WorldWideScience

Sample records for spiral phase plate

  1. Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system

    Directory of Open Access Journals (Sweden)

    S. Ramachandran

    2008-09-01

    Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water – palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.

  2. Vortex beam production and contrast enhancement from a magnetic spiral phase plate

    International Nuclear Information System (INIS)

    Blackburn, A.M.; Loudon, J.C.

    2014-01-01

    Electron vortex beam probes offer the possibility of mapping magnetic moments with atomic resolution. In this work we consider using the stray magnetic field produced from a narrow ferromagnetic rod magnetised along its long axis to produce a vortex beam probe, as an alternative to the currently used holographic apertures or gratings. We show through numerical modelling, electron holography observations and direct imaging of the electron probe, that a long narrow ferromagnetic rod induces a phase shift in the wave-function of passing electrons that approximately describes a helix in the regions near its ends. Directing this rod towards the optical axis of a charged-particle beam probe forming system at a limiting aperture position, with the free-end sufficiently close to the axis, is shown to offer a point spread function composed of vortex modes, with evidence of this appearing in observations of the electron probe formed from inserting a micro-fabricated CoFe rod into the beam path of a 300 keV transmission electron microscope (TEM). If the rod is arranged to contain the magnetic flux of h/e, thus producing a maximum phase shift of 2π, it produces a simple spiral-like phase contrast transfer function for weak phase objects. In this arrangement the ferromagnetic rod can be used as a phase plate, positioned at the objective aperture position of a TEM, yielding enhanced image contrast which is simulated to be intermediate between comparable Zernike and Hilbert phase plates. Though this aspect of the phase plate performance is not demonstrated here, agreement between our observations and models for the probe formed from an example rod containing a magnetic flux of ∼2.35h/e, indicate this phase plate arrangement could be a simple means of enhancing contrast and gaining additional information from TEM imaged weak phase samples, while also offering the capability to produce vortex beam probes. However, steps still need to be taken to either remove or improve the

  3. Diffraction of plane waves by finite-radius spiral phase plates of integer and fractional topological charge.

    Science.gov (United States)

    Garcia-Gracia, Hipolito; Gutiérrez-Vega, Julio C

    2009-04-01

    A detailed analysis of the plane-wave diffraction by a finite-radius circular spiral phase plate (SPP) with integer and fractional topological charge and with variable transmission coefficients inside and outside of the plate edge is presented. We characterize the effect of varying the transmission coefficients and the parameters of the SPP on the propagated field. The vortex structure for integer and fractional phase step of the SPPs with and without phase apodization at the plate edge is also analyzed. The consideration of the interference between the light crossing the SPP and the light that undergoes no phase alteration at the aperture plane reveals new and interesting phenomena associated to this classical problem.

  4. Spiral phase plates with radial discontinuities for the generation of multiring orbital angular momentum beams: fabrication, characterization, and application

    Science.gov (United States)

    Ruffato, Gianluca; Massari, Michele; Carli, Marta; Romanato, Filippo

    2015-11-01

    A design of spiral phase plates for the generation of multiring beams carrying orbital angular momentum (OAM) is presented. Besides the usual helical profile, these phase plates present radial π-discontinuities in correspondence of the zeros of the associated Laguerre polynomials. Samples were fabricated by electron beam lithography over glass substrates coated with a polymethylmethacrylate resist layer. The optical response was analyzed and the purity of the generated beams was investigated in terms of Laguerre-Gaussian modes contributions. The far-field intensity pattern was compared with theoretical models and numerical simulations, while the expected phase features were confirmed by interferometric analysis with a Mach-Zehnder setup. The high quality of the output beams confirms the applicability of these phase plates for the generation of high-order OAM beams with nonzero radial index. An application consisting of the design of computer-generated holograms encoding information for light beams carrying phase singularities is presented and described. A numerical code based on an iterative Fourier transform algorithm has been developed for the computation of phase-only diffractive optical element for illumination under OAM beams. Numerical analysis and preliminary experimental results confirm the applicability of these devices as high-security optical elements for anticounterfeiting applications.

  5. Spiral phase plates for the generation of high-order Laguerre-Gaussian beams with non-zero radial index

    Science.gov (United States)

    Ruffato, G.; Carli, M.; Massari, M.; Romanato, F.

    2015-03-01

    The work of design, fabrication and characterization of spiral phase plates for the generation of Laguerre-Gaussian (LG) beams with non-null radial index is presented. Samples were fabricated by electron beam lithography on polymethylmethacrylate layers over glass substrates. The optical response of these phase optical elements was measured and the purity of the experimental beams was investigated in terms of Laguerre-Gaussian modes contributions. The farfield intensity pattern was compared with theoretical models and numerical simulations, while the expected phase features were confirmed by interferometric analyses. The high quality of the output beams confirms the applicability of these phase plates for the generation of high-order Laguerre-Gaussian beams. A novel application consisting in the design of computer-generated holograms encoding information for light beams carrying phase singularities is shown. A numerical code based on iterative Fourier transform algorithm has been developed for the computation of the phase pattern of phase-only diffractive optical element for illumination under LG beams. Numerical analysis and preliminary experimental results confirm the applicability of these devices as high-security optical elements.

  6. Fabrication techniques of X-ray spiral zone plates

    International Nuclear Information System (INIS)

    Gao Nan; Zhu Xiaoli; Li Hailiang; Xie Changqing

    2010-01-01

    The techniques to make X-ray spiral zone plates using electron beam and X-ray lithography were studied. A master mask was fabricated on polyimide membrane by E-beam lithography and micro-electroplating. Spiral zone plates were efficiently replicated by X-ray lithography and micro-electroplating. By combining the techniques, spiral zone plates at 1 keV were successfully fabricate. With an outermost zone width of the 200 nm, and the gold absorbers thickness of 700 nm, the high quality zone plates can be used for X-ray phase contrast microscopy.(authors)

  7. Three phase spiral liver Scanning

    International Nuclear Information System (INIS)

    Kanyanja, T.A.

    2006-01-01

    The ability to perform rapid back-to-back spiral acquisitions is an important recent technical advantage of spiral CT. this allows imaging of the upper abdomen (liver) during peak arterial enhancement (arterial phase) and during peak hepatic parenchymal enhancement (portal venous phase). Breatheld spiral CT has completely replaced dynamic incremental CT for evaluation of the liver. in selected patients with hyper vascular metastasis (hepatoma, neuroendocrine tumors, renal cell carcinoma, etc.) a biphasic examination is performed with one spiral acquisition obtained during the hepatic arterial phase and a second acquisition during the portal venous phase

  8. Heat transfer studies on spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Rajavel Rangasamy

    2008-01-01

    Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.

  9. Pancreatic adenocarcinoma : usefulness of two and three phase spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Ah; Kim, Hyung Soo; Park, Cheol Min; Cha, In Ho [Korea Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-10-01

    To evaluate the efficacy of each phases in two and three phase spiral CT in the detection of pancreatic adenocarcinoma. Two phase spiral CT images of 18 patients and three phase spiral CT images of 12 patients with pathologically-proven pancreatic ductal adenocarcinoma were retrospectively compared. Using a single spiral scan, images of early and delayed phases were obtained at 43 seconds and 2{approx}3minutes respectively initiating the after administration of 100-120cc of contrast material (2{approx}3cc/sec), Images of arterial, portal and delayed phases were also obtained at 25 and 60 seconds, and 3{approx}4minutes, respectively, by the use of a double spiral scan. CT scans were performed with 10mm collimation at 1:1 pitch table speed. Contrast between the tumor and adjacent pancreatic parenchyma were compared and graded and enhancement pattern of the tumor were analysed together. In 12 patients (66.7%), images of the early phase were superior to those of the delayed phase. images of the portal phase were superior to those of the arterial phase. Enhancement of tumor was seen in four patients;all tumors were less than 3cm in size. The early phase of two phase spiral CT is superior to the delayed phase and the portal phase of three phase spiral CT is superior to the arterial phase. Both arterial and portal phases are superior to the delayed phase.

  10. Heat transfer to immiscible liquid mixtures in a spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    S. Sathiyan

    2013-06-01

    Full Text Available This work presents new predictive correlations for heat transfer to immiscible liquid-liquid mixtures in a spiral plate heat exchanger. Liquid-liquid heat transfer studies were carried out in spiral plate heat exchangers for the water-octane, water-kerosene, and water-dodecane systems. For each composition of the mixture, the mass flow rate of the cold fluid was varied, keeping that of the hot fluid and the fluid inlet temperatures constant. Two-phase cold flow rates were in the laminar range, while the hot fluid flow was turbulent. Calculations of the LMTD (log mean temperature difference correction factor showed that the flow was countercurrent. Heat transfer coefficients of the two-phase liquids were found to be strongly dependent on the composition of the liquid mixture and exhibited abrupt transitions as a function of the compositions. Given the absence of predictive correlations in the literature that sufficiently capture this compositiondependence, new empirical correlations were developed using part of the experimental data, with the composition of the cold fluid as an explicit variable. Statistical analysis of the regression yielded satisfactory results. The correlations were tested against the rest of the experimental data and were found to predict heat transfer coefficients within ± 15%. These preliminary studies should be useful in designing compact exchangers for handling two-phase water-organics mixtures.

  11. Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan

    Science.gov (United States)

    Smith, Andrew B.; Zamora, Samuel

    2013-01-01

    Echinoderms are unique among animal phyla in having a pentaradial body plan, and their fossil record provides critical data on how this novel organization came about by revealing intermediate stages. Here, we report a spiral-plated animal from the early Cambrian of Morocco that is the most primitive pentaradial echinoderm yet discovered. It is intermediate between helicoplacoids (a bizarre group of spiral-bodied echinoderms) and crown-group pentaradiate echinoderms. By filling an important gap, this fossil reveals the common pattern that underpins the body plans of the two major echinoderm clades (pelmatozoans and eleutherozoans), showing that differential growth played an important role in their divergence. It also adds to the striking disparity of novel body plans appearing in the Cambrian explosion. PMID:23804624

  12. Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan.

    Science.gov (United States)

    Smith, Andrew B; Zamora, Samuel

    2013-08-22

    Echinoderms are unique among animal phyla in having a pentaradial body plan, and their fossil record provides critical data on how this novel organization came about by revealing intermediate stages. Here, we report a spiral-plated animal from the early Cambrian of Morocco that is the most primitive pentaradial echinoderm yet discovered. It is intermediate between helicoplacoids (a bizarre group of spiral-bodied echinoderms) and crown-group pentaradiate echinoderms. By filling an important gap, this fossil reveals the common pattern that underpins the body plans of the two major echinoderm clades (pelmatozoans and eleutherozoans), showing that differential growth played an important role in their divergence. It also adds to the striking disparity of novel body plans appearing in the Cambrian explosion.

  13. Optical image encryption in Fresnel domain using spiral phase transform

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta

    2017-09-01

    In this study, we propose a new nonlinear optical image encryption technique using spiral phase transform (SPT). First, the primary image is phase encoded and multiplied with a random amplitude mask (RAM), and using power function, the product is then powered to m. This powered output is Fresnel propagated with distance z 1 and then modulated with a random phase mask (RPM). The modulated image is further Fresnel propagated with distance z 2. Similarly, a security image is also modulated with another RAM and then Fresnel propagated with distance z 3. Next, the two modulated images after Fresnel propagations, are interfered and further Fresnel propagated with distance z 4 to get a complex image. Finally, this complex image is SPT with particular spiral phase function (SPF), to get the final encrypted image for transmission. In the proposed technique, the security keys are Fresnel propagation distances, the security image, RPM, RAMs, power order, m, and order of SPF, q. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise and brutal force attacks.

  14. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Igor V. [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kuzmin, Dmitry A., E-mail: kuzminda@csu.ru [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G. [Kotelnikov Institute of Radio-engineering and Electronics of RAS, Mokhovaya Street 11-7, Moscow 125009 (Russian Federation)

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii–Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii–Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications. - Highlights: • Magnetostrictive ultrasound generation by spiral magnets at phase transition (PT) is studied. • Spiral magnets during PT may generate transverse sound with wavelength equal to spiral period. • Amplitude of the sound is strictly depends on the phase transition speed. • Microwave-to-sound transformation in the vicinity of PT is investigated as well.

  15. Acute cholecystitis: two-phase spiral CT finding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eung Young; Yoon, Myung Hwan; Yang, Dal Mo; Chun Seok; Bae, Jun Gi; Kim, Hak Soo; Kim, Hyung Sik [Chungang Ghil Hospital, Incheon (Korea, Republic of)

    1998-07-01

    To describe the two-phase spiral CT findings of acute cholecystitis. Materials and Methods : CT scans of nine patients with surgically-proven acute cholecystitis were retrospectively reviewed for wall thickening, enhancement pattern of the wall, attenuation of the liver adjacent to the gallbladder, gallstones,gallbladder distension, gas collection within the gallbladder, pericholecystic fluid and infiltration of pericholecystic fat. Results : In all cases, wall thickening of the gallbladder was seen, though this was more distinct on delayed images, Using high-low-high attenuation, one layer was seen in five cases, nd three layers in four. On arterial images, eight cases showed transient focal increased attenuation of the liver adjacent to the gall bladder;four of these showed curvilinear attenuation and four showed subsegmental attenuation. One case showed curvilinear decreased attenuation between increased attenuation of the liver and the gallbladder, and during surgery, severe adhesion between the liver and gallbladder was confirmed. Additional CT findings were infiltration of pericholecystic fat (n=9), gallstones (n=7), gallbladder distension (n=6), pericholecystic fluid(n=3), and gas collection within the gallbladder (n=2). Conclusion : In patients with acute cholecystitis,two-phase spiral CT revealed wall thickening in one or three layers ; on delayed images this was more distinct. In many cases, arterial images showed transient focal increased attenuation of the liver adjacent to the gallbladder.

  16. License plate recognition (phase B).

    Science.gov (United States)

    2010-06-01

    License Plate Recognition (LPR) technology has been used for off-line automobile enforcement purposes. The technology has seen mixed success with correct reading rate as high as 60 to 80% depending on the specific application and environment. This li...

  17. Ponderomotive phase plate for transmission electron microscopes

    Science.gov (United States)

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  18. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  19. Security enhancement of color image cryptosystem by optical interference principle and spiral phase encoding.

    Science.gov (United States)

    Abuturab, Muhammad Rafiq

    2013-03-10

    A color information cryptosystem based on optical interference principle and spiral phase encoding is proposed. A spiral phase mask (SPM) is used instead of a conventional random phase mask because it contains multiple storing keys in a single phase mask. The color image is decomposed into RGB channels. The decomposed three RGB channels can avoid the interference of crosstalks efficiently. Each channel is encoded into an SPM and analytically generates two spiral phase-only masks (SPOMs). The two SPOMs are then phase-truncated to get two encrypted images and amplitude-truncated to produce two asymmetric phase keys. The two SPOMs and the two asymmetric phase keys can be allocated to four different authorized users. The order, the wavelength, the focal length, and the radius are construction parameters of the SPM (or third SPOM) that can also be assigned to the four other different authorized users. The proposed technique can be used for a highly secure verification system, so an unauthorized user cannot retrieve the original image if only one key out of eight keys is missing. The proposed method does not require iterative encoding or postprocessing of SPOMs to overcome inherent silhouette problems, and its optical setup alleviates stringent alignment of SOPMs. The validity and feasibility of the proposed method are supported by numerical simulation results.

  20. Convenient contrast enhancement by a hole-free phase plate

    DEFF Research Database (Denmark)

    Malac, Marek; Beleggia, Marco; Kawasaki, Masahiro

    2012-01-01

    Decrease of the irradiation dose needed to obtain a desired signal-to-noise ratio can be achieved by Zernike phase-plate imaging. Here we present results on a hole-free phase plate (HFPP) design that uses the incident electron beam to define the center of the plate, thereby eliminating the need f...

  1. Differential diagnosis of gallbladder wall thickening by two phase spiral CT : gallbladder carcinoma versus cholicystitis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun; Cho, Soon Gu; Kim, Mi Young; Woo, Je Hong; Shin, Seok Hwan; Lee, Kykung Hee; Suh, Chang Hae [Inha Univ. College of Medicine, Inchon (Korea, Republic of)

    2001-04-01

    To determine whether an analysis of two-phase CT features provides a sound basis for differential diagnosis between gallbladder carcinoma and cholecystitis. We reviewed a total of 89 cases of gallbladder carcinoma (n=35) or cholecystitis (n=54) in patients who had undergone two-phase spiral CT. For this, a GE Highspeed Advantage scanner (GE Medical Systems, Milwaukee, U . S . A .) was used. A total of 120ml of contrast material was injected at a rate of 2-3 ml/sec. Arterial and venous phase scans were obtained 35 and 65 seconds, respectively, after the initiation of contrast infusion. All cases of gallbladder carcinoma and 468 of cholecystitis (of a total of 482) were confirmed by histopathology. We reviewed the two phase spiral CT features, analyzing and assessing thickness of the lesion, the enhancement pattern seen during the arterial and the venous phase, invasion of liver, pericholecystic fat infiltration, dilatation of intrahepatic ducts, and other associated findings. Mean wall thickness was 12.6 mm in the gallbladder carcinoma group, and 7.2 mm in the cholecystitis group. The common enhancement patterns seen in gallbladder carcinoma were 1) a highly enhanced thick inner wall layer during the arterial phase which became iso attenuated with adjacent liver parenchyma during the venous phase (16/35; 45.7%) and 2) highly enhanced thick inner wall layer during both the arterial and venous phase (8/35; 22.9%). The most common enhancement pattern in cholecystitis cases was an iso attenuated thin inner wall layer during both the arterial and the venous phase (44/54; 81.5%). Findings of intrahepatic mass formation by direct invasion (9/35), lymph node enlargement (12/35), and metastasis to other organs (7/35) occurred only in cases of gallbladder carcinoma (18/35, 51.4%) than of cholecystitis (10/54, 18.5%). The incidence of pericholecystic fat infiltration and fluid collection was not significantly different between the gallbladder cancer and cholecystitis groups

  2. High precision refractometry based on Fresnel diffraction from phase plates.

    Science.gov (United States)

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  3. A nanocrystalline Hilbert phase-plate for phase-contrast transmission electron microscopy.

    Science.gov (United States)

    Dries, M; Hettler, S; Gamm, B; Müller, E; Send, W; Müller, K; Rosenauer, A; Gerthsen, D

    2014-04-01

    Thin-film-based phase-plates are applied to enhance the contrast of weak-phase objects in transmission electron microscopy. In this work, metal-film-based phase-plates are considered to reduce contamination and electrostatic charging, which up to now limit the application of phase-plates fabricated from amorphous C-films. Their crystalline structure requires a model for the simulation of the effect of crystallinity on the phase-plate properties and the image formation process. The model established in this work is verified by experimental results obtained by the application of a textured nanocrystalline Au-film-based Hilbert phase-plate. Based on the model, it is shown that monocrystalline and textured nanocrystalline phase-plate microstructures of appropriate thickness and crystalline orientation can be a promising approach for phase-contrast transmission electron microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Progressive phase trends in plates with embedded acoustic black holes.

    Science.gov (United States)

    Conlon, Stephen C; Feurtado, Philip A

    2018-02-01

    Acoustic black holes (ABHs) have been explored and demonstrated to be effective passive treatments for broadband noise and vibration control. Performance metrics for assessing damping concepts are often focused on maximizing structural damping loss factors. Optimally performing damping treatments can reduce the resonant response of a driven system well below the direct field response. This results in a finite structure whose vibration input-output response follows that of an infinite structure. The vibration mobility transfer functions between locations on a structure can be used to assess the structure's vibration response phase, and compare its phase response characteristics to those of idealized systems. This work experimentally explores the phase accumulation in finite plates, with and without embedded grids of ABHs. The measured results are compared and contrasted with theoretical results for finite and infinite uniform plates. Accumulated phase characteristics, their spatial dependence and limits, are examined for the plates and compared to theoretical estimates. The phase accumulation results show that the embedded acoustic black hole treatments can significantly enhance the damping of the plates to the point that their phase accumulation follows that of an infinite plate.

  5. Magnetic Imaging with a Novel Hole-Free Phase Plate

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2014-01-01

    One of the main interests in phase plate imaging is motivated by a decrease in irradiation dose needed to obtain desired signal to noise ratio, a result of improved contrast transfer [1]. The decrease in irradiation improves the imaging of biological materials [2]. Here we demonstrate that phase ...

  6. A dynamic approach to identifying desired physiological phases for cardiac imaging using multislice spiral CT

    International Nuclear Information System (INIS)

    Vembar, M.; Garcia, M.J.; Heuscher, D.J.; Haberl, R.; Matthews, D.; Boehme, G.E.; Greenberg, N.L.

    2003-01-01

    In this investigation, we describe a quantitative technique to measure coronary motion, which can be correlated with cardiac image quality using multislice computed tomography (MSCT) scanners. MSCT scanners, with subsecond scanning, thin-slice imaging (sub-millimeter) and volume scanning capabilities have paved the way for new clinical applications like noninvasive cardiac imaging. ECG-gated spiral CT using MSCT scanners has made it possible to scan the entire heart in a single breath-hold. The continuous data acquisition makes it possible for multiple phases to be reconstructed from a cardiac cycle. We measure the position and three-dimensional velocities of well-known landmarks along the proximal, mid, and distal regions of the major coronary arteries [left main (LM), left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX)] during the cardiac cycle. A dynamic model (called the 'delay algorithm') is described which enables us to capture the same physiological phase or 'state' of the anatomy during the cardiac cycle as the instantaneous heart rate varies during the spiral scan. The coronary arteries are reconstructed from data obtained during different physiological cardiac phases and we correlate image quality of different parts of the coronary anatomy with phases at which minimum velocities occur. The motion characteristics varied depending on the artery, with the highest motion being observed for RCA. The phases with the lowest mean velocities provided the best visualization. Though more than one phase of relative minimum velocity was observed for each artery, the most consistent image quality was observed during mid-diastole ('diastasis') of the cardiac cycle and was judged to be superior to other reconstructed phases in 92% of the cases. In the process, we also investigated correlation between cardiac arterial states and other measures of motion, such as the left ventricular volume during a cardiac cycle, which earlier has been

  7. Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.

    2018-01-01

    In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.

  8. Dominant factors controlling the efficiency of two-phase flow cleaning in spiral-wound membrane elements

    NARCIS (Netherlands)

    Wibisono, Y.; Ahmad, F.; Cornelissen, Emile; Cornelissen, E.R.; Kemperman, Antonius J.B.; Nijmeijer, Dorothea C.

    2015-01-01

    Two-phase flow cleaning has been successfully applied to control fouling in spiral wound membrane elements. This study focuses on its experimental optimization using a Taguchi Design of Experiment method (L-25 orthogonal arrays) to elucidate the influence of different factors and to reveal the

  9. Birefringent phase demodulator: application to wave plate characterization.

    Science.gov (United States)

    Veiras, F E; Riobó, L M; Matteo, C L; Perez, L I; Garea, M T

    2015-03-20

    The scope of this work is to present a phase demodulator that enables the recovery of temporal phase information contained in the phase difference between two signals with different polarizations. This demodulator is a polarization interferometer that may consist only of a uniaxial crystal slab and a polarizer sheet. The phase shift between two orthogonal components of the electric field is translated into space by means of birefringent crystals, which act as demodulators or phase analyzers with great robustness. The experimental scheme utilized is based on a simple conoscopic interference setup. Each portion of the space in which the interference pattern is projected contains not only the unknown temporal phase we want to recover, but also a phase shift due to the uniaxial crystal itself. The underlying idea is developing simultaneous phase shifting with uniaxial crystals. Thus, different phase recovery techniques can be applied in order to maximize their ability to track high-speed signals. Depending on the characteristics of the fringe pattern, it will permit phase recovery via different classical procedures. In order to prove the demodulator under different experimental and signal processing schemes, we employed it for wave plate characterization. The results obtained not only allow some wave plate features such as axes determination and retardance to be characterized, but also prove the working principle and capabilities of the demodulator.

  10. Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition

    Science.gov (United States)

    Rafiq Abuturab, Muhammad

    2018-01-01

    A new asymmetric multiple information cryptosystem based on chaotic spiral phase mask (CSPM) and random spectrum decomposition is put forwarded. In the proposed system, each channel of secret color image is first modulated with a CSPM and then gyrator transformed. The gyrator spectrum is randomly divided into two complex-valued masks. The same procedure is applied to multiple secret images to get their corresponding first and second complex-valued masks. Finally, first and second masks of each channel are independently added to produce first and second complex ciphertexts, respectively. The main feature of the proposed method is the different secret images encrypted by different CSPMs using different parameters as the sensitive decryption/private keys which are completely unknown to unauthorized users. Consequently, the proposed system would be resistant to potential attacks. Moreover, the CSPMs are easier to position in the decoding process owing to their own centering mark on axis focal ring. The retrieved secret images are free from cross-talk noise effects. The decryption process can be implemented by optical experiment. Numerical simulation results demonstrate the viability and security of the proposed method.

  11. Choice ofoptimal phase for liver angiography and multi-phase scanning with multi-slice spiral CT

    International Nuclear Information System (INIS)

    Fang Hong; Song Yunlong; Bi Yongmin; Wang Dong; Shi Huiping; Zhang Wanshi; Zhu Hongxian; Yang Hua; Ji Xudong; Fan Hongxia

    2008-01-01

    Objective: To evaluate the efficacy of test bolus technique with multi-slice spiral CT (MSCT) for determining the optimal scan delay time in CT Hepatic artery (HA)-portal vein (PV) angiography and multi-phase scanning. Methods: MSCT liver angiography and multi-phase scanning were performed in 187 patients divided randomly into two groups. In group A (n=59), the scan delay time was set according to the subjective experiences of operators; in group B (n=128), the scan delay time was determined by test bolus technique. Abdominal aorta and superior mesenteric, vein were selected as target blood vessels, and 50 HU was set as enhancement threshold value. 20 ml contrast agent was injected intravenously and time-density curve of target blood vessels were obtained, then HA-PV scanning delay time were calculated respectively. The quality of CTA images obtained by using these 2 methods were compared and statistically analysed using Chi-square criterion. Results: For hepatic artery phase, the images of group A are: excellent in 34 (58%), good in 17 (29%), and poor in 8 (13%), while those of group B are excellent in 128(100%), good in 0(0%), and poor in 0(0%). For portal vein phase, the images of group A are: excellent in 23 (39%), good in 27 (46%), and poor in 9 (15%), while those of group B are excellent in 96 (75%), good in 28 (22%), and poor in 4 (3%) respectively. There was statistically significant difference between the ratios of image quality in group A and group B (χ 2 =14.97, 9.18, P< 0.05). Conclusion: Accurate scan delay time was best determined by using test bolus technique, which can improve the image quality of liver angiography and multi-phase scanning. (authors)

  12. Volta potential phase plate for in-focus phase contrast transmission electron microscopy.

    Science.gov (United States)

    Danev, Radostin; Buijsse, Bart; Khoshouei, Maryam; Plitzko, Jürgen M; Baumeister, Wolfgang

    2014-11-04

    We describe a phase plate for transmission electron microscopy taking advantage of a hitherto-unknown phenomenon, namely a beam-induced Volta potential on the surface of a continuous thin film. The Volta potential is negative, indicating that it is not caused by beam-induced electrostatic charging. The film must be heated to ∼ 200 °C to prevent contamination and enable the Volta potential effect. The phase shift is created "on the fly" by the central diffraction beam eliminating the need for precise phase plate alignment. Images acquired with the Volta phase plate (VPP) show higher contrast and unlike Zernike phase plate images no fringing artifacts. Following installation into the microscope, the VPP has an initial settling time of about a week after which the phase shift behavior becomes stable. The VPP has a long service life and has been used for more than 6 mo without noticeable degradation in performance. The mechanism underlying the VPP is the same as the one responsible for the degradation over time of the performance of thin-film Zernike phase plates, but in the VPP it is used in a constructive way. The exact physics and/or chemistry behind the process causing the Volta potential are not fully understood, but experimental evidence suggests that radiation-induced surface modification combined with a chemical equilibrium between the surface and residual gases in the vacuum play an important role.

  13. Femtosecond laser filament array generated with step phase plate in air.

    Science.gov (United States)

    Gao, Hui; Chu, Wei; Yu, Guoliang; Zeng, Bin; Zhao, Jiayu; Wang, Zhi; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan

    2013-02-25

    Femtosecond laser filament arrays are generated in air by using three kinds of step phase plates with π phase lag, namely, the semicircular phase plate (SCPP), the quarter-circle phase plate (QCPP) and eight-octant phase plate (EOPP). Experimental results and simulations show that filament arrays consisting of two, four and eight filaments, respectively, are produced by three phase plates. The transverse patterns of the filament arrays are determined by the geometrical shapes of the phase plates. At the same time, the separation distances are found to vary with the focal lengths of the used lenses. We further propose that by using an axicon, filament array in the form of ring shape could be realized while the lengths of the filaments could be significantly elongated at the same time. Our study has suggested a realistic method to generate filament array by the step phase plate with π phase lag.

  14. Spiral Countercurrent Chromatography

    Science.gov (United States)

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  15. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    Directory of Open Access Journals (Sweden)

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (Bz>25 nT with a strong duskward component (By>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  16. Logarithmic Spiral

    Indian Academy of Sciences (India)

    anti-clockwise direction and we get a right-handed spiral. (Figure 2). We know that the derivative of eX is also eX. Various properties of logarithmic spiral depend on this property of eX. Properties of Logarithmic Spiral. 1. The most important property of a logarithmic spiral is that r (i.e. the distance from the origin) increases.

  17. Phase zone plate based scanning x-ray microscope

    International Nuclear Information System (INIS)

    Legnini, D.; Yun, W.; Lai, B.; Chrzas, J.

    1992-01-01

    A scanning microscope capable of investigating materials in the x-ray region from 5-25 keV with a spatial resolution on the order of 1 μm has been constructed and experimentally demonstrated. A phase zone plate is used as a focusing element concentrating photons at a series of diffraction orders spaced along the optical axis. A sample is positioned at one of these focal planes and raster scanned across the small focal spot for imaging or micro-analysis. Use and characterization of the microscope requires precise alignment of the zone plate and its optical axis along the x-ray beam direction. Also needed are accurate, reproducible positioning of an order selection aperture and sample. Operation at different focal orders involves large translations of sample and aperture along the optical axis as well as adjustment of the aperture to sample distance. A motion control, data acquisition, and display system has been developed to meet these requirements of sample and detector positioning. Design considerations and results obtained from use of the microscope for imaging at first through fourth order focal planes are discussed

  18. Development of background reduced Fresnel phase zone plate

    International Nuclear Information System (INIS)

    Tamari, Yohei; Azechi, Hiroshi

    2004-01-01

    In study of hot and dense plasma, a high spatial resolution (a few microns) x-ray imaging is very important to observe these plasmas. The Fresnel phase zone plate (FPZP) consists of alternately material and transparent circular annuli placed concentrically, which image x rays using diffraction x rays from all annuli. FPZP have imaged 4.7-4.77 keV x rays with 2.2 μm spatial resolution. However FPZP has a problem that background level is comparable to signal level. In subtraction of background, the error of 10% is caused. For the accurate background subtraction, we designed new FPZP, which consist of three β layers of a transparent zone and two material zones. The new design FPZP parameters (thickness of material zones, each zone width) have been optimized, and in that optimum design signal-to-background ratio is 4 times better than conventional two layers FPZP

  19. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  20. Spiral symmetry

    CERN Document Server

    Hargittai, Istvan

    1992-01-01

    From the tiny twisted biological molecules to the gargantuan curling arms of many galaxies, the physical world contains a startling repetition of spiral patterns. Today, researchers have a keen interest in identifying, measuring, and defining these patterns in scientific terms. Spirals play an important role in the growth processes of many biological forms and organisms. Also, through time, humans have imitated spiral motifs in their art forms, and invented new and unusual spirals which have no counterparts in the natural world. Therefore, one goal of this multiauthored book is to stress the c

  1. Experimental investigations on transient single phase flow through perforated plates

    International Nuclear Information System (INIS)

    Casadei, F.

    1983-01-01

    The transient flow of the coolant through the perforated dip-plate during a HCDA in a LMFBR was simulated in a one-dimensional experimental model. Several experiments with water as fluid and with various perforation ratios of the dip-plate and different initial heights of the fluid head over the dip-plate were run. The pressure drop across the dip-plate and the forces acting on the dip-plate and on the upper plug of the reactor vessel were measured in a wide range of the Reynolds and Strouhal numbers. The flow pattern downstreams the perforated plate was filmed with high-speed cameras. The resistance coefficients for the transient flow of the coolant through the perforated plate were obtained as a function of the acceleration. The forces acting on the upper plug and their time integral were compared with those acting on the dip-plate. Finally, using high-speed film pictures the formation of fluid jets downstream the dip-plate was investigated. (orig.)

  2. Characterization of liver lesions with mangafodipir trisodium-enhanced MR imaging: multicenter study comparing MR and dual-phase spiral CT

    NARCIS (Netherlands)

    M. Oudkerk (Matthijs); C.G. Torres; B. Song; M. Konig; J. Grimm; J. Fernandez-Cuadrado; B. op de Beeck; M. Marquardt; P. van Dijk (Pieter); J.C. de Groot (Jan Cees)

    2002-01-01

    textabstractPURPOSE: To evaluate whether mangafodipir trisodium (Mn-DPDP)-enhanced magnetic resonance (MR) imaging surpasses dual-phase spiral computed tomography (CT) in differentiating focal liver lesions. MATERIALS AND METHODS: One hundred forty-five patients who had or were

  3. Accelerated one-phase flow through perforated plates

    International Nuclear Information System (INIS)

    Casadei, F.; Dalle Donne, M.

    1984-01-01

    The coolant flow across the perforated dip-plate during a hypothetical core disruptive accident in a liquid-metal fast breeder reactor was simulated in a one-dimensional model. Several experiments with water as fluid and with various perforation ratios of the dip-plate and different initial heights of the fluid head over the dip-plate were run. The pressure drop across the dip-plate and the forces acting on the dipplate and on the upper plug of the reactor vessel were measured in a wide range of Reynolds and Strouhal numbers and of an acceleration parameter. The flow pattern downstream from the perforated plate was filmed with a high-speed camera. The resistance coefficients for the transient flow of the coolant through the perforated plate were obtained as a function of the acceleration. The forces acting on the upper plug and their time integral were compared with those acting on the dip-plate. Finally, using highspeed film pictures, the formation of fluid jets downstream from the dip-plate was investigated

  4. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  5. Background light reduction method with a double phase conjugate mirror and a phase plate for optical inter-satellite communications

    Science.gov (United States)

    Nishimaki, Kaori; Okamoto, Atsushi; Shibukawa, Atsushi; Tomita, Akihisa; Takayama, Yoshihisa; Bunsen, Masatoshi

    2014-08-01

    In optical intersatellite communication, the background light consisting mainly of sunlight decrease transmission rate with increasing bit error. A spatial filtering system using a double-phase-conjugate mirror (DPCM) and a phase plate is proposed to block the background light, which cannot be filtered out by using wavelength filters, polarization filters, or dousers. In this system, the effect of wavefront distortion caused by the phase plate and the compensation effect of the distortion by phase conjugate light from the DPCM are effectively combined for spatially separating signal light and background light. We demonstrated the reduction of the background light by the proposed system and optimized the phase plate for maximizing this reduction effect. As a result, it was clarified that the transmission rate can be drastically improved up to 11-fold.

  6. Enhanced phase contrast transfer using ptychography combined with a pre-specimen phase plate in a scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Ercius, Peter [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Ophus, Colin, E-mail: clophus@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    The ability to image light elements in both crystalline and noncrystalline materials at near atomic resolution with an enhanced contrast is highly advantageous to understand the structure and properties of a wide range of beam sensitive materials including biological specimens and molecular hetero-structures. This requires the imaging system to have an efficient phase contrast transfer at both low and high spatial frequencies. In this work we introduce a new phase contrast imaging method in a scanning transmission electron microscope (STEM) using a pre-specimen phase plate in the probe forming aperture, combined with a fast pixelated detector to record diffraction patterns at every probe position, and phase reconstruction using ptychography. The phase plate significantly enhances the contrast transfer of low spatial frequency information, and ptychography maximizes the extraction of the phase information at all spatial frequencies. In addition, the STEM probe with the presence of the phase plate retains its atomic resolution, allowing simultaneous incoherent Z-contrast imaging to be obtained along with the ptychographic phase image. An experimental image of Au nanoparticles on a carbon support shows high contrast for both materials. Multislice image simulations of a DNA molecule shows the capability of imaging soft matter at low dose conditions, which implies potential applications of low dose imaging of a wide range of beam sensitive materials. - Highlights: • This work demonstrates a phase contrast imaging method by combining a pre-specimen phase plate with ptychogrpahy. • This method is shown to have a high phase contrast transfer efficiency at both low and high spatial frequencies. • Unlike CTEM which uses a heavy defocus to gain contrast, the phase plate gives a linear phase contrast at zero defocus aberrations. • Image simulations of DNA suggest this method is highly attractive for imaging beam sensitive materials at a low dose.

  7. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...... of academic teaching and lecturing into account....

  8. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications.

    Science.gov (United States)

    Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek

    2017-05-01

    We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Phase zone plates as condensers for the Gottingen scanning x-ray microscope

    International Nuclear Information System (INIS)

    Hilkenbach, R.; Thieme

    1987-01-01

    With the Gottingen scanning x-ray microscope the synchrotron source is image by x-ray optics into a monochromatic small scan spot, through which a specimen can be moved. Hereby one part of the optics, the condenser zone plate and a pinhole, works as a linear monochromator in the wavelength region of λ = 2.36 nm to λ = 4.5 nm. The efficiency of such a condenser should be as high as possible to minimize the loss of radiation. Phase zone plates have a four times higher efficiency in the first order of diffraction than amplitude zone plates. Two condenser zone plates, KZP4 and KZP5, have been constructed so that they are well suited for the use in the scanning microscope. These zone plates have been made holographically by superposing two wavefronts of laser light in an specific designed optical arrangement and exposing the zone plate structure into a photoresist. Using reactive ion etching (RIE) the structure has been transformed into Germanium. The thickness of the zone plate has been chosen to show at λ = 2.36 nm a phase effect. The efficiency has been measured at the Berliner Elektronenspeircherring Gesellschaft fur Synchrotronstrahlung m.b.H., Berlin

  10. Fatigue and phase transition in an oscillating plate

    Czech Academy of Sciences Publication Activity Database

    Bosia, S.; Eleuteri, M.; Kopfová, J.; Krejčí, Pavel

    2014-01-01

    Roč. 435, February (2014), s. 1-3 ISSN 0921-4526 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : fatigue * hysteresis * phase transitions Subject RIV: BA - General Mathematics Impact factor: 1.319, year: 2014 http://www.sciencedirect.com/science/article/pii/S0921452613006042

  11. An imaging method of wavefront coding system based on phase plate rotation

    Science.gov (United States)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  12. Comparative study of Nusselt number for a single phase fluid flow using plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Shanmugam Rajasekaran

    2016-01-01

    Full Text Available In this study, the plate heat exchangers are used for various applications in the industries for heat exchange process such as heating, cooling and condensation. The performance of plate heat exchanger depends on many factors such as flow arrangements, plate design, chevron angle, enlargement factor, type of fluid used, etc. The various Nusselt number correlations are developed by considering that the water as a working fluid. The main objective of the present work is to design the experimental set-up for a single phase fluid flow using plate heat exchanger and studied the heat transfer performance. The experiments are carried out for various Reynolds number between 500 and 2200, the heat transfer coefficients are estimated. Based on the experimental results the new correlation is developed for Nusselt number and compared with an existing correlation.

  13. Stratified steady and unsteady two-phase flows between two parallel plates

    International Nuclear Information System (INIS)

    Sim, Woo Gun

    2006-01-01

    To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated

  14. Magnetic imaging with a Zernike-type phase plate in a transmission electron microscope

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2013-01-01

    We demonstrate the use of a hole-free phase plate (HFPP) for magnetic imaging in transmission electron microscopy by mapping the domain structure in PrDyFeB samples. The HFPP, a Zernike-like imaging method, allows for detecting magnetic signals in-focus to correlate the sample crystal structure a...

  15. The spiral

    DEFF Research Database (Denmark)

    Bibace, Roger; Kharlamov, Nikita

    2013-01-01

    ’s work with Bernard Kaplan on symbol formation is a primer on this idea. This paper examines the idea of spirality and develops the notion of dynamic coexistence that can clarify the issue of directionality of development; that is, what is the general trajectory or ground plan that development assumes....... Directionality is discussed in terms of the organism-in-environment unfolding over time as the unit of developmental analysis. Thinking on this issue has proceeded from the nature–nurture debates, to recognition of the interaction of external and internal processes, to transactions between the organism...

  16. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy

    DEFF Research Database (Denmark)

    Hettler, Simon; Kano, Emi; Dries, Manuel

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition...... as simulations of the electrostatic potential distribution. The described ESD-based model explains previous experimental findings and is of general interest to any phase-related technique in a transmission electron microscope....

  17. Angiogenesis in hepatocellular carcinoma: correlation of single-level dynamic spiral CT scans in arterial phase and expression of α-smooth muscle actin

    International Nuclear Information System (INIS)

    Liu Yan; Min Pengqiu; Chen Weixia; Zhang Lin

    2005-01-01

    Objective: To investigate the correlation between the single-level dynamic spiral CT scans (SDCT) of hepatocellular carcinoma (HCC) in arterial phase (AP) and the immunohistochemistry expression of α-smooth muscle actin (ASMA). Methods: 33 cases of suspected HCC undergoing spiral CT plain scan of the whole liver, the single-level dynamic scan of the target level of lesion in AP and finally the whole liver scan in portal-venous phase before operations and proved after were included into the study. After the SDCT, a time-density curve (T-DC) was drawn according to the density change of the region of interest (ROI) of the tumor parenchyma with some parameters calculated, and signs of enhancement evaluated. Slices of post-operation specimen underwent hemotoxylin-eosin (HE) and ASMA immunohistochemistry staining. Then the slices were evaluated with emphases on the ASMA-positive neovasculatures in the parenchyma and mesenchyma of carcinomas, and the average count in a low microscopic field (x 100) was recorded (5 low microscopic field were observed and then an average was calculated.). Finally the immunohistochemistry and histologic results were correlated with image findings. Results: According to the PV of the tumor parenchyma, T-DC was divided into type I, II and III in which the criteria were PV>80, 40 HU< PV< 80 HU and PV<40 HU respectively. In the 33 cases, type I, II and III of T-DC were 3, 17 and 13 cases with PV of 103.30, 57.65 and 33.55 HU respectively. In ASMA immunohistochemistry study, ASMA-positive neovasculatures were devided into type A with a thick wall and B with a thin wall. The mean count of neovasculatures of tumor parenchyma in type I, II and III of T-DC were 10, 4.59 and 1 respectively. Statistically, different types of T-DC were significantly correlated with the count of neovasculatures in the parenchyma of carcinomas (r=-0.567, P<0.01). Homogeneous and inhomogeneous enhancement of carcinomas during SDCT in AP were correlated with the

  18. Spiral 2 workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The accelerator and experimental facilities at GANIL will be transformed over the next 5-10 years. The centerpiece of the additions to the accelerator complex will be Spiral-2. This is the first phase of a new radioactive beam facility based on the ISOL principle. The main aim of Spiral-2 will be to produce intense, high quality beams of neutron-rich nuclei created in neutron-induced fission of heavy elements and accelerated by the existing CIME cyclotron. The principal aims of this workshop will be a) to publicize the new facilities, b) to discuss and define the science which might be carried out with them, c) to discuss the instrumentation and infrastructure required to exploit the new facilities and d) to help form collaborations of scientists wishing to design and construct the equipment needed to undertake the science programme. This document gathers most of the slides presented in the workshop.

  19. Ferrofluid spiral formations and continuous-to-discrete phase transitions under simultaneously applied DC axial and AC in-plane rotating magnetic fields

    International Nuclear Information System (INIS)

    Rhodes, Scott; Perez, Juan; Elborai, Shihab; Lee, Se-Hee; Zahn, Markus

    2005-01-01

    New flows and instabilities are presented for a ferrofluid drop contained in glass Hele-Shaw cells with simultaneously applied in-plane clockwise rotating and DC axial uniform magnetic fields. When a ferrofluid drop is stressed by a uniform DC axial magnetic field, up to ∼250 G in 0.9-1.4 mm gap Hele-Shaw cells, the drop forms a labyrinth pattern. With subsequent application of an in-plane uniform rotating magnetic field, up to ∼100 G rms at frequency 20-40 Hz, smooth spirals form from viscous shear due to ferrofluid flow. If the rotating magnetic field is applied first, the drop is held together without a labyrinth. Gradual increase of the DC axial magnetic field, to a critical magnetic field value, results in an abrupt phase transformation from a large drop to many small discrete droplets. A preliminary minimum magnetization and surface energy analysis is presented to model the phase transformation

  20. [Healing of spiral fractures in the sheep tibia comparing different methods--osteosynthesis with internal fixation, interlocking nailing and dynamic compression plate].

    Science.gov (United States)

    Seibold, R; Schlegel, U; Kessler, S B; Cordey, J; Perren, S M; Schweiberer, L

    1995-12-01

    The healing process of spiral fractures of the sheep tibia was investigated in an experiment with simulated clinical conditions. The effects of conventional internal fixation techniques with the DCP and the intramedullary nail are compared with those of internal fixation with the spine fixator. The internal fixation techniques are described in terms of their bending stiffness when mounted on the fractured bone. The in vivo investigation was documented clinically and radiographically and the post mortem specimens were evaluated histologically. The bending stiffness of the healed bone was assessed in relation to the contralateral side. After application of the DCP, primary healing took place and extensive transcortical necrosis occurred in the implant bed. Intramedullary nailing led to secondary healing and to necrosis of the inner cortex close to the endosteum. After internal fixation with the spine fixator, gap healing took place and no cortical necrosis was observed. The clinical course was generally good after all procedures. The histological evaluation shows that damage to the vascularity of the bone can only be avoided by using the spine fixator. This principle seems to be appropriate for the purposes of biological internal fixation.

  1. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    International Nuclear Information System (INIS)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-01-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope

  2. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope.

    Science.gov (United States)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  3. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    Energy Technology Data Exchange (ETDEWEB)

    Iketaki, Yoshinori [Olympus Corporation, 2-3 Kuboyama-cho, Hachioji 192-8512 (Japan); Kitagawa, Katsuichi [Toray Engineering Co. Ltd., 1-1-45 Oe, Otsu 520-2141 (Japan); Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira [Ceratech Japan Co., Ltd., 500 Okada, Shinonoi, Nagano 381-2295 (Japan); Bokor, Nandor [Department of Physics, Budapest University of Technology and Economics, Budapest 1111 (Hungary)

    2014-07-15

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  4. Cycloid spirals and cycloid cone transition in the HoMn6-xCrxGe6 (T, x) magnetic phase diagramm by neutron diffraction

    Science.gov (United States)

    Schobinger-Papamantellos, P.; Rodríguez-Carvajal, J.; Buschow, K. H. J.

    2016-06-01

    The structures and magnetic properties of the antiferromagnetic hexagonal pseudo ternary compounds HoMn6-xCrxGe6 (x=1, 1.5 and 2) are studied by neutron diffraction in the temperature range 1.5-300 K. The substitution of nonmagnetic Cr for Mn greatly affects the magnetic properties of HoMn6Ge6 by reducing the ordering temperature from 466 K to 278 K, 205 K and 130 K for (x=0, 1, 1.5 and 2) respectively, increasing the c/a ratio, suppressing the high temperature (HT) commensurate phase with q2=(0, 0, 1/2) and changing the high temperature (LT) q1=(0, 0, q1z) skew spiral rotation plane. HoMn5CrGe6 and HoMn4Cr2Ge6 display in the entire magnetically ordered regime cycloid spiral structures with the wave vector: q=(0, 0, qz), qz≈0.18(3) r.l.u. and Φs≈64.8° turn angle. The Ho and Mn/Cr (001) layers have ferromagnetic arrangements coupled antiferromagnetically. The Ho moments in the z=0 layer are oriented in a direction opposite to the line bisecting the angle 2φMn≈2×28° of the Mn layers at z=±∼0.25. This triple unit changes orientation collectively in the direction of q within the (b, c) plane containing the wave vector. Above 50 K, the wave vector length increases linearly from 0.24 to 0.28(1) r.l.u. below TN. The HT HoMn4.5Cr1.5Ge6 cycloid spiral, is stable in the range Ttcycloid HT q1 to a LT longitudinal cone structure: q2=(0, 0, q2z), q2z=0.149 r.l.u., Φs=53.6° and cone angle ΦC=47°. The q1 and q2 phases coexist in the LT range down to 1.5 K≤T≤Tt in varying amounts with T. This transition is directly manifested by the splitting of the HT magnetic satellites and the increase of characteristic nuclear intensities. The results are summarised in a (T, x) magnetic phase diagram.

  5. Tunable Ampere phase plate for low dose imaging of biomolecular complexes

    DEFF Research Database (Denmark)

    Tavabi, Amir H.; Beleggia, Marco; Migunov, Vadim

    2018-01-01

    A novel device that can be used as a tunable support-free phase plate for transmission electron microscopy of weakly scattering specimens is described. The device relies on the generation of a controlled phase shift by the magnetic field of a segment of current-carrying wire that is oriented...... parallel or antiparallel to the electron beam. The validity of the concept is established using both experimental electron holographic measurements and a theoretical model based on Ampere's law. Computer simulations are used to illustrate the resulting contrast enhancement for studies of biological cells...

  6. Identification of phase structure of plated zinc alloys based on a linear voltammetry in alkaline solutions

    Directory of Open Access Journals (Sweden)

    Lina V. Petrenko

    2016-12-01

    Full Text Available The purpose of research was the development of new and effective technique of electroplatings phase composition analysis by inversion voltammetric methods. As a result the possibility of the phase composition of the plated zinc-based alloys identification using anodic linear voltammetry in alkaline solutions was shown. The phase composition Zn–(0.27–9.4% Fe alloy electroplated from alkaline zincate solutions was defined based on voltammetry data. As part of the Zn–Fe alloys the phase of hexagonal structure was found which is absent in the equilibrium phase diagram. The ratio of hexagonal crystal lattice axes (c/a and the electron concentration (e/a for this phase are significantly different from the corresponding values for the primary solid solution η. From the analysis of c/a and e/a values of investigated Zn–Fe alloy the defined phase was identified as a solid solution phase type ε. It also was shown that anodic linear voltammetry accomplished in alkaline solutions is more sensitive to the identification of the phase composition of zinc alloys than the traditional X-ray method and stripping voltammetry.

  7. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    Science.gov (United States)

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  8. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  9. The Mobile Phase Motion in Ascending Micellar Thin-Layer Chromatography with Normal-Phase Plates

    NARCIS (Netherlands)

    Boichenko, Alexander P.; Makhno, Iryna V.; Renkevich, Anton Yu.; Loginova, Lidia P.

    2011-01-01

    The physical chemical characteristics (surface tension and viscosity) of micellar mobile phases based on the cationic surfactant cetylpiridinium chloride and additives of alcohols (ethanol, 1-propanol, 1-butanol, 1-pentanol) have been obtained in this work. The effect of mobile phase properties on

  10. Phase-conjugate interferometer to estimate refractive index and thickness of transparent plane parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Pastrana-Sanchez, R.; Rodriguez-Zurita, G.; Vazquez-Castillo, J. F. [Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-04-01

    A technique to estimate the refractive index and thickness of homogeneous plane parallel dielectric plates is proposed using a phase-conjugate interferometer, in which counting of interference fringes is employed. The light beam impinges a tilted plate before it enters a phase-conjugate interferometer, and a count of the fringes passing through a given reference at the observing plane gives the phase changes as a function of tilting angle. The obtained data is fitted to a mathematical model, which leads to the determination of both refractive index and thickness simultaneously. In this letter, experimental data from two interferometers are also discussed for comparison. One with an externally-pumped phase-conjugate mirror achieved with a BSO photorefractive crystal and another one with conventional mirrors. Results show that the phase sensitivity of the phase-conjugate interferometer is not simply twice the corresponding sensitivity of the conventional version. [Spanish] Se propone una tecnica para medir indices de refraccion y espesores de placas dielectricas plano paralelas homogeneas empleando un interferometro con fase conjugada, en el cual se usa el conteo de franjas. El haz luminoso incide en una placa inclinada bajo inspeccion antes de entrar en un interferometro equipado con un espejo conjugador de fase, y se realiza un conteo de las franjas que pasan por determinada referencia en el plano de observacion, proporcionando los cambios de fase en funcion del angulo de inclinacion. Los datos obtenidos se ajustan a un modelo, el cual conduce a la determinacion, tanto del indice de refraccion como del espesor, simultaneamente. En este trabajo se discuten datos experimentales provenientes de dos interferometros para su comparacion. Uno de ellos tiene un espejo conjugador basado en un cristal BSO fotorrefractivo, mientras que el otro es una variante con espejos convencionales. Se muestra que la sensibilidad de fase del interferometro con conjugador de fase no

  11. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy.

    Science.gov (United States)

    Hettler, Simon; Kano, Emi; Dries, Manuel; Gerthsen, Dagmar; Pfaffmann, Lukas; Bruns, Michael; Beleggia, Marco; Malac, Marek

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition techniques and single-layer graphene were studied. Clean thin films at moderate temperatures show small negative charging while thin films kept at an elevated temperature are stable and not prone to beam-generated charging. The charging is attributed to electron-stimulated desorption (ESD) of chemisorbed water molecules from the thin-film surfaces and an accompanying change of work function. The ESD interpretation is supported by experimental results obtained by electron-energy loss spectroscopy, hole-free phase plate imaging, secondary electron detection and x-ray photoelectron spectroscopy as well as simulations of the electrostatic potential distribution. The described ESD-based model explains previous experimental findings and is of general interest to any phase-related technique in a transmission electron microscope. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Optimization of a natural circulation two phase closed thermosyphon flat plate solar water heater

    International Nuclear Information System (INIS)

    Hussein, H.M.S.

    2003-01-01

    In the present study, a natural circulation two phase closed thermosyphon flat plate solar water heater has been investigated theoretically under the actual field conditions of Cairo, Egypt. Also, the heater design parameters are optimized by means of the author's simulation program that was verified experimentally in a previous paper. These parameters include the ratio of storage tank volume to collector area, storage tank dimensions ratios and height between the heater storage tank and collector. The computational results indicate that the storage tank volume to collector area ratio and the storage tank dimensions ratios have significant effects on the heater performance, while the height between the heater tank and collector has little effect

  13. Study of polarization properties of fiber-optics probes with use of a binary phase plate.

    Science.gov (United States)

    Alferov, S V; Khonina, S N; Karpeev, S V

    2014-04-01

    We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.

  14. Archimedean Spiral Antenna Calibration Procedures to Increase the Downrange Resolution of a SFCW Radar

    Directory of Open Access Journals (Sweden)

    Ioan Nicolaescu

    2008-01-01

    Full Text Available This paper deals with the calibration procedures of an Archimedean spiral antenna used for a stepped frequency continuous wave radar (SFCW, which works from 400 MHz to 4845 MHz. Two procedures are investigated, one based on an error-term flow graph for the frequency signal and the second based on a reference metallic plate located at a certain distance from the ground in order to identify the phase dispersion given by the antenna. In the second case, the received signal is passed in time domain by applying an ifft, the multiple reflections are removed and the phase variation due to the time propagation is subtracted. After phase correction, the time domain response as well as the side lobes level is decreased. The antenna system made up of two Archimedean spirals is employed by SFCW radar that operates with a frequency step of 35 MHz.

  15. The Spiral of Euroscepticism

    DEFF Research Database (Denmark)

    Galpin, Charlotte; Trenz, Hans-Jörg

    2017-01-01

    Media scholars have increasingly examined the effects of a negativity bias that applies to political news. In the ‘spiral of cynicism’, journalist preferences for negative news correspond to public demands for sensational news. We argue that this spiral of cynicism in EU news results in a ‘spiral...

  16. Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator

    International Nuclear Information System (INIS)

    Chen Bo; Berenguer, Felisa; Bean, Richard J; Robinson, Ian K; Zhang Fucai; Rodenburg, John M; Kewish, Cameron M; Vila-Comamala, Joan; Chu, Yong S

    2011-01-01

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens. (paper)

  17. Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator

    International Nuclear Information System (INIS)

    Chu, Y.S.; Chen, B.; Zhang, F.; Berenguer, F.; Bean, R.; Kewish, C.; Vila-Comamala, J.; Rodenburg, J.; Robinson, I.

    2011-01-01

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  18. Volta phase plate data collection facilitates image processing and cryo-EM structure determination.

    Science.gov (United States)

    von Loeffelholz, Ottilie; Papai, Gabor; Danev, Radostin; Myasnikov, Alexander G; Natchiar, S Kundhavai; Hazemann, Isabelle; Ménétret, Jean-François; Klaholz, Bruno P

    2018-01-11

    A current bottleneck in structure determination of macromolecular complexes by cryo electron microscopy (cryo-EM) is the large amount of data needed to obtain high-resolution 3D reconstructions, including through sorting into different conformations and compositions with advanced image processing. Additionally, it may be difficult to visualize small ligands that bind in sub-stoichiometric levels. Volta phase plates (VPP) introduce a phase shift in the contrast transfer and drastically increase the contrast of the recorded low-dose cryo-EM images while preserving high frequency information. Here we present a comparative study to address the behavior of different data sets during image processing and quantify important parameters during structure refinement. The automated data collection was done from the same human ribosome sample either as a conventional defocus range dataset or with a Volta phase plate close to focus (cfVPP) or with a small defocus (dfVPP). The analysis of image processing parameters shows that dfVPP data behave more robustly during cryo-EM structure refinement because particle alignments, Euler angle assignments and 2D & 3D classifications behave more stably and converge faster. In particular, less particle images are required to reach the same resolution in the 3D reconstructions. Finally, we find that defocus range data collection is also applicable to VPP. This study shows that data processing and cryo-EM map interpretation, including atomic model refinement, are facilitated significantly by performing VPP cryo-EM, which will have an important impact on structural biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Concrete containment tests: Phase 2, Structural elements with liner plates: Interim report

    International Nuclear Information System (INIS)

    Hanson, N.W.; Roller, J.J.; Schultz, D.M.; Julien, J.T.; Weinmann, T.L.

    1987-08-01

    The tests described in this report are part of Phase 2 of the Electric Power Research Institute (EPRI) program. The overall objective of the EPRI program is to provide a test-verified analytical method of estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The Phase 2 testing included seven large-scale specimens representing structural elements from reinforced and prestressed concrete reactor containment buildings. Six of the seven test specimens were square wall elements. Of these six specimens, four were used for biaxial tension tests to determine strength, deformation, and leak-rate characteristics of full-scale wall elements representing prestressed concrete containment design. The remaining two square wall elements were used for thermal buckling tests to determine whether buckling of the steel liner plate would occur between anchorages when subjected to a sudden extreme temperature differential. The last of the seven test specimens for Phase 2 represented the region where the wall and the basemat intersect in a prestressed concrete containment building. A multi-directional loading scheme was used to produce high bending moments and shear in the wall/basemat junction region. The objective of this test was to determine if there is potential for liner plate tearing in the junction region. Results presented include observed behavior and extensive measurements of deformations and strains as a function of applied load. The data are being used to confirm analytical models for predicting strength and deformation of containment structures in a separate parallel analytical investigation sponsored by EPRI

  20. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation.

    Science.gov (United States)

    Wibisono, Yusuf; Yandi, Wetra; Golabi, Mohsen; Nugraha, Roni; Cornelissen, Emile R; Kemperman, Antoine J B; Ederth, Thomas; Nijmeijer, Kitty

    2015-03-15

    Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto polypropylene (PP) feed spacers via plasma-mediated UV-polymerization. These coatings maintained their chemical stability after 7 days incubation in neutral (pH 7), acidic (pH 5) and basic (pH 9) environments. Anti-biofouling properties of these coatings were evaluated by Escherichia coli attachment assay and nanofiltration experiments at a TMP of 600 kPag using tap water with additional nutrients as feed and by using optical coherence tomography. Especially the anionic polySPMA-coated PP feed spacer shows reduced attachment of E. coli and biofouling in the spacer-filled narrow channels resulting in delayed biofilm growth. Employing this highly hydrophilic coating during removal of biofouling by two-phase flow cleaning also showed enhanced cleaning efficiency, feed channel pressure drop and flux recoveries. The strong hydrophilic nature and the presence of negative charge on polySPMA are most probably responsible for the improved antifouling behavior. A combination of polySPMA-coated PP feed spacers and two-phase flow cleaning therefore is promising and an environmentally friendly approach to control biofouling in NF/RO systems employing spiral-wound membrane modules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Influence of heart rate on image quality of 64-slice spiral computed coronary angiography and optimization on reconstruction of phase window

    International Nuclear Information System (INIS)

    Luo Xuemao; Lan Yong; Li Wei; Long Wansheng; Zhang Chaotong; Zhong Xiangyang; Yi Lan

    2009-01-01

    Objective: To evaluate the influence of heart rate on the image quality of 64-slice spiral computed coronary angiography (MSCTCA) and optimize the image reconstruction window. Methods: According to the heart rate, 86 patients were classified into 5 groups: group A, the heart rate ≤60 beat per minute(BMP); group B,61-70BMP, group C,71-80BMP, and group D>80BMP. The image quality of MSCTCA was scored 5 grades from 1-5 according to heart motion artifact. The influences of heart rate and reconstruction phase on the image quality of MSCTCA were evaluated. Results: Average heart rate was 64.4 ±10.1BMP. Diagnostic image quality (score>3) was attained in 277 of 344 segments at the best reconstruction interval. There was a significant corxelation between average heart rate and image quality, but there was no difference between relative delay (%) reconstruction and absolute delay (ms) reconstruction on the image quality. Conclusion: Reducing average heart rate is beneficial for improving the image quality. (authors)

  2. Thermal performance of a phase change material on a nickel-plated surface

    International Nuclear Information System (INIS)

    Nurmawati, M.H.; Siow, K.S.; Rasiah, I.J.

    2004-01-01

    Thermal control becomes increasingly vital with IC chips becoming faster and smaller. The need to keep chips within acceptable operating temperatures is a growing challenge. Thermal interface materials (TIM) form the interfaces that improve heat transfer from the heat-generating chip to the heat dissipating thermal solution. One of the most commonly used materials in today's electronics industry is phase change material (PCM). Typically, the heat spreader is a nickel-plated copper surface. The compatibility of the PCM to this surface is crucial to the performance of the TIM. In this paper, we report on the performance of this interface. To that end, an instrument to suitably measure critical parameters, like the apparent and contact thermal resistance of the TIM, is developed according to the ASTM D5470 and calibrated. A brief theory of TIM is described and the properties of the PCM were investigated using the instrument. Thermal resistance measurements were made to investigate the effects of physical parameters like pressure, temperature and supplied power on the thermal performance of the material on nickel-plated surface. Conclusions were drawn on the effectiveness of the interface and their application in IC packages

  3. SEARCHING FOR PLANETS IN HOLEY DEBRIS DISKS WITH THE APODIZING PHASE PLATE

    Energy Technology Data Exchange (ETDEWEB)

    Meshkat, Tiffany; Kenworthy, Matthew A. [Sterrewacht Leiden, P.O. Box 9513, Niels Bohrweg 2, 2300 RA Leiden (Netherlands); Bailey, Vanessa P.; Su, Kate Y. L.; Hinz, Philip M.; Smith, Paul S. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2015-02-10

    We present our first results from a high-contrast imaging search for planetary mass companions around stars with gapped debris disks, as inferred from the stars' bright infrared excesses. For the six considered stars, we model the disks' unresolved infrared spectral energy distributions in order to derive the temperature and location of the disk components. With VLT/NaCo Apodizing Phase Plate coronagraphic L'-band imaging, we search for planetary mass companions that may be sculpting the disks. We detect neither disks nor companions in this sample, confirmed by comparing plausible point sources with archival data. In order to calculate our mass sensitivity limit, we revisit the stellar age estimates. One target, HD 17848, at 540 ± 100 Myr old is significantly older than previously estimated. We then discuss our high-contrast imaging results with respect to the disk properties.

  4. Analysis of a flat plate collector with fluid undergoing phase change

    Science.gov (United States)

    Kaushika, N. D.; Bharadwaj, S. C.; Kaushik, S. C.

    1982-07-01

    This paper presents a theoretical analysis of the performance of a flat plate solar collector with the heat removal fluid undergoing a phase change. The resultant efficiency expression is a modified Hottel-Whillier-Bliss equation. Numerical computations are made to investigate the effect of vaporization and operational parameters on the collector's performance. The collector's efficiency increases with the increase in liquid length until a point is reached when the region of superheating the vapor disappears. The efficiency is higher when a heat removal fluid of high latent heat of vaporization is used in the collector. An increase in the saturation temperature of the working fluid (with increase of pressure) in the collector reduces its efficiency.

  5. Radioimmunoassay of diagoxin with the aid of the solid phase - microtitre plating technique

    International Nuclear Information System (INIS)

    Scheidt, C.

    1982-01-01

    Preliminary results are reported here on the development of a digoxin-radioimmunoassay with an anti-digoxin antibody (goat) in a solid phase technique (mictrotitre plate). The advantages compared to conventional RIAs are: Cross reactions towards digoxin is minimal, both in vitro and in vivo. The calibraton range extends from 0.25 to 8 ng/ml. The radioactive load could be reduced significantly by use of smaller amounts of tracer (0.004 μCi/single determination) and by reduction of waste volume (solid), waste weight (solid) and liquid waste. The DIGOXIN RIA BIOTEST MTP is, in addition, the only digoxin radioimmunoassay where radioactive waste is produced in a sealed form. The test is a simple one and can be carried out without the need for complicated apparatus and techniques. (orig./MG) [de

  6. Stress Analysis of an Edge-Cracked Plate by using Photoelastic Fringe Phase Shifting Method

    International Nuclear Information System (INIS)

    Baek, Tae Hyun; Kim, Myung Soo; Cho, Sung Ho

    2000-01-01

    The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. The previous methods require much time and skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting technique for the stress analysis of a circular disk under compression and an edge-cracked plate subjected to tensile load. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at 0 .deg. ,45 .deg. ,90 .deg. ,and 135 .deg. . Experimental results are compared with those or FEM. Good agreement between the results can be observed. However, some error may be included if the technique is used to general direction which is not parallel to isoclinic fringe

  7. GANIL-SPIRAL1-SPIRAL2: Highlights and Perspectives

    Science.gov (United States)

    Gales, S.

    2010-06-01

    GANIL presently offers unique opportunities in nuclear physics and many other fields that arise from not only the provision of low-energy stable beams, fragmentation beams and re-accelerated radioactive species, but also from the availability of a wide range of state-of-the-art spectrometers and instrumentation. A few examples of recent highlights are presented. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capability. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL 2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 1013 fissions/s. The expected radioactive beams intensities in the mass range from A = 60 to A = 140, will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100*A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n. Under the 7FP program of European Union called*Preparatory phase*, the SPIRAL2 project has been granted a budget of about 4 M€ to build up an international consortium around this new venture. The status of the construction of SPIRAL2 accelerator and associated physics instruments in collaboration with EU and International partners will be presented.

  8. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  9. Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Camden R [ORNL

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has worked with NRC and EPRI to apply neutron and X-ray diffraction methods to characterize the residual stresses in a number of dissimilar metal weld mockups and samples. The design of the Phase IA specimens aimed to enable stress measurements by several methods and computational modeling of the weld residual stresses. The partial groove in the 304L stainless steel plate was filled with weld beads of Alloy 82. A summary of the weld conditions for each plate is provided in Table 1. The plates were constrained along the long edges during and after welding by bolts with spring-loaded washers attached to the 1-inch thick Al backing plate. The purpose was to avoid stress relief due to bending of the welded stainless steel plate. The neutron diffraction method was one of the methods selected by EPRI for non-destructive through thickness strain and stress measurement. Four different plates (P-3 to P-6) were studied by neutron diffraction strain mapping, representing four different welding conditions. Through thickness neutron diffraction strain mappings at NRSF2 for the four plates and associated strain-free d-zero specimens involved measurement along seven lines across the weld and at six to seven depths. The mountings of each plate for neutron diffraction measurements were such that the diffraction vector was parallel to each of the three primary orthogonal directions of the plate: two in-plane directions, longitudinal and transverse, and the direction normal to the plate (shown in left figure within Table 1). From the three orthogonal strains for each location, the residual stresses along the three plate directions were calculated. The principal axes of the strain and stress tensors, however, need not necessarily align with the plate coordinate system. To explore this, plate P-5 was selected for examination of the possibility that the principal axes of strain are not along the sample coordinate system axes. If adequate data could

  10. MRI in the acute phase of spiral cord traumatic lesions: relationship between MRI findings and neurological outcome

    International Nuclear Information System (INIS)

    Andreoli, Chiara; Colaiacono, Maria Chiara; Gualdi, Gianfranco; Rojas Beccaglia, Mario; Di Biasi, Claudio; Casciani, Emanuele

    2005-01-01

    Purpose. To evaluate the role of emergency MRI in the diagnosis of acute spinal injuries, and to correlate the MRI pattern with the neurological outcome. Materials and methods. Thirty-eight patients with MRI-proven spinal cord injury were classified according to the Frankel classification. MRI was always performed within 8 hours from trauma. Frankel classification divides spinal cord injuries into 5 classes of decreasing severity based on the presence of motor and/or sensory function loss. On the basis of the MRI findings the patients were classified in 3 groups: group 1 (intramedullary haematoma), group 2 (multi-meta-mer oedema), group 3 (single-metamer oedema). All patients underwent neurosurgery and were clinically evaluated until the stabilization of neurological recovery. Mean follow-up lime was 12 months. The MR images were retrospectively evaluated and correlated to the neurological outcome. Results. Twenty eight patients showed complete motor loss (Frankel classes A and B); of these 28 patients 12 (42.8%) had MRI evidence of intramedullary haematoma, 12 (42.8%) had multi-metamer oedema and 4 (14.4%) had single-meta-mer oedema. Of the 10 patients with incomplete motor loss, none had MRI evidence of haemorrhage, 4 (40%) showed multi-metamer oedema and 6 (60%) showed single-meta-mer oedema. Follow-up clinical assessment revealed that 14/38 patients (36,8%) had clinical improvement and 2/38 cases (5%) had a complete motor recovery, as demonstrated by the move to a higher Frankel class. Conclusions. Our results, consistent with previous reports, confirm a strong correlation between the MRI appearance of traumatic spinal cord injuries in acute phase and long-term recovery of motor and sensory function: patients with initial haemorrhage had a poor prognosis, whereas those with spinal cord oedema had a good clinical outcome, as demonstrated by the passage to a higher Frankel class. MRI is particularly important in the initial evaluation of unconscious patients who

  11. Triangular spiral tilings

    International Nuclear Information System (INIS)

    Sushida, Takamichi; Hizume, Akio; Yamagishi, Yoshikazu

    2012-01-01

    The topology of spiral tilings is intimately related to phyllotaxis theory and continued fractions. A quadrilateral spiral tiling is determined by a suitable chosen triple (ζ, m, n), where ζ element of D/R, and m and n are relatively prime integers. We give a simple characterization when (ζ, m, n) produce a triangular spiral tiling. When m and n are fixed, the admissible generators ζ form a curve in the unit disk. The family of triangular spiral tilings with opposed parastichy pairs (m, n) is parameterized by the divergence angle arg (ζ), while triangular spiral tilings with non-opposed parastichy pairs are parameterized by the plastochrone ratio 1/|ζ|. The generators for triangular spiral tilings with opposed parastichy pairs are not dense in the complex parameter space, while those with non-opposed parastichy pairs are dense. The proofs will be given in a general setting of spiral multiple tilings. We present paper-folding (origami) sheets that build spiral towers whose top-down views are triangular tilings. (paper)

  12. Generation of plate tectonics with two-phase grain-damage and pinning: Source-sink model and toroidal flow

    Science.gov (United States)

    Bercovici, David; Ricard, Yanick

    2013-03-01

    The grain-damage and pinning mechanism of Bercovici and Ricard (2012) for lithospheric shear-localization is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion and influence plate evolution. This mechanism posits that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces, which then constrain mineral grains to ever smaller sizes, regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreover, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields retain memory of the original configuration for extensive periods, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction, and highly localized, weak and long lived acute plate-boundary junctions such as at what is observed at the Aleutian-Kurile intersection. The grain-damage and pinning

  13. Experimental investigation on the transient one phase flow through perforated plates

    International Nuclear Information System (INIS)

    Casadei, F.; Dalle Donne, M.

    1982-01-01

    The coolant flow across the perforated dip-plate during a HCDA in a LMFBR was simulated in a one-dimensional model. Several experiments with water as fluid and with various perforation ratios of the dip-plate and different initial heights of the fluid head over the dip-plate were run. The pressure drop across the dip-plate and the forces acting on the dip-plate and on the upper plug of the reactor vessel were measured in a wide range of the Reynolds and Strouhal numbers. The flow pattern downstreams the perforated plate was filmed with high-speed cameras. The resistance coefficients for the transient flow of the coolant through the perforated plate were obtained as a function of the acceleration. The forces acting on the upper plug and their time integral were compared with those acting on the dip-plate. Finally, using high-speed film pictures the formation of fluid jets downstream the dip-plate was investigated

  14. Radiotracer investigations to study the hydrodynamic characteristics of continuous phase in a pulsed sieve plate extraction column

    Science.gov (United States)

    Din, G. U.; Khan, I. H.; Chughtai, I. R.; Inayat, M. H.; Jin, J. H.

    2013-05-01

    The present investigations are focused to study the hydrodynamic characteristics of continuous phase in a pulsed sieve plate extraction column using 68Ga in the form of gallium chloride from an industrial radionuclide generator (68Ge/68Ga). Labeling of water with the subject radiotracer in water-kerosene environment was evaluated. Experiments for Residence Time Distribution (RTD) analysis were carried out for a range of dispersed phase superficial velocities in a liquid-liquid extraction pulsed sieve plate column operating in the emulsion regime with water as continuous and kerosene as dispersed phase. Axial Dispersion Model (ADM) was used to simulate the hydrodynamic characteristics of continuous phase. It has been observed that the axial mixing in the continuous phase decreases and slip velocity increases with increase in superficial velocity of dispersed phase while the holdup of continuous phase was found to decrease with increase in superficial velocity of dispersed phase. ADM with open-open boundary condition was found to be a suitable model for the subject system.

  15. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  16. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    International Nuclear Information System (INIS)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao; Liu Yijin; Yue Zhengbo; Yu Hanqing; Wang Chunru

    2009-01-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 μm thickness and 4 μm width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  17. Spiral finned crucible pot

    Science.gov (United States)

    Soemowidagdo, Arianto Leman; Tiwan, Widarto, Ardian, Aan

    2018-02-01

    Innovation on a crucible furnace to increase its efficiency in aluminum melting has been done. The innovation was a spiral finned crucible pot. The inclination of the spiral finned was vary of 5, 10, 15, and 20 degrees. The spiral finned effects was determined from the performance test result. A crucible pot without fin was also tested as a control. The crucible pot was examined at the same process condition. The crucible pot with the inclined fin of 10 degrees gives an optimum performance. It gives effective heating rate so that more efficient in LPG consumption. Therefore it saves energy in the aluminum melting process.

  18. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    International Nuclear Information System (INIS)

    Martínez-García, Eric E.; González-Lópezlira, Rosa A.

    2013-01-01

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L) J , as a function of (g – i) versus (i – J) color. The selected spirals were analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.

  19. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Garcia, Eric E. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); Gonzalez-Lopezlira, Rosa A., E-mail: ericmartinez@inaoep.mx, E-mail: martinez@astro.unam.mx, E-mail: r.gonzalez@crya.unam.mx [Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089 (Mexico)

    2013-03-10

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L){sub J}, as a function of (g - i) versus (i - J) color. The selected spirals were analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.

  20. SPIRAL2 Week 2012 - Slides of the presentations

    International Nuclear Information System (INIS)

    Staley, F.; Jacquemet, M.; Lewitowicz, M.; Bertrand, P.; Tuske, O.; Caruso, A.; Leyge, J.F.; Perrot, L.; Di Giacomo, M.; Ausset, P.; Moscatello, M.H.; Savalle, A.; Rannou, B.; Lambert, M.; Petit, E.; Hulin, X.; Barre-Boscher, N.; Tusseau-Nenez, S.; Tecchio, L.B.

    2013-01-01

    The main goal of the 5. edition of the SPIRAL2 Week is to present and discuss the current status of the SPIRAL2 project in front of a large community of scientists and engineers. The program of the meeting will include presentations on scientific and technical developments related to the baseline project, experiments and theory. The main topics to be discussed at the conference are: -) physics and detectors at SPIRAL2, -) driver accelerators, -) production of radioactive ion beams (RIB), -) safety, -) buildings and infrastructure, -) RIB facilities worldwide, and -) SPIRAL2 preparatory phase. This document is made up of the slides of the presentations

  1. Spiral 2 Week

    International Nuclear Information System (INIS)

    2007-01-01

    The main goal of this meeting is to present and discuss the current status of the Spiral-2 project at GANIL in front of a large community of scientists and engineers. Different issues have been tackled particularly the equipment around Spiral-2 like injectors, cryo-modules or beam diagnostics, a workshop was devoted to other facilities dedicated to radioactive ion beam production. This document gathers only the slides of the presentations

  2. Spiral 2 Week

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The main goal of this meeting is to present and discuss the current status of the Spiral-2 project at GANIL in front of a large community of scientists and engineers. Different issues have been tackled particularly the equipment around Spiral-2 like injectors, cryo-modules or beam diagnostics, a workshop was devoted to other facilities dedicated to radioactive ion beam production. This document gathers only the slides of the presentations.

  3. A Novel Heat Pipe Plate for Passive Thermal Control of Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project aims to develop a lightweight, highly thermally and electrically conductive heat pipe plate for passive removal of the heat from the individual...

  4. Advanced Composite Bipolar Plate for Unitized Regenerative Fuel Cell/Electrolyzer Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an advanced composite bipolar plate is proposed for a unitized regenerative fuel cell and electrolyzer system that operates on pure feed streams...

  5. Advanced Composite Bipolar Plate for Unitized Regenerative Fuel Cell/Electrolyzer Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an advanced composite bipolar plate is proposed for a unitized regenerative fuel cell and electrolyzer system that operates on pure feed streams...

  6. Stress analysis in the neighborhood around a hole in a tensile plate by photoelastic phase shifting method

    International Nuclear Information System (INIS)

    Lee, Chun Bae; Jung, Girl; Park, Tae Geun; Yang, Min Bok; Kim, Myung Soo; Baek, Tae Hyun

    2005-01-01

    This paper presents the experimental distributions of isochromatic fringes obtained in a quadrate plate which has a hole at its center. Isochromatic fringe are measured by the use of Tardy compensation method and phase shifting technique, and they are compared with those obtained from finite element method. Tardy compensation method is a conventional method and widely used but it is time-costing and inaccurate to obtain the movement of isoclinic fringe on a given point. Therefore, the 8-step phase shifting methodology is introduced and applied in this paper.

  7. A phase retrieval method for X-ray microscopy based on a π / 2-biased X-ray zone-plate pair

    Science.gov (United States)

    Yang, Minxi; Wang, Xiaofang

    2018-03-01

    A method for X-ray imaging and phase retrieval of a sample is proposed, wherein a zone-plate pair with a bias of π / 2 is used to take only twice differential-interference-contrast images of the sample via reverse projection. The images of the sample and its reverse projection have the same absorption but opposite differential phase shift signals, which are post-processed to quantitatively retrieve the phase shift and the absorption of the sample. Theoretical analysis and numerical simulations indicate that the spatial resolution of the retrieved results could attain the Rayleigh limit of a single zone plate in the zone-plate pair.

  8. Plasma Generator Using Spiral Conductors

    Science.gov (United States)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  9. Electroless Ni-P/Nano-SiO2 Composite Plating on Dual Phase Magnesium-Lithium Alloy

    Science.gov (United States)

    Zou, Y.; Zhang, Z. W.; Zhang, M. L.

    The application of Mg-Li alloys is restricted in practice due to mainly poor corrosion resistance and wear resistance. Electroless nickel plating is one of the common and effective ways to protect alloys from corrosion. In this study, nano-SiO2 particles with Ni-P matrix have been successfully co-deposited onto dual phase Mg-8Li base alloy through electroless plating, generating homogeneously Ni-P/nano-SiO2 composite coating. The morphology, elemental composition and structures of coatings were investigated. Coating performances were evaluated using hardness tests and electrochemical analysis. The results indicate that the Ni-P/nano-SiO2 composite coating can significantly improve the wear and corrosion resistance.

  10. The spinning ball spiral

    Science.gov (United States)

    Dupeux, Guillaume; Le Goff, Anne; Quéré, David; Clanet, Christophe

    2010-09-01

    We discuss the trajectory of a fast revolving solid ball moving in a fluid of comparable density. As the ball slows down owing to drag, its trajectory follows an exponential spiral as long as the rotation speed remains constant: at the characteristic distance L where the ball speed is significantly affected by the drag, the bending of the trajectory increases, surprisingly. Later, the rotation speed decreases, which makes the ball follow a second kind of spiral, also described in the paper. Finally, the use of these highly curved trajectories is shown to be relevant to sports.

  11. Quarkyonic Chiral Spirals

    International Nuclear Information System (INIS)

    Toru, Kojo; Hidaka, Y.; Pisarski, R.; McLerran, L.

    2010-01-01

    We argue the properties of confining dense quark matter, 'quarkyonic' matter, from the viewpoint of both bulk properties and excitation modes. After a brief review of confining aspects, the chiral breaking/restoration will be discussed. We argue that the strong infrared correlations induce the chiral spiral, i.e., the spatial modulation of the chiral condensate which breaks the chiral symmetry locally but restore it globally. The effective dimensional reduction takes place, allowing us to analyzing the system as 2D model in which several exact results can be explicitly derived. We also discuss the excitation spectra, both mesonic and baryonic ones, on the chiral spiral. (author)

  12. Tracking Target and Spiral Waves

    DEFF Research Database (Denmark)

    Jensen, Flemming G.; Sporring, Jon; Nielsen, Mads

    2002-01-01

    A new algorithm for analyzing the evolution of patterns of spiral and target waves in large aspect ratio chemical systems is introduced. The algorithm does not depend on finding the spiral tip but locates the center of the pattern by a new concept, called the spiral focus, which is defined by the...

  13. Are spiral galaxies heavy smokers?

    International Nuclear Information System (INIS)

    Davies, J.; Disney, M.; Phillipps, S

    1990-01-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass

  14. Spiraling into Transformative Learning

    Science.gov (United States)

    Cranton, Patricia

    2010-01-01

    This article explores how technical and vocational learning may spiral into transformative learning. Transformative learning theory is reviewed and the learning tasks of critical theory are used to integrate various approaches to transformative learning. With this as a foundation, the article explores how transformative learning can be fostered in…

  15. Archimedean Voronoi spiral tilings

    Science.gov (United States)

    Yamagishi, Yoshikazu; Sushida, Takamichi

    2018-01-01

    We study the transition of the number of spirals (called parastichy in the theory of phyllotaxis) within a Voronoi tiling for Archimedean spiral lattices. The transition of local parastichy numbers within a tiling is regarded as a transition at the base site point in a continuous family of tilings. This gives a natural description of the quasiperiodic structure of the grain boundaries. It is proved that the number of tiles in the grain boundaries are denominators of rational approximations of the argument (called the divergence angle) of the generator. The local parastichy numbers are non-decreasing functions of the plastochron parameter. The bifurcation diagram of local parastichy numbers has a Farey tree structure. We also prove Richards’ formula of spiral phyllotaxis in the case of Archimedean Voronoi spiral tilings, and show that, if the divergence angle is a quadratic irrational number, then the shapes of tiles in the grain boundaries are close to rectangles. If the divergence angle is linearly equivalent to the golden section, then the shape of tiles in the grain boundaries is close to square.

  16. Properties of spiral resonators

    International Nuclear Information System (INIS)

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  17. SPIRAL COUNTER-CURRENT CHROMATOGRAPHY OF SMALL MOLECULES, PEPTIDES AND PROTEINS USING THE SPIRAL TUBING SUPPORT ROTOR

    OpenAIRE

    Knight, Martha; Finn, Thomas M.; Zehmer, John; Clayton, Adam; Pilon, Aprile

    2011-01-01

    An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was c...

  18. Logarithmic spiral trajectories generated by Solar sails

    Science.gov (United States)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  19. Effects of semiclassical spiral fluctuations on hole dynamics

    Science.gov (United States)

    Hamad, I. J.; Manuel, L. O.; Trumper, A. E.

    2012-01-01

    We investigate the dynamics of a single hole coupled to the spiral fluctuations related to the magnetic ground states of the antiferromagnetic J1-J2-J3 Heisenberg model on a square lattice. Using exact diagonalization on finite size clusters and the self-consistent Born approximation in the thermodynamic limit, we find, as a general feature, a strong reduction of the quasiparticle weight along the spiral phases of the magnetic phase diagram. For an important region of the Brillouin zone the hole spectral functions are completely incoherent, whereas at low energies the spectral weight is redistributed on several irregular peaks. We find a characteristic value of the spiral pitch Q=(0.7,0.7)π, for which the available phase space for hole scattering is maximum. We argue that this behavior is due to the nontrivial interference of the magnon-assisted and the free-hopping mechanism for hole motion, characteristic of a hole coupled to semiclassical spiral fluctuations.

  20. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results

    Science.gov (United States)

    Wells, D. N.; Allen, P. A.

    2012-01-01

    An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.

  1. Theory of spiral structure

    International Nuclear Information System (INIS)

    Lin, C.C.

    1977-01-01

    The density wave theory of galactic spirals has now developed into a form suitable for consideration by experts in Applied Mechanics. On the one hand, comparison of theoretical deductions with observational data has convinced astrophysicists of the validity of the basic physical picture and the calculated results. On the other hand, the dynamical problems of a stellar system, such as those concerning the origin of spiral structure in galaxies, have not been completely solved. This paper reviews the current status of such developments, including a brief summary of comparison with observations. A particularly important mechanism, currently called the mechanism of energy exchange, is described in some detail. The mathematical problems and the physical processes involved are similar to those occurring in certain instability mechanisms in the 'magnetic bottle' designed for plasma containment. Speculations are given on the future developments of the theory and on observational programs. (Auth.)

  2. Multiple orbital angular momentum generated by dielectric hybrid phase element

    Science.gov (United States)

    Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping

    2017-09-01

    Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.

  3. Freeform optics: a non-contact "test plate" for manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this NASA SBIR Phase I study is to determine the feasibility of measuring precision (fractional wave) freeform optics using non-contact areal (imaging)...

  4. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    Science.gov (United States)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  5. Complete Fabrication of a Traversable 3 µm Thick NbN Film Superconducting Coil with Cu plated layer of 42m in Length in a Spiral Three-Storied Trench Engraved in a Si Wafer of 76.2 mm in Diameter Formed by MEMS Technology for a Compact SMES with High Energy Storage Volume Density

    Science.gov (United States)

    Suzuki, Yasuhiro; Iguchi, Nobuhiro; Adachi, Kazuhiro; Ichiki, Akihisa; Hioki, Tatsumi; Hsu, Che-Wei; Sato, Ryoto; Kumagai, Shinya; Sasaki, Minoru; Noh, Joo-Hyong; Sakurahara, Yuuske; Okabe, Kyohei; Takai, Osamu; Honma, Hideo; Watanabe, Hideo; Sakoda, Hitoshi; Sasagawa, Hiroaki; Doy, Hideyuki; Zhou, Shuliang; Hori, H.; Nishikawa, Shigeaki; Nozaki, Toshihiro; Sugimoto, Noriaki; Motohiro, Tomoyoshi

    2017-09-01

    Based on the concept of a novel approach to make a compact SMES unit composed of a stack of Si wafers using MEMS process proposed previously, a complete fabrication of a traversable 3 µam thick NbN film superconducting coil lined with Cu plated layer of 42m in length in a spiral three-storied trench engraved in and extended over a whole Si-wafer of 76.2 mm in diameter was attained for the first time. With decrease in temperature, the DC resistivity showed a metallic decrease indicating the current pass was in the Cu plated layer and then made a sudden fall to residual contact resistance indicating the shift of current pass from the Cu plated layer to the NbN film at the critical temperature Tc of 15.5K by superconducting transition. The temperature dependence of I-V curve showed the increase in the critical current with decrease in the temperature and the highest critical current measured was 220 mA at 4K which is five times as large as that obtained in the test fabrication as the experimental proof of concept presented in the previous report. This completion of a one wafer superconducting NbN coil is an indispensable step for the next proof of concept of fabrication of series-connected two wafer coils via superconductive joint which will read to series connected 600 wafer coils finally, and for replacement of NbN by high Tc superconductor such as YBa2Cu3O7-x for operation under the cold energy of liquid hydrogen or liquid nitrogen.

  6. Highly Efficient Gas-Phase Oxidation of Renewable Furfural to Maleic Anhydride over Plate Vanadium Phosphorus Oxide Catalyst.

    Science.gov (United States)

    Li, Xiukai; Ko, Jogie; Zhang, Yugen

    2018-02-09

    Maleic anhydride (MAnh) and its acids are critical intermediates in chemical industry. The synthesis of maleic anhydride from renewable furfural is one of the most sought after processes in the field of sustainable chemistry. In this study, a plate vanadium phosphorus oxide (VPO) catalyst synthesized by a hydrothermal method with glucose as a green reducing agent catalyzes furfural oxidation to MAnh in the gas phase. The plate catalyst-denoted as VPO HT -has a preferentially exposed (200) crystal plane and exhibited dramatically enhanced activity, selectivity and stability as compared to conventional VPO catalysts and other state-of-the-art catalytic systems. At 360 °C reaction temperature with air as an oxidant, about 90 % yield of MAnh was obtained at 10 vol % of furfural in the feed, a furfural concentration value that is much higher than those (catalyst showed good long-term stability and there was no decrease in activity or selectivity for MAnh during the time-on-stream of 25 h. The high efficiency and catalyst stability indicate the great potential of this system for the synthesis of maleic anhydride from renewable furfural. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Band-notched spiral antenna

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  8. Advanced Coating Technology for Enhanced Performance of Microchannel Plates for UV Detectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA SBIR Phase I proposal we propose to apply a highly conformal coating of ZnO and AlN or a double layer of GaN to the surface and internal pore walls of...

  9. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam.

    Science.gov (United States)

    Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A

    2008-10-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  10. GANIL-SPIRAL2: A new era

    Science.gov (United States)

    Gales, Sydney

    2011-05-01

    GANIL presently offers unique opportunities in nuclear physics and many other fields that arise from not only the provision of low-energy stable beams, fragmentation beams and re-accelerated radioactive species, but also from the availability of a wide range of state-of-the-art spectrometers and instrumentation. A few examples of recent highlights are discussed in the present paper. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capability. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL 2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more than 1013 fissions/s. The expected radioactive beam intensities in the mass range from A = 60 to A = 140, will surpass by two orders of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100 μA to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n. Under the 7FP program of European Union called *Preparatory phase*, the SPIRAL2 project has been granted a budget of about 4M€ to build up an international consortium around this new venture. The status of the construction of SPIRAL2 accelerator and associated physics instruments in collaboration with EU and International partners will be presented.

  11. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  12. SPIRAL2 at GANIL: Status and Perspectives

    Science.gov (United States)

    Gales, S.

    2008-05-01

    called ``Preparatory phase for the construction of new facilities ``, the SPIRAL2 project has been granted a budget of about 4M€ to build up an international consortium around this new venture. The status of the construction of SPIRAL2 accelerator and technical R&D programs for physics instrumentation (detectors, spectrometers) in collaboration with EU and International partners will be presented.

  13. Composite Plate Phased Array Structural Health Monitoring Signal Reconstruction Based on Orthogonal Matching Pursuit Algorithm

    Directory of Open Access Journals (Sweden)

    Yajie Sun

    2017-01-01

    Full Text Available In order to ensure the safety of composite components, structural health monitoring is needed to detect structural performance in real-time at the early stage of damage occurred. This is difficult to detect complex components with single sensor detection technology, so that ultrasonic phased array technology using multisensor detection will be selected. Ultrasonic phased array technology can scan the structure in all directions and angles without moving or less moving the probe and becomes the first choice of structural health monitoring. However, a large amount of data will be generated when using ultrasonic phased array with Nyquist sampling theorem for structural health monitoring and is difficult to storage, transmission, and processing. Besides, traditional Nyquist sampling cannot satisfy the sampling of large amounts of data without distortion, so a more efficient acquisition technique must be chosen. Compressive sensing theory can ensure that if the signal is sparse, it can be sampled in low sampling rate which is much less than two times of the sampling rate as defined by Nyquist sampling theorem for a large number of data and reconstructed in high probability. Then, the experiment result indicated that the orthogonal matching pursuit algorithm can reconstruct the signal completely and accurately.

  14. Numerical Study of Solidification in a Plate Heat Exchange Device with a Zigzag Configuration Containing Multiple Phase-Change-Materials

    Directory of Open Access Journals (Sweden)

    Peilun Wang

    2016-05-01

    Full Text Available Latent heat thermal energy storage (TES plays an important role in the advocation of TES in contrast to sensible energy storage because of the large storage energy densities per unit mass/volume possible at a nearly constant thermal energy. In the current study, a heat exchange device with a zigzag configuration containing multiple phase-change-materials (m-PCMs was considered, and an experimental system was built to validate the model for a single PCM. A two-dimensional numerical model was developed using the ANSYS Fluent 14.0 software program. The energy fractions method was put forward to calculate the average Ste number and the influence of Re and Ste numbers on the discharge process were studied. The influence of phase change temperature among m-PCMs on the solidification process has also been studied. A new boundary condition was defined to determine the combined effect of the Re and Ste numbers on the discharging process. The modelling results show that for a given input power, the Ste (or Re number has a significant impact on the discharging process; however, the period value of inlet velocity has almost no impact on it. Besides, the zigzag plate with m-PCMs has a good impact on the temperature shock as “filter action” in the discharging process.

  15. The perfect shape spiral stories

    CERN Document Server

    Hammer, Øyvind

    2016-01-01

    This book uses the spiral shape as a key to a multitude of strange and seemingly disparate stories about art, nature, science, mathematics, and the human endeavour. In a way, the book is itself organized as a spiral, with almost disconnected chapters circling around and closing in on the common theme. A particular strength of the book is its extremely cross-disciplinary nature - everything is fun, and everything is connected! At the same time, the author puts great emphasis on mathematical and scientific correctness, in contrast, perhaps, with some earlier books on spirals. Subjects include the mathematical properties of spirals, sea shells, sun flowers, Greek architecture, air ships, the history of mathematics, spiral galaxies, the anatomy of the human hand, the art of prehistoric Europe, Alfred Hitchcock, and spider webs, to name a few.

  16. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  17. Hurricane Spiral Bands.

    Science.gov (United States)

    Guinn, Thomas A.; Schubert, Wayne H.

    1993-10-01

    The spiral bands that occur in tropical cyclones can be conveniently divided into two classes-outer bands and inner bands. Evidence is presented here that the outer bands form as the result of nonlinear effects during the breakdown of the intertropical convergence zone (ITCZ) through barotropic instability. In this process a zonal strip of high potential vorticity (the ITCZ shear zone or monsoon trough) begins to distort in a varicose fashion, with the potential vorticity (PV) becoming pooled in local regions that are connected by filaments of high PV. As the pooled regions become more axisymmetric, the filaments become thinner and begin to wrap around the PV centers.It is argued that inner bands form in a different manner. As a tropical cyclone intensifies due to latent heat release, the PV field becomes nearly circular with the highest values of PV in the cyclone center. The radial gradient of PV provides a state on which PV waves (the generalization of Rossby waves) can propagate. The nonlinear breaking of PV waves then leads to an irreversible distortion of the PV contours and a downgradient flux of PV. The continuation of this proem tends to erode the high PV core of the tropical cyclone, to produce a surrounding surf zone, and hence to spread the PV horizontally. In a similar fashion, inner bands can also form by the merger of a vortex with a patch of relatively high PV air. As the merger proem occurs the patch of PV is quickly elongated and wrapped around the vortex. The resulting vortex is generally larger in horizontal extent and exhibits a spiral band of PV.When the formation of outer and inner bands is interpreted in the context of a normal-mode spectral model, they emerge as slow manifold phenomena; that is, they have both rotational and (balanced or slaved) gravitational mode aspects. In this sense, regarding them as simply gravity waves leads to an incomplete dynamical picture.

  18. Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material

    Energy Technology Data Exchange (ETDEWEB)

    Vaikkinen, A. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kotiaho, T. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Kostiainen, R. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kauppila, T.J., E-mail: tiina.kauppila@helsinki.fi [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland)

    2010-12-03

    Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine

  19. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: A novel platform for eco-friendly biofouling mitigation

    NARCIS (Netherlands)

    Wibisono, Y.; Yandi, Wetra; Golabi, Mohsen; Nugraha, Roni; Cornelissen, Emile R.; Kemperman, Antonius J.B.; Ederth, Thomas; Nijmeijer, Dorothea C.

    2015-01-01

    Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral

  20. Structured-illumination reflectance imaging coupled with spiral phase transform for bruise detection and three-dimensional geometry reconstruction of apples

    Science.gov (United States)

    Structured-illumination reflectance imaging (SIRI) is a new, promising imaging technique with enhanced, versatile capabilities for quality evaluation of food products. SIRI enables simultaneous acquisition of higher-contrast/resolution and better depth-controlled intensity and phase images for detec...

  1. Near Fault Observatories (NFO) services and integration plan for European Plate Observing System (EPOS) Implementation Phase

    Science.gov (United States)

    Chiaraluce, Lauro

    2016-04-01

    the services provided by other Thematic Core Services for the standard data (e.g. seismic and geodetic) and on the direct access to the e-infrastructures of individual NFOs via the Integrated Core Services web services for access and distribution of non standard data (e.g. strain- and tilt-meters, geochemical and electro- magneto-telluric data). We will collaborate with the other groups possessing the same data on data harmonization in terms of both format and metadata description to optimise and facilitate the integration and interoperability processes. The services will include a Virtual Laboratory, novel visualization tools for data and products describing the anatomy of active faults and the physical processes governing earthquake generation. VL is an online engagement and knowledge sharing initiative for communicating to the other scientists, stockholders and the public the state of scientific knowledge concerning earthquake source and tectonic processes generating catastrophic events. The availability of real-time data provides the unique opportunity of observing all phases of the earthquake rupture. It is thus of crucial importance developing methodologies to follow in real-time the evolution of the event (e.g. Earthquake Early Warning systems). NFOs are ideal infrastructures for hosting testing centers where a variety of scientific algorithms for real-time monitoring can be independently evaluated. Besides the interest for fundamental science, such developments have a societal impact and can attract new stakeholders such as industry partners who are interested in adopting in such (e.g. EEW) technologies.

  2. Improved MRI thermometry with multiple-echo spirals.

    Science.gov (United States)

    Marx, Michael; Butts Pauly, Kim

    2016-09-01

    Low-bandwidth PRF shift thermometry is used to guide HIFU ablation treatments. Low sampling bandwidth is needed for high signal-to-noise ratio with short acquisition times, but can lead to off-resonance artifacts. In this work, improved multiple-echo thermometry is presented that allows for high bandwidth and reduced artifacts. It is also demonstrated with spiral sampling, to improve the trade-off between resolution, speed, and measurement precision. Four multiple-echo thermometry sequences were tested in vivo, one using two-dimensional Fourier transform (2DFT) sampling and three using spirals. The spiral sequences were individually optimized for resolution, for speed, and for precision. Multifrequency reconstruction was used to correct for off-resonance spiral artifacts. Additionally, two different multiecho temperature reconstructions were compared. Weighted combination of per-echo phase differences gave significantly better precision than least squares off-resonance estimation. Multiple-echo 2DFT sequence obtained precision similar to single-echo 2DFT, while greatly increasing sampling bandwidth. The multiecho spiral acquisitions achieved 2× better resolution, 2.9× better uncertainty, or 3.4× faster acquisition time, without negatively impacting the other two design parameters as compared to single-echo 2DFT. Multiecho spiral thermometry greatly improves the capabilities of temperature monitoring, and could improve transcranial treatment monitoring capabilities. Magn Reson Med 76:747-756, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate

    Science.gov (United States)

    Khoshouei, Maryam; Radjainia, Mazdak; Baumeister, Wolfgang; Danev, Radostin

    2017-01-01

    With the advent of direct electron detectors, the perspectives of cryo-electron microscopy (cryo-EM) have changed in a profound way. These cameras are superior to previous detectors in coping with the intrinsically low contrast and beam-induced motion of radiation-sensitive organic materials embedded in amorphous ice, and hence they have enabled the structure determination of many macromolecular assemblies to atomic or near-atomic resolution. Nevertheless, there are still limitations and one of them is the size of the target structure. Here, we report the use of a Volta phase plate in determining the structure of human haemoglobin (64 kDa) at 3.2 Å. Our results demonstrate that this method can be applied to complexes that are significantly smaller than those previously studied by conventional defocus-based approaches. Cryo-EM is now close to becoming a fast and cost-effective alternative to crystallography for high-resolution protein structure determination. PMID:28665412

  4. Measuring with the spiral reader

    CERN Multimedia

    1974-01-01

    The spiral reader shown here was at the time, together with the Shivamatic scanning system, the basic equipment used for measuring bubble chamber pictures. Anne Anton sits at the table. (See Photo Archive 7408343.)

  5. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  6. Spiral inlets for steam turbines

    Science.gov (United States)

    Škach, Radek; Uher, Jan

    2017-09-01

    This paper deals with the design process of special nozzle blades for spiral inlets. Spiral inlets are used for the first stages of high pressure and intermediate pressure steam turbines with both reaction and impulse blades when throttling or sliding pressure control is applied. They improve the steam flow uniformity from the inlet pipe and thus decrease the aerodynamic losses. The proposed evaluation of the inlet angle is based on the free vortex law.

  7. An improved design of spiral tube assembly for separation of proteins by high-speed counter-current chromatography.

    Science.gov (United States)

    Dasarathy, Dhweeja; Ito, Yoichiro

    2015-10-30

    A new spiral tube assembly was designed to improve the column capacity and partition efficiency for protein separation. This spiral tube assembly has greater column capacity than the original tubing because of an increase in radial grooves from 4 to 12 to accommodate more spiral layers and 12 narrow spots instead of 4 in each circular loop to interrupt the laminar flow that causes sample band broadening. Standard PTFE tubing (1.6mm ID) and the modified flat-twisted tubing were used as the separation column. The performances of both assemblies were compared for separating three stable test proteins including cytochrome c, myoglobin, and lysozyme using a two phase aqueous-aqueous solvent system composed of polyethylene glycol 1000 (12.5% w/w) and dibasic potassium phosphate (12.5% w/w). All samples were run at 1, 2, 3, and 5mL/min at both 800rpm and 1000rpm. The separation of these three protein samples produced high stationary phase retentions at 1, 2, and 3mL/min, yet separated efficiently at 5mL/min in 40min. After comparing the separation efficiency in terms of the peak resolutions, theoretical plate numbers, and separation times, it was determined that the flat-twisted tubing was more effective in separating these protein samples. In order to validate the efficacy of this novel assembly, a mixture of five protein samples (cytochrome c, myoglobin, ovalbumin, lysozyme, and hemoglobin) were separated, under the optimal conditions established with these three protein samples, at 1mL/min with a revolution speed of 1000rpm. There were high stationary phase retentions of around 60%, with effective separations, demonstrating the efficiency of the flat-twisted spiral tube assembly. The separation time of 6h was a limitation but can potentially be shortened by improving the strength of the column that will permit an increase in revolution speed and flow rate. This novel spiral separation column will allow rapid and efficient separation of mixtures with high yield of the

  8. Near-Atomic Resolution Structure Determination in Over-Focus with Volta Phase Plate by Cs-Corrected Cryo-EM.

    Science.gov (United States)

    Fan, Xiao; Zhao, Lingyun; Liu, Chuan; Zhang, Jin-Can; Fan, Kelong; Yan, Xiyun; Peng, Hai-Lin; Lei, Jianlin; Wang, Hong-Wei

    2017-10-03

    Volta phase plate (VPP) is a recently developed transmission electron microscope (TEM) apparatus that can significantly enhance the image contrast of biological samples in cryoelectron microscopy, and therefore provide the possibility to solve structures of relatively small macromolecules at high-resolution. In this work, we performed theoretical analysis and found that using phase plate on objective lens spherical aberration (Cs)-corrected TEM may gain some interesting optical properties, including the over-focus imaging of macromolecules. We subsequently evaluated the imaging strategy of frozen-hydrated apo-ferritin with VPP on a Cs-corrected TEM and obtained the structure of apo-ferritin at near-atomic resolution from both under- and over-focused dataset, illustrating the feasibility and new potential of combining VPP with Cs-corrected TEM for high-resolution cryo-EM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Scanning hard X-ray microscope with tantalum phase zone plate at the Hyogo-BL (BL24XU) of SPring-8

    CERN Document Server

    Kagoshima, Y; Ibuki, T; Yokoyama, Y; Hashida, T; Yokoyama, K; Takeda, S; Urakawa, M; Miyamoto, N; Tsusaka, Y; Matsui, J; Aino, M

    2001-01-01

    A scanning hard X-ray microscope using a phase zone plate made of tantalum as its X-ray focusing device is in operation at the Hyogo-BL (BL24XU) of SPring-8. The X-ray microbeam has a size of 0.8 mu mx0.7 mu m at the photon energy of 10 keV, which can make visible structures as fine as 250-nm line-and-space pattern. The photon flux density at the sample position is approx 2x10 sup 9 phs/s/mu m sup 2 and the gain of the phase zone plate is approx 3000. The minimum detection limits irradiated by the microbeam are evaluated to be around 10 ppm for some trace elements contained in standard reference materials of glass matrices. X-ray images obtained so far demonstrate a high feasibility of the microscope.

  10. SPIRAL2 Week 2011 - Slides of the presentations

    International Nuclear Information System (INIS)

    Gales, S.; Jacquemet, M.; Lewitowicz, M.; Petit, E.; Biarrote, J.L.; Uriot, D.; Thuillier, T.; Peaucelle, C.; Barue, C.; Van Hille, C.; Bernaudin, P.E.; Galdemard, P.; Ausset, P.; Dolegieviez, P.; Levallois, R.; Marchetto, M.; Pasini, M.; Quiclet, M.; Danna, O.; Lunney, D.; Di Giacomo, M.

    2013-01-01

    The main goal of the meeting is to present and discuss the current status of the SPIRAL2 project at GANIL in front of a large community of scientists and engineers. The program of the meeting will include presentations on scientific and technical developments related to the baseline project, experiments and theory. The main topics to be discussed at the conference have been: -) Driver Accelerators, -) Production of radioactive ion beams (RIB), -) Safety, -) RIB Facilities Worldwide (FAIR, Riken Nishina Center, SPES project, FRIB project) -) FP7 SPIRAL2 Preparatory Phase, -) Experiments with RIB and Theory. This document is made up of the slides of the presentations

  11. Spiral Inflector For Compact Cyclotron

    CERN Document Server

    Karamysheva, G A

    2004-01-01

    Compact cyclotron for explosives detection by nuclear resonance absorption of γ-rays in nitrogen is under development [1] Cyclotron will be equipped with the external ion source. The injection system consists of a double-drift beam bunching system, a spiral inflector, beam diagnostics, focusing and adjustment elements [2]. The spiral inflector for ion bending from axial to median plane is used. Computer model of spiral inflector for the Customs cyclotron is developed. 3D electrostatic field calculations of the designed inflector are performed. Calculated electric field map and magnetic field map of the cyclotron [3] are used for beam dynamic simulations. Numeric simulations are carried out for 500 particles using code for calculation of particle dynamics by integration of differential equations in Cartesian coordinate system written in MATLAB. Direct Coulomb particle-to-particle method is used to take into account space-charge effects.

  12. Spiralizations and tropisms in Arabidopsis roots.

    Science.gov (United States)

    Migliaccio, F; Piconese, S

    2001-12-01

    When Arabidopsis seedlings are grown on a hard-agar plate, their primary roots show characteristic spiralling movements, apparent as waves, coils and torsions, together with a slanting toward the right-hand side. All these movements are believed to be the result of three different processes acting on the roots: circumnutation, positive gravitropism and negative thigmotropism. The basic movement of the roots is described as that of a growing right-handed helix, which, because of the root tip hitting the agar plate, is continuously switched from the right-hand to the left-hand of the growth direction, and vice versa. This movement also produces a slanting root-growth direction toward the right-hand because of the incomplete waves made by the right-handed root to the left-hand. By contrast, the torsions seen in the coils and waves are interpreted as artefacts that form as an adaptation of the three-dimensional root helix to the flat two-dimensional agar surface.

  13. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  14. Quasicrystallography on the spiral of Archimedes

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1990-01-01

    The concept of a spiral lattice is discussed. Some examples of known mineral structures, namely clino asbestos, halloysite and cylindrite, are then interpreted in terms of this structural principle. An example of a synthetic sulphide catalyst spiral structure having atomic dimensions is also described. All of these inorganic spiral structures are based on the sprial of Archimedes. The principles for a new type of crystallography, based on the Archimedian spiral, are then presented. 45 refs., 8 figs

  15. Inspired Spirals. Teaching Art with Art.

    Science.gov (United States)

    Hubbard, Guy

    2001-01-01

    Discusses spirals in nature, man-made objects, and art. Focuses on art that incorporates the spiral, including works by M. C. Escher and Frank Lloyd Wright, an African headdress, and a burial urn. Describes activities to help students make spirals of their own, such as constructing a coil clay pot. (CMK)

  16. The Spiral Pattern During Development*

    African Journals Online (AJOL)

    1971-08-07

    Aug 7, 1971 ... which are destined to become the limb areas bud out laterally. Fig. 8. The early cells, which are destined to develop into the upper and the lower limbs, after lateral budding has occurred. Fig. 11 demonstrates the human embryo of about 5 mm. CR length and age of about 32 days. The spiral pattern is.

  17. A study of spiral galaxies

    International Nuclear Information System (INIS)

    Wevers, B.M.H.R.

    1984-01-01

    Attempts have been made to look for possible correlations between integral properties of spiral galaxies as a function of morphological type. To investigate this problem, one needs the detailed distribution of both the gaseous and the stellar components for a well-defined sample of spiral galaxies. A sample of about 20 spiral galaxies was therefore defined; these galaxies were observed in the 21 cm neutral hydrogen line with the Westerbork Synthesis Radio Telescope and in three broad-band optical colours with the 48-inch Palomar Smidt Telescope. First, an atlas of the combined radio and optical observations of 16 nearby northern-hemisphere spiral galaxies is presented. Luminosity profiles are discussed and the scale lengths of the exponential disks and extrapolated central surface brightnesses are derived, as well as radial color distributions; azimuthal surface brightness distributions and rotation curves. Possible correlations with optical features are investigated. It is found that 20 to 50 per cent of the total mass is in the disk. (Auth.)

  18. Numerical Simulation of the Heat Transfer Behavior of a Zigzag Plate Containing a Phase Change Material for Combustion Heat Recovery and Power Generation

    Directory of Open Access Journals (Sweden)

    Peilun Wang

    2016-01-01

    Full Text Available This study presents a numerical analysis of the melting process of phase change materials (PCMs within a latent heat thermal energy storage (LHTES system employing zigzag plate. The numerical model used NaCl-MgCl2 mixture as PCMs and hot air as heat transfer fluid (HTF. An experimental system was built to validate the model, and the experimental data agrees reasonably well with the simulation results. The simulation results revealed the effects of the Reynolds and Stefan numbers and the surface topography of the zigzag plate on the charging process. Besides, the effect of the relationship between Reynolds and Stefan numbers on the charging process under a new boundary condition employing a fixed input power was studied. It is found that by modifying the shape of the zigzag plate surface it is feasible to enhance the heat transfer of the LHTES unit remarkably. The melting rate of PCMs increases with the value of Ste or Re numbers with only one of them changing; however, the melting rate of PCMs decreases with the increasing Ste (or decreasing Re in a fixed input power condition.

  19. Grand-design Spiral Arms in a Young Forming Circumstellar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Tomida, Kengo; Lin, Chia Hui [Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Hosokawa, Takashi [Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Sakurai, Yuya, E-mail: tomida@vega.ess.sci.osaka-u.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2017-01-20

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.

  20. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  1. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  2. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  3. EM-wave absorption properties of hollow spiral iron particles

    International Nuclear Information System (INIS)

    Zhang, Wenqiang; Zhang, Deyuan

    2015-01-01

    Hollow iron spiral particles were fabricated successfully by thermal decomposition method, and they were heat-treated at different temperatures in N 2 atmosphere. The electromagnetic wave absorption properties of hollow iron spiral particles were investigated ranging between 1 GHz and 18 GHz. The results indicated that the phase structures of the particles changed from amorphous to nanocrystal with the treating temperature rising, also causing the significant change in electromagnetic parameters and the reflection loss. The reflection loss could reach −33 dB at 16.2 GHz, indicating that the hollow iron spiral particles had the potential to be used in prepare the a high property EM-wave absorber. - Highlights: • Hollow iron spiral particles were fabricated by thermal decomposition method. • The particles changed from amorphous to nanocrystals with heat-treatment. • Particles’ EM-parameters have a great change after high temperature heat-treatment. • RL results show the particles have potential to be high property EM-wave absorber

  4. Multiferroic Magnetic Spirals Induced by Random Magnetic Exchanges

    Science.gov (United States)

    Scaramucci, Andrea; Shinaoka, Hiroshi; Mostovoy, Maxim V.; Müller, Markus; Mudry, Christopher; Troyer, Matthias; Spaldin, Nicola A.

    2018-01-01

    Multiferroism can originate from the breaking of inversion symmetry caused by magnetic-spiral order. The usual mechanism for stabilizing a magnetic spiral is competition between magnetic exchange interactions differing by their range and sign, such as nearest-neighbor and next-nearest-neighbor interactions. In insulating compounds, it is unusual for these interactions to be both comparable in magnitude and of a strength that can induce magnetic ordering at room temperature. Therefore, the onset temperatures for multiferroism through this mechanism are typically low. By considering a realistic model for multiferroic YBaCuFeO5 , we propose an alternative mechanism for magnetic-spiral order, and hence for multiferroism, that occurs at much higher temperatures. We show, using Monte Carlo simulations and electronic structure calculations based on density functional theory, that the Heisenberg model on a geometrically nonfrustrated lattice with only nearest-neighbor interactions can have a spiral phase up to high temperature when frustrating bonds are introduced randomly along a single crystallographic direction as caused, e.g., by a particular type of chemical disorder. This long-range correlated pattern of frustration avoids ferroelectrically inactive spin-glass order. Finally, we provide an intuitive explanation for this mechanism and discuss its generalization to other materials.

  5. Spontaneous spiral formation in two-dimensional oscillatory media

    Science.gov (United States)

    Kettunen, Petteri; Amemiya, Takashi; Ohmori, Takao; Yamaguchi, Tomohiko

    1999-08-01

    Computational studies of pattern formation in a modified Oregonator model of the Belousov-Zhabotinsky reaction is described. Initially inactive two-dimensional reaction media with an immobilized catalyst is connected to a reservoir of fresh reactants through a set of discrete points distributed randomly over the interphase surface. It is shown that the diffusion of reactants combined with oscillatory reaction kinetics can give rise to spontaneous spiral formation and phase waves.

  6. Hard-X-Ray Phase-Difference Microscopy Using a Fresnel Zone Plate and a Transmission Grating

    International Nuclear Information System (INIS)

    Yashiro, W.; Takeda, Y.; Momose, A.; Takeuchi, A.; Suzuki, Y.

    2009-01-01

    Novel hard x-ray phase imaging microscopy that simply uses an objective and a transmission grating is described. The microscope generated an image that exhibited twin features of a sample with an opposite phase contrast having a separation of a specific distance. Furthermore, the twin features were processed to generate an image mapping the x-ray phase shift through a simple algorithm. The presence of the grating did not degrade the spatial resolution of the microscope. The sensitivity of our microscope to light elements was about 2 orders of magnitude higher than that of the absorption contrast microscope that was attained by simply removing the grating. Our method is attractive for easily appending a quantitative phase-sensitive mode to normal x-ray microscopies, and it has potentially broad applications in biology and material sciences.

  7. Sliding-slab three-dimensional TSE imaging with a spiral-In/Out readout.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Dinghui; Robison, Ryan K; Zwart, Nicholas R; Schär, Michael; Karis, John P; Pipe, James G

    2016-02-01

    T2 -weighted imaging is of great diagnostic value in neuroimaging. Three-dimensional (3D) Cartesian turbo spin echo (TSE) scans provide high signal-to-noise ratio (SNR) and contiguous slice coverage. The purpose of this preliminary work is to implement a novel 3D spiral TSE technique with image quality comparable to 2D/3D Cartesian TSE. The proposed technique uses multislab 3D TSE imaging. To mitigate the slice boundary artifacts, a sliding-slab method is extended to spiral imaging. A spiral-in/out readout is adopted to minimize the artifacts that may be present with the conventional spiral-out readout. Phase errors induced by B0 eddy currents are measured and compensated to allow for the combination of the spiral-in and spiral-out images. A nonuniform slice encoding scheme is used to reduce the truncation artifacts while preserving the SNR performance. Preliminary results show that each of the individual measures contributes to the overall performance, and the image quality of the results obtained with the proposed technique is, in general, comparable to that of 2D or 3D Cartesian TSE. 3D sliding-slab TSE with a spiral-in/out readout provides good-quality T2 -weighted images, and, therefore, may become a promising alternative to Cartesian TSE. © 2015 Wiley Periodicals, Inc.

  8. Spiral 2 the scientific objectives

    International Nuclear Information System (INIS)

    2006-06-01

    The French ministry of research took the decision to build Spiral-2 in May 2005. Its construction costs are estimated to 130 million euros while its operating costs will near 8.5 million euros per year. The construction works will last 5 years. The Spiral-2 facility is based on a high power, superconducting driver Linac, which will deliver a high intensity, 40 MeV deuteron beam as well as a variety of heavy-ion beams with mass over charge ratio equal to 3 and energy up to 14.5 MeV/nucleon. Using a carbon converter, fast neutrons from the breakup of the 5 mA of deuterons impinging on a uranium carbide target will induce a rate of up to 10 14 fissions/s. The radioactive ion beam intensities in the mass range from A = 60 to 140 will be of the order of 10 6 to 10 11 particles/s surpassing by one or two orders-of-magnitude any existing facility in the world. A direct irradiation of the UC 2 target with 3,4 He, 6,7 Li or 12 C may also be used. Different production targets will be used to produce high-intensity beams of light radioactive species with the Isol technique. The extracted radioactive ion beam will be accelerated to energies up to 20 MeV/nucleons by the existing Cime cyclotron. One of the most important features of the future Ganil accelerator complex will be the capability of delivering up to 5 stable or radioactive beams simultaneously in the energy range from the keV to several tens of MeV/nucleons. The document details also the future contribution of Spiral-2 concerning the structure of exotic nuclei, the thermodynamical aspects of nuclear matter, nucleosynthesis, the fundamental basic interactions, and the use of neutrons. (A.C.)

  9. Spiral 2 the scientific objectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    The French ministry of research took the decision to build Spiral-2 in May 2005. Its construction costs are estimated to 130 million euros while its operating costs will near 8.5 million euros per year. The construction works will last 5 years. The Spiral-2 facility is based on a high power, superconducting driver Linac, which will deliver a high intensity, 40 MeV deuteron beam as well as a variety of heavy-ion beams with mass over charge ratio equal to 3 and energy up to 14.5 MeV/nucleon. Using a carbon converter, fast neutrons from the breakup of the 5 mA of deuterons impinging on a uranium carbide target will induce a rate of up to 10{sup 14} fissions/s. The radioactive ion beam intensities in the mass range from A = 60 to 140 will be of the order of 10{sup 6} to 10{sup 11} particles/s surpassing by one or two orders-of-magnitude any existing facility in the world. A direct irradiation of the UC{sub 2} target with {sup 3,4}He, {sup 6,7}Li or {sup 12}C may also be used. Different production targets will be used to produce high-intensity beams of light radioactive species with the Isol technique. The extracted radioactive ion beam will be accelerated to energies up to 20 MeV/nucleons by the existing Cime cyclotron. One of the most important features of the future Ganil accelerator complex will be the capability of delivering up to 5 stable or radioactive beams simultaneously in the energy range from the keV to several tens of MeV/nucleons. The document details also the future contribution of Spiral-2 concerning the structure of exotic nuclei, the thermodynamical aspects of nuclear matter, nucleosynthesis, the fundamental basic interactions, and the use of neutrons. (A.C.)

  10. The rotation of spiral galaxies.

    Science.gov (United States)

    Rubin, V C

    1983-06-24

    There is accumulating evidence that as much as 90 percent of the mass of the universe is nonluminous and is clumped, halo-like, around individual galaxies. The gravitational force of this dark matter is presumed to be responsible for the high rotational velocities of stars and gas in the disks of spiral galaxie. At present, the form of the dark matter is unknown. Possible candidates span a range in mass of 10(70), from non-zero-mass neutrinos to massive black holes.

  11. Comparison of solid-phase cytometry and the plate count method for the evaluation of the survival of bacteria in pharmaceutical oils.

    Science.gov (United States)

    De Prijck, K; Peeters, E; Nelis, H J

    2008-12-01

    To compare the survival of four bacterial strains (Escherichia coli, Proteus mirabilis, Staphylococcus aureus, Pseudomonas aeruginosa) in pharmaceutical oils, including jojoba oil/tea tree oil, carbol oil, jojoba oil and sesame oil. Oils were spiked with the test bacteria in a concentration of 10(4) CFU ml(-1). Bacteria were extracted from oils with phosphate-buffered saline containing 0.5% Tween 20. Aliquots of the pooled water layers were analysed by solid-phase cytometry and plate counting. Plate counts dropped to zero for all test strains exposed for 24 h to three of the four oils. In contrast, significant numbers of viable cells were still detected by SPC, except in the jojoba oil/tea tree oil mixture and partly in sesame oil. Exposure of bacteria for 24 h to the two oils containing an antimicrobial led to a loss of their culturability but not necessarily of their viability. The antibacterial activity of the jojoba oil/tea tree oil mixture supersedes that of carbol oil. These in vitro data suggest that the jojoba oil/tea tree oil mixture more than carbol oil inhibits bacterial proliferation when used for intermittent self-catherization.

  12. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  13. The DESIR Facility at SPIRAL2

    Indian Academy of Sciences (India)

    Beams from the low-energy branch of the separator spectrometer S3 and from SPIRAL1 will allow complementary studies of refrac- tory elements produced by means of fusion reactions as well as of light and intense exotic beams, respectively. Keywords. SPIRAL2; low-energy facility; nuclear physics; weak interaction; astro-.

  14. ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T

    In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is

  15. Scaling effects in spiral capsule robots.

    Science.gov (United States)

    Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan

    2017-04-01

    Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2  m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.

  16. QS Spiral: Visualizing Periodic Quantified Self Data

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Cuttone, Andrea; Jørgensen, Sune Lehmann

    2013-01-01

    In this paper we propose an interactive visualization technique QS Spiral that aims to capture the periodic properties of quantified self data and let the user explore those recurring patterns. The approach is based on time-series data visualized as a spiral structure. The interactivity includes ...

  17. A Self-Complementary 1.2 to 40 GHz Spiral Antenna with Impedance Matching

    Directory of Open Access Journals (Sweden)

    M. Mazanek

    2006-09-01

    Full Text Available This paper describes a design of the Self- Complementary Spiral Antenna (SCSA which consists of a spiral antenna and a wideband impedance transformer. The spiral antenna and the transformer are designed separately due to computing demands. New knowledge about current distribution on the spiral antenna and influence of higher numbers of wavelength in circumference is presented. The novel transition between feeding and radiating antenna structure are optimized in the frequency range 1.2 to 40 GHz. The meaning of the transition in the paper includes the impedance as well as the geometry transforming of the structure. The antenna is suitable for wideband illuminating of a parabolic reflector due to relatively constant phase center and radiation pattern with frequency.

  18. Coupled Bending-Torsional Nonlinear Vibration and Bifurcation Characteristics of Spiral Bevel Gear System

    Directory of Open Access Journals (Sweden)

    Jinli Xu

    2017-01-01

    Full Text Available A spiral bevel gear system supported on thrust bearings considering the coupled bending-torsional nonlinear vibration is proposed and an eight degrees of freedom (8DOF lumped parameter dynamic model of the spiral bevel gear system combined with time-varying stiffness, static transmission error, gear backlash, and bearing clearances is investigated. The spiral bevel gear system is analyzed with the equations of motion and the dynamic response is solved using the Runge-Kutta method. The effects of mesh frequency, mesh damping coefficient, load coefficient, and gear backlash are revealed, which describe the true mesh characteristics of the spiral bevel gear system. The bifurcation characteristics as jump discontinuities, periodic windows, and chaos are obtained by studying time histories, phase plane portraits, Poincaré maps, Fourier spectra, and global bifurcation diagrams of the gear system. The results presented in this study provide some useful information for engineers in designing and controlling such gear systems.

  19. Spiral actin-polymerization waves can generate amoeboidal cell crawling

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, A.; Aranson, I. S.; Kruse, K.

    2014-05-01

    Amoeboidal cell crawling on solid substrates is characterized by protrusions that seemingly appear randomly along the cell periphery and drive the cell forward. For many cell types, it is known that the protrusions result from polymerization of the actin cytoskeleton. However, little is known about how the formation of protrusions is triggered and whether the appearance of subsequent protrusions is coordinated. Recently, the spontaneous formation of actin-polymerization waves was observed. These waves have been proposed to orchestrate the cytoskeletal dynamics during cell crawling. Here, we study the impact of cytoskeletal polymerization waves on cell migration using a phase-field approach. In addition to directionally moving cells, we find states reminiscent of amoeboidal cell crawling. In this framework, new protrusions are seen to emerge from a nucleation process, generating spiral actin waves in the cell interior. Nucleation of new spirals does not require noise, but occurs in a state that is apparently displaying spatio-temporal chaos.

  20. Decametre scale, spiral-shaped landforms in Elysium Planitia, Mars

    Science.gov (United States)

    Balme, M. R.; Gallagher, C.

    2012-04-01

    We present the discovery of a new type of landform that is apparently confined to one or two locations in western Elysium Planitia, Mars. In planview, these landforms consist of spirals, a few tens of metres across, defined by low furrows and ridges. They appear singly or in loose groups or chains and are generally double-armed with a visual similarity to Kelvin-Helmholtz instability forms. About 100 examples have been found, over 90% of which occur in a single image. Almost all the examples seen have "anti-clockwise" rotation (from the edge to the centre); less than a fifth spiral the other way. The spirals are found only in the polygonised elements of a terrain type known as Platy-Ridged-Polygonised (PRP) terrain. This distinctive surface displays a tripartite morphology comprising: 1) well-defined, kilometre-scale plates of rubbly material (clast-sizes up to a few meters in diameters), 2) complex patterns of sinuous to sub-linear rubbly ridges that are often many kilometres long, less than a few tens of metres across and less than a few metres in height, and 3) clast-free zones between the plates that display decametre scale polygonally patterned ground defined by networks of furrows and grooves. PRP terrain appears to represent the "frozen" remnants of a once liquid medium: it is extremely flat with margins defining an equipotential surface; infills craters and drapes low relief terrain; can be traced up through the 300 km long Athabasca Vallis outflow channel to a source region consisting of a pair of large (km-wide) fractures called the Cerberus Fossae. The origin of the PRP material is debated: some authors favour extremely fluid, voluminous and turbulently emplaced lavas (e.g. Keszthelyi et al., Geochem. Geophys. Geosys., 2003), others argue that this material represents a debris-covered relict frozen sea or ocean (e.g. Murray et al., Nature, 2005). The spirals, which are visible only in HiRISE images with sub-metre spatial resolution, have been observed in

  1. Detection of hepatocellular carcinoma with multi-slice spiral CT by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... spiral CT by using double-arterial phase and portal venous phase enhanced scanning: Effect of iodine concentration of contrast material. Jian-shou Zhou1, Yi Huan1*, Meng-qi Wei1 and Xin-qing Jiang2. 1Department of Radiology, Xijing Hospital, Fourth Military Medical University, Chang Le Western Road ...

  2. Contributions of the German Research Center for Geosciences (GFZ) to the EPOS (European Plate Observing System) Implementation Phase 2015-18

    Science.gov (United States)

    Hoffmann, T. L.; Lauterjung, J.

    2017-12-01

    The European Plate Observing System project is currently approaching the end of year two of its four-year Implementation Phase 2015-18 (EPOS-IP). Under the Horizon 2020 Programme INFRADEV-3, the EPOS cyberinfrastructure is being established as an ERIC (European Research Infrastructure Consortium) and encompasses the implementation of both the EPOS Integrated Core Services (ICS) for solid Earth Science and a multitude of EPOS Thematic Core Services (TCS). During year two, a basic set of ICS and TCS services was developed and implemented, so that in October 2017 the validation phase (year 3) of EPOS is ready to be launched. Up to now, various TCS-Elements have integrated different Service Providers (SD) that are delivering Data, Data Products, Services and Software (DDSS) to their specific scientific community. As one of the 29 awardees of the EC grant, the German Research Center for Geosciences (GFZ) plays an important role in the implementation of EPOS and its Thematic and Integrated Core Services. The presented poster will give an overview of GFZ's participation in the work of nine technical EPOS Work Packages (WP7 ICS Development, WP8 Seismology, WP11 Volcano Observations, WP12 Satellite Data, WP13 Geomagnetic Observations, WP14 Anthropogenic Hazards, WP15 Geological Information and Modelling, WP16 Multi-Scale Laboratories and WP17 Geo Energy Test Beds) as well as in four administrative EPOS Work Packages (WP2 Communication, WP3 Harmonization, WP4 Legal & Governance, and WP5 Financial).

  3. Shadows and spirals in the protoplanetary disk HD 100453

    Science.gov (United States)

    Benisty, M.; Stolker, T.; Pohl, A.; de Boer, J.; Lesur, G.; Dominik, C.; Dullemond, C. P.; Langlois, M.; Min, M.; Wagner, K.; Henning, T.; Juhasz, A.; Pinilla, P.; Facchini, S.; Apai, D.; van Boekel, R.; Garufi, A.; Ginski, C.; Ménard, F.; Pinte, C.; Quanz, S. P.; Zurlo, A.; Boccaletti, A.; Bonnefoy, M.; Beuzit, J. L.; Chauvin, G.; Cudel, M.; Desidera, S.; Feldt, M.; Fontanive, C.; Gratton, R.; Kasper, M.; Lagrange, A.-M.; LeCoroller, H.; Mouillet, D.; Mesa, D.; Sissa, E.; Vigan, A.; Antichi, J.; Buey, T.; Fusco, T.; Gisler, D.; Llored, M.; Magnard, Y.; Moeller-Nilsson, O.; Pragt, J.; Roelfsema, R.; Sauvage, J.-F.; Wildi, F.

    2017-01-01

    Context. Understanding the diversity of planets requires studying the morphology and physical conditions in the protoplanetary disks in which they form. Aims: We aim to study the structure of the 10 Myr old protoplanetary disk HD 100453, to detect features that can trace disk evolution and to understand the mechanisms that drive these features. Methods: We observed HD 100453 in polarized scattered light with VLT/SPHERE at optical (0.6 μm, 0.8 μm) and near-infrared (1.2 μm) wavelengths, reaching an angular resolution of 0.02'', and an inner working angle of 0.09''. Results: We spatially resolve the disk around HD 100453, and detect polarized scattered light up to 0.42'' ( 48 au). We detect a cavity, a rim with azimuthal brightness variations at an inclination of 38° with respect to our line of sight, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of 119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by 72°. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim induces an azimuthal variation of the scale height that can contribute to the brightness variations. Conclusions: Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. However, the origin of such a misalignment in HD 100453, and

  4. Analisa Kekuatan Spiral Bevel Gear Dengan Variasi Sudut Spiral Menggunakan Metode Elemen Hingga

    Directory of Open Access Journals (Sweden)

    Deta Rachmat Andika

    2017-01-01

    Full Text Available Seiring perkembangan zaman,  teknologi roda gigi dituntut untuk mampu mentransmisikan daya yang besar dengan efisiensi yang besar pula. Pada jenis intersecting shaft gear, tipe roda gigi payung spiral (spiral bevel gear  merupakan perkembangan dari roda gigi payung bergigi lurus (straight bevel gear. Kelebihan dari spiral bevel gear antara  lain adalah kemampuan transmisi daya dan efisiensi yang lebih besar pada geometri yang sama serta tidak terlalu berisik. Akan tetapi spiral bevel gear juga mempunyai kelemahan jika dibandingkan dengan straight bevel gear. Selain proses manufaktur yang lebih rumit, profil lengkung gigi spiral ini membuat distribusi tegangan yang terjadi menjadi lebih rumit untuk dimodelkan dengan persamaan matematika. Salah satu pendekatan yang dapat dilakukan adalah dengan menggunakan metode elemen hingga. Penelitian diawali dengan membuat model dari straight bevel gear dan juga spiral bevel gear yang sudut spiralnya divariasikan 20, 35, dan 45 derajat. Model dibuat dengan dimensi yang sama baik diameter maupun jumlah gigi gear. Langkah selanjutnya yaitu perhitungan analitis pada straight bevel gear dimana hasilnya akan dibandingkan dengan hasil simulasi statis. Setelah eror yang terjadi dibawah 15% maka dilakukan simulasi dinamis pada semua model yang telah dibuat yaitu straight bevel dan juga spira bevel gear. Hasil yang didapatkan dari penelitian ini adalah secara keseluruhan spiral bevel gear lebih kuat daripada straight bevel gear pada dimensi dan beban yang sama jika dilihat dari lebih kecilnya tegangan bending dan tegangan kontak maksimum yang terjadi. Tegangan terbesar terjadi pada jenis straight bevel gear baik pada tegangan bending maupun tegangan kontak sedangkan spiral bevel gear dengan variasi sudut Seiring spiral 35 mempunyai nilai tegangan terkecil. Prosntase selisih tegangan bending maksimum yang terjadi antara straight bevel gear dan spiral bevel gear dengan variasi sudut spiral 35 derajat  sebesar 44

  5. On Density Waves in Spiral Galaxies

    Science.gov (United States)

    Grosbol, P.; Patsis, P. A.

    The spiral structure of five ordinary spiral galaxies was studied using deep BVIK' surface photometry maps obtained at the 2.2m ESO/MPI telescope. The detailed shape of the arms was analyzed in terms of the spiral density wave theory. Grand design spirals were found on the K' maps in all five galaxies although at least two would be classified as flocculent on the blue images. In several of the galaxies, bulges with weak oval distortion (~10%) were observed. Dust spirals also continue, in some cases, inside the ILR where the stellar arms terminate. This emphasizes the strong bias of morphological classifications of spiral galaxies based on blue image due to dust and young stars. The 2--armed spirals were systematically found to be wound tighter on I than on K' maps suggesting the existence of a density wave. Locations of the ILR and the 4/1 resonance were estimated based on the arm morphology and the amplitude ratio between the m = 2,4 Fourier components. The wavenumber of the stellar 2--armed pattern is increasing towards the ILR which could suggest that the density wave is associated to the long waved branch of the dispersion relation. A possible scenario is discussed.

  6. Spiral arms in thermally stratified protoplanetary discs

    Science.gov (United States)

    Juhász, Attila; Rosotti, Giovanni P.

    2018-02-01

    Spiral arms have been observed in nearly a dozen protoplanetary discs in near-infrared scattered light and recently also in the submillimetre continuum. While one of the most compelling explanations is that they are driven by planetary or stellar companions, in all but one cases such companions have not yet been detected and there is even ambiguity on whether the planet should be located inside or outside the spirals. Here, we use 3D hydrodynamic simulations to study the morphology of spiral density waves launched by embedded planets taking into account the vertical temperature gradient, a natural consequence of stellar irradiation. Our simulations show that the pitch angle of the spirals in thermally stratified discs is the lowest in the disc mid-plane and increases towards the disc surface. We combine the hydrodynamic simulations with 3D radiative transfer calculations to predict that the pitch angle of planetary spirals observed in the near-infrared is higher than in the submillimetre. We also find that in both cases the spirals converge towards the planet. This provides a new powerful observational method to determine if the perturbing planet is inside or outside the spirals, as well as map the thermal stratification of the disc.

  7. Two-phase southward subduction of the Mongol-Okhotsk oceanic plate constrained by Permian-Jurassic granitoids in the Erguna and Xing'an massifs (NE China)

    Science.gov (United States)

    Liu, Huichuan; Li, Yinglei; He, Hongyun; Huangfu, Pengpeng; Liu, Yongzheng

    2018-04-01

    Geodynamics of the Mongol-Okhotsk oceanic plate southward subduction are still pending problems. This paper presents new zircon LA-ICP-MS U-Pb age and whole-rock geochemical data for the middle Permian to Middle Jurassic granitoids in the western Erguna and central Xing'an massifs. 267-264 Ma, 241 Ma and 173 Ma I-type granites, and 216 Ma A-type granites were identified in the Erguna and Xing'an massifs (NE China). The I-type granites were produced by partial melting of the lower mafic crust. The 216 Ma A-type granites were derived from partial melting of crustal materials with tonalitic to granodioritic compositions. The 267-264 Ma and 241 Ma I-type granites were generated in an Andean-type arc setting, wheras the 216 Ma A-type and 173 Ma granites were formed in supra subduction extensional setting. We summarized previous age data of the middle Permian to Middle Jurassic magmtaic rocks in the Erguna and Xing'an Massifs and identified two isolated phases of magmatic activity including the ca. 267-225 Ma and ca. 215-165 Ma periods, with a significant magmatic gap at ca. 225-215 Ma. These middle Permian to Middle Jurassic magmatic rocks are closely related to the southward subduction of the Mongol-Okhotsk ocean. A two-stage tectonic evolutionary model was proposed to account for these geological observations in the Erguna and Xing'an massifs, involving Permian to Middle Triassic continuous southward subduction of the Mongol-Okhotsk oceanic plate and Late Triassic to Jurassic slab-rollback and supra subduction extension.

  8. Duration of convergence at the Pacific-Gondwana plate margin: insights from accessory phase petrochronology of the Alpine Schist, New Zealand

    Science.gov (United States)

    Briggs, S. I.; Cottle, J. M.; Smit, M. A.; Arnush, N. F.

    2016-12-01

    The timing, duration and along-strike synchroneity of metamorphism and anataxis in the Alpine Schist of New Zealand is a matter of considerable debate. Our preliminary data indicate that metamorphism resulting in garnet growth occurred from 97 - 75 Ma, and anatectic melting occurred from 80 - 51 Ma. These events are contemporaneous with rifting of Zealandia from East Gondwana, and Tasman Sea spreading from 83 - 52 Ma. An important implication of these results is that Late Cretaceous convergence along the Zealandia segment of the Pacific-Gondwana plate margin may have persisted much later than previously thought, and that convergence and extension occurred coevally in adjacent areas. This poses the question: for how long did convergence continue along the Pacific-Gondwana plate margin during East Gondwana breakup? To fully decipher the multiple stages of the complex metamorphic history recorded in the Alpine Schist, we combine Lu-Hf garnet geochronology with U-Th/Pb and REE analyses of zircon and monazite. We use the newly developed `single-shot laser ablation split stream' (SS-LASS) analysis method to obtain depth profiles through 5-10 µm metamorphic zircon overgrowths at 100 nm depth resolution to constrain both the timing and petrological context of discrete metamorphic zircon (re-)crystallization events recorded in the Alpine Schist. We also employ high spatial resolution LASS analysis to target rare 5 - 20 µm monazite in thin section to augment garnet and zircon data. Our multi-accessory phase petrochronology approach is capable of resolving discrete short-duration thermal events, strengthening the geological interpretation of `mean' Lu-Hf garnet ages and discerning between an episodic versus a prolonged history of metamorphism. In addition, comparison with geochronology from anatectic pegmatites clarifies the temporal relationship between metamorphism and melting in the Alpine Schist, while providing direct constraints on the timing and duration of

  9. Planetary-like spirals caused by moving shadows in transition discs

    Science.gov (United States)

    Montesinos, Matías; Cuello, Nicolás

    2018-03-01

    Shadows and spirals seem to be common features of transition discs. Among the spiral-triggering mechanisms proposed, only one establishes a causal link between shadows and spirals so far. In fact, provided the presence of shadows in the disc, the combined effect of temperature gradient and differential disc rotation creates strong azimuthal pressure gradients. After several thousand years, grand-design spirals develop in the gas phase. Previous works have only considered static shadows caused by an inclined inner disc. However, in some cases, the inner regions of circumbinary discs can break and precess. Thus, it is more realistic to consider moving shadow patterns in the disc. In this configuration, the intersection between the inner and the outer discs defines the line of nodes at which the shadows are cast. Here, we consider moving shadows and study the resulting circumbinary disc structure. We find that only static and prograde shadows trigger spirals, in contrast to retrograde ones. Interestingly, if a region of the disc corotates with the shadow, a planet-like signature develops at the co-rotation position. The resulting spirals resemble those caused by a planet embedded in the disc, with similar pitch angles.

  10. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  11. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  12. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  13. Cylindrical spirals in human skeletal muscle.

    Science.gov (United States)

    Carpenter, S; Karpati, G; Robitaille, Y; Melmed, C

    1979-01-01

    Muscle biopsies from two patients revealed that numerous type 2 fibers contained large abnormal areas filled with cylindrical spirals. The cytochemical profile of these cylindrical spirals was sufficiently characteristic that they could be distinguished from tubular aggregates. Their electron microscopic appearance was unmistakable. Their origin and significance are uncertain. The diverse nature of the patients' conditions (cramps and malignancy, and an unusual form of spinocerebellar degeneration) indicate that these abnormal structures are not disease specific.

  14. Wavelet Scattering on the Pitch Spiral

    OpenAIRE

    Lostanlen, Vincent; Mallat, Stéphane

    2016-01-01

    We present a new representation of harmonic sounds that linearizes the dynamics of pitch and spectral envelope, while remaining stable to deformations in the time-frequency plane. It is an instance of the scattering transform, a generic operator which cascades wavelet convolutions and modulus nonlinearities. It is derived from the pitch spiral, in that convolutions are successively performed in time, log-frequency, and octave index. We give a closed-form approximation of spiral scattering coe...

  15. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  16. Chiralities of spiral waves and their transitions

    Science.gov (United States)

    Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong

    2013-06-01

    The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.

  17. Contributions of the German Research Center for Geosciences (GFZ) to the EPOS Implementation Phase 2015-18 (European Plate Observing System)

    Science.gov (United States)

    Hoffmann, T. L.; Lauterjung, J.

    2016-12-01

    The European Plate Observing System project is currently approaching the end of year one of its four-year Implementation Phase 2015-18 (EPOS-IP). Established under the Horizon 2020 Programme INFRADEV-3, the EPOS cyberinfrastructure is being established as an ERIC (European Research Infrastructure Consortium) and encompasses the implementation of both the EPOS Integrated Core Services (ICS) for solid Earth Science and a multitude of EPOS Thematic Core Services (TCS). The TCS-Elements themselves will integrate a number of Service Providers that deliver Data, Data Products, Services and Software (DDSS) to their specific scientific community. As one of the 29 awardees of the EC grant, the German Research Center for Geosciences (GFZ) plays an important role in the implementation of EPOS and its Thematic and Integrated Core Services. The presented poster will give an overview of GFZ's participation in nine technical EPOS Work Packages (WP7 ICS Development, WP8 Seismology, WP11 Volcano Observations, WP12 Satellite Data, WP13 Geomagnetic Observations, WP14 Anthropogenic Hazards, WP15 Geological Information and Modelling, WP16 Multi-Scale Laboratories and WP17 Geo Energy Test Beds) as well as in four administrative EPOS Work Packages (WP2 Communication, WP3 Harmonization, WP4 Legal & Governance, and WP5 Financial).

  18. Experimental and numerical analyses on a plate heat exchanger with phase change for waste heat recovery at off-design conditions

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Di Battista, Davide; Fatigati, Fabio

    2015-11-01

    This paper analyzes the performances of an evaporator for small scale waste heat recovery applications based on bottoming Organic Rankine Cycles with net output power in the range 2-5 kW. The heat recovery steam generator is a plate heat exchanger with oil as hot stream and an organic fluid on the cold side. An experimental characterization of the heat exchanger was carried out at different operating points measuring temperatures, pressures and flow rates on both sides. The measurement data further allowed to validate a numerical model of the evaporator whereas heat transfer coefficients were evaluated comparing several literature correlations, especially for the phase-change of the organic fluid. With reference to a waste heat recovery application in industrial compressed air systems, multiple off-design conditions were simulated considering the effects of oil mass flow rate and temperature on the superheating of the organic fluid, a key parameter to ensure a proper operation of the expansion machine, thus of the energy recovery process.

  19. Spiral orbits and oscillations in historical evolution of empires

    Science.gov (United States)

    Cheon, Taksu; Poghosyan, Sergey S.

    2017-03-01

    We introduce the concept of metaasabiya, the second non-material resource, to the asabiya theory of historical dynamics. We find that the resulting three variable dynamical system has peculiar features such as repelling or attracting axes and spiraling orbits in the phase space. Depending on the initial state, the system can go through series of oscillatory rises and falls, mimicking the geopolitical evolution of real-world polities. These distinctive features, absent in conventional Lotka-Volterra type biological systems, reveal the hidden richness inherent in the asabiya theory.

  20. Enhancement pattern of small hepatic hemangioma: findings on multiphase spiral CT and dynamic MRI

    International Nuclear Information System (INIS)

    Choi, Byung In; Lee, Seung Koo; Kim, Myeong Jin; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To compare the enhancement characteristics of small hemangiomas seen on multiphase spiral CT and dynamic MR imaging. Thirteen patients with 20 hepatic hemangiomas less than 25mm in diameter underwent both multiphase spiral CT and dynamic MR imaging. All lesions were assigned to one of three classified into 3 categories according to the enhancement pattern seen on multiphase spiral CT : typical delayed pooling, atypical early enhancement, or continuous low attenuation. The enhancement patterns seen on spiral CT and on dynamic MRI were correlated. On CT scans, ten lesions (50%) showed delayed pooling. Six (30%) showed early arterial enhancement and four (20%) showed continuous low attenuation. On delayed-phase MRI, all lesions showed delayed high signal intensity compared to adjacent liver parenchyma. Four of six lesions with early enhancement on CT showed peripheral globular enhancement on early arterial-phase MRI. On multiphase spiral CT scans, small hemangiomas can show variable atypical enhancement features. In this situation, contrast-enhanced dynamic MRI is helpful for the diagnosis of hemangiomas

  1. Six Decades of Spiral Density Wave Theory

    Science.gov (United States)

    Shu, Frank H.

    2016-09-01

    The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular

  2. Some INDRA experiments on SPIRAL

    International Nuclear Information System (INIS)

    Cussol, D.; Orr, N.A.

    1997-01-01

    A panel joining members of INDRA collaboration and physicists off collaboration was gathered to debate the question whether the INDRA detector, designed to study multifragmentation with beams of stable nuclei, could be used also in experiments with beams of exotic nuclei. Four experiments were discussed as well as the implied detector modifications. In the frame of experiments with SISSI the study of the multifragmentation as a function of N/Z of the system should answer questions related to the system stability as a function of N/Z and origin of the particles emitted during the collision. Among the experiments with SPIRAL to study de-excitation of hot nuclei the following topics were examined: nuclear stability as a function of N/Z, α-n competition, emission of neutron-rich particles as a function of N/Z, evolution of emission modes near the shell closure. The de-excitation of the resonant excited states through 2p decay will be studied in the following three channels: 1p-1p sequential decay, un-correlated simultaneous 2p emission and correlated simultaneous 2p emission ( 2 He emission). Such experiments were carried out on 6 Be, 12 O and 14 O. The only first two channels were observed so far. The 16 Ne could be a good candidate to observe the third channel. Finally sub-barrier Coulomb fusion experiments were also discussed. Concerning the modifications to be undertaken on INDRA detector two were obvious: a modification at the level of electronics to make possible time-of-flight measurements with silicon detectors and transformations of ionization chambers in Bragg chambers. Simulation studies are under way to test the pertinence and validity of the solution

  3. A spiral model of musical decision-making

    Directory of Open Access Journals (Sweden)

    Daniel eBangert

    2014-04-01

    Full Text Available This paper describes a model of how musicians make decisions about performing notated music. The model builds on psychological theories of decision-making and was developed from empirical studies of Western art music performance that aimed to identify intuitive and deliberate processes of decision-making, a distinction consistent with dual-process theories of cognition. The model proposes that the proportion of intuitive (Type 1 and deliberate (Type 2 decision-making processes changes with increasing expertise and conceptualises this change as movement along a continually narrowing upward spiral where the primary axis signifies principal decision-making type and the vertical axis marks level of expertise. The model is intended to have implications for the development of expertise as described in two main phases. The first is movement from a primarily intuitive approach in the early stages of learning towards greater deliberation as analytical techniques are applied during practice. The second phase occurs as deliberate decisions gradually become automatic (procedural, increasing the role of intuitive processes. As a performer examines more issues or reconsiders decisions, the spiral motion towards the deliberate side and back to the intuitive is repeated indefinitely. With increasing expertise, the spiral tightens to signify greater control over decision type selection. The model draws on existing theories, particularly Evans’ (2011 Intervention Model of dual-process theories, Cognitive Continuum Theory (Hammond et al., 1987; Hammond, 2007, and Baylor’s (2001 U-shaped model for the development of intuition by level of expertise. By theorising how musical decision-making operates over time and with increasing expertise, this model could be used as a framework for future research in music performance studies and performance science more generally.

  4. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  5. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    International Nuclear Information System (INIS)

    Kim, Man Bae; Park, Chang Yong

    2017-01-01

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f F 1 /3 ) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f F 1 /3 ), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  6. Spiral CT manifestations of spherical pneumonia

    International Nuclear Information System (INIS)

    Li Xiaohong; Yang Hongwei; Xu Chunmin; Qin Xiu

    2008-01-01

    Objective: To explore the Spiral CT manifestations and differential diagnosis of spherical pneumonia. Methods: 18 cases of spherical pneumonia and 20 cases of peripheral pulmonary carcinoma were selected, both of them were confirmed by clinic and/or pathology. The SCT findings of both groups were compared retrospectively. Results: Main spiral CT findings of spherical pneumonia were showed as followings: square or triangular lesions adjacent to pleura; with irregular shape, blurry, slightly lobulated margin, sometimes with halo sign. Small inflammatory patches and intensified vascular markings around the lesions were seen. Lesions became smaller or vanished after short-term anti-inflammatory treatment. Conclusion: Spherical pneumonia showed some characteristics on Spiral CT scan, which are helpful in diagnosis and differential diagnosis of this disease. (authors)

  7. Functionalized Nano-Film Microchannel Plate: A Single High Aspect Ratio Device for High Resolution, Low Noise Astronomical Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is to apply proven nano-film technology to enable Microchannel plate (MCP) devices to be manufactured on a range of insulating substrates and...

  8. Functionalized Nano-Film Microchannel Plate: A Single High Aspect Ratio Device for High Resolution, Low Noise Astronomical Imaging, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Atomic layer deposited functional nano-film technology is used to manufacture Microchannel plate (MCP) devices capable of high gain / low ion feedback operation, on...

  9. Evaluation of the base/subgrade soil under repeated loading : phase II, in-box and ALF cyclic plate load tests.

    Science.gov (United States)

    2012-03-01

    This research study aims at evaluating the performance of base and subgrade soil in flexible pavements under repeated loading test conditions. For this purpose, an indoor cyclic plate load testing equipment was developed and used to conduct a series ...

  10. Borrmann type IV adenocarcinoma versus gastric lymphoma : spiral CT evaluation

    International Nuclear Information System (INIS)

    Seo, Bo Kyoung; Kim, Yun Hwan; Shin, Kue Hee; Hong, Suk Joo; Kim, Hong Weon; Park, Cheol Min; Chung, Kyoo Byung; Cho, Hyun Deuk

    1999-01-01

    To distinguish the spiral CT findings of Borrmann type IV adenocarcinoma from those of gastric lymphoma with diffuse gastric wall thickening. We retrospectively reviewed the spiral CT scans of 30 patients with Borrmann type IV adenocarcinoma and nine with gastric lymphoma with diffuse gastric wall thickening. In all patients the respective condition was pathologically confirmed by gastrectomy. CT scanning was performed after peroral administration of 500-700ml of water. A total of 120-140 ml bolus of nonionic contrast material was administered intravenously at a flow rate of 3 ml/sec and two-phase images were obtained at 35-45 sec(early phase) and 180 sec(delayed phase) after the start of bolus injection. Spiral CT was performed with 10mm collimation, 10mm/sec table feed and 10mm reconstruction. We evaluated the degree and homogeneity of enhancement of thickened entire gastric wall, and the enhancement pattern of gastric inner layer, as seen on early-phase CT scans. On early and delayed views, the thickness of gastric wall and the presence of perigastric fat infiltration were determined. The enhancement patterns of gastric inner layer were classified as either continuous or discontinuous thick enhancement, thin enhancement, or nonenhancement. The thickness of gastric wall was 1.2-3.5cm(mean 2.2cm) in cases of adenocarcinoma and 1.2-7.6cm(mean 4cm) in lymphoma. Perigastric fat infiltration was seen in 24 patients with adenocarcinoma(80%) and four with lymphoma(44%). In those with adenocarcinoma, the degree of enhancement of entire gastric wall was hyperdense in fifteen patients(50%) and isointense in eleven (37%). Seven patients with lymphoma(78%)showed hypodensity. In those with adenocarcinoma, continuous thick enhancement of gastric inner layer was seen in 18 patients(60%) and discontinuous thick enhancement in nine(30%). In lymphoma cases, no thick enhancement was observed. Thin enhancement of gastric inner layer was demonstrated in three patients with

  11. Graphite target for the spiral project

    Energy Technology Data Exchange (ETDEWEB)

    Putaux, J.C.; Ducourtieux, M.; Ferro, A.; Foury, P.; Kotfila, L.; Mueller, A.C.; Obert, J.; Pauwels, N.; Potier, J.C.; Proust, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Bertrand, P. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Loiselet, M. [Universite Catholique de Louvain, Louvain-La-Neuve (Belgium)] [and others

    1996-12-31

    A study of the thermal and physical properties of graphite targets for the SPIRAL project is presented. The main objective is to develop an optimized set-up both mechanically and thermally resistant, presenting good release properties (hot targets with thin slices). The results of irradiation tests concerning the mechanical and thermal resistance of the first prototype of SPIRAL target with conical geometry are presented. The micro-structural properties of the graphite target is also studied, in order to check that the release properties are not deteriorated by the irradiation. Finally, the results concerning the latest pilot target internally heated by an electrical current are shown. (author). 5 refs.

  12. Photometry and mass modeling of spiral galaxies

    International Nuclear Information System (INIS)

    Kent, S.

    1987-01-01

    Recent estimates of the relative contributions of dark and luminous matter to the mass of spiral galaxies are reviewed. In these studies, the galactic mass distribution is modeled on the basis of photometric and kinematic observational data. The accuracy of current photometry is discussed; the three-dimensional structure of spiral galaxies and the techniques used in bulge-disk decomposition are examined; and mass models incorporating rotation curves are presented. The disk mass/luminosity ratios in the red band (corrected for internal extinction) are found to range from 1.6 to 3.2, with no particular radius at which dark matter dominates. 20 references

  13. Galactic masers: Kinematics, spiral structure and the disk dynamic state

    Science.gov (United States)

    Rastorguev, A. S.; Utkin, N. D.; Zabolotskikh, M. V.; Dambis, A. K.; Bajkova, A. T.; Bobylev, V. V.

    2017-04-01

    We applied the currently most comprehensive version of the statistical-parallax technique to derive kinematical parameters of the maser sample with 136 sources. Our kinematic model comprises the overall rotation of the Galactic disk and the spiral density-wave effects. We take into account the variation of radial velocity dispersion with Galactocentric distance. The best description of the velocity field is provided by the model with constant radial and vertical velocity dispersions, $(\\sigma U0, \\sigma W0) \\approx (9.4 \\pm 0.9~, 5.9 \\pm 0.8)~ km/s$. We compute flat Galactic rotation curve over the Galactocentric distance interval from 3 to 15 kpc and find the local circular rotation velocity to be $ V_0 \\approx (235-238)$~ km/s $\\pm 7$~ km/s. We also determine the parameters of the four-armed spiral pattern (pitch angle $i \\approx (-10.4 \\pm 0.3)^\\circ$ and the phase of the Sun $\\chi_0 \\approx (125 \\pm 10) ^\\circ$). The radial and tangential spiral perturbations are about $f_R \\approx (-6.9 \\pm 1.4)$~km/s, $f_\\Theta \\approx (+2.8 \\pm 1.0$) ~km/s. The kinematic data yield a solar Galactocentric distance of $R_0 \\approx (8.24 \\pm 0.12)~kpc$. Based on rotation curve parameters and the asymmetric drift we Infer the exponential disk scale $H_D \\approx (2.7 \\pm 0.2)$ ~kpc under assumption of marginal stability of the intermediate-age disk, and finally we estimate the minimum local surface disk density, $\\Sigma (R_0) > (26 \\pm 3) ~ M_\\odot pc^{-2}$.

  14. Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system.

    Science.gov (United States)

    Kirschner, Nicolas; Dias, Adriana Neves; Budziak, Dilma; da Silveira, Cristian Berto; Merib, Josias; Carasek, Eduardo

    2017-12-15

    A sustainable approach to TF-SPME is presented using recycled diatomaceous earth, obtained from a beer purification process, as a green sorbent phase for the determination of bisphenol A (BPA), benzophenone (BzP), triclocarban (TCC), 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-p-methoxycinnamate (EHMC) in environmental water samples. TF-SPME was combined with a 96-well plate system allowing for high-throughput analysis due to the simultaneous extraction/desorption up to 96 samples. The proposed sorbent phase exhibited good stability in organic solvents, as well as satisfactory analytical performance. The optimized method consisted of 240 min of extraction at pH 6 with the addition of NaCl (15% w/v). A mixture of MeOH:ACN (50:50 v/v) was used for the desorption the analytes, using a time of 30 min. Limits of detection varied from 1 μg L -1 for BzP and TCC to 8 μg L -1 for the other analytes, and R 2 ranged from 0.9926 for 4-MBC to 0.9988 for BPA. This novel and straightforward approach offers an environmentally-friendly and very promising alternative for routine analysis. . The total sample preparation time per sample was approximately 2.8 min, which is a significant advantage when a large number of analytical run is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Evaluation of spiral CT in staging of colon and rectum carcinoma

    International Nuclear Information System (INIS)

    Hundt, W.; Braunschweig, R.; Reiser, M.

    1999-01-01

    The purpose of our study was to evaluate the capability of a subsecond spiral-CT scanner using two contrast medium phases in staging of colorectal cancer. In our study we included 37 patients with proven rectum or colon carcinoma. Spiral CT was performed following tap-water enema of the colon in the arterial and venous phases of contrast medium enhancement. Our results were compared with the findings of pathological examination after surgery. The tumor's size and extension were evaluated in the arterial and venous phases, the lymph nodes in the venous phase of the CT scan. The tumor was in the rectum (n = 14), sigma (n = 11), descending colon (n = 6), and cecum (n = 6). Two-phase spiral CT had a sensitivity of 97.2 % in the arterial phase and 89.1 % in the venous phase in detecting the carcinoma. The staging results were in the arterial phase in 30 of 37 cases (81.0 %) and in the venous phase in 24 of 37 cases (64.8 %) according to pathology. In 27 of 32 patients (84.3 %) lymph nodes were detected. The correct classification of the N-stage was possible in 23 of 34 cases (67.6 %). The combined use of arterial and venous phases in staging of colorectal cancer can improve the T- and N-stage classification in comparison with using only one contrast medium phase. The arterial phase is superior compared with the venous phase for local tumor staging and the venous phase is used for lymph node assessment. (orig.) (orig.)

  16. Adaptation of the control system in view of SPIRAL integration

    International Nuclear Information System (INIS)

    Lecorche, E.

    1998-01-01

    As soon as the collaboration between the SPIRAL project and the Control Group has been defined, the first implementation of the SPIRAL control system started following various directions. Both the global hardware and software architectures has been specified and some practical works have been undertaken such as the Ethernet network installation or the first SPIRAL oriented software design and coding. (authors)

  17. The dynamics of the spiral galaxy M81

    International Nuclear Information System (INIS)

    Visser, H.C.D.

    1978-01-01

    A detailed comparison of the observations of the spiral galaxy M81 with the density-wave theory for tightly-wound spirals is presented. In particular, hydrogen-line observations are compared with the nonlinear density-wave theory for the gas with the aim of constructing a density-wave model for the spiral galaxy M81

  18. Geometric studies on variable radius spiral cone-beam scanning

    International Nuclear Information System (INIS)

    Ye Yangbo; Zhu Jiehua; Wang Ge

    2004-01-01

    The goal is to perform geometric studies on cone-beam CT scanning along a three-dimensional (3D) spiral of variable radius. First, the background for variable radius spiral cone-beam scanning is given in the context of electron-beam CT/micro-CT. Then, necessary and sufficient conditions are proved for existence and uniqueness of PI lines inside the variable radius 3D spiral. These results are necessary steps toward exact cone-beam reconstruction from a 3D spiral scan of variable radius, adapting Katsevich's formula for the standard helical cone-beam scanning. It is shown in the paper that when the longitudinally projected planar spiral is not always convex toward the origin, the PI line may not be unique in the envelope defined by the tangents of the spiral. This situation can be avoided by using planar spirals whose curvatures are always positive. Using such a spiral, a longitudinally homogeneous region inside the corresponding 3D spiral is constructed in which any point is passed by one and only one PI line, provided the angle ω between planar spiral's tangent and radius is bounded by vertical bar ω-90 deg. vertical bar ≤ε for some positive ε≤32.48 deg. If the radius varies monotonically, this region is larger and one may allow ε≤51.85 deg. Examples for 3D spirals based on logarithmic and Archimedean spirals are given. The corresponding generalized Tam-Danielsson detection windows are also formulated

  19. A nutrient’s downstream spiral

    Science.gov (United States)

    Indicators of a stream’s ability to remove nutrients provide insights on watershed integrity and stream habitat characteristics that are needed to help managers to restore stream ecosystem services. We used the Tracer Additon Spiraling Characterization Curve (TASCC) to mea...

  20. The Distribution of Mass in Spiral Galaxies.

    NARCIS (Netherlands)

    Swaters, Rob; Andersen, David; Bershady, Matthew; Verheijen, Marc

    2002-01-01

    Little is known about the content and distribution of dark matter in spiral galaxies. Mass modeling of any rotation curve can yield an alarming range of results - from entirely halo-dominated, centrally- concentrated dark distributions, to disk-dominated inner potentials with shallow, low density

  1. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    Correlations between optical surface brightness and the radio properties of spiral galaxies are investigated. It is found that galaxies with high surface brightness are more likely to be strong continuum radio sources and that galaxies with low surface brightness have high 21-cm line emission. (author)

  2. Importance of packing in spiral defect chaos

    Indian Academy of Sciences (India)

    We develop two measures to characterize the geometry of patterns exhibited by the state of spiral defect chaos, a weakly turbulent regime of Rayleigh-Bénard convection. These describe the packing of contiguous stripes within the pattern by quantifying their length and nearest-neighbor distributions. The distributions ...

  3. High-displacement spiral piezoelectric actuators

    Science.gov (United States)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  4. The Spiral Curriculum. Research into Practice

    Science.gov (United States)

    Johnston, Howard

    2012-01-01

    The Spiral Curriculum is predicated on cognitive theory advanced by Jerome Bruner (1960), who wrote, "We begin with the hypothesis that any subject can be taught in some intellectually honest form to any child at any stage of development." In other words, even the most complex material, if properly structured and presented, can be understood by…

  5. Nobeyama CO Atlas of Nearby Spiral Galaxies

    Science.gov (United States)

    Kuno, N.; Nakai, N.; Sorai, K.; Sato, N..; Yamauchi, A.; Tosaki, T.; Shioya, Y.; Vila-Vilaró, B.; Nishiyama, K.; Ishihara, Y.; Cepa, J.

    BEARS is a 25-beam focal plane array receiver mounted on the Nobeyama 45-m telescope. The combination of the large dish size of the telescope with the excellent performance of this receiver makes it an ideal tool for mapping observations of extended regions of the sky. We present here one of its current applications in a CO mapping survey of nearby spiral galaxies.

  6. A section of a spiral coal chute

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.N.; Gorodilov, N.N.

    1981-01-01

    A section of a spiral coal chute includes a housing with support brackets. It differs in that to decrease the amount of work necessary for assembly, each support bracket is made with a guide slot and equipped with a pull-out cantilever in the shape of a fork which covers the slot from the lateral sides.

  7. Biofouling of spiral wound membrane systems

    NARCIS (Netherlands)

    Vrouwenvelder, J.S.

    2009-01-01

    Biofouling of spiral wound membrane systems High quality drinking water can be produced with membrane filtration processes like reverse osmosis (RO) and nanofiltration (NF). Because the global demand for fresh clean water is increasing, these membrane technologies will increase in importance in the

  8. Secular Evolution of Spiral Galaxies

    Science.gov (United States)

    2003-01-01

    recombination (z=1000). Furthermore, the BigBang nucleosynthesis model also requires a signi cantamount of non- baryonic dark matter (Primack 1999) ifthe universe...momentum (as well as energy) outward. Associ-ated with this outward angular momentum transport isan expected secular redistribution of disk matter , co...mode, a secular transfer of energy andangular momentum between the disk matter and thedensity wave. The existence of the phase shift betweenthe

  9. Semiclassical dynamics, Berry curvature, and spiral holonomy in optical quasicrystals

    Science.gov (United States)

    Spurrier, Stephen; Cooper, Nigel R.

    2018-04-01

    We describe the theory of the dynamics of atoms in two-dimensional quasicrystalline optical lattices. We focus on a regime of shallow lattice depths under which the applied force can cause Landau-Zener tunneling past a dense hierarchy of gaps in the quasiperiodic energy spectrum. We derive conditions on the external force that allow for a "semiadiabatic" regime in which semiclassical equations of motion can apply, leading to Bloch oscillations between the edges of a pseudo-Brillouin-zone. We verify this semiclassical theory by comparing to the results of an exact numerical solution. Interesting features appear in the semiclassical dynamics for the quasicrystal for a particle driven in a cyclic trajectory around the corner of the pseudo-Brillouin-zone: The particle fails to return to its initial state, providing a realization of a "spiral holonomy" in the dynamics. We show that there can appear anomalous velocity contributions, associated with nonzero Berry curvature. We relate these to the Berry phase associated with the spiral holonomy, and show how the Berry curvature can be accessed from the semiclassical dynamics. Finally, by identifying the pseudo-Brillouin-zone as a higher genus surface, we show that the Chern number classification for periodic systems can be extended to a quasicrystal, thereby determining a topological index for the system.

  10. Influence of baryonic physics in simulations of spiral galaxies

    International Nuclear Information System (INIS)

    Halle, A.

    2013-01-01

    The modelling of baryonic physics in numerical simulations of disc galaxies allows us to study the evolution of the different components, the physical state of the gas and the star formation. The present work aims at investigating in particular the role of the cold and dense molecular phase, which could play a role of gas reservoir in the outer galaxy discs, with low star formation efficiency. After a presentation of galaxies with a focus on spiral galaxies, their interstellar medium and dynamical evolution, we review the current state of hydrodynamical numerical simulations and the implementation of baryonic physics. We then present the simulations we performed. These include the cooling to low temperatures, and a molecular hydrogen component. The cooling functions we use include cooling by metals, for temperatures as low as 100 K, and cooling by H 2 due to collisions with H, He and other H 2 molecules. We use a TreeSPH type code that considers the stellar and gaseous components and black matter as particles. We especially test the impact of the presence of molecular hydrogen in simulations with several feedback efficiencies, and find that the molecular hydrogen allows in all cases some slow stellar formation to occur in the outer disc, with an effect on the vertical structure of the disc that is sensitive to the feedback efficiency. Molecular hydrogen is therefore able to play the role of gas reservoir in external parts of spiral galaxies, which accrete gas from cosmic filaments all along their lives

  11. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.

  12. Spiral analysis-improved clinical utility with center detection.

    Science.gov (United States)

    Wang, Hongzhi; Yu, Qiping; Kurtis, Mónica M; Floyd, Alicia G; Smith, Whitney A; Pullman, Seth L

    2008-06-30

    Spiral analysis is a computerized method that measures human motor performance from handwritten Archimedean spirals. It quantifies normal motor activity, and detects early disease as well as dysfunction in patients with movement disorders. The clinical utility of spiral analysis is based on kinematic and dynamic indices derived from the original spiral trace, which must be detected and transformed into mathematical expressions with great precision. Accurately determining the center of the spiral and reducing spurious low frequency noise caused by center selection error is important to the analysis. Handwritten spirals do not all start at the same point, even when marked on paper, and drawing artifacts are not easily filtered without distortion of the spiral data and corruption of the performance indices. In this report, we describe a method for detecting the optimal spiral center and reducing the unwanted drawing artifacts. To demonstrate overall improvement to spiral analysis, we study the impact of the optimal spiral center detection in different frequency domains separately and find that it notably improves the clinical spiral measurement accuracy in low frequency domains.

  13. Validation of in vivo 2D displacements from spiral cine DENSE at 3T.

    Science.gov (United States)

    Wehner, Gregory J; Suever, Jonathan D; Haggerty, Christopher M; Jing, Linyuan; Powell, David K; Hamlet, Sean M; Grabau, Jonathan D; Mojsejenko, Walter Dimitri; Zhong, Xiaodong; Epstein, Frederick H; Fornwalt, Brandon K

    2015-01-30

    Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. Due to the stimulated echo, the signal is inherently low and fades through the cardiac cycle. To compensate, a spiral acquisition has been used at 1.5T. This spiral sequence has not been validated at 3T, where the increased signal would be valuable, but field inhomogeneities may result in measurement errors. We hypothesized that spiral cine DENSE is valid at 3T and tested this hypothesis by measuring displacement errors at both 1.5T and 3T in vivo. Two-dimensional spiral cine DENSE and tagged imaging of the left ventricle were performed on ten healthy subjects at 3T and six healthy subjects at 1.5T. Intersection points were identified on tagged images near end-systole. Displacements from the DENSE images were used to project those points back to their origins. The deviation from a perfect grid was used as a measure of accuracy and quantified as root-mean-squared error. This measure was compared between 3T and 1.5T with the Wilcoxon rank sum test. Inter-observer variability of strains and torsion quantified by DENSE and agreement between DENSE and harmonic phase (HARP) were assessed by Bland-Altman analyses. The signal to noise ratio (SNR) at each cardiac phase was compared between 3T and 1.5T with the Wilcoxon rank sum test. The displacement accuracy of spiral cine DENSE was not different between 3T and 1.5T (1.2 ± 0.3 mm and 1.2 ± 0.4 mm, respectively). Both values were lower than the DENSE pixel spacing of 2.8 mm. There were no substantial differences in inter-observer variability of DENSE or agreement of DENSE and HARP between 3T and 1.5T. Relative to 1.5T, the SNR at 3T was greater by a factor of 1.4 ± 0.3. The spiral cine DENSE acquisition that has been used at 1.5T to measure cardiac displacements can be applied at 3T with equivalent accuracy. The inter-observer variability and agreement of DENSE-derived peak strains and

  14. Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.

    Science.gov (United States)

    Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong

    2017-09-19

    Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.

  15. The Role of Spiral Multidetector Dynamic CT in the Study of Williams-Campbell Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Scioscio, V. di; Zompatori, M.; Mistura, I.; Montanari, P.; Santilli, L.; Luccaroni, R.; Sverzellati, N. [Medical Univ. of Bologna, S. Orsola-Malpighi Policlinic (Italy). Dept. of Radiology

    2006-10-15

    Williams-Campbell syndrome is a cystic bronchiectatic disease secondary to deficiency or defect of cartilaginous plates in the wall of the airways. In the literature, two main forms are suggested: congenital and acquired (post-infectious). The most frequent symptoms are represented by recurrent pulmonary infections from childhood. Multislice spiral dynamic CT has a major role in the study of cystic pulmonary disease and in differentiating Williams-Campbell syndrome from the other causes of cystic bronchiectasis, in which even lung function tests can give deceptive results.

  16. Shape and shear guide sperm cells spiraling upstream

    Science.gov (United States)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2014-11-01

    A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.

  17. Fast spiral-scan atomic force microscopy

    International Nuclear Information System (INIS)

    Mahmood, I A; Reza Moheimani, S O

    2009-01-01

    In this paper, we describe a new scanning technique for fast atomic force microscopy. In this method, the sample is scanned in a spiral pattern instead of the well established raster pattern. A spiral scan can be produced by applying single frequency cosine and sine signals with slowly varying amplitudes to the x-axis and y-axis of an atomic force microscope (AFM) scanner respectively. The use of the single tone input signals allows the scanner to move at high speeds without exciting the mechanical resonance of the device and with relatively small control efforts. Experimental results obtained by implementing this technique on a commercial AFM indicate that high-quality images can be generated at scan frequencies well beyond the raster scans.

  18. Spiral optical designs for nonimaging applications

    Science.gov (United States)

    Zamora, Pablo; Benítez, Pablo; Miñano, Juan C.; Vilaplana, Juan; Buljan, Marina

    2011-10-01

    Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. In some demanding nonimaging applications, these restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. Some of these spiral symmetry examples will be shown here, as well as their simulated results.

  19. Star distribution in the Orion spiral arm

    International Nuclear Information System (INIS)

    Basharina, T.S.; Pavlovskaya, E.D.; Filippova, A.A.

    1985-01-01

    The structure of the Orion spiral arm is studied by numerical experiments, assuming that in each direction considered the star distribution along the line of sight is a combination of two Gaussian laws. The corresponding parameters are evaluated for four Milky Way fields; the bimodal laws now fit the observations by the chi 2 criterion. In the Orion arm the line-of-sight star densities follow asymmetric curves, steeper at the outer edge of the arm

  20. Dark and visible matter in spiral galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Salucci, P.; Durham Univ.

    1988-01-01

    Exploiting relevant information from the profiles of rotation curves, we calculate the dark-to-luminous mass ratio within the disc size for a sample of 43 spiral galaxies. The values we find, while proving the ubiquitous presence of dark matter, vary with luminosity. Faint and bright galaxies are found to be respectively halo- and disc-dominated in the disc regions. The luminosity sequence turns out to be a dark-to-luminous sequence. (author)

  1. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)

  2. Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm

    Science.gov (United States)

    Inoue, Shigeki; Yoshida, Naoki

    2018-03-01

    Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multicomponent systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analyses, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.

  3. Incorporating hydrologic variability into nutrient spiraling

    Science.gov (United States)

    Doyle, Martin W.

    2005-09-01

    Nutrient spiraling describes the path of a nutrient molecule within a stream ecosystem, combining the biochemical cycling processes with the downstream driving force of stream discharge. To date, nutrient spiraling approaches have been hampered by their inability to deal with fluctuating flows, as most studies have characterized nutrient retention within only a small range of discharges near base flow. Here hydrologic variability is incorporated into nutrient spiraling theory by drawing on the fluvial geomorphic concept of effective discharge. The effective discharge for nutrient retention is proposed to be that discharge which, over long periods of time, is responsible for the greatest portion of nutrient retention. A developed analytical model predicts that the effective discharge for nutrient retention will equal the modal discharge for small streams or those with little discharge variability. As modal discharge increases or discharge variability increases, the effective discharge becomes increasingly less than the modal discharge. In addition to the effective discharge, a new metric is proposed, the functionally equivalent discharge, which is the single discharge that will reproduce the magnitude of nutrient retention generated by the full hydrologic frequency distribution when all discharge takes place at that rate. The functionally equivalent discharge was found to be the same as the modal discharge at low hydrologic variability, but increasingly different from the modal discharge at large hydrologic variability. The functionally equivalent discharge provides a simple quantitative means of incorporating hydrologic variability into long-term nutrient budgets.

  4. Frequency wavenumber design of spiral macro fiber composite directional transducers

    Science.gov (United States)

    Carrara, Matteo; Ruzzene, Massimo

    2015-04-01

    This work is focused on design and testing of a novel class of transducers for Structural Health Monitoring (SHM), able to perform directional interrogation of plate-like structures. These transducers leverage guided waves (GWs), and in particular Lamb waves, that have emerged as a very prominent option for assessing the state of a structure during operation. GW-SHM approaches greatly benefit from the use of transducers with controllable directional characteristics, so that selective scanning of a surface can be performed to locate damage, impacts, or cracks. In the concepts that we propose, continuous beam steering and directional actuation are achieved through proper selection of the excitation frequency. The design procedure takes advantage of the wavenumber representation of the device, and formulates the problem using a Fourier-based approach. The active layer of the transducer is made of piezoelectric fibers embedded into an epoxy matrix, allowing the device to be flexible, and thus suitable for application on non{ at surfaces. Proper shaping of the electrodes pattern through a compensation function allows taking into account the anisotropy level introduced by the active layer. The resulting spiral frequency steerable acoustic actuator is a configuration that features (i) enhanced performance, (ii) reduced complexity, and (iii) reduced hardware requirements of such devices.

  5. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue

    Science.gov (United States)

    Boccia, E.; Luther, S.; Parlitz, U.

    2017-05-01

    In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  6. Evaluation of donor kidney using multidetector spiral computed tomography

    International Nuclear Information System (INIS)

    Wong, K.; Vladica, P.; Lau, H.

    2002-01-01

    Full text: Multidetector spiral computed tomography (CT) is now replacing traditional angiography and intravenous pyelography (IVP) in assessing potential renal donors. The accuracy of this modality is assessed by comparison with the gold standard of surgery. A prospective study was performed. Fifteen renal donors were assessed using multidetector spiral CT between September 1999 and July 2001. Siemens-Volume Zoom and GE Lightspeed CT scanners were used. The patients subsequently underwent donor surgery and the findings at surgery were compared to that of the CT findings. The CT protocol involved pre-contrast images of the kidneys to detect calculi using 2.5mm collimation with 5 x 5mm axial reconstructions. Subsequently, an arterial phase was obtained through the kidneys to the mid pelvis with bolus tracking to optimise the timing of the contrast. Non-ionic contrast (Visipaque 270, Isovue 300, Iomeron 300) was administered at 5ml/s using a total of 150ml. Collimation of 1mm was used in obtaining images during the arterial phase, with 3 x 3mm reconstructions for printing of axial images. Axial reconstructions at 1 x 1.25mm were also performed for assessment on the workstations and for post-processing (Maximal Intensity Projection - MIP and Surface Shaded Display - SSD). A venous phase was then acquired through the kidneys using a collimation of 2.5mm, starting at 60 seconds after the initial administration of intravenous contrast. Axial reconstructions at 5 x 5mm were obtained for printing of these images. Axial reconstructions at 1.5mm x 3mm were obtained for workstation viewing plane and for postprocessing (Multiplanar Reformation - MPR) in the assessment of the renal veins. Two minutes following intravenous injection a topogram was performed to demonstrate the pelvicalyceal systems and ureters. A small field of view was used throughout, centered on the kidneys. Before the manipulation and processing of the 3D images, the axial images were assessed for the number

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Pacific Islanders American Indian/Alaska Native Programs Older Adults Family Link Diabetes EXPO Upcoming Diabetes EXPOs EXPO ... Plate! Click on the plate sections below to add your food choices. Reset Plate Share Create Your ...

  8. Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Porto da Silva, Edson; Zibar, Darko

    2017-01-01

    We demonstrate wavelength conversion of quadrature amplitude modulation (QAM) signals, including 32-GBd quadrature phase-shift keying and 10-GBd 16-QAM, in a 50-cm long high index doped glass spiral waveguide. The quality of the generated idlers for up to 20 nm of wavelength shift is sufficient...... to achieve a BER performance below the hard decision forward error correction threshold BER performance (...

  9. Self-organized Spiral and Circular Waves in Premixed Gas Flames

    Science.gov (United States)

    Pealman, Howard G.; Ronney, Paul D.

    1994-01-01

    A diffusive-thermal high Lewis number (Le) gas-phase oscillator has been observed in premixed flames using a lean mixture of butane and oxygen diluted with helium (Le approx. 3.0). This reactive-diffusive system exhibits both propagating radial pulsations and rotating spiral waves perhaps,analogous to those observed in other excitable media such as the Belousov-Zhabotinsky reaction.

  10. Ablation acceleration of macroparticle in spiral magnetic fields

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1981-05-01

    The rocket motion of macroparticles heated by energetic pulses in a spiral magnetic field was studied. The purpose of the present work is to study the ablation acceleration of a macroparticle in a spiral magnetic field with the help of the law of conservation of angular momentum. The basic equation of motion of ablatively accelerated projectile in a spiral magnetic field was derived. Any rocket which is ejecting fully ionized plasma in an intense magnetic field with rotational transform is able to have spin by the law of conservation of momentum. The effect of spiral magnetic field on macroparticle acceleration is discussed. The necessary mass ratio increase exponentially with respect to the field parameter. The spiral field should be employed with care to have only to stabilize the position of macroparticles. As conclusion, it can be said that the ablation acceleration of the projectile in a spiral field can give the accelerated body spin quite easily. (Kato, T.)

  11. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem

    2017-11-21

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  12. Wave-particle dualism of spiral waves dynamics.

    Science.gov (United States)

    Biktasheva, I V; Biktashev, V N

    2003-02-01

    We demonstrate and explain a wave-particle dualism of such classical macroscopic phenomena as spiral waves in active media. That means although spiral waves appear as nonlocal processes involving the whole medium, they respond to small perturbations as effectively localized entities. The dualism appears as an emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves response functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge of the response functions allows quantitatively accurate prediction of the spiral wave drift due to small perturbations of any nature, which makes them as fundamental characteristics for spiral waves as mass is for the condensed matter.

  13. Heat transfer study of a two-phase refrigerant with liquid-solid phase change inside a smooth plates heat exchanger; Etude des transferts de chaleur d'un fluide frigoporteur diphasique a changement de phase liquide-solide dans un echangeur a plaques lisses

    Energy Technology Data Exchange (ETDEWEB)

    Demasles, H.

    2002-05-15

    The purpose of the work is to study two-phase mixture heat exchange composed of water particles suspended in silicone oil circulating in a closed loop. Water, contained in polymer porous matrix, is freezing by successive passages in plane plate heat exchanger. Thermo-hydraulic literature data analysis about these fluids in exchangers shows important blanks in exchange coefficient and pressure drop forecast methods and in experimental data. Experimental results, issued of global energy balance on a test section specifically conceived and made for this study, show doping effect on exchange coefficient. Before phase change, micro-convective effects of rotating particles improve exchange coefficient of 2,3 factor. Supplementary enhancement included between 2 and 16 appeared during phase change. Trial measured discrepancy are certainly induced by bed layer formation due to low flow speed. At the end of particle freezing, when latent heat is not involved anymore in exchange enhancement, important heat transfer reduction is observed. This is attributed to the cooling suspension rheological evolution and the change of flow particle distribution. Modelling results corroborate heat exchange improvement due to phase change: particles act as sources when discharging there latent heat. They stop fluid temperature dropping and enable to keep a high wall temperature gradient. A deepened suspension rheological study is necessary for a better understanding of observed phenomenon, nevertheless these first results show already an important energetic profit brings by particles in range temperature of 0 and -6 deg C. (author)

  14. Nonlinear dynamics of breathers in the spiral structures of magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, V. V., E-mail: kiselev@imp.uran.ru; Raskovalov, A. A. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-06-15

    The structure and properties of pulsating solitons (breathers) in the spiral structures of magnets are analyzed within the sine-Gordon model. The breather core pulsations are shown to be accompanied by local shifts and oscillations of the spiral structure with the formation of “precursors” and “tails” in the moving soliton. The possibilities for the observation and excitation of breathers in the spiral structures of magnets and multiferroics are discussed.

  15. Cochlea and other spiral forms in nature and art.

    Science.gov (United States)

    Marinković, Slobodan; Stanković, Predrag; Štrbac, Mile; Tomić, Irina; Ćetković, Mila

    2012-01-01

    The original appearance of the cochlea and the specific shape of a spiral are interesting for both the scientists and artists. Yet, a correlation between the cochlea and the spiral forms in nature and art has been very rarely mentioned. The aim of this study was to investigate the possible correlation between the cochlea and the other spiral objects in nature, as well as the artistic presentation of the spiral forms. We explored data related to many natural objects and examined 13,625 artworks created by 2049 artists. We also dissected 2 human cochleas and prepared histologic slices of a rat cochlea. The cochlea is a spiral, cone-shaped osseous structure that resembles certain other spiral forms in nature. It was noticed that parts of some plants are arranged in a spiral manner, often according to Fibonacci numbers. Certain animals, their parts, or their products also represent various types of spirals. Many of them, including the cochlea, belong to the logarithmic type. Nature created spiral forms in the living world to pack a larger number of structures in a limited space and also to improve their function. Because the cochlea and other spiral forms have a certain aesthetic value, many artists presented them in their works of art. There is a mathematical and geometric correlation between the cochlea and natural spiral objects, and the same functional reason for their formation. The artists' imagery added a new aspect to those domains. Obviously, the creativity of nature and Homo sapiens has no limits--like the infinite distal part of the spiral. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Algorithms for computing efficient, electric-propulsion, spiralling trajectories

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop techniques for rapidly designing many-revolution, electric-propulsion, spiralling trajectories, including the effects of shadowing, gravity harmonics, and...

  17. Self-regulated model of galactic spiral structure formation.

    Science.gov (United States)

    Cartin, Daniel; Khanna, Gaurav

    2002-01-01

    The presence of spiral structure in isolated galaxies is a problem that has only been partially explained by theoretical models. Because the rate and pattern of star formation in the disk must depend only on mechanisms internal to the disk, we may think of the spiral galaxy as a self-regulated system far from equilibrium. This paper uses this idea to look at a reaction-diffusion model for the formation of spiral structures in certain types of galaxies. In numerical runs of the model, spiral structure forms and persists over several revolutions of the disk, but eventually dies out.

  18. Spread of the spiraling white fly Aleurodicus dispersus (Homoptera ...

    African Journals Online (AJOL)

    Spread of the spiraling white fly Aleurodicus dispersus (Homoptera: Aleyrodidae) and its parasitoids Encarcia species (Hymenoptera: Aphelinidae) on horticultural plants in Northwest and Central Nigeria.

  19. Topological Signatures in the Electronic Structure of Graphene Spirals

    DEFF Research Database (Denmark)

    Avdoshenko, Stas.M.; Koskinen, Pekka; Sevincli, Haldun

    2013-01-01

    and graphene systems. Here, we introduce topologically distinct graphene forms - graphene spirals - and employ density-functional theory to investigate their geometric and electronic properties. We found that the spiral topology gives rise to an intrinsic Rashba spin-orbit splitting. Through a Hamiltonian...... constrained by space curvature, graphene spirals have topologically protected states due to time-reversal symmetry. In addition, we argue that the synthesis of such graphene spirals is feasible and can be achieved through advanced bottom-up experimental routes that we indicate in this work....

  20. A 38 to 44GHz sub-harmonic balanced HBT mixer with integrated miniature spiral type marchand balun

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2013-01-01

    This work presents an active balanced sub-harmonic mixer (SHM) using InP double heterojunction bipolar transistor technology (DHBT) for Q-band applications. A miniature spiral type Marchand balun with five added capacitances for improved control of amplitude and phase balance is integrated with t...

  1. Plate performance in liquid-liquid extraction

    International Nuclear Information System (INIS)

    Wadkins, R.P.

    1984-01-01

    The relative effectiveness of perforated, nozzle, and burred plates from a capacity and extraction standpoint were studied in a pulsed liquid-liquid extraction system. The experiments were conducted in a 3.8 x 10 -2 m diameter column using a mixture of aluminum nitrate, nitric acid, and uranyl nitrate as the aqueous phase, and tributyl phosphate dissolved in AMSCO 125-90 W as the organic phase. The uranium was extracted from the aqueous phase to the organic phase. A standard cartridge was made for each type of plate and consisted of an assembly of plates spaced 5.08 x 10 -2 m apart. Each plate had 3.2 x 10 -3 m holes spaced on 6.1 x 10 -3 -m centers, and contained 23% free area. 16 references, 4 figures, 1 table

  2. Virtual bronchoscopy based on spiral CT images

    Science.gov (United States)

    Englmeier, Karl-Hans; Haubner, Michael; Krapichler, Christian; Schuhmann, Dietrich; Seemann, Mark; Fuerst, H.; Reiser, Maximilian

    1998-06-01

    Purpose: To improve the diagnosis of pathologic modified airways, a visualization system has been developed and tested based on the techniques of digital image analysis, synthesis of spiral CT and the visualization by methods of virtual reality. Materials and Methods: 20 patients with pathologic modifications of the airways (tumors, obstructions) were examined with Spiral-CT. The three-dimensional shape of the airways and the lung tissue is defined by a semiautomatic volume growing method and a following geometric surface reconstruction. This is the basis of a multidimensional display system which visualizes volumes, surfaces and computation results simultaneously. To enable the intuitive and immersive inspection of the airways a virtual reality system, consisting of two graphic engines, a head mounted display system, data gloves and specialized software was integrated. Results: In 20 cases the extension of the pathologic modification of the airways could be visualized with the virtual bronchoscopy. The user interacts with and manipulates the 3D model of the airways in an intuitive and immersive way. In contrast to previously proposed virtual bronchoscopy systems the described method permits truly interactive navigation and detailed exploration of anatomic structures. The system enables a user oriented and fast inspection of the volumetric image data. Conclusion: To support radiological diagnosis with additional information in an easy to use and fast way a virtual bronchoscopy system was developed. It enables the immersive and intuitive interaction with 3D Spiral CTs by truly 3D navigation within the airway system. The complex anatomy of the central tracheobronchial system could be clearly visualized. Peripheral bronchi are displayed up to 5th degree.

  3. SPIRAL2 at GANIL: At the Dawn of a New Era

    International Nuclear Information System (INIS)

    Gales, S.

    2010-01-01

    The exploration of unknown region of the nuclear mass chart, in particular, the neutron rich side, raised new and challenging physics issues in the understanding of nuclei far from stability. The physics of weakly bound systems, the appearance of shell quenching, the interface with astrophysical problems prompted the study of new generation of ''Rad ioactive Beam Facilities'' with high luminosity and the development of associated new experimental tools.GANIL presently offers unique opportunities in nuclear physics and many other fields. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capability even though it faces strong competition from new and upgraded ISOL and fragmentation facilities. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 10 13 fissions/s. The expected radioactive beams intensities in the mass range from A = 60 to A = 140, will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100* A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n.In applied areas SPIRAL2 is considered as a powerful variable energy neutron source. The Neutrons For Science collaboration (NFS) is proposing a physics program on fission induced by fast neutrons as well as fusion studies on materials.Under the 7FP program of European Union called 'Preparatory phase', the SPIRAL2 project has been granted a budget of about 4 MEuro to build up an international consortium around this new venture. Regarding the future physics program a call for Letter of intents has been

  4. SPIRAL2 at GANIL: At the Dawn of a New Era

    Science.gov (United States)

    Gales, S.

    2010-04-01

    The exploration of unknown region of the nuclear mass chart, in particular, the neutron rich side, raised new and challenging physics issues in the understanding of nuclei far from stability. The physics of weakly bound systems, the appearance of shell quenching, the interface with astrophysical problems prompted the study of new generation of "Rad ioactive Beam Facilities" with high luminosity and the development of associated new experimental tools. GANIL presently offers unique opportunities in nuclear physics and many other fields. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capability even though it faces strong competition from new and upgraded ISOL and fragmentation facilities. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 1013 fissions/s. The expected radioactive beams intensities in the mass range from A = 60 to A = 140, will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100* A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n. In applied areas SPIRAL2 is considered as a powerful variable energy neutron source. The Neutrons For Science collaboration (NFS) is proposing a physics program on fission induced by fast neutrons as well as fusion studies on materials. Under the 7FP program of European Union called*Preparatory phase*, the SPIRAL2 project has been granted a budget of about 4 M€ to build up an international consortium around this new venture. Regarding the future physics program a call for Letter of intents has been

  5. Production and post acceleration scheme for spiral

    International Nuclear Information System (INIS)

    Bibet, D.

    2001-01-01

    SPIRAL, the R.I.B. facility of GANIL uses heavy ion beams to produce radioactive atoms inside a thick target. Atoms are ionised in a compact permanent magnet ECR ion source. The compact cyclotron CIME accelerates the radioactive ions in an energy range from 1.7 to 25 MeV/u. The cyclotron acts as a mass separator with resolving power of 2500. Plastic scintillator and silicon detectors are used to tune the machine at a very low intensity. An overview of the facility, stable beam tests results and the R and D program will be presented. (authors)

  6. Controls and automation in the SPIRAL project

    International Nuclear Information System (INIS)

    Bothner, U.; Boulot, A.; Maherault, J.; Martial, L.

    1999-01-01

    The control and automation team of the R and D of Accelerator-Exotic Beam Department has had in the framework of SPIRAL collaboration the following tasks: 1. automation of the resonator high frequency equipment of the CIME cyclotron; 2. automation of the vacuum equipment, i.e. the low energy line (TBE), the CIME cyclotron, the low energy line (BE); 3. automation of load safety for power supply; 4. for each of these tasks a circuitry file based on the SCHEMA software has been worked out. The programs required in the automation of load safety for power supply (STEP5, PROTOOL, DESIGNER 4.1) were developed and implemented for PC

  7. Galaxy Zoo: dust in spiral galaxies star

    OpenAIRE

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into ‘bulgy’ (early-type) and ‘discy’ (late-typ...

  8. Spirally Stowed Architecture for Large Photovoltaic Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is an architecture for large (>200 m2 surface area) photovoltaic (PV) arrays, deployable from compact stowage with one single, continuously smooth sweep...

  9. 2D array based on fermat spiral

    Science.gov (United States)

    Martínez, O.; Martín, C. J.; Godoy, G.; Ullate, L. G.

    2010-01-01

    The main challenge faced by 3D ultrasonic imaging with 2D array transducer is the large number of elements required to achieve an acceptable level of quality in the images. Therefore, the optimization of the array layout to reduce the number of active elements in the aperture has been a research topic in the last years. Nowadays, CMUT array technology has made viable the production of 2D arrays with larger flexibility on elements size, shape and position. This is opening new options in 2D array design, allowing to revise as viable alternatives others layouts that had been studied in the past, like circular and Archimedes spiral layout. In this work the problem of designing an imaging system array with a diameter of 60 λ and a limited number of elements using the Fermat spiral layout has been studied. This study has been done for two different numbers of electronic channels (N = 128 and N = 256). As summary, a general discussion of the results and the most interesting cases are presented.

  10. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane

    2016-04-20

    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.

  11. A phenomenological theory for polarization flop in spiral multiferroic ...

    Indian Academy of Sciences (India)

    driven polarization flop in TbMnO3. The Néel wall-like magnetic structure in spiral multiferroics induces a space-dependent internal magnetic field which exerts a torque on spins to rotate bc-spiral to abspiral. The external magnetic field is argued ...

  12. A phenomenological theory for polarization flop in spiral multiferroic ...

    Indian Academy of Sciences (India)

    a space-dependent internal magnetic field which exerts a torque on spins to rotate bc-spiral to ab- spiral. The external ... Fv; 75.85.+t. Electric control of magnetization and magnetic control of polarization have been long ... divergence of magnetization, an internal field is induced which has important physical. Figure 1. ab ...

  13. On galaxy spiral arms' nature as revealed by rotation frequencies

    NARCIS (Netherlands)

    Roca-Fabrega, Santi; Valenzuela, Octavio; Figueras, Francesca; Romero-Gomez, Merce; Velazquez, Hector; Antoja Castelltort, Teresa; Pichardo, Barbara

    2013-01-01

    High-resolution N-body simulations using different codes and initial condition techniques reveal two different behaviours for the rotation frequency of transient spiral arms like structures. Whereas unbarred discs present spiral arms nearly corotating with disc particles, strong barred models

  14. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  15. Up the Down Spiral with English: Guidelines, Project Insight.

    Science.gov (United States)

    Catholic Board of Education, Diocese of Cleveland, OH.

    This curriculum guide presents the philosophy, objectives, and processes which unify a student-centered English program based on Jerome Bruner's concept of the spiral curriculum. To illustrate the spiraling of the learning process (i.e., engagement, perception, interpretation, evaluation, and personal integration), the theme of "hero" is traced…

  16. The cold interstellar medium - An HI view of spiral galaxies

    NARCIS (Netherlands)

    Sancisi, R; Bender, R; Davies, RL

    1996-01-01

    An HI view of spiral galaxies is presented. In the first part the standard picture of isolated, normal spiral galaxies is briefly reviewed. In the second part attention is drawn to all those phenomena, such as tidal interactions, accretion and mergers, that depend on the galaxy environment and seem

  17. Multi-slice spiral CT diagnosis of carotid body tumor

    International Nuclear Information System (INIS)

    Li Peiling; Leng Renli; Li Shu; Xie Xiuli; Xu Ke

    2006-01-01

    Objective: to explore the Multi-slice spiral CT (MSCT) findings of carotid body tumor (CBT). Methods: Twelve cases of CBT proved by surgery were collected in this study and all patients accepted contrast-enhanced MSCT examination. Two-dimensional and three-dimensional post-processing were performed at diagnostic workstation using Aquilion 1.42. The CT features of CBT were analyzed. Results Each of 12 patients had one lesion. All lesions demonstrated well-marginated masses of homogeneous soft- tissue density with CT value within 29-48 HU on pre-enhanced images. All lesions were markedly enhanced with CT value over 200 HU on arterial-phase images, and the density of lesions decreased rapidly on delay- phase images. Twelve lesions were all located at the level of carotid artery bifurcation, 3 of them enveloping common carotid artery and internal/external carotid artery, and other 9 of them riding right on the carotid bifurcation. Internal carotid artery usually were shifted toward posterior-lateral, and external carotid artery toward anterior or anterior-medial. Conclusion: Contrast-enhanced MSCT examination not only can make a qualitative diagnosis of CBT, but determine its accurate location. It plays an importantly instructional role in clinical diagnosis and treatment. (authors)

  18. Topographic Beta Spiral and Onshore Intrusion of the Kuroshio Current

    Science.gov (United States)

    Yang, De-Zhou; Huang, Rui Xin; Yin, Bao-shu; Feng, Xing-Ru; Chen, Hai-ying; Qi, Ji-Feng; Xu, Ling-jing; Shi, Yun-long; Cui, Xuan; Gao, Guan-Dong; Benthuysen, Jessica A.

    2018-01-01

    The Kuroshio intrusion plays a vitally important role in carrying nutrients to marginal seas. However, the key mechanism leading to the Kuroshio intrusion remains unclear. In this study we postulate a mechanism: when the Kuroshio runs onto steep topography northeast of Taiwan, the strong inertia gives rise to upwelling over topography, leading to a left-hand spiral in the stratified ocean. This is called the topographic beta spiral, which is a major player regulating the Kuroshio intrusion; this spiral can be inferred from hydrographic surveys. In the world oceans, the topographic beta spirals can be induced by upwelling generated by strong currents running onto steep topography. This is a vital mechanism regulating onshore intruding flow and the cross-shelf transport of energy and nutrients from the Kuroshio Current to the East China Sea. This topographic beta spiral reveals a long-term missing link between the oceanic general circulation theory and shelf dynamic theory.

  19. Spatial and mass distributions of molecular clouds and spiral structure

    International Nuclear Information System (INIS)

    Kwan, J.; Valdes, F.; National Optical Astronomy Observatories, Tucson, AZ)

    1987-01-01

    The growth of molecular clouds resulting from cloud-cloud collisions and coalescence in the Galactic ring between 4 and 8 kpc are modeled, taking into account the presence of a spiral potential and the mutual cloud-cloud gravitational attraction. The mean lifetime of molecular clouds is determined to be about 200 million years. The clouds are present in both spiral arm and interarm regions, but a spiral pattern in their spatial distribution is clearly discernible, with the more massive clouds showing a stronger correlation with the spiral arms. As viewed from within the Galactic disk, however, it is very difficult to ascertain that the molecular cloud distribution in longitude-velocity space has a spiral pattern. 19 references

  20. Some statistical properties of spiral galaxies along the Hubble sequence

    Science.gov (United States)

    Ma, Jun; Zhao, Jun-liang; Zhang, Fei-peng; Peng, Qiu-he

    A statistical study has been made for the variations along the Hubble sequence, os such parameters as the degree of tightness of winding of spiral arm λ, the pitch angle μ, the flatness of the disk H/ D25 and the thickness H along the Hubble sequence for 365 spiral galaxies published in A&Ap Supplement Series. The mean values of these quantities for the various Hubble types have been obtained for the first time. The results of the statistics show clearly 1) that the Hubble classification of spiral galaxies is one which has only a qualitative and statistical significance, and 2) that the dispersion relation in the density wave theory is valid for most spiral galaxies, i.e., the arms of most spiral galaxies satisfy the requirements of being tightly wound.

  1. The Effects of Spiral Taping Treatment on Low Back Pain

    Directory of Open Access Journals (Sweden)

    Hwang Jae-Ok

    2006-02-01

    Full Text Available Objective : The purpose of this study is to estimate the effects of spiral taping treatment on low back pain. Methods : 420 low back pain patients were treated with spiral taping or spiral taping plus herbal medicine, and no other treatments such as acupuncture, herbal acupuncture, and chiropractic therapy were added. We evaluated the improvement by physical examination and pain. Results : 364 patients felt no pain or inconvenience of daily life and 43 patients showed improvement of pain or symptom after 1 month of treatment. 13 patients showed same pain with before treatment. Conclusions : These results suggest spiral taping treatments contribute to the improvement of low back pain. Further study is needed for the confirmation of this effect of spiral taping treatments on low back pain.

  2. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Ulrich E-mail: baum@idr.med.uni-erlangen.de; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-03-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  3. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  4. Role of the Tectonic inheritance on multi-phased rifting of the Sperchios Basin (Greece), north-western boundary of the Aegean Plate

    Science.gov (United States)

    Chanier, Frank; Ferriere, Jacky; Averbuch, Olivier; Gaullier, Virginie; Graveleau, Fabien

    2017-04-01

    The Aegean plate is characterized by active extension, mainly occurring during the Pliocene to the Quaternary. This extensional deformation is considered as the upper plate response to the rollback of the northward subducting African slab. In Central Greece, it has led to the formation of large rifted basins, such as the Corinth Rift or the Sperchios basin. Both are experiencing active tectonics, as seismicity and morphotectonic analysis demonstrate. In this study, we focus on the East-West Sperchios basin, which has developed obliquely across a major NW-SE thrust zone separating the internal and external zones of the Hellenides mountain range. This range has developed since the late Jurassic, with the obduction of the Maliac Ocean, up to the Eocene times, with the collision of the External Zones. The Frontal Thrust of the internal Hellenides constitutes a major discontinuity within the crust, which may have influenced the development of the Sperchios basin. Our field investigations indicate that the southern boundary of the Sperchios rifted basin shows several large E-W to NW-SE normal faults that accommodate km-scale offsets. Our fault plane analysis showed a variety of fault orientations, all with dip-slip slicken-slides. It suggests at least two major episodes of extension, starting with a NE-SW direction in the Pliocene and then followed by a N-S direction. The latter is still active today and confirmed by geodetic studies and by earthquakes focal mechanisms. The early NE-SW episode of extension (mainly Pliocene in age) is expressed in the field by low-angle normal faults, dipping 20 to 30° northeastward, more or less parallel to the Frontal thrust of the Internal Hellenides. These low-angle normal faults are separating the platform limestones of the external zones from the upper tectonic units of the internal zones. We suggest that these low-angle normal faults are corresponding to the earlier stage of rifting and that they are rooted in the major thrust

  5. Spiral photon sieves apodized by digital prolate spheroidal window for the generation of hard-x-ray vortex.

    Science.gov (United States)

    Xie, Changqing; Zhu, Xiaoli; Shi, Lina; Liu, Ming

    2010-06-01

    We extend the work of photon sieves to spiral photon sieves (SPSs) for the generation of a hard-x-ray vortex. A robust digital prolate spheroidal window, which has an optimal energy concentration at low frequencies, was used to adjust the number of pinholes on each ring of the SPS. It was demonstrated that an SPS has better spatial resolution and lower background than a spiral zone plate using the specified smallest structures condition. The intensity at the center of the dark core is difficult to damp to true zero, primarily owing to current limitations of high-aspect-ratio metal nanostructures. The diameter of the dark core increases as the charge value increases. However, the FWHM of the doughnut-shaped ring and background will also increase. Our results pave the way toward the design of high-performance SPSs for the generation of a hard-x-ray vortex.

  6. A Method to Automate Identification of Spiral Arms in Galaxies

    Science.gov (United States)

    Lacey, Christina K.; Mercer, K.

    2014-01-01

    We present our preliminary results in identifying the spiral arms of NGC 6946 using a nearest-neighbors analysis. NGC 6946 is grand design spiral galaxy with well-defined arms. The spiral arms were previously identified in an Hα image and traced out by Matonick, D. et al., ApJS, 113, 333, (1997) by visual inspection. We want to develop a computer algorithm that will identify the spiral arms automatically. Once the spiral arms have been found digitally, we can use this information to compare the spiral arms with the locations of compact objects such as supernova remnants and perform statistical tests, for example, to determine if the supernova remnants are associated with the spiral arms. We are using the publicly available program PyFITS, a development project of the Science Software Branch at the Space Telescope Science Institute (STScI) that is available for software download from STScI, to perform a computer-based image analysis. We have written python macros that interact with the already written image manipulation and display features of PyFITS to perform the image analysis and implement a nearest-neighbors algorithm to identify and link the centers of the high emission regions from the spiral arm regions. Our code currently identifies the centers of the high emission regions, but more work is needed to link up these sites and draw out the spiral arms. Future work includes improving the code to better identify spiral arms and converting the code to work on the Astropy, a community-developed core Python package for Astronomy (Robitaille, T. P., et al. A&A 558, A33, 2013).

  7. Electromagnetic, flow and thermal study of a miniature planar spiral transformer with planar, spiral windings

    Directory of Open Access Journals (Sweden)

    J. B. DUMITRU

    2014-04-01

    Full Text Available This paper presents mathematical modeling and numerical simulation results for a miniature, planar, spiral transformer (MPST fabricated in micro-electromechanical MEMS technology. When the MPST is magnetic nanofluid cored, magnetization body forces occur, entraining it into a complex flow. This particular MPST design is then compared with other competing solutions concerning the lumped (circuit parameters. Finally, the heat transfer problem is solved for different electromagnetic working conditions to assess the thermal loads inside the MPST.

  8. Spiral model pilot project information model

    Science.gov (United States)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Student Resources History of Diabetes Resources for School Projects How to Reference Our Site Diabetes Basics Myths ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart- ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  12. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but changes the portion sizes so you are getting larger ...

  13. Williamson Polishing & Plating Site

    Science.gov (United States)

    Williamson Polishing & Plating Co. Inc. was a plating shop located in the Martindale-Brightwood neighborhood of Indianapolis. The facility conducted job shop polishing and electroplating services. The vacant site contains a 14,651-square-foot building.

  14. Processing fine stainless-steel slag using spiral concentration.

    Science.gov (United States)

    Wolfe, Eric R; Klima, Mark S

    2008-04-01

    In this study, the effectiveness of spiral concentration to process a fine (-1 mm) stainless-steel slag was evaluated. Specifically, testing was conducted to determine the feasibility of producing a high metal content stainless steel product and a low metal content aggregate product. This involved investigating a key operating variable for both five-and seven-turn spiral concentrators. The raw slag and spiral products were characterized to determine their respective size and metal distributions. Separation testing was carried out using the two full-scale spiral concentrators to evaluate the effects of feed solids concentration on spiral performance at solids feed rates ranging from 15 to 30 kg/min. The results indicated that under certain conditions, a high-quality metal fraction could be produced. For example, using the five-turn spiral, a product containing 95% metal was obtained at a low metal recovery. Both spirals were ineffective at concentrating the aggregate fraction. Overall, the feed solids concentration did not significantly affect the quality or recoveries of the products, particularly for feed solids concentrations less than 35% by weight. In order to improve the metal recoveries and to produce a low-metal aggregate material, reprocessing of the product streams and/or additional liberation of the raw slag would be required.

  15. Spiral Antenna-Coupled Microbridge Structures for THz Application.

    Science.gov (United States)

    Gou, Jun; Zhang, Tian; Wang, Jun; Jiang, Yadong

    2017-12-01

    Bolometer sensor is a good candidate for THz imaging due to its compact system, low cost, and wideband operation. Based on infrared microbolometer structures, two kinds of antenna-coupled microbridge structures are proposed with different spiral antennas: spiral antenna on support layer and spiral antenna with extended legs. Aiming at applications in detection and imaging, simulations are carried out mainly for optimized absorption at 2.52 THz, which is the radiation frequency of far-infrared CO 2 lasers. The effects of rotation angle, line width, and spacing of the spiral antenna on THz wave absorption of microbridge structures are discussed. Spiral antenna, with extended legs, is a good solution for high absorption rate at low absorption frequency and can be used as electrode lead simultaneously for simplified manufacturing process. A spiral antenna-coupled microbridge structure with an absorption rate of more than 75% at 2.52 THz is achieved by optimizing the structure parameters. This research demonstrates the use of different spiral antennas for enhanced and tunable THz absorption of microbridge structures and provides an effective way to fabricate THz microbolometer detectors with great potential in the application of real-time THz imaging.

  16. Vibration of plates

    CERN Document Server

    Chakraverty, Snehashish

    2008-01-01

    Plates are integral parts of most engineering structures and their vibration analysis is required for safe design. This work provides a comprehensive introduction to vibration theory and analysis of two-dimensional plates. It offers information on vibration problems along with a discussion of various plate geometries and boundary conditions.

  17. A Software Development Simulation Model of a Spiral Process

    Science.gov (United States)

    Mizell, Carolyn; Malone, Linda

    2007-01-01

    There is a need for simulation models of software development processes other than the waterfall because processes such as spiral development are becoming more and more popular. The use of a spiral process can make the inherently difficult job of cost and schedule estimation even more challenging due to its evolutionary nature, but this allows for a more flexible process that can better meet customers' needs. This paper will present a discrete event simulation model of spiral development that can be used to analyze cost and schedule effects of using such a process in comparison to a waterfall process.

  18. Comments on H. Arp 'The persistent problem of spiral galaxies'

    International Nuclear Information System (INIS)

    Alfven, H.

    1987-04-01

    In his paper 'The persistent problem of Spiral Galaxies' H. Arp criticises the standard theory of spiral galaxies and demonstrates that introduction of plasma theory is necessary in order to understand the structure of spiral galaxies. In the present paper arguments are given in support of Arp's theory and suggestions are made how Arp's ideas should be developed. An important result of Arp's new approach is that there is no convincing argument for the belief that there is a 'missing mass'. This is important from a cosmological point of view. (author)

  19. Harmonic oscillator in an elastic medium with a spiral dislocation

    Science.gov (United States)

    Maia, A. V. D. M.; Bakke, K.

    2018-02-01

    We investigate the behaviour of a two-dimensional harmonic oscillator in an elastic medium that possesses a spiral dislocation (an edge dislocation). We show that the Schrödinger equation for harmonic oscillator in the presence of a spiral dislocation can be solved analytically. Further, we discuss the effects of this topological defect on the confinement to a hard-wall confining potential. In both cases, we analyse if the effects of the topology of the spiral dislocation gives rise to an Aharonov-Bohm-type effect for bound states.

  20. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  1. Motion estimation and compensation in dynamic spiral CT reconstruction

    International Nuclear Information System (INIS)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St.

    2004-01-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  2. Helical CT defecography; La defecografia con Tomografia Computerizzata spirale

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, R.; Fiorini, G.; Beghello, A.; Cicio, G.R.; Derchi, L.E.; Consigliere, M.; Resasco, M. [Genua Univ., Genua (Italy). Ist. di Radiologia, Cattedra R; Tornago, S. [Genua Univ. Genua (Italy). 2 Clinica Ortopedica

    1999-11-01

    The purpose of this work is to investigate the possible role of Helical CT defecography in pelvic floor disorders by comparing the results of the investigations with those of conventional defecography. The series analyzed consisted of 90 patients, namely 62 women and 28 men, ranging in age 24-82 years. They were all submitted to conventional defecography, and 18 questionable cases were also studied with Helical CT defecography. The conventional examination was performed during the 4 standard phases of resting, squeezing, Valsalva and straining; it is used a remote-control unit. The parameters for Helical CT defecography were: 5 mm beam collimation, pitch 2, 120 KV, 250 m As and 18-20 degrees gantry inclination to acquire coronal images of the pelvic floor. The rectal ampulla was distended with a bolus of 300 mL nonionic iodinated contrast agent (dilution: 3g/cc). The patient wore a napkin and was seated on the table, except for those who could not hold the position and were thus examined supine. Twenty-second helical scans were performed at rest and during evacuation; multiplanar reconstructions were obtained especially on the sagittal plane for comparison with conventional defecographic images. Coronal Helical CT defecography images permitted to map the perineal floor muscles, while sagittal reconstructions provided information on the ampulla and the levator ani. To conclude, Helical CT defecography performed well in study of pelvic floor disorders and can follow conventional defecography especially in questionable cases. [Italian] Scopo di questo lavoro e' ricercare un ruolo per la defeco-TC con apparecchiatura elicoidale nello studio delle malattie del pavimento pelvico confrontandola con i risultati consolidati della defecografia tradizionale. Si sono visionati 90 pazienti, 62 femmine e 28 maschi, con eta' compresa tra 24 e 82 anni, con defecografia tradizionale; di questi, 18 casi con diagnosi dubbia sono stati studiati anche con defeco-TC spirale

  3. Software trends for both the GANIL and spiral control

    International Nuclear Information System (INIS)

    David, L.; Lecorche, E.

    1999-01-01

    The Ganil facility has been running with a new control system since 1993. Many improvements have been done since that time to bring new capabilities to the system. So, in February 1996, when the Spiral control system was designed, it was mainly considered as an extension of the Ganil control system. This paper briefly recalls the basic architecture of the whole control system and the main choices upon which it relies. Then it presents the new software trends, to show how the Spiral control system has been integrated alongside the existing one. The last part describe the new developments and the most significant functionalities it brings as seen from the operator point of view, with some emphasis about the application programs for beam tuning. Indeed, these new programs have to be provided both for the spiral tuning with exotic ions beams and for the coupling of the Spiral and older Ganil facilities. (authors)

  4. Effects of abnormal excitation on the dynamics of spiral waves

    Science.gov (United States)

    Min-Yi, Deng; Xue-Liang, Zhang; Jing-Yu, Dai

    2016-01-01

    The effect of physiological and pathological abnormal excitation of a myocyte on the spiral waves is investigated based on the cellular automaton model. When the excitability of the medium is high enough, the physiological abnormal excitation causes the spiral wave to meander irregularly and slowly. When the excitability of the medium is low enough, the physiological abnormal excitation leads to a new stable spiral wave. On the other hand, the pathological abnormal excitation destroys the spiral wave and results in the spatiotemporal chaos, which agrees with the clinical conclusion that the early after depolarization is the pro-arrhythmic mechanism of some anti-arrhythmic drugs. The mechanisms underlying these phenomena are analyzed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).

  5. Measurement and structure of spiral wave response functions

    Science.gov (United States)

    Dierckx, Hans; Verschelde, Henri; Panfilov, Alexander V.

    2017-09-01

    The rotating spiral waves that emerge in diverse natural and man-made systems typically exhibit a particle-like behaviour since their adjoint critical eigenmodes (response functions) are often seen to be localised around the spiral core. We present a simple method to numerically compute response functions for circular-core and meandering spirals by recording their drift response to many elementary perturbations. Although our method is computationally more expensive than solving the adjoint system, our technique is fully parallellisable, does not suffer from memory limitations and can be applied to experiments. For a cardiac tissue model with the linear spiral core, we find that the response functions are localised near the turning points of the trajectory.

  6. Data Fusion Tool for Spiral Bevel Gear Condition Indicator Data

    Science.gov (United States)

    Dempsey, Paula J.; Antolick, Lance J.; Branning, Jeremy S.; Thomas, Josiah

    2014-01-01

    Tests were performed on two spiral bevel gear sets in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig to simulate the fielded failures of spiral bevel gears installed in a helicopter. Gear sets were tested until damage initiated and progressed on two or more gear or pinion teeth. During testing, gear health monitoring data was collected with two different health monitoring systems. Operational parameters were measured with a third data acquisition system. Tooth damage progression was documented with photographs taken at inspection intervals throughout the test. A software tool was developed for fusing the operational data and the vibration based gear condition indicator (CI) data collected from the two health monitoring systems. Results of this study illustrate the benefits of combining the data from all three systems to indicate progression of damage for spiral bevel gears. The tool also enabled evaluation of the effectiveness of each CI with respect to operational conditions and fault mode.

  7. Relative frequencies of supernovae versus properties of spiral hosts

    OpenAIRE

    Hakobyan, A. A.; Nazaryan, T. A.; Adibekyan, V. Zh.; Petrosian, A. R.; Aramyan, L. S.; Kunth, D.; Mamon, G. A.; de Lapparent, V.; Bertin, E.; Gomes, J. M.; Turatto, M.

    2013-01-01

    In this work, we present an analysis of SNe number ratios in spiral galaxies with different morphological subtypes, luminosities, sSFR, and metallicities, to provide important information about the physical properties of the progenitor populations.

  8. Simulating Fatigue Crack Growth in Spiral Bevel Pinion

    National Research Council Canada - National Science Library

    Ural, Ani

    2003-01-01

    .... To obtain a more detailed understanding of the contact between a cracked pinion tooth in mesh with an uncracked gear tooth, three-dimensional contact analyses were performed on a spiral bevel gear...

  9. Cassini discovers a kinematic spiral ring around Saturn.

    Science.gov (United States)

    Charnoz, S; Porco, C C; Déau, E; Brahic, A; Spitale, J N; Bacques, G; Baillie, K

    2005-11-25

    Since the time of the Voyager flybys of Saturn in 1980-1981, Saturn's eccentric F ring has been known to be accompanied on either side by faint strands of material. New Cassini observations show that these strands, initially interpreted as concentric ring segments, are in fact connected and form a single one-arm trailing spiral winding at least three times around Saturn. The spiral rotates around Saturn with the orbital motion of its constituent particles. This structure is likely the result of differential orbital motion stretching an initial cloud of particles scattered from the dense core of the F ring. Different scenarios of formation, implying ringlet-satellite interactions, are explored. A recently discovered moon candidate, S/2004 S6, is on an orbit that crosses the F-ring core at the intersection of the spiral with the ring, which suggests a dynamical connection between S/2004 S6 and the spiral.

  10. Dosimetry in dental radiology. Dentascan spiral CT versus panoramic radiography

    International Nuclear Information System (INIS)

    Villari, N.; Stecco, A.; Zatelli, G.

    1999-01-01

    The study compares the doses absorbed by the dentomaxillary area in spiral CT and panoramic examinations. The dose measurements demonstrate that patients receive smaller doses with panoramic radiography than with spiral CT with Dentascan. After following for some variations from instrumental differences, they are in substantial agreement with literature data. Further investigations are needed considering the radiobiological risk related to the growing spread of Dentascan examinations [it

  11. Scintigraphic diagnosis of spiral fracture in young children

    International Nuclear Information System (INIS)

    Hossein-Foucher, C.; Venel, H.; Lecouffe, P.; Ythier, H.; Legghe, R.; Marchandise, X.

    1988-01-01

    8 cases of unsuspected bone fracture in children, identified at bone scan are reported. Common features were the children's young age (1 to 3 years), the absence of clinical suspicion, the initially normal X-rays, the fracture type (spiral fracture of the tibia undisplaced), and the uniform appearance of the bone scan. These data confim the value of bone scan in limping children and suggest that spiral fracture of the tibia is a frequent and underdiagnosed condition in children [fr

  12. Lung studies with spiral CT. pitch 1 versus pitch 2

    International Nuclear Information System (INIS)

    Sartoni Galloni, S.; Miceli, M.; Lipparino, M.; Burzi, M.; Gigli, F.; Rossi, M.S.; Santoli, G.; Guidarelli, G.

    1999-01-01

    In Spiral CT, the pitch is the ratio of the distance to tabletop travels per 360 degrees rotation to nominal slice width, expressed in mm. Performing Spiral CT examination with pitch 2 allows to reduce examination time, exposure and contrast dose, and X-ray tube overload. The authors investigated the yield of pitch 2 in lung parenchyma studies, particular relative to diagnostic image quality [it

  13. The accelerated ISOL technique and the SPIRAL project

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    2001-01-01

    The accelerated ISOL technique is presented as an introduction to the present status of the SPIRAL facility. SPIRAL is based on the very high intensity light and heavy ion beams available at GANIL. The facility will deliver radioactive beams with energies in the range between 1.7 A and 25 A MeV. The presently target-ion source production system, as well the new developments undertaken by the target ion-source group at GANIL are presented. (authors)

  14. Noncontrast peripheral MRA with spiral echo train imaging.

    Science.gov (United States)

    Fielden, Samuel W; Mugler, John P; Hagspiel, Klaus D; Norton, Patrick T; Kramer, Christopher M; Meyer, Craig H

    2015-03-01

    To develop a spin echo train sequence with spiral readout gradients with improved artery-vein contrast for noncontrast angiography. Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. In vivo, artery-vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery-vein contrast, better spatial resolution (1.2 mm(2) versus 1.5 mm(2) ), and was acquired in less time (1.4 min versus 7.5 min). The spiral spin echo train sequence can be used for flow-independent angiography to generate three-dimensional angiograms of the periphery quickly and without the use of contrast agents. © 2014 Wiley Periodicals, Inc.

  15. Mechanics and spiral formation in the rat cornea.

    Science.gov (United States)

    Mohammad Nejad, T; Iannaccone, S; Rutherford, W; Iannaccone, P M; Foster, C D

    2015-01-01

    During the maturation of some mammals such as mice and rats, corneal epithelial cells tend to develop into patterns such as spirals over time. A better understanding of these patterns can help to understand how the organ develops and may give insight into some of the diseases affecting corneal development. In this paper, a framework for explaining the development of the epithelial cells forming spiral patterns due to the effect of tensile and shear strains is proposed. Using chimeric animals, made by combining embryonic cells from genetically distinguishable strains, we can observe the development of patterns in the cornea. Aggregates of cell progeny from one strain or the other called patches form as organs and tissue develop. The boundaries of these patches are fitted with logarithmic spirals on confocal images of adult rat corneas. To compare with observed patterns, we develop a three-dimensional large strain finite element model for the rat cornea under intraocular pressure to examine the strain distribution on the cornea surface. The model includes the effects of oriented and dispersed fibrils families throughout the cornea and a nearly incompressible matrix. Tracing the directions of critical strain vectors on the cornea surface leads to spiral-like curves that are compared to the observed logarithmic spirals. Good agreement between the observed and numerical curves supports the proposed assumption that shear and tensile strains facilitate sliding of epithelial cells to develop spiral patterns.

  16. Spiral instabilities in media supporting complex oscillations under periodic forcing

    Science.gov (United States)

    Gao, Qingyu; Li, Jun; Zhang, Kailong; Epstein, Irving R.

    2009-09-01

    The periodically forced Brusselator model displays temporal mixed-mode and quasiperiodic oscillations, period doubling, and chaos. We explore the behavior of such media as reaction-diffusion systems for investigating spiral instabilities. Besides near-core breakup and far-field breakup resulting from unstable modes in the radial direction or Doppler-induced instability (destabilization of the core's location), the observed complex phenomena include backfiring, spiral regeneration, and amplitude modulation from line defects. Amplitude modulation of spirals can evolve to chambered spirals resembling those found in nature, such as pine cones and sunflowers. When the forcing amplitude is increased, the spiral-tip meander evolves from simple rotation to complex petals, corresponding to transformation of the local dynamics from simple oscillations to mixed-mode, period-2, and quasiperiodic oscillations. The number of petals is related to the complexity of the mixed-mode oscillations. Spiral turbulence, standing waves, and homogeneous synchronization permeate the entire system when the forcing amplitude is further increased.

  17. High-Tc Superconducting Thick-Film Spiral Magnet: Development and Characterization of a Single Spiral Module

    National Research Council Canada - National Science Library

    McGinnis, W

    1997-01-01

    The objective of this project was to make characterized and numerically model prototype modules of a new type of superconducting electromagnet based on stacked spirals of superconducting thick films...

  18. Clear New View of a Classic Spiral

    Science.gov (United States)

    2010-05-01

    ESO is releasing a beautiful image of the nearby galaxy Messier 83 taken by the HAWK-I instrument on ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The picture shows the galaxy in infrared light and demonstrates the impressive power of the camera to create one of the sharpest and most detailed pictures of Messier 83 ever taken from the ground. The galaxy Messier 83 (eso0825) is located about 15 million light-years away in the constellation of Hydra (the Sea Serpent). It spans over 40 000 light-years, only 40 percent the size of the Milky Way, but in many ways is quite similar to our home galaxy, both in its spiral shape and the presence of a bar of stars across its centre. Messier 83 is famous among astronomers for its many supernovae: vast explosions that end the lives of some stars. Over the last century, six supernovae have been observed in Messier 83 - a record number that is matched by only one other galaxy. Even without supernovae, Messier 83 is one of the brightest nearby galaxies, visible using just binoculars. Messier 83 has been observed in the infrared part of the spectrum using HAWK-I [1], a powerful camera on ESO's Very Large Telescope (VLT). When viewed in infrared light most of the obscuring dust that hides much of Messier 83 becomes transparent. The brightly lit gas around hot young stars in the spiral arms is also less prominent in infrared pictures. As a result much more of the structure of the galaxy and the vast hordes of its constituent stars can be seen. This clear view is important for astronomers looking for clusters of young stars, especially those hidden in dusty regions of the galaxy. Studying such star clusters was one of the main scientific goals of these observations [2]. When compared to earlier images, the acute vision of HAWK-I reveals far more stars within the galaxy. The combination of the huge mirror of the VLT, the large field of view and great sensitivity of the camera, and the superb observing conditions

  19. Improved method for identifying and quantifying olive oil phenolic compounds and their metabolites in human plasma by microelution solid-phase extraction plate and liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Suárez, Manuel; Romero, Maria-Paz; Macià, Alba; Valls, Rosa M; Fernández, Sara; Solà, Rosa; Motilva, Maria-José

    2009-12-15

    Two methods based on solid-phase extraction (SPE) using traditional cartridges and microelution SPE plates (muSPE) as the sample pre-treatment, and an improved liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) were developed and compared to determine the phenolic compounds in virgin oil olive from plasma samples. The phenolic compounds studied were hydroxytyrosol, tyrosol, homovanillic acid, p-coumaric acid, 3,4-DHPEA-EDA, p-HPEA-EDA, luteolin, apigenin, pinoresinol and acetoxypinoresinol. Good recoveries were obtained in both methods, and the LOQs and LODs were similar, in the range of low muM. The advantage of muSPE, in comparison with SPE cartridges, was the lack of the evaporation step to pre-concentrate the analytes. The muSPE-UPLC-ESI-MS/MS method developed was then applied to determine the phenolic compounds and their metabolites, in glucuronide, sulphate and methylated forms, in human plasma after the ingestion of virgin olive oil.

  20. Force-plate analyses of balance following a balance exercise program during acute post-operative phase in individuals with total hip and knee arthroplasty: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Pankaj Jogi

    2016-11-01

    Full Text Available Objectives: Typical rehabilitation programs following total hip arthroplasty and total knee arthroplasty include joint range of motion and muscle-strengthening exercises. Balance and balance exercises following total hip arthroplasty and total knee arthroplasty have not received much attention. The purpose of this study was to determine whether an intervention of balance exercises added to a typical rehabilitation program positively affects patients’ balance. Methods: A total of 63 patients were provided with outpatient physical therapy at their home. Patients were randomly assigned to either typical (n = 33 or balance (n = 30 exercise group. The typical group completed seven typical surgery-specific joint range of motion and muscle-strengthening exercises, while the balance group completed the typical exercises plus three balance exercises. After 5 weeks of administering the rehabilitation program, patients’ balance was assessed on a force plate using 95% ellipse area of the center of pressure amplitude. Results: Patients in the balance group demonstrated significant reduction in the 95% ellipse area for the anterior and posterior lean standing conditions (p < 0.01. Conclusion: Balance exercises added to the typical outpatient physical therapy program resulted in significantly greater improvements in balance for participants with total hip arthroplasty or total knee arthroplasty, compared to the typical exercise program alone. Physical therapists might consider the use of balance exercises to improve balance in individuals in the acute post-operative phase following total hip arthroplasty or total knee arthroplasty.

  1. CHARACTERIZING SPIRAL ARM AND INTERARM STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Kreckel, K.; Schinnerer, E.; Meidt, S. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanc, G. A. [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile); Groves, B. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Adamo, A. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Hughes, A., E-mail: kreckel@mpia.de [CNRS, IRAP, 9 Av. du Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2016-08-20

    Interarm star formation contributes significantly to a galaxy’s star formation budget and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct H α maps including detailed corrections for dust extinction and stellar absorption to identify 391 H ii regions at 35 pc resolution over 12 kpc{sup 2}. Using tracers sensitive to the underlying gravitational potential, we associate H ii regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most physical properties (luminosity, size, metallicity, ionization parameter) of H ii regions are independent of environment. We calculate the fraction of H α luminosity due to the background of diffuse ionized gas (DIG) contaminating each H ii region, and find the DIG surface brightness to be higher within H ii regions than in the surroundings, and slightly higher within arm H ii regions. Use of the temperature-sensitive [S ii]/H α line ratio instead of the H α surface brightness to identify the boundaries of H ii regions does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 × 10{sup 9} yr) with no differences between the arm and interarm, but this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent properties of H ii regions in both arm and interarm environments. This suggests either a difference in star formation and feedback in arms or a decoupling of dense star-forming clumps from the more extended surrounding molecular gas.

  2. The Globular Cluster System of the Spiral Galaxy NGC 7814

    Science.gov (United States)

    Rhode, Katherine L.; Zepf, Stephen E.

    2003-11-01

    We present the results of a wide-field photometric study of the globular cluster (GC) system of the edge-on Sab spiral NGC 7814. This is the first spiral to be fully analyzed from our survey of the GC systems of a large sample of galaxies beyond the Local Group. NGC 7814 is of particular interest because a previous study estimated that it has 500-1000 GCs, giving it the largest specific frequency (SN) known for a spiral. Understanding this galaxy's GC system is important in terms of our understanding of the GC populations of spirals in general and has implications for the formation of massive galaxies. We observed the galaxy in BVR filters with the WIYN 3.5 m telescope and used image classification and three-color photometry to select GC candidates. We also analyzed archival Hubble Space Telescope (HST) Wide Field Planetary Camera 2 images of NGC 7814, both to help quantify the contamination level of the WIYN GC candidate list and to detect GCs in the inner part of the galaxy halo. Combining HST data with high-quality ground-based images allows us to trace the entire radial extent of this galaxy's GC system and determine the total number of GCs directly through observation. We find that rather than being an especially high-SN spiral, NGC 7814 has <~200 GCs and SN~1, making it comparable to the two most well-studied spiral galaxies, the Milky Way and M31. We explore the implications of these results for models of the formation of galaxies and their GC systems. The initial results from our survey suggest that the GC systems of typical elliptical galaxies can be accounted for by the merger of two or more spirals, but that for highly luminous elliptical galaxies, additional physical processes may be needed.

  3. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    International Nuclear Information System (INIS)

    Wang, Q; Chen, H L; Liu, T; Liu, Y H; Liu, Z B; Liu, D H

    2012-01-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  4. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    Science.gov (United States)

    Wang, Q.; Chen, H. L.; Liu, T.; Liu, Y. H.; Liu, Z. B.; Liu, D. H.

    2012-11-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  5. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases.

    Science.gov (United States)

    Gupta, Vipul; Beirne, Stephen; Nesterenko, Pavel N; Paull, Brett

    2018-01-16

    Effect of column geometry on the liquid chromatographic separations using 3D printed liquid chromatographic columns with in-column polymerized monoliths has been studied. Three different liquid chromatographic columns were designed and 3D printed in titanium as 2D serpentine, 3D spiral, and 3D serpentine columns, of equal length and i.d. Successful in-column thermal polymerization of mechanically stable poly(BuMA-co-EDMA) monoliths was achieved within each design without any significant structural differences between phases. Van Deemter plots indicated higher efficiencies for the 3D serpentine chromatographic columns with higher aspect ratio turns at higher linear velocities and smaller analysis times as compared to their counterpart columns with lower aspect ratio turns. Computational fluid dynamic simulations of a basic monolithic structure indicated 44%, 90%, 100%, and 118% higher flow through narrow channels in the curved monolithic configuration as compared to the straight monolithic configuration at linear velocities of 1, 2.5, 5, and 10 mm s -1 , respectively. Isocratic RPLC separations with the 3D serpentine column resulted in an average 23% and 245% (8 solutes) increase in the number of theoretical plates as compared to the 3D spiral and 2D serpentine columns, respectively. Gradient RPLC separations with the 3D serpentine column resulted in an average 15% and 82% (8 solutes) increase in the peak capacity as compared to the 3D spiral and 2D serpentine columns, respectively. Use of the 3D serpentine column at a higher flow rate, as compared to the 3D spiral column, provided a 58% reduction in the analysis time and 74% increase in the peak capacity for the isocratic separations of the small molecules and the gradient separations of proteins, respectively.

  6. Create Your Plate

    Medline Plus

    Full Text Available ... Monthly In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online ... Print Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is ...

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  8. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning What Can I Eat? Making ... Forecast® magazine: wcie-meal-planning, . In this ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  9. Create Your Plate

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  10. Growth Plate Injuries

    Science.gov (United States)

    ... cause any lasting problems for your child or teen. Growth plates are areas of growing tissues that cause ... are replaced by solid bone. Who gets them? Growth plate injuries happen to children and teens. This injury happens twice as often in boys ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ...

  12. High-speed spiral imaging technique for an atomic force microscope using a linear quadratic Gaussian controller

    International Nuclear Information System (INIS)

    Habibullah, H.; Pota, H. R.; Petersen, I. R.

    2014-01-01

    This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFM’s piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method

  13. High-speed spiral imaging technique for an atomic force microscope using a linear quadratic Gaussian controller.

    Science.gov (United States)

    Habibullah, H; Pota, H R; Petersen, I R

    2014-03-01

    This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFM's piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method.

  14. Dynamic study of the larynx with spiral CT

    International Nuclear Information System (INIS)

    Park, Jong Yeon; Choi, Chang Ho; Yoon, Chi Soon; Kim, Yoon Gyoo; Nam, Sang Hwa; Kim, Kun Il; Kim, Byung Soo; Wang, Soo Guen

    1994-01-01

    It is essential to know the functional and morphologic changes of the larynx in the evaluation of laryngeal lesions. Conventional CT which has relatively long examination time is not suitable for this aim. The purposes of this study are to evaluate the capability of spiral CT in the dynamic study of the larynx and to know whether this new technique can replace conventional laryngography or not. Five healthy volunteers and 20 patients with laryngeal lesions underwent spiral dynamic CT scans with 3-dimensional reconstruction of the mucosal surface. A series of spiral CT scans were done while the volunteers performed various laryngeal positions to obtain the functional and morphologic information. The maneuvers used were: quite breathing, 'E' phonation, Valsalva maneuver, modified Valsalva maneuver, and a new method of our own, 'modified breath holding' technique. The patients were scanned when in quite breathing. Additional scans were obtained by using the 'modified breath holding' technique. The dynamic study with spiral CT could provide high resolutional images which nicely depicted the mobility of vocal cords and the mucosal changes of the laryngeal cavity in both healthy volunteer and patient groups. In patient group, the new 'modified breath holding' technique was easier and more reproducible than other maneuvers. Spiral CT allows a dynamic study of the larynx and can be a new alternative of laryngography

  15. On wave dark matter in spiral and barred galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Medina, Luis A.; Matos, Tonatiuh [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F., México. (Mexico); Bray, Hubert L., E-mail: lmedina@fis.cinvestav.mx, E-mail: bray@math.duke.edu, E-mail: tmatos@fis.cinvestav.mx [Mathematics Department, Duke University, Box 90320, Durham, NC 27708 (United States)

    2015-12-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter.

  16. Spiral scan long object reconstruction through PI line reconstruction

    International Nuclear Information System (INIS)

    Tam, K C; Hu, J; Sourbelle, K

    2004-01-01

    The response of a point object in a cone beam (CB) spiral scan is analysed. Based on the result, a reconstruction algorithm for long object imaging in spiral scan cone beam CT is developed. A region-of-interest (ROI) of the long object is scanned with a detector smaller than the ROI, and a portion of it can be reconstructed without contamination from overlaying materials. The top and bottom surfaces of the ROI are defined by two sets of PI lines near the two ends of the spiral path. With this novel definition of the top and bottom ROI surfaces and through the use of projective geometry, it is straightforward to partition the cone beam image into regions corresponding to projections of the ROI, the overlaying objects or both. This also simplifies computation at source positions near the spiral ends, and makes it possible to reduce radiation exposure near the spiral ends substantially through simple hardware collimation. Simulation results to validate the algorithm are presented

  17. Continuing research on the classical spiraling photon model

    Science.gov (United States)

    Li, Hongrui

    2014-11-01

    Based no the classical spiraling photon model proposed by Hongrui Li, the laws of reflection, refraction of a single photon can be derived. Moreover, the polarization, total reflection, evanescent wave and Goos-Hanchen shift of a single photon can be elucidated. However, this photon model is still unfinished. Especially, the spiraling diameter of a photon is not definite. In this paper, the continuous research works on this new theory are reported. According to the facts that the diffraction limit of light and the smallest diameter of the focal spot of lenses are all equal to the wavelength λ of the light, we can get that the spiraling diameter of a photon equals to the wavelength λ, so we gain that the angle between the linear velocity of the spiraling photon υ and the component of the linear velocity in the forward direction υb is 45°, and the energy of a classical spiraling photon E = (1/2)mυ2 = (1/2)m2c2 = mc2. This coincides with Einstein's mass-energy relation. While it is obtained that the velocity of the evanescent wave in the vacuum is slower than the velocity of light in glass in straight line. In such a way, the optical fiber can slow the light down. In addition, the force analysis of a single photon in optical tweezers system is discussed. And the reason that the laser beam can capture the particle slightly downstream from the focal point can be explained.

  18. On wave dark matter in spiral and barred galaxies

    International Nuclear Information System (INIS)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.

    2015-01-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter

  19. SPIRAL2 at Ganil:. a World Leading Isol Facility for the Physics of Exotic Nuclei

    Science.gov (United States)

    Gales, S.

    2008-04-01

    During the last two decades, RIB has allowed the investigation of a new territory of nuclei with extreme N/Z called "terra incognita". Due to technical limitations, existing facilities were able to cover some part of the light mass region of this "terra incognita". The main goal of SPIRAL2 is clearly to extend our knowledge of the limit of existence and the structure of nuclei deeply in the medium and heavy mass region (A = 60 to 140) which is to day an almost unexplored continent. SPIRAL 2 is based on a high power, CW, superconducting driver LINAC, delivering 5 mA of deuteron beams at 40MeV (200KW) directed on a C converter+ Uranium target and producing therefore more 1013 fissions/s. The expected radioactive beams intensities for exotic species in the mass range from A = 60 to A = 140, of the order of 106 to 1010pps will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100μA to 1 mA), heavier ions up to Ar at 14 MeV/n producing also proton rich exotic nuclei. In applied areas SPIRAL2 is considered as a powerful variable energy neutron source, a must to study the impact of nuclear fission and fusion on materials. The intensities of these unstable species are excellent opportunities for new tracers and diagnostics either for solid state, material or for radiobiological science and medicine. The "Go" decision has been taken in May 2005. The investments and personnel costs amount to 190 M€, for the construction period 2006-2012. The project group has been completed in 2006, the construction of the accelerator started in the beginning of 2007 whereas detail design of the RIB production processes are underway. Construction of the SPIRAL2 facility is shared by ten French laboratories and a network of international partners. Under the 7FP program of European Union called "Preparatory phase for the construction of new

  20. Study of metastatic lymph nodes in advanced gastric cancer with spiral computed tomograph

    International Nuclear Information System (INIS)

    Su Yijuan

    2008-01-01

    Objective: To study the characteristics of spiral computed tomography (SCT) in the diagnosis of lymph nodes metastases in gastric cancer. Methods: The characteristics of spiral computed tomography (SCT) of metastatic lymph nodes in 35 gastric cancer patients were analyzed and compared with operation and pathology. Results: A total amount of 379 lymph nodes (positive 173, negative 206) were detected by SCT and confirmed by pathology in metastasis-positive or metastasis-negative patients. The positive rate with diameter of lymph nodes ≥ 10 mm is 62.7%. The positive rate with ir- regular shape and uneven enhancement lymph nodes were 96.3% and 89.4%. If the attenuation values, more than or equal to 25 HU in plain scan or 70 HU in arterial phase or 80 HU in venous phase, were used as the threshold to detect the metastasis-positive lymph nodes, the positive rate were 55.7%, 56.3%, 67.8% respectively. Conclusion: SCT is valuable in judging the metastasis in gastric cancer. The reference of diameter ≥ 10mm, combining with the shape and the attenuation values can dramatically improve the diagnosis of lymph node metastasis in gastric cancer. (authors)

  1. Topological magnetoelectric memory effect in the spin-spiral multiferroic MnWO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Dennis; Leo, Naemi; Lottermoser, Thomas; Fiebig, Manfred [HISKP, Universitaet Bonn (Germany); Becker, Petra; Bohaty, Ladislav [Institut fuer Kristallographie, Universitaet zu Koeln (Germany)

    2010-07-01

    Within the field of multiferroics, i.e. compounds with coexisting magnetic and electric order, so-called spin-spiral ferroelectrics attract tremendous attention. In these systems magnetic long-range order violates the inversion symmetry and induces a spontaneous electric polarization. Magnetic and electric domains are thus rigidly coupled so that ''giant'' magnetoelectric effects are obtained. However, up to now nearly nothing is know about the topology of the domain state in these systems. We report spatially-resolved measurements of the multiferroic domain topology in MnWO{sub 4}. For the first time, the full three-dimensional domain structure in a spin-spiral system is imaged. Our study reveals that the multiferroic domains in magnetically-induced ferroelectrics unify features that are associated to a magnetic domain state and others that point unambiguously to ferroelectric domains. Hence, a description in terms of ferroelectric or antiferromagnetic domains is incomplete and no longer appropriate. The novel concept of ''multiferroic hybrid domains'' is introduced. Annealing cycles reveal a topological memory effect: Due to phase coexistence at one phase boundary limiting the multiferroic state in MnWO{sub 4}, the entire multiferroic multidomain state can be reconstructed subsequent to quenching it.

  2. Broken discrete and continuous symmetries in two-dimensional spiral antiferromagnets

    International Nuclear Information System (INIS)

    Mezio, A; Sposetti, C N; Manuel, L O; Trumper, A E

    2013-01-01

    We study the occurrence of symmetry breaking, at zero and finite temperatures, in the J 1 –J 3 antiferromagnetic Heisenberg model on the square lattice using Schwinger boson mean field theory. For spin- 1/2 the ground state always breaks the SU(2) symmetry with a continuous quasi-critical transition at J 3 /J 1 ∼ 0.38, from Néel to spiral long range order, although local spin fluctuation considerations suggest an intermediate disordered regime around 0.35 ≲ J 3 /J 1 ≲ 0.5, in qualitative agreement with recent numerical results. At low temperatures we find a Z 2 broken symmetry region with short range spiral order characterized by an Ising-like nematic order parameter that compares qualitatively well with classical Monte Carlo results. At intermediate temperatures the phase diagram shows regions with collinear short range orders: for J 3 /J 1 3 /J 1 > 1 a novel phase consisting of four decoupled third neighbour sublattices with Néel (π,π) correlations in each one. We conclude that the effect of quantum and thermal fluctuations is to favour collinear correlations even in the strongly frustrated regime. (paper)

  3. Broken discrete and continuous symmetries in two-dimensional spiral antiferromagnets

    Science.gov (United States)

    Mezio, A.; Sposetti, C. N.; Manuel, L. O.; Trumper, A. E.

    2013-11-01

    We study the occurrence of symmetry breaking, at zero and finite temperatures, in the J1-J3 antiferromagnetic Heisenberg model on the square lattice using Schwinger boson mean field theory. For spin-\\frac{1}{2} the ground state always breaks the SU(2) symmetry with a continuous quasi-critical transition at J3/J1 ˜ 0.38, from Néel to spiral long range order, although local spin fluctuation considerations suggest an intermediate disordered regime around 0.35 ≲ J3/J1 ≲ 0.5, in qualitative agreement with recent numerical results. At low temperatures we find a Z2 broken symmetry region with short range spiral order characterized by an Ising-like nematic order parameter that compares qualitatively well with classical Monte Carlo results. At intermediate temperatures the phase diagram shows regions with collinear short range orders: for J3/J1 1 a novel phase consisting of four decoupled third neighbour sublattices with Néel (π,π) correlations in each one. We conclude that the effect of quantum and thermal fluctuations is to favour collinear correlations even in the strongly frustrated regime.

  4. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.

    Science.gov (United States)

    Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu

    2015-11-11

    The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.

  5. Monolithic Gradient Index Phase Plate Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The "piston errors" and aberrations of the mirror segments used in large telescopes, are typically measured with on-board optical instruments, usually a dispersed...

  6. Lohse's historic plate archive

    Science.gov (United States)

    Tsvetkov, M.; Tsvetkova, K.; Richter, G.; Scholz, G.; Böhm, P.

    The description and the analysis of Oswald Lohse's astrophotographic plates, collected at the Astrophysical Observatory Potsdam in the period 1879 - 1889, are presented. 67 plates of the archive, taken with the greatest instrument of the observatory at that time - the refractor (D = 0.30 m, F = 5.40 m, scale = 38''/mm) and with the second heliographic objective (D = 0.13 m, F = 1.36 m, scale = 152''/mm) - - survived two world wars in relative good condition. The plate emulsions are from different manufacturers in the beginning of astrophotography (Gädicke, Schleussner, Beernaert, etc.). The sizes of the plates are usually 9x12 cm2, which corresponds to fields of 1.2deg and 5deg respectively for each instrument mentioned above. The average limiting magnitude is 13.0(pg). Besides of the plates received for technical experiments (work on photographic processes, testing of new instruments and methods of observations), the scientific observations follow programs for studies of planet surfaces, bright stars, some double stars, stellar clusters and nebulous objects. Lohse's archive is included into the Wide Field Plate Database (http://www.skyarchive.org) as the oldest systematic one, covering the fields of Orion (M42/43), Pleiades, h & chi Persei, M37, M3, M11, M13, M92, M31, etc. With the PDS 2020 GM+ microdensitometer of Münster University 10 archive plates were digitized.

  7. Extending the GANIL control system for the SPIRAL project

    International Nuclear Information System (INIS)

    Lecorche, E.

    1997-01-01

    The SPIRAL project under construction at GANIL aims to deliver radioactive ion beams to the physicists by the end of 1998. In 1996, it has been proposed to achieve most of the SPIRAL control system as an extension of the system currently in use at GANIL. Therefore the main features of the GANIL control system design are first recalled. Then the paper shows how the GANIL control system should have been upgraded and extended to integrate the SPIRAL project. This evolution had to cope with the specific needs brought by the new machine and to consider the size of the project which is around one third of the GANIL control system volume. Lastly current status of the system is given. (author)

  8. Spiral waves in the Belousov-Zhabotinskii reaction

    Science.gov (United States)

    Keener, James P.; Tyson, John J.

    1986-09-01

    The beautiful spiral waves of oxidation in the Belousov-Zhabotinskii reaction are the source of many interesting and important questions about periods structures in excitable media. It has long been known that these spirals are similar to involutes of circles, at least some distance from the center, but until now, no way has been known to determine the correct wavelength and frequency. In this paper, we show that the parameters of a spiral wave can be viwed s eigenvalues of a problem with unique solution. The critical ingredients of the theory are the effects of curvature on the propagation of wavefronts in two-dimensional media, and the dispersion of plane waves Our analytical results are shown to be in good agreement with experimental data for the Belousov-Zhabotinskii reagent.

  9. A Twin Spiral Planar Antenna for UWB Medical Radars

    Directory of Open Access Journals (Sweden)

    Giuseppe A. Zito

    2013-01-01

    Full Text Available A planar-spiral antenna to be used in an ultrawideband (UWB radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

  10. The scientific objectives of the SPIRAL 2 Project

    International Nuclear Information System (INIS)

    Ackermann, D.; Adoui, L.; Angelis, G. de

    2006-06-01

    The construction of SPIRAL 2 at GANIL will open completely new possibilities for parallel beam operation of the whole facility. The whole GANIL/SPIRAL/SPIRAL2 accelerator complex will allow for the simultaneous use of up to 5 different radioactive and stable beams. Several combinations of different beams delivered in parallel for experiments at low (keV/u), medium (few MeV/u) and high (up to 100 MeV/u) energies will be possible. Presently the GANIL/SPIRAL facility delivers about 60 weeks per year of stable and radioactive beams (up to 3 simultaneous beams). Thanks to SPIRAL 2 and the construction of a new beam line connecting the CIME cyclotron and the G1 and G2 experimental rooms the available beam time for experiments may be extended up to about 120 (up to 5 simultaneous beams) weeks per year. The chapters which follow a general introduction deal with the detailed questions to be addressed by experiments with the beams from SPIRAL2. In chapter 2 the many unanswered questions related to the structure of exotic nuclei are posed and the role of SPIRAL2 in answering them outlined. Chapter 3 deals with the dynamics and thermodynamics of asymmetric nuclear systems. Chapter 4 is concerned with questions of nuclear astrophysics which are intimately related to the properties of exotic nuclei. Chapter 5 indicates how the atomic nucleus can act as a laboratory for tests of the Standard model of Particle Physics and Chapter 6 shows how the production of intense fluxes of neutrons at SPIRAL2 make it an excellent tool to address both questions related to damage in materials of importance in nuclear installations and to the s- and r-processes of nucleosynthesis. In chapter 7 we turn to the application, of the radioactive beams from SPIRAL2 and the radionuclides produced by it, to study condensed matter and radiobiology. Finally in the eight and last chapter the reader can find an account of the historical development of the SPIRAL2 facility and this is followed by an outline of

  11. The scientific objectives of the SPIRAL 2 Project

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, D.; Adoui, L.; Angelis, G. de [GANIL, Grand Accelerateur National d' Ions Lourds, BP 55027, 14076 Caen cedex 5 (France)] (and others)

    2006-06-15

    The construction of SPIRAL 2 at GANIL will open completely new possibilities for parallel beam operation of the whole facility. The whole GANIL/SPIRAL/SPIRAL2 accelerator complex will allow for the simultaneous use of up to 5 different radioactive and stable beams. Several combinations of different beams delivered in parallel for experiments at low (keV/u), medium (few MeV/u) and high (up to 100 MeV/u) energies will be possible. Presently the GANIL/SPIRAL facility delivers about 60 weeks per year of stable and radioactive beams (up to 3 simultaneous beams). Thanks to SPIRAL 2 and the construction of a new beam line connecting the CIME cyclotron and the G1 and G2 experimental rooms the available beam time for experiments may be extended up to about 120 (up to 5 simultaneous beams) weeks per year. The chapters which follow a general introduction deal with the detailed questions to be addressed by experiments with the beams from SPIRAL2. In chapter 2 the many unanswered questions related to the structure of exotic nuclei are posed and the role of SPIRAL2 in answering them outlined. Chapter 3 deals with the dynamics and thermodynamics of asymmetric nuclear systems. Chapter 4 is concerned with questions of nuclear astrophysics which are intimately related to the properties of exotic nuclei. Chapter 5 indicates how the atomic nucleus can act as a laboratory for tests of the Standard model of Particle Physics and Chapter 6 shows how the production of intense fluxes of neutrons at SPIRAL2 make it an excellent tool to address both questions related to damage in materials of importance in nuclear installations and to the s- and r-processes of nucleosynthesis. In chapter 7 we turn to the application, of the radioactive beams from SPIRAL2 and the radionuclides produced by it, to study condensed matter and radiobiology. Finally in the eight and last chapter the reader can find an account of the historical development of the SPIRAL2 facility and this is followed by an outline of

  12. Study on a new water purification equipment with spiral lamellas

    Science.gov (United States)

    Feng, X. R.

    2017-08-01

    A new water purification equipment was introduced, especially the section of spiral lamellas. Utilization of spiral lamellas made the sedimentation space reach to 100%, not only improving sedimentation efficiency and reducing the cover space, but also saving investment. Production test results showed that the new water purification equipment with spiral lamellas had characteristics of excellent treatment efficiency and high shock resistant capacity. As the treatment water volume was 240 m3/d, when the turbidity, CODMn and UV254 were 203 NTU, 1.90 mg/L and 0.030 cm-1 in raw water, they were 0.32 NTU, 0.72mg/L and 0.011 cm-1 respectively in effluent water, which could fully meet the drinking water hygiene requirement.

  13. A Spiral And Discipline-Oriented Curriculum In Medical Imaging

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Hanson, Lars G.; Henneberg, Kaj-Åge

    2011-01-01

    This contribution describes and evaluates an experimental combination of a spiral and discipline-oriented curriculum implemented in the bachelor’s and master’s program in Medicine and Technology. The implementation in the master’s program is in the form of a study line in Medical Imaging and Radi......This contribution describes and evaluates an experimental combination of a spiral and discipline-oriented curriculum implemented in the bachelor’s and master’s program in Medicine and Technology. The implementation in the master’s program is in the form of a study line in Medical Imaging...... and Radiation Physics containing three disciplines: Imaging modalities, Radiation therapy and Image processing. The two imaging courses in the bachelor’s program and the first imaging course in the master’s program follow a spiral curriculum in which most disciplines are encountered in all courses...

  14. Auditory Mechanics of the Tectorial Membrane and the Cochlear Spiral

    Science.gov (United States)

    Gavara, Núria; Manoussaki, Daphne; Chadwick, Richard S.

    2012-01-01

    Purpose of review This review is timely and relevant since new experimental and theoretical findings suggest that cochlear mechanics from the nanoscale to the macroscale are affected by mechanical properties of the tectorial membrane and the spiral shape. Recent findings Main tectorial membrane themes covered are i) composition and morphology, ii) nanoscale mechanical interactions with the outer hair cell bundle, iii) macroscale longitudinal coupling, iv) fluid interaction with inner hair cell bundles, v) macroscale dynamics and waves. Main cochlear spiral themes are macroscale low-frequency energy focusing and microscale organ of Corti shear gain. Implications Findings from new experimental and theoretical models reveal exquisite sensitivity of cochlear mechanical performance to tectorial membrane structural organization, mechanics, and its positioning with respect to hair bundles. The cochlear spiral geometry is a major determinant of low frequency hearing. Suggestions are made for future research directions. PMID:21785353

  15. Spiral CT for cervical lymph node enlargement. Early clinical results

    International Nuclear Information System (INIS)

    Steinkamp, H.J.; Keske, U.; Schedel, J.; Hosten, N.; Felix, R.

    1994-01-01

    Spiral CT was performed before treatment in 35 patients with suspected cervical lymph node enlargement. By coronary and sagittal reconstruction it is possible to utilise the M/Q quotient which has become accepted as the result of sonographic and MRI examinations. It is now possible to obtain high diagnostic accuracy (97%) for distinguishing between reactive change from metastatic infiltration of lymph nodes (>8 mm) by using CT. Using spiral CT with 5 mm table movement, three patients diagnosed as stage N1 by axial CT were shown to be N2b. This represents a highly sensitive and highly specific method of lymph node diagnosis. Further diagnostic improvement derives from the ability to relate the lymph nodes to surrounding tissues. Spiral CT is also suitable for defining other space occupying lesions, e.g., the exact extent of retropharyngeal abscesses, abnormalities of the salivary glands or laryngocoeles. (orig.)

  16. [The morphometric study of endometrial spiral arterioles before and after insertion of gamma CuI and TCu 220C intrauterine devices].

    Science.gov (United States)

    Liu, Z; Chen, Q; Ni, X

    1998-04-01

    To investigate the morphologic changes of endometrial spiral arterioles and its relationship with bleeding pattern after insertion of gamma-shape copper indomethacin-medicated (gamma CuI) and T-shape copper (TCu 220C) intrauterine devices (IUD). Endometrium specimens of late secretory phase were obtained from fertile age women: 10 from preinsertion, 10 obtained after insertion of TCu 220C IUD, and 9 obtained after insertion of gamma CuI IUD. Samples were sectioned serially and morphometric analysis of endometrial spiral arterioles was performed under light microscope. The average cross section area (Area), maximum diameter (Dmax) and minimum diameter (Dmin) of spiral arterioles in both spongeous and dense layers of endometrium increased significantly after insertion of TCu 220C IUD. After insertion of gamma CuI IUD, the Area and Dmax increased in dense layer only, though less obviously than that occurred in TCu 220C group. However, the Dmin increased more obviously in both spongeous and dense layers than after insertion of TCu 220C IUD, implying that the shape of spiral arterioles was more regular in gamma CuI group. gamma CuI IUD has less effects on the morphological changes of endometrial spiral arterioles, and this may relate to its indomethacin-contained which causes less bleeding.

  17. Parabolic solar cooker: Cooking with heat pipe vs direct spiral copper tubes

    Science.gov (United States)

    Craig, Omotoyosi O.; Dobson, Robert T.

    2016-05-01

    Cooking with solar energy has been seen by many researchers as a solution to the challenges of poverty and hunger in the world. This is no exception in Africa, as solar coking is viewed as an avenue to eliminate the problem of food insecurity, insufficient energy supply for household and industrial cooking. There are several types of solar cookers that have been manufactured and highlighted in literature. The parabolic types of solar cookers are known to reach higher temperatures and therefore cook faster. These cookers are currently being developed for indoor cooking. This technology has however suffered low cooking efficiency and thus leads to underutilization of the high heat energy captured from the sun in the cooking. This has made parabolic solar cookers unable to compete with other conventional types of cookers. Several methods to maximize heat from the sun for indirect cooking has been developed, and the need to improve on them of utmost urgency. This paper investigates how to optimize the heat collected from the concentrating types of cookers by proposing and comparing two types of cooking sections: the spiral hot plate copper tube and the heat pipe plate. The system uses the concentrating solar parabolic dish technology to focus the sun on a conical cavity of copper tubes and the heat is stored inside an insulated tank which acts both as storage and cooking plate. The use of heat pipes to transfer heat between the oil storage and the cooking pot was compared to the use of a direct natural syphon principle which is achieved using copper tubes in spiral form like electric stove. An accurate theoretical analysis for the heat pipe cooker was achieved by solving the boiling and vaporization in the evaporator side and then balancing it with the condensation and liquid-vapour interaction in the condenser part while correct heat transfer, pressure and height balancing was calculated in the second experiment. The results show and compare the cooking time, boiling

  18. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  19. Problems raised by radioactive ion acceleration in the SPIRAL project. Accelerator tuning and stabilisation; Problemes poses par l`acceleration d`ions radioactifs dans le project SPIRAL. Reglage et stabilisation de l`accelerateur

    Energy Technology Data Exchange (ETDEWEB)

    Boy, L. [Paris-6 Univ., 75 (France)

    1997-12-31

    This study is related to the SPIRAL project. This facility uses a cyclotron to accelerate radioactive ion beams produced in a thick target by the Grant Accelerateur National d`Ions Lourds primary beam. The low intensity of radioactive beams and the mixing of several species imply special tuning methods and associated diagnostics. Also, a cyclotron and the beam line will be used to switch from this tuning beam to the radioactive one. We present a theoretical study and a numerical simulation of the tuning of five radioactive beams using three different methods. the beam dynamic is performed through the injection beam line and the cyclotron up to the electrostatic deflector. Within the frame of these methods we have described all the SPIRAL beam diagnostics. Construction and test of a new low intensity diagnosis based on a plastic scintillator for phase measurement inside the cyclotron is described in details. (author). 63 refs.

  20. Rediscovering the Giant Low Surface Brightness Spiral Galaxy Malin 1

    Science.gov (United States)

    Galaz, Gaspar

    2018-01-01

    I summarize the latest discoveries regarding this ramarkable diffuse and giant galaxy, the largest single spiral in the universe so far. I describe how the latest discoveries could have been done easily 20 years ago, but an incredible summation of facts and some astronomical sociology, keeped many of them undisclosed. I present the most conspicuous features of the giant spiral arms of Malin 1, including stellar density, colors, stellar populations and some modeling describing their past evolution to the current state. I conclude with pending issues regarding stellar formation in Malin 1, and the efforts to detect its elusive molecular gas.

  1. Initial clinical experience with spiral CT angiography in the abdomen

    International Nuclear Information System (INIS)

    Gaa, J.; Stehling, M.K.; Costello, P.

    1993-01-01

    The latest developments in modern CT instruments, offering scanning times of a second, opened up new possibilities in CT imaging in combination with the spiral technique. The data set normally taken with single-breath-hold technique is free of respiratory artefacts and thus is a good basis for accurate 3D image reconstruction. Spiral CTA allows a non-invasive 3D imaging of various blood vessels. Patients with abdominal aortic aneurysms of aorto-iliac bypass can be examined as outpatients within 15 minutes. (orig.) [de

  2. The color gradient in spiral galaxies: application to M 81

    International Nuclear Information System (INIS)

    Segalovitz, A.

    1975-01-01

    The calculated development of the color of a star cluster is used to predict the expected color evolution, as a function of radius, in a spiral galaxy. It is assumed that the fraction of gas which is converted into stars during a spiral arm passage is a function of radius only. Applying this model to M 81, it is shown that the observed color and mass distributions can be explained by an initial disk-like gas distribution proportional to the inverse square of the radius and a consumption fraction which is an increasing function of radius. (orig.) [de

  3. Spiral CT angiography of the abdominal aorta and its branches

    Energy Technology Data Exchange (ETDEWEB)

    Costello, P. [Dept. of Radiology, Deaconess Hospital and Harvard Medical School, Boston, MA (United States); Gaa, J. [Dept. of Radiology, Deaconess Hospital and Harvard Medical School, Boston, MA (United States)

    1993-08-01

    Spiral CT angiography (CTA) was performed on 19 patients for the pre-operative assessment of abdominal aortic aneurysms and in 3 post-operative renal artery bypass patients. Spiral CTA performed during intravenous contrast infusion provided a volume of data that was reconstructed at thin increments. Images were edited and reformatted either as surface rendered three-dimensional or maximum intensity projection (MIP) displays. Final images were viewed in a cine-loop presentation of quality comparable to conventional angiograms. The entire aorta can be examined from the coeliac axis to mid-pelvis with only 107 ml of 60% contrast. (orig.)

  4. Necessity for High Accuracy Rotation Curves in Spiral Galaxies

    OpenAIRE

    Blais-Ouellette, Sebastien; Carignan, Claude; Amram, Philippe

    1998-01-01

    In the last 20 years, rotation curves derived from H I kinematics obtained on radio synthesis instruments were used to probe the dark matter distribution in spiral and dwarf irregular galaxies. It is shown, with the aid of the Sd galaxy NGC 5585, that high resolution 2--D H II kinematics is necessary to determine accurately the mass distribution of spirals. New CFHT Fabry--Perot Hff observations are combined with low resolution Westerbork H I data to study its mass distribution. Using the com...

  5. A Spiral And Discipline-Oriented Curriculum In Medical Imaging

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Hanson, Lars G.; Henneberg, Kaj-Åge

    2011-01-01

    This contribution describes and evaluates an experimental combination of a spiral and discipline-oriented curriculum implemented in the bachelor’s and master’s program in Medicine and Technology. The implementation in the master’s program is in the form of a study line in Medical Imaging...... and Radiation Physics containing three disciplines: Imaging modalities, Radiation therapy and Image processing. The two imaging courses in the bachelor’s program and the first imaging course in the master’s program follow a spiral curriculum in which most disciplines are encountered in all courses...

  6. Resonant fields created by spiral electric currents in Tokamaks

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Caldas, I.L.

    1985-01-01

    The influence of the resonant magnetic perturbations, created by electric currents in spirals, on the plasma confinement in a tokamak with circular section and large aspect ratio is investigated. These perturbations create magnetic islands around the rational magnetic surface which has the helicity of the helicoidal currents. The intensities of these currents are calculated in order to the magnetic islands reach the limiter or others rational surfaces, what could provoke the plasma disrupture. The electric current intensities are estimated, in two spiral sets with different helicities, which create a predominantly stocastic region among the rational magnetic surfaces with these helicities. (L.C.) [pt

  7. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  8. Fatigue Specimens for Sheet and Plate Material

    NARCIS (Netherlands)

    Schijve, J.

    1998-01-01

    The usefulness of simple sheet and plate specimens is discussed for various experimental research purposes. Specimens should be representative as much as possible for the conditions of fatigue problems in practice, which is more difficult to achieve for the fatigue crack initiation phase than for

  9. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral

    Science.gov (United States)

    Ramaekers, P.; de Greef, M.; Berriet, R.; Moonen, C. T. W.; Ries, M.

    2017-06-01

    The purpose of this study was to evaluate a novel phased array transducer design rule for therapeutic focused ultrasound applications. This design rule uses the discretized Fermat’s spiral to determine the positioning of the transducer elements for a given number of elements and f-number. Using this principle, three variations of Fermat’s spiral were generated, aimed at (1) grating lobe minimization, (2) side lobe minimization, and (3) an optimized element packing efficiency. For each spiral, sparse layouts using identical circular elements and fully populated layouts based on additional Voronoi tessellation were evaluated numerically. Evaluation criteria included the element size distribution, beam steering capabilities, focal plane pressure distribution, prefocal pressure distribution, and practical considerations. Finally, one Voronoi-tessellated design with a focal length and aperture diameter of 16 cm and a natural frequency of 1.3 MHz was evaluated experimentally through hydrophone measurements. The numerical evaluation showed that while sparse arrays possess superior beam steering capabilities for a given number of elements, the focal point quality and prefocal pressure distribution is substantially more favorable when using the Voronoi-tessellated designs. Beam steering was shown to be feasible with the tessellated designs for lateral deflections up to 10 mm and axial deflections up to 20 mm. The experimental evaluation showed that such a transducer is capable of inducing 40.00 MPa rarefactional and 237.50 MPa compressional peak pressure levels at 800 W instantaneous acoustic output power under free-field conditions, making the system potentially relevant for thermal ablation therapy, histotripsy applications, and shockwave-enhanced heating.

  10. Nonfunctioning endocrine tumors of the pancreas: possibilities of spiral CT characterization

    Energy Technology Data Exchange (ETDEWEB)

    Procacci, C.; Carbognin, G.; Biasiutti, C.; Bicego, E.; Romano, L.; Guarise, A.; Minniti, S.; Pagnotta, N. [Dept. of Radiology, University of Verona Medical School (Italy); Accordini, S. [Div. of Medical Statistics, University of Verona Medical School (Italy); Falconi, M. [Dept. of Surgical Sciences, University of Verona Medical School (Italy)

    2001-07-01

    The aim of this study was to assess the ability of spiral CT to adequately characterize the nonfunctioning endocrine tumors (NFETs) of the pancreas, distinguishing this lesion from the other pancreatic tumors. The spiral CT examinations of 21 cases of histologically proven NFETs, along with those of 29 cases of other pancreatic tumors and tumor-like lesions, were retrospectively reviewed in a blinded fashion by two radiologists, in order to correctly classify the lesions, highlighting the typical signs reported in the literature. Discordant cases were further analyzed in the presence of a third radiologist. The final diagnosis was acquired by means of a majority or overall consensus. The histopathologic examination was considered the gold standard. The sensitivity, specificity, and positive and negative predictive values of CT were calculated. After the consensus evaluation, the correct diagnosis was reached in 72% of cases, with 10% of nonspecific diagnoses of solid pancreatic tumor and 18% of wrong diagnoses. The sensitivity and specificity of spiral CT in identifying NFETs were 66.6 and 82.7%, respectively. The positive and negative predictive values were 73.7 and 77.4%, respectively. In up to 70% of cases the NFET demonstrates a typical aspect of a mass hyperdense in the arterial contrastographic phase eventually associated with hyperdense hepatic metastases in more than half of the patients. This finding does allow the diagnosis of NFET but without certainty indeed, since other tumors can show a similar densitometric behavior and among them particularly the ductal adenocarcinoma. On the other hand, both the solid, hypovascularized NFETs, and the cystic form, cannot be differentiated from the other solid and cystic tumors of the pancreas. (orig.)

  11. The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams

    Science.gov (United States)

    Chen, Jiannong; Gao, Xiumin; Zhu, Linwei; Xu, Qinfeng; Ma, Wangzi

    2014-05-01

    We demonstrate that a complete right-handed or left-handed spiral-shaped focus can be created by focusing circularly polarized and three spatially shifted vortex beams through high numerical objective. By dividing the back aperture into multi annular zones and applying an additional phase term, the multi focal spots aligned along z axis of individual three dimensional focal shapes can be generated. The spiral shaped focus provides a pathway of manipulating the micro-particles in a curved trajectory and opens up a possibility of measuring mechanical torque of biological large molecules such as DNA by chemically binding one end on the cover-glass. The multi focal spots aligned along the z axis can eliminate the need of z axis scanning in the direct laser writing fabrication of some metamaterials which is composed of three-dimensional array of specific shapes of building blocks.

  12. Origin choice and petal loss in the flower garden of spiral wave tip trajectories.

    Science.gov (United States)

    Gray, Richard A; Wikswo, John P; Otani, Niels F

    2009-09-01

    Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh-Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system's state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave.

  13. Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs

    Science.gov (United States)

    Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.

    2018-05-01

    We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.

  14. Create Your Plate

    Medline Plus

    Full Text Available ... managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but ... you have an easy portion control solution that works. Last Reviewed: October 8, 2015 Last Edited: September ...

  15. What's On Your Plate?

    Science.gov (United States)

    ... what these nutrients do in your body and what foods they are found in. Plans for Healthy Living ... food choices. Get more nutrition information online with What's On Your Plate? Smart Food Choices for Healthy Aging from the National Institute ...

  16. Create Your Plate

    Medline Plus

    Full Text Available ... Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... been easier. It can be a challenge to manage portion control wherever you are. Now, our best- ...

  17. Create Your Plate

    Medline Plus

    Full Text Available ... Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  18. Create Your Plate

    Medline Plus

    Full Text Available ... Edited: September 14, 2016 Articles from Diabetes Forecast® magazine: wcie-meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten ...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... Children and Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  20. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  1. Create Your Plate

    Medline Plus

    Full Text Available ... one side, cut it again so you will have three sections on your plate. Fill the largest ... home, the office, or somewhere in between, you have an easy portion control solution that works. Last ...

  2. Silver plating ensures reliable diffusion bonding of dissimilar metals

    Science.gov (United States)

    1967-01-01

    Dissimilar metals are reliably joined by diffusion bonding when the surfaces are electroplated with silver. The process involves cleaning and etching, anodization, silver striking, and silver plating with a conventional plating bath. It minimizes the formation of detrimental intermetallic phases and provides greater tolerance of processing parameters.

  3. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  4. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump.

    Science.gov (United States)

    Han, Qing; Zou, Jun; Ruan, Xiaodong; Fu, Xin; Yang, Huayong

    2012-08-01

    Good washout is very important in spiral groove bearing (SGB) designs when applied to blood pumps due to the micrometer scales of lubrication films and groove depths. To improve washout, flow rate or leakage through SGBs should be as large as possible. However, this special goal violates conventional SGB designs in which no leakage is desired as the leakage would decrease load-carrying capacity significantly. So, a design concept is formed fulfilling the two goals of high load-carrying capacity and large flow rate: let groove width decrease along flow path and the mating surface of the rotor rotate with a direction facilitating the flow through the grooves. Under this concept, a novel SGB is designed, contrary to conventional ones, with groove width decreasing with increasing spiral radius. This SGB is mounted on the motionless upper plate of our designed centrifugal blood pump, with the mating surface of rotor rotating with a direction facilitating the outward flow. To assess SGB designs, a characteristic plane is originally presented relating to pressure-normalized load-carrying capacity and flow rate. Comparisons between various kinds of SGB designs are made, and computational fluid dynamics (CFD) results are plotted in this characteristic plane from which load/flow performances can be directly read out. CFD and comparison results show that the new designs have superior load/flow characteristics. However, the impact of SGB designs upon hemolysis/thrombus formation is still to be verified according to the concept presented. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Orientation of spiral galaxies in the local supercluster

    International Nuclear Information System (INIS)

    Jaaniste, J.A.; Saar, E.M.

    1977-01-01

    Two alternative models for the spatial orientation of galaxies - parallelism and perpendicularity of the planes of galaxies with respect to the supergalactic plane - are compared with the observed orientations of spiral galaxies within the volume of the radius of 50 Mpc. The first model does not agree with experimental data whereas the second one-perpendicularity of the planes - describes the above data well

  6. The thickness of the HI gas layer in spiral galaxies

    NARCIS (Netherlands)

    Sicking, Floris Jan

    1997-01-01

    In the present study, in two inclined spiral galaxies, NGC 3198 and NGC 2403, the HI random velocity dispersion and layer thickness will be measured simultaneously. This will be done from the HI velocity dispersion field (the distribution on the sky of the observed HI line of sight velocity

  7. Teaching about Energy Through a Spiral Curriculum: Guiding Principles.

    Science.gov (United States)

    Trumper, Ricardo

    1996-01-01

    Conventional science instruction often fails to address or change students' misconceptions about physical phenomena. Students stubbornly cling to anthropocentric, causal, and product conceptions about energy. This article explores scientific and pedagogical arguments favoring development of a spiral curriculum for teaching energy in (Israeli)…

  8. Ultra wideband coplanar waveguide fed spiral antenna for humanitarian demining

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Appel-Hansen, Jørgen

    2000-01-01

    to 1 bandwidth with a return loss better than 10 dB from 0.4 to 3.8 GHz is presented. A wideband balun covering the frequency range of the antenna was developed. The constructed spiral antenna is very useful in a stepped frequency ground penetrating radar for humanitarian demining due to the very...

  9. Multivessel myocardial bridging in a patient with spiral hypertrophic cardiomyopathy

    OpenAIRE

    Fritz, Timothy; Abdallah, Wissam; McNamara, Richard

    2016-01-01

    Myocardial bridging is commonly observed in hypertrophic cardiomyopathy, usually confined to the left anterior descending (LAD), and correlates to the hypertrophic septum. We present a patient with unique spiral hypertrophic cardiomyopathy (HCM) and compression of all three coronary arteries corresponding to this hypertrophy pattern.

  10. Spiral intensity patterns in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...

  11. Abundance analysis of giant H II regions in nearby spirals

    OpenAIRE

    Díaz, Angeles I.; Terlevich, E.; Pagel, B.E.J.; Vílchez, J.M; Edmunds, M.G.

    1990-01-01

    This is an electronic version of an article published in Revista Mexicana de Astronomía y Astrofísica. Díaz, Angeles I. et al. Abundance analysis of giant H II regions in nearby spirals. Revista Mexicana de Astronomía y Astrofísica 21 (1990): 223-227

  12. A Spiral And Discipline-Oriented Curriculum In Medical Imaging

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Hanson, Lars G.; Henneberg, Kaj-Åge

    2011-01-01

    . However, in the master’s program, such a tight schedule is impractical since students are likely to seek specialization. From a pedagogical point of view, the spiral curriculum is advantageous to use in the initial semesters where the teaching can be conducted so that the students can build...

  13. A combined optical, SEM and STM study of growth spirals

    Indian Academy of Sciences (India)

    Some novel results of a combined sequential study of growth spirals on the basal surface of the richly polytypic CdI2 crystals by optical microscopy, scanning electron microscopy (SEM) and scanning tunneling microscopy (STM) are presented and discussed. In confirmation of the known structural data, the STM pictures ...

  14. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    Science.gov (United States)

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  15. Long term complications of the intraprostatic spiral. Case report

    DEFF Research Database (Denmark)

    Krogh, J

    1992-01-01

    A 76-year-old man had an intraprostatic spiral inserted to relieve bladder outlet obstruction that was caused by benign prostatic hypertrophy. After 30 months numerous complications had arisen including severe encrustations, urethral stricture, and sclerosis of the bladder neck. Regular replaceme...

  16. Advanced Manufacture of Spiral Bevel and Hypoid Gears

    Directory of Open Access Journals (Sweden)

    Vilmos Simon

    2016-11-01

    Full Text Available In this study, an advanced method for the manufacture of spiral bevel and hypoid gears on CNC hypoid generators is proposed. The optmal head-cutter geometry and machine tool settings are determined to introduce the optimal tooth surface modifications into the teeth of spiral bevel and hypoid gears. The aim of these tooth surface modifications is to simultaneously reduce the tooth contact pressure and the transmission errors, to maximize the EHD load carrying capacity of the oil film, and to minimize power losses in the oil film. The proposed advanced method for the manufacture of spiral bevel and hypoid gears is based on machine tool setting variation on the cradle-type generator conducted by optimal polynomial functions and on the use of a CNC hypoid generator. An algorithm is developed for the execution of motions on the CNC hypoid generator using the optimal relations on the cradle-type machine. Effectiveness of the method was demonstrated by using spiral bevel and hypoid gear examples. Significant improvements in the operating characteristics of the gear pairs are achieved.

  17. Long term complications of the intraprostatic spiral. Case report

    DEFF Research Database (Denmark)

    Krogh, J

    1992-01-01

    A 76-year-old man had an intraprostatic spiral inserted to relieve bladder outlet obstruction that was caused by benign prostatic hypertrophy. After 30 months numerous complications had arisen including severe encrustations, urethral stricture, and sclerosis of the bladder neck. Regular replacement...

  18. Embedded spiral patterns in the massive galaxy cluster Abell 1835

    Science.gov (United States)

    Ueda, S.; Kitayama, T.; Dotani, T.

    2017-10-01

    We report on the properties of the intracluster medium (ICM) in the central region of the massive galaxy cluster, Abell 1835, obtained with the data from the Chandra X-ray Observatory. We find distinctive spiral patterns in the cool core in the residual image of the X-ray surface brightness after its nominal profile is subtracted. The spiral patterns consist of two arms. One of them appears as positive, and the other appears as negative excesses in the residual image. Their sizes are ˜ 70 kpc and their morphologies are consistent with each other. We find that the spiral patterns extend from the cool core out to the hotter surrounding ICM. We analyze the X-ray spectra extracted from both regions. We obtain that the ICM properties are similar to those expected by gas sloshing. We also find that the ICM in the two regions of spiral patterns is near or is in pressure equilibrium. Abell 1835 may now be experiencing gas sloshing induced by an off-axis minor merger. These results have been already published (Ueda, Kitayama, & Dotani 2017, ApJ, 837, 34).

  19. The Neutrons for Science Facility at SPIRAL-2

    Czech Academy of Sciences Publication Activity Database

    Ledoux, X.; Avrigeanu, M.; Avrigeanu, V.; Bém, Pavel; Fischer, U.; Majerle, Mitja; Mrázek, Jaromír; Negoita, F.; Novák, Jan; Simakov, S. P.; Šimečková, Eva

    2014-01-01

    Roč. 119, MAY (2014), s. 353-356 ISSN 0090-3752 Institutional support: RVO:61389005 Keywords : SPIRAL-2 * Neutron For Science * time-of-flight Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.571, year: 2014

  20. The dynamics of the spiral structure in galaxies

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1979-01-01

    The basic ideas and current problems of the linear and non-linear theory of spiral structure are reviewed. Some recent work on the response density and possible self-consistent solutions of bars with an Inner Lindblad Resonance are described. (Auth.)

  1. Opaque spiral disks - Some empirical facts and consequences

    NARCIS (Netherlands)

    Valentijn, Edwin A.

    1990-01-01

    Results for the Sb and Sc galaxies, as obtained from the analysis of the optical ESO-LV data, are reviewed, and the implied constraints for the properties of the absorbing components in spiral disks are discussed. An alternative interpretation of flat rotation curves and a revised extinction model

  2. SPIRAL (Sandia's Program for Information Retrieval and Listing)

    Science.gov (United States)

    West, Leslie E.

    The general scope of SPIRAL is storage of free-flowing text information into a machine-readable library and recall of any portions of this stored information that are relevant to an inquiry. The major objectives in the design of the system were (1) to make it easy to use by persons unfamiliar with computer systems; and (2) to make it efficient, in…

  3. Ekman Spiral in Horizontally Inhomogeneous Ocean with Varying Eddy Viscosity

    Science.gov (United States)

    2015-01-01

    thermocline (in temperature) and pycnocline (in density) (e.g., Kraus and Turner 1967; Garwood 1977; Chu and Garwood 1991; Steger et al. 1998; Chu et...spiral as a good statistical fit to low-frequency currents in a coastal strait. Science, 233, 470-472. Steger , J., Collins, C.A., and Chu, P.C. (1998

  4. THE MASS-DISTRIBUTION OF THE DWARF SPIRAL NGC-1560

    NARCIS (Netherlands)

    BROEILS, AH

    H I synthesis observations with the WSRT and optical surface photometry of the dwarf spiral galaxy NGC 1560 are presented. This galaxy has an absolute luminosity of M(B) = -15.87. The observations show that the galaxy is gas rich, with an M(HI)/L(B) of 2.4. We obtained a very detailed rotation curve

  5. Evaluation of spiral CT in the diagnosis of ureteral diseases

    International Nuclear Information System (INIS)

    Li Jiansheng; Li Kangyin; Chen Huyi; Qiang Haixia; Shen Guoqiang; Li Jing

    2001-01-01

    Objective: To discuss the diagnostic value of spiral CT in ureteral diseases. Methods: Spiral CT urography (SCTU) was performed in 27 cases with ureteral diseases, including 9 cases of ureteral calculus, 5 carcinomas, 9 stenosis, 1 malformation, 1 inflammation and 2 fistula. Of the 27 cases,15 also underwent non-enhanced spiral CT scan and 10 received intravenous urography(IVU). Results: (1) Eight cases of radiolucent ureteral calculus were clearly showed by non-enhanced spiral CT. (2) On SCTU, the location and diameter of 9 ureteral calculus (8 radiolucent, 1 radiopaque) and enlargement of renal pelvis and ureter were displayed. Irregular ureteral wall, local rarefaction or obstruction of contrast medium in ureter were detected in 5 case of tumor. Ureteral lumen was narrowed gradually in 7 cases of simple ureteral stenosis without thickening of the wall. Two cases with ectopic vessel compression were clarified at the boundary of ureter and pelvis. 1 malformation with double renal pelvis and ureter was demonstrated. The location and direction of ureteral fistula were notified. Conclusion: SCTU is superior to IVU and conventional CT in improving diagnostic accuracy of ureteral disease

  6. Intervention of malignant biliary obstruction with Hanaro spiral stent

    International Nuclear Information System (INIS)

    Shin, Sung Wook; Choo, Sung Wook; Pyeun, Yong Seon and others

    1999-01-01

    To evaluate the long-term patency of the Hanaro spiral stent (Solco Intermed, Seoul, Korea) when used as a palliative in patients with inoperable malignant biliary obstruction. Between April 1996 and July 1998, 39 patients with malignant biliary obstruction underwent percutaneous placement of 48 Hanaro spiral stents. The causes of obstruction were bile duct carcinoma (n=18), pancreatic carcinoma (n=8), metastatic lymphadenopathy (n=5), gallbladder carcinoma (n=5), hepatocellular carcinoma (n=1) and other tumors (n=2). Using the kaplan-Meier method, patient survival and stet patency rates were estimated with regard to level of obstruction. As regards stent insertion, there was no technical failure. Overall 25- and 50-week survival rates for the entire patient group were 50 % and 11 %, respectively, while overall stent patency rates at 25 and 50 weeks were 42 % and 11 %, respectively. Twenty-five-week stent patency rates in patients with common bile duct (CBD) and hilar obstruction were 51 % and 18 %, respectively. The stent patency rates in the CBD obstruction group was significantly higher than that in the hilar obstruction group (p<0.05). In patients with CBD obstruction, the clinical efficacy of Hanaro spiral stent was superior to that in patients with hilar obstruction. However, Hanaro spiral stents showed a lower patency rate with regard to patient survival, and further investigation is required

  7. Flux flow and cleaning enhancement in a spiral membrane element ...

    African Journals Online (AJOL)

    The effect of backpulsing, into the permeate space of a 2.5 inch spiral wrap membrane, on the prevention of fouling (flux enhancement) was investigated experimentally. These experiments were performed using a 500 mg∙ℓ-1 dextrin solution and a 100 000 MCWO polypropylene membrane, with a feed pressure of 100 kPa ...

  8. Dark matter and rotation curves of spiral galaxies

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Křížek, Filip; Somer, L.

    2016-01-01

    Roč. 25, April (2016), s. 64-77 ISSN 1313-2709 R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:67985840 ; RVO:61389005 Keywords : red dwarf * dark matter * spiral galaxy Subject RIV: BA - General Mathematics http://www.astro.bas.bg/AIJ/issues/n25/MKrizek.pdf

  9. Exact cone beam CT with a spiral scan

    International Nuclear Information System (INIS)

    Tam, K.C.; Samarasekera, S.; Sauer, F.

    1998-01-01

    A method is developed which makes it possible to scan and reconstruct an object with cone beam x-rays in a spiral scan path with area detectors much shorter than the length of the object. The method is mathematically exact. If only a region of interest of the object is to be imaged, a top circle scan at the top level of the region of interest and a bottom circle scan at the bottom level of the region of interest are added. The height of the detector is required to cover only the distance between adjacent turns in the spiral projected at the detector. To reconstruct the object, the Radon transform for each plane intersecting the object is computed from the totality of the cone beam data. This is achieved by suitably combining the cone beam data taken at different source positions on the scan path; the angular range of the cone beam data required at each source position can be determined easily with a mask which is the spiral scan path projected on the detector from the current source position. The spiral scan algorithm has been successfully validated with simulated cone beam data. (author)

  10. Spiral CT in kidney: assumption of renal function by objective evaluation of renal cortical enhancement

    International Nuclear Information System (INIS)

    Choi, Bo Yoon; Lee, Jong Seok; Lee, Joon Woo; Myung, Jae Sung; Sim, Jung Suk; Seong, Chang Kyu; Kim, Seung Hyup; Choi, Guk Myeong; Chi, Seong Whi

    2000-01-01

    To correlate the degree of renal cortical enhancement, objectively evaluated by means of spiral CT with the serum level of creatinine, and to determine the extent to which this degree of enhancement may be used to detect renal parenchymal disease. Eighty patients (M:F = 50:30; age + 25-19, (mean 53) years) with available serum level of creatinine who underwent spiral CT between September and October 1999 were included in this study. In fifty patients the findings suggested hepatic or biliary diseases such as hepatoma, biliary cancer, or stone, while in thirty, renal diseases such as cyst, hematoma, or stone appeared to be present. Spiral CT imaging of the cortical phase was obtained at 30-40 seconds after the injection of 120 ml of non-ionic media at a rate of 3 ml/sec. The degree of renal cortical enhancement was calculated by dividing the CT attenuation number of renal cortex at the level of the renal hilum by the CT attenuation number of aorta at the same level. The degree of renal cortical enhancement was compared with the serum level of creatinine, and the degree of renal cortical enhancement in renal parenchymal disease with that of the normal group. Among eighty patients there were five with renal parenchymal disease and 75 with normal renal function. The ratio of the CT attenuation number of renal cortex to that of aorta at the level of the renal hilum ranged between 0.49 and 0.99 (mean, 0.79; standard deviation, 0.15). while the serum level of creatinine ranged between 0.6 and 3.2 mg/dl. There was significant correlation (coefficient of -0.346) and a statistically significant probability of 0.002 between the ratio of the CT attenuation numbers and the serum level of creatinine. There was a significant difference (statistically significant probability of less than 0.01) between those with renal parenchymal disease and the normal group. The use of spiral CT to measure the degree of renal cortical enhancement provides not only an effective index for

  11. Model for Simulating a Spiral Software-Development Process

    Science.gov (United States)

    Mizell, Carolyn; Curley, Charles; Nayak, Umanath

    2010-01-01

    A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code

  12. Evolution of Gas Across Spiral Arms in the Whirlpool Galaxy

    Science.gov (United States)

    Louie, Melissa Nicole

    To investigate the dynamic evolution of gas across spiral arms, we conducted a detailed study of the gas and star formation along the spiral arms in the Whirlpool Galaxy, M51. This nearby, face-on spiral galaxy provides a unique laboratory to study the relationship between gas dynamics and star formation. The textbook picture of interstellar medium (ISM) evolution is rapidly changing. Molecular gas was once believed to form along spiral arms from the diffuse atomic gas in the inter-arm regions. Star formation occurs within giant molecular clouds during spiral arm passage. Lastly, the molecular gas is photo-dissociated back into atomic gas by massive stars on the downstream side of the spiral arm. Recent evidence, however, is revealing a new picture of the interstellar medium and the process of star formation. We seek development of a new picture by studying the development and evolution of molecular gas and the role of large scale galactic dynamics in organizing the interstellar medium. This thesis begins by presenting work measuring the geometrical offsets between interstellar gas and recent star formation. Interstellar gas is traced by atomic hydrogen and carbon monoxide (CO). Star formation is traced by ionized hydrogen recombination lines and infrared emission from dust warmed by young bright stars. Measuring these offsets can help determine the underlying large scale galactic dynamics. Along the spiral arms in M51, offsets between CO and the star formation tracers suggest that gas is flowing through the spiral arms, but the offsets do not show the expected signature of a single pattern speed and imply a more complicated pattern. This thesis also examines the intermediate stages of gas evolution, by studying a denser component of the ISM closer to which stars will form. Only a small percent of the bulk molecular gas will become dense enough to form stars. HCN and HCO+ probe densities ˜104 cm-3, where as the bulk gas is 500 cm-3. This thesis looks at HCN and

  13. The Elaboration of Spiral Galaxies: Morpho-Kinematics Analyses of their Progenitors with IMAGES

    Science.gov (United States)

    Hammer, F.; Images Collaboration

    2009-12-01

    The IMAGES (Intermediate MAss Galaxy Evolution Sequence) project aims at measuring the velocity fields of a representative sample of 100 massive galaxies at z=0.4-0.75, selected in the CDFS, the CFRS and the HDFS fields. It uses the world-unique mode of multiple integral field units of FLAMES/ GIRAFFE at VLT. The resolved-kinematics data allow us to sample the large scale motions at ˜ few kpc scale for each galaxy. They have been combined with the deepest HST/ACS, Spitzer (MIPS and IRAC) and VLT/FORS2 ever achieved observations. Most intermediate redshift galaxies show anomalous velocity fields: 6 Gyrs ago, half of the present day spirals were out of equilibrium and had peculiar morphologies. The wealth of the data in these fields allow us to modelize the physical processes in each galaxy with an accuracy almost similar to what is done in the local Universe. These detailed analyses reveal the importance of merger processes, including their remnant phases. Together with the large evolution of spiral properties, this points out the importance of disk survival and strengthens the disk rebuilding scenario. This suggests that the hierarchical scenario may apply to the elaboration of disk galaxies as it does for ellipticals.

  14. Computerized spiral analysis using the iPad.

    Science.gov (United States)

    Sisti, Jonathan A; Christophe, Brandon; Seville, Audrey Rakovich; Garton, Andrew L A; Gupta, Vivek P; Bandin, Alexander J; Yu, Qiping; Pullman, Seth L

    2017-01-01

    Digital analysis of writing and drawing has become a valuable research and clinical tool for the study of upper limb motor dysfunction in patients with essential tremor, Parkinson's disease, dystonia, and related disorders. We developed a validated method of computerized spiral analysis of hand-drawn Archimedean spirals that provides insight into movement dynamics beyond subjective visual assessment using a Wacom graphics tablet. While the Wacom tablet method provides robust data, more widely available mobile technology platforms exist. We introduce a novel adaptation of the Wacom-based method for the collection of hand-drawn kinematic data using an Apple iPad. This iPad-based system is stand-alone, easy-to-use, can capture drawing data with either a finger or capacitive stylus, is precise, and potentially ubiquitous. The iPad-based system acquires position and time data that is fully compatible with our original spiral analysis program. All of the important indices including degree of severity, speed, presence of tremor, tremor amplitude, tremor frequency, variability of pressure, and tightness are calculated from the digital spiral data, which the application is able to transmit. While the iPad method is limited by current touch screen technology, it does collect data with acceptable congruence compared to the current Wacom-based method while providing the advantages of accessibility and ease of use. The iPad is capable of capturing precise digital spiral data for analysis of motor dysfunction while also providing a convenient, easy-to-use modality in clinics and potentially at home. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  16. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  17. Planar Task Space Control of a Biarticular Manipulator Driven by Spiral Motors

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki bin Hj Shukor

    2012-10-01

    Full Text Available This paper elaborates upon a musculoskeletal-inspired robot manipulator using a prototype of the spiral motor developed in our laboratory. The spiral motors represent the antagonistic muscles due to the high forward/backward drivability without any gears or mechanisms. Modelling of the biarticular structure with spiral motor dynamics was presented and simulations were carried out to compare two control methods, Inverse Kinematics (IK and direct-Cartesian control, between monoarticular only structures and biarticular structures using the spiral motor. The results show the feasibility of the control, especially in maintaining air gaps within the spiral motor.

  18. Plating on Zircaloy-2

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.; Jones, A.

    1979-03-01

    Zircaloy-2 is a difficult alloy to coat with an adherent electroplate because it easily forms a tenacious oxide film in air and aqueous solutions. Procedures reported in the literature and those developed at SLL for surmounting this problem were investigated. The best results were obtained when specimens were first etched in either an ammonium bifluoride/sulfuric acid or an ammonium bifluoride solution, plated, and then heated at 700 0 C for 1 hour in a constrained condition. Machining threads in the Zircaloy-2 for the purpose of providing sites for mechanical interlocking of the plating also proved satisfactory

  19. NICKEL PLATING PROCESS

    Science.gov (United States)

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  20. On the dip angle of subducting plates

    Science.gov (United States)

    Hsui, Albert T.; Tang, Xiao-Ming; Toksoz, M. Nafi

    1990-01-01

    A new approximate analytic model is developed for the thermal structure of a subducting plate with a finite length. This model provides the capability of easily examining the thermal and mechanical structure of a subducting plate with different lengths and at different angles. Also, the torque balance of a descending plate can be examined, and effects such as the leading edge effect, the adiabatic compression effect, and the phase change effect can be incorporated. A comparison with observed data indicates that short slabs are likely under torque equilibrium at present, while long slabs are probably dominated by their gravitational torques such that their dip angles are transient, moving toward a steeper dip angle similar to that of the Mariana slab.

  1. In situ topography of the (2 0 0) face of ɛ-caprolactam growing from the vapour phase

    Science.gov (United States)

    van den Berg, E. P. G.; Sweegers, A. J. R.; Verheijen, M. A.; van Enckevort, W. J. P.

    1997-09-01

    On the (2 0 0) face of ɛ-caprolactam growing from the vapour phase several growth phenomena were observed in situ by optical microscopy: single spirals, multiple spirals, spirals growing with monomolecular steps, Vapor-liquid-solid (VLS) growth and two-dimensional nucleation. From the observations and measured growth rates the relative importance of the volume, surface diffusion and step integration as the rate determining step of the growth process are elaborated.

  2. STAR FORMATION IN PARTIALLY GAS-DEPLETED SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Rose, James A.; Miner, Jesse; Levy, Lorenza; Robertson, Paul

    2010-01-01

    Broadband B and R and Hα images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of Hα flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the Hα disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the Hα disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both phenomena are found to

  3. Material properties of and tissue reaction to the Slocum TPLO plate.

    Science.gov (United States)

    Boudrieau, Randy J; McCarthy, Robert J; Sprecher, Christoph M; Künzler, Tobias P; Keating, John H; Milz, Stefan

    2006-07-01

    To determine the material properties of Slocum TPLO plates and assess the soft tissue reaction adjacent to these plates in dogs that had undergone tibial plateau leveling osteotomy (TPLO). 3 new TPLO plates, 8 retrieved TPLO plates, and 1 new Synthes dynamic compression plate. Metallurgic analyses were performed. Tissue samples were obtained from areas adjacent to retrieved plates and submitted for histologic examination. All of the TPLO plates had a 2-phase microstructure consisting of austenite and ferrite in various amounts. Residua, inclusions, and cavities were seen during microscopic examination of the plate surface. The major differences between new and retrieved TPLO plates were the presence of small gaps separating many inclusions from the surrounding matrix and the presence of various-sized pits on the surface of the retrieved plates. The dynamic compression plate had a nearly pure austenitic structure and was largely free from residua, inclusions, and cavities. Histologic examination of tissue samples obtained from areas adjacent to retrieved TPLO plates revealed intra- and extracellular particulate debris. Two types of particles (one consisting of chromium, nickel, molybdenum, and iron and the other consisting of aluminum and silicon) were seen. Results determined that new and retrieved TPLO plates were manufactured from 316L stainless steel and produced by a casting process, but not all plates met specifications for chemical composition of cast surgical implants (American Society for Testing Materials standard F745); tissues surrounding retrieved plates had evidence of adverse reactions, probably as a result of plate corrosion.

  4. Monolithic Gradient Index Phase Plate Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The "piston errors" and aberrations of the mirror segments used in large telescopes, are typically measured with on-board optical instruments, usually a dispersed...

  5. Nuclear reactor alignment plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  6. Create Your Plate

    Medline Plus

    Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future Without Diabetes Donate towards research today and your gift will be matched. Donate ...

  8. The Plate Tectonics Project

    Science.gov (United States)

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  9. Create Your Plate

    Medline Plus

    Full Text Available ... meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-1.html A Future ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Types of Activity Weight Loss Assess Your Lifestyle Getting Started Food Choices In My Community Home Find Your ... but changes the portion sizes so you are getting larger portions of ... seven steps to get started: Using your dinner plate, put a line down ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Create Your Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... for Donations - ways-to-give-201710-hotelscom.html Ways to Give ... to help prevent and manage diabetes. Ask the Experts: Learn to Live Well ...

  12. Create Your Plate

    Medline Plus

    Full Text Available ... meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future ...

  13. Create Your Plate

    Medline Plus

    Full Text Available ... Type 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ ... Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free ...

  14. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes.html A Future Without Diabetes Donate towards research today and your gift will be matched. Donate Today We Can Help - we- ...

  15. Create Your Plate

    Medline Plus

    Full Text Available ... tax-deductible gift today can fund critical diabetes research and support vital diabetes education services that improve the ... way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  16. Plate girders under bending

    NARCIS (Netherlands)

    Abspoel, R.; Dubina, D.; Ungureanu, V.

    2016-01-01

    In a material economy driven plate girder design, the lever arm between the flanges will increase. This leads to higher stiffness and bending moment resistance, but also to an in-crease of the web slenderness. This means that high strength steels can be used leading to a large reduction of the steel

  17. Assembly and performance testing of a MEMS-based {mu}PEMFC with the help of a spiral micrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xigui; Zhang, Jian; Li, Xinxin; Xia, Baojia [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Wang, Tao [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Shanghai Institute of Space Power-Sources, Shanghai 200381 (China); Zheng, Dan [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Shanghai Institute of Technology, Shanghai 200233 (China)

    2008-12-15

    In this work, a feasible and simple method of assembling a micro MEMS-based {mu}PEMFC (about 0.35 ml in volume and 0.65 g in weight) with the help of a spiral micrometer was proposed. The micrometer provided a constant pressure between the two flow field plates and MEA in assembling for a short term while a special epoxy resin was applied to seal the cell and provide long term pressure between the above components after removing the micrometer. Tests showed that the as-assembled cell had a reasonable performance, which was proved by the linear polarization and EIS experiments. The long term behavior of the {mu}PEMFC was stable in general except for some fluctuation along time. We concluded that this fluctuation was due to a combined effect of heat produced and water management, which the as-assembled {mu}PEMFC has its own ability to adjust. More importantly, this experiment demonstrated the full feasibility and great promise of assembling {mu}FCs with the help of a spiral micrometer. (author)

  18. Assembly and performance testing of a MEMS-based {mu}PEMFC with the help of a spiral micrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xigui [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China)], E-mail: zhangxigui@mail.sim.ac.cn; Zhang Jian [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Wang Tao [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Shanghai Institute of Space Power-Sources, Shanghai 200381 (China); Zheng Dan [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Shanghai Institute of Technology, Shanghai 200233 (China); Li Xinxin; Xia Baojia [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China)

    2008-12-15

    In this work, a feasible and simple method of assembling a micro MEMS-based {mu}PEMFC (about 0.35 ml in volume and 0.65 g in weight) with the help of a spiral micrometer was proposed. The micrometer provided a constant pressure between the two flow field plates and MEA in assembling for a short term while a special epoxy resin was applied to seal the cell and provide long term pressure between the above components after removing the micrometer. Tests showed that the as-assembled cell had a reasonable performance, which was proved by the linear polarization and EIS experiments. The long term behavior of the {mu}PEMFC was stable in general except for some fluctuation along time. We concluded that this fluctuation was due to a combined effect of heat produced and water management, which the as-assembled {mu}PEMFC has its own ability to adjust. More importantly, this experiment demonstrated the full feasibility and great promise of assembling {mu}FCs with the help of a spiral micrometer.

  19. Galaxy interactions and star formation: Results of a survey of global H-alpha emission in spiral galaxies in 8 clusters

    Science.gov (United States)

    Moss, C.

    1990-01-01

    Kennicutt and Kent (1983) have shown that the global H alpha emission from a spiral galaxy is an indicator of the formation rate of massive stars. Moss, Whittle and Irwin (1988) have surveyed two clusters (Abell 347 and 1367) for galaxies with H alpha emission using a high dispersion objective prism technique. The purpose of the survey is to investigate environmental effects on star formation in spiral galaxies, and in particular to ascertain whether star formation is enhanced in cluster spirals. Approximately 20 percent of CGCG galaxies were detected in emission. Two plates of excellent quality were obtained for each of the two clusters, and galaxies were only identified to have emission if this was detected on both plates of a plate pair. In this way, plate flaws and other spurious identifications of emission could be rejected, and weak emission confirmed. The results of this survey have been discussed by Moss (1987). The detected galaxies are of types SO-a and later. The frequency with which galaxies are detected in emission increases towards later morphological type as expected (cf. Kennicutt and Kent 1983). There is no evidence of any dependence of the frequency of detected emission on the absolute magnitude of the galaxy (cf. Moss and Whittle 1990), but there is a strong correlation between a disturbed morphological appearance of the galaxy and the detection of emission. Furthermore it is found that the emission is more centrally concentrated in those galaxies which show a disturbed morphology. It may be noted that the objective prism plate gives a spectrum of a 400 A region around rest wavelength H alpha, but superposed on this is the H alpha emission from the galaxy which, because the light is essentially monochromatic, results in a true two-dimensional image of the H alpha distribution. The visual appearance of the emission on the prism plates was classified according to its diffuseness on a 5 point scale (very diffuse, diffuse, intermediate, compact, and

  20. Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform.

    Science.gov (United States)

    Trusiak, Maciej; Patorski, Krzysztof; Wielgus, Maciej

    2012-10-08

    Presented method for fringe pattern enhancement has been designed for processing and analyzing low quality fringe patterns. It uses a modified fast and adaptive bidimensional empirical mode decomposition (FABEMD) for the extraction of bidimensional intrinsic mode functions (BIMFs) from an interferogram. Fringe pattern is then selectively reconstructed (SR) taking the regions of selected BIMFs with high modulation values only. Amplitude demodulation and normalization of the reconstructed image is conducted using the spiral phase Hilbert transform (HS). It has been tested using computer generated interferograms and real data. The performance of the presented SR-FABEMD-HS method is compared with other normalization techniques. Its superiority, potential and robustness to high fringe density variations and the presence of noise, modulation and background illumination defects in analyzed fringe patterns has been corroborated.

  1. Spiral spin state in high-temperature copper-oxide superconductors: evidence from neutron scattering measurements.

    Science.gov (United States)

    Lindgård, Per-Anker

    2005-11-18

    An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45 degrees around the resonance energy . The intensity has a 2D character even in a single twin crystal. The value of is related to the nesting properties of the Fermi surface. The excitations above are shown to be due to in-plane spin fluctuations, a testable difference from the stripe model. The form of the exchange interaction function reveals the effects of the Fermi surface, and the unique shape predicts large quantum spin fluctuations in the ground state.

  2. Theory of magnetic-field-induced polarization flop in spin-spiral multiferroics

    Science.gov (United States)

    Mochizuki, Masahito

    2015-12-01

    The magnetic-field-induced 90∘ flop of ferroelectric polarization P in a spin-spiral multiferroic material TbMnO3 is theoretically studied based on a microscopic spin model. I find that the direction of the P flop or the choice of +Pa or -Pa after the flop is governed by magnetic torques produced by the applied magnetic field H acting on the Mn spins and thus is selected in a deterministic way, in contradistinction to the naively anticipated probabilistic flop. This mechanism resolves a puzzle of the previously reported memory effect in the P direction depending on the history of the magnetic-field sweep, and enables controlled switching of multiferroic domains by externally applied magnetic fields. My Monte-Carlo analysis also uncovers that the magnetic structure in the P ∥a phase under H ∥b is not a previously anticipated simple a b -plane spin cycloid but a conical spin structure.

  3. Curvature-driven bubbles or droplets on the spiral surface

    Science.gov (United States)

    Li, Shanpeng; Liu, Jianlin; Hou, Jian

    2016-11-01

    Directional motion of droplets or bubbles can often be observed in nature and our daily life, and this phenomenon holds great potential in many engineering areas. The study shows that droplets or bubbles can be driven to migrate perpetually on some special substrates, such as the Archimedean spiral, the logarithmic spiral and a cantilever sheet in large deflection. It is found that a bubble approaches or deviates from the position with highest curvature of the substrate, when it is on the concave or convex side. This fact is helpful to explain the repelling water capability of Nepenthes alata. Based on the force and energy analysis, the mechanism of the bubble migration is well addressed. These findings pave a new way to accurately manipulate droplet or bubble movement, which bring inspirations to the design of microfluidic and water harvesting devices, as well as oil displacement and ore filtration.

  4. Synchronized control of spiral CT scan for security inspection device

    International Nuclear Information System (INIS)

    Wang Jue; Jiang Zenghui; Wang Fuquan

    2008-01-01

    In security inspection system of spiral CT, the synchronization between removing and rotating, and the scan synchronization between rotating and sampling influence quality of image reconstruction, so it is difficulty and important that how to realize synchronized scan. According to the controlling demand of multi-slice Spiral CT, the method to realize synchronized scan is given. a synchronized control system is designed, in which we use a industrial PC as the control computer, use magnetic grids as position detectors, use alternating current servo motor and roller motor as drivers respectively drive moving axis and rotating axis. This method can solve the problem of synchronized scan, and has a feasibility and value of use. (authors)

  5. Status of the SPIRAL 2 LINAC cryogenic system

    Science.gov (United States)

    Ghribi, A.; Bernaudin, P.-E.; Vassal, A.; Bonne, F.

    2017-07-01

    SPIRAL 2 is a state of the art superconducting linear accelerator expected to deliver some of the highest intensity rare isotope beams on earth. The project has been in development/design, fabrication and installation for over 10 years and is now reaching its final critical stages before commissioning. One of its most critical parts is a cryoplant and a cryodistribution system that feed the heart of the accelerator with the necessary refrigeration power and allow the required pressure and thermal regulation to be achieved and maintained in a reliable way. This paper summarises the latest updates of the cryogenic system before the first cool down trials. It also plots the strategies and R&D efforts undertaken to tackle some of the challenges that SPIRAL 2 is expected to face.

  6. Distributed temperature sensing using a SPIRAL configuration ultrasonic waveguide

    Science.gov (United States)

    Periyannan, Suresh; Balasubramaniam, Krishnan

    2017-02-01

    Distributed temperature sensing has important applications in the long term monitoring of critical enclosures such as containment vessels, flue gas stacks, furnaces, underground storage tanks and buildings for fire risk. This paper presents novel techniques for such measurements, using wire in a spiral configuration and having special embodiments such a notch for obtaining wave reflections from desired locations. Transduction is performed using commercially available Piezo-electric crystal that is bonded to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes were employed. Time of fight (TOF) differences between predefined reflectors located on the waveguides are used to infer temperature profile in a chamber with different temperatures. The L(0,1) wave mode (pulse echo approach) was generated/received in a spiral waveguide at different temperatures for this work. The ultrasonic measurements were compared with commercially available thermocouples.

  7. The Norma spiral arm: large-scale pitch angle

    Science.gov (United States)

    Vallée, Jacques P.

    2017-09-01

    In the inner Galaxy, we statistically find the mean pitch angle of the recently mapped Norma arm in two galactic quadrants (observed tangentially at galactic longitudes near l=328° and near l=20°), using the twin-tangent method, and obtain -13.7°± 1.4°. We compared with other measurements in the literature. Also, using the latest published data on pitch angle and the latest published data on the radial starting point of the four arms (R_{Gal} = 2.2 kpc) in each galactic quadrant, a revised velocity plot of the Norma spiral arm is made, along with other spiral arms in the Milky Way, in each Galactic quadrant.

  8. Heating hydrocarbon containing formations in a spiral startup staged sequence

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; Miller, David Scott [Katy, TX

    2009-12-15

    Methods for treating a hydrocarbon containing formation are described herein. Methods may include treating a first zone of the formation. Treatment of a plurality of zones of the formation may be begun at selected times after the treatment of the first zone begins. The treatment of at least two successively treated zones may begin at a selected time after treatment of the previous zone begins. At least two of the successively treated zones may be adjacent to the zone treated previously. The successive treatment of the zones proceeds in an outward, substantially spiral sequence from the first zone so that the treatment of the zones may move substantially spirally outwards towards a boundary of the treatment area.

  9. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    Science.gov (United States)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  10. Spiral model of procedural cycle of educational process management

    OpenAIRE

    Bezrukov Valery I.; Lukashina Elena V.

    2016-01-01

    The article analyzes the nature and characteristics of the spiral model Procedure educational systems management cycle. The authors identify patterns between the development of information and communication technologies and the transformation of the education management process, give the characteristics of the concept of “information literacy” and “Media Education”. Consider the design function, determine its potential in changing the traditional educational paradigm to the new - information....

  11. Scintigraphic diagnosis of spiral fracture in young children

    International Nuclear Information System (INIS)

    Hossein-Foucher, C.; Venel, H.; Legouffe, P.; Ythier, H.; Legghe, R.; Marchandise, X.

    1988-01-01

    The authors report 8 cases of unsuspected bone fracture in children, identified at bone scan. Common features were the children's young age (1 to 3 years), the absence of clinical suspicion, the initially normal X-rays, the fracture type (sprial fracture of the tibia undisplaced), and the uniform of appearance the bone scan. These data confirm the value of the bone scan in limping children and suggest that spiral fracture of the tibia is a frequent and underdiagnosed condition in children [fr

  12. Spiral Ganglion Cells and Macrophages Initiate Neuro-inflammation and Scarring Following Cochlear Implantation

    Directory of Open Access Journals (Sweden)

    Esperanza eBas

    2015-08-01

    Full Text Available Conservation of a patient’s residual hearing and prevention of fibrous tissue/new bone formation around an electrode array are some of the major challenges in cochlear implant (CI surgery. Although it is well known that fibrotic tissue formation around the electrode array can interfere with hearing performance in implanted patients, and that associated intracochlear inflammation can initiate loss of residual hearing, little is known about the molecular and cellular mechanisms that promote this response in the cochlea. In vitro studies in neonatal rats and in vivo studies in adult mice were performed to gain insight into the pro-inflammatory, proliferative, and remodeling phases of pathological wound healing that occur in the cochlea following an electrode analogue insertion. Resident Schwann cells, macrophages/microglia, and fibroblasts had a prominent role in the inflammatory process in the cochlea. Leukocytes were recruited to the cochlea following insertion of a nylon filament in adult mice, where contributed to the inflammatory response. The reparative stages in wound healing are characterized by persistent neuro-inflammation of spiral ganglion neurons and expression of regenerative macrophages in the cochlea. Accordingly, genes involved in extracellular matrix deposition and remodeling were up-regulated in implanted cochleae.Maturation of scar tissue occurs in the remodeling phase of wound healing in the cochlea. Similar to other damaged peripheral nerves, M2 macrophages and de-differentiated Schwann cells were observed in damaged cochleae and may play a role in cell survival and axonal regeneration. In conclusion, the insertion of an electrode analogue into the cochlea is associated with robust early and chronic inflammatory responses characterized by recruitment of leukocytes and expression of pro-inflammatory cytokines that promote intracochlear fibrosis and loss of auditory hair cells and spiral ganglion neurons important for hearing

  13. Bacterial adherence to self-reinforced polyglycolic acid and self-reinforced polylactic acid 96 urological spiral stents in vitro.

    Science.gov (United States)

    Pétas, A; Vuopio-Varkila, J; Siitonen, A; Välimaa, T; Talja, M; Taari, K

    1998-01-01

    The aim of this study was to evaluate the bacterial adherence to biodegradable self-reinforced polyglycolic acid (SR-PGA) and self-reinforced poly-DL-lactic acid (SR-PLA 96) spiral stents in vitro. They are used as temporary urethral stents in urology. Gold-plated metal wire, polyurethane and latex were used as controls. Materials were incubated up to 28 days in artificial urine, after which a bacterial suspension was added. After detaching by sonication the adhesive bacteria were analysed as colony forming units (CFUs) and by scanning electron microscopy (SEM) analysis. Adhesion was more significantly correlated to stent bacterial type than to the tested material in both assays. No encrustation was seen on SR-PGA or SR-PLA 96. SR-PGA and SR-PLA 96 had no effect on the bacterial growth. In conclusion, the bacterial properties are equally or more important than the material properties in the adhesion process.

  14. Infrared emission and tidal interactions of spiral galaxies

    International Nuclear Information System (INIS)

    Byrd, G.G.

    1987-01-01

    Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small

  15. Ultra-precision turning of complex spiral optical delay line

    Science.gov (United States)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  16. Intracranial aneurysms: evaluation in 200 patients with spiral CT angiography

    International Nuclear Information System (INIS)

    Young, N.; Kingston, R.J.; Markson, G.; Dorsch, N.W.C.; McMahon, J.

    2001-01-01

    The goal of this study was to assess the usefulness of spiral CT angiography (CTA) with three- dimensional reconstructions in defining intracranial aneurysms, particularly around the Circle of Willis. Two hundred consecutive patients with angiographic and/or surgical correlation were studied between 1993 and 1998, with CTA performed on a GE HiSpeed unit and Windows workstation. The following clinical situations were evaluated: conventional CT suspicion of an aneurysm; follow-up of treated aneurysm remnants or of untreated aneurysms; subarachnoid haemorrhage (SAH) and negative angiography; family or past aneurysm history; and for improved definition of aneurysm anatomy. Spiral CTA detected 140 of 144 aneurysms, and an overall sensitivity of 97%, including 30 of 32 aneurysms 3 mm or less in size. In 38 patients with SAH and negative angiography, CTA found six of the seven aneurysms finally diagnosed. There was no significant artefact in 17 of 23 patients (74%) with clips. The specificity of CTA was 86% with 8 false-positive cases. Spiral CTA is very useful in demonstrating intracranial aneurysms. (orig.)

  17. Three-dimensional spiral CT for neurosurgical planning

    International Nuclear Information System (INIS)

    Klein, H.M.; Bertalanffy, H.; Mayfrank, L.; Thron, A.; Guenther, R.W.; Gilsbach, J.M.

    1994-01-01

    We carried out 22 examinations to determine the value of three-dimensional (3D) volumetric CT (spiral CT) for planning neurosurgical procedures. All examinations were carried out on a of the first generation spiral CT. A tube model was used to investigate the influence of different parameter settings. Bolus injection of nonionic contrast medium was used when vessels or strongly enhancing tumours were to be delineated. 3D reconstructions were carried out using the integrated 3D software of the scanner. We found a table feed of 3 mm/s with a slice thickness of 2 mm and an increment of 1 mm to be suitable for most purposes. For larger regions of interest a table feed of 5 mm was the maximum which could be used without blurring of the 3D images. Particular advantages of 3D reconstructed spiral scanning were seen in the planning of approaches to the lower clivus, acquired or congenital bony abnormalities and when the relationship between vessels, tumour and bone was important. (orig.)

  18. TURBULENCE AND STAR FORMATION IN A SAMPLE OF SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Erin; Chien, Li-Hsin [Department of Physics and Astronomy, Northern Arizona University 527 S Beaver Street, Flagstaff, AZ 86011 (United States); Hunter, Deidre A., E-mail: erin-maier@uiowa.edu, E-mail: Lisa.Chien@nau.edu, E-mail: dah@lowell.edu [Lowell Observatory 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  19. Notch toughness study of welded ship plate for the floating nuclear plant

    International Nuclear Information System (INIS)

    Arbiter, W.; Opoku, J.

    1978-01-01

    A test program was undertaken to establish fracture toughness properties of ABS Grade CS steel plate and of weldments made in the plate using a number of the processes to be employed in the production of floating nuclear plant (FNP) platforms. Chemistry, tensile properties, grain size, and microstructure were determined for all 12 plates. The results of this phase indicated that four of the plates failed to meet the DW nil ductility temperature (NDT) requirements - no break at -30 0 F

  20. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge

    NARCIS (Netherlands)

    Schellart, Wouter P.

    2005-01-01

    Geological observations indicate that along two active continental margins (East Asia and Mediterranean) major phases of overriding plate extension, resulting from subduction hinge-retreat, occurred synchronously with a reduction in subducting plate velocity. In this paper, results of fluid

  1. Diagnosis of pulmonary embolism with spiral and electron-beam CT; Diagnostik der Lungenembolie mit Spiral- und Elektronenstrahl-CT

    Energy Technology Data Exchange (ETDEWEB)

    Schoepf, U.J.; Bruening, R.D.; Becker, C.R.; Konschitzky, H.; Muehling, O.; Staebler, A.; Helmberger, T.; Holzknecht, N.; Reiser, M.F. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik; Knez, A.; Haberl, R. [Muenchen Univ. (Germany). Medizinische Klinik 1

    1998-12-01

    Purpose: To compare spiral (SCT) and electron-beam CT (EBT) for the diagnosis of pulmonary embolism (PE). Materials and methods: From June 1997 to June 1998 188 patients with suspected acute or chronic thrombembolism of the pulmonary arteries were examined. A total of 108 patients were scanned using SCT and 80 patients using EBT. On each scanner two different scan protocols were evaluated. Conclusions: Advanced CT scanning techniques allow the highly accurate diagnosis of central and peripheral PE. Other potentially life-threatening underlying diseases are also readily recognized. (orig./AJ) [Deutsch] Fragestellung: Spiral-CT (SCT) und Elektronenstrahlcomputertomographie (EBT) sollten hinsichtlich ihrer Eignung fuer die Diagnostik der Lungenembolie (LE) verglichen werden. Methode: Von Juni 1997 bis Juni 1998 wurden 188 Patienten mit Verdacht auf akute oder chronische thrombembolische Veraenderungen der Lungenarterien untersucht. Die CT-Diagnostik erfolgte dabei bei 108 Patienten mit Spiral-CT und bei 80 Patienten mit EBT. Schlussfolgerungen: Moderne CT-Scan-Verfahren erlauben mit hoher Genauigkeit die Diagnose der zentralen und peripheren Lungenembolie. Die EBT bietet Vorteile in der Darstellung herznaher peripherer Lungenarterien. Andere lebendsbedrohliche Ursachen fuer die Beschwerden des Patienten werden mit der CT sicher erkannt. (orig./AJ)

  2. Effect of plate shapes in orifice plate type flowmeters

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  3. Naming polyhedra by general face-spirals - theory and applications to fullerenes and other polyhedral molecules

    DEFF Research Database (Denmark)

    Wirz, Lukas; Schwerdtfeger, Peter; Avery, James Emil

    2018-01-01

    We present a general face-spiral algorithm for cubic polyhedral graphs (including fullerenes and fulleroids), and extend it to the full class of all polyhedral graphs by way of the leapfrog transform. This yields compact canonical representations of polyhedra with a simple and intuitive geometrical...... be found together with the canonical general spiral at negligible cost. The algorithm is fully compatible with the classical spiral algorithm developed by Manolopoulos for fullerenes, i. e., classical spirals are accepted as input, and spiralable graphs lead to identical output. We prove that the algorithm...... is correct and complete. The worst case runtime complexity is for general N-vertex polyhedral graphs, with J the sum of all jump lengths. When the number of faces of any particular size is bounded by a constant, such as the case for fullerenes, this reduces to . We have calculated canonical general spirals...

  4. Capacity limits in columns pulsed with stain steel perforated plates

    International Nuclear Information System (INIS)

    Maset, E.R.; Acosta, E.; Di Piano, M.; Maymo, J.A.

    1987-01-01

    This paper includes part of the second stage of the pulsed columns development program, using a water-nitric acid system as continuous phase and tri-n-butyl phosphate dissolved in kerosene at 30% v/v as disperse phase. Two kits of different geometry perforated plates (different diameter of perforation and free area percentage) were used. Due to the affinity importance of the plates' material with the continuous phase, in all the cases the continuous aqueous phase was used. The relation of flows varied, thus obtaining in each case a curve of characteristic 'flood'. The influence of the geometrical variables, the relation of flows, the medium acidity and the pulse's amplitude was applied in the capacity of the column. Besides, the dimensional correlation of Swift W.H. on the results obtained from 'flood' with both kits of plates to relate flows 1:1 and a minimum deviation was observed. (Author)

  5. Drift and breakup of spiral waves in reaction–diffusion–mechanics systems

    OpenAIRE

    Panfilov, A. V.; Keldermann, R. H.; Nash, M. P.

    2007-01-01

    Rotating spiral waves organize excitation in various biological, physical, and chemical systems. They underpin a variety of important phenomena, such as cardiac arrhythmias, morphogenesis processes, and spatial patterns in chemical reactions. Important insights into spiral wave dynamics have been obtained from theoretical studies of the reaction–diffusion (RD) partial differential equations. However, most of these studies have ignored the fact that spiral wave rotation is often accompanied by...

  6. Evidence for azimuthal variations of the oxygen-abundance gradient tracing the spiral structure of the galaxy HCG 91c

    Science.gov (United States)

    Vogt, F. P. A.; Pérez, E.; Dopita, M. A.; Verdes-Montenegro, L.; Borthakur, S.

    2017-05-01

    Context. The distribution of elements in galaxies forms an important diagnostic tool to characterize these systems' formation and evolution. This tool is, however, complex to use in practice, as galaxies are subject to a range of simultaneous physical processes active from pc to kpc scales. This renders observations of the full optical extent of galaxies down to sub-kpc scales essential. Aims: Using the WiFeS integral field spectrograph, we previously detected abrupt and localized variations in the gas-phase oxygen abundance of the spiral galaxy HCG 91c. Here, we follow-up on these observations to map HCG 91c's disk out to 2 Re at a resolution of 600 pc, and characterize the non-radial variations of the gas-phase oxygen abundance in the system. Methods: We obtained deep MUSE observations of the target under 0.6 arcsec seeing conditions. We perform both a spaxel-based and aperture-based analysis of the data to map the spatial variations of 12 +log (O/H) across the disk of the galaxy. Results: We confirm the presence of rapid variations of the oxygen abundance across the entire extent of the galaxy previously detected with WiFeS, for all azimuths and radii. The variations can be separated in two categories: a) localized and associated with individual H II regions; and b) extended over kpc scales, and occurring at the boundaries of the spiral structures in the galaxy. Conclusions: Our MUSE observations suggest that the enrichment of the interstellar medium in HGC 91c has proceeded preferentially along spiral structures, and less efficiently across them. Our dataset highlights the importance of distinguishing individual star-forming regions down to scales of a few 100 pc when using integral field spectrographs to spatially resolve the distribution of oxygen abundances in a given system, and accurately characterize azimuthal variations and intrinsic scatter. The movie associated to Fig. 8 is available at http://www.aanda.org

  7. Fuel cell end plate structure

    Science.gov (United States)

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  8. Pulmonary embolism: spiral CT evaluation; Embolie pulmonaire: apport de la tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Senac, J.P.; Vernhet, H.; Bousquet, C.; Giron, J.; Pieuchot, P.; Durand, G.; Benezet, O.; Aubas, P. [Centre Hospitalier Universitaire, 34 - Montpellier (France)

    1995-06-01

    Purpose: Spiral computed tomography was compared retrospectively with digital substraction pulmonary angiography (PA) in 45 patients suspected of having acute or chronic pulmonary embolism. Materials and method : 45 patients in whom the presence of acute or chronic pulmonary embolism was suspected underwent examination by spiral CT and PA. Diagnosis of pulmonary embolism was based on the direct visualization of intraluminal clots. The study of the agreement between the two methods was based on the Kappa test. In 35 cases, pulmonary emboli were proved. Acute pulmonary emboli were present in 28 cases and chronic in 7 cases. Results: Spiral computed tomography represents an excellent way to detect acute pulmonary embolism. In the chronic form, spiral CT is better than PA to detect intraluminal clots. However, Spiral CT can fail to detect small emboli in the peripheral arterial bed. In the 10 patients without pulmonary embolism, the spiral CT proved diagnosis pulmonary oedema (n=3), lymphangi-carcinoma (n=4), pleural effusion (n=3). Conclusion: This study suggest that the spiral CT examination is accurate for diagnosis of pulmonary embolism specifically in case of suspected important embolism. The advantages of spiral CT are multiple (non invasive, wide diagnosis spectrum). However, may be a limitation to is use is insufficient distal thrombi detection. This eventuality (5 to 10% in the Pioped study) justify the practice of pulmonary angiography. Spiral CT improvements should reduce this insufficiency in the next future. (Authors). 16 refs., 4 figs., 3 tabs.

  9. Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser.

    Science.gov (United States)

    Dai, Yutang; Yang, Minghong; Xu, Gang; Yuan, Yinquan

    2013-07-15

    A novel magnetic field sensor based on Terfenol-D coated fiber Bragg grating with spiral microstructure was proposed and demonstrated. Through a specially-designed holder, the spiral microstructure was ablated into the fiber Bragg grating (FBG) cladding by femtosecond laser. Due to the spiral microstructure, the sensitivity of FBG coated with magnetostrictive film was enhanced greatly. When the spiral pitch is 50 μm and microgroove depth is 13.5 μm, the sensitivity of the magnetic field sensor is roughly 5 times higher than that of non-microstructured standard FBG. The response to magnetic field is reversible, and could be applicable for magnetic field detection.

  10. Geometric Offsets Across Spiral Arms in M51: Nature of Gas and Star Formation Tracers

    OpenAIRE

    Louie, M.; Koda, J.; Egusa, F.

    2013-01-01

    We report measurements of geometric offsets between gas spiral arms and associated star forming regions in the grand-design spiral galaxy M51. These offsets are a suggested measure of the star formation timescale after the compression of gas at spiral arm entry. A surprising discrepancy, by an order of magnitude, has been reported in recent offset measurements in nearby spiral galaxies. Measurements using CO and H-alpha emission find large and ordered offsets in M51. On the contrary, small or...

  11. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  12. Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface

    Science.gov (United States)

    Chen, Jiu-Jiu; Huo, Shao-Yong; Geng, Zhi-Guo; Huang, Hong-Bo; Zhu, Xue-Feng

    2017-11-01

    The study for exotic topological effects of sound has attracted uprising interests in fundamental physics and practical applications. Based on the concept of valley pseudospin, we demonstrate the topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface, where a deterministic two-fold Dirac degeneracy is form by two plate modes. We show that the topological property can be controlled by the height of stubs deposited on the plate. By adjusting the relative heights of adjacent stubs, the valley vortex chirality and band inversion are induced, giving rise to a phononic analog of valley Hall phase transition. We further numerically demonstrate the valley states of plate-mode waves with robust topological protection. Our results provide a new route to design unconventional elastic topological insulators and will significantly broaden its practical application in the engineering field.

  13. Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface

    Directory of Open Access Journals (Sweden)

    Jiu-Jiu Chen

    2017-11-01

    Full Text Available The study for exotic topological effects of sound has attracted uprising interests in fundamental physics and practical applications. Based on the concept of valley pseudospin, we demonstrate the topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface, where a deterministic two-fold Dirac degeneracy is form by two plate modes. We show that the topological property can be controlled by the height of stubs deposited on the plate. By adjusting the relative heights of adjacent stubs, the valley vortex chirality and band inversion are induced, giving rise to a phononic analog of valley Hall phase transition. We further numerically demonstrate the valley states of plate-mode waves with robust topological protection. Our results provide a new route to design unconventional elastic topological insulators and will significantly broaden its practical application in the engineering field.

  14. CFD simulation of flow through single and multi vane spiral pump for low pressure application using moving node unsteady computation

    International Nuclear Information System (INIS)

    Banerjee, I.; Mahendra, A.K.; Chandresh, B.G.; Srikanthan, M.R.; Bera, T.K.

    2010-01-01

    A spiral pump uses two interleaved spirals (it can be involutes of a circle, involutes of a square, hybrid wraps, Archimedean spiral, logarithmic spirals and so on). Interleaved spiral orbits eccentrically without rotation around a fixed scroll, thereby trapping and compressing pockets of fluids between the spirals. Another method of providing the compression motion is by virtue of co-rotating the spirals synchronously with an offset in centers of rotation thereby providing relative motion similar to orbiting. Recently spiral pumps for low-pressure application have become popular. Since spiral pumps contain gas volumes, whose shapes and size change continuously, the flow fields inside the pumps is time dependent. The unsteadiness controls the mechanisms responsible for the behavior of the spiral pump components. To improve the spiral pump design for better performance as per our process requirement and reliability, information is required to understand the detailed physics of the unsteady flows inside the spiral pumps. The unsteady flows in a pump are studied numerically. The system simulated includes one side gap between fixed and moving spirals as the other side lies just in the reverse symmetry of the one side. Heavy molecular weight, condensable gas is used as the moving fluid. The mesh free Least Square Kinetic Upwind Method (LSKUM) for moving node is applied for numerical analysis of wobbling spiral. Nodes and boundaries change their positions, for every real time step hence at every iteration nodes take new coordinates. Our work consists of identifying various spiral dimensions and geometry, geometric modeling of suction process, identifying the eccentric orbiting motion of the moving spiral, formation of variable velocity moving nodes. Flow analysis of the spiral pump is done with a view to design and develop new pump as per our requirement. Experimental data from an existing spiral pump is used to carryout validation of the code. (author)

  15. Use of spiral CT in demonstrating early carcinoma of the stomach - I stage

    International Nuclear Information System (INIS)

    Pomakov, P.

    2009-01-01

    Full text: The aim of this lecture is to provide practical information about the methodology and technique of spiral computed tomography, which provide maximum diagnostic efficiency in early gastric cancer - I stage, and to present the semiotics of CT images seen in early gastric cancer stage I - a own and literature data. Methodology of the study covers optimal drug muscle relaxation of the abdominal wall by injection of 2 sg buskolizin intravenous; maximum distension of the stomach lumen by ingestion of 3 effervescent disintegrated tablets Vit. C with 1-2 sips of water, necessarily using of non-ionic contrast media - 100 ml / 300 mg iodine / 1 ml liquid bolus introduced for 30 seconds. Start scanning - 30 seconds of the start of injection - to visualize the arterial phase, use of slices with a thickness of 3 mm and 2 mm interval; exponential data 120 kV, 160 mAc. Earlier form of gastric cancer have to be presented by 5 CT image: unequal unsmooth, scallop or polycyclic contours of the lining, thinning the complete disappearance of the lining; undulating thickening of the lining; nodal formation like a polyp on a broad basis with a 2-5 mm, double contour of the lining - like a wave. These amendments are localized only in a limited segment of the gastric mucosa. Spiral CT is an effective diagnostic performance in gastric cancer, including the early stage I of cancer development. This is realized only by using the specific methodology of the study as well as good knowledge of the CT images semiology for carcinoma, localized only within a certain perimeter of the stomach lining

  16. Experimentally Validated Nonlinear Analysis of Bridge Plate Girders with Deformations

    Directory of Open Access Journals (Sweden)

    Kużawa Mieszko

    2015-09-01

    Full Text Available Comprehensive methodology of numerical nonlinear analysis of the consecutive phases in the structural behaviour of bridge plate girders with deformations is presented. The analysis concerns all stages of structure loading until failure and especially determination of the ultimate shear load capacity. Verification and validation of the numerical procedures proposed is based on comparison of the calculated results with effects of experimental laboratory shear capacity tests of plate girders carried out at the University of Ljubljana.

  17. Plate Full of Color

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  18. Virtual gastroscopy using spiral CT in gastric lesions

    International Nuclear Information System (INIS)

    Shin, Sang Soo; Kang, Heoung Keun; Jeong, Yong Yeon; Yoon, Man Won; Song, Sang Gook; Jeong, Gwang Woo

    1998-01-01

    To compare virtual gastroscopy using spiral CT with conventional endoscopy for the detection and evaluation of gastric lesions. During a previous six-month period, 30 patients with pathologically-proven gastric lesions underwent conventional endoscopy and virtual gastroscopy using spiral CT. There were 18 cases of advanced gastric carcinoma, eight benign ulcers, and four submucosal tumors(two leiomyomas, two lymphomas). Source images of virtual gastroscopy were three-dim-ensionally reconstructed within an Advantage Windows Workstation and virtual gastroscopic images were obtained using Navigator Software. On analysis, images were graded according to their quality(excellent, good, poor). Virtual gastroscopic images were interpreted by two radiologists blinded to conventional endoscopic findings, and were subsequently compared with endoscopic findings in terms of detectability and findings. In the cases of advanced gastric carcinoma, lesions were classified according to Borrmann's system. For virtual gastroscopy, overall image quality was excellent in 21 cases(70%), good in five(17%), and poor in four(13%). Lesions were detected in 25 cases(83%). Among the 18 advanced gastric carcinomas, virtual gastroscopy image quality was excellent in 14 cases(78%), good in two(11%), and poor in two(11%). Lesions were detected in 16 cases(89%). Two Borrmann type IV cases were not detected. Among the eight benign ulcers, virtual gastroscopy image quality was excellent in three cases(38%), good in three(38%), and poor in two(25%). The detection of lesion was possible in five cases(63%). In all submucosal tumors, virtual gastroscopy image quality was excellent. Lesions were detected in all cases. Virtual gastroscopy using spiral CT is safe and noninvasive, and for the evaluation of gastric lesions may be complementary to axial CT. It successfully detects gastric lesions, and in depicting the pattern of gastric folds its image quality is excellent.=20

  19. Spiral Structure and Global Star Formation Processes in M 51

    Science.gov (United States)

    Gruendl, Robert A.

    1994-12-01

    The nearby grand design spiral galaxy, M 51, is an obvious proving ground for studies of spiral structure and large scale star formation processes. New near--infrared observations of M 51 made with COB (Cryogenic Optical Bench) on the Kitt Peak 1.3m allow us to examine the stellar distribution and the young star formation regions as well as probe regions of high extinction such as dust lanes. We also present an analysis of the kinematics of the ionized gas observed with the Maryland--Caltech Imaging Fabry Perot. The color information we derive from the near--infrared bands provides a more accurate tracer of extinction than optical observations. We find that the dust extinction and CO emission in the arms are well correlated. Our kinematic data show unambiguously that these dense gas concentrations are associated with kinematic perturbations. In the inner disk, these perturbations are seen to be consistent with the streaming motions predicted by classical density wave theory. The dust lanes, and presumably the molecular arms, form a narrow ridge that matches these velocity perturbations wherever the viewing angle is appropriate. This interpretation requires that the corotation radius be inward of the outer tidal arms. The outer tidal arms however show streaming velocities of the sign that would be expected interior to the corotation point. This can be reconciled if the outer arms are part of a second spiral pattern, most likely due to the interaction with the companion NGC 5195. The near--infrared observations also show emission from the massive star forming regions. These observations are less affected by extinction than optical observations of H II regions and show clearly that the sites of massive star formation are correlated with but downstream from the concentrations of dense molecular material. This provides clear evidence that the ISM has been organized by the streaming motions which have in turn triggered massive star formation.

  20. Kinematics of molecular clouds: evidence for agglomeration in spiral arms

    International Nuclear Information System (INIS)

    Stark, A.A.

    1983-01-01

    A new survey of CO in the first Galactic quadrant has been analysed to yield a catalog of 320 molecular clouds near the tangent velocity. These clouds have known distances, so that cloud sizes and heights above the Galactic plane can be determined. The largest clouds (Msub(C) > 10sup(5.5) solar masses) have a reduced scale height relative to smaller clouds by an amount which is consistent with equipartition of energy. This can be interpreted as evidence for small clouds combining to form giant clouds in spiral arms. (Auth.)

  1. Motivational Spiral Models (MSM): common and distinct motivations in context

    OpenAIRE

    Fisher, Laurel J

    2013-01-01

    Motivational Spiral Models (MSM) show links over time among self concepts, feelings, strategies, skills and participation in everyday activities. In theory, MSM have many common features, with distinct features in particular contexts. This project examined children?s motivation to participate in literacy (MSM-L), social (MSM-S) and physical activities (MSM-P). The participants in Study 1 (N?=?32) were 9 to 11 years old, and in Study 2 (N?=?73) were 4 to 12 year old children. Locations were cl...

  2. RFID Tag Design Using Spiral Resonators and Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    M. Veysi

    2017-12-01

    Full Text Available This paper presents a simple generalized approach to design a compact chipless radio frequency identification tag. The proposed chipless tag encodes data into the spectral signature using a set of spiral resonators on both sides of substrate. Transmission amplitude component of the tag is used for data encoding. For miniaturization purpose, defected ground structure is used to reduce the circuit size by half compared to the conventional cascading technique. The proposed chipless tag operates between 4-6 GHz and produces 256 different binary strings through eight encoded bits. Measurement and simulation results verify the authenticity of this design.

  3. Vacuum sealing with a spiral grooved gas dynamic seal

    International Nuclear Information System (INIS)

    Sawada, Tadashi

    1979-01-01

    Gas dynamic seals with rectangular spiral grooves are studied theoretically taking the effects of sidewalls of the grooves and the effects of gas compressibility into account, and slip boundary conditions are employed. The results are compared with the existing experimental data and the validity of the theory is confirmed over a wide pressure range except for the extremely low pressures. Suggestions are made regarding the choice of the geometrical dimensions, i.e., aspect ratio, helix angle, clearance parameter and groove width ratio. (author)

  4. Gastric wall thickening on spiral CT after subtotal gastrectomy for gastric cancer: comparision between recurrent caner and benign thickening

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Sook; Choi, Jong Cheol; Yoon, Sung Kuk; Kim, Jae Ik; Oh, Jong Young; Kang, Myung Jin; Lee, Ki Nam; Nam, Kyuung Jin [Donga Univ. College of Medicine, Pusan (Korea, Republic of)

    2000-12-01

    To determine the features revealed by two-phase spiral CT scanning useful for differential diagnosis between recurrent cancer and benign wall thickening in patients who have undergone subtotal gastrectomy for stomach cancer. We retrospectively reviewed 25 cases in which wall thickening of more than 1cm in the remnant stomach after subtotal gastrectomy was revealed by two-phase spiral CT scanning. All cases were confirmed: 11 were recurrent cancer, and in 14, benign wall thickening was demonstrated. We analyzed the CT findings including maximal thickness of the gastric wall, patterns of wall thickening, degree of contrast enhancement seen during the arterial and portal phases, and the presence of perigastric strands. Maximal wall thickness was classified as either more or less than 15mm, and as either focal or diffuse. We also determined whether lymphadenopathy was present. Mean maximal gastric wall thickness was 18.4mm in the recurrent cancer group ({sup g}roup A{sup )} and 12.6mm in the benign group ({sup g}roup B{sup )}. The gastric wall was thicker than 15mm in 10 of 11 group A cases and in 3 of 14 in group B; wall thickening was focal (n=3) or diffuse (n=8) in group A, and focal (n=13) or diffuse (n=1) in group B, while the enhancement patterns seen during the arterial and portal phase, respectively, were high/high (n=8), low/high (n=1) and low/low (n=2) in group A, and low/low (n=7), low/high (n=4), high/low (n=1) and high/high (n=2) in group B. Perigastric strands were observed in nine cases in group A, but in none in group B, while lymphadenopathy was combined with wall thickening in seven group A cases but in none of those in group B. In patients who have undergone subtotal gastrectomy for gastric cancer, two-phase spiral CT findings including maximal thickness of the gastric wall, patterns of wall thickening, degree of contrast enhancement seen during the arterial and portal phase, the presence of perigastric strands, and lymphadenopathy are useful for

  5. Looking for Plate Tectonics in all the wrong fluids

    Science.gov (United States)

    Davaille, Anne

    2017-04-01

    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  6. CMS Resistive plate Champers

    CERN Document Server

    Zainab, Karam

    2013-01-01

    There are many types of gas detectors which are used in CERN in LHC project, There is a main parts for the gas detectors which must be in all gas detectors types like Multiwire proportional chambers, such as the micromesh gaseous structure chamber (the MicroMegas), Gas-electron multiplier (GEM) detector, Resistive Plate Champers... Compact Muon Solenoid (CMS) experiment detecting muons which are powerful tool for recognizing signatures of interesting physics processes. The CMS detector uses: drift tube (DT), cathode strip chamber (CSC) and resistive plate chamber (RPC). Building RPC’s was my project in summer student program (hardware). RPC’s have advantages which are triggering detector and Excellent time resolution which reinforce the measurement of the correct beam crossing time. RPC’s Organized in stations :  RPC barrel (RB) there are 4 stations, namely RB1, RB2, RB3, and RB4  While in the RPC endcap (RE) the 3 stations are RE1, RE2, and RE3. In the endcaps a new starion will be added and this...

  7. Comparison of pressure plate and force plate gait kinetics in sound Warmbloods at walk and trot.

    Science.gov (United States)

    Oosterlinck, Maarten; Pille, Frederik; Huppes, Tsjester; Gasthuys, Frank; Back, Willem

    2010-12-01

    Modern pressure plates (PP) could be an alternative to traditional force plates (FP) for quantitative equine gait analysis, thereby providing the clinician with objective data on the horse's gait while unravelling the loading of different regions of the hoof during the stance phase. The aim of this study was to determine whether a stand-alone PP allows reliable measurement of gait kinetics, compared to simultaneously recorded FP variables. Six sound Warmblood horses were walked and trotted over a combined PP and FP system for collection of a set of five valid kinetic measurements for each forelimb. A measurement was considered valid if the horse was moving in a straight line at a constant pace while gait velocity was within a preset range and the hoof fully contacted the plate surface. Significant differences between FP and PP data were seen for peak vertical force (PVF), vertical impulse (VI), time at which the PVF occurs (tPVF) and forelimb symmetry ratios (SymPVF and SymVI) (P 20%). The results indicate that a stand-alone pressure plate can be used to measure absolute (ST) and relative (tPVF) temporal variables and loading symmetry ratios and offers equine veterinarians a mobile, cost-efficient and quick gait evaluation method for routine clinical use. However, the system cannot be used interchangeably with a force plate to measure absolute values of limb loading. Copyright © 2009 Elsevier Ltd. All rights reserved.

  8. Migration of phthalates on culture plates

    DEFF Research Database (Denmark)

    Frohnert Hansen, Juliana; Boas, Malene; Møller Brorson, Marianne

    2016-01-01

    Phthalates are endocrine disruptors of the reproductive system and suspected to influence many other organ and hormone systems. They are also semi-volatile organic compounds present in the gas phase in the environment. Their mode of action has been investigated in numerous in vitro studies. Multi......-well culture plates are typically used to study phthalates in cell cultures. In a pilot study, we observed evidence of phthalate migration in 24-well culture plates. As this has not previously been described, we investigated the phenomenon in more detail. Primary human thyroid epithelial cell cultures (n = 8...... cultures) were exposed to either di-ethyl phthalate (DEP), di-n-butyl phthalate (DnBP), mono-n-butyl phthalate (MnBP) or di-(2-ethylhexyl) phthalate (DEHP). Measurement of phthalate metabolites by mass spectrometry demonstrated that the short-branched DEP was able to migrate to adjacent wells when added...

  9. Ultrabroadband elastic cloaking in thin plates.

    Science.gov (United States)

    Farhat, Mohamed; Guenneau, Sebastien; Enoch, Stefan

    2009-07-10

    Control of waves with metamaterials is of great topical interest, and is fueled by rapid progress in broadband acoustic and electromagnetic cloaks. We propose a design for a cloak to control bending waves propagating in isotropic heterogeneous thin plates. This is achieved through homogenization of a multilayered concentric coating filled with piecewise constant isotropic elastic material. Significantly, our cloak displays no phase shift for both backward and forward scattering. To foster experimental efforts, we provide a simplified design of the cloak which is shown to work in a more than two-octave frequency range (30 Hz to 150 Hz) when it consists of 10 layers using only 6 different materials overall. This metamaterial should be easy to manufacture, with potential applications ranging from car industry to anti-earthquake passive systems for smart buildings, depending upon the plate dimensions and wavelengths.

  10. Three-dimensional dental imaging by spiral CT

    Science.gov (United States)

    Vannier, Michael W.; Hildebolt, Charles F.; Conover, Gary; Knapp, Robert H.; Yokoyama-Crothers, Naoko; Wang, Ge

    1995-05-01

    Three-dimensional image acquisition, display, and analysis of dental structures was performed and validated using spiral computed tomography (SCT) with metal artifact suppression. Isolated extracted teeth, a dry mandible, cadaver mandible, and cadaver head were scanned and reconstructed using a spiral CT scanner (Siemens Somatom PLUS-S) with 1 mm detector collimation, 1-mm table feed, and 0.1 - 1 mm reconstruction interval using specially developed software. Algorithms for metal artifact reduction including extended attenuation range and interpolation of missing projections were applied. Volumetric rendering of voxel sum images was performed to synthesize images comparable to conventional intraoral dental radiographs. Direct comparison of voxel-based synthetic and digitized film images was made. Several isolated, extracted teeth were sectioned with a diamond saw and submitted for histomorphometric analysis to aid in direct comparison with CT slice images obtained by multiplanar reconstruction. Metal artifact reduction was successful in markedly reducing the streaks and star patterns that usually accompany metallic restorations and intraoral appliances. Individual teeth were comparable to CT slice images. Voxel sum images were comparable to dental radiographs; however, for the SCT images, the spatial resolution was higher within the plane of section than it was orthogonal to the plane of section. Serial examinations were obtained by SCT, registered by surface matching, and interval change measured by 3D subtraction. Simulated lesions and restorations were introduced and quantitatively evaluated pre- and post-interventionally to assess imaging method performance.

  11. Radioactive ion beam production by the ISOL method for SPIRAL

    International Nuclear Information System (INIS)

    Landre-Pellemoine, Frederique

    2001-01-01

    This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Lignes) of which the start up will begin in September 2001 at GANIL (Grand Accelerateur National d'Ions Lourds) in Caen. This thesis primarily concerns the development of radioactive ion production systems (target/ion source) by the thorough study of each production stage of the ISOL (Isotopic Separation On Line) method: target and/or projectile fragmentation production, diffusion out of target material, effusion into the ion source and finally the ionization of the radioactive atoms. A bibliographical research and thermal simulations allowed us to optimize materials and the shape of the production and diffusion targets. A first target was optimized and made reliable for the radioactive noble gases production (argon, neon...). A second target dedicated to the radioactive helium production was entirely designed and realised (from the specifications to the 'off line' and 'on line' tests). Finally, a third target source system was defined for singly-charged radioactive alkaline production. The intensities of secondary beams planned for SPIRAL are presented here. A detailed study of the diffusion effusion efficiency for these various targets showed that the use of a fine microstructure carbon (grain size of 1 μm) improved the diffusion and showed the importance of thickness of the lamella for the short lived isotope effusion. (author) [fr

  12. Distributed predictive control of spiral wave in cardiac excitable media

    International Nuclear Information System (INIS)

    Zheng-Ning, Gan; Xin-Ming, Cheng

    2010-01-01

    In this paper, we propose the distributed predictive control strategies of spiral wave in cardiac excitable media. The modified FitzHugh–Nagumo model was used to express the cardiac excitable media approximately. Based on the control-Lyapunov theory, we obtained the distributed control equation, which consists of a positive control-Lyapunov function and a positive cost function. Using the equation, we investigate two kinds of robust control strategies: the time-dependent distributed control strategy and the space-time dependent distributed control strategy. The feasibility of the strategies was demonstrated via an illustrative example, in which the spiral wave was prevented to occur, and the possibility for inducing ventricular fibrillation was eliminated. The strategies are helpful in designing various cardiac devices. Since the second strategy is more efficient and robust than the first one, and the response time in the second strategy is far less than that in the first one, the former is suitable for the quick-response control systems. In addition, our spatiotemporal control strategies, especially the second strategy, can be applied to other cardiac models, even to other reaction-diffusion systems. (general)

  13. MAGNETIC FIELDS IN A SAMPLE OF NEARBY SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Van Eck, C. L. [Department of Astrophysics, Faculty of Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Brown, J. C. [Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4 (Canada); Shukurov, A.; Fletcher, A., E-mail: c.vaneck@astro.ru.nl, E-mail: jocat@ucalgary.ca, E-mail: anvar.shukurov@ncl.ac.uk, E-mail: andrew.fletcher@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-01-20

    Both observations and modeling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed, but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider the statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and interstellar medium parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate, and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit a noticeable degree of correlation, suggesting a universal behavior of the degree of order in galactic magnetic fields. We also compare the predictions of galactic dynamo theory to observed magnetic field parameters and identify directions in which theory and observations might be usefully developed.

  14. Spiral Dynamics of Consciousness. Possibilities of Use by Collective Managers

    Directory of Open Access Journals (Sweden)

    Doronin Andrii V.

    2014-03-01

    Full Text Available The goal of the article is showing a possibility of solution of the problem of reduction of human efficiency in the information society by means of growth of psychological load. Methodological grounds of the study are ideas of the American psychologist Clare William Graves, who, while developing the Abraham Maslow theory, created a system theory of evolution development of human consciousness, which determines human behaviour. Based of systemisation of conclusions of C. Graves and his followers the article formulates a hypothesis about expediency of use of spiral dynamics ideas for identifying reserves of strengthening of influence of the collective manager upon labour behaviour of subordinates. Test of hypothesis shows that, apart from diagnostics of the sources of activation of individual labour behaviour, the theory of spiral dynamics allows identification of reserves of formation of collective consciousness and solidary labour force of a creative collective. Their use creates a basis of intensification of processes of intellectualisation of the organisation capital. In order to ensure these changes it is necessary to find mechanisms of changing external environment, which sets principally new tasks and requires principally new strategies of their solution.

  15. A planar microfluidic mixer based on logarithmic spirals

    International Nuclear Information System (INIS)

    Scherr, Thomas; Nandakumar, Krishnaswamy; Quitadamo, Christian; Tesvich, Preston; Park, Daniel Sang-Won; Hayes, Daniel; Monroe, W Todd; Tiersch, Terrence; Choi, Jin-Woo

    2012-01-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as the Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional (3D) simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing. (paper)

  16. A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2014-01-01

    Full Text Available A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS. It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared.

  17. Novel nanofibrous spiral scaffolds for neural tissue engineering

    Science.gov (United States)

    Valmikinathan, Chandra M.; Tian, Jingjing; Wang, Junping; Yu, Xiaojun

    2008-12-01

    Due to several drawbacks associated with autografts and allografts, tissue-engineering approaches have been widely used to repair peripheral nerve injuries. Most of the traditional tissue-engineered scaffolds in use are either tubular (single or multi-lumen) or hydrogel-based cylindrical grafts, which provide limited surface area for cell attachment and regeneration. Here, we show a novel poly(lactide-co-glycotide) (PLGA) microsphere-based spiral scaffold design with a nanofibrous surface that has enhanced surface areas and possesses sufficient mechanical properties and porosities to support the nerve regeneration process. These scaffolds have an open architecture that goes evenly throughout the scaffolds hence leaving enough volume for media influx and deeper cell penetration into the scaffolds. The in vitro tests conducted using Schwann cells show that the nanofibrous spiral scaffolds promote higher cell attachment and proliferation when compared to contemporary tubular scaffolds or nanofiber-based tubular scaffolds. Also, the nanofiber coating on the surfaces enhances the surface area, mimics the extracellular matrix and provides unidirectional alignment of cells along its direction. Hence, we propose that these scaffolds could alleviate some drawbacks in current nerve grafts and could potentially be used in nerve regeneration.

  18. Radial and spiral stream formation in Proteus mirabilis colonies.

    Directory of Open Access Journals (Sweden)

    Chuan Xue

    2011-12-01

    Full Text Available The enteric bacterium Proteus mirabilis, which is a pathogen that forms biofilms in vivo, can swarm over hard surfaces and form a variety of spatial patterns in colonies. Colony formation involves two distinct cell types: swarmer cells that dominate near the surface and the leading edge, and swimmer cells that prefer a less viscous medium, but the mechanisms underlying pattern formation are not understood. New experimental investigations reported here show that swimmer cells in the center of the colony stream inward toward the inoculation site and in the process form many complex patterns, including radial and spiral streams, in addition to previously-reported concentric rings. These new observations suggest that swimmers are motile and that indirect interactions between them are essential in the pattern formation. To explain these observations we develop a hybrid model comprising cell-based and continuum components that incorporates a chemotactic response of swimmers to a chemical they produce. The model predicts that formation of radial streams can be explained as the modulation of the local attractant concentration by the cells, and that the chirality of the spiral streams results from a swimming bias of the cells near the surface of the substrate. The spatial patterns generated from the model are in qualitative agreement with the experimental observations.

  19. The Neutrons for Science Facility at SPIRAL-2

    Science.gov (United States)

    Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-détat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Sublet, J. C.; Taieb, J.; Tassan-Got, L.; Tarrio, D.; Takibayev, A.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.

    2014-05-01

    The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in 238U for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.

  20. A Reconfigurable Spiral Antenna for Adaptive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Cetiner Bedri A.

    2005-01-01

    Full Text Available We present a reconfigurable spiral antenna for use in adaptive MIMO systems. The antenna is capable of changing the sense of polarization of the radiated field. It is fabricated by using an RF-MEMS technology compatible with microwave laminate substrates developed within the author's group. The proposed antenna structure is built on a number of rectangular-shaped bent metallic strips interconnected to each other with RF-MEMS actuators. Two senses of polarization, RHCP and LHCP, are achieved by configuring the physical structure of the antenna, that is , by changing the winding sense of the spiral, through judicious activation of MEM actuators. The fabrication process for the monolithic integration of MEM actuators with bent microstrip pixels on RO4003-FR4 microwave laminate substrate is described. The measured and calculated radiation and impedance characteristics of the antenna are given. The operating frequency of the presented antenna design can easily be adjusted to be compatible with popular IEEE networking standards such as 802.11a.