exchange (ETDEWEB)

    Hora, J. L.; Ashby, M. L. N.; Fazio, G. G.; Smith, H. A.; Willner, S. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Witzel, G.; Becklin, E. E.; Ghez, A.; Meyer, L.; Morris, M. R. [University of California, Los Angeles, CA 90095 (United States); Carey, S.; Ingalls, J. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-10-01

    We present the first detection from the Spitzer Space Telescope of 4.5 μm variability from Sgr A*, the emitting source associated with the Milky Way's central black hole. The >23 hr continuous light curve was obtained with the Infrared Array Camera (IRAC) instrument in 2013 December. The result characterizes the variability of Sgr A* prior to the closest approach of the tidally deformed G2 object, a putative infalling gas cloud that orbits close to Sgr A*. The high stellar density at the location of Sgr A* produces a background of ∼250 mJy at 4.5 μm in each pixel with a large pixel-to-pixel gradient, but the light curve for the highly variable Sgr A* source was successfully measured by modeling and removing the variations due to pointing wobble. The observed flux densities range from the noise level of ∼0.7 mJy rms in a 6.4 s measurement to ≳10 mJy. Emission was seen above the noise level ∼34% of the time. The light-curve characteristics, including the flux density distribution and structure function, are consistent with those previously derived at shorter infrared wavelengths. We see no evidence in the light curve for activity attributable to the G2 interaction at the observing epoch, ∼100 days before the expected G2 periapsis passage. The IRAC light curve is more than a factor of two longer than any previous infrared observation, improving constraints on the timescale of the break in the power spectral distribution of Sgr A* flux densities. The data favor the longer of the two previously published values for the timescale.

  12. On the mid-infrared variability of candidate eruptive variables (exors): A comparison between Spitzer and WISE data

    Energy Technology Data Exchange (ETDEWEB)

    Antoniucci, S.; Giannini, T.; Li Causi, G.; Lorenzetti, D., E-mail: simone.antoniucci@oa-roma.inaf.it, E-mail: teresa.giannini@oa-roma.inaf.it, E-mail: gianluca.licausi@oa-roma.inaf.it, E-mail: dario.lorenzetti@oa-roma.inaf.it [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio (Italy)

    2014-02-10

    Aiming to statistically study the variability in the mid-IR of young stellar objects, we have compared the 3.6, 4.5, and 24 μm Spitzer fluxes of 1478 sources belonging to the C2D (Cores to Disks) legacy program with the WISE fluxes at 3.4, 4.6, and 22 μm. From this comparison, we have selected a robust sample of 34 variable sources. Their variations were classified per spectral Class (according to the widely accepted scheme of Class I/flat/II/III protostars), and per star forming region. On average, the number of variable sources decreases with increasing Class and is definitely higher in Perseus and Ophiuchus than in Chamaeleon and Lupus. According to the paradigm Class ≡ Evolution, the photometric variability can be considered to be a feature more pronounced in less evolved protostars, and, as such, related to accretion processes. Moreover, our statistical findings agree with the current knowledge of star formation activity in different regions. The 34 selected variables were further investigated for similarities with known young eruptive variables, namely the EXors. In particular, we analyzed (1) the shape of the spectral energy distribution, (2) the IR excess over the stellar photosphere, (3) magnitude versus color variations, and (4) output parameters of model fitting. This first systematic search for EXors ends up with 11 bona fide candidates that can be considered as suitable targets for monitoring or future investigations.

  13. Field Raman Spectrograph for Environmental Analysis

    International Nuclear Information System (INIS)

    Sylvia, J.M.; Haas, J.W.; Spencer, K.M.; Carrabba, M.M.; Rauh, R.D.; Forney, R.W.; Johnston, T.M.

    1998-01-01

    The widespread contamination found across the US Department of Energy (DOE) complex has received considerable attention from the government and public alike. A massive site characterization and cleanup effort has been underway for several years and is expected to continue for several decades more. The scope of the cleanup effort ranges from soil excavation and treatment to complete dismantling and decontamination of whole buildings. To its credit, DOE has supported research and development of new technologies to speed up and reduce the cost of this effort. One area in particular has been the development of portable instrumentation that can be used to perform analytical measurements in the field. This approach provides timely data to decision makers and eliminates the expense, delays, and uncertainties of sample preservation, transport, storage, and laboratory analysis. In this program, we have developed and demonstrated in the field a transportable, high performance Raman spectrograph that can be used to detect and identify contaminants in a variety of scenarios. With no moving parts, the spectrograph is rugged and can perform many Raman measurements in situ with flexible fiber optic sampling probes. The instrument operates under computer control and a software package has been developed to collect and process spectral data. A collection of Raman spectra for 200 contaminants of DOE importance has been compiled in a searchable format to assist in the identification of unknown contaminants in the field

  14. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hwang, Ho Seong [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Scott, Douglas; Magnelli, Benjamin; Popesso, Paola [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741, Garching (Germany); Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Dannerbauer, Helmut [Universitaet Wien, Institut fuer Astrophysik, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Dickinson, Mark; Kartaltepe, Jeyhan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Magdis, Georgios [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  15. Neon Abundances from a Spitzer/IRS Survey of Wolf-Rayet Stars

    NARCIS (Netherlands)

    Ignace, R.; Cassinelli, J.P.; Tracy, G.; Churchwell, E.B.; Lamers, H.J.G.L.M.

    2007-01-01

    We report on neon abundances derived from Spitzer high resolution spectral data of eight Wolf-Rayet (WR) stars using the forbidden line of [Ne III] 15.56 μm. Our targets include four WN stars of subtypes 4-7, and four WC stars of subtypes 4-7. We derive ion fraction abundances γ of Ne2+ for the

  16. The star-forming cores in the centre of the Trifid nebula (M 20): from Herschel to the near-infrared

    Science.gov (United States)

    Tapia, M.; Persi, P.; Román-Zúñiga, C.; Elia, D.; Giovannelli, F.; Sabau-Graziati, L.

    2018-04-01

    A new detailed infrared (IR) study of eight star-forming dense condensations (TCs) in M 20, the Trifid nebula, is presented. The aim is to determine the physical properties of the dust in such globules and establish the presence and properties of their embedded protostellar and/or young stellar population. For this, we analysed new Herschel far-IR and Calar Alto near-IR images of the region, combined with Spitzer Infrared Array Camera (Spitzer/IRAC) archival observations. We confirm the presence of several young stellar objects (YSOs), most with mid-IR colours of Class II sources in all but one of the observed cores. Five TCs are dominated in the far-IR by Class I sources with bolometric luminosities between 100 and 500 L⊙. We report the discovery of a possible counterjet to HH 399 and its protostellar engine inside the photodissociation region TC2, as well as a bipolar outflow system, signposted by symmetric H2 emission knots, embedded in TC3. The present results are compatible with previous suggestions that star formation has been active in the region for some 3 × 105 yr, and that the most recent events in some of these TCs may have been triggered by the expansion of the H II region. We also obtained a revised value for the distance to M 20 of 2.0 ± 0.1 kpc.

  17. Laboratory Testing and Performance Verification of the CHARIS Integral Field Spectrograph

    Science.gov (United States)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; hide

    2016-01-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being

  18. A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS

    International Nuclear Information System (INIS)

    Beirão, P.; Armus, L.; Helou, G.; Appleton, P. N.; Smith, J.-D. T.; Croxall, K. V.; Murphy, E. J.; Dale, D. A.; Draine, B. T.; Aniano, G.; Wolfire, M. G.; Bolatto, A. D.; Sandstrom, K. M.; Groves, B.; Schinnerer, E.; Rix, H.-W.; Brandl, B. R.; Crocker, A. F.; Hinz, J. L.; Kennicutt, R. C.

    2012-01-01

    NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [C II]158 μm and [O I]63 μm lines and mid-infrared H 2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([C II]158 μm+[O I]63 μm)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 μm PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [C II]158 μm/PAH(5.5-14 μm) is found. PAHs in the ring are responsible for a factor of two more [C II]158 μm and [O I]63 μm emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G 0 ∼ 10 2.3 and n H ∼ 10 3.5 cm –3 in the ring. For these values of G 0 and n H , PDR models cannot reproduce the observed H 2 emission. Much of the H 2 emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks.

  19. Spitzer Secondary Eclipse Depths with Multiple Intrapixel Sensitivity Correction Methods Observations of WASP-13b, WASP-15b, WASP-16b, WASP-62b, and HAT-P-22b

    Science.gov (United States)

    Kilpatrick, Brian M.; Lewis, Nikole K.; Kataria, Tiffany; Deming, Drake; Ingalls, James G.; Krick, Jessica E.; Tucker, Gregory S.

    2017-01-01

    We measure the 4.5 μm thermal emission of five transiting hot Jupiters, WASP-13b, WASP-15b, WASP-16b, WASP-62b, and HAT-P-22b using channel 2 of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Significant intrapixel sensitivity variations in Spitzer IRAC data require careful correction in order to achieve precision on the order of several hundred parts per million (ppm) for the measurement of exoplanet secondary eclipses. We determine eclipse depths by first correcting the raw data using three independent data reduction methods. The Pixel Gain Map (PMAP), Nearest Neighbors (NNBR), and Pixel Level Decorrelation (PLD) each correct for the intrapixel sensitivity effect in Spitzer photometric time-series observations. The results from each methodology are compared against each other to establish if they reach a statistically equivalent result in every case and to evaluate their ability to minimize uncertainty in the measurement. We find that all three methods produce reliable results. For every planet examined here NNBR and PLD produce results that are in statistical agreement. However, the PMAP method appears to produce results in slight disagreement in cases where the stellar centroid is not kept consistently on the most well characterized area of the detector. We evaluate the ability of each method to reduce the scatter in the residuals as well as in the correlated noise in the corrected data. The NNBR and PLD methods consistently minimize both white and red noise levels and should be considered reliable and consistent. The planets in this study span equilibrium temperatures from 1100 to 2000 K and have brightness temperatures that require either high albedo or efficient recirculation. However, it is possible that other processes such as clouds or disequilibrium chemistry may also be responsible for producing these brightness temperatures.

  20. SPITZER SECONDARY ECLIPSE DEPTHS WITH MULTIPLE INTRAPIXEL SENSITIVITY CORRECTION METHODS OBSERVATIONS OF WASP-13b, WASP-15b, WASP-16b, WASP-62b, AND HAT-P-22b

    Energy Technology Data Exchange (ETDEWEB)

    Kilpatrick, Brian M.; Tucker, Gregory S. [Department of Physics, Box 1843, Brown University, Providence, RI 02904 (United States); Lewis, Nikole K. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Kataria, Tiffany [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Ingalls, James G.; Krick, Jessica E., E-mail: brian_kilpatrick@brown.edu, E-mail: nlewis@stsci.org, E-mail: tiffany.kataria@jpl.nasa.gov, E-mail: ddeming@astro.umd.edu, E-mail: krick@ipac.caltech.edu [Spitzer Science Center, Infrared Processing and Analysis Center, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States)

    2017-01-01

    We measure the 4.5 μ m thermal emission of five transiting hot Jupiters, WASP-13b, WASP-15b, WASP-16b, WASP-62b, and HAT-P-22b using channel 2 of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope . Significant intrapixel sensitivity variations in Spitzer IRAC data require careful correction in order to achieve precision on the order of several hundred parts per million (ppm) for the measurement of exoplanet secondary eclipses. We determine eclipse depths by first correcting the raw data using three independent data reduction methods. The Pixel Gain Map (PMAP), Nearest Neighbors (NNBR), and Pixel Level Decorrelation (PLD) each correct for the intrapixel sensitivity effect in Spitzer photometric time-series observations. The results from each methodology are compared against each other to establish if they reach a statistically equivalent result in every case and to evaluate their ability to minimize uncertainty in the measurement. We find that all three methods produce reliable results. For every planet examined here NNBR and PLD produce results that are in statistical agreement. However, the PMAP method appears to produce results in slight disagreement in cases where the stellar centroid is not kept consistently on the most well characterized area of the detector. We evaluate the ability of each method to reduce the scatter in the residuals as well as in the correlated noise in the corrected data. The NNBR and PLD methods consistently minimize both white and red noise levels and should be considered reliable and consistent. The planets in this study span equilibrium temperatures from 1100 to 2000 K and have brightness temperatures that require either high albedo or efficient recirculation. However, it is possible that other processes such as clouds or disequilibrium chemistry may also be responsible for producing these brightness temperatures.

  1. THE INFRARED PROPERTIES OF EMBEDDED SUPER STAR CLUSTERS: PREDICTIONS FROM THREE-DIMENSIONAL RADIATIVE TRANSFER MODELS

    International Nuclear Information System (INIS)

    Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Remy; Whitney, Barbara A.; Wood, Kenneth

    2011-01-01

    With high-resolution infrared data becoming available that can probe the formation of high-mass stellar clusters for the first time, appropriate models that make testable predictions of these objects are necessary. We utilize a three-dimensional radiative transfer code, including a hierarchically clumped dusty envelope, to study the earliest stages of super star cluster (SSC) evolution. We explore a range of parameter space in geometric sequences that mimic the hypothesized evolution of an embedded SSC. The inclusion of a hierarchically clumped medium can make the envelope porous, in accordance with previous models and supporting observational evidence. The infrared luminosity inferred from observations can differ by a factor of two from the true value in the clumpiest envelopes depending on the viewing angle. The infrared spectral energy distribution also varies with viewing angle for clumpy envelopes, creating a range in possible observable infrared colors and magnitudes, silicate feature depths, and dust continua. General observable features of cluster evolution differ between envelopes that are relatively opaque or transparent to mid-infrared photons. For optically thick envelopes, evolution is marked by a gradual decline of the 9.8 μm silicate absorption feature depth and a corresponding increase in the visual/ultraviolet flux. For the optically thin envelopes, clusters typically begin with a strong hot dust component and silicates in emission, and these features gradually fade until the mid-infrared polycyclic aromatic hydrocarbon features are predominant. For the models with a smooth dust distribution, the Spitzer MIPS or Herschel PACS [70]-[160] color is a good probe of the stellar mass relative to the total mass or star formation efficiency (SFE). Likewise, the IRAC/MIPS [3.6]-[24] color can be used to constrain the R in and R out values of the envelope. However, clumpiness confuses the general trends seen in the smooth dust distribution models, making it

  2. The spectrographic orbit of the eclipsing binary HH Carinae

    International Nuclear Information System (INIS)

    Mandrini, C.H.; Mendez, R.H.; Niemela, V.S.; Ferrer, O.E.

    1985-01-01

    We present a radial velocity study of the eclipsing binary system HH Carinae, and determine for the first time its spectrographic orbital elements. Using the results of a previous photometric study by Soderhjelm, we also determine the values of the masses and dimensions of the binary components. (author)

  3. An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.

    Science.gov (United States)

    Tousey, R; Purcell, J D; Garrett, D L

    1967-03-01

    An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.

  4. THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TO z = 1: SPITZER INFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY

    International Nuclear Information System (INIS)

    Webb, T. M. A.; O'Donnell, D.; Coppin, Kristen; Faloon, Ashley; Geach, James E.; Noble, Allison; Yee, H. K. C.; Gilbank, David; Ellingson, Erica; Gladders, Mike; Muzzin, Adam; Wilson, Gillian; Yan, Renbin

    2013-01-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 14-15 M ☉ . We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 10 11 M ☉ , assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z) 5.1±1.9 over the range 0.3 cluster ). The evolution is similar, with ΣSFR/M cluster ∼ (1 + z) 5.4±1.9 . We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M cluster ∼M cluster -1.5±0.4 ) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ∼5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster cores, confirming star formation continues to avoid the highest density regions of the universe at z ∼ 0.75 (the average redshift of the high-redshift clusters). While several previous studies appear to show enhanced star formation in high-redshift clusters relative to the field we note that these papers have not accounted for the overall increase in galaxy or dark matter density at the location of clusters. Once this is done, clusters at z ∼ 0.75 have the same

  5. Spectrographic analysis of waste waters

    International Nuclear Information System (INIS)

    Alvarez Alduan, F.; Capdevila, C.

    1979-01-01

    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs

  6. Pre-discovery detections and progenitor candidate for SPIRITS17pc in NGC 4388

    Science.gov (United States)

    Jencson, J. E.; Bond, H. E.; Adams, S. M.; Kasliwal, M. M.

    2018-04-01

    We report detections of pre-discovery outbursts of SPIRITS17pc, discovered as part of the ongoing Spitzer InfraRed Intensive Transients Survey (SPIRITS) using the 3.6 and 4.5 micron imaging channels ([3.6] and [4.5]) of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope (ATel #11575).

  7. A Spectral Survey of Six Comets in the Mid-Infrared.

    Science.gov (United States)

    Lisse, Carey M.; Sitko, M. L.; Reach, W. T.; Fernandez, Y. R.; Kelley, M. S.

    2008-09-01

    With the Spitzer Space Telescope (SST) and Infrared Space Observatory (ISO) we are beginning to understand the details of how the composition and formation of our own Solar System compares to those of other stars in our Galaxy. Recent, detailed observations of comets (remnants of the solar system's proto-stellar nebula), protoplanetary disks around young stellar objects (YSOs), and debris disks around moderate-age stars have given us a collection of detailed spectra containing clues about our Galactic context. Here we discuss 5 to 35 micron spectroscopy of the emission from dust grains and gas molecules in the comae of 6 recent comets: C/Hale-Bopp 1995 O1 [1], 29P/SW1 2004 [2], 9P/Tempel 1 2005 (ejecta) [3], 73P/SW3 (fragments B and C) [4], C/McNaught 2006 P1 [5], and 17P/Holmes 2007 [6]. We thank the Spitzer Science Center, the ISO project, and the NASA/IRTF for their support of this work. References: [1] Crovisier, J. et al. 1997, Science 275, 1904. [2] Stansberry, J.A. et al. 2004, ApJ Suppl. 154, 463. [3] Lisse, C.M. et al. 2006, Science 313, 635. [4] Sitko, M.L., et al. 2008, ACM 2008 abstract #8101. [5] Lisse, C.M. et al. 2007, IAUC 8862. [6] Reach, W.T. et al. 2009, in prep.

  8. Spitzer observations of the thermal emission from WASP-43b

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Stevenson, Kevin B.; Hardy, Ryan A.; Cubillos, Patricio E.; Hardin, Matthew; Bowman, Oliver; Nymeyer, Sarah [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Madhusudhan, Nikku [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Anderson, David R.; Hellier, Coel; Smith, Alexis M. S. [Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Cameron, Andrew Collier, E-mail: jasmina@physics.ucf.edu [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom)

    2014-02-01

    WASP-43b is one of the closest-orbiting hot Jupiters, with a semimajor axis of a = 0.01526 ± 0.00018 AU and a period of only 0.81 days. However, it orbits one of the coolest stars with a hot Jupiter (T {sub *} = 4520 ± 120 K), giving the planet a modest equilibrium temperature of T {sub eq} = 1440 ± 40 K, assuming zero Bond albedo and uniform planetary energy redistribution. The eclipse depths and brightness temperatures from our jointly fit model are 0.347% ± 0.013% and 1670 ± 23 K at 3.6 μm and 0.382% ± 0.015% and 1514 ± 25 K at 4.5 μm. The eclipse timings improved the estimate of the orbital period, P, by a factor of three (P = 0.81347436 ± 1.4 × 10{sup –7} days) and put an upper limit on the eccentricity (e=0.010{sub −0.007}{sup +0.010}). We use our Spitzer eclipse depths along with four previously reported ground-based photometric observations in the near-infrared to constrain the atmospheric properties of WASP-43b. The data rule out a strong thermal inversion in the dayside atmosphere of WASP-43b. Model atmospheres with no thermal inversions and fiducial oxygen-rich compositions are able to explain all the available data. However, a wide range of metallicities and C/O ratios can explain the data. The data suggest low day-night energy redistribution in the planet, consistent with previous studies, with a nominal upper limit of about 35% for the fraction of energy incident on the dayside that is redistributed to the nightside.

  9. Proton polarimetry using an Enge split-pole spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Moss, J M; Brown, D R; Cornelius, W D [Texas Agricultural and Mechanical Univ., College Station (USA). Cyclotron Inst.

    1976-05-15

    A high-efficiency (4 x 10/sup -5/ at A=0.4) high resolution (150 keV) polarimeter used in conjunction with an Enge split-pole spectrograph is described. This device permits for the first time polarization transfer studies in elastic scattering. Spectra are shown for /sup 11/B(p(pol),p(pol)')/sup 11/B (2.14 MeV)at Esub(p)=31 MeV.

  10. Micro photometer's automation for quantitative spectrograph analysis

    International Nuclear Information System (INIS)

    Gutierrez E, C.Y.A.

    1996-01-01

    A Microphotometer is used to increase the sharpness of dark spectral lines. Analyzing these lines one sample content and its concentration could be determined and the analysis is known as Quantitative Spectrographic Analysis. The Quantitative Spectrographic Analysis is carried out in 3 steps, as follows. 1. Emulsion calibration. This consists of gauging a photographic emulsion, to determine the intensity variations in terms of the incident radiation. For the procedure of emulsion calibration an adjustment with square minimum to the data obtained is applied to obtain a graph. It is possible to determine the density of dark spectral line against the incident light intensity shown by the microphotometer. 2. Working curves. The values of known concentration of an element against incident light intensity are plotted. Since the sample contains several elements, it is necessary to find a work curve for each one of them. 3. Analytical results. The calibration curve and working curves are compared and the concentration of the studied element is determined. The automatic data acquisition, calculation and obtaining of resulting, is done by means of a computer (PC) and a computer program. The conditioning signal circuits have the function of delivering TTL levels (Transistor Transistor Logic) to make the communication between the microphotometer and the computer possible. Data calculation is done using a computer programm

  11. Optical and near-infrared IFU spectroscopy of the nuclear region of the AGN-starburst galaxy NGC 7582

    Science.gov (United States)

    Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.

    2018-02-01

    NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.

  12. IGR J19294+1816: a new Be-X-ray binary revealed through infrared spectroscopy

    Science.gov (United States)

    Rodes-Roca, J. J.; Bernabeu, G.; Magazzù, A.; Torrejón, J. M.; Solano, E.

    2018-05-01

    The aim of this work is to characterize the counterpart to the INTErnational Gamma-Ray Astrophysics Laboratory high-mass X-ray binary candidate IGR J19294+1816 so as to establish its true nature. We obtained H-band spectra of the selected counterpart acquired with the Near Infrared Camera and Spectrograph instrument mounted on the Telescopio Nazionale Galileo 3.5-m telescope which represents the first infrared spectrum ever taken of this source. We complement the spectral analysis with infrared photometry from UKIDSS, 2MASS, WISE, and NEOWISE data bases. We classify the mass donor as a Be star. Subsequently, we compute its distance by properly taking into account the contamination produced by the circumstellar envelope. The findings indicate that IGR J19294+1816 is a transient source with a B1Ve donor at a distance of d = 11 ± 1 kpc, and luminosities of the order of 1036-37 erg s-1, displaying the typical behaviour of a Be-X-ray binary.

  13. Pre-discovery detections and progenitor candidate for SPIRITS17qm in NGC 1365

    Science.gov (United States)

    Jencson, J. E.; Bond, H. E.; Adams, S. M.; Kasliwal, M. M.

    2018-04-01

    We report the detection of a pre-discovery outburst of SPIRITS17qm, discovered as part of the ongoing Spitzer InfraRed Intensive Transients Survey (SPIRITS) using the 3.6 and 4.5 micron imaging channels ([3.6] and [4.5]) of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope (ATel #11575).

  14. First observations from a CCD all-sky spectrograph at Barentsburg (Spitsbergen

    Directory of Open Access Journals (Sweden)

    S. A. Chernouss

    2008-05-01

    Full Text Available A digital CCD all-sky spectrograph was made by the Polar Geophysical Institute (PGI to support IPY activity in auroral research. The device was tested at the Barentsburg observatory of PGI during the winter season of 2005–2006. The spectrograph is based on a cooled CCD and a transmission grating. The main features of this spectrograph are: a wide field of view (~180°, a wide spectral range (380–740 nm, a spectral resolution of 0.6 nm, a background level of about 100 R at 1-min exposure time. Several thousand spectra of nightglow and aurora were recorded during the observation season. It was possible to register both the strong auroral emissions, as well as weak ones. Spectra of aurora, including nitrogen and oxygen molecular and atomic emissions, as well as OH emissions of the nightglow are shown. A comparison has been conducted of auroral spectra obtained by the film all-sky spectral camera C-180-S at Spitsbergen during IGY, with spectra obtained at Barentsburg during the last winter season. The relationship between the red (630.0 nm and green (557.7 nm auroral emissions shows that the green emission is dominant near the minimum of the solar cycle activity (2005–2006. The opposite situation is observed during 1958–1959, with a maximum solar cycle activity.

  15. THE SPITZER SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. IV. LUPUS V AND VI OBSERVED WITH IRAC AND MIPS

    International Nuclear Information System (INIS)

    Spezzi, Loredana; Vernazza, Pierre; Merin, Bruno; Allen, Lori E.; Evans, Neal J. II; Harvey, Paul M.; Joergensen, Jes K.; Bourke, Tyler L.; Peterson, Dawn; Cieza, Lucas A.; Dunham, Michael M.; Huard, Tracy L.; Tothill, Nick F. H.

    2011-01-01

    We present Gould's Belt (GB) Spitzer IRAC and MIPS observations of the Lupus V and VI clouds and discuss them in combination with near-infrared (2MASS) data. Our observations complement those obtained for other Lupus clouds within the frame of the Spitzer C ore to Disk(c2d) Legacy Survey. We found 43 young stellar object (YSO) candidates in Lupus V and 45 in Lupus VI, including two transition disks, using the standard c2d/GB selection method. None of these sources was classified as a pre-main-sequence star from previous optical, near-IR, and X-ray surveys. A large majority of these YSO candidates appear to be surrounded by thin disks (Class III; ∼79% in Lupus V and ∼87% in Lupus VI). These Class III abundances differ significantly from those observed for the other Lupus clouds and c2d/GB surveyed star-forming regions, where objects with optically thick disks (Class II) dominate the young population. We investigate various scenarios that can explain this discrepancy. In particular, we show that disk photoevaporation due to nearby OB stars is not responsible for the high fraction of Class III objects. The gas surface densities measured for Lupus V and VI lie below the star formation threshold (A V ∼ 8.6 mag), while this is not the case for other Lupus clouds. Thus, few Myr older age for the YSOs in Lupus V and VI with respect to other Lupus clouds is the most likely explanation of the high fraction of Class III objects in these clouds, while a higher characteristic stellar mass might be a contributing factor. Better constraints on the age and binary fraction of the Lupus clouds might solve the puzzle but require further observations.

  16. SPITZER, GAIA, AND THE POTENTIAL OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.

    2013-01-01

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ∼10 kpc. This ''horizon'' for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of 10 in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail—a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy

  17. WIRED for EC: New White Dwarfs with WISE Infrared Excesses and New Classification Schemes from the Edinburgh–Cape Blue Object Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dennihy, E.; Clemens, J. C.; Dunlap, B. H.; O’Brien, P. C.; Fuchs, J. T. [Physics and Astronomy Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Debes, John H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kilkenny, D. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2017-11-10

    We present a simple method for identifying candidate white dwarf systems with dusty exoplanetary debris based on a single temperature blackbody model fit to the infrared excess. We apply this technique to a sample of Southern Hemisphere white dwarfs from the recently completed Edinburgh–Cape Blue Object Survey and identify four new promising dusty debris disk candidates. We demonstrate the efficacy of our selection method by recovering three of the four Spitzer confirmed dusty debris disk systems in our sample. Further investigation using archival high-resolution imaging shows that Spitzer data of the unrecovered fourth object is likely contaminated by a line-of-sight object that either led to a misclassification as a dusty disk in the literature or is confounding our method. Finally, in our diagnostic plot, we show that dusty white dwarfs, which also host gaseous debris, lie along a boundary of our dusty debris disk region, providing clues to the origin and evolution of these especially interesting systems.

  18. MN48: a new Galactic bona fide luminous blue variable revealed by Spitzer and SALT

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2016-07-01

    In this paper, we report the results of spectroscopic and photometric observations of the candidate evolved massive star MN48 disclosed via detection of a mid-infrared circular shell around it with the Spitzer Space Telescope. Follow-up optical spectroscopy of MN48 with the Southern African Large Telescope (SALT) carried out in 2011-2015 revealed significant changes in the spectrum of this star, which are typical of luminous blue variables (LBVs). The LBV status of MN48 was further supported by photometric monitoring which shows that in 2009-2011 this star has brightened by ≈0.9 and 1 mag in the V and Ic bands, respectively, then faded by ≈1.1 and 1.6 mag during the next four years, and apparently started to brighten again recently. The detected changes in the spectrum and brightness of MN48 make this star the 18th known Galactic bona fide LBV and increase the percentage of LBVs associated with circumstellar nebulae to more than 70 per cent. We discuss the possible birth place of MN48 and suggest that this star might have been ejected either from a putative star cluster embedded in the H II region IRAS 16455-4531 or the young massive star cluster Westerlund 1.

  19. An X-ray and infrared survey of the Lynds 1228 cloud core

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Rebull, Luisa [Spitzer Science Center/Caltech, M/S 220-6, 1200 East California Blvd., Pasadena, CA 91125 (United States); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: rebull@ipac.caltech.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2014-04-01

    The nearby Lynds 1228 (L1228) dark cloud at a distance of ∼200 pc is known to harbor several young stars including the driving sources of the giant HH 199 and HH 200 Herbig-Haro (HH) outflows. L1228 has previously been studied at optical, infrared, and radio wavelengths but not in X-rays. We present results of a sensitive 37 ks Chandra ACIS-I X-ray observation of the L1228 core region. Chandra detected 60 X-ray sources, most of which are faint (<40 counts) and non-variable. Infrared counterparts were identified for 53 of the 60 X-ray sources using archival data from the Two Micron All-Sky Survey, the Spitzer Space Telescope, and the Wide-field Infrared Survey Explorer. Object classes were assigned using mid-IR colors for those objects with complete photometry, most of which were found to have colors consistent with extragalactic background sources. Seven young stellar object candidates were identified including the class I protostar HH 200-IRS which was detected as a faint hard X-ray source. No X-ray emission was detected from the luminous protostar HH 199-IRS. We summarize the X-ray and infrared properties of the detected sources and provide IR spectral energy distribution modeling of high-interest objects including the protostars driving the HH outflows.

  20. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Bachelet, E. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Hundertmark, M. P. G.; Jørgensen, U. G. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350—Copenhagen K (Denmark); Zhu, W.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Yee, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tsapras, Y. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Andersen, M. I. [Niels Bohr Institute and Dark Cosmology Centre, University of Copenhagen, Juliane Mariesvej 30, DK-2100—Copenhagen Ø (Denmark); Bozza, V. [Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Italy); Bramich, D. M. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Collaboration: RoboNet Project and MiNDSTEp Consortium; OGLE Project; Spitzer Team; MOA Collaboration; KMTNet Modeling Team; and others

    2016-03-10

    We report the detection of a cold Neptune m{sub planet} = 21 ± 2 M{sub ⊕} orbiting a 0.38 M{sub ⊙} M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  1. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  2. Initial results from the fast imaging solar spectrograph (FISS)

    CERN Document Server

    2015-01-01

    This collection of papers describes the instrument and initial results obtained from the Fast Imaging Solar Spectrograph (FISS),  one of the post-focus instruments of the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. The FISS primarily aims at investigating structures and dynamics of  chromospheric features. This instrument is a dual-band Echelle spectrograph optimized for the simultaneous recording of the H I 656.3 nm band and the Ca II 854.2 nm band. The imaging is done with the fast raster scan realized by the linear motion of a two-mirror scanner, and its quality is determined by the performance of the adaptive optics of the telescope.    These papers illustrate the capability of the early FISS observations in the study of chromospheric features. Since the imaging quality has been improved a lot with the advance of the adaptive optics, one can obtain much better data with the current FISS observations.        This volume is aimed at graduate students and researchers working in...

  3. A search for AGN activity in Infrared-Faint Radio Sources (IFRS)

    Science.gov (United States)

    Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie

    2010-04-01

    We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.

  4. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    Science.gov (United States)

    Uttenthaler, Stefan; Stute, Matthias; Sahai, Raghvendra; Blommaert, Joris A.; Schultheis, Mathias; Kraemer, Kathleen E.; Groenewegen, Martin A.; Price, Stephan D.

    2010-01-01

    Aims. We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods. To this end, we observed seven 15 15 arcmin2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results. In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.

  5. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept design update

    Science.gov (United States)

    Bolcar, Matthew R.; Aloezos, Steve; Bly, Vincent T.; Collins, Christine; Crooke, Julie; Dressing, Courtney D.; Fantano, Lou; Feinberg, Lee D.; France, Kevin; Gochar, Gene; Gong, Qian; Hylan, Jason E.; Jones, Andrew; Linares, Irving; Postman, Marc; Pueyo, Laurent; Roberge, Aki; Sacks, Lia; Tompkins, Steven; West, Garrett

    2017-09-01

    In preparation for the 2020 Astrophysics Decadal Survey, NASA has commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. NASA's Goddard Space Flight Center (GSFC) is providing the design and engineering support to develop executable and feasible mission concepts that are capable of the identified science objectives. We present an update on the first of two architectures being studied: a 15- meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 μm. Four instruments are being developed for this architecture: an optical / near-infrared coronagraph capable of 10-10 contrast at inner working angles as small as 2 λ/D the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 - 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-IR imager; and a UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). A fifth instrument, a multi-resolution optical-NIR spectrograph, is planned as part of a second architecture to be studied in late 2017.

  6. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    Science.gov (United States)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis

    2014-07-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  7. The Oxford SWIFT Spectrograph: first commissioning and on-sky results

    Science.gov (United States)

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Goodsall, Timothy; Fogarty, Lisa; Houghton, Ryan; Salter, Graeme; Scott, Nicholas; Davies, Roger L.; Bouchez, Antonin; Dekany, Richard

    2010-07-01

    The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/▵λ)~4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235", 0.16", and 0.08" per spaxel. It employs two 250μm thick, fully depleted, extremely red sensitive 4k X 2k CCD detector arrays (manufactured by LBNL) that provide excellent quantum efficiency out to 1000 nm. We describe the commissioning observations and present the measured values of a number of instrument parameters. We also present some first science results that give a taste of the range of science programs where SWIFT can have a substantial impact.

  8. Spectrographic analysis of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Roca, M.

    1967-01-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO 3 . Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO 3 . (Author) 5 refs

  9. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR

    Science.gov (United States)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.

    2016-07-01

    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  10. Effect of Acoustic Spectrographic Instruction on Production of English /i/ and /I/ by Spanish Pre-Service English Teachers

    Science.gov (United States)

    Quintana-Lara, Marcela

    2014-01-01

    This study investigates the effects of Acoustic Spectrographic Instruction on the production of the English phonological contrast /i/ and / I /. Acoustic Spectrographic Instruction is based on the assumption that physical representations of speech sounds and spectrography allow learners to objectively see and modify those non-accurate features in…

  11. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  12. The Galactic Distribution of Planets via Spitzer Microlensing Parallax

    Science.gov (United States)

    Gould, Andrew; Yee, Jennifer; Carey, Sean; Shvartzvald, Yossi

    2018-05-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 200 events, including 3 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by >1.5 AU in projection. The proposed observations are part of a campaign that we have conducted with Spitzer since 2014. The planets expected to be identified in this campaign when combined with previous work will yield a first statistically significant measurement of the frequency of planets in the Galactic bulge versus the Galactic disk. As we have demonstrated in three previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the KMTNet observing strategy that covers >85 sq.deg t >0.4/hr cadence, 24/7 from 3 southern observatories and a alert system KMTNet is implementing for 2019. This same observing program also provides a unique probe of dark objects. It will yield an improved measurement of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  13. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    Science.gov (United States)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  14. Quantitative imaging through a spectrograph. 2. Stoichiometry mapping by Raman scattering.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter

    2004-01-01

    The Bayesian deconvolution algorithm described in a preceding paper [Appl. Opt. 43, 5669-5681 (2004)] is applied to measurement of the two-dimensional stoichiometry field in a combustible methane-air mixture by Raman imaging through a spectrograph. Stoichiometry (fuel equivalence ratio) is derived

  15. Fiber Scrambling for High Precision Spectrographs

    Science.gov (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  16. A fast new cadioptric design for fiber-fed spectrographs

    Science.gov (United States)

    Saunders, Will

    2012-09-01

    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per

  17. Spectrographic determination of chlorine and fluorine

    International Nuclear Information System (INIS)

    Contamin, G.

    1965-04-01

    Experimental conditions have been investigated in order to obtain the highest sensitivity in spectrographic determination of chlorine and fluorine using the Fassel method of excitation in an inert atmosphere. The influence of the nature of the atmosphere, of the discharge conditions and of the matrix material has been investigated. The following results have been established: 1. chlorine determination is definitely possible: a working curve has been drawn between 10 μg and 100 μg, the detection limit being around 5 μg; 2. fluorine determination is not satisfactory: the detection limit is still of the order of 80 μg. The best operating conditions have been defined for both elements. (author) [fr

  18. A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS

    Energy Technology Data Exchange (ETDEWEB)

    Beirao, P.; Armus, L. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Helou, G. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. N. [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Smith, J.-D. T.; Croxall, K. V. [Department of Physics and Astronomy, Mail Drop 111, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Murphy, E. J. [Carnegie Observatories, Pasadena, CA 91101 (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Draine, B. T.; Aniano, G. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wolfire, M. G.; Bolatto, A. D. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Sandstrom, K. M.; Groves, B.; Schinnerer, E.; Rix, H.-W. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Brandl, B. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Crocker, A. F. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hinz, J. L. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Kennicutt, R. C., E-mail: pedro@ipac.caltech.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); and others

    2012-06-01

    NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [C II]158 {mu}m and [O I]63 {mu}m lines and mid-infrared H{sub 2} emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([C II]158 {mu}m+[O I]63 {mu}m)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 {mu}m PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [C II]158 {mu}m/PAH(5.5-14 {mu}m) is found. PAHs in the ring are responsible for a factor of two more [C II]158 {mu}m and [O I]63 {mu}m emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G{sub 0} {approx} 10{sup 2.3} and n{sub H} {approx} 10{sup 3.5} cm{sup -3} in the ring. For these values of G{sub 0} and n{sub H}, PDR models cannot reproduce the observed H{sub 2} emission. Much of the H{sub 2} emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks.

  19. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-09-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archived MIPS observations of Phoebe reproduces Cassini results very accurately, thereby validating our method. For all targets, the geometric albedo is found to be low, probably below 10% and clearly below 15%. Irregular satellites are much darker than the large regular satellites. Their albedo is, however, quite similar to that of small bodies in the outer Solar System (such as cometary nuclei, Jupiter Trojans, or TNOs). This is consistent with color measurements as well as dynamical considerations which suggest a common origin of the said populations. There appear to be significant object-to-object albedo differences. Similar albedos found for some members of dynamical clusters support the idea that they may have originated in the breakup of a parent body. For three satellites, thermal data at two wavelengths are available, enabling us to constrain their thermal properties. Sub-solar temperatures are similar to that found from Cassini's Phoebe fly-by. This suggests a rather low thermal inertia, as expected for regolith-covered objects. This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL under a contract with NASA. Support for this work was provided by NASA.

  20. The Use of Color Sensors for Spectrographic Calibration

    Science.gov (United States)

    Thomas, Neil B.

    2018-04-01

    The wavelength calibration of spectrographs is an essential but challenging task in many disciplines. Calibration is traditionally accomplished by imaging the spectrum of a light source containing features that are known to appear at certain wavelengths and mapping them to their location on the sensor. This is typically required in conjunction with each scientific observation to account for mechanical and optical variations of the instrument over time, which may span years for certain projects. The method presented here investigates the usage of color itself instead of spectral features to calibrate a spectrograph. The primary advantage of such a calibration is that any broad-spectrum light source such as the sky or an incandescent bulb is suitable. This method allows for calibration using the full optical pathway of the instrument instead of incorporating separate calibration equipment that may introduce errors. This paper focuses on the potential for color calibration in the field of radial velocity astronomy, in which instruments must be finely calibrated for long periods of time to detect tiny Doppler wavelength shifts. This method is not restricted to radial velocity, however, and may find application in any field requiring calibrated spectrometers such as sea water analysis, cellular biology, chemistry, atmospheric studies, and so on. This paper demonstrates that color sensors have the potential to provide calibration with greatly reduced complexity.

  1. Infrared Colors of Dwarf-Dwarf Galaxy Interactions

    Science.gov (United States)

    Liss, Sandra; Stierwalt, Sabrina; Johnson, Kelsey; Patton, Dave; Kallivayalil, Nitya

    2015-10-01

    We request Spitzer Warm Mission IRAC Channel 1 & 2 imaging for a sample of 60 isolated dwarf galaxy pairs as a key component of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. A systematic study of dwarf-dwarf mergers has never been done, and we wish to characterize the impact such interactions have on fueling star formation in the nearby universe. The Spitzer imaging proposed here will allow us to determine the extent to which the 3.6 and 4.5 mum bands are dominated by stellar light and investigate a) the extent to which interacting pairs show IR excess and b) whether the excess is related to the pair separation. Second, we will use this IR photometry to constrain the processes contributing to the observed color excess and scatter in each system. We will take advantage of the wealth of observations available in the Spitzer Heritage Archive for 'normal' non-interacting dwarfs by comparing the stellar populations of those dwarfs with the likely interacting dwarfs in our sample. Ultimately, we can combine the Spitzer imaging proposed here with our current, ongoing efforts to obtain groundbased optical photometry to model the star formation histories of these dwarfs and to help constrain the timescales and impact dwarf-dwarf mergers have on fueling star formation. The sensitivity and resolution offered by Spitzer are necessary to determine the dust properties of these interacting systems, and how these properties vary as a function of pair separation, mass ratio, and gas fraction.

  2. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P. [Institute of Astrophysics and Astronomy, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Yan Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combine TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.

  3. Quantitative imaging through a spectrograph : 2. stoichiometry mapping by Raman scattering

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, ter J.J.

    2004-01-01

    The Bayesian deconvolution algorithm described in a preceding paper [Appl. Opt. 43, 5669–5681 (2004)] is applied to measurement of the two-dimensional stoichiometry field in a combustible methane-air mixture by Raman imaging through a spectrograph. Stoichiometry (fuel equivalence ratio) is derived

  4. Development of micro-mirror slicer integral field unit for space-borne solar spectrographs

    Science.gov (United States)

    Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi

    2017-12-01

    We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.

  5. [Research progress and application prospect of near infrared spectroscopy in soil nutrition analysis].

    Science.gov (United States)

    Ding, Hai-quan; Lu, Qi-peng

    2012-01-01

    "Digital agriculture" or "precision agriculture" is an important direction of modern agriculture technique. It is the combination of the modern information technique and traditional agriculture and becomes a hotspot field in international agriculture research in recent years. As a nondestructive, real-time, effective and exact analysis technique, near infrared spectroscopy, by which precision agriculture could be carried out, has vast prospect in agrology and gradually gained the recognition. The present paper intends to review the basic theory of near infrared spectroscopy and its applications in the field of agrology, pointing out that the direction of NIR in agrology should based on portable NIR spectrograph in order to acquire qualitative or quantitative information from real-time measuring in field. In addition, NIRS could be combined with space remote sensing to macroscopically control the way crop is growing and the nutrition crops need, to change the current state of our country's agriculture radically.

  6. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane

    2012-01-01

    Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8.We find a new reddening-corrected distance to the LMC of 18.477 +/- 0.033 (systematic) mag. We re-examine the systematic uncertainties in H(sub 0), also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H(sub 0) over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

  7. Study of airborne particles by emission spectrographic method

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C N; Lee, S L; Tsai, H T; Wu, S C

    1975-03-01

    A rapid spectrographic method was developed to analyze cadmium, lead, nickel, zinc, tin, titanium, and vanadium collected in glass fiber air filters. A direct excitation method is used for volatile elements, while graphite powder is added for determining involatile elements, such as Ti and V in a dc arc source. Limits of detection for analyzed elements are between 0.01-0.1 micrograms. This simple and sensitive method was used to analyze samples from 15 air sampling stations in different areas of Taiwan.

  8. Reduction of the general Spitzer-Haerm problem in plasma physics

    International Nuclear Information System (INIS)

    Ferreira, A.

    1988-01-01

    The general Spitzer-Haerm problem is unfolded through a redefinition of the dependent variable into two separate simpler problems. The first takes the form of a second order differential equation, and the second, that of an integration over the solution of the first problem, which provides the distribution function or, directly, the current and the heat flow. It is shown that the current and the heat flow can in general by synthesized from the solutions of the differential equation for two specific forms of the driving term. (author)

  9. Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER

    Science.gov (United States)

    Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Cheimets, Peter; Hertz, Edward; Bookbinder, Jay A.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2015-10-01

    An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

  10. Spectrographic Determination of Trace Constituents in Rare Earths; Determinacion espectrografica de impurezas en tierras raras

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila, C; Alvarez, F

    1962-07-01

    A spectrographic method was developed for the determination of 18 trace elements in lanthanum, cerium, praseodimium, neodimium and samarium compounds. The concentrations of the impurities cover the range of 0,5 to 500 ppm. Most of these impurities are determined by the carrier distillation method. Several more refractory elements have been determined by total burning of the sample with a direct current arc or by the conduction briquet excitation technique with a high voltage condensed spark. The work has been carried out with a Hilger Automatic Large Quartz Spectrograph. (Author) 5 refs.

  11. Sensitivity Calibration of Far-Ultraviolet Imaging Spectrograph

    Directory of Open Access Journals (Sweden)

    I. -J. Kim

    2004-12-01

    Full Text Available We describe the in-flight sensitivity calibration of the Far ultraviolet Imaging Spectrograph (FIMS, also known as SPEAR onboard the first Korean science satellite, STSAT-1, which was launched in September 2003. The sensitivity calibration is based on a comparison of the FIMS observations of the hot white dwarf G191B2B, and two O-type stars Alpha-Cam, HD93521 with the HUT (Hopkins Ultraviolet Telescope observations. The FIMS observations for the calibration targets have been conducted from November 2003 through May 2004. The effective areas calculated from the targets are compared with each other.

  12. The Milky Way Project: A Citizen Science Catalog of Infrared Bow Shock Nebulae

    Science.gov (United States)

    Dixon, Don; Jayasinghe, Tharindu; Povich, Matthew S.

    2017-01-01

    We present preliminary results from the first citizen-science search for infrared stellar-wind bow shock candidates. This search uses the Milky Way project, hosted by the Zooniverse, an online platform with over 1 million volunteer citizen scientists. Milky Way Project volunteers examine 77,000 randomly-distributed Spitzer image cutouts at varying zoom levels. Volunteers mark the infrared arc of potential bow shock candidates as well as the star likely driving the nebula. We produce lists of candidates from bow shocks flagged by multiple volunteers, which after merging and final visual review form the basis for our catalog. Comparing our new catalog to a recently-published catalog of 709 infrared bow shock candidates identified by a small team of (primarily undergraduate) researchers will allow us to assess the effectiveness of citizen science for this type of search and should yield a more complete catalog. Planned studies using these large catalogs will improve constraints on the mass-loss rates for the massive stars that create these bow shock nebulae. Mass-loss rates are highly uncertain but are a critical component of evolutionary models for massive stars. This work is supported by the National Science Foundation under grants CAREER-1454334, AST-1411851 (RUI) and AST-1412845.

  13. S-COSMOS: The Spitzer Legacy Survey of the Hubble Space Telescope ACS 2 deg2 COSMOS Field I: Survey Strategy and First Analysis

    Science.gov (United States)

    Sanders, D. B.; Salvato, M.; Aussel, H.; Ilbert, O.; Scoville, N.; Surace, J. A.; Frayer, D. T.; Sheth, K.; Helou, G.; Brooke, T.; Bhattacharya, B.; Yan, L.; Kartaltepe, J. S.; Barnes, J. E.; Blain, A. W.; Calzetti, D.; Capak, P.; Carilli, C.; Carollo, C. M.; Comastri, A.; Daddi, E.; Ellis, R. S.; Elvis, M.; Fall, S. M.; Franceschini, A.; Giavalisco, M.; Hasinger, G.; Impey, C.; Koekemoer, A.; Le Fèvre, O.; Lilly, S.; Liu, M. C.; McCracken, H. J.; Mobasher, B.; Renzini, A.; Rich, M.; Schinnerer, E.; Shopbell, P. L.; Taniguchi, Y.; Thompson, D. J.; Urry, C. M.; Williams, J. P.

    2007-09-01

    The COSMOS Spitzer survey (S-COSMOS) is a Legacy program (Cycles 2+3) designed to carry out a uniform deep survey of the full 2 deg2 COSMOS field in all seven Spitzer bands (3.6, 4.5, 5.6, 8.0, 24.0, 70.0, and 160.0 μm). This paper describes the survey parameters, mapping strategy, data reduction procedures, achieved sensitivities to date, and the complete data set for future reference. We show that the observed infrared backgrounds in the S-COSMOS field are within 10% of the predicted background levels. The fluctuations in the background at 24 μm have been measured and do not show any significant contribution from cirrus, as expected. In addition, we report on the number of asteroid detections in the low Galactic latitude COSMOS field. We use the Cycle 2 S-COSMOS data to determine preliminary number counts, and compare our results with those from previous Spitzer Legacy surveys (e.g., SWIRE, GOODS). The results from this ``first analysis'' confirm that the S-COSMOS survey will have sufficient sensitivity with IRAC to detect ~L* disks and spheroids out to z>~3, and with MIPS to detect ultraluminous starbursts and AGNs out to z~3 at 24 μm and out to z~1.5-2 at 70 and 160 μm. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555 also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by AURA under cooperative agreement with the National Science Foundation; the National Radio Astronomy

  14. MuSICa: the Multi-Slit Image Slicer for the est Spectrograph

    Science.gov (United States)

    Calcines, A.; López, R. L.; Collados, M.

    2013-09-01

    Integral field spectroscopy (IFS) is a technique that allows one to obtain the spectra of all the points of a bidimensional field of view simultaneously. It is being applied to the new generation of the largest night-time telescopes but it is also an innovative technique for solar physics. This paper presents the design of a new image slicer, MuSICa (Multi-Slit Image slicer based on collimator-Camera), for the integral field spectrograph of the 4-m aperture European Solar Telescope (EST). MuSICa is a multi-slit image slicer that decomposes an 80 arcsec2 field of view into slices of 50 μm and reorganizes it into eight slits of 0.05 arcsec width × 200 arcsec length. It is a telecentric system with an optical quality at diffraction limit compatible with the two modes of operation of the spectrograph: spectroscopic and spectro-polarimetric. This paper shows the requirements, technical characteristics and layout of MuSICa, as well as other studied design options.

  15. INFRARED NON-DETECTION OF FOMALHAUT b: IMPLICATIONS FOR THE PLANET INTERPRETATION

    International Nuclear Information System (INIS)

    Janson, Markus; Carson, Joseph C.; Bent, John R.; Wong, Palmer; Lafrenière, David; Spiegel, David S.

    2012-01-01

    The nearby A4-type star Fomalhaut hosts a debris belt in the form of an eccentric ring, which is thought to be caused by dynamical influence from a giant planet companion. In 2008, a detection of a point source inside the inner edge of the ring was reported and was interpreted as a direct image of the planet, named Fomalhaut b. The detection was made at ∼600-800 nm, but no corresponding signatures were found in the near-infrared range, where the bulk emission of such a planet should be expected. Here, we present deep observations of Fomalhaut with Spitzer/IRAC at 4.5 μm, using a novel point-spread function subtraction technique based on angular differential imaging and Locally Optimized Combination of Images, in order to substantially improve the Spitzer contrast at small separations. The results provide more than an order of magnitude improvement in the upper flux limit of Fomalhaut b and exclude the possibility that any flux from a giant planet surface contributes to the observed flux at visible wavelengths. This renders any direct connection between the observed light source and the dynamically inferred giant planet highly unlikely. We discuss several possible interpretations of the total body of observations of the Fomalhaut system and find that the interpretation that best matches the available data for the observed source is scattered light from a transient or semi-transient dust cloud.

  16. E parallel B energy-mass spectrograph for measurement of ions and neutral atoms

    International Nuclear Information System (INIS)

    Funsten, H.O.; McComas, D.J.; Scime, E.E.

    1997-01-01

    Real-time measurement of plasma composition and energy is an important diagnostic in fusion experiments. The Thomson parabola spectrograph described here utilizes an electric field parallel to a magnetic field (E parallel B) and a two-dimensional imaging detector to uniquely identify the energy-per-charge and mass-per-charge distributions of plasma ions. An ultrathin foil can be inserted in front of the E parallel B filter to convert neutral atoms to ions, which are subsequently analyzed using the E parallel B filter. Since helium exiting an ultrathin foil does not form a negative ion and hydrogen isotopes do, this spectrograph allows unique identification of tritium ions and neutrals even in the presence of a large background of 3 He. copyright 1997 American Institute of Physics

  17. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Harris, A. W.

    2006-01-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a

  18. Proposal for the ion optics and for the kinematical fitting at the magnetic spectrograph BIG KARL

    International Nuclear Information System (INIS)

    Hinterberger, F.

    1986-01-01

    For the magnetic spectrograph BIG KARL the installation of an additional quadrupole lens is purposed. From this the possibility of a telescopic ion optic results. For future experiments a standard focusing with a spatial dispersion of 6.6 m and vanishing angular dispersion is proposed. The D/M ratio (dispersion/magnification) extends to 14.0 m, the maximal spatial angle lies at 3 msr. The energy range extends at a focal plane length of 0.66 m to 20%. For the kinematical fitting of the spectrograph the focal plane is shifted. This shift can be simply and rapidly realized for different K values by means of a software correction, if generally two spatial spectra in the focal plane are taken up. By this additionally for each event the actual scattering angle can be determined with relatively good resolution. The dispersion fit is completely decoupled from the kinematical fitting of the magnetic spectrograph. (orig.) [de

  19. VizieR Online Data Catalog: Low-resolution near-infrared stellar spectra from CIBER (Kim+, 2017)

    Science.gov (United States)

    Kim, M. G.; Lee, H. M.; Arai, T.; Bock, J.; Cooray, A.; Jeong, W.-S.; Kim, S. J.; Korngut, P.; Lanz, A.; Lee, D. H.; Lee, M. G.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Onishi, Y.; Shirahata, M.; Smidt, J.; Tsumura, K.; Yamamura, I.; Zemcov, M.

    2017-06-01

    We present flux-calibrated near-infrared spectra of 105 stars from 0.8{skin, we do not use the first flight data in this work. The star spectral types are determined by fitting known spectral templates to the measured LRS spectra. We use the Infrared Telescope Facility (IRTF) and Pickles 1998 (Cat. J/PASP/110/863) templates for the SED fitting. The SpeX instrument installed on the IRTF observed stars using a medium-resolution spectrograph (R=2000). The template library contains spectra for 210 cool stars (F to M type) with wavelength coverage from 0.8 to 2.5μm (Cushing 2005ApJ...623.1115C; Rayner 2009ApJS..185..289R). The Pickles library is a synthetic spectral library that combines spectral data from various observations to achieve wavelength coverage from the UV (0.115μm) to the near-infrared (2.5μm). It contains 131 spectral templates for all star types (i.e., O to M type) with a uniform sampling interval of 5Å. (6 data files).

  20. Spectrographic analysis of thorium and its compounds

    International Nuclear Information System (INIS)

    Grampurohit, S.V.; Saksena, M.D.; Kaimal, V.N.P.; Kapoor, S.K.; Murty, P.S.

    1980-01-01

    A spectrographic method, which employs the principle of carrier-distillation technique, is described for the analysis of high purity thoria. Two carriers, AgCl and NaF were used in determining 27 trace elements in ThO 2 . The elements were divided into three groups, A, B and C. In group A, 15 elements, viz. Al, B, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sb, Si and Sn were included since it was possible to choose sensitive lines of these elements in one spectral region, 220 - 285 nm. Group B covered 8 elements, viz. Ag, Bi, Ca, Ga, Mo, Ti, V and Zn, which could be determined in the spectral region 290 - 352.5 nm. Group C consisted 4 elements, viz. Ba, K, Li and Na which could be determined in the spectral region 440 - 820 nm. 5% AgCl was used as the carrier for the determination of groups A and C elements and 4% NaF was used as the carrier for the estimation of group B elements. One hundred milligrammes of the sample (in the form of ThO 2 ) containing the carrier were taken in a carrier-distillation electrode and excited in a d.c. arc (10 amps for groups A and C; 15 amps for group B). The spectra of sample and synthetic standards were photographed on Hilger's large quartz, JACO 3.4 m Ebert plane grating and Higler's large glass spectrographs respectively for determining group A, B and C elements. The detection limit obtained for B and Cd was 0.1 ppm. Thorium metal and thorium nitrate samples were converted to ThO 2 prior to analysis. (auth.)

  1. Observations of the radial velocity of the Sun as measured with the novel SONG spectrograph

    DEFF Research Database (Denmark)

    Pallé, P. L.; Grundahl, F.; Hage, A. Triviño

    2013-01-01

    Deployment of the prototype node of the SONG project took place in April 2012 at Observatorio del Teide (Canary Islands). Its key instrument (echelle spectrograph) was installed and operational a few weeks later while its 1 m feeding telescope suffered a considerable delay to meet the required...... specifications. Using a fibre-feed, solar light could be fed to the spectrograph and we carried out a 1-week observing campaign in June 2012 to evaluate its performance for measuring precision radial velocities. In this work we present the first results of this campaign by comparing the sensitivity of the SONG...

  2. Near-Infrared [Fe II] and H2 Study of the Galactic Supernova Remnants

    Science.gov (United States)

    Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon; Jaffe, Daniel T.; Burton, Michael G.; Ryder, Stuart D.

    2018-01-01

    We have searched for near-infrared (NIR) [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE / UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. We carried out high resolution (R~40,000) NIR H- and K-band spectroscopy of the five SNRs showing the [Fe II]-H2 reversal (G11.2-0.3, KES 73, W44, 3C 396, W49B) using IGRINS (Immersion GRating INfrared Spectrograph). Various ro-vibrational H2 lines have been detected, which are used to derive the kinematic distances to the SNRs and to investigate the origin of the H2 emission. The detected H2 lines show broad line width (> 10 km s-1) and line flux ratios of thermal excitation. We discuss the origin of the extended H2 emission features beyond the the [Fe II] emission boundary.

  3. Spectrographic determination of niobium in uranium - niobium alloys

    International Nuclear Information System (INIS)

    Charbel, M.Y.; Lordello, A.R.

    1984-01-01

    A method for the spectrographic determination of niobium in uranium-niobium alloys in the concentration range 1-10% has been developed. The metallic sample is converted to oxide by calcination in a muffle furnace at 800 0 C for two hours. The standards are prepared synthetically by dry-mixing. One part of the sample or standard is added to nineteen parts of graphite powder and the mixture is excited in a DC arc. Hafnium has been used as internal standard. The precision of the method is + - 4.8%. (Author) [pt

  4. Rapid spectrographic method for determining microcomponents in solutions

    International Nuclear Information System (INIS)

    Karpenko, L.I.; Fadeeva, L.A.; Gordeeva, A.N.; Ermakova, N.V.

    1984-01-01

    Rapid spectrographic method foe determining microcomponents (Cd, V, Mo, Ni, rare earths and other elements) in industrial and natural solutions has been developed. The analyses were conducted in argon medium and in the air. Calibration charts for determining individual rare earths in solutions are presented. The accuracy of analysis (Sr) was detection limit was 10 -3 -10 -4 mg/ml, that for rare earths - 1.10 -2 mg/ml. The developed method enables to rapidly analyze solutions (sewages and industrialllwaters, wine products) for 20 elements including 6 rare earths, using strandard equipment

  5. Measurement of the Transverse Spitzer Resistivity during Collisional Magnetic Reconnection

    International Nuclear Information System (INIS)

    Trintchouk, F.; Yamada, M.; Ji, H.; Kulsrud, R.M.; Carter, T.A.

    2000-01-01

    Measurement of the transverse resistivity was carried out in a reconnecting current sheet where the mean free path for the Coulomb collision is smaller than the thickness of the sheet. In a collisional neutral sheet without a guide field, the transverse resistivity is directly related to the reconnection rate. A remarkable agreement is found between the measured resistivity and the classical value derived by L. Spitzer. In his calculation the transverse resistivity for the electrons is higher than the parallel resistivity by a factor of 1.96. The measured values have verified this theory to within 30% errors

  6. THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TO z = 1: SPITZER INFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Webb, T. M. A.; O' Donnell, D.; Coppin, Kristen; Faloon, Ashley; Geach, James E.; Noble, Allison [McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4 (Canada); Gilbank, David [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Ellingson, Erica [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309 (United States); Gladders, Mike [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Muzzin, Adam [Leiden Observatory, University of Leiden, Niels Bohrweg 2, NL-2333 CA, Leiden (Netherlands); Wilson, Gillian [Department of Physics and Astronomy, University of California at Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Yan, Renbin [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2013-10-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 10{sup 14-15} M {sub ☉}. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 10{sup 11} M {sub ☉}, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z){sup 5.1±1.9} over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M {sub cluster}). The evolution is similar, with ΣSFR/M {sub cluster} ∼ (1 + z){sup 5.4±1.9}. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M {sub cluster} (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M{sub cluster}∼M{sub cluster}{sup -1.5±0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ∼5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR

  7. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Agol, E.; /Washington U., Seattle, Astron. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Cowan, Nicolas B.; /Washington U., Seattle, Astron. Dept.; Knutson, Heather A.; /UC, Berkeley, Astron. Dept.; Deming, Drake; /NASA, Goddard; Steffen, Jason H.; /Fermilab; Henry, Gregory W.; /Tennessee State U.; Charbonneau, David; /Harvard-Smithsonian Ctr. Astrophys.

    2010-07-01

    We present observations of six transits and six eclipses of the transiting planet system HD 189733 taken with the Spitzer Space Telescope IRAC camera at 8 microns, as well as a re-analysis of previously published data. We use several novel techniques in our data analysis, the most important of which is a new correction for the detector 'ramp' variation with a double-exponential function which performs better and is a better physical model for this detector variation. Our main scientific findings are: (1) an upper limit on the variability of the day-side planet flux of 2.7% (68% confidence); (2) the most precise set of transit times measured for a transiting planet, with an average accuracy of 3 seconds; (3) a lack of transit-timing variations, excluding the presence of second planets in this system above 20% of the mass of Mars in low-order mean-motion resonance at 95% confidence; (4) a confirmation of the planet's phase variation, finding the night side is 64% as bright as the day side, as well as an upper limit on the night-side variability of 17% (68% confidence); (5) a better correction for stellar variability at 8 micron causing the phase function to peak 3.5 hours before secondary eclipse, confirming that the advection and radiation timescales are comparable at the 8 micron photosphere; (6) variation in the depth of transit, which possibly implies variations in the surface brightness of the portion of the star occulted by the planet, posing a fundamental limit on non-simultaneous multi-wavelength transit absorption measurements of planet atmospheres; (7) a measurement of the infrared limb-darkening of the star, which is in good agreement with stellar atmosphere models; (8) an offset in the times of secondary eclipse of 69 seconds, which is mostly accounted for by a 31 second light travel time delay and 33 second delay due to the shift of ingress and egress by the planet hot spot; this confirms that the phase variation is due to an offset hot

  8. Using an integral-field unit spectrograph to study radical species in cometary coma

    Science.gov (United States)

    Lewis, Benjamin; Pierce, Donna M.; Vaughan, Charles M.; Cochran, Anita

    2015-01-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA's Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.

  9. PROBING THE IONIZATION STATES OF POLYCYCLIC AROMATIC HYDROCARBONS VIA THE 15–20 μm EMISSION BANDS

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, M. J.; Stock, D. J.; Peeters, E., E-mail: mshann3@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2015-10-01

    We report new correlations between ratios of band intensities of the 15–20 μm emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of 57 sources observed with the Spitzer/Infrared Spectrograph. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the Spitzer Infrared Nearby Galaxies Survey survey, two Galactic interstellar medium cirrus sources, and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4, and 17.8 μm band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 μm band intensities. The 15.8 μm band correlates only with the 15–18 μm plateau and the 11.2 μm emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4, and 17.8 μm bands; the 11.2, 15.8 μm bands and the 15–18 μm plateau; and the 11.0 and 17.4 μm bands. We also find that the spatial distribution of the 12.7, 16.4, and 17.8 μm bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 μm and neutral 11.2 μm bands. We conclude that the 17.4 μm band is dominated by cations, the 15.8 μm band by neutral species, and the 12.7, 16.4, and 17.8 μm bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15–20 μm emission variability.

  10. THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

    International Nuclear Information System (INIS)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-01-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ∼ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  11. STAR FORMATION RATES FOR STARBURST GALAXIES FROM ULTRAVIOLET, INFRARED, AND RADIO LUMINOSITIES

    International Nuclear Information System (INIS)

    Sargsyan, Lusine A.; Weedman, Daniel W.

    2009-01-01

    We present a comparison of star formation rates (SFR) determined from mid-infrared 7.7 μm polycyclic aromatic hydrocarbon (PAH) luminosity [SFR(PAH)], from 1.4 GHz radio luminosity [SFR(radio)], and from far-ultraviolet luminosity [SFR(UV)] for a sample of 287 starburst galaxies with z ν (7.7 μm)] - 42.57 ± 0.2, for SFR in M sun yr -1 and νL ν (7.7 μm) the luminosity at the peak of the 7.7 μm PAH feature in erg s -1 , is found to agree with SFR(radio). Comparing with SFR(UV) determined independently from ultraviolet observations of the same sources with the Galaxy Evolution Explorer mission (not corrected for dust extinction), the median log [SFR(PAH)/SFR(UV)] = 1.67, indicating that only 2% of the ultraviolet continuum typically escapes extinction by dust within a starburst. This ratio SFR(PAH)/SFR(UV) depends on infrared luminosity, with the form log [SFR(PAH)/SFR(UV)] = (0.53 ± 0.05)log [νL ν (7.7 μm)] - 21.5 ± 0.18, indicating that more luminous starbursts are also dustier. Using our adopted relation between νL ν (7.7 μm) and L ir , this becomes log [SFR(PAH)/SFR(UV)]= (0.53 ± 0.05)log L ir - 4.11 ± 0.18, for L ir in L sun . Only blue compact dwarf galaxies show comparable or greater SFR(UV) compared to SFR(PAH). We also find that the ratio SFR(PAH)/SFR(UV) is similar to that in infrared-selected starbursts for a sample of Markarian starburst galaxies originally selected using optical classification, which implies that there is no significant selection effect in SFR(PAH)/SFR(UV) using starburst galaxies discovered by Spitzer. These results indicate that SFRs determined with ultraviolet luminosities require dust corrections by a factor of ∼10 for typical local starbursts but this factor increases to >700 for the most luminous starbursts at z ∼ 2.5. Application of this factor explains why the most luminous starbursts discovered by Spitzer at z ∼ 2.5 are optically faint; with this amount of extinction, the optical magnitude of a starburst

  12. A CCD fitted to the UV Prime spectrograph: Performance

    International Nuclear Information System (INIS)

    Boulade, O.

    1986-10-01

    A CCD camera was fitted to the 3.6 m French-Canadian telescope in Hawai. Performance of the system and observations of elliptic galaxies (stellar content and galactic evolution in a cluster) and quasars (absorption lines in spectra) are reported. In spite of its resolution being only average, the extremely rapid optics of the UV spectrograph gives good signal to noise ratios enabling redshifts and velocity scatter to be calculated with an accuracy better than 30 km/sec [fr

  13. the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. II. Framework, strategy, and first result

    International Nuclear Information System (INIS)

    Wright, J. T.; Griffith, R. L.; Sigurdsson, S.; Povich, M. S.; Mullan, B.

    2014-01-01

    We describe the framework and strategy of the Ĝ infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although GAIA will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited 'free' energy generation.

  14. the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. II. Framework, strategy, and first result

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J. T.; Griffith, R. L.; Sigurdsson, S. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA, 16802 (United States); Povich, M. S. [Department of Physics and Astronomy, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, CA 91768 (United States); Mullan, B. [Blue Marble Space Institution of Science, P.O. Box 85561, Seattle, WA 98145-1561 (United States)

    2014-09-01

    We describe the framework and strategy of the Ĝ infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although GAIA will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited 'free' energy generation.

  15. The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. II. Framework, Strategy, and First Result

    Science.gov (United States)

    Wright, J. T.; Griffith, R. L.; Sigurdsson, S.; Povich, M. S.; Mullan, B.

    2014-09-01

    We describe the framework and strategy of the Ĝ infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although GAIA will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited "free" energy generation.

  16. Dust, ice and gas in time (DIGIT): Herschel and Spitzer spectro-imaging of SMM3 and SMM4 in Serpens

    Science.gov (United States)

    Dionatos, O.; Jørgensen, J. K.; Green, J. D.; Herczeg, G. J.; Evans, N. J.; Kristensen, L. E.; Lindberg, J. E.; van Dishoeck, E. F.

    2013-10-01

    Context. Mid- and far-infrared observations of the environment around embedded protostars reveal a plethora of high excitation molecular and atomic emission lines. Different mechanisms for the origin of these lines have been proposed, including shocks induced by protostellar jets and radiation or heating by the embedded protostar of its immediate surroundings. Aims: By studying of the most important molecular and atomic coolants, we aim at constraining the physical conditions around the embedded protostars SMM3 and SMM4 in the Serpens molecular cloud core and measuring the CO/H2 ratio in warm gas. Methods: Spectro-imaging observations from the Spitzer Infrared Spectrograph (IRS) and the Herschel Photodetector Array Camera and Spectrometer (PACS) provide an almost complete wavelength coverage between 5 and 200 μm. Within this range, emission from all major molecular (H2, CO, H2O and OH) and many atomic ([OI], [CII], [FeII], [SiII] and [SI]) coolants of excited gas are detected. Emission line maps reveal the morphology of the observed emission and indicate associations between the different species. The excitation conditions for molecular species are assessed through rotational diagrams. Emission lines from major coolants are compared to the results of steady-state C- and J-type shock models. Results: Line emission tends to peak at distances of ~10-20″ from the protostellar sources with all but [CII] peaking at the positions of outflow shocks seen in near-IR and sub-millimeter interferometric observations. The [CII] emission pattern suggests that it is most likely excited from energetic UV radiation originating from the nearby flat-spectrum source SMM6. Excitation analysis indicates that H2 and CO originate in gas at two distinct rotational temperatures of ~300 K and 1000 K, while the excitation temperature for H2O and OH is ~100-200 K. The morphological and physical association between CO and H2 suggests a common excitation mechanism, which allows direct

  17. New Views of a Familiar Beauty

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2Figure 3Figure 4Figure 5 This image composite compares the well-known visible-light picture of the glowing Trifid Nebula (left panel) with infrared views from NASA's Spitzer Space Telescope (remaining three panels). The Trifid Nebula is a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. The false-color Spitzer images reveal a different side of the Trifid Nebula. Where dark lanes of dust are visible trisecting the nebula in the visible-light picture, bright regions of star-forming activity are seen in the Spitzer pictures. All together, Spitzer uncovered 30 massive embryonic stars and 120 smaller newborn stars throughout the Trifid Nebula, in both its dark lanes and luminous clouds. These stars are visible in all the Spitzer images, mainly as yellow or red spots. Embryonic stars are developing stars about to burst into existence. Ten of the 30 massive embryos discovered by Spitzer were found in four dark cores, or stellar 'incubators,' where stars are born. Astronomers using data from the Institute of Radioastronomy millimeter telescope in Spain had previously identified these cores but thought they were not quite ripe for stars. Spitzer's highly sensitive infrared eyes were able to penetrate all four cores to reveal rapidly growing embryos. Astronomers can actually count the individual embryos tucked inside the cores by looking closely at the Spitzer image taken by its infrared array camera (figure 4). This instrument has the highest spatial resolution of Spitzer's imaging cameras. The Spitzer image from the multiband imaging photometer (figure 5), on the other hand, specializes in detecting cooler materials. Its view highlights the relatively cool core material falling onto the Trifid's growing embryos. The middle panel is a combination of Spitzer

  18. High-Resolution Spectroscopy at the Wyoming Infrared Observatory: Setting TESS Science on FHiRE

    Science.gov (United States)

    Jang-Condell, Hannah; Pierce, Michael J.; Pilachowski, C. A.; Kobulnicky, Henry; McLane, Jacob N.

    2018-01-01

    The Fiber High Resolution Echelle (FHiRE) spectrograph is a new instrument designed for the 2.3-m Wyoming InfraRed Observatory (WIRO). With the construction of a vacuum chamber for FHiRE to stabilize the spectrograph and a temperature-stabilized Thorium-Argon lamp for precise velocity calibration, we will be able to achieve 1 m/s RV precision, making it an ideal instrument for finding exoplanets. Details of the design of FHiRE are presented in a companion poster (Pierce et al.). The construction of this instrument is well-timed with the planned 2018 launch of NASA's Transiting Exoplanet Survey Satellite (TESS) mission. TESS will require a great deal of follow-up spectroscopy to characterize potential exoplanet host stars as well as radial velocity measurements to confirm new exoplanets. WIRO is ideally suited to acquire the long-term, high-cadence observations that will be required to make progress in this frontier area of astrophysics. We will coordinate our efforts with the TESS Follow-up Observing Program (TFOP), specifically as part of the Recon Spectroscopy and Precise Radial Velocity Work sub-groups.This work is supported by a grant from NASA EPSCOR.

  19. EXTRASOLAR STORMS: PRESSURE-DEPENDENT CHANGES IN LIGHT-CURVE PHASE IN BROWN DWARFS FROM SIMULTANEOUS HST AND SPITZER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Apai, Dániel; Karalidi, Theodora [Department of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, Naval Air Station, Moffett Field, Mountain View, CA 94035 (United States); Flateau, Davin [Department of Planetary Sciences, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Showman, Adam P. [Department of Planetary Sciences, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Metchev, Stanimir [The University of Western Ontario, Department of Physics and Astronomy, Centre for Planetary Science and Exploration, 1151 Richmond St., London, ON N6A 3K7 (Canada); Buenzli, Esther [Institute for Astronomy, ETH Zürich Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Lowrance, Patrick J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Burgasser, Adam J., E-mail: haoyang@email.arizona.edu, E-mail: apai@arizona.edu [Center for Astrophysics and Space Science, University of California, San Diego, La Jolla, CA 92093 (United States)

    2016-07-20

    We present Spitzer /Infrared Array Camera Ch1 and Ch2 monitoring of six brown dwarfs during eight different epochs over the course of 20 months. For four brown dwarfs, we also obtained simulataneous Hubble Space Telescope ( HST )/WFC3 G141 grism spectra during two epochs and derived light curves in five narrowband filters. Probing different pressure levels in the atmospheres, the multiwavelength light curves of our six targets all exhibit variations, and the shape of the light curves evolves over the timescale of a rotation period, ranging from 1.4 to 13 hr. We compare the shapes of the light curves and estimate the phase shifts between the light curves observed at different wavelengths by comparing the phase of the primary Fourier components. We use state-of-the-art atmosphere models to determine the flux contribution of different pressure layers to the observed flux in each filter. We find that the light curves that probe higher pressures are similar and in phase, but are offset and often different from the light curves that probe lower pressures. The phase differences between the two groups of light curves suggest that the modulations seen at lower and higher pressures may be introduced by different cloud layers.

  20. Recording {gamma} spectrometer with elimination of compton background; Spectrographe {gamma} enregistreur avec elimination du bruit de fond compton

    Energy Technology Data Exchange (ETDEWEB)

    Julliot, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This instrument, derived from the recording {gamma} spectrograph, gives better definition of photoelectric peaks by elimination of pulses caused by {gamma} photons incompletely absorbed in the scintillator (Compton effect). This system uses an original method devised by Peirson: the spectrum, devoid of photoelectric peak, supplied by a detector equipped with an anthracene scintillator, is cut off from the spectrum provided by a conventional detector equipped with a Nal (T1) scintillator. The regulation of the mechanical system, detector support and source allows the detection yields to be adjusted. The electronic system is identical in presentation with that of the recording spectrograph. (author) [French] Cet appareil derive du spectrographe {gamma} enregistreur permet d'obtenir une meilleure definition des pics photoelectriques, par elimination des impulsions provenant des photons {gamma} incompletement absorbes dans le scintillateur (effet Compton). Cet ensemble met en oeuvre une methode originale due a Peirson: le spectre, depourvu de pic photoelectrique, fourni par un detecteur, equipe avec un scintillateur d'anthracene, est retranche du spectre donne par un detecteur classique, equipe avec un scintillateur de NaI (T1). Le reglage de l'ensemble mecanique, support des detecteurs et de la source, permet d'ajuster les rendements de detection. L'ensemble electronique se presente sous un aspect identique a celui du spectrographe enregistreur. (auteur)

  1. A SEARCH FOR SHORT-PERIOD ROCKY PLANETS AROUND WDs WITH THE COSMIC ORIGINS SPECTROGRAPH (COS)

    Energy Technology Data Exchange (ETDEWEB)

    Sandhaus, Phoebe H.; Debes, John H.; Ely, Justin; Hines, Dean C.; Bourque, Matthew [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2016-05-20

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in an attempt to increase the observed transit depth and hence the atmospheric signal of the planet. Of all spectral types, white dwarfs (WDs) are the most favorable for this type of investigation. The fraction of WDs that possess close-in rocky planets is unknown, but several large angle stellar surveys have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of WDs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright WDs. In the process, we discovered unusual variability in the pulsating WD GD 133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii. We also point out that non-transiting small planets in thermal equilibrium are detectable around hotter WDs through infrared excesses, and identify two candidates.

  2. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    Science.gov (United States)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  3. OPEN CLUSTERS IN THE MILKY WAY OUTER DISK: NEWLY DISCOVERED AND UNSTUDIED CLUSTERS IN THE SPITZER GLIMPSE-360, CYG-X, AND SMOG SURVEYS

    International Nuclear Information System (INIS)

    Zasowski, G.; Beaton, R. L.; Hamm, K. K.; Majewski, S. R.; Patterson, R. J.; Babler, B.; Churchwell, E.; Meade, M.; Whitney, B. A.; Benjamin, R. A.; Watson, C.

    2013-01-01

    Open stellar clusters are extremely valuable probes of Galactic structure, star formation, kinematics, and chemical abundance patterns. Near-infrared (NIR) data have enabled the detection of hundreds of clusters hidden from optical surveys, and mid-infrared (MIR) data are poised to offer an even clearer view into the most heavily obscured parts of the Milky Way. We use new MIR images from the Spitzer GLIMPSE-360, Cyg-X, and SMOG surveys to visually identify a large number of open cluster candidates in the outer disk of the Milky Way (65° < l < 265°). Using NIR color-magnitude diagrams, stellar isochrones, and stellar reddening estimates, we derive cluster parameters (metallicity, distance, reddening) for those objects without previous identification and/or parameters in the literature. In total, we present coordinates and sizes of 20 previously unknown open cluster candidates; for 7 of these we also present metallicity, distance, and reddening values. In addition, we provide the first estimates of these values for nine clusters that had been previously cataloged. We compare our cluster sizes and other derived parameters to those in the open cluster catalog of Dias et al. and find strong similarities except for a higher mean reddening for our objects, which signifies our increased detection sensitivity in regions of high extinction. The results of this cluster search and analysis demonstrate the ability of MIR imaging and photometry to augment significantly the current census of open clusters in the Galaxy

  4. V819 TAU: A RARE WEAK-LINED T TAURI STAR WITH A WEAK INFRARED EXCESS

    International Nuclear Information System (INIS)

    Furlan, E.; Forrest, W. J.; Manoj, P.; Kim, K. H.; Watson, Dan M.; Sargent, B. A.

    2009-01-01

    We use Spitzer data to infer that the small infrared excess of V819 Tau, a weak-lined T Tauri star in Taurus, is real and not attributable to a 'companion' 10'' to the south. We do not confirm the mid-infrared excess in HBC 427 and V410 X-ray 3, which are also non-accreting T Tauri stars in the same region; instead, for the former object, the excess arises from a red companion 9'' to the east. A single-temperature blackbody fit to the continuum excess of V819 Tau implies a dust temperature of 143 K; however, a better fit is achieved when the weak 10 and 20 μm silicate emission features are also included. We infer a disk of sub-μm silicate grains between about 1 AU and several 100 AU with a constant surface density distribution. The mid-infrared excess of V819 Tau can be successfully modeled with dust composed mostly of small amorphous olivine grains at a temperature of 85 K, and most of the excess emission is optically thin. The disk could still be primordial, but gas-poor and therefore short-lived, or already at the debris disk stage, which would make it one of the youngest debris disk systems known.

  5. Spitzer Opens New Path to Break Classic Degeneracy for Jupiter-mass Microlensing Planet OGLE-2017-BLG-1140Lb

    Science.gov (United States)

    Calchi Novati, S.; Skowron, J.; Jung, Y. K.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Yee, J. C.; Zhu, W.; Spitzer Team; Udalski, A.; Szymański, M. K.; Mróz, P.; Poleski, R.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Hwang, K.-H.; Ryu, Y.-H.; Shin, I.-G.; Zang, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-06-01

    We analyze the combined Spitzer and ground-based data for OGLE-2017-BLG-1140 and show that the event was generated by a Jupiter-class ({m}p≃ 1.6 {M}{{J}{{u}}{{p}}}) planet orbiting a mid-late M dwarf (M≃ 0.2 {M}ȯ ) that lies {D}LS}≃ 1.0 {kpc} in the foreground of the microlensed Galactic-bar source star. The planet–host projected separation is {a}\\perp ≃ 1.0 {au}, i.e., well beyond the snow line. By measuring the source proper motion {{\\boldsymbol{μ }}}s from ongoing long-term OGLE imaging and combining this with the lens-source relative proper motion {{\\boldsymbol{μ }}}rel} derived from the microlensing solution, we show that the lens proper motion {{\\boldsymbol{μ }}}l={{\\boldsymbol{μ }}}rel}+{{\\boldsymbol{μ }}}s is consistent with the lens lying in the Galactic disk, although a bulge lens is not ruled out. We show that while the Spitzer and ground-based data are comparably well fitted by planetary (i.e., binary-lens (2L1S)) and binary-source (1L2S) models, the combination of Spitzer and ground-based data decisively favors the planetary model. This is a new channel to resolve the 2L1S/1L2S degeneracy, which can be difficult to break in some cases.

  6. Measuring the Stellar Masses of z ~ 7 Galaxies with the Spitzer UltRaFaint SUrvey Program (SURFS UP)

    Science.gov (United States)

    Ryan, R. E., Jr.; Gonzalez, A. H.; Lemaux, B. C.; Bradač, M.; Casertano, S.; Allen, S.; Cain, B.; Gladders, M.; Hall, N.; Hildebradt, H.; Hinz, J.; Huang, K.-H.; Lubin, L.; Schrabback, T.; Stiavelli, M.; Treu, T.; von der Linden, A.; Zaritsky, D.

    2014-05-01

    We present Spitzer/IRAC observations of nine z'-band dropouts highly magnified (2 ~ 7. By modeling the broadband photometry, we estimate the galaxy has an intrinsic star formation rate (SFR) of SFR ~ 1.3 M ⊙ yr-1 and stellar mass of M ~ 2.0 × 109 M ⊙, which gives a specific star formation rate of sSFR ~ 0.7 Gyr-1. If this galaxy had sustained this SFR since z ~ 20, it could have formed the observed stellar mass (to within a factor of ~2). We also discuss alternate star formation histories and argue that the exponentially increasing model is unlikely. Finally, based on the intrinsic SFR, we estimate that this galaxy has a likely [C II] flux of langf [C II]rang = 1.6 mJy. Observations were carried out using the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research is also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and NNX08AD79G. These observations are associated with programs Spitzer 3550, 60034, 90009, HST GO 10200, GO 10863, 11099, and 11591, and ESO Large Program 181.A-0485.

  7. Warm Spitzer and Palomar near-IR secondary eclipse photometry of two hot Jupiters: WASP-48b and HAT-P-23b

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, Joseph G.; Knutson, Heather A.; Désert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Zhao, Ming [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 05844 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Todorov, Kamen O. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2014-02-01

    We report secondary eclipse photometry of two hot Jupiters, WASP-48b and HAT-P-23b, at 3.6 and 4.5 μm taken with the InfraRed Array Camera aboard the Spitzer Space Telescope during the warm Spitzer mission and in the H and K{sub S} bands with the Wide Field IR Camera at the Palomar 200 inch Hale Telescope. WASP-48b and HAT-P-23b are Jupiter-mass and twice Jupiter-mass objects orbiting an old, slightly evolved F star and an early G dwarf star, respectively. In the H, K{sub S} , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.047% ± 0.016%, 0.109% ± 0.027%, 0.176% ± 0.013%, and 0.214% ± 0.020% for WASP-48b. In the K{sub S} , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.234% ± 0.046%, 0.248% ± 0.019%, and 0.309% ± 0.026% for HAT-P-23b. For WASP-48b and HAT-P-23b, respectively, we measure delays of 2.6 ± 3.9 minutes and 4.0 ± 2.4 minutes relative to the predicted times of secondary eclipse for circular orbits, placing 2σ upper limits on |ecos ω| of 0.0053 and 0.0080, both of which are consistent with circular orbits. The dayside emission spectra of these planets are well-described by blackbodies with effective temperatures of 2158 ± 100 K (WASP-48b) and 2154 ± 90 K (HAT-P-23b), corresponding to moderate recirculation in the zero albedo case. Our measured eclipse depths are also consistent with one-dimensional radiative transfer models featuring varying degrees of recirculation and weak thermal inversions or no inversions at all. We discuss how the absence of strong temperature inversions on these planets may be related to the activity levels and metallicities of their host stars.

  8. A UV prime focus spectrograph for the CFHT

    International Nuclear Information System (INIS)

    Boulade, O.; Vigroux, L.

    1986-03-01

    The UV prime spectrograph at the Canada-France-Hawaii Telescope is the first instrument to be designed with an aspherized diffraction grating. This technique leads to all reflective Schmidt designs with a very small amount of optical surface on fast aperture ratio. A thin backside illuminated RCA CCD is now used as the detector. Since the detector is at the focus of an f/1 mounting, within the optical path, a minicryostat (5 cm x 5 cm x 3 cm) was designed to minimize the central obscuration. This paper describes this new instrument and its performances

  9. Performance testing of a novel off-plane reflection grating and silicon pore optic spectrograph at PANTER

    Science.gov (United States)

    Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey; Miles, Drew M.; Donovan, Benjamin D.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2015-05-01

    An X-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

  10. SPITZER OBSERVATIONS OF OGLE-2015-BLG-1212 REVEAL A NEW PATH TOWARD BREAKING STRONG MICROLENS DEGENERACIES

    DEFF Research Database (Denmark)

    Bozza, V.; Shvartzvald, Y.; Udalski, A.

    2016-01-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter s...

  11. Sensitive Spitzer Photometry of Supermassive Black Holes at the Final Stage of Adolescence

    Science.gov (United States)

    Shemmer, Ohad; Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny

    2011-05-01

    We propose to obtain sensitive Spitzer snapshot observations of a unique sample of 35 Sloan Digital Sky Survey quasars at redshift 4.8 for which we obtained reliable, Mg II-based determinations of the supermassive black hole (SMBH) mass and normalized accretion rate (L/L_Edd). These quasars appear to mark the final stage of SMBH `adolescence' in the history of the Universe as their SMBHs are significantly less massive and their L/L_Edd values are significantly higher with respect to their counterparts at lower redshifts. Our observations will provide both 1) deep coverage of the fields around these quasars which will be utilized as crucial priors for our approved Herschel/SPIRE observations of these sources, and 2) coverage of the rest-frame optical SEDs of these fast accreting quasars. The results will maximize our ability to measure the star-formation rate in the host galaxies of these quasars using Herschel. We will thus be able to investigate correlations between SMBH growth and star-forming activity in the early Universe. The Spitzer photometry will also provide invaluable information about the shape of the rest-frame optical continuum in these quasars which will be used to search for extreme disk properties that may be signatures of the remarkably high accretion rates in these sources.

  12. Random walks, Brownian motion, and interacting particle systems: a festschrift in honor of Frank Spitzer

    National Research Council Canada - National Science Library

    Durrett, Richard; Kesten, Harry; Spitzer, Frank

    1991-01-01

    ..., made the transparency used in the printing process. STUDENTS OF FRANK SPITZERSTUDENTS OF FRANK SPITZER 1957 J. W. Lamperti, On the asymptotic behavior of recurrent and almostrecurrent events. 1964 W. W. Whitman, Some strong laws for random walks and Brownian motion. 1965 J. C. Mineka, The existence and uniqueness of positive solutions to the Wien...

  13. Field Raman spectrograph for environmental analysis

    International Nuclear Information System (INIS)

    Haas, J.W. III; Forney, R.W.; Carrabba, M.M.; Rauh, R.D.

    1995-01-01

    The enormous cost for chemical analysis at DOE facilities predicates that cost-saving measures be implemented. Many approaches, ranging from increasing laboratory sample throughput by reducing preparation time to the development of field instrumentation, are being explored to meet this need. Because of the presence of radioactive materials at many DOE sites, there is also a need for methods that are safer for site personnel and analysts. This project entails the development of a compact Raman spectrograph for field screening and monitoring of a wide variety of wastes, pollutants, and corrosion products in storage tanks, soils, and ground and surface waters. Analytical advantages of the Raman technique include its ability to produce a unique, spectral fingerprint for each contaminant and its ability to analyze both solids and liquids directly, without the need for isolation or cleanup

  14. HIGH-MASS STAR FORMATION TOWARD SOUTHERN INFRARED BUBBLE S10

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swagat Ranjan; Tej, Anandmayee; Vig, Sarita [Indian Institute of Space Science and Technology, Trivandrum 695547 (India); Ghosh, Swarna K.; Ishwara Chandra, C. H., E-mail: swagat.12@iist.ac.in [National Centre For Radio Astrophysics, Pune 411007 (India)

    2016-11-01

    An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2  M {sub ⊙}, lies ∼7″ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μ m image. The masses and linear diameter of these range between ∼300–1600  M {sub ⊙} and 0.2–1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.

  15. Seeking the epoch of maximum luminosity for dusty quasars

    International Nuclear Information System (INIS)

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine

    2014-01-01

    Infrared luminosities νL ν (7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 Infrared Survey Explorer. Infrared luminosity does not show a maximum at any redshift z < 5, reaching a plateau for z ≳ 3 with maximum luminosity νL ν (7.8 μm) ≳ 10 47 erg s –1 ; luminosity functions show one quasar Gpc –3 having νL ν (7.8 μm) > 10 46.6 erg s –1 for all 2 infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  16. YSOVAR II: Mapping YSO Inner Disk Structure in NGC 2264 with Simultaneous Spitzer and CoRoT Time Series Photometry

    Science.gov (United States)

    Stauffer, John; Morales-Calderon, Maria; Rebull, Luisa; Affer, Laura; Alencar, Sylvia; Allen, Lori; Barrado, David; Bouvier, Jerome; Calvet, Nuria; Carey, Sean; Carpenter, John; Ciardi, David; Covey, Kevin; D'Alessio, Paola; Espaillat, Catherine; Favata, Fabio; Flaccomio, Ettore; Forbrich, Jan; Furesz, Gabor; Hartman, Lee; Herbst, William; Hillenbrand, Lynne; Holtzman, Jon; Hora, Joe; Marchis, Franck; McCaughrean, Mark; Micela, Giusi; Mundt, Reinhard; Plavchan, Peter; Turner, Neal; Skrutzkie, Mike; Smith, Howard; Song, Inseok; Szentgyorgi, Andy; Terebey, Susan; Vrba, Fred; Wasserman, Lawrence; Watson, Alan; Whitney, Barbara; Winston, Elaine; Wood, Kenny

    2011-05-01

    We propose a simultaneous, continuous 30 day observation of the star forming region NGC2264 with Spitzer and CoRoT. NGC2264 is the only nearby, rich star-forming region which can be observed with CoRoT; it is by definition then the only nearby, rich star-forming region where a simultaneous Spitzer/CoRoT campaign is possible. Fortunately, the visibility windows for the two spacecraft overlap, allowing this program to be done in the Nov. 25, 2011 to Jan. 4, 2012 time period. For 10 days, we propose to map the majority of the cluster (a 35'x35' region) to a depth of 48 seconds per point, with each epoch taking 1.7 hours, allowing of order 12 epochs per day. For the other 20 days, we propose to obtaining staring-mode data for two positions in the cluster having a high density of cluster members. We also plan to propose for a variety of other ground and space-based data, most of which would also be simultaneous with the Spitzer and CoRoT observing. These data will allow us to address many astrophysical questions related to the structure and evolution of the disks of young stars and the interaction of those disks with the forming star. The data may also help inform models of planet formation since planets form and migrate through the pre-main sequence disks during the 0.5-5 Myr age range of stars in NGC2264. The data we collect will also provide an archive of the variability properties of young stars that is unmatched in its accuracy, sensitivity, cadence and duration and which therefore could inspire investigation of phenomena which we cannot now imagine. The CoRoT observations have been approved, contingent on approval of a simultaneous Spitzer observing program (this proposal).

  17. Bright galaxies at z=9-11 from pure-parallel HST observations: Building a unique sample for JWST with Spitzer/IRAC

    Science.gov (United States)

    Bouwens, Rychard; Morashita, Takahiro; Stefanon, Mauro; Magee, Dan

    2018-05-01

    The combination of observations taken by Hubble and Spitzer revealed the unexpected presence of sources as bright as our own Milky Way as early as 400 Myr after the Big Bang, potentially highlighting a new highly efficient regime for star formation in L>L* galaxies at very early times. Yet, the sample of high-quality z>8 galaxies with both HST and Spitzer/IRAC imaging is still small, particularly at the highest luminosities. We propose here to remedy this situation and use Spitzer/IRAC to efficiently follow up the most promising z>8 sources from our Hubble Brightest of Reionizing Galaxies (BoRG) survey, which covers a footprint on the sky similar to CANDELS, provides a deeper search than ground-based surveys like UltraVISTA, and is robust against cosmic variance because of its 210 independent lines of sight. The proposed new 3.6 micron observations will continue our Spitzer cycle 12 and 13 BORG911 programs, targeting 15 additional fields, leveraging over 200 new HST orbits to identify a final sample of about 8 bright galaxies at z >= 8.5. For optimal time use (just 20 hours), our goal is to readily discriminate between z>8 sources (undetected or marginally detected in IRAC) and z 2 interlopers (strongly detected in IRAC) with just 1-2 hours per pointing. The high-quality candidates that we will identify with IRAC will be ideal targets for further studies investigating the ionization state of the distant universe through near-IR Keck/VLT spectroscopy. They will also be uniquely suited to measurement of the redshift and stellar population properties through JWST/NIRSPEC observations, with the potential to elucidate how the first generations of stars are assembled in the earliest stages of the epoch of reionization.

  18. GTC/OSIRIS SPECTROSCOPIC IDENTIFICATION OF A FAINT L SUBDWARF IN THE UKIRT INFRARED DEEP SKY SURVEY

    International Nuclear Information System (INIS)

    Lodieu, N.; Osorio, M. R. Zapatero; MartIn, E. L.; Solano, E.; Aberasturi, M.

    2010-01-01

    We present the discovery of an L subdwarf in 234 deg 2 common to the UK InfraRed Telescope (UKIRT) Infrared Deep Sky Survey Large Area Survey Data Release 2 and the Sloan Digital Sky Survey Data Release 3. This is the fifth L subdwarf announced to date, the first one identified in the UKIRT Infrared Deep Sky Survey, and the faintest known. The blue optical and near-infrared colors of ULAS J135058.86+081506.8 and its overall spectra energy distribution are similar to the known mid-L subdwarfs. Low-resolution optical (700-1000 nm) spectroscopy with the Optical System for Imaging and low Resolution Integrated Spectroscopy spectrograph on the 10.4 m Gran Telescopio de Canarias reveals that ULAS J135058.86+081506.8 exhibits a strong K I pressure-broadened line at 770 nm and a red slope longward of 800 nm, features characteristics of L-type dwarfs. From direct comparison with the four known L subdwarfs, we estimate its spectral type to be sdL4-sdL6 and derive a distance in the interval 94-170 pc. We provide a rough estimate of the space density for mid-L subdwarfs of 1.5 x 10 -4 pc -3 .

  19. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    Science.gov (United States)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  20. SpS1-Preparing for the harvest from large infrared surveys

    Science.gov (United States)

    Padgett, Deborah L.

    2010-11-01

    During the past decade, there has been a revolution in the availability of multi-wavelength astronomical surveys. From the Sloan Digital Sky Survey (SDSS) to the NRAO VLA Sky Survey (NVSS), astronomical research based on publicly accessible datasets is becoming standard practice in the community. Beginning with the Infrared Astronomical Satellite (IRAS) mission, infrared surveys have played a critical role in stellar astronomy by identifying cool and dusty stars worthy of spectroscopic characterization. IRAS' four photometric bands at 12, 25, 60, and 100 μm were ideal for detecting dusty circumstellar material. All-sky surveys like IRAS reveal the brightest members of each class of rare objects, optimizing their follow-up strategy. The case of debris disks around main sequence stars demonstrates this utility. IRAS detected dust disks around four nearby stars, Beta Pictoris, Fomalhaut, Epsilon Eridani, and Vega. The “Fabulous Four” remain the best studied debris disks, despite hundreds of additional examples discovered by the Spitzer Space Telescope. In the nearly 30 years since IRAS was launched, its highly reliable catalog of just 250000 sources, modest by modern standards, with arcminute scale resolution and 0.3 - 1 Jy sensitivity, has generated over 10,000 references in ADS. This is a success story by any measure.

  1. Far-ultraviolet Spectroscopy of Recent Comets with the Cosmic Origins Spectrograph on the Hubble Space Telescope

    Science.gov (United States)

    Feldman, Paul D.; Weaver, Harold A.; A’Hearn, Michael F.; Combi, Michael R.; Dello Russo, Neil

    2018-05-01

    Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have seen large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.″5 diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400–1700 Å. In the two brightest comets, 19 bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 Å by the Space Telescope Imaging Spectrograph. The derived CO/{{{H}}}2{{O}} production rate ratio ranged from ∼0.3% for Hartley 2 to ∼22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 Å and 1479 Å, and of C I at 1561 Å and 1657 Å, were observed in all four comets. Weak emission from several lines of the {{{H}}}2 Lyman band system, excited by solar Lyα and Lyβ pumped fluorescence, were detected in comet Lovejoy.

  2. Spectrographic determination of impurities in beryllium oxide

    International Nuclear Information System (INIS)

    Paula Reino, L.C. de; Lordello, A.R.; Pereira, A.S.A.

    1986-03-01

    A method for the spectrographic determination of Al, B, Cd, Co, Cu, Cr, Fe, Mg, NaNi, Si and Zn in nuclear grade beryllium oxide has been developed. The determination of Co, Al, Na and Zn is besed upon a carrier distillation technique. Better results were obtained with 2% Ga 2 O 3 as carrier in beryllium oxide. For the elements B, Cd, Cu, Fe, Cr, Mg, Ni and Si the sample is loaded in a Scribner-Mullin shallow cup electrode, covered with graphite powder and excited in DC arc. The relative standard deviation values for different elements are in the range of 10 to 20%. The method fulfills requirements of precision and sensitivity for specification analysis of nuclear grade beryllium oxide.(Author) [pt

  3. SOFIA/FORCAST AND SPITZER/IRAC IMAGING OF THE ULTRACOMPACT H II REGION W3(OH) AND ASSOCIATED PROTOSTARS IN W3

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Lea; Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Henderson, Charles P.; Schoenwald, Justin [Department of Astronomy, Cornell University, 105 Space Sciences Building, Ithaca, NY 14853 (United States); Hora, Joseph L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516 (United States); De Buizer, James M.; Vacca, William [SOFIA-University Space Research Association, NASA Ames Reseach Center, Mail Stop N211-3, Moffett Field, CA 94035 (United States); Megeath, S. Thomas [Department of Physics and Astronomy, University of Toledo, Mailstop 111, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Keller, Luke D. [Ithaca College, Physics Department, 264 Center for Natural Sciences, Ithaca, NY 14850 (United States)

    2012-10-01

    We present infrared observations of the ultracompact H II region W3(OH) made by the FORCAST instrument aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) and by the Spitzer/Infrared Array Camera. We contribute new wavelength data to the spectral energy distribution (SED), which constrains the optical depth, grain size distribution, and temperature gradient of the dusty shell surrounding the H II region. We model the dust component as a spherical shell containing an inner cavity with radius {approx}600 AU, irradiated by a central star of type O9 and temperature {approx}31, 000 K. The total luminosity of this system is 7.1 Multiplication-Sign 10{sup 4} L{sub Sun }. An observed excess of 2.2-4.5 {mu}m emission in the SED can be explained by our viewing a cavity opening or clumpiness in the shell structure whereby radiation from the warm interior of the shell can escape. We claim to detect the nearby water maser source W3 (H{sub 2}O) at 31.4 and 37.1 {mu}m using beam deconvolution of the FORCAST images. We constrain the flux densities of this object at 19.7-37.1 {mu}m. Additionally, we present in situ observations of four young stellar and protostellar objects in the SOFIA field, presumably associated with the W3 molecular cloud. Results from the model SED fitting tool of Robitaille et al. suggest that two objects (2MASS J02270352+6152357 and 2MASS J02270824+6152281) are intermediate-luminosity ({approx}236-432 L{sub Sun }) protostars; one object (2MASS J02270887+6152344) is either a high-mass protostar with luminosity 3 Multiplication-Sign 10{sup 3} L{sub Sun} or a less massive young star with a substantial circumstellar disk but depleted envelope; and the other (2MASS J02270743+6152281) is an intermediate-luminosity ({approx}768 L{sub Sun }) protostar nearing the end of its envelope accretion phase or a young star surrounded by a circumstellar disk with no appreciable circumstellar envelope.

  4. AN INFRARED/X-RAY SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Luhman, K. L.; Allen, P. R.; Mamajek, E. E.; Cruz, K. L.

    2009-01-01

    We present the results of a search for new members of the Taurus star-forming region using data from the Spitzer Space Telescope and the XMM-Newton Observatory. We have obtained optical and near-infrared spectra of 44 sources that exhibit red Spitzer colors that are indicative of stars with circumstellar disks and 51 candidate young stars that were identified by Scelsi and coworkers using XMM-Newton. We also performed spectroscopy on four possible companions to members of Taurus that were reported by Kraus and Hillenbrand. Through these spectra, we have demonstrated the youth and membership of 41 sources, 10 of which were independently confirmed as young stars by Scelsi and coworkers. Five of the new Taurus members are likely to be brown dwarfs based on their late spectral types (>M6). One of the brown dwarfs has a spectral type of L0, making it the first known L-type member of Taurus and the least massive known member of the region (M ∼ 4-7 M Jup ). Another brown dwarf exhibits a flat infrared spectral energy distribution, which indicates that it could be in the protostellar class I stage (star+disk+envelope). Upon inspection of archival images from various observatories, we find that one of the new young stars has a large edge-on disk (r = 2.''5 = 350 AU). The scattered light from this disk has undergone significant variability on a timescale of days in optical images from the Canada-France-Hawaii Telescope. Using the updated census of Taurus, we have measured the initial mass function for the fields observed by XMM-Newton. The resulting mass function is similar to previous ones that we have reported for Taurus, showing a surplus of stars at spectral types of K7-M1 (0.6-0.8 M sun ) relative to other nearby star-forming regions, such as IC 348, Chamaeleon I, and the Orion Nebula Cluster.

  5. SPITZER MAPPING OF MOLECULAR HYDROGEN PURE ROTATIONAL LINES IN NGC 1333: A DETAILED STUDY OF FEEDBACK IN STAR FORMATION

    International Nuclear Information System (INIS)

    Maret, Sebastien; Bergin, Edwin A.; Neufeld, David A.; Sonnentrucker, Paule; Yuan Yuan; Green, Joel D.; Watson, Dan M.; Harwit, Martin O.; Kristensen, Lars E.; Melnick, Gary J.; Tolls, Volker; Werner, Michael W.; Willacy, Karen

    2009-01-01

    We present mid-infrared spectral maps of the NGC 1333 star-forming region, obtained with the infrared spectrometer on board the Spitzer Space Telescope. Eight pure H 2 rotational lines, from S(0) to S(7), are detected and mapped. The H 2 emission appears to be associated with the warm gas shocked by the multiple outflows present in the region. A comparison between the observed intensities and the predictions of detailed shock models indicates that the emission arises in both slow (12-24 km s -1 ) and fast (36-53 km s -1 ) C-type shocks with an initial ortho-to-para ratio (opr) ∼ 2 opr exhibits a large degree of spatial variations. In the postshocked gas, it is usually about 2, i.e., close to the equilibrium value (∼3). However, around at least two outflows, we observe a region with a much lower (∼0.5) opr. This region probably corresponds to gas which has been heated up recently by the passage of a shock front, but whose ortho-to-para has not reached equilibrium yet. This, together with the low initial opr needed to reproduce the observed emission, provide strong evidence that H 2 is mostly in para form in cold molecular clouds. The H 2 lines are found to contribute to 25%-50% of the total outflow luminosity, and thus can be used to ascertain the importance of star formation feedback on the natal cloud. From these lines, we determine the outflow mass loss rate and, indirectly, the stellar infall rate, the outflow momentum and the kinetic energy injected into the cloud over the embedded phase. The latter is found to exceed the binding energy of individual cores, suggesting that outflows could be the main mechanism for core disruption.

  6. Revealing Fact or Fiction in Spitzer Exoplanet Phase Curve Trends

    Science.gov (United States)

    Bean, Jacob; Parmentier, Vivien; Mansfield, Megan; Cowan, Nicolas; Kempton, Eliza; Desert, Jean-Michel; Swain, Mark; Dang, Lisa; Bell, Taylor; Keating, Dylan; Zellem, Robert; Fortney, Jonathan; Line, Michael; Kreidberg, Laura; Stevenson, Kevin

    2018-05-01

    The constraints on energy transport in exoplanet atmospheres from phase curve observations is sure to be one of Spitzer's enduring legacies. However, with phase curves for 17 planets now observed we find that the previously observed trends are not coming into sharper focus. Instead, these trends in hot spot offset and day-night flux contrast vs. the fundamental planetary parameters expected to control the energy transport (e.g., irradiation and rotational period) are becoming more uncertain due to the recent discovery of outliers. At the same time, there is a growing understanding that a number of factors like magnetic fields, aerosols, and molecular chemistry could be confounding the search for these correlations. We propose a final phase curve program to advance our understanding of energy transport in transiting exoplanet atmospheres and to cement Spitzer's legacy on this topic. This program tackles the outstanding questions in this area with a comprehensive, two-pronged approach: (1) a survey of an additional 10 high signal-to-noise planets that span a broad parameter space and (2) a search for magnetic field-induced variability in the planet HAT-P-7b. The expanded survey will bring additional statistical power to the search for trends and will enable us to determine if the recently-detected outliers are indeed oddities or are instead actually representative of the intrinsic sample diversity. The variability search will test the hypothesis that the atmospheric dynamics of the partially ionized atmospheres of close-in planets are influenced by magnetic fields, which could explain the observed scatter around the existing trends. All observations will be performed at 4.5 microns, which is the consensus best channel for these measurements. The dataset from this program will provide vital context for JWST observations and will not be superseded until ARIEL flies more than a decade from now.

  7. Spectrographic determination of impurities in enriched uranium solutions

    International Nuclear Information System (INIS)

    Capdevila, C.; Roca, M.

    1980-01-01

    A spectrographic procedure for the determination of trace amounts of Al, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, L i , Hg, Mn, Mo, Na, Nb, Ni, P, Pb, Ru, Sb, Sn, Sr, Ti, V, Zn, and Zr in enriched uranyl nitrate solutions from the reprocessing of spent nuclear fuels is described. After removal of uranium by either TBP or TNOA solvent extraction, the aqueous phase Is analysed by the graphite spark technique. TBP is adequate for all impurities, excepting boron and phosphorus; both of these elements can sat is factory be determined by using TNOA after the addition of mannitol to avoid boron losses. (Author) 4 refs

  8. THE DISK POPULATION OF THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N.

    2010-01-01

    We have analyzed nearly all images of the Taurus star-forming region at 3.6, 4.5, 5.8, 8.0, and 24 μm that were obtained during the cryogenic mission of the Spitzer Space Telescope (46 deg 2 ) and have measured photometry for all known members of the region that are within these data, corresponding to 348 sources, or 99% of the known stellar population. By combining these measurements with previous observations with the Spitzer Infrared Spectrograph and other facilities, we have classified the members of Taurus according to whether they show evidence of circumstellar disks and envelopes (classes I, II, and III). Through these classifications, we find that the disk fraction in Taurus, N(II)/N(II+III), is ∼75% for solar-mass stars and declines to ∼45% for low-mass stars and brown dwarfs (0.01-0.3 M sun ). This dependence on stellar mass is similar to that measured for Chamaeleon I, although the disk fraction in Taurus is slightly higher overall, probably because of its younger age (1 Myr versus 2-3 Myr). In comparison, the disk fraction for solar-mass stars is much lower (∼20%) in IC 348 and σ Ori, which are denser than Taurus and Chamaeleon I and are roughly coeval with the latter. These data indicate that disk lifetimes for solar-mass stars are longer in star-forming regions that have lower stellar densities. Through an analysis of multiple epochs of Spitzer photometry that are available for ∼200 Taurus members, we find that stars with disks exhibit significantly greater mid-infrared (mid-IR) variability than diskless stars, which agrees with the results of similar variability measurements for a smaller sample of stars in Chamaeleon I. The variability fraction for stars with disks is higher in Taurus than in Chamaeleon I, indicating that the IR variability of disks decreases with age. Finally, we have used our data in Taurus to refine the observational criteria for primordial, evolved, and transitional disks. The ratio of the number of evolved and

  9. A High Resolution Solar Spectrograph for the Berkeley Undergraduate Astronomy Lab

    Science.gov (United States)

    Strickler, R.; Bresloff, C.; Graham, J.

    2005-05-01

    The discovery of extra-solar planets has stimulated interest amongst undergraduates. The Doppler method for detecting exoplanets requires extraction of signals at the 1/1000 of a pixel level. To illustrate this technique, we used a newly built spectrometer to extract sub-pixel Doppler shifts in the solar photosphere. We have used this spectrograph to measure the velocity gradient across the sun and hence infer the solar radius. The limb-to-limb Doppler shift is only 1.8 km/s. A spectral resolution > 100,000 would be required to manifest this motion. Achieving such high spectral resolution is unnecessary since even a small telescope can record high SNR (> 100) spectra. Within a few seconds it is possible to discern solar rotational Doppler shifts at resolutions as low as 10,000. We must also understand coordinate transformation to convert the Doppler signal along the observed diameter to the equatorial rotation speed assuming solid body rotation. The spectrograph system includes an 8-inch Schmidt-Cassegrain stationary telescope; a 100-micron diameter multi-mode fiber; aspheric f-number reformatting optics; a collimating lens; a 110 mm, 80 grooves/mm, θ blaze = 64.5 degree replica echelle grating; and an Apogee 1024 x 1024 thermo-electrically cooled CCD. The spectrometer optics are mounted on a 5-ft x 3-ft optical bench. Operating the spectrometer remotely using VNC and a wireless laptop, we pointed the telescope so that the fiber scanned across a diameter of the solar disk while the CCD took repeated exposures. Although we were "guinea pigs," using the spectrograph for the first time in a class, it worked remarkably well. Combining measurement of the solar radius with observation of the rotation period from sunspots, the earth-sun distance can be deduced. In the future, students may measure the eccentricity of earth's orbit by measuring the sun's radial velocity over the course of a year. This work was supported by the NSF through award DUE-0311536.

  10. Nuclear mid-infrared properties of nearby low-luminosity AGN

    International Nuclear Information System (INIS)

    Asmus, D; Duschl, W J; Hönig, S F; Gandhi, P; Smette, A

    2012-01-01

    We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGN's lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 μm emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 /amemission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR- X-ray correlation found previously for AGN is extended to a range from 10 40 to 10 45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR-X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.

  11. The X-ray properties of five galactic supernova remnants detected by the Spitzer glimpse survey

    International Nuclear Information System (INIS)

    Pannuti, Thomas G.; Moffitt, William P.; Rho, Jeonghee; Heinke, Craig O.

    2014-01-01

    We present a study of the X-ray properties of five Galactic supernova remnants (SNRs)—Kes 17 (G304.6+0.1), G311.5–0.3, G346.6–0.2, CTB 37A (G348.5+0.1), and G348.5–0.0—that were detected in the infrared by Reach et al. in an analysis of data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) that was conducted by the Spitzer Space Telescope. We present and analyze archival ASCA observations of Kes 17, G311.5–0.3, and G346.6–0.2, archival XMM-Newton observations of Kes 17, CTB 37A, and G348.5–0.0, and an archival Chandra observation of CTB 37A. All of the SNRs are clearly detected in the X-ray except possibly G348.5–0.0. Our study reveals that the four detected SNRs all feature center-filled X-ray morphologies and that the observed emission from these sources is thermal in all cases. We argue that these SNRs should be classified as mixed-morphology SNRs (MM SNRs); our study strengthens the correlation between MM SNRs and SNRs interacting with molecular clouds and suggests that the origin of MM SNRs may be due to the interactions between these SNRs and adjacent clouds. Our ASCA analysis of G311.5–0.3 reveals for the first time X-ray emission from this SNR: the X-ray emission is center-filled within the radio and infrared shells and thermal in nature (kT ∼ 0.98 keV), thus motivating its classification as an MM SNR. We find considerable spectral variations in the properties associated with the plasmas of the other X-ray-detected SNRs, such as a possible overabundance of magnesium in the plasma of Kes 17. Our new results also include the first detailed spatially resolved spectroscopic study of CTB 37A using Chandra as well as a spectroscopic study of the discrete X-ray source CXOU J171428.5–383601, which may be a neutron star associated with CTB 37A. Finally, we also estimate such properties as electron density n e , radiative age t rad and swept-up mass M X for each of the four X-ray-detected SNRs. Each of these values

  12. Carbon Chemistry in IRC+10216: Infrared Detection of Diacetylene

    Science.gov (United States)

    Fonfría, J. P.; Agúndez, M.; Cernicharo, J.; Richter, M. J.; Lacy, J. H.

    2018-01-01

    We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216, based on high spectral resolution mid-infrared observations carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the Infrared Telescope Facility. The obtained spectrum contains 24 narrow absorption features above the detection limit, identified as lines of the ro-vibrational C4H2 band {ν }6+{ν }8({σ }u+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is (2.4 ± 1.5) × 1016 cm‑2. Diacetylene is distributed in two excitation populations accounting for 20% and 80% of the total column density and with rotational temperatures of 47 ± 7 and 420 ± 120 K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ≃0.″4 ≃ 20 R ⋆ from the star, with a noticeable cold contribution outwards from ≃10″ ≃ 500 R ⋆. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope.

  13. Spectrographic analysis of uranium-based alloys; Analyse spectrographique d'alliages a base d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G.; Blum, P.

    1959-07-01

    The authors describe a spectrographic method for dosing cobalt in cobalt-uranium alloys with cobalt content from 0.05 to 10 per cent. They describe sample preparation, alloy solution, spectrographic conditions, and photometry operations. In a second part, they address the dosing of boron in uranium borides. They implement the so-called 'porous cup' method. Boride is dissolved by fusion with Co{sub 3}-NaK [French] Uranium-Cobalt: il est decrit une methode spectrographique de dosage de cobalt dans des alliages cobalt-uranium pour des teneurs de 0,05 pour cent a 10 pour cent de Co. On opere sur solution avec le fer comme standard interne. Borure d'Uranium: ici encore on opere par la methode dite 'porous cup', le fer etant conserve comme standard interne. Le borure est mis en solution par fusion avec Co{sub 3}NaK. (auteurs)

  14. Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer

    Science.gov (United States)

    Magnelli, B.; Elbaz, D.; Chary, R. R.; Dickinson, M.; Le Borgne, D.; Frayer, D. T.; Willmer, C. N. A.

    2011-04-01

    Aims: We derive the evolution of the infrared luminosity function (LF) over the last 4/5ths of cosmic time using deep 24 and 70 μm imaging of the GOODS North and South fields. Methods: We use an extraction technique based on prior source positions at shorter wavelengths to build the 24 and 70 μm source catalogs. The majority (93%) of the sources have a spectroscopic (39%) or a photometric redshift (54%) and, in our redshift range of interest (i.e., 1.3 conversion between the infrared luminosity and star-formation rate (SFR) of a galaxy, we study the evolution of the SFR density of the Universe from z = 0 to z = 2.3. We find that the SFR density of the Universe strongly increased with redshift from z = 0 to z = 1.3, but is nearly constant at higher redshift out to z = 2.3. As part of the online material accompanying this article, we present source catalogs at 24 μm and 70 μm for both the GOODS-North and -South fields. Appendices are only available in electronic form at http://www.aanda.orgFull Tables B1-B4 are only available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A35

  15. Dust Radiative Transfer Modeling of the Infrared Ring around the Magnetar SGR 1900+14

    Energy Technology Data Exchange (ETDEWEB)

    Natale, G. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Rea, N.; Torres, D. F.; Girart, J. M. [Institute of Space Sciences (IEEC–CSIC), Campus UAB, Carrer de Can Magrans S/N, E-08193 Barcelona (Spain); Lazzati, D. [Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR 97331 (United States); Perna, R., E-mail: gnatale@uclan.ac.uk [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-03-01

    A peculiar infrared ring-like structure was discovered by Spitzer around the strongly magnetized neutron star SGR 1900+14. This infrared (IR) structure was suggested to be due to a dust-free cavity, produced by the Soft Gamma-ray Repeaters (SGRs) Giant Flare occurring in 1998, and kept illuminated by surrounding stars. Using a 3D dust radiative transfer code, we aimed to reproduce the emission morphology and the integrated emission flux of this structure assuming different spatial distributions and densities for the dust, and different positions for the illuminating stars. We found that a dust-free ellipsoidal cavity can reproduce the shape, flux, and spectrum of the ring-like IR emission, provided that the illuminating stars are inside the cavity and that the interstellar medium has high gas density ( n {sub H} ∼ 1000 cm{sup −3}). We further constrain the emitting region to have a sharp inner boundary and to be significantly extended in the radial direction, possibly even just a cavity in a smooth molecular cloud. We discuss possible scenarios for the formation of the dustless cavity and the particular geometry that allows it to be IR-bright.

  16. NEAR-INFRARED POLARIMETRY OF A NORMAL SPIRAL GALAXY VIEWED THROUGH THE TAURUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Clemens, Dan P.; Cashman, L. R.; Pavel, M. D.

    2013-01-01

    Few normal galaxies have been probed using near-infrared polarimetry, even though it reveals magnetic fields in the cool interstellar medium better than either optical or radio polarimetry. Deep H-band (1.6 μm) linear imaging polarimetry toward Taurus serendipitously included the galaxy 2MASX J04412715+2433110 with adequate sensitivity and resolution to map polarization across nearly its full extent. The observations revealed the galaxy to be a steeply inclined (∼75°) disk type with a diameter, encompassing 90% of the Petrosian flux, of 4.2 kpc at a distance of 53 Mpc. Because the sight line passes through the Taurus Molecular Cloud complex, the foreground polarization needed to be measured and removed. The foreground extinction A V of 2.00 ± 0.10 mag and reddening E(H – K) of 0.125 ± 0.009 mag were also assessed and removed, based on analysis of Two Micron All Sky Survey, UKIRT Infrared Deep Sky Survey, Spitzer, and Wide-field Infrared Survey Explorer photometry using the Near-Infrared Color Excess, NICE-Revisited, and Rayleigh-Jeans Color Excess methods. Corrected for the polarized foreground, the galaxy polarization values range from 0% to 3%. The polarizations are dominated by a disk-parallel magnetic field geometry, especially to the northeast, while either a vertical field or single scattering of bulge light produces disk-normal polarizations to the southwest. The multi-kiloparsec coherence of the magnetic field revealed by the infrared polarimetry is in close agreement with short-wavelength radio synchrotron observations of edge-on galaxies, indicating that both cool and warm interstellar media of disk galaxies may be threaded by common magnetic fields.

  17. THE LUMINOSITIES OF PROTOSTARS IN THE SPITZER c2d AND GOULD BELT LEGACY CLOUDS

    International Nuclear Information System (INIS)

    Dunham, Michael M.; Arce, Héctor G.; Allen, Lori E.; Evans II, Neal J.; Harvey, Paul M.; Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Chapman, Nicholas L.; Cieza, Lucas A.; Gutermuth, Robert A.; Hatchell, Jennifer; Huard, Tracy L.; Miller, Jennifer F.; Kirk, Jason M.; Merín, Bruno; Peterson, Dawn E.; Spezzi, Loredana

    2013-01-01

    Motivated by the long-standing 'luminosity problem' in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate L bol for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 L ☉ to 69 L ☉ , and has a mean and median of 4.3 L ☉ and 1.3 L ☉ , respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (L bol ∼ ☉ ) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 μm bol underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35%-40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased data set should aid such future work.

  18. THE MID-INFRARED EXTINCTION LAW AND ITS VARIATION IN THE COALSACK NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shu; Gao Jian; Jiang, B. W.; Chen Yang [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li Aigen, E-mail: shuwang@mail.bnu.edu.cn, E-mail: jiangao@bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: cheny@bnu.edu.cn, E-mail: lia@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2013-08-10

    In recent years, the wavelength dependence of interstellar extinction from the ultraviolet (UV) to the near- and mid-infrared (IR) has been studied extensively. Although it is well established that the UV/optical extinction law varies significantly among the different lines of sight, it is not clear how IR extinction varies among various environments. In this work, using the color-excess method and taking red giants as the extinction tracer, we determine interstellar extinction A{sub {lambda}} in the four Spitzer/IRAC bands in [3.6], [4.5], [5.8], [8.0] {mu}m (relative to A{sub K{sub s}}, extinction in the Two Micron All Sky Survey (2MASS) K{sub s} band at 2.16 {mu}m) of the Coalsack nebula, a nearby starless dark cloud, based on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five individual regions across the nebula that span a wide variety of physical conditions ranging from diffuse and translucent to dense environments, as traced by the visual extinction, the Spitzer/MIPS 24 {mu}m emission, and CO emission. We find that A{sub {lambda}}/A{sub K{sub s}}, mid-IR extinction relative to A{sub K{sub s}}, decreases from diffuse to dense environments, which may be explained in terms of ineffective dust growth in dense regions. The mean extinction (relative to A{sub K{sub s}}) is calculated for the four IRAC bands as well and exhibits a flat mid-IR extinction law consistent with previous determinations for other regions. Extinction in the IRAC 4.5 {mu}m band is anomalously high, much higher than that of the other three IRAC bands, and cannot be explained in terms of CO and CO{sub 2} ice. Mid-IR extinction in the four IRAC bands has also been derived for four representative regions in the Coalsack Globule 2, which respectively exhibit strong ice absorption, moderate or weak ice absorption, and very weak or no ice absorption. The derived mid-IR extinction curves are all flat, with A{sub {lambda}}/A{sub K{sub s}} increasing with the decrease of the

  19. THE MID-INFRARED EXTINCTION LAW AND ITS VARIATION IN THE COALSACK NEBULA

    International Nuclear Information System (INIS)

    Wang Shu; Gao Jian; Jiang, B. W.; Chen Yang; Li Aigen

    2013-01-01

    In recent years, the wavelength dependence of interstellar extinction from the ultraviolet (UV) to the near- and mid-infrared (IR) has been studied extensively. Although it is well established that the UV/optical extinction law varies significantly among the different lines of sight, it is not clear how IR extinction varies among various environments. In this work, using the color-excess method and taking red giants as the extinction tracer, we determine interstellar extinction A λ in the four Spitzer/IRAC bands in [3.6], [4.5], [5.8], [8.0] μm (relative to A K s , extinction in the Two Micron All Sky Survey (2MASS) K s band at 2.16 μm) of the Coalsack nebula, a nearby starless dark cloud, based on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five individual regions across the nebula that span a wide variety of physical conditions ranging from diffuse and translucent to dense environments, as traced by the visual extinction, the Spitzer/MIPS 24 μm emission, and CO emission. We find that A λ /A K s , mid-IR extinction relative to A K s , decreases from diffuse to dense environments, which may be explained in terms of ineffective dust growth in dense regions. The mean extinction (relative to A K s ) is calculated for the four IRAC bands as well and exhibits a flat mid-IR extinction law consistent with previous determinations for other regions. Extinction in the IRAC 4.5 μm band is anomalously high, much higher than that of the other three IRAC bands, and cannot be explained in terms of CO and CO 2 ice. Mid-IR extinction in the four IRAC bands has also been derived for four representative regions in the Coalsack Globule 2, which respectively exhibit strong ice absorption, moderate or weak ice absorption, and very weak or no ice absorption. The derived mid-IR extinction curves are all flat, with A λ /A K s increasing with the decrease of the 3.1 μm H 2 O ice absorption optical depth τ ice

  20. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 (Canada); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Da Cunha, E. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn VIC 3122 (Australia); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Michałowski, M. J.; Oteo, I. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo C/ Calvo Sotelo, s/n, E-33007 Oviedo (Spain); Magdis, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Riechers, D. A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.