Spinor formalism and complex-vector formalism of general relativity
International Nuclear Information System (INIS)
Han-ying, G.; Yong-shi, W.; Gendao, L.
1974-01-01
In this paper, using E. Cartan's exterior calculus, we give the spinor form of the structure equations, which leads naturally to the Newman--Penrose equations. Furthermore, starting from the spinor spaces and the el (2C) algebra, we construct the general complex-vector formalism of general relativity. We find that both the Cahen--Debever--Defrise complex-vector formalism and that of Brans are its special cases. Thus, the spinor formalism and the complex-vector formalism of general relativity are unified on the basis of the uni-modular group SL(2C) and its Lie algebra
Fundamentals of the Pure Spinor Formalism
Hoogeveen, Joost
2010-01-01
This thesis presents recent developments within the pure spinor formalism, which has simplified amplitude computations in perturbative string theory, especially when spacetime fermions are involved. Firstly the worldsheet action of both the minimal and the non-minimal pure spinor formalism is derived from first principles, i.e. from an action with two dimensional diffeomorphism and Weyl invariance. Secondly the decoupling of unphysical states in the minimal pure spinor formalism is proved
On pure spinor formalism for quantum superstring and spinor moving frame
International Nuclear Information System (INIS)
Bandos, Igor A
2013-01-01
The D = 10 pure spinor constraint can be solved in terms of spinor moving frame variables v -α q and eight-component complex null vector Λ + q , Λ + q Λ + q =0, which can be related to the κ-symmetry ghost. Using this and similar solutions for the conjugate pure spinor and other elements of the non-minimal pure spinor formalism, we present a (hopefully useful) reformulation of the measure of the pure spinor path integral for superstring in terms of products of Cartan forms corresponding to the coset of 10D Lorentz group and to the coset of complex orthogonal group SO(8, C). Our study suggests a possible complete reformulation of the pure spinor superstring in terms of new irreducible set of variable. (paper)
A formalism for the calculus of variations with spinors
Energy Technology Data Exchange (ETDEWEB)
Bäckdahl, Thomas, E-mail: thobac@chalmers.se [The School of Mathematics, University of Edinburgh, JCMB 6228, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom and Mathematical Sciences - Chalmers University of Technology and University of Gothenburg - SE-412 96 Gothenburg (Sweden); Valiente Kroon, Juan A., E-mail: j.a.valiente-kroon@qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)
2016-02-15
We develop a frame and dyad gauge-independent formalism for the calculus of variations of functionals involving spinorial objects. As a part of this formalism, we define a modified variation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable to both the standard spacetime (i.e., SL(2, ℂ)) 2-spinors as well as to space (i.e., SU(2, ℂ)) 2-spinors. We compute expressions for the variations of the connection and the curvature spinors.
A formalism for the calculus of variations with spinors
International Nuclear Information System (INIS)
Bäckdahl, Thomas; Valiente Kroon, Juan A.
2016-01-01
We develop a frame and dyad gauge-independent formalism for the calculus of variations of functionals involving spinorial objects. As a part of this formalism, we define a modified variation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable to both the standard spacetime (i.e., SL(2, ℂ)) 2-spinors as well as to space (i.e., SU(2, ℂ)) 2-spinors. We compute expressions for the variations of the connection and the curvature spinors
Cohomology in the Pure Spinor Formalism for the Superstring
International Nuclear Information System (INIS)
Berkovits, Nathan
2000-01-01
A manifestly super-Poincare covariant formalism for the superstring has recently been constructed using a pure spinor variable. Unlike the covariant Green-Schwarz formalism, this new formalism is easily quantized with a BRST operator and tree-level scattering amplitudes have been evaluated in a manifestly covariant manner. In this paper, the cohomology of the BRST operator in the pure spinor formalism is shown to give the usual light-cone Green-Schwarz spectrum. Although the BRST operator does not directly involve the Virasoro constraint, this constraint emerges after expressing the pure spinor variable in terms of SO(8) variables. (author)
DDF construction and D-brane boundary states in pure spinor formalism
International Nuclear Information System (INIS)
Mukhopadhyay, Partha
2006-01-01
Open string boundary conditions for non-BPS D-branes in type II string theories discussed in hep-th/0505157 give rise to two sectors with integer (R sector) and half-integer (NS sector) modes for the combined fermionic matter and bosonic ghost variables in pure spinor formalism. Exploiting the manifest supersymmetry of the formalism we explicitly construct the DDF (Del Giudice, Di Vecchia, Fubini) states in both the sectors which are in one-to-one correspondence with the states in light-cone Green-Schwarz formalism. We also give a proof of validity of this construction. A similar construction in the closed string sector enables us to define a physical Hilbert space in pure spinor formalism which is used to project the covariant boundary states of both the BPS and non-BPS instantonic D-branes. These projected boundary states take exactly the same form as those found in light-cone Green-Schwarz formalism and are suitable for computing the cylinder diagram with manifest open-closed duality
Pure spinor formalism as an N = 2 topological string
International Nuclear Information System (INIS)
Berkovits, Nathan
2005-01-01
Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted c-circumflex = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action
Type I supergravity effective action from pure spinor formalism
International Nuclear Information System (INIS)
Alencar, Geova
2009-01-01
Using the pure spinor formalism, we compute the tree-level correlation functions for three strings, one closed and two open, in N = 1 D = 10 superspace. Expanding the superfields in components, the respective terms of the effective action for the type I supergravity are obtained. All terms found agree with the effective action known in the literature. This result gives one more consistency test for the pure spinor formalism.
Y-formalism and b ghost in the non-minimal pure spinor formalism of superstrings
International Nuclear Information System (INIS)
Oda, Ichiro; Tonin, Mario
2007-01-01
We present the Y-formalism for the non-minimal pure spinor quantization of superstrings. In the framework of this formalism we compute, at the quantum level, the explicit form of the compound operators involved in the construction of the b ghost, their normal-ordering contributions and the relevant relations among them. We use these results to construct the quantum-mechanical b ghost in the non-minimal pure spinor formalism. Moreover we show that this non-minimal b ghost is cohomologically equivalent to the non-covariant b ghost
International Nuclear Information System (INIS)
Aisaka, Yuri; Kazama, Yoichi
2006-01-01
In a previous work, we have constructed a reparametrization invariant worldsheet action from which one can derive the super-Poincare covariant pure spinor formalism for the superstring at the fully quantum level. The main idea was the doubling of the spinor degrees of freedom in the Green-Schwarz formulation together with the introduction of a new compensating local fermionic symmetry. In this paper, we extend this 'double spinor' formalism to the case of the supermembrane in 11 dimensions at the classical level. The basic scheme works in parallel with the string case and we are able to construct the closed algebra of first class constraints which governs the entire dynamics of the system. A notable difference from the string case is that this algebra is first order reducible and the associated BRST operator must be constructed accordingly. The remaining problems which need to be solved for the quantization will also be discussed
Covariant map between Ramond-Neveu-Schwarz and pure spinor formalisms for the superstring
International Nuclear Information System (INIS)
Berkovits, Nathan
2014-01-01
A covariant map between the Ramond-Neveu-Schwarz (RNS) and pure spinor formalisms for the superstring is found which transforms the RNS and pure spinor BRST operators into each other. The key ingredient is a dynamical twisting of the ten spin-half RNS fermions into five spin-one and five spin-zero fermions using bosonic pure spinors that parameterize an SO(10)/U(5) coset. The map relates massless vertex operators in the two formalisms, and gives a new description of Ramond states which does not require spin fields. An argument is proposed for relating the amplitude prescriptions in the two formalisms
Topological M Theory from Pure Spinor Formalism
Grassi, P A; Grassi, Pietro Antonio; Vanhove, Pierre
2005-01-01
We construct multiloop superparticle amplitudes in 11d using the pure spinor formalism. We explain how this construction reduces to the superparticle limit of the multiloop pure spinor superstring amplitudes prescription. We then argue that this construction points to some evidence for the existence of a topological M theory based on a relation between the ghost number of the full-fledged supersymmetric critical models and the dimension of the spacetime for topological models. In particular, we show that the extensions at higher orders of the previous results for the tree and one-loop level expansion for the superparticle in 11 dimensions is related to a topological model in 7 dimensions.
Optical propagators in vector and spinor theories by path integral formalism
International Nuclear Information System (INIS)
Linares, J.
1993-01-01
The construction of an extended parabolic (wide-angle) vector and spinor wave theory is presented. For that, optical propagators in monochromatic vector light optics and monoenergetic spinor electron optics are evaluated by the path integral formalism. The auxiliary parameter method introduced by Fock and the Feynman-Dyson perturbative series are used. The proposed theory supplies, by a generalized Fermat's principle, the Mukunda-Simon-Sudarshan transformation for the passage from scalar to vector light (or spinor electron) optics in an asymptotic approximation. (author). 19 refs
The b ghost of the pure spinor formalism is nilpotent
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo, E-mail: osvaldo.chandia@uai.c [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibanez, Santiago (Chile)
2011-01-10
The ghost for world-sheet reparametrization invariance is not a fundamental field in the pure spinor formalism. It is written as a combination of pure spinor variables which have conformal dimension two and such that it commutes with the BRST operator to give the world-sheet stress tensor. We show that the ghost variable defined in this way is nilpotent since the OPE of b with itself does not have singularities.
Scattering equations, supergravity integrands, and pure spinors
Energy Technology Data Exchange (ETDEWEB)
Adamo, Tim; Casali, Eduardo [Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2015-05-25
The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest space-time supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give non-trivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting.
Scattering equations, supergravity integrands, and pure spinors
International Nuclear Information System (INIS)
Adamo, Tim; Casali, Eduardo
2015-01-01
The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest space-time supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give non-trivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting.
Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring
International Nuclear Information System (INIS)
Berkovits, Nathan
2004-01-01
A ten-dimensional super-Poincare covariant formalism for the superstring was recently developed which involves a BRST operator constructed from superspace matter variables and a pure spinor ghost variable. A super-Poincare covariant prescription was defined for computing tree amplitudes and was shown to coincide with the standard RNS prescription. In this paper, picture-changing operators are used to define functional integration over the pure spinor ghosts and to construct a suitable b ghost. A super-Poincare covariant prescription is then given for the computation of N-point multiloop amplitudes. One can easily prove that massless N-point multiloop amplitudes vanish for N 4 terms in the effective action receive no perturbative contributions above one loop. (author)
Invariant Killing spinors in 11D and type II supergravities
International Nuclear Information System (INIS)
Gran, U; Gutowski, J; Papadopoulos, G
2009-01-01
We present all isotropy groups and associated Σ groups, up to discrete identifications of the component connected to the identity, of spinors of 11-dimensional and type II supergravities. The Σ groups are products of a Spin group and an R-symmetry group of a suitable lower dimensional supergravity theory. Using the case of SU(4)-invariant spinors as a paradigm, we demonstrate that the Σ groups, and so the R-symmetry groups of lower dimensional supergravity theories arising from compactifications, have disconnected components. These lead us to discrete symmetry groups reminiscent of R-parity. We examine the role of disconnected components of the Σ groups in the choice of Killing spinor representatives and in the context of compactifications.
Ambitwistor pure spinor string in a type II supergravity background
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello,República 220, Santiago (Chile)
2015-06-30
We construct the ambitwistor pure spinor string in a general type II supergravity background in the semi-classical regime. Almost all supergravity constraints are obtained from nilpotency of the BRST charge and further consistency conditions from additional world-sheet the case of AdS{sub 5}×S{sup 5} background.
Pure spinor partition function and the massive superstring spectrum
International Nuclear Information System (INIS)
Aisaka, Yuri; Arroyo, E. Aldo; Berkovits, Nathan; Nekrasov, Nikita
2008-01-01
We explicitly compute up to the fifth mass-level the partition function of ten-dimensional pure spinor worldsheet variables including the spin dependence. After adding the contribution from the (x μ , θ α , p α ) matter variables, we reproduce the massive superstring spectrum. Even though pure spinor variables are bosonic, the pure spinor partition function contains fermionic states which first appear at the second mass-level. These fermionic states come from functions which are not globally defined in pure spinor space, and are related to the b ghost in the pure spinor formalism. This result clarifies the proper definition of the Hilbert space for pure spinor variables.
Timelike Killing spinors in seven dimensions
International Nuclear Information System (INIS)
Cariglia, Marco; Conamhna, Oisin A.P. Mac
2004-01-01
We employ the G-structure formalism to study supersymmetric solutions of minimal and SU(2) gauged supergravities in seven dimensions admitting Killing spinors with an associated timelike Killing vector. The most general such Killing spinor defines a SU(3) structure. We deduce necessary and sufficient conditions for the existence of a timelike Killing spinor on the bosonic fields of the theories, and find that such configurations generically preserve one out of 16 supersymmetries. Using our general supersymmetric ansatz we obtain numerous new solutions, including squashed or deformed anti-de Sitter solutions of the gauged theory, and a large class of Goedel-like solutions with closed timelike curves
Some basic properties of Killing spinors
International Nuclear Information System (INIS)
Hacyan, S.; Plebanski, J.
1976-01-01
The concept of Killing spinor is analyzed in a general way by using the spinorial formalism. It is shown, among other things, that higher derivatives of Killing spinors can be expressed in terms of lower order derivatives. Conformal Killing vectors are studied in some detail in the light of spinorial analysis: Classical results are formulated in terms of spinors. A theorem on Lie derivatives of Debever--Penrose vectors is proved, and it is shown that conformal motion in vacuum with zero cosmological constant must be homothetic, unless the conformal tensor vanishes or is of type N. Our results are valid for either real or complex space--time manifolds
Energy Technology Data Exchange (ETDEWEB)
Berkovits, Nathan [ICTP South American Institute for Fundamental Research,Instituto de Física Teórica, UNESP - Universidade Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil)
2016-06-21
The pure spinor formalism for the superstring can be formulated as a twisted N=2 worldsheet theory with fermionic generators j{sub BRST} and composite b ghost. After untwisting the formalism to an N=1 worldsheet theory with fermionic stress tensor j{sub BRST}+b, the worldsheet variables combine into N=1 worldsheet superfields X{sup m} and Θ{sup α} together with a superfield constraint relating DX{sup m} and DΘ{sup α}. The constraint implies that the worldsheet superpartner of θ{sup α} is a bosonic twistor variable, and different solutions of the constraint give rise to the pure spinor or extended RNS formalisms, as well as a new twistor-string formalism with manifest N=1 worldsheet supersymmetry. These N=1 worldsheet methods generalize in curved Ramond-Ramond backgrounds, and a manifestly N=1 worldsheet supersymmetric action is proposed for the superstring in an AdS{sub 5}×S{sup 5} background in terms of the twistor superfields. This AdS{sub 5}×S{sup 5} worldsheet action is a remarkably simple fermionic coset model with manifest PSU(2,2|4) symmetry and might be useful for computing AdS{sub 5}×S{sup 5} superstring scattering amplitudes.
Black hole attractors and pure spinors
International Nuclear Information System (INIS)
Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro
2006-01-01
We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = Ω and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation
Black Hole Attractors and Pure Spinors
International Nuclear Information System (INIS)
Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro
2006-01-01
We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = (Omega) and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation
On spinor geometry: A genesis of extended supersymmetry
International Nuclear Information System (INIS)
Budini, P.
1980-08-01
It is conjectured that euclidean geometry should be derived from spinor geometry through the equivalence of simple semispinor with isotropic semi n-vectors. The only tensors of complex 2n dimensional Euclidean space Esub(c)sup(2n) should then be: isotropic n - vectors and their intersections. Esub(c) 4 spinor geometry generates two isotropic semi bivectors equivalent to the semispinors of Esub(c) 4 (their geometrical properties are those of light propagating in vacuum), and their intersection: an isotropic vector (possibly representing momenta of massless particle and/or light rays); but no scalar, pseudoscalar or pseudovector is generated. In order to generate vectors outside the light cone in Msup(3.1) one needs not less than Esub(c) 6 spinor geometry which also generates Lorentz pseudoscalars and non isotropic pseudovectors and tensors. Besides, Dirac spinor should then always appear in doublets in Msup(3.1). Furthermore the mere geometrical structure of Esub(c) 6 spinor geometry seems to suggest formally, both Poincare (extended) and conformal supersymmetry. The suggested spinor-geometrical approach privileges the elementary role of semispinors. Its relevance for the real world should be manifested by the privileged role of semispinors in elementary interactions as in fact seems to be the case with Lorentz semispinors in weak interactions (and could perhaps also be the case for strong ones where conformal semispinors (or twistors) could be the interacting spinor fields). (author)
Pure spinors, free differential algebras, and the supermembrane
International Nuclear Information System (INIS)
Fre, Pietro; Grassi, Pietro Antonio
2007-01-01
The Lagrangian formalism for the supermembrane in any 11d supergravity background is constructed in the pure spinor framework. Our gauge-fixed action is manifestly BRST, supersymmetric, and 3d Lorentz invariant. The relation between the Free Differential Algebras (FDA) underlying 11d supergravity and the BRST symmetry of the membrane action is exploited. The 'gauge-fixing' has a natural interpretation as the variation of the Chevalley cohomology class needed for the extension of 11d super-Poincare superalgebra to M-theory FDA. We study the solution of the pure spinor constraints in full detail
An introduction to Clifford algebras and spinors
Vaz, Jayme
2016-01-01
This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and i...
Pure spinors, free differential algebras, and the supermembrane
Energy Technology Data Exchange (ETDEWEB)
Fre, Pietro [Dipartimento di Fisica Teorica, Universita di Torino, and INFN-Sezione di Torino, Via P. Giuria 1, I-10125 Turin (Italy); Grassi, Pietro Antonio [Centro Studi e Ricerche E. Fermi, Compendio Viminale, I-00184 Rome (Italy) and DISTA, Universita del Piemonte Orientale, and INFN-Sezione di Torino, Via Bellini 25/G, Alessandria 15100 (Italy) and CERN, Theory Unit, CH-1211 Geneva 23 (Switzerland)]. E-mail: pgrassi@insti.physics.sunysb.edu
2007-02-12
The Lagrangian formalism for the supermembrane in any 11d supergravity background is constructed in the pure spinor framework. Our gauge-fixed action is manifestly BRST, supersymmetric, and 3d Lorentz invariant. The relation between the Free Differential Algebras (FDA) underlying 11d supergravity and the BRST symmetry of the membrane action is exploited. The 'gauge-fixing' has a natural interpretation as the variation of the Chevalley cohomology class needed for the extension of 11d super-Poincare superalgebra to M-theory FDA. We study the solution of the pure spinor constraints in full detail.
Minimal surfaces and strings from spinors a realization of the Cartan programme
International Nuclear Information System (INIS)
Budinich, P.; Dabrowski, L.; Furlan, P.
1986-01-01
It is shown how the old Enneper-Weierstrass integral parametrization of minimal surfaces in R 3 and the Eisenhart ones in Rsup(3,1), when expressed through bilinear spinor polynomia, may be considered as deriving from a particular local realization of the possibility envisaged by Cartan: to consider ordinary vectors as generated from isotropic planes in complex spaces, in the frame of the bijective Cartan map connecting pure spinor directions to totally null planes in complex spaces. In the case of R 3 the corresponding global realization of the Cartan map extends the Enneper-Weierstrass parametrization to the Gauss-conformal map of the minimal surface to S 2 , which may be identified with the Riemann celestial sphere. For real spinors minimal surfaces are substituted by strings both in Rsup(2,1) and Rsup(3,1); in Rsup(2,1) strings are globally mapped to a torus(in R 4 ). In Rsup(3,1) (and its conformal extensions) a prescription is given to obtain strings as integrals of real, bilinear spinor null vectors, from the Enneper-Weierstrass spinor representation of minimal surfaces, through the use of unitary transformations in spinor space which allows its restriction to the real (Majorana spinor-space). It is shown that the Nambu action, or the area of the world surface described by the space-time string, is minimized by the Lagrangian density expressed as a quadrilinear spinor product formally reminding Fermi and Thirring interaction Lagrangians
Quantization of scalar-spinor instanton
International Nuclear Information System (INIS)
Inagaki, H.
1977-04-01
A systematic quantization to the scalar-spinor instanton is given in a canonical formalism of Euclidean space. A basic idea is in the repair of the symmetries of the 0(5) covariant system in the presence of the instanton. The quantization of the fermion is carried through in such a way that the fermion number should be conserved. Our quantization enables us to get well-defined propagators for both the scalar and the fermion, which are free from unphysical poles
Energy Technology Data Exchange (ETDEWEB)
Hoff da Silva, J.M.; Rogerio, R.J.B. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Villalobos, C.H.C. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)
2017-07-15
A systematic study of the spinor representation by means of the fermionic physical space is accomplished and implemented. The spinor representation space is shown to be constrained by the Fierz-Pauli-Kofink identities among the spinor bilinear covariants. A robust geometric and topological structure can be manifested from the spinor space, wherein the first and second homotopy groups play prominent roles on the underlying physical properties, associated to fermionic fields. The mapping that changes spinor fields classes is then exemplified, in an Einstein-Dirac system that provides the spacetime generated by a fermion. (orig.)
Weyl-van der Waerden spinor technic for spin-3/2 fermions
International Nuclear Information System (INIS)
Novaes, S.F.; Spehler, D.
1991-09-01
We use the Weyl-van der Waerden spinor technic to construct helicity wave functions for massless and massive spin-3/2 fermions. We apply our formalism to evaluate helicity amplitudes taking into account some phenomenological couplings involving these particles. (author)
Non-critical pure spinor superstrings
International Nuclear Information System (INIS)
Adam, Ido; Grassi, Pietro Antonio; Mazzucato, Luca; Oz, Yaron; Yankielowicz, Shimon
2007-01-01
We construct non-critical pure spinor superstrings in two, four and six dimensions. We find explicitly the map between the RNS variables and the pure spinor ones in the linear dilaton background. The RNS variables map onto a patch of the pure spinor space and the holomorphic top form on the pure spinor space is an essential ingredient of the mapping. A basic feature of the map is the requirement of doubling the superspace, which we analyze in detail. We study the structure of the non-critical pure spinor space, which is different from the ten-dimensional one, and its quantum anomalies. We compute the pure spinor lowest lying BRST cohomology and find an agreement with the RNS spectra. The analysis is generalized to curved backgrounds and we construct as an example the non-critical pure spinor type IIA superstring on AdS 4 with RR 4-form flux
Notes on the ambitwistor pure spinor string
Czech Academy of Sciences Publication Activity Database
Lipinski Jusinskas, Renann
2016-01-01
Roč. 2016, č. 5 (2016), s. 1-12, č. článku 116. ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : ambitwistor string * pure spinor formalism Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016
Spinor structures on homogeneous spaces
International Nuclear Information System (INIS)
Lyakhovskii, V.D.; Mudrov, A.I.
1993-01-01
For multidimensional models of the interaction of elementary particles, the problem of constructing and classifying spinor fields on homogeneous spaces is exceptionally important. An algebraic criterion for the existence of spinor structures on homogeneous spaces used in multidimensional models is developed. A method of explicit construction of spinor structures is proposed, and its effectiveness is demonstrated in examples. The results are of particular importance for harmonic decomposition of spinor fields
New spinor fields classes and applications
da Rocha, Roldao
2017-01-01
After revisiting the well-known Lounesto classification of spinor fields, wherefrom the bilinear covariants are considered as the landmark beyond Wigner classification, relevant features of regular and singular spinor fields are presented. Hence, non-standard spinor fields are scrutinised, together with their associated dynamics, paving recently found applications in Physics. The case of the new classes of spinors on 7-manifolds is revisited to provide concrete examples.
Real-time response in AdS/CFT with application to spinors
International Nuclear Information System (INIS)
Iqbal, N.; Liu, H.
2009-01-01
We discuss a simple derivation of the real-time AdS/CFT prescription as an analytic continuation of the corresponding problem in Euclidean signature. We then extend the formalism to spinor operators and apply it to the examples of real-time fermionic correlators in CFTs dual to pure AdS and the BTZ black hole. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
On semiclassical analysis of pure spinor superstring in an AdS{sub 5} x S{sup 5} background
Energy Technology Data Exchange (ETDEWEB)
Aisaka, Yuri [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sao Paulo State Univ. (Brazil). Inst. de Fisica Teorica; Ibiapina Bevilaqua, L. [Univ. Federal do Rio Grande do Norte, Natal (Brazil). Esola de Ciencias e Tecnologia; Vallilo, Brenno C. [Santiago Univ. (Chile). Dept. de Ciencias Fisicas
2012-06-15
Relation between semiclassical analyses of Green-Schwarz and pure spinor formalisms in an AdS{sub 5} x S{sup 5} background is clarified. It is shown that the two formalisms have identical semiclassical partition functions for a simple family of classical solutions. It is also shown that, when the classical string is furthermore rigid, this in turn implies that the two formalisms predict the same one-loop corrections to spacetime energies.
Algebraic and Dirac-Hestenes spinors and spinor fields
International Nuclear Information System (INIS)
Rodrigues, Waldyr A. Jr.
2004-01-01
Almost all presentations of Dirac theory in first or second quantization in physics (and mathematics) textbooks make use of covariant Dirac spinor fields. An exception is the presentation of that theory (first quantization) offered originally by Hestenes and now used by many authors. There, a new concept of spinor field (as a sum of nonhomogeneous even multivectors fields) is used. However, a careful analysis (detailed below) shows that the original Hestenes definition cannot be correct since it conflicts with the meaning of the Fierz identities. In this paper we start a program dedicated to the examination of the mathematical and physical basis for a comprehensive definition of the objects used by Hestenes. In order to do that we give a preliminary definition of algebraic spinor fields (ASF) and Dirac-Hestenes spinor fields (DHSF) on Minkowski space-time as some equivalence classes of pairs (Ξ u ,ψ Ξ u ), where Ξ u is a spinorial frame field and ψ Ξ u is an appropriate sum of multivectors fields (to be specified below). The necessity of our definitions are shown by a careful analysis of possible formulations of Dirac theory and the meaning of the set of Fierz identities associated with the bilinear covariants (on Minkowski space-time) made with ASF or DHSF. We believe that the present paper clarifies some misunderstandings (past and recent) appearing on the literature of the subject. It will be followed by a sequel paper where definitive definitions of ASF and DHSF are given as appropriate sections of a vector bundle called the left spin-Clifford bundle. The bundle formulation is essential in order to be possible to produce a coherent theory for the covariant derivatives of these fields on arbitrary Riemann-Cartan space-times. The present paper contains also Appendixes A-E which exhibits a truly useful collection of results concerning the theory of Clifford algebras (including many tricks of the trade) necessary for the intelligibility of the text
International Nuclear Information System (INIS)
Todorov, Ivan
2010-12-01
Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)
Spinor Field Nonlinearity and Space-Time Geometry
Saha, Bijan
2018-03-01
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time
A visual description of 2-component spinor calculus
International Nuclear Information System (INIS)
Hellsten, H.
1975-07-01
Spinors and algebraic operations on them are given a visual description. This structural interpretation of spinors is to be contrasted with the well known quadratic relation between spinors and visual objects (vectors,flagpoles). The interpretation in the present paper is founded on the observation that the product between two successive rotations half a turn along the legs of an angle will be a rotation through twice that angle. This observation makes it possible to explain visually the doubling of angles, which occurs when vectors are constructed out of spinors. It is seen that, using this explanation, spinor calculus can, in close analogy to 3-dimensional Euclidean vector calculus, be given a purely visual meaning. (Auth.)
Clifford algebras, spinors, spin groups and covering groups
International Nuclear Information System (INIS)
Magneville, C.; Pansart, J.P.
1991-03-01
The Dirac equation uses matrices named Υ matrices which are representations of general algebraic structures associated with a metric space. These algebras are the Clifford algebras. In the first past, these algebras are studied. Then the notion of spinor is developed. It is shown that Majorana and Weyl spinors only exist for some particular metric space. In the second part, Clifford and spinor groups are studied. They may be interpreted as the extension of the notion of orthogonal group for Clifford algebras and their spaces for representation. The rotation of a spinor is computed. In the last part, the connexion between the spinor groups and the Universal Covering Groups is presented [fr
International Nuclear Information System (INIS)
Dimakis, A.
1983-01-01
The algebraic structure of the real Clifford algebras (CA) of vector spaces with non-degenerated scalar product of arbitrary signature is studied, and a classification formula for this is obtained. The latter is based on three sequences of integer numbers from which one is the Radon-Harwitz sequence. A new representation method of real CA is constructed. This leads to a geometrical representation of real Clifford algebras in which the representation spaces are subspaces of the CA itself (''spinor spaces''). One of these spinor spaces is a subalgebra of the original CA. The relation between CA and external algebras is studied. Each external algebra with a scalar product possesses the structure of a CA. From the geometric representation developed here then follows that spinors are inhomogeneous external forms. The transformation behaviour of spinors under the orthogonal, as well as under the general linear group is studied. By means of these algebraic results the spinor connexion and the covariant Dirac operator on a differential manifold are introduced. In the geometrical representation a further in ternal SL(2,R) symmetry of the Dirac equation (DE) is shown. Furthermore other equivalent formulations of the DE can be obtained. Of special interest is the tetrade formulation of the DE. A generalization of the DE is introduced. The equations of motion of the classical relativistic spin particle are derived by means of spinors and CA from a variational principle. From this interesting formal analogies with the supersymmetric theories of the spin particle result. Finally the DE in the curved space-time is established and studied in the tetrade formulation. Using the methods developed here a new exact solution of the coupled Einstein-Curtan-Dirac theory was found (massice ''Ghost-Dirac fields''). (orig.) [de
On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry
International Nuclear Information System (INIS)
Budinich, P.
1981-09-01
The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomia of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an SU(2) internal symmetry algebra. Mass is generated by spontaneously breaking the original O(4,2) symmetry of the spinor equation. (author)
On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry
International Nuclear Information System (INIS)
Budinich, P.
1982-01-01
The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomials of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed, but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an su(2) internal symmetry algebra. Mass is generated by breaking spontaneously the original O(4,2) symmetry of the spinor equation. (author)
International Nuclear Information System (INIS)
Borstnik, N. Mankoc; Nielsen, H.B.
2002-01-01
We present a technique to construct a spinor space basis as products of certain nilpotents and projections formed from γ a for which we only need to know that they obey the Clifford algebra. The technique works for all dimensions and signatures. We use this technique to deliver a concrete choice of γ-matrices and Lorentz group generators for (fundamental representations of) spinors in a rather systematic and transparent way. We further develop the formalism by proposing the corresponding graphic presentation of basic states, which offers an easy way to see all the quantum numbers of states with respect to the generators of the Lorentz group, as well as transformation properties of the states under any element of the Clifford algebra
Spinor calculus on 5-dimensional spacetimes
International Nuclear Information System (INIS)
Gomez-Lobo, Alfonso Garcia-Parrado; Martin-Garcia, Jose M
2010-01-01
We explain how Penrose's spinor calculus of 4-dimensional Lorentzian geometry is implemented in a 5-dimensional Lorentzian manifold. A number of issues, such as the essential spin algebra, the spin covariant derivative and the algebro-differential properties of the curvature spinors are discussed.
Unfolding physics from the algebraic classification of spinor fields
International Nuclear Information System (INIS)
Hoff da Silva, J.M.; Rocha, Roldão da
2013-01-01
After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects — as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics.
The naked spinor a rewrite of Clifford algebra
Morris, Dennis
2015-01-01
This book is about spinors. The whole mathematical theory of spinors is within Clifford algebra, and so this book is about Clifford algebra. Spinor theory is really the theory of empty space, and so this book is about empty space. The whole of Clifford algebra is rewritten in a much simpler form, and so the whole of spinor theory is rewritten in a much simpler form. Not only does this book make Clifford algebra simple and obvious, but it lifts the fog and mirrors from this area of mathematics to make it clear and obvious. In doing so, the true nature of spinors is revealed to the reader, and, with that, the true nature of empty space. To understand this book you will need an elementary knowledge of linear algebra (matrices) an elementary knowledge of finite groups and an elementary knowledge of the complex numbers. From no more than that, you will gain a very deep understanding of Clifford algebra, spinors, and empty space. The book is well written with all the mathematical steps laid before the reader in a w...
Spinor pregeometry at finite temperature
International Nuclear Information System (INIS)
Yoshimoto, Seiji.
1985-10-01
We derive the effective action for gravity at finite temperature in spinor pregeometry. The temperature-dependent effective potential for the vierbein which is parametrized as e sub(kμ) = b.diag(1, xi, xi, xi) has the minimum at b = 0 for fixed xi, and behaves as -xi 3 for fixed b. These results indicate that the system of fundamental matters in spinor pregeometry cannot be in equilibrium. (author)
Spinors, tensors and the covariant form of Dirac's equation
International Nuclear Information System (INIS)
Chen, W.Q.; Cook, A.H.
1986-01-01
The relations between tensors and spinors are used to establish the form of the covariant derivative of a spinor, making use of the fact that certain bilinear combinations of spinors are vectors. The covariant forms of Dirac's equation are thus obtained and examples in specific coordinate systems are displayed. (author)
Flag-dipole and flagpole spinor fluid flows in Kerr spacetimes
Energy Technology Data Exchange (ETDEWEB)
Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Universidade Federal do ABC, CMCC (Brazil); Cavalcanti, R. T., E-mail: rogerio.cavalcanti@ufabc.edu.br [Universidade Federal do ABC, CCNH (Brazil)
2017-03-15
Flagpole and flag-dipole spinors are particular classes of spinor fields that has been recently used in different branches of theoretical physics. In this paper, we study the possibility and consequences of these spinor fields to induce an underlying fluid flow structure in the background of Kerr spacetimes. We show that flag-dipole spinor fields are solutions of the equations of motion in this context. To our knowledge, this is the second time that this class of spinor field appears as a physical solution, the first one occurring as a solution of the Dirac equation in ESK gravities.
Unveiling a spinor field classification with non-Abelian gauge symmetries
Fabbri, Luca; da Rocha, Roldão
2018-05-01
A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.
SO(d,d) transformations of Ramond-Ramond fields and space-time spinors
International Nuclear Information System (INIS)
Hassan, S.F.
2000-01-01
We explicitly construct the SO(d,d) transformations of Ramond-Ramond field strengths and potentials, along with those of the space-time supersymmetry parameters, the gravitinos and the dilatinos in type-II theories. The results include the case when the SO(d,d) transformation involves the time direction. The derivation is based on the compatibility of SO(d,d) transformations with space-time supersymmetry, which automatically guarantees compatibility with the equations of motion. It involves constructing the spinor representation of a twist that an SO(d,d) action induces between the local Lorentz frames associated with the left- and right-moving sectors of the worldsheet theory. The relation to the transformation of R-R potentials as SO(d,d) spinors is also clarified
Spinors fields in co-dimension one braneworlds
Mendes, W. M.; Alencar, G.; Landim, R. R.
2018-02-01
In this work we analyze the zero mode localization and resonances of 1/2-spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η 1, (ii) a Yukawa-dilaton coupling with two parameters η 2 and λ and (iii) a dilaton derivative coupling with parameter h. Together with the deformation parameter s, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of D, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D = 5 do not induces resonances but when we consider D = 10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.
Molecular orbital theory. Spinor representation
International Nuclear Information System (INIS)
Aono, Shigeyuki
2003-01-01
The algebra representing electron is spinor. The many electron problem is investigated with the Nambu 2x2 spinor. Operators then are expressed 2x2 matrices. The electron-electron interaction is decomposed into couplings between various electron densities by using the Pauli spin matrices. The diagonal ones of them refer to the direct and exchange interactions and the off-diagonal terms to those for superconducting. The Roothaan theory is rewritten. The approximation beyond the Hartree-Fock is discussed. (author)
International Nuclear Information System (INIS)
Sijacki, Dj.
1998-01-01
World spinors are objects that transform w.r.t. double covering group Diff(4, R) of the Group of General Coordinate Transformations. The basic mathematical results and the corresponding physical interpretation concerning these, infinite-dimensional, spinorial representations are reviewed. The role of groups Diff(4, R), GA(4, R), GL(4, R), SL(4, R), SO(3,1) and the corresponding covering groups is pointed out. New results on the infinite dimensionality of spinorial representations, explicit construction of the SL(4, R) representations in the basis of finite-dimensional non-unitary SL(2, C) representations, SL(4, R) representation regrouping of tonsorial and spinorial fields of an arbitrary spin Lagrangian field theory, as well as its SL(5, R) generalization in the case of infinite-component world spinor and tensor field theories are presented. (author)
Opening the Pandora's box of quantum spinor fields
Energy Technology Data Exchange (ETDEWEB)
Bonora, L. [International School for Advanced Studies-SISSA, Trieste (Italy); Silva, J.M.H. da [Universidade Estadual Paulista-UNESP, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Rocha, R. da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)
2018-02-15
Lounesto's classification of spinors is a comprehensive and exhaustive algorithm that, based on the bilinears covariants, discloses the possibility of a large variety of spinors, comprising regular and singular spinors and their unexpected applications in physics and including the cases of Dirac, Weyl, and Majorana as very particular spinor fields. In this paper we pose the problem of an analogous classification in the framework of second quantization. We first discuss in general the nature of the problem. Then we start the analysis of two basic bilinear covariants, the scalar and pseudoscalar, in the second quantized setup, with expressions applicable to the quantum field theory extended to all types of spinors. One can see that an ampler set of possibilities opens up with respect to the classical case. A quantum reconstruction algorithm is also proposed. The Feynman propagator is extended for spinors in all classes. (orig.)
Pure spinor integration from the collating formula
International Nuclear Information System (INIS)
Grassi, P.A.; Sommovigo, L.
2011-01-01
We use the technique developed by Becchi and Imbimbo to construct a well-defined BRST-invariant path integral formulation of pure spinor amplitudes. The space of pure spinors can be viewed from the algebraic geometry point of view as a collection of open sets where the constraints can be solved and a set of free and independent variables can be defined. On the intersections of those open sets, the functional measure jumps and one has to add boundary terms to construct a well-defined path integral. The result is the definition of the pure spinor integration measure constructed in terms of differential forms on each single patch.
Quantum gravity in three dimensions, Witten spinors and the quantisation of length
Wieland, Wolfgang
2018-05-01
In this paper, I investigate the quantisation of length in euclidean quantum gravity in three dimensions. The starting point is the classical hamiltonian formalism in a cylinder of finite radius. At this finite boundary, a counter term is introduced that couples the gravitational field in the interior to a two-dimensional conformal field theory for an SU (2) boundary spinor, whose norm determines the conformal factor between the fiducial boundary metric and the physical metric in the bulk. The equations of motion for this boundary spinor are derived from the boundary action and turn out to be the two-dimensional analogue of the Witten equations appearing in Witten's proof of the positive mass theorem. The paper concludes with some comments on the resulting quantum theory. It is shown, in particular, that the length of a one-dimensional cross section of the boundary turns into a number operator on the Fock space of the theory. The spectrum of this operator is discrete and matches the results from loop quantum gravity in the spin network representation.
International Nuclear Information System (INIS)
Rausch Traubenberg, M. de; Fleury, N.
1988-01-01
We propose an extension of spinors, called metaspinors, in space with any number of dimensions. Metaspinors are interpreted as a representation of the symmetry group that leaves a given homogeneous forms of degree n invariant. First, we study two kinds of homogeneous forms and the symmetry groups associated. Only one of these allows to define n-metaspinors. We next find two sets of nxn matrices associated with the two previous forms which could be an extension of Pauli matrices. Assuming n-metaspinors to be a n-complex vectorial space with a peculiar n-metric, we also characterize states of metaspinors and introduce the metaspin. From the study of metaspinorial tensors, we prove that they reduce to vectors. From n-metaspinors, if the dimension is n = pk, we can define p-metaspinors. Finally, we give the dynamical evolution of metaspinors, on the classical level with Dirac and Bargmann-Wigner-Like equations and on the quantic one with path integral formulation. At each step of the calculations, when n = 2, metaspinors reproduce the results of ordinary spinors
Numerical simulation of spin motion in circular accelerators using spinor formulation
International Nuclear Information System (INIS)
Nghiem, P.; Tkatchenko, A.
1992-07-01
A simple method is presented based on spinor algebra formalism for tracking the spin motion in circular accelerators. Using an analytical expression of the one-turn transformation matrix including the effects of perturbating fields or of siberian snakes, a simple and very fast numerical code has been written for studying spin motion in various circumstances. In particular, effects of synchrotron oscillations on final polarization after one isolated resonance crossing are simulated. Results of these calculations agree very well with those which have been obtained previously from analytical approaches or from other numerical-simulation programs. (author) 8 refs.; 14 figs
AdS pure spinor superstring in constant backgrounds
International Nuclear Information System (INIS)
Chandia, Osvaldo; Bevilaqua, L. Ibiapina; Vallilo, Brenno Carlini
2014-01-01
In this paper we study the pure spinor formulation of the superstring in AdS_5×S"5 around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background
AdS pure spinor superstring in constant backgrounds
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Bevilaqua, L. Ibiapina [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte,Caixa Postal 1524, 59072-970, Natal, RN (Brazil); Vallilo, Brenno Carlini [Facultad de Ciencias Exactas, Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile)
2014-06-05
In this paper we study the pure spinor formulation of the superstring in AdS{sub 5}×S{sup 5} around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background.
Wigner function for the Dirac oscillator in spinor space
International Nuclear Information System (INIS)
Ma Kai; Wang Jianhua; Yuan Yi
2011-01-01
The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained. (authors)
On the bosonization of the massless spinor electrodynamics
International Nuclear Information System (INIS)
Mikhov, S.G.; Stoyanov, D.Ts.
1979-01-01
A method for constructing a field transformed according to a linear representation of a Lie group out of fields transformed nonlinearly under the action of the same group is proposed. This procedure is used in order to construct spinor fields out of tensor ones. Such a ''bosonization'' of the spinor field is used to reformulate the massless spinor electrodynamics in terms of nonlinear tensor fields. It appears in this formulation that the Dirac equation is reduced to a definition of the electromagnetic vector potential in terms of the nonlinear tensor fields and to the current conservations playing the role of a consistency condition for this formulation
Nonlinear Spinor Fields in Bianchi type-I spacetime reexamined
Saha, Bijan
2013-01-01
The specific behavior of spinor field in curve space-time with the exception of FRW model almost always gives rise to non-trivial non-diagonal components of the energy-momentum tensor. This non-triviality of non-diagonal components of the energy-momentum tensor imposes some severe restrictions either on the spinor field or on the metric functions. In this paper within the scope of an anisotropic Bianchi type-I Universe we study the role of spinor field in the evolution of the Universe. It is ...
Nonlinear Spinor Field in Non-Diagonal Bianchi Type Space-Time
Directory of Open Access Journals (Sweden)
Saha Bijan
2018-01-01
Full Text Available Within the scope of the non-diagonal Bianchi cosmological models we have studied the role of the spinor field in the evolution of the Universe. In the non-diagonal Bianchi models the spinor field distribution along the main axis is anisotropic and does not vanish in the absence of the spinor field nonlinearity. Hence within these models perfect fluid, dark energy etc. cannot be simulated by the spinor field nonlinearity. The equation for volume scale V in the case of non-diagonal Bianchi models contains a term with first derivative of V explicitly and does not allow exact solution by quadratures. Like the diagonal models the non-diagonal Bianchi space-time becomes locally rotationally symmetric even in the presence of a spinor field. It was found that depending on the sign of the coupling constant the model allows either an open Universe that rapidly grows up or a close Universe that ends in a Big Crunch singularity.
International Nuclear Information System (INIS)
Kawano, Teruhiko; Okuyama, Kazumi
2000-01-01
We explicitly calculate a Witten diagram with general spinor field exchange on (d+1)-dimensional Euclidean Anti-de Sitter space, which is necessary to evaluate four-point correlation functions with spinor fields when we make use of the AdS/CFT correspondence, especially in supersymmetric cases. We also show that the amplitude can be reduced to a scalar exchange amplitude. We discuss the operator product expansion of the dual conformal field theory by interpreting the short distance expansion of the amplitude according to the AdS/CFT correspondence
Dirac operators and Killing spinors with torsion
International Nuclear Information System (INIS)
Becker-Bender, Julia
2012-01-01
On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.
Dirac bi-spinor entanglement under local noise and its simulation by Jaynes-Cummings interactions
Bittencourt, Victor A. S. V.; Bernardini, Alex E.
2017-08-01
A description of the effects of the local noise on the quantum entanglement constraining the internal degrees of freedom of Dirac bi-spinor structures driven by arbitrary Poincaré invariant potentials is proposed. Given that the Dirac equation dynamics including external potentials can be simulated by a suitable four level trapped ion setup, quantum entanglement of two-qubit ionic states with quantum numbers related to the total angular momentum and to its projection onto the direction of the external magnetic field (used for lift the ions degeneracy), are recovered by means of a suitable ansatz. This formalism allows the inclusion of noise effects, which leads to disentanglement in the four level trapped ion quantum system. Our results indicate the role of interactions in bi-spinor entanglement, as well as the description of disentanglement in ionic states under local noises. For a state prepared initially in one of the ionic levels, local noise induces entanglement sudden death followed by sudden revivals driven by the noiseless dynamics of the state. Residual quantum correlations are observed in the intervals where such state is separable. Schrödinger cat and Werner states partially loose their initial entanglement content due to the interaction with the noisy environment but presenting entanglement oscillations without sudden death. Because Dirac equation describes low energy excitations of mono layer and bi-layer graphene, the formalism can also be applied to compute, for instance, electron-hole or electron/electron entanglement in various circumstances.
Dipolar and spinor bosonic systems
Yukalov, V. I.
2018-05-01
The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.
All-optical spinor Bose-Einstein condensation and the spinor dynamics-driven atom laser
Lundblad, Nathan Eric
Optical trapping as a viable means of exploring the physics of ultracold dilute atomic gases has revealed a new spectrum of physical phenomena. In particular, macroscopic and sudden occupation of the ground state below a critical temperature---a phenomenon known as Bose-Einstein condensation---has become an even richer system for the study of quantum mechanics, ultracold collisions, and many-body physics in general. Optical trapping liberates the spin degree of the BEC, making the order parameter vectorial ('spinor BEC'), as opposed to the scalar order of traditional magnetically trapped condensates. The work described within is divided into two main efforts. The first encompasses the all-optical creation of a Bose-Einstein condensate in rubidium vapor. An all-optical path to spinor BEC (as opposed to transfer to an optical trap from a magnetic trap condensate) was desired both for the simplicity of the experimental setup and also for the potential gains in speed of creation; evaporative cooling, the only known path to dilute-gas condensation, works only as efficiently as the rate of elastic collisions in the gas, a rate that starts out much higher in optical traps. The first all-optical BEC was formed elsewhere in 2001; the years following saw many groups worldwide seeking to create their own version. Our own all-optical spinor BEC, made with a single-beam dipole trap formed by a focused CO2 laser, is described here, with particular attention paid to trap loading, measurement of trap parameters, and the use of a novel 780 nm high-power laser system. The second part describes initial experiments performed with the nascent condensate. The spinor properties of the condensate are documented, and a measurement is made of the density-dependent rate of spin mixing in the condensate. In addition, we demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of the condensate, whose populations have been coherently evolved through spin
Killing spinors as a characterisation of rotating black hole spacetimes
International Nuclear Information System (INIS)
Cole, Michael J; Kroon, Juan A Valiente
2016-01-01
We investigate the implications of the existence of Killing spinors in a spacetime. In particular, we show that in vacuum and electrovacuum a Killing spinor, along with some assumptions on the associated Killing vector in an asymptotic region, guarantees that the spacetime is locally isometric to the Kerr or Kerr–Newman solutions. We show that the characterisation of these spacetimes in terms of Killing spinors is an alternative expression of characterisation results of Mars (Kerr) and Wong (Kerr–Newman) involving restrictions on the Weyl curvature and matter content. (paper)
Formal system of communication and understanding. II
Energy Technology Data Exchange (ETDEWEB)
Zsuzsanna, M
1982-01-01
For pt.I see IBID., no.5, p.252-8 (1982). In this article G. Pask's (1975) formal theory of dialogues and talk is summarized. Part II describes the talk-environment and modelling. The conscious systems and machine-intelligence are mainly dealt with. Finally a couple of cases with Pask's theory implemented are looked at. 7 references.
Projector bases and algebraic spinors
International Nuclear Information System (INIS)
Bergdolt, G.
1988-01-01
In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors
Quantum entanglement as an aspect of pure spinor geometry
International Nuclear Information System (INIS)
Kiosses, V
2014-01-01
Relying on the mathematical analogy of the pure states of a two-qubit system with four-component Dirac spinors, we provide an alternative consideration of quantum entanglement using the mathematical formulation of Cartan's pure spinors. A result of our analysis is that the Cartan equation of a two-qubit state is entanglement sensitive in the same way that the Dirac equation for fermions is mass sensitive. The Cartan equation for unentangled qubits is reduced to a pair of Cartan equations for single qubits as the Dirac equation for massless fermions separates into two Weyl equations. Finally, we establish a correspondence between the separability condition in qubit geometry and the separability condition in spinor geometry. (paper)
Spinor Field Realizations of Non-critical $W_{2,s}$ Strings
Duan, Yi-Shi; Liu, Yu-Xiao; Zhang, Li-Jie
2005-01-01
In this paper, we construct the nilpotent Becchi-Rouet-Stora-Tyutin($BRST$) charges of spinor non-critical $W_{2,s}$ strings. The cases of $s=3,4$ are discussed in detail, and spinor realization for $s=4$ is given explicitly. The $BRST$ charges are graded.
Spinor field realizations of non-critical W2,s strings
International Nuclear Information System (INIS)
Duan, Y.S.; Liu, Y.X.; Zhang, L.J.
2004-01-01
In this paper, we construct the nilpotent Becchi-Rouet-Stora-Tyutin (BRST) charges of spinor non-critical W2,s strings. The cases of s=3,4 are discussed in detail, and spinor realization for s=4 is given explicitly. The BRST charges are graded
Spinor monopole harmonics and the Pauli spin equation
International Nuclear Information System (INIS)
Pereira, J.G.; Ferreira, P.L.
1982-01-01
In the framework of Wu and Yang theory of U(1) magnetic monopoles, two problems are revisited: (i) the binding of spin-0 monopole to a spin-1/2 particle possessing an arbitrary magnetic dipole moment, and (ii) the energy levels and properties of the electron-dyon system. In both problems, the spin-1/2 particle is assumed to obey the Pauli spin equation. Spin-orbit and other higher order terms are treated as a perturbation, in connection with the second mentioned problem. Wu and Yang's spinor monopole harmonics allow an elegant and simplified treatment of those problems. The results obtained are in good agreement with those obtained in older papers. (Author) [pt
Quantum theory of spinor field in four-dimensional Riemannian space-time
International Nuclear Information System (INIS)
Shavokhina, N.S.
1996-01-01
The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs
q-deformed conformal and Poincare algebras on quantum 4-spinors
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Uematsu, Tsuneo
1993-01-01
We investigate quantum deformation of conformal algebras by constructing the quantum space for sl q (4). The differential calculus on the quantum space and the action of the quantum generators are studied. We derive deformed su(2, 2) algebra from the deformed sl(4) algebra using the quantum 4-spinor and its conjugate spinor. The quantum 6-vector in so q (4, 2) is constructed as a tensor product of two sets of 4-spinors. We obtain the q-deformed conformal algebra with the suitable assignment of the generators which satisfy the reality condition. The deformed Poincare algebra is derived through a contraction procedure. (orig.)
Scattering of massive open strings in pure spinor
International Nuclear Information System (INIS)
Park, I.Y.
2011-01-01
In Park (2008) , it was proposed that the D-brane geometry could be produced by open string quantum effects. In an effort to verify the proposal, we consider scattering amplitudes involving massive open superstrings. The main goal of this paper is to set the ground for two-loop 'renormalization' of an oriented open superstring on a D-brane and to strengthen our skill in the pure spinor formulation of a superstring, an effective tool for multi-loop string diagrams. We start by reviewing scattering amplitudes of massless states in the 2D component method of the NSR formulation. A few examples of massive string scattering are worked out. The NSR results are then reproduced in the pure spinor formulation. We compute the amplitudes using the unintegrated form of the massive vertex operator constructed by Berkovits and Chandia (2002) . We point out that it may be possible to discover new Riemann type identities involving Jacobi θ-functions by comparing a NSR computation and the corresponding pure spinor computation.
Spinor and isospinor structure of relativistic particle propagators
International Nuclear Information System (INIS)
Gitman, D.M.; Shvartsman, Sh.M.
1993-07-01
Representations by means of path integrals are used to find spinor and isospinor structure of relativistic particle propagators in external fields. For Dirac propagator in an external electromagnetic field all Grassmannian integrations are performed and a general result is presented via a bosonic path integral. The spinor structure of the integrand is given explicitly by its decomposition in the independent γ-matrix structures. A similar technique is used to get the isospinor structure of the scalar particle propagator in an external non-Abelian field. (author). 21 refs
On the bilinear covariants associated to mass dimension one spinors
Energy Technology Data Exchange (ETDEWEB)
Silva, J.M.H. da; Villalobos, C.H.C.; Rogerio, R.J.B. [DFQ, UNESP, Guaratingueta, SP (Brazil); Scatena, E. [Universidade Federal de Santa Catarina-CEE, Blumenau, SC (Brazil)
2016-10-15
In this paper we approach the issue of Clifford algebra basis deformation, allowing for bilinear covariants associated to Elko spinors which satisfy the Fierz-Pauli-Kofink identities. We present a complete analysis of covariance, taking into account the involved dual structure associated to Elko spinors. Moreover, the possible generalizations to the recently presented new dual structure are performed. (orig.)
Two-spinor description of massive particles and relativistic spin projection operators
Isaev, A. P.; Podoinitsyn, M. A.
2018-04-01
On the basis of the Wigner unitary representations of the covering group ISL (2 , C) of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac-Pauli-Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends-Fronsdal projection operators). With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends-Fronsdal projection operators) and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends-Fronsdal projection operators for arbitrary space-time dimensions D > 2.
Black Holes and Exotic Spinors
Directory of Open Access Journals (Sweden)
J. M. Hoff da Silva
2016-05-01
Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.
Relation of a unified quantum field theory of spinors to the structure of general relativity
International Nuclear Information System (INIS)
Kober, Martin
2009-01-01
Based on a unified quantum field theory of spinors assumed to describe all matter fields and their interactions we construct the space-time structure of general relativity according to a general connection within the corresponding spinor space. The tetrad field and the corresponding metric field are composed from a space-time dependent basis of spinors within the internal space of the fundamental matter field. Similar to twistor theory the Minkowski signature of the space-time metric is related to this spinor nature of elementary matter, if we assume the spinor space to be endowed with a symplectic structure. The equivalence principle and the property of background independence arise from the fact that all elementary fields are composed from the fundamental spinor field. This means that the structure of space-time according to general relativity seems to be a consequence of a fundamental theory of matter fields and not a presupposition as in the usual setting of relativistic quantum field theories.
Two-spinor description of massive particles and relativistic spin projection operators
Directory of Open Access Journals (Sweden)
A.P. Isaev
2018-04-01
Full Text Available On the basis of the Wigner unitary representations of the covering group ISL(2,C of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac–Pauli–Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends–Fronsdal projection operators. With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends–Fronsdal projection operators and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends–Fronsdal projection operators for arbitrary space–time dimensions D>2.
Antiferromagnetic spinor condensates in a bichromatic superlattice
Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei
2017-04-01
A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.
Off-shell spinor-helicity amplitudes from light-cone deformation procedure
Energy Technology Data Exchange (ETDEWEB)
Ponomarev, Dmitry [Theoretical physics group, Blackett Laboratory, Imperial College London,London, SW7 2AZ (United Kingdom)
2016-12-22
We study the consistency conditions for interactions of massless fields of any spin in four-dimensional flat space using the light-cone approach. We show that they can be equivalently rewritten as the Ward identities for the off-shell light-cone amplitudes built from the light-cone Hamiltonian in the standard way. Then we find a general solution of these Ward identities. The solution admits a compact representation when written in the spinor-helicity form and is given by an arbitrary function of spinor products, satisfying well-known homogeneity constraints. Thus, we show that the light-cone consistent deformation procedure inevitably leads to a certain off-shell version of the spinor-helicity approach. We discuss how the relation between the two approaches can be employed to facilitate the search of consistent interaction of massless higher-spin fields.
Spinors and supersymmetry in four-dimensional Euclidean space
International Nuclear Information System (INIS)
McKeon, D.G.C.; Sherry, T.N.
2001-01-01
Spinors in four-dimensional Euclidean space are treated using the decomposition of the Euclidean space SO(4) symmetry group into SU(2)xSU(2). Both 2- and 4-spinor representations of this SO(4) symmetry group are shown to differ significantly from the corresponding spinor representations of the SO(3, 1) symmetry group in Minkowski space. The simplest self conjugate supersymmetry algebra allowed in four-dimensional Euclidean space is demonstrated to be an N=2 supersymmetry algebra which resembles the N=2 supersymmetry algebra in four-dimensional Minkowski space. The differences between the two supersymmetry algebras gives rise to different representations; in particular an analysis of the Clifford algebra structure shows that the momentum invariant is bounded above by the central charges in 4dE, while in 4dM the central charges bound the momentum invariant from below. Dimensional reduction of the N=1 SUSY algebra in six-dimensional Minkowski space (6dM) to 4dE reproduces our SUSY algebra in 4dE. This dimensional reduction can be used to introduce additional generators into the SUSY algebra in 4dE. Well known interpolating maps are used to relate the N=2 SUSY algebra in 4dE derived in this paper to the N=2 SUSY algebra in 4dM. The nature of the spinors in 4dE allows us to write an axially gauge invariant model which is shown to be both Hermitian and anomaly-free. No equivalent model exists in 4dM. Useful formulae in 4dE are collected together in two appendixes
Existence of parallel spinors on non-simply-connected Riemannian manifolds
International Nuclear Information System (INIS)
McInnes, B.
1997-04-01
It is well known, and important for applications, that Ricci-flat Riemannian manifolds of non-generic holonomy always admit a parallel [covariant constant] spinor if they are simply connected. The non-simply-connected case is much more subtle, however. We show that a parallel spinor can still be found in this case provided that the [real] dimension is not a multiple of four, and provided that the spin structure is carefully chosen. (author). 10 refs
Some remarks on spinor particle pair creation in alternating homogeneous external field
International Nuclear Information System (INIS)
Perelomov, A.M.
1975-01-01
It is shown that the dynamical symmetry group of the problem of spinor particle pair creation in alternating homogeneous external fields is the SO(5) group. The probability of pair creation is given by the modulus square of the matrix element of spinor representation of this group. (Auth.)
Four forces and spinor connection in general relativity
International Nuclear Information System (INIS)
Lynch, J.T.
1985-01-01
This work is an extension of the recent spinor-connection theory of Szekeres, Cullinan, and Lynch. In that theory, a geometric model for the gravitational and electromagnetic fields was realized by use of both left- and right-connection groups acting on a 4 x 4 spinor tetrad. Here the right-connection group is enlarged in a natural way from a one-parameter to a three-parameter Lie group. This enlargement introduces two extra potential fields which may provide a simple model for the strong and weak fields in curved space-time. A solution to the new field equations is given for a neutral ''pionlike'' particle exhibiting the strong and gravitational fields
Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation
International Nuclear Information System (INIS)
Linares, Jesus; Nistal, Maria C.
2009-01-01
A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.
International Nuclear Information System (INIS)
Budinich, Paolo
2009-03-01
In a previous paper we proposed a purely mathematical way to quantum mechanics based on Cartan's simple spinors in their most elementary form of 2 components spinors. Here we proceed along that path proposing, this time, a symmetric tensor, quadrilinear in simple spinors, as a candidate for the symmetric tensor of general relativity. The procedure resembles closely that in which one builds bilinearly from simple spinors an asymmetric electromagnetic tensor, from which easily descend Maxwell's equations and the photon can be seen as a bilinear combination of neutrinos. Here Lorentzian spaces result compact, building up spheres, where hopefully the problems of the Standard Model could be solved. (author)
Killing spinors for the bosonic string and Kaluza-Klein theory with scalar potentials
International Nuclear Information System (INIS)
Liu, Haishan; Lue, H.; Wang, Zhao-Long
2012-01-01
The paper consists mainly of two parts. In the first part, we obtain well-defined Killing spinor equations for the low-energy effective action of the bosonic string with the conformal anomaly term. We show that the conformal anomaly term is the only scalar potential that one can add into the action that is consistent with the Killing spinor equations. In the second part, we demonstrate that Kaluza-Klein theory can be gauged so that the Killing spinors are charged under the Kaluza-Klein vector. This gauging process generates a scalar potential with a maximum that gives rise to an AdS spacetime. We also construct solutions of these theories. (orig.)
Harmonic spinors on a family of Einstein manifolds
Franchetti, Guido
2018-06-01
The purpose of this paper is to study harmonic spinors defined on a 1-parameter family of Einstein manifolds which includes Taub–NUT, Eguchi–Hanson and with the Fubini–Study metric as particular cases. We discuss the existence of and explicitly solve for spinors harmonic with respect to the Dirac operator twisted by a geometrically preferred connection. The metrics examined are defined, for generic values of the parameter, on a non-compact manifold with the topology of and extend to as edge-cone metrics. As a consequence, the subtle boundary conditions of the Atiyah–Patodi–Singer index theorem need to be carefully considered in order to show agreement between the index of the twisted Dirac operator and the result obtained by counting the explicit solutions.
Non-Schwinger solution of the two-dimensional massless spinor electrodynamics
International Nuclear Information System (INIS)
Mikhov, S.G.
1981-01-01
In the present paper a regularization procedure is formulated for the current in the two-dimensional massless spinor electrodynamics that is both gauge and γ 5 -gauge invariant. This gives rise to an operator solution of the model that does not involve a massive photon. The latter solution is studied in some detail, and it is shown that although a charge operator exists, it does not define the electric charge of the spinor field. This can be a manifestation of the charge screening mechanism that is present in the Schwinger model [ru
Global positioning of spin GPS scheme for half-spin massive spinors
Jadach, Stanislaw; Was, Zbigniew
2001-01-01
We present a simple and flexible method of keeping track of the complex phases and spin quantisation axes for half-spin initial- and final-state Weyl spinors in scattering amplitudes of Standard Model high energy physics processes. Both cases of massless and massive spinors are discussed. The method is demonstrated and checked numerically for spin correlations in tau tau production and decay. Its application is in our work of combining effects due to multiple photon emission (exponentiation) and spin, embodied in the Monte Carlo event generators for production and decay of unstable fermions such as the, tau lepton, t-quark and hypothetical new heavy particles. In particular, the recurrent problem of combining, for such unstable fermions, one author's calculation of production and another author's calculation of decay, in the presence or absence of multiple photon effects, is there given a practical solution, both for Weyl spinor methods and for the traditional Jacob-Wick helicity methods. Moreover, for massiv...
Magnetic resonance, especially spin echo, in spinor Bose-Einstein condensates
International Nuclear Information System (INIS)
Yasunaga, Masashi; Tsubota, Makoto
2009-01-01
Magnetic resonance, especially NMR and ESR, has been studied in magnetic materials for a long time, having been used in various fields. Spin echo is typical phenomenon in magnetic resonance. The magnetic resonance should be applied to spinor Bose-Einstein condensates (BECs). We numerically study spin echo of a spinor BEC in a gradient magnetic field by calculating the spin-1 two-dimensional Gross-Pitaevskii equations, obtaining the recovery of the signal of the spins, which is called spin echo. We will discuss the relation between the spin echo and the Stern-Gelrach separation in the system.
Phantom metrics with Killing spinors
Directory of Open Access Journals (Sweden)
W.A. Sabra
2015-11-01
Full Text Available We study metric solutions of Einstein–anti-Maxwell theory admitting Killing spinors. The analogue of the IWP metric which admits a space-like Killing vector is found and is expressed in terms of a complex function satisfying the wave equation in flat (2+1-dimensional space–time. As examples, electric and magnetic Kasner spaces are constructed by allowing the solution to depend only on the time coordinate. Euclidean solutions are also presented.
A compact expression for bilinear combination of Dirac spinors via world tensors
International Nuclear Information System (INIS)
Rogalev, R.N.
1994-01-01
A compact expression for a product of two Dirac spinors is obtained as a linear combination of 16 Dirac γ-matrices. The result is presented in a convenient from, which can give rise to using it for analytical calculations of multiparticle amplitudes. It has been shown that a bilinear combination of Dirac spinors can be expressed by momentum and spin vectors of the corresponding particles up to a phase factor. 8 refs
Solutions to Yang-Baxter equation for the spinor representations of q-Bl
International Nuclear Information System (INIS)
Hou Boyuan; Ma Zhongqi.
1990-10-01
In this paper, both trigonometric and rational solutions to the Yang-Baxter equation associated with the spinor representations of the quantum B l universal enveloping algebras are obtained. The corresponding representations of the braid group and the link polynomials are also computed through a standard method. The quantum Clebsch-Gordan matrix, the quantum projectors and the solutions associated with the spinor representation of the quantum B 3 are presented explicitly. (author). 16 refs, 2 tabs
Spinor approach to gravitational motion and precession
International Nuclear Information System (INIS)
Hestenes, D.
1986-01-01
The translational and rotational equations of motion for a small rigid body in a gravitational field are combined in a single spinor equation. Besides its computational advantages, this unifies the description of gravitational interaction in classical and quantum theory. Explicit expressions for gravitational precession rates are derived. (author)
Nonadiabatic production of spinor condensates with a quadrupole-Ioffe-configuration trap
International Nuclear Information System (INIS)
Zhang, P.; Xu, Z.; You, L.
2006-01-01
Motivated by the recent experimental observation of multicomponent spinor condensates via a time-dependent quadrupole-Ioffe-configuration trap, we provide a general framework for the investigation of nonadiabatic Landau-Zener dynamics of a hyperfine spin, e.g., from an atomic magnetic dipole moment coupled to a weak time-dependent magnetic (B-) field. The spin flipped population distribution, or the so-called Majorona formula, is expressed in terms of system parameters and experimental observables; thus, the distribution provides much needed insight into the underlying mechanism for the production of spinor condensates due to nonadiabatic level crossings
Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles
Dittmaier, Stefan
1999-01-01
The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.
Spontaneous symmetry breaking in spinor Bose-Einstein condensates
DEFF Research Database (Denmark)
Scherer, Manuel; Lücke, Bernd; Peise, Jan
2013-01-01
We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with the experimental results...
Exotic dual of type II double field theory
Directory of Open Access Journals (Sweden)
Eric A. Bergshoeff
2017-04-01
Full Text Available We perform an exotic dualization of the Ramond–Ramond fields in type II double field theory, in which they are encoded in a Majorana–Weyl spinor of O(D,D. Starting from a first-order master action, the dual theory in terms of a tensor–spinor of O(D,D is determined. This tensor–spinor is subject to an exotic version of the (self-duality constraint needed for a democratic formulation. We show that in components, reducing O(D,D to GL(D, one obtains the expected exotically dual theory in terms of mixed Young tableaux fields. To this end, we generalize exotic dualizations to self-dual fields, such as the 4-form in type IIB string theory.
Classical probabilities for Majorana and Weyl spinors
International Nuclear Information System (INIS)
Wetterich, C.
2011-01-01
Highlights: → Map of classical statistical Ising model to fermionic quantum field theory. → Lattice-regularized real Grassmann functional integral for single Weyl spinor. → Emerging complex structure characteristic for quantum physics. → A classical statistical ensemble describes a quantum theory. - Abstract: We construct a map between the quantum field theory of free Weyl or Majorana fermions and the probability distribution of a classical statistical ensemble for Ising spins or discrete bits. More precisely, a Grassmann functional integral based on a real Grassmann algebra specifies the time evolution of the real wave function q τ (t) for the Ising states τ. The time dependent probability distribution of a generalized Ising model obtains as p τ (t)=q τ 2 (t). The functional integral employs a lattice regularization for single Weyl or Majorana spinors. We further introduce the complex structure characteristic for quantum mechanics. Probability distributions of the Ising model which correspond to one or many propagating fermions are discussed explicitly. Expectation values of observables can be computed equivalently in the classical statistical Ising model or in the quantum field theory for fermions.
The bundles of algebraic and Dirac-Hestenes spinor fields
International Nuclear Information System (INIS)
Mosna, Ricardo A.; Rodrigues, Waldyr A. Jr.
2004-01-01
Our main objective in this paper is to clarify the ontology of Dirac-Hestenes spinor fields (DHSF) and its relationship with even multivector fields, on a Riemann-Cartan spacetime (RCST) M=(M,g,∇,τ g ,↑) admitting a spin structure, and to give a mathematically rigorous derivation of the so-called Dirac-Hestenes equation (DHE) in the case where M is a Lorentzian spacetime (the general case when M is a RCST will be discussed in another publication). To this aim we introduce the Clifford bundle of multivector fields (Cl(M,g)) and the left (Cl Spin 1,3 e l (M)) and right (Cl Spin 1,3 e r (M)) spin-Clifford bundles on the spin manifold (M,g). The relation between left ideal algebraic spinor fields (LIASF) and Dirac-Hestenes spinor fields (both fields are sections of Cl Spin 1,3 e l (M)) is clarified. We study in detail the theory of covariant derivatives of Clifford fields as well as that of left and right spin-Clifford fields. A consistent Dirac equation for a DHSF Ψ is a member of sec Cl Spin 1,3 e l (M) (denoted DECl l ) on a Lorentzian spacetime is found. We also obtain a representation of the DECl l in the Clifford bundle Cl(M,g). It is such equation that we call the DHE and it is satisfied by Clifford fields ψ Ξ is a member of sec Cl(M,g). This means that to each DHSF Ψ is a member of sec Cl Spin 1,3 e l (M) and spin frame Ξ is a member of sec P Spin 1,3 e (M), there is a well-defined sum of even multivector fields ψ Ξ isa member of sec Cl(M,g) (EMFS) associated with Ψ. Such an EMFS is called a representative of the DHSF on the given spin frame. And, of course, such a EMFS (the representative of the DHSF) is not a spinor field. With this crucial distinction between a DHSF and its representatives on the Clifford bundle, we provide a consistent theory for the covariant derivatives of Clifford and spinor fields of all kinds. We emphasize that the DECl l and the DHE, although related, are equations of different mathematical natures. We study also the
Symmetry and exact solutions of nonlinear spinor equations
International Nuclear Information System (INIS)
Fushchich, W.I.; Zhdanov, R.Z.
1989-01-01
This review is devoted to the application of algebraic-theoretical methods to the problem of constructing exact solutions of the many-dimensional nonlinear systems of partial differential equations for spinor, vector and scalar fields widely used in quantum field theory. Large classes of nonlinear spinor equations invariant under the Poincare group P(1, 3), Weyl group (i.e. Poincare group supplemented by a group of scale transformations), and the conformal group C(1, 3) are described. Ansaetze invariant under the Poincare and the Weyl groups are constructed. Using these we reduce the Poincare-invariant nonlinear Dirac equations to systems of ordinary differential equations and construct large families of exact solutions of the nonlinear Dirac-Heisenberg equation depending on arbitrary parameters and functions. In a similar way we have obtained new families of exact solutions of the nonlinear Maxwell-Dirac and Klein-Gordon-Dirac equations. The obtained solutions can be used for quantization of nonlinear equations. (orig.)
Pure spinors as auxiliary fields in the ten-dimensional supersymmetric Yang-Mills theory
International Nuclear Information System (INIS)
Nilsson, B.E.W.
1986-01-01
A new way of introducing auxiliary fields into the ten-dimensional supersymmetric Yang-Mills theory is proposed. The auxiliary fields are commuting 'pure spinors' and constitute a non-linear realisation of the Lorentz group. This invalidates previous no-go theorems concerning the possibility of going off-shell in this theory. There seems to be a close relation between pure spinors and the concepts usually used in twistor theory. The non-Abelian theory can be constructed for all groups having pseudo-real representations. (author)
Spin formalism and applications to new physics searches
Energy Technology Data Exchange (ETDEWEB)
Haber, H.E. [Univ. of California, Santa Cruz, CA (United States)
1994-12-01
An introduction to spin techniques in particle physics is given. Among the topics covered are: helicity formalism and its applications to the decay and scattering of spin-1/2 and spin-1 particles, techniques for evaluating helicity amplitudes (including projection operator methods and the spinor helicity method), and density matrix techniques. The utility of polarization and spin correlations for untangling new physics beyond the Standard Model at future colliders such as the LHC and a high energy e{sup +}e{sup {minus}} linear collider is then considered. A number of detailed examples are explored including the search for low-energy supersymmetry, a non-minimal Higgs boson sector, and new gauge bosons beyond the W{sup {+-}} and Z.
Dirac operators and Killing spinors with torsion; Dirac-Operatoren und Killing-Spinoren mit Torsion
Energy Technology Data Exchange (ETDEWEB)
Becker-Bender, Julia
2012-12-17
On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.
Scalar formalism for non-Abelian gauge theory
International Nuclear Information System (INIS)
Hostler, L.C.
1986-01-01
The gauge field theory of an N-dimensional multiplet of spin- 1/2 particles is investigated using the Klein--Gordon-type wave equation ]Pi x (1+isigma) x Pi+m 2 ]Phi = 0, Pi/sub μ/equivalentpartial/partialix/sub μ/-eA/sub μ/, investigated before by a number of authors, to describe the fermions. Here Phi is a 2 x 1 Pauli spinor, and sigma repesents a Lorentz spin tensor whose components sigma/sub μ//sub ν/ are ordinary 2 x 2 Pauli spin matrices. Feynman rules for the scalar formalism for non-Abelian gauge theory are derived starting from the conventional field theory of the multiplet and converting it to the new description. The equivalence of the new and the old formalism for arbitrary radiative processes is thereby established. The conversion to the scalar formalism is accomplished in a novel way by working in terms of the path integral representation of the generating functional of the vacuum tau-functions, tau(2,1, xxx 3 xxx)equivalent , where Psi/sub in/ is a Heisenberg operator belonging to a 4N x 1 Dirac wave function of the multiplet. The Feynman rules obtained generalize earlier results for the Abelian case of quantum electrodynamics
Topological solitons in 8-spinor mie electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Rybakov, Yu. P., E-mail: soliton4@mail.ru [Peoples' Friendship University of Russia, Department of Theoretical Physics (Russian Federation)
2013-10-15
We investigate the effective 8-spinor field model suggested earlier as the generalization of nonlinear Mie electrodynamics. We first study in pure spinorial model the existence of topological solitons endowed with the nontrivial Hopf invariant Q{sub H}, which can be interpreted as the lepton number. Electromagnetic field being included as the perturbation, we estimate the energy and the spin of the localized charged configuration.
Spinor Structure and Internal Symmetries
Varlamov, V. V.
2015-10-01
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
Directory of Open Access Journals (Sweden)
J. Buitrago
Full Text Available A new classical 2-spinor approach to U(1 gauge theory is presented in which the usual four-potential vector field is replaced by a symmetric second rank spinor. Following a lagrangian formulation, it is shown that the four-rank spinor representing the Maxwell field tensor has a U(1 local gauge invariance in terms of the electric and magnetic field strengths. When applied to the magnetic field of a monopole, this formulation, via the irreducible representation condition for the gauge group, leads to a quantization condition differing by a factor 2 of the one predicted by Dirac without relying on any kind of singular vector potentials. Finally, the U(1 invariant spinor equations, are applied to electron magnetic resonance which has many applications in the study of materials. Keywords: Weyl 2-spinor lenguage, Dirac equation, Gauge theories, Charge quantization
On a modification of the spinor calculus of Infeeld and van der Waerden
International Nuclear Information System (INIS)
Buchdahl, H.A.
1990-01-01
A modification of the spinor calculus of Infeeld and van der Waerden is presented in which σ kμν is no longer covariant constant. The structure of spin space is enriched by a spinor f μνρσ defined on it. Flatness of the Riemannian world space no longer necessarily entails the vanishing of the curvature of the spin space. After a brief look at Dirac's equation, the revised calculus is re-interpreted in terms of a Riemann-Cartan space, with σ kμν again covariant constant. (author)
Exact solutions to the nonlinear spinor field equations in the Goedel universe
International Nuclear Information System (INIS)
Herrera, A.
1996-01-01
The nonlinear spinor field in the external gravitational field of the Goedel universe is considered and exact static solutions to the field equations corresponding to the Lagrangians with the nonlinear terms L N =F(I S ) and L N =G(I P ) are obtained. Here F(I S ) and G(I P ) are arbitrary functions of the spinor invariants I S =S+Ψ bar Ψ and I P =P 2 =(iΨ bar γ 5 Ψ) 2 . The conditions under which one-dimensional soliton-like solutions exist are established and the role of gravity in the formation of these objects is determined. 9 refs., 1 fig
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.; Shevchenko, O.Yu.
1985-01-01
The Dayson-Schwinger equations for the gauge-invariant (G.I.) spinor Green function are derived for an Abelian case. On the basis of these equations as well as the functional integration method the behaviour of the G.I. spinor propagator is studied in the infrared region. It is shown that the G.I. propagator has a singularity of a simple pole in this region
Generalized phase transformations of spinor fields
International Nuclear Information System (INIS)
Mikhov, S.G.
1993-09-01
In this paper some generalized four parameter phase transformations of a Dirac spinor are considered. It is shown that a corresponding compensating transformation of the electromagnetic field which restores the invariance of the Dirac-Maxwell equation might exist, provided some consistency conditions are satisfied by the parameters of the transformations. These transformations are used further to consider the Maxwell equations under the assumption that a Bosonization takes place. Only one of the considered cases proves to have a solution (the other cases show to be trivial) which although unphysical is obtained explicitly. (author). 10 refs
Towards exact solutions of the non-linear Heisenberg-Pauli-Weyl spinor equation
International Nuclear Information System (INIS)
Mielke, E.W.
1980-03-01
In ''color geometrodynamics'' fundamental spinor fields are assumed to obey a GL(2f,C) x GL(2c,C) gauge-invariant nonlinear spinor equation of the Heisenberg-Pauli-Weyl type. Quark confinement, assimilating a scheme of Salam and Strathdee, is (partially) mediated by the tensor ''gluons'' of strong gravity. This hypothesis is incorporated into the model by considering the nonlinear Dirac equation in a curved space-time of hadronic dimensions. Disregarding internal degrees of freedom, it is then feasible, for a particular background space-time, to obtain exact solutions of the spherical bound-state problem. Finally, these solutions are tentatively interpreted as droplet-type solitons and remarks on their interrelation with Wheeler's geon construction are made. (author)
Coherent magnon optics in a ferromagnetic spinor Bose-Einstein condensate.
Marti, G Edward; MacRae, Andrew; Olf, Ryan; Lourette, Sean; Fang, Fang; Stamper-Kurn, Dan M
2014-10-10
We measure the dispersion relation, gap, and magnetic moment of a magnon in the ferromagnetic F = 1 spinor Bose-Einstein condensate of (87)Rb. From the dispersion relation we measure an average effective mass 1.033(2)(stat)(10)(sys) times the atomic mass, as determined by interfering standing and running coherent magnon waves within the dense and trapped condensed gas. The measured mass is higher than theoretical predictions of mean-field and beyond-mean-field Beliaev theory for a bulk spinor Bose gas with s-wave contact interactions. We observe a magnon energy gap of h × 2.5(1)(stat)(2)(sys) Hz, which is consistent with the predicted effect of magnetic dipole-dipole interactions. These dipolar interactions may also account for the high magnon mass. The effective magnetic moment of -1.04(2)(stat)(8)(sys) times the atomic magnetic moment is consistent with mean-field theory.
Complex vector triads in spinor theory in Minkowski space
International Nuclear Information System (INIS)
Zhelnorovich, V.A.
1990-01-01
It is shown that tensor equations corresponding to the spinor Dirac equations represent a three-dimensional part of four-dimensional vector equations. The equations are formulated in an evidently invariant form in antisymmetric tensor components and in the corresponding components of a complex vector triad. A complete system of relativistically invariant tensor equations is ascertained
Higgs potential and spinor connection within Weinberg-Salam model
International Nuclear Information System (INIS)
Trostel, R.
1987-01-01
We arrive at a theory of the Higgs potential by extending the usual concept of the covariant derivative containing the gauge fields to one which also contains the Higgs fields, by using a spinor connection compatible under local gauge transformations. Not only the Yukawa couplings are geometrized by this procedure but also the nonlinear Higgs potential naturally appears within the curvature of the corresponding spinor connection. Taking the gauge group to be SU(2) x U(1), we arrive for the leptonic Weinberg Salam model at a Weinberg angle prediction of sin 2 θ=1/4 and at a Higgs mass of about 263-270 GeV without using any supersymmetry argument. Taking the gauge group to be SU(3) C x SU(2) x U(1) the above leptonic result is obtained only if e 2 /g S 2 is sufficiently small, which is approximately true. Working with two independent Higgs doublets we arrive at a Higgs mass sum rule, where two Higgs must have a mass of about 188 GeV. (author)
Phase-space spinor amplitudes for spin-1/2 systems
International Nuclear Information System (INIS)
Watson, P.; Bracken, A. J.
2011-01-01
The concept of phase-space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The ordinary product of the amplitude and its conjugate produces a (generalized) spin Husimi function. The case of spin-(1/2) is treated in detail, and it is shown that phase-space amplitudes on the sphere transform correctly as spinors under rotations, despite their expression in terms of spherical harmonics. Spin amplitudes on a lattice are also found to transform as spinors. Applications are given to the phase space description of state superposition, and to the evolution in phase space of the state of a spin-(1/2) magnetic dipole in a time-dependent magnetic field.
Lecture in Honour of Leopold Infeld (Extended Outline Only) Spinors in General Relativity
International Nuclear Information System (INIS)
Penrose, R. sir
1999-01-01
This article is an extended outline of the lecture delivered at the Infeld Centennial Meeting. In the lecture a review was given of the development of the theory of spinors and related objects in special and general relativity, with some emphasis on the twistor theory and its applications. The lecture was not intended as a detailed account of the subject, but it rather was a series of comments on the relevance of various spinor-type objects and their relation to some features of space-time structure. The present article is also a guide, with its author's personal preferences, to the extensive bibliography of the subject. (author)
IIB solutions with N>28 Killing spinors are maximally supersymmetric
International Nuclear Information System (INIS)
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2007-01-01
We show that all IIB supergravity backgrounds which admit more than 28 Killing spinors are maximally supersymmetric. In particular, we find that for all N>28 backgrounds the supercovariant curvature vanishes, and that the quotients of maximally supersymmetric backgrounds either preserve all 32 or N<29 supersymmetries
Discrete symmetries for spinor field in de Sitter space
International Nuclear Information System (INIS)
Moradi, S.; Rouhani, S.; Takook, M.V.
2005-01-01
Discrete symmetries, parity, time reversal, antipodal, and charge conjugation transformations for spinor field in de Sitter space, are presented in the ambient space notation, i.e., in a coordinate independent way. The PT and PCT transformations are also discussed in this notation. The five-current density is studied and their transformation under the discrete symmetries is discussed
Anti-ferromagnetic spinor BECs in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Rossini, Davide [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Rizzi, Matteo [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Chiara, Gabriele De [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Montangero, Simone [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Fazio, Rosario [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); International School for Advanced Studies SISSA/ISAS, via Beirut 2-4, I-34014 Trieste (Italy)
2006-05-28
Spinor Bose condensates loaded in optical lattices have a rich phase diagram characterized by different magnetic order. In this work we evaluated the phase boundary between the Mott insulator and the superfluid phase by means of the density matrix renormalization group. Furthermore, we studied the properties of the insulating phase for odd fillings. The results obtained in this work are also relevant for the determination of the ground state phase diagram of the S = 1 Heisenberg model with biquadratic interaction.
Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming
2018-05-01
Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.
One-particle reducible contribution to the one-loop spinor propagator in a constant field
Directory of Open Access Journals (Sweden)
N. Ahmadiniaz
2017-11-01
Full Text Available Extending work by Gies and Karbstein on the Euler–Heisenberg Lagrangian, it has recently been shown that the one-loop propagator of a charged scalar particle in a constant electromagnetic field has a one-particle reducible contribution in addition to the well-studied irreducible one. Here we further generalize this result to the spinor case, and find the same relation between the reducible term, the tree-level propagator and the one-loop Euler–Heisenberg Lagrangian as in the scalar case. Our demonstration uses a novel worldline path integral representation of the photon-dressed spinor propagator in a constant electromagnetic field background.
Non-minimal fields of the pure spinor string in general curved backgrounds
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello,República 220, Santiago (Chile)
2015-02-16
We study the coupling of the non-minimal ghost fields of the pure spinor superstring in general curved backgrounds. The coupling is found solving the consistency relations from the nilpotency of the non-minimal BRST charge.
Simplified pure spinor b ghost in a curved heterotic superstring background
Energy Technology Data Exchange (ETDEWEB)
Berkovits, Nathan [ICTP South American Institute for Fundamental Research,Instituto de Física Teórica, UNESP - Universidade Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile)
2014-06-03
Using the RNS-like fermionic vector variables introduced in arXiv:1305.0693, the pure spinor b ghost in a curved heterotic superstring background is easily constructed. This construction simplifies and completes the b ghost construction in a curved background of arXiv:1311.7012.
Chiral solitons in spinor polariton rings
Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.
2018-04-01
We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.
Gilbert, Zachary W; Hue, Ryan J; Tonks, Ian A
2016-01-01
Pyrroles are structurally important heterocycles. However, the synthesis of polysubstituted pyrroles is often challenging. Here, we report a multicomponent, Ti-catalysed formal [2+2+1] reaction of alkynes and diazenes for the oxidative synthesis of penta- and trisubstituted pyrroles: a nitrenoid analogue to classical Pauson-Khand-type syntheses of cyclopentenones. Given the scarcity of early transition-metal redox catalysis, preliminary mechanistic studies are presented. Initial stoichiometric and kinetic studies indicate that the mechanism of this reaction proceeds through a formally Ti(II)/Ti(IV) redox catalytic cycle, in which an azatitanacyclobutene intermediate, resulting from [2+2] alkyne + Ti imido coupling, undergoes a second alkyne insertion followed by reductive elimination to yield pyrrole and a Ti(II) species. The key component for catalytic turnover is the reoxidation of the Ti(II) species to a Ti(IV) imido via the disproportionation of an η(2)-diazene-Ti(II) complex.
Spinors in euclidean field theory, complex structures and discrete symmetries
International Nuclear Information System (INIS)
Wetterich, C.
2011-01-01
We discuss fermions for arbitrary dimensions and signature of the metric, with special emphasis on euclidean space. Generalized Majorana spinors are defined for d=2,3,4,8,9mod8, independently of the signature. These objects permit a consistent analytic continuation of Majorana spinors in Minkowski space to euclidean signature. Compatibility of charge conjugation with complex conjugation requires for euclidean signature a new complex structure which involves a reflection in euclidean time. The possible complex structures for Minkowski and euclidean signature can be understood in terms of a modulo two periodicity in the signature. The concepts of a real action and hermitean observables depend on the choice of the complex structure. For a real action the expectation values of all hermitean multi-fermion observables are real. This holds for arbitrary signature, including euclidean space. In particular, a chemical potential is compatible with a real action for the euclidean theory. We also discuss the discrete symmetries of parity, time reversal and charge conjugation for arbitrary dimension and signature.
U(N) tools for loop quantum gravity: the return of the spinor
Borja, Enrique F.; Freidel, Laurent; Garay, Iñaki; Livine, Etera R.
2011-03-01
We explore the classical setting for the U(N) framework for SU(2) intertwiners for loop quantum gravity and describe the corresponding phase space in terms of spinors with the appropriate constraints. We show how its quantization leads back to the standard Hilbert space of intertwiner states defined as holomorphic functionals. We then explain how to glue these intertwiners states in order to construct spin network states as wavefunctions on the spinor phase space. In particular, we translate the usual loop gravity holonomy observables to our classical framework. Finally, we propose how to derive our phase space structure from an action principle which induces non-trivial dynamics for the spin network states. We conclude by applying explicitly our framework to states living on the simple 2-vertex graph and discuss the properties of the resulting Hamiltonian.
Gauge-invariant approach and infrared behaviour of the spinor propagator
International Nuclear Information System (INIS)
Sisakyan, A.N.; Skachkov, N.B.; Solovtsov, I.L.; Shevchenko, O.Yu.
1989-01-01
Infrared behaviour of the gauge-invariant spinor propagator is studied. It is proved that infrared peculiarities of such a propagator can be factorized in a form of the Wilson loop that includes only the slowly varying component of electromagnetic field and accumulates all the dependence of the initial Green function of the form of the path
Maximal entanglement of two spinor Bose-Einstein condensates
Jack, Michael W.; Yamashita, Makoto
2005-01-01
Starting with two weakly-coupled anti-ferromagnetic spinor condensates, we show that by changing the sign of the coefficient of the spin interaction, $U_{2}$, via an optically-induced Feshbach resonance one can create an entangled state consisting of two anti-correlated ferromagnetic condensates. This state is maximally entangled and a generalization of the Bell state from two anti-correlated spin-1/2 particles to two anti-correlated spin$-N/2$ atomic samples, where $N$ is the total number of...
T-dualization of type II superstring theory in double space
Energy Technology Data Exchange (ETDEWEB)
Nikolic, B.; Sazdovic, B. [University of Belgrade, Institute of Physics Belgrade, Belgrade (Serbia)
2017-03-15
In this article we offer a new interpretation of the T-dualization procedure of type II superstring theory in the double space framework. We use the ghost free action of type II superstring in pure spinor formulation in approximation of constant background fields up to the quadratic terms. T-dualization along any subset of the initial coordinates, x{sup a}, is equivalent to the permutation of this subset with subset of the corresponding T-dual coordinates, y{sub a}, in double space coordinate Z{sup M} = (x{sup μ}, y{sub μ}). Requiring that the T-dual transformation law after the exchange x{sup a} <-> y{sub a} has the same form as the initial one, we obtain the T-dual NS-NS and NS-R background fields. The T-dual R-R field strength is determined up to one arbitrary constant under some assumptions. The compatibility between supersymmetry and T-duality produces a change of bar spinors and R-R field strength. If we dualize an odd number of dimensions x{sup a}, such a change flips type IIA/B to type II B/A. If we T-dualize the time-like direction, one imaginary unit i maps type II superstring theories to type II{sup *} ones. (orig.)
General-transformation matrix for Dirac spinors and the calculation of spinorial amplitudes
International Nuclear Information System (INIS)
Nam, K.; Moravcsik, M.J.
1983-01-01
A general transformation matrix T(p's';p,s) is constructed which transforms a Dirac spinor psi(p,s) into another Dirac spinor psi(p',s') with arbitrarily given momenta and polarization states by expoloting the so-called Stech operator as one of generators for those transformations. This transformation matrix is then used in a calculation to yield the spinorial matrix element M = anti psi(p',s')GAMMApsi(p,s) for any spin polarization state. The final expressions of these matrix elements show the explicit structure of spin dependence for the process described by these spinorial amplitudes. The kinematical limiting cases such as very low energy or high energy of the various matrix elements can also be easily displayed. Our method is superior to the existing one in the following points. Since we have a well-defined transformation operator between two Dirac spinor states, we can evaluate the necessary phase factor of the matrix elements in an unambiguous way without introducing the coordinate system. This enables us to write down the Feynman amplitudes of complicated processes in any spin basis very easily in terms of previously calculated matrix elements of anti psiGAMMApsi which are building blocks of those Feynman amplitudes. The usefulness of the results is illustrated on Compton scattering and on the elastic scattering of two identical massive leptons where the phase factor is important. It is also shown that the Stech operator as a polarization operator is simply related to the operator K = #betta#(polarized μ . polarized L + 1)/2 which is often used in bound state problems
Infinite tension limit of the pure spinor superstring
Energy Technology Data Exchange (ETDEWEB)
Berkovits, Nathan [ICTP South American Institute for Fundamental Research,Instituto de Física Teórica, UNESP - Univ. Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil)
2014-03-04
Mason and Skinner recently constructed a chiral infinite tension limit of the Ramond-Neveu-Schwarz superstring which was shown to compute the Cachazo-He-Yuan formulae for tree-level d=10 Yang-Mills amplitudes and the NS-NS sector of tree-level d=10 supergravity amplitudes. In this letter, their chiral infinite tension limit is generalized to the pure spinor superstring which computes a d=10 superspace version of the Cachazo-He-Yuan formulae for tree-level d=10 super-Yang-Mills and supergravity amplitudes.
Population and phase dynamics of F=1 spinor condensates in an external magnetic field
International Nuclear Information System (INIS)
Romano, D.R.; Passos, E.J.V. de
2004-01-01
We show that the classical dynamics underlying the mean-field description of homogeneous mixtures of spinor F=1 Bose-Einstein condensates in an external magnetic field is integrable as a consequence of number conservation and axial symmetry in spin space. The population dynamics depends only on the quadratic term of the Zeeman energy and on the strength of the spin-dependent term of the atom-atom interaction. We determine the equilibrium populations as function of the ratio of these two quantities and the miscibility of the hyperfine components in the ground state spinors are thoroughly discussed. Outside the equilibrium, the populations are always a periodic function of time where the periodic motion can be a libration or a rotation. Our studies also indicate the absence of metastability
Spin factor and spinor structure of Dirac propagator in constant field
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Cruz, W. da [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Zlatev, S.I. [Sergipe Univ., Aracaju, SE (Brazil). Dept. de Fisica
1996-06-01
We use bosonic path integral representation of Dirac propagator with a spin factor to calculate the propagator in a constant uniform electromagnetic field. Such a way of calculation allows us to get the explicit spinor structure of the propagator in the case under consideration. The representation obtained differs from the Schwinger`s one but the equivalence can be checked. (author). 21 refs.
Spin factor and spinor structure of Dirac propagator in constant field
International Nuclear Information System (INIS)
Gitman, D.M.; Cruz, W. da; Zlatev, S.I.
1996-01-01
We use bosonic path integral representation of Dirac propagator with a spin factor to calculate the propagator in a constant uniform electromagnetic field. Such a way of calculation allows us to get the explicit spinor structure of the propagator in the case under consideration. The representation obtained differs from the Schwinger's one but the equivalence can be checked. (author). 21 refs
The non-minimal heterotic pure spinor string in a curved background
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile)
2014-03-21
We study the non-minimal pure spinor string in a curved background. We find that the minimal BRST invariance implies the existence of a non-trivial stress-energy tensor for the minimal and non-minimal variables in the heterotic curved background. We find constraint equations for the b ghost. We construct the b ghost as a solution of these constraints.
Experimental demonstration of spinor slow light
Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.
2016-03-01
Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.
Sun, Wen-Rong; Wang, Lei
2018-01-01
To show the existence and properties of matter rogue waves in an F =1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F =1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.
Spinors in self-dual Yang-Mills fields in minkowski space
International Nuclear Information System (INIS)
Pervushin, V.N.
1981-01-01
Yang-Mills theory with infrared divergences removed by spontaneous vacuum symmetry breaking is considered. The corresponding vacuum fields are self-dual and are defined in the Minkowski space. The complete set of solutions of Dirac equations with self-dual fields, depending on certain arbitrary function, is found. Physical observables (charge, energy, spin) for the spinor fields within the self-dual vacuum are calculated and a Hermitean Hamiltonian is obtained. The physical picture corresponds to a relativistic generalization of the hadron bag model [ru
Disordered spinor Bose-Hubbard model
International Nuclear Information System (INIS)
LaPcki, Mateusz; Paganelli, Simone; Ahufinger, Veronica; Sanpera, Anna; Zakrzewski, Jakub
2011-01-01
We study the zero-temperature phase diagram of the disordered spin-1 Bose-Hubbard model in a two-dimensional square lattice. To this aim, we use a mean-field Gutzwiller ansatz and a probabilistic mean-field perturbation theory. The spin interaction induces two different regimes, corresponding to a ferromagnetic and antiferromagnetic order. In the ferromagnetic case, the introduction of disorder reproduces analogous features of the disordered scalar Bose-Hubbard model, consisting in the formation of a Bose glass phase between Mott insulator lobes. In the antiferromagnetic regime, the phase diagram differs more from the scalar case. Disorder in the chemical potential can lead to the disappearance of Mott insulator lobes with an odd-integer filling factor and, for sufficiently strong spin coupling, to Bose glass of singlets between even-filling Mott insulator lobes. Disorder in the spinor coupling parameter results in the appearance of a Bose glass phase only between the n and the n+1 lobes for n odd. Disorder in the scalar Hubbard interaction inhibits Mott insulator regions for occupation larger than a critical value.
Relativistic algebraic spinors and quantum motions in phase space
International Nuclear Information System (INIS)
Holland, P.R.
1986-01-01
Following suggestions of Schonberg and Bohm, we study the tensorial phase space representation of the Dirac and Feynman-Gell-Mann equations in terms of the complex Dirac algebra C 4 , a Jordan-Wigner algebra G 4 , and Wigner transformations. To do this we solve the problem of the conditions under which elements in C 4 generate minimal ideals, and extend this to G 4 . This yields the linear theory of Dirac spin spaces and tensor representations of Dirac spinors, and the spin-1/2 wave equations are represented through fermionic state vectors in a higher space as a set of interconnected tensor relations
The lattice spinor QED Hamiltonian critique of the continuous space approach
International Nuclear Information System (INIS)
Sidorov, A.V.; Zastavenko, L.G.
1993-01-01
We give the irreproachable, from the point of view of gauge invariance, derivation of the lattice spinor QED Hamiltonian. Our QED Hamiltonian is manifestly gauge invariant. We point out important defects of the continuous space formulation of the QED that make, in our opinion, the lattice QED obviously preferable to the continuous space QED. We state that it is impossible to give a continuous space QED formulation which is compatible with the condition of gauge invariance. 17 refs
Some statistical aspects of the spinor field Fermi-Bose duality
Directory of Open Access Journals (Sweden)
V.M. Simulik
2012-12-01
Full Text Available The structure of 29-dimensional extended real Clifford-Dirac algebra, which has been introduced in our paper Phys. Lett. A, 2011, Vol. 375, 2479, is considered in brief. Using this algebra, the property of Fermi-Bose duality of the Dirac equation with nonzero mass is proved. It means that Dirac equation can describe not only the fermionic but also the bosonic states. The proof of our assertion based on the examples of bosonic symmetries, solutions and conservation laws is given. Some statistical aspects of the spinor field Fermi-Bose duality are discussed.
Master symmetry in the AdS{sub 5}×S{sup 5} pure spinor string
Energy Technology Data Exchange (ETDEWEB)
Chandía, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales & Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); III, William Divine Linch [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Universidad Andres Bello,Sazie 2212, Santiago (Chile)
2017-01-09
We lift the set of classical non-local symmetries recently studied by Klose, Loebbert, and Münkler in the context of ℤ{sub 2} cosets to the pure spinor description of the superstring in the AdS{sub 5}×S{sup 5} background.
Non-existence of rest-frame spin-eigenstate spinors in their own electrodynamics
Fabbri, Luca; da Rocha, Roldão
2018-05-01
We assume a physical situation where gravity with torsion is neglected for an electrodynamically self-interacting spinor that will be taken in its rest-frame and spin-eigenstate: we demonstrate that under this circumstance no solution exists for the system of field equations. Despite such a situation might look artificial nevertheless it represents the instance that is commonly taken as the basis for all computations of quantum electrodynamics.
Supersymmetric quantum mechanics, spinors and the standard model
International Nuclear Information System (INIS)
Woit, P.
1988-01-01
The quantization of the simplest supersymmetric quantum mechanical theory of a free fermion on a riemannian manifold requires the introduction of a complex structure on the tangent space. In 4 dimensions, the subgroup of the group of frame rotations that preserves the complex structure is SU(2) x U(1), and it is argued that this symmetry can be consistently interpreted to be an internal gauge symmetry for the analytically continued theory in Minkowski space. The states of the theory carry the quantum numbers of a generation of leptons in the Weinberg-Salam model. Examination of the geometry of spinors in four dimensions also provides a natural SU(3) symmetry and very simple construction of a multiplet with the standard model quantum numbers. (orig.)
Nucleon-nucleon scattering in the functional quantum theory of the nonlinear spinor field
International Nuclear Information System (INIS)
Haegele, G.
1979-01-01
The author calculates the S matrix for the elastic nucleon-nucleon scattering in the lowest approximation using the quantum theory of nonlinear spinor fields with special emphasis to the ghost configuration of this theory. Introducing a general scalar product a new functional channel calculus is considered. From the results the R and T matrix elements and the differential and integral cross sections are derived. (HSI)
Unification of type-II strings and T duality.
Hohm, Olaf; Kwak, Seung Ki; Zwiebach, Barton
2011-10-21
We present a unified description of the low-energy limits of type-II string theories. This is achieved by a formulation that doubles the space-time coordinates in order to realize the T-duality group O(10,10) geometrically. The Ramond-Ramond fields are described by a spinor of O(10,10), which couples to the gravitational fields via the Spin(10,10) representative of the so-called generalized metric. This theory, which is supplemented by a T-duality covariant self-duality constraint, unifies the type-II theories in that each of them is obtained for a particular subspace of the doubled space. © 2011 American Physical Society
Spinor Field Realizations of the half-integer $W_{2,s}$ Strings
Wei, Shao-Wen; Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong
2008-01-01
The grading Becchi-Rouet-Stora-Tyutin (BRST) method gives a way to construct the integer $W_{2,s}$ strings, where the BRST charge is written as $Q_B=Q_0+Q_1$. Using this method, we reconstruct the nilpotent BRST charges $Q_{0}$ for the integer $W_{2,s}$ strings and the half-integer $W_{2,s}$ strings. Then we construct the exact grading BRST charge with spinor fields and give the new realizations of the half-integer $W_{2,s}$ strings for the cases of $s=3/2$, 5/2, and 7/2.
Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Pinamonti, Nicola [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Matematica
2010-09-15
We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a{sub 0}. In the case a{sub 0} = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)
Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes
International Nuclear Information System (INIS)
Dappiaggi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola
2010-09-01
We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a 0 . In the case a 0 = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)
Spatial Landau-Zener-Stueckelberg interference in spinor Bose-Einstein condensates
International Nuclear Information System (INIS)
Zhang, J.-N.; Sun, C.-P.; Yi, S.; Nori, Franco
2011-01-01
We investigate the Stueckelberg oscillations of a spin-1 Bose-Einstein condensate subject to a spatially inhomogeneous transverse magnetic field and a periodic longitudinal field. We show that the time-domain Stueckelberg oscillations result in modulations in the density profiles of all spin components due to the spatial inhomogeneity of the transverse field. This phenomenon represents the Landau-Zener-Stueckelberg interference in the space domain. Since the magnetic dipole-dipole interaction between spin-1 atoms induces an inhomogeneous effective magnetic field, interference fringes also appear if a dipolar spinor condensate is driven periodically. We also point out some potential applications of this spatial Landau-Zener-Stuekelberg interference.
Generation of gravitational waves. II. The postlinear formalism revisited
International Nuclear Information System (INIS)
Crowley, R.J.; Thorne, K.S.
1977-01-01
Two different versions of the Green's function for the scalar wave equation in weakly curved spacetime (one due to DeWitt and DeWitt, the other to Thorne and Kovacs) are compared and contrasted; and their mathematical equivalence is demonstrated. Then the DeWitt-DeWitt Green's function is used to construct several alternative versions of the Thorne-Kovacs postlinear formalism for gravitational-wave generation. Finally it is shown that, in calculations of gravitational bremsstrahlung radiation, some of our versions of the postlinear formalism allow one to treat the interacting bodies as point masses, while others do not
On the problem of unboundedness from below of the spinor QED Hamiltonian
International Nuclear Information System (INIS)
Zastavenko, L.G.
1993-01-01
It is show that the Hamiltonian H QED + H 2 , where H QED is the spinor QED Hamiltonian and H 2 is the positive transversal photon mass term, is unbounded from below if the electromagnetic coupling constant e 2 is small enough, e 2 0 2 , and the transversal photon squared mass parameter M 2 is not large: 0 2 2 (1 - e 2 /e 0 2 )l 2 , here, l is the cut-off parameter; and c and e 0 2 , positive constants which do not depend on any parameters. 7 refs
A massive spinless particle and the unit of length in a spinor geometry
International Nuclear Information System (INIS)
Lynch, J.T.
1999-01-01
The field equations of a spinor geometry are solved for a massive spinless particle. The particle has a composite internal structure, a quantised rest-mass, and a positive-definite and everywhere finite mass density. The particle is stable in isolation, but evidently unstable in the presence of fields due to external sources, such as the electromagnetic fields of particle detectors. On identifying the particle as a neutral meson, the unit of length of the geometry turns out to be approximately 10 -15 m
Spinor Slow Light and Two-Color Qubits
Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.
2015-05-01
We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw
Background harmonic superfields in N=2 supergravity
International Nuclear Information System (INIS)
Zupnik, B.M.
1998-01-01
A modification of the harmonic superfield formalism in D=4, N=2 supergravity using a subsidiary condition of covariance under the background supersymmetry with a central charge (B-covariance) is considered. Conservation of analyticity together with the B-covariance leads to the appearance of linear gravitational superfields. Analytic prepotentials arise in a decomposition of the background linear superfields in terms of spinor coordinates and transform in a nonstandard way under the background supersymmetry. The linear gravitational superfields can be written via spinor derivatives of nonanalytic spinor prepotentials. The perturbative expansion of supergravity action in terms of the B-covariant superfields and the corresponding version of the differential-geometric formalism are considered. We discuss the dual harmonic representation of the linearized extended supergravity, which corresponds to the dynamical condition of Grassmann analyticity
Kaliszyk, C.; Urban, J.; Vyskocil, J.; Geuvers, J.H.; Watt, S.M.; Davenport, J.H.; Sexton, A.P.; Sojka, P.; Urban, J.
2014-01-01
The goal of this project is to (i) accumulate annotated informal/formal mathematical corpora suitable for training semi-automated translation between informal and formal mathematics by statistical machine-translation methods, (ii) to develop such methods oriented at the formalization task, and in
Formal Solutions for Polarized Radiative Transfer. II. High-order Methods
Energy Technology Data Exchange (ETDEWEB)
Janett, Gioele; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch [Istituto Ricerche Solari Locarno (IRSOL), 6605 Locarno-Monti (Switzerland)
2017-08-20
When integrating the radiative transfer equation for polarized light, the necessity of high-order numerical methods is well known. In fact, well-performing high-order formal solvers enable higher accuracy and the use of coarser spatial grids. Aiming to provide a clear comparison between formal solvers, this work presents different high-order numerical schemes and applies the systematic analysis proposed by Janett et al., emphasizing their advantages and drawbacks in terms of order of accuracy, stability, and computational cost.
Practical pretheories of QED. II. Choosing the interaction
International Nuclear Information System (INIS)
Yoakam, M.C.
1985-01-01
An interaction of the jxA form is introduced. The Coester transformation, which connects the Proca and the Coester fields, is extended to the pretheory boson fields when the boson mass counterterms are absent. The Fermi transformation, used to make the Lorentz condition stationary in the weak-convergence limit, is shown to be extendable to the pretheories (sans the freedom of commutator choice, which is usually associated with it). The familiar consequences of including a Fermi transformation (the Heisenberg picture images of the spinor fields do not transform as spinors) are retained, but a suitable limitation on the choice of the spinor charge and mass counterterms will allow the Heisenberg picture forms which are bilinear in the spinor operators to retain their transformation properties. In particular, familiar choices for L/sub int/ require that the spinor fields be expressed in the intermediate-Heisenberg picture. The introduction of boson mass counterterms into the practical pretheories is shown to give infinite gauge shifts which are independent of the zero-mass limit. Sufficient conditions for a modified Fermi operator are presented, and an ''obvious'' candidate is eliminated
Comments on the symmetry of AdS6 solutions in string/M-theory and Killing spinor equations
Directory of Open Access Journals (Sweden)
Hyojoong Kim
2016-09-01
Full Text Available It was recently pointed out in [1] that AdS6 solutions in IIB theory enjoy an extended symmetry structure and the consistent truncation to D=4 internal space leads to a nonlinear sigma model with target SL(3,R/SO(2,1. We continue to study the purely bosonic D=4 effective action, and elucidate how the addition of scalar potential term still allows Killing spinor equations in the absence of gauge fields. In particular, the potential turns out to be a single diagonal component of the coset representative. Furthermore, we perform a general analysis of the integrability conditions of Killing spinor equations and establish that the effective action can be in fact generalized to arbitrary sizes and signatures, e.g. with target SL(n,R/SO(p,n−p and the scalar potential expressible by a single diagonal component of the coset representative. We also comment on a similar construction and its generalizations of effective D=5 purely bosonic non-linear sigma model action related to AdS6 in M-theory.
Killing spinor equations in dimension 7 and geometry of integrable G2-manifolds
International Nuclear Information System (INIS)
Friedrich, Thomas; Ivanov, Stefan
2001-12-01
We compute the scalar curvature of 7-dimensional G 2 -manifolds admitting a connection with totally skew-symmetric torsion. We prove the formula for the general solution of the Killing spinor equation and express the Riemannian scalar curvature of the solution in terms of the dilation function and the NS 3-form field. In dimension n=7 the dilation function involved in the second fermionic string equation has an interpretation as a conformal change of the underlying integrable G 2 -structure into a cocalibrated one of pure type W 3 . (author)
Energy Technology Data Exchange (ETDEWEB)
Nishijima, K; Sasaki, R [Tokyo Univ. (Japan). Dept. of Physics
1975-06-01
On the basis of the dispersion formulation of field theories the Schwinger term in spinor electrodynamics is shown to be a c-number. The essence of the proof consists in the dimensional argument and the characteristic features of the linear unitarity condition for a set of Green's functions involving the Schwinger term.
International Nuclear Information System (INIS)
Cagnazzo, Alessandra; Sorokin, Dmitri; Tseytlin, Arkady A; Wulff, Linus
2013-01-01
We demonstrate the equivalence between the worldsheet one-loop partition functions computed near classical string solutions in the Green–Schwarz and in the pure–spinor formulations of superstrings in AdS 5 × S 5 . While their bosonic sectors are the same in the conformal gauge, their fermionic sectors superficially appear to be very different (first versus second-derivative kinetic terms, presence versus absence of fermionic gauge symmetry). Still, we show that the quadratic fluctuation spectrum of 16 fermionic modes of the pure–spinor formulation is the same as in the Green–Schwarz superstring and the contribution of the extra ‘massless’ fermionic modes cancels against that of the pure–spinor ghosts. We also provide evidence for a similar semiclassical equivalence between the Green–Schwarz and the hybrid formulations of superstrings in AdS 2 × S 2 × T 6 by studying several particular examples of string solutions. (paper)
Formal solutions of inverse scattering problems. III
International Nuclear Information System (INIS)
Prosser, R.T.
1980-01-01
The formal solutions of certain three-dimensional inverse scattering problems presented in papers I and II of this series [J. Math. Phys. 10, 1819 (1969); 17 1175 (1976)] are obtained here as fixed points of a certain nonlinear mapping acting on a suitable Banach space of integral kernels. When the scattering data are sufficiently restricted, this mapping is shown to be a contraction, thereby establishing the existence, uniqueness, and continuous dependence on the data of these formal solutions
A formalism for scattering of complex composite structures. II. Distributed reference points
DEFF Research Database (Denmark)
Svaneborg, Carsten; Pedersen, Jan Skov
2012-01-01
Recently we developed a formalism for the scattering from linear and acyclic branched structures build of mutually non-interacting sub-units.[C. Svaneborg and J. S. Pedersen, J. Chem. Phys. 136, 104105 (2012)] We assumed each sub-unit has reference points associated with it. These are well defined...... positions where sub-units can be linked together. In the present paper, we generalize the formalism to the case where each reference point can represent a distribution of potential link positions. We also present a generalized diagrammatic representation of the formalism. Scattering expressions required...
International Nuclear Information System (INIS)
Alvarado, R.; Rybakov, Yu.P.; Shikin, G.N.; Saha, B.
1995-01-01
Self-consistent solutions to the system of spinor and scalar field equations in General Relativity are studied for the case of Bianchi type-I space-time. The absence of initial singularity should be emphasized for some types of solutions and also the isotropic mode of space-time expansion in some special cases. 3 refs
International Nuclear Information System (INIS)
Watabe, Shohei; Ohashi, Yoji; Kato, Yusuke
2011-01-01
We investigate tunneling properties of collective modes in the polar phase of a spin-1 spinor Bose-Einstein condensate (BEC). This spinor BEC state has two kinds of gapless modes (i.e., Bogoliubov and spin-wave). Within the framework of mean-field theory at T=0, we show that these Goldstone modes exhibit perfect transmission in the low-energy limit. Their anomalous tunneling behavior still holds in the presence of superflow, except in the critical current state. In the critical current state, while the tunneling of Bogoliubov mode is accompanied by finite reflection, the spin wave still exhibits perfect transmission, unless the strengths of spin-dependent and spin-independent interactions take the same value. We discuss the relation between perfect transmission of a spin wave and underlying superfluidity through a comparison of wave functions of the spin wave and the condensate.
International Nuclear Information System (INIS)
Barut, A.O.; Pavsic, M.
1988-05-01
A remarkable equivalence is established between the theories of spinning particles or superparticles using anticommuting Grassmann variables on the one hand and commuting c-number spinors on the other. We consider both real and complex Grassmann variables and map the equations of motion and the supersymmetry transformation from one theory to another. The more intuitive c-number theory allows us to generalize the notion of Zitterbewegung to strings and membranes. (A hidden supersymmetry exists in the classical model of the Dirac electron.) (author). 12 refs
Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates
Mawson, Thomas; Ruben, Gary; Simula, Tapio
2015-06-01
We have studied computationally the collision dynamics of spin-2 Bose-Einstein condensates initially confined in a triple-well trap. Depending on the phase structure of the initial-state spinor wave function, the collision of the three condensate fragments produces one of many possible vortex-antivortex lattices, after which the system transitions to quantum turbulence. We find that the emerging vortex lattice structures can be described in terms of multiwave interference. We show that the three-fragment collisions can be used to systematically produce staggered vortex-antivortex honeycomb lattices of fractional-charge vortices, whose collision dynamics are known to be non-Abelian. Such condensate collider experiments could potentially be used as a controllable pathway to generating non-Abelian superfluid turbulence with networks of vortex rungs.
Do spinors give rise to a frame-dragging effect?
International Nuclear Information System (INIS)
Randono, Andrew
2010-01-01
We investigate the effect of the intrinsic spin of a fundamental spinor field on the surrounding spacetime geometry. We show that despite the lack of a rotating stress-energy source (and despite claims to the contrary) the intrinsic spin of a spin-half fermion gives rise to a frame-dragging effect analogous to that of orbital angular momentum, even in Einstein-Hilbert gravity where torsion is constrained to be zero. This resolves a paradox regarding the counter-force needed to restore Newton's third law in the well-known spin-orbit interaction. In addition, the frame-dragging effect gives rise to a long-range gravitationally mediated spin-spin dipole interaction coupling the internal spins of two sources. We argue that despite the weakness of the interaction, the spin-spin interaction will dominate over the ordinary inverse square Newtonian interaction in any process of sufficiently high energy for quantum field theoretical effects to be non-negligible.
Energy Technology Data Exchange (ETDEWEB)
Jarvis, P.D.; Corney, S.P.; Tsohantjis, I. [School of Mathematics and Physics, University of Tasmania, Hobart Tas (Australia)
1999-12-03
A covariant spinor representation of iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra. (author)
Fermionic zero-norm states and enlarged supersymmetries of Type II string
International Nuclear Information System (INIS)
Lee, J.-C.
2000-01-01
We calculate the NS-R fermionic zero-norm states of the type II string spectrum. The massless and some possible massive zero-norm states are seen to be responsible for the space-time supersymmetry. The existence of other fermionic massive zero-norm states with higher spinor-tensor indices correspond to new enlarged boson-fermion symmetries of the theory at high energy. We also discuss the R-R charges and R-R zero-norm states and justify the idea that the perturbative string does not carry the massless R-R charges. (orig.)
Protocol design and implementation using formal methods
van Sinderen, Marten J.; Ferreira Pires, Luis; Pires, L.F.; Vissers, C.A.
1992-01-01
This paper reports on a number of formal methods that support correct protocol design and implementation. These methods are placed in the framework of a design methodology for distributed systems that was studied and developed within the ESPRIT II Lotosphere project (2304). The paper focuses on
Spinorial analysis and physical properties of fermions
International Nuclear Information System (INIS)
Krechet, V.G.
1987-01-01
The authors study the formalism of covariant differentiation of a spinor field in a space of affine connection with an invariant metric. They find the most general formula for the coefficients of spinorial connection Gamma/sub α/ consistent with the fundamental relationship between the space and spin (γ/sub α/γ/sup β/ + γ/sub β/γ/sub α/ = 2g/sub αβ/), and which is a generalization of the formula for the Fock-Ivanenko coefficients. The obtained formula contains additional terms describing the interaction between the spinor field and the scalar field, the vector field A/sub α/, and the pseudovector field A/sub α/ (presumably, the pseudotrace of the spacetime torsion). The existence of these interaction terms also follows from the analysis of spinor fields from the gauge-theoretical point of view. They show that the interaction between the spinor and pseudovector fields found in this paper substantially modifies the electrodynamics of spinor fields
Exact spinor-scalar bound states in a quantum field theory with scalar interactions
International Nuclear Information System (INIS)
Shpytko, Volodymyr; Darewych, Jurij
2001-01-01
We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields
Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P
2013-11-01
Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics. © 2013.
Geometry of extended null supersymmetry in M theory
International Nuclear Information System (INIS)
Conamhna, Oisin A.P. Mac
2006-01-01
For supersymmetric spacetimes in 11 dimensions admitting a null Killing spinor, a set of explicit necessary and sufficient conditions for the existence of any number of arbitrary additional Killing spinors is derived. The necessary and sufficient conditions are comprised of algebraic relationships, linear in the spinorial components, between the spinorial components and their first derivatives, and the components of the spin connection and four-form. The integrability conditions for the Killing spinor equation are also analyzed in detail, to determine which components of the field equations are implied by arbitrary additional supersymmetries and the four-form Bianchi identity. This provides a complete formalism for the systematic and exhaustive investigation of all spacetimes with extended null supersymmetry in 11 dimensions. The formalism is employed to show that the general bosonic solution of 11 dimensional supergravity admitting a G 2 structure defined by four Killing spinors is either locally the direct product of R 1,3 with a seven-manifold of G 2 holonomy, or locally the Freund-Rubin direct product of AdS 4 with a seven-manifold of weak G 2 holonomy. In addition, all supersymmetric spacetimes admitting a (G 2 xR 7 )xR 2 structure are classified
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
Antonowicz, Marek; Szczyrba, Wiktor
1985-06-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
International Nuclear Information System (INIS)
Antonowicz, M.; Szczyrba, W.
1985-01-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8 = 12 independent degrees of freedom in the phase space
Exact periodic and solitonic states of the spinor condensates in a uniform external potential
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhi-Hai [School of Physics and Electronics, Yancheng Teachers University, Yancheng 224051 (China); Yang, Shi-Jie, E-mail: yangshijie@tsinghua.org.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2016-08-15
We propose a method to analytically solve the one-dimensional coupled nonlinear Gross–Pitaevskii equations which govern the motion of the spinor Bose–Einstein condensates. In a uniform external potential, several classes of exact periodic and solitonic solutions, either in real or in complex forms, are obtained for both the F=1 and F=2 condensates for the Hamiltonian comprising the kinetic energy, the linear and the quadratic Zeeman energies. Real solutions take the form of composite soliton trains. Complex solutions correspond to the mass counter-flows as well as spin currents. These solutions are general that contains neither approximations nor constraints on the system parameters.
Weak Quantum Theory: Formal Framework and Selected Applications
International Nuclear Information System (INIS)
Atmanspacher, Harald; Filk, Thomas; Roemer, Hartmann
2006-01-01
Two key concepts of quantum theory, complementarity and entanglement, are considered with respect to their significance in and beyond physics. An axiomatically formalized, weak version of quantum theory, more general than the ordinary quantum theory of physical systems, is described. Its mathematical structure generalizes the algebraic approach to ordinary quantum theory. The crucial formal feature leading to complementarity and entanglement is the non-commutativity of observables.The ordinary Hilbert space quantum mechanics can be recovered by stepwise adding the necessary features. This provides a hierarchy of formal frameworks of decreasing generality and increasing specificity. Two concrete applications, more specific than weak quantum theory and more general than ordinary quantum theory, are discussed: (i) complementarity and entanglement in classical dynamical systems, and (ii) complementarity and entanglement in the bistable perception of ambiguous stimuli
Photon scattering from a system of multilevel quantum emitters. I. Formalism
Das, Sumanta; Elfving, Vincent E.; Reiter, Florentin; Sørensen, Anders S.
2018-04-01
We introduce a formalism to solve the problem of photon scattering from a system of multilevel quantum emitters. Our approach provides a direct solution of the scattering dynamics. As such the formalism gives the scattered fields' amplitudes in the limit of a weak incident intensity. Our formalism is equipped to treat both multiemitter and multilevel emitter systems, and is applicable to a plethora of photon-scattering problems, including conditional state preparation by photodetection. In this paper, we develop the general formalism for an arbitrary geometry. In the following paper (part II) S. Das et al. [Phys. Rev. A 97, 043838 (2018), 10.1103/PhysRevA.97.043838], we reduce the general photon-scattering formalism to a form that is applicable to one-dimensional waveguides and show its applicability by considering explicit examples with various emitter configurations.
Dist-Orc: A Rewriting-based Distributed Implementation of Orc with Formal Analysis
Directory of Open Access Journals (Sweden)
José Meseguer
2010-09-01
Full Text Available Orc is a theory of orchestration of services that allows structured programming of distributed and timed computations. Several formal semantics have been proposed for Orc, including a rewriting logic semantics developed by the authors. Orc also has a fully fledged implementation in Java with functional programming features. However, as with descriptions of most distributed languages, there exists a fairly substantial gap between Orc's formal semantics and its implementation, in that: (i programs in Orc are not easily deployable in a distributed implementation just by using Orc's formal semantics, and (ii they are not readily formally analyzable at the level of a distributed Orc implementation. In this work, we overcome problems (i and (ii for Orc. Specifically, we describe an implementation technique based on rewriting logic and Maude that narrows this gap considerably. The enabling feature of this technique is Maude's support for external objects through TCP sockets. We describe how sockets are used to implement Orc site calls and returns, and to provide real-time timing information to Orc expressions and sites. We then show how Orc programs in the resulting distributed implementation can be formally analyzed at a reasonable level of abstraction by defining an abstract model of time and the socket communication infrastructure, and discuss the assumptions under which the analysis can be deemed correct. Finally, the distributed implementation and the formal analysis methodology are illustrated with a case study.
Quantum fluctuations and gapped Goldstone modes in spinor Bose-Einstein condensates
Beekman, Aron
2015-03-01
The classical Heisenberg ferromagnet is an exact eigenstate of the quantum Hamiltonian and therefore has no quantum fluctuations. Furthermore it has a reduced number of Goldstone modes, an order parameter that is itself a symmetry generator, is a highest-weight state for the spin algebra, and has no tower of states of vanishing energy. We derive the connection between all these properties and provide general criteria for their presence in other spontaneously-broken symmetry states. The phletora of groundstates in spinor Bose-Einstein condensates is an ideal testing ground for these predictions. In particular the phases with non-maximal polarization (e.g. the F-phase in spin-3 condensates) have an additional gapped mode that is a partner to the quadratically dispersing Goldstone mode, as compared to the maximally polarized, ferromagnetic phase. Furthermore there is a fundamental limit to the coherence time of superpositions in the non-maximally polarized state, which should manifest itself for small-size systems.
A Direct Road to Majorana Fields
Directory of Open Access Journals (Sweden)
Andreas Aste
2010-10-01
Full Text Available A concise discussion of spin-1/2 field equations with a special focus on Majorana spinors is presented. The Majorana formalism which describes massive neutral fermions by the help of two-component or four-component spinors is of fundamental importance for the understanding of mathematical aspects of supersymmetric and other extensions of the Standard Model of particle physics, which may play an increasingly important role at the beginning of the LHC era. The interplay between the two-component and the four-component formalism is highlighted in an introductory way. Majorana particles are predicted both by grand unified theories, in which these particles are neutrinos, and by supersymmetric theories, in which they are photinos, gluinos and other states.
Photon transitions between baryons in a new hadron scheme. [Composite model, Dirac spinor
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, H [Kanazawa Inst. of Tech. (Japan); Toya, M
1976-05-01
Photon transitions from the ground state baryon to the nonstrange excited one with L=0, 1 and 2 are investigated. The discussion is based on a new scheme of hadron composite model which takes account of the lower component of the Dirac spinor of constituent particles even in a hadron rest system. There appear generally four independent model amplitudes. Each process ..gamma..+p..-->..B/sub 8/* is described in terms of an individual model amplitude. This helps us to explain the characteristic features of experiment and solve the troubles found in the nonrelativistic scheme. Both magnitudes and signs of predicted amplitudes are shown to be in good agreement with experimental data. From this comparison the specific features of the model amplitudes are found. Discussion is made for higher excited baryons.
A matricial approach for the Dirac-Kahler formalism
International Nuclear Information System (INIS)
Goto, M.
1987-01-01
A matricial approach for the Dirac-Kahler formalism is considered. It is shown that the matrical approach i) brings a great computational simplification compared to the common use of differential forms and that ii) by an appropriate choice of notation, it can be extended to the lattice, including a matrix Dirac-Kahler equation. (author) [pt
Kalanov, Temur Z.
2014-03-01
A critical analysis of the foundations of standard vector calculus is proposed. The methodological basis of the analysis is the unity of formal logic and of rational dialectics. It is proved that the vector calculus is incorrect theory because: (a) it is not based on a correct methodological basis - the unity of formal logic and of rational dialectics; (b) it does not contain the correct definitions of ``movement,'' ``direction'' and ``vector'' (c) it does not take into consideration the dimensions of physical quantities (i.e., number names, denominate numbers, concrete numbers), characterizing the concept of ''physical vector,'' and, therefore, it has no natural-scientific meaning; (d) operations on ``physical vectors'' and the vector calculus propositions relating to the ''physical vectors'' are contrary to formal logic.
Al-Rafia, S M Ibrahim; Shynkaruk, Olena; McDonald, Sean M; Liew, Sean K; Ferguson, Michael J; McDonald, Robert; Herber, Rolfe H; Rivard, Eric
2013-05-06
(119)Sn Mössbauer spectroscopy was performed on a series of formal Sn(II) dichloride and dihydride adducts bound by either carbon- or phosphorus-based electron pair donors. Upon binding electron-withdrawing metal pentacarbonyl units to the tin centers in LB·SnCl2·M(CO)5 (LB = Lewis base; M = Cr or W), a significant decrease in isomer shift (IS) was noted relative to the unbound Sn(II) complexes, LB·SnCl2, consistent with removal of nonbonding s-electron density from tin upon forming Sn-M linkages (M = Cr and W). Interestingly, when the nature of the Lewis base in the series LB·SnCl2·W(CO)5 was altered, very little change in the IS values was noted, implying that the LB-Sn bonds were constructed with tin-based orbitals of large p-character (as supported by prior theoretical studies). In addition, variable temperature Mössbauer measurements were used to determine the mean displacement of the tin atoms in the solid state, a parameter that can be correlated with the degree of covalent bonding involving tin in these species.
Ghost field realizations of the spinor $W_{2,s}$ strings based on the linear W(1,2,s) algebras
Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong
2005-01-01
It has been shown that certain W algebras can be linearized by the inclusion of a spin-1 current. This Provides a way of obtaining new realizations of the W algebras. In this paper, we investigate the new ghost field realizations of the W(2,s)(s=3,4) algebras, making use of the fact that these two algebras can be linearized. We then construct the nilpotent BRST charges of the spinor non-critical W(2,s) strings with these new realizations.
Ghost field realizations of the spinor W2,s strings based on the linear W1,2,s algebras
International Nuclear Information System (INIS)
Liu Yuxiao; Ren Jirong; Zhang Lijie
2005-01-01
It has been shown that certain W algebras can be linearized by the inclusion of a spin-1 current. This provides a way of obtaining new realizations of the W algebras. In this paper, we investigate the new ghost field realizations of the W 2,s (s=3,4) algebras, making use of the fact that these two algebras can be linearized. We then construct the nilpotent BRST charges of the spinor non-critical W 2,s strings with these new realizations. (author)
The many faces of Maxwell, Dirac and Einstein equations a Clifford bundle approach
Rodrigues, Jr, Waldyr A
2016-01-01
This book is an exposition of the algebra and calculus of differential forms, of the Clifford and Spin-Clifford bundle formalisms, and of vistas to a formulation of important concepts of differential geometry indispensable for an in-depth understanding of space-time physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields are shown to have representatives by objects of the same mathematical nature, namely sections of an appropriate Clifford bundle. This approach reveals unity in diversity and suggests relationships that are hidden in the standard formalisms and opens new paths for research. This thoroughly revised second edition also adds three new chapters: on the Clifford bundle approach to the Riemannian or semi-Riemannian differential geometry of branes; on Komar currents in the context of the General Relativity theory; and an analysis of the similarities and main differences between Dirac, Majorana and ELKO spinor fields. The exercises with solut...
Scalar formalism for quantum electrodynamics
International Nuclear Information System (INIS)
Hostler, L.C.
1985-01-01
A set of Feynman rules, similar to the rules of scalar electrodynamics, is derived for a full quantum electrodynamics based on the relativistic Klein--Gordon--type wave equation ]Pi/sub μ/Pi/sub μ/+m 2 +ie sigma x (E +iB)]phi = 0, Pi/sub μ/ equivalent-i partial/sub μ/-eA/sub μ/, for spin- 1/2 particles [J. Math. Phys. 23, 1179 (1982); J. Math. Phys. 24, 2366 (1983)]. In this equation, phi is a 2 x 1 Pauli spinor and sigma/sub a/, a = 1,2,3, are the usual 2 x 2 Pauli spin matrices. The irreducible self-energy parts are compared to those of conventional quantum electrodynamics
Magneto-optical quantum interferences in a system of spinor excitons
Kuan, Wen-Hsuan; Gudmundsson, Vidar
2018-04-01
In this work we investigate magneto-optical properties of two-dimensional semiconductor quantum-ring excitons with Rashba and Dresselhaus spin-orbit interactions threaded by a magnetic flux perpendicular to the plane of the ring. By calculating the excitonic Aharonov-Bohm spectrum, we study the Coulomb and spin-orbit effects on the Aharonov-Bohm features. From the light-matter interactions of the excitons, we find that for scalar excitons, there are open channels for spontaneous recombination resulting in a bright photoluminescence spectrum, whereas the forbidden recombination of dipolar excitons results in a dark photoluminescence spectrum. We investigate the generation of persistent charge and spin currents. The exploration of spin orientations manifests that by adjusting the strength of the spin-orbit interactions, the exciton can be constructed as a squeezed complex with specific spin polarization. Moreover, a coherently moving dipolar exciton acquires a nontrivial dual Aharonov-Casher phase, creating the possibility to generate persistent dipole currents and spin dipole currents. Our study reveals that in the presence of certain spin-orbit generated fields, the manipulation of the magnetic field provides a potential application for quantum-ring spinor excitons to be utilized in nano-scaled magneto-optical switches.
QED as the tensionless limit of the spinning string with contact interaction
Energy Technology Data Exchange (ETDEWEB)
Edwards, James P., E-mail: J.P.Edwards@durham.ac.uk; Mansfield, Paul, E-mail: P.R.W.Mansfield@durham.ac.uk
2015-06-30
QED with spinor matter is argued to correspond to the tensionless limit of spinning strings with contact interactions. The strings represent electric lines of force with charges at their ends. The interaction is constructed from a delta-function on the world-sheet which, although off-shell, decouples from the world-sheet metric. Integrating out the string degrees of freedom with fixed boundary generates the super-Wilson loop that couples spinor matter to electromagnetism in the world-line formalism. World-sheet and world-line, but not spacetime, supersymmetry underpin the model.
Energy Technology Data Exchange (ETDEWEB)
Dorkin, S M [Dal` nevostochnyj Gosudarstvennyj Univ., Vladivostok (Russian Federation); Kaptar` , L P; Semikh, S S [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics
1997-12-31
The problem of calculating the energy spectrum of a two-fermion bound state within the Bethe-Salpeter formalism is discussed. An expansion of the kernel of the spinor-spinor Bethe-Salpeter equation in the ladder approximation is found in terms of a bi-orthogonal basis of the generalized Gilbert-Schmidt series for symmetric equations of the Fredholm type. According to this expansion, a new method of solving the Bethe-Salpeter equation and finding the mass spectrum is proposed. Methodological result of numerical solutions of equations with scalar interaction is presented. (author). 20 refs., 3 figs.
Poisson hierarchy of discrete strings
International Nuclear Information System (INIS)
Ioannidou, Theodora; Niemi, Antti J.
2016-01-01
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Poisson hierarchy of discrete strings
Energy Technology Data Exchange (ETDEWEB)
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Projective limits of state spaces II. Quantum formalism
Lanéry, Suzanne; Thiemann, Thomas
2017-06-01
In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013), which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). After discussing the formalism at the classical level in a first paper (Lanéry, 2017), the present second paper is devoted to the quantum theory. In particular, we inspect in detail how such quantum projective state spaces relate to inductive limit Hilbert spaces and to infinite tensor product constructions (Lanéry, 2016, subsection 3.1) [1]. Regarding the quantization of classical projective structures into quantum ones, we extend the results by Okołów (2013), that were set up in the context of linear configuration spaces, to configuration spaces given by simply-connected Lie groups, and to holomorphic quantization of complex phase spaces (Lanéry, 2016, subsection 2.2) [1].
Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá
2018-05-01
We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.
Krylov, Piotr
2017-01-01
This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a sol...
TheME: an environment for building formal KADS II models of expertise
Balder, John; Akkermans, J.M.; Akkermans, Hans
1992-01-01
COMMONKADS is a well-known methodology for the development of knowledge-based systems. In this methodology one constructs so-called models of expertise as a basis for the development. A new feature with respect to older versions of the KADS methodology is a formal version of these models, whereby
Dirac spinors for doubly special relativity and κ-Minkowski noncommutative spacetime
International Nuclear Information System (INIS)
Agostini, Alessandra; Amelino-Camelia, Giovanni; Arzano, Michele
2004-01-01
We construct a Dirac equation that is consistent with one of the recently-proposed schemes for a 'doubly special relativity', a relativity with both an observer-independent velocity scale (still naturally identified with the speed-of-light constant) and an observer-independent length/momentum scale (possibly given by the Planck length/momentum). We find that the introduction of the second observer-independent scale only induces a mild deformation of the structure of Dirac spinors. We also show that our modified Dirac equation naturally arises in constructing a Dirac equation in the κ-Minkowski noncommutative spacetime. Previous, more heuristic studies had already argued for a possible role of doubly special relativity in κ-Minkowski, but remained vague on the nature of the consistency requirements that should be implemented in order to assure the observer-independence of the two scales. We find that a key role is played by the choice of a differential calculus in κ-Minkowski. A much-studied choice of the differential calculus does lead to our doubly special relativity Dirac equation, but a different scenario is encountered for another popular choice of differential calculus
SBME : Exploring boundaries between formal, non-formal, and informal learning
Shahoumian, Armineh; Parchoma, Gale; Saunders, Murray; Hanson, Jacky; Dickinson, Mike; Pimblett, Mark
2013-01-01
In medical education learning extends beyond university settings into practice. Non-formal and informal learning support learners’ efforts to meet externally set and learner-identified objectives. In SBME research, boundaries between formal, non-formal, and informal learning have not been widely explored. Whether SBME fits within or challenges these categories can make a contribution. Formal learning is described in relation to educational settings, planning, assessment, and accreditation. In...
EDUCAŢIE FORMALĂ, NONFORMALĂ ŞI INFORMALĂ: PERSPECTIVELE NOILOR EDUCAŢII
Directory of Open Access Journals (Sweden)
Carolina ŢURCANU
2017-07-01
Full Text Available În articol este abordată problema ce vizează noile educaţii în contextul educaţiei formale, nonformale şi informale. Accentul se pune pe analiza tendinţelor pe plan internaţional şi naţional în vederea valorificării mai eficiente a noilor educaţii în condiţiile schimbării potenţialului formativ al educaţiei formale spre educaţia nonformală şi informală.FORMAL, NON-FORMAL AND INFORMAL EDUCATION: NEW PERSPECTIVES OF EDUCATIONThe approach of the article is the problem of new educations in context of formal, non-formal and informal educations. The focus is on the analysis of trends on national and international level, in order to exploit more effectively the new educations in changing conditions of the formative potential of the formal to non-formal and informal educations.
An off-shell superspace reformulation of D = 4, N = 4 super-Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Cederwall, Martin [Division for Theoretical Physics, Department of Physics, Chalmers University of Technology, Gothenburg (Sweden)
2018-01-15
D = 4, N = 4 super-Yang-Mills theory has an off-shell superspace formulation in terms of pure spinor superfields, which is directly inherited from the D = 10 theory. That superspace, in particular the choice of pure spinor variables, is less suitable for dealing with fields that are inherently 4-dimensional, such as the superfields based on the scalars, which are gauge-covariant, and traces of powers of scalars, which are gauge-invariant. We give a reformulation of D = 4, N = 4 super-Yang-Mills theory in N = 4 superspace, using inherently 4-dimensional pure spinors. All local degrees of freedom reside in a superfield based on the physical scalars. The formalism should be suited for calculations of correlators of traces of scalar superfields. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Formalization of Database Systems -- and a Formal Definition of {IMS}
DEFF Research Database (Denmark)
Bjørner, Dines; Løvengreen, Hans Henrik
1982-01-01
Drawing upon an analogy between Programming Language Systems and Database Systems we outline the requirements that architectural specifications of database systems must futfitl, and argue that only formal, mathematical definitions may 6atisfy these. Then we illustrate home aspects and touch upon...... come ueee of formal definitions of data models and databaee management systems. A formal model of INS will carry this discussion. Finally we survey some of the exkting literature on formal definitions of database systems. The emphasis will be on constructive definitions in the denotationul semantics...... style of the VCM: Vienna Development Nethd. The role of formal definitions in international standardiaation efforts is briefly mentioned....
Directory of Open Access Journals (Sweden)
J. Buitrago
Full Text Available In a new classical Weyl 2-spinor approach to non abelian gauge theories, starting with the U(1 gauge group in a previous work, we study now the SU(3 case corresponding to quarks (antiquarks interacting with color fields. The principal difference with the conventional approach is that particle-field interactions are not described by means of potentials but by the field strength magnitudes. Some analytical expressions showing similarities with electrodynamics are obtained. Classical equations that describe the behavior of quarks under gluon fields might be in principle applied to the quark–gluon plasma phase existing during the first instants of the Universe.
SELF-EFFICACY OF FORMALLY AND NON-FORMALLY TRAINED PUBLIC SECTOR TEACHERS
Directory of Open Access Journals (Sweden)
Muhammad Nadeem ANWAR
2009-07-01
Full Text Available The main objective of the study was to compare the formally and non-formally trained in-service public sector teachers’ Self-efficacy. Five hypotheses were developed describing no difference in the self-efficacy of formally and non-formally trained teachers to influence decision making, influence school resources, instructional self-efficacy, disciplinary self-efficacy and create positive school climate. Teacher Efficacy Instrument (TSES developed by Bandura (2001 consisting of thirty 9-point items was used in the study. 342 formally trained and 255 non-formally trained respondents’ questionnaires were received out of 1500 mailed. The analysis of data revealed that the formally trained public sector teachers are high in their self-efficacy on all the five categories: to influence decision making, to influence school resources, instructional self-efficacy, disciplinary self-efficacy and self-efficacy to create positive school climate.
DEFF Research Database (Denmark)
Masses of Formal Philosophy is an outgrowth of Formal Philosophy. That book gathered the responses of some of the most prominent formal philosophers to five relatively open and broad questions initiating a discussion of metaphilosophical themes and problems surrounding the use of formal methods i...... in philosophy. Including contributions from a wide range of philosophers, Masses of Formal Philosophy contains important new responses to the original five questions.......Masses of Formal Philosophy is an outgrowth of Formal Philosophy. That book gathered the responses of some of the most prominent formal philosophers to five relatively open and broad questions initiating a discussion of metaphilosophical themes and problems surrounding the use of formal methods...
Lounesto, Pertti
1993-01-01
This volume contains a facsimile reproduction of Marcel Riesz's notes of a set of lectures he delivered at the University of Maryland, College Park, between October 1957 and January 1958, which has not been formally published to date This seminal material (arranged in four chapters), which contributed greatly to the start of modern research on Clifford algebras, is supplemented in this book by notes which Riesz dictated to E Folke Bolinder in the following year and which were intended to be a fifth chapter of the Riesz lecture notes In addition, Riesz's work on Clifford algebra is put into an historical perspective in a separate review by P Lounesto As well as providing an introduction to Clifford algebra, this volume will be of value to those interested in the history of mathematics
Curci-Ferrari-type condition in Hamiltonian formalism: A free spinning relativistic particle
Shukla, A.; Bhanja, T.; Malik, R. P.
2013-03-01
The Curci-Ferrari (CF)-type restriction emerges in the description of a free spinning relativistic particle within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism when the off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry transformations for this system are derived from the application of the horizontality condition (HC) and its supersymmetric generalization (SUSY-HC) within the framework of the superfield formalism. We show that the above CF condition, which turns out to be the secondary constraint of our present theory, remains time-evolution invariant within the framework of Hamiltonian formalism. This time-evolution invariance i) physically justifies the imposition of the (anti-)BRST invariant CF-type condition on this system, and ii) mathematically implies the linear independence of BRST and anti-BRST symmetries of our present theory.
Wasak, Tomasz; Chwedeńczuk, Jan
2018-04-01
We propose an experiment, where the Bell inequality is violated in a many-body system of massive particles. The source of correlated atoms is a spinor F =1 Bose-Einstein condensate residing in an optical lattice. We characterize the complete procedure—the local operations, the measurements, and the inequality—necessary to run the Bell test. We show how the degree of violation of the Bell inequality depends on the strengths of the two-body correlations and on the number of scattered pairs. We show that the system can be used to demonstrate the Einstein-Podolsky-Rosen paradox. Also, the scattered pairs are an excellent many-body resource for the quantum-enhanced metrology. Our results apply to any multimode system where the spin-changing collision drives the scattering into separate regions. The presented inquiry shows that such a system is versatile as it can be used for the tests of nonlocality, quantum metrology, and quantum information.
Wasak, Tomasz; Chwedeńczuk, Jan
2018-04-06
We propose an experiment, where the Bell inequality is violated in a many-body system of massive particles. The source of correlated atoms is a spinor F=1 Bose-Einstein condensate residing in an optical lattice. We characterize the complete procedure-the local operations, the measurements, and the inequality-necessary to run the Bell test. We show how the degree of violation of the Bell inequality depends on the strengths of the two-body correlations and on the number of scattered pairs. We show that the system can be used to demonstrate the Einstein-Podolsky-Rosen paradox. Also, the scattered pairs are an excellent many-body resource for the quantum-enhanced metrology. Our results apply to any multimode system where the spin-changing collision drives the scattering into separate regions. The presented inquiry shows that such a system is versatile as it can be used for the tests of nonlocality, quantum metrology, and quantum information.
Directory of Open Access Journals (Sweden)
Douglas Walton
2015-12-01
Full Text Available This paper presents a formalization of informal logic using the Carneades Argumentation System (CAS, a formal, computational model of argument that consists of a formal model of argument graphs and audiences. Conflicts between pro and con arguments are resolved using proof standards, such as preponderance of the evidence. CAS also formalizes argumentation schemes. Schemes can be used to check whether a given argument instantiates the types of argument deemed normatively appropriate for the type of dialogue.
Superradiant MeV γ Scattered by a Room-Temperature Spinor Quantum Fluid
Directory of Open Access Journals (Sweden)
Yao Cheng
2017-07-01
Full Text Available Recent reports have revealed the rich long-lived Mossbauer phenomenon of 93mNb, in which it has long been speculated that the delocalized 93mNb undergoes Bose-Einstein condensation following an increase in the 93mNb density beyond the threshold of 1012 cm−3 at room temperature. We now report on the superradiant Rayleigh of the M4 γ at 662 keV scattered into end-fire modes along the long axis of the sample, as evidence of Bose-Einstein condensation. We observed the Arago (Poisson’s spot in order to demonstrate a near-field γ-ray diffraction from a mm-sized γ source, as well as a γ interference beyond the Huygens-Fresnel principle. During the 107-day monitoring period, seven Sisyphus cycles of mode hopping appeared in the superradiance, which demonstrates the optomechanic bistabilty provided by the collective interaction between the spinor quantum fluid and the impinging γs. Condensate-light interaction produces a pm matter-wave grating to become a Fabry-Pérot resonator with a Q-factor on the order of 1020, from which end-fired γs lase.
Multi-second magnetic coherence in a single domain spinor Bose–Einstein condensate
Palacios, Silvana; Coop, Simon; Gomez, Pau; Vanderbruggen, Thomas; Natali Martinez de Escobar, Y.; Jasperse, Martijn; Mitchell, Morgan W.
2018-05-01
We describe a compact, robust and versatile system for studying the macroscopic spin dynamics in a spinor Bose–Einstein condensate. Condensates of {}87{Rb} are produced by all-optical evaporation in a 1560 nm optical dipole trap, using a non-standard loading sequence that employs an ancillary 1529 nm beam for partial compensation of the strong differential light-shift induced by the dipole trap itself. We use near-resonant Faraday rotation probing to non-destructively track the condensate magnetization, and demonstrate few-Larmor-cycle tracking with no detectable degradation of the spin polarization. In the ferromagnetic F = 1 ground state, we observe the spin orientation between atoms in the condensate is preserved, such that they precess all together like one large spin in the presence of a magnetic field. We characterize this dynamics in terms of the single-shot magnetic coherence times {{ \\mathcal T }}1 and {{ \\mathcal T }}2* , and observe them to be of several seconds, limited only by the residence time of the atoms in the trap. At the densities used, this residence is restricted only by one-body losses set by the vacuum conditions.
Ampofo, S. Y.; Bizimana, B.; Ndayambaje, I.; Karongo, V.; Lawrence, K. Lyn; Orodho, J. A.
2015-01-01
This study examined the social and spill-over benefits as motivating factors to investment in formal education in selected countries in Africa. The paper had three objectives, namely) to profile the key statistics of formal schooling; ii) examine the formal education and iii) link national goals of education with expectations in Ghana, Kenya and…
Bayes, Adam; Graham, Rebecca K; Parker, Gordon B; McCraw, Stacey
2018-06-01
Recent research indicates that borderline personality disorder (BPD) can be diagnostically differentiated from the bipolar disorders. However, no studies have attempted to differentiate participants with sub-threshold bipolar disorder or SubT BP (where hypomanic episodes last less than 4 days) from those with a BPD. In this study, participants were assigned a SubT BP, bipolar II disorder (BP II) or BPD diagnosis based on clinical assessment and DSM-IV criteria. Participants completed self-report measures and undertook a clinical interview which collected socio-demographic information, a mood history, family history, developmental history, treatment information, and assessed cognitive, emotional and behavioural functioning. Both bipolar groups, whether SubT BP or BP II, differed to the BPD group on a number of key variables (i.e. developmental trauma, depression correlates, borderline personality scores, self-harm and suicide attempts), and compared to each other, returned similar scores on nearly all key variables. Borderline risk scores resulted in comparable classification rates of 0.74 (for BPD vs BP II) and 0.82 (for BPD vs sub-threshold BP II). Study findings indicate that both SubT BP and BP II disorder can be differentiated from BPD on a set of refined clinical variables with comparable accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.
Worldline calculation of the three-gluon vertex
International Nuclear Information System (INIS)
Ahmadiniaz, N.; Schubert, C.
2012-01-01
The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.
Energy Technology Data Exchange (ETDEWEB)
Cederwall, Martin [Division for Theoretical Physics, Department of Physics, Chalmers University of Technology,SE 412 96 Gothenburg (Sweden)
2016-06-27
A geometry of superspace corresponding to double field theory is developed, with type I I supergravity in D=10 as the main example. The formalism is based on an orthosymplectic extension OSp(d,d|2s) of the continuous T-duality group. Covariance under generalised super-diffeomorphisms is manifest. Ordinary superspace is obtained as a solution of the orthosymplectic section condition. A systematic study of curved superspace Bianchi identities is performed, and a relation to a double pure spinor superfield cohomology is established. A Ramond-Ramond superfield is constructed as an infinite-dimensional orthosymplectic spinor. Such objects in minimal orbits under the OSp supergroup (“pure spinors”) define super-sections.
DEFF Research Database (Denmark)
Garsten, Christina; Nyqvist, Anette
Ethnographic work in formal organizations involves learning to recognize the many layers of front stage and back stage of organized life, and to bracket formality. It means to be alert to the fact that what is formal and front stage for one some actors, and in some situations, may in fact be back...... stage and informal for others. Walking the talk, donning the appropriate attire, wearing the proper suit, may be part of what is takes to figure out the code of formal organizational settings – an entrance ticket to the backstage, as it were. Oftentimes, it involves a degree of mimicry, of ‘following...... suits’ (Nyqvist 2013), and of doing ‘ethnography by failure’ (Garsten 2013). In this paper, we explore the layers of informality and formality in our fieldwork experiences among financial investors and policy experts, and discuss how to ethnographically represent embodied fieldwork practices. How do we...
Λ( t ) cosmology induced by a slowly varying Elko field
Energy Technology Data Exchange (ETDEWEB)
Pereira, S.H.; Pinho, A.S.S.; Silva, J.M. Hoff da [Universidade Estadual Paulista (Unesp), Faculdade de Engenharia, Guaratinguetá, Departamento de Física e Química Av. Dr. Ariberto Pereira da Cunha 333, 12516-410—Guaratinguetá, SP (Brazil); Jesus, J.F., E-mail: shpereira@feg.unesp.br, E-mail: alexandre.pinho510@gmail.com, E-mail: hoff@feg.unesp.br, E-mail: jfjesus@itapeva.unesp.br [Universidade Estadual Paulista (Unesp), Campus Experimental de Itapeva, R. Geraldo Alckmin, 519 Itapeva, SP (Brazil)
2017-01-01
In this work the exact Friedmann-Robertson-Walker equations for an Elko spinor field coupled to gravity in an Einstein-Cartan framework are presented. The torsion functions coupling the Elko field spin-connection to gravity can be exactly solved and the FRW equations for the system assume a relatively simple form. In the limit of a slowly varying Elko spinor field there is a relevant contribution to the field equations acting exactly as a time varying cosmological model Λ( t )=Λ{sub *}+3β H {sup 2}, where Λ{sub *} and β are constants. Observational data using distance luminosity from magnitudes of supernovae constraint the parameters Ω {sub m} and β, which leads to a lower limit to the Elko mass. Such model mimics, then, the effects of a dark energy fluid, here sourced by the Elko spinor field. The density perturbations in the linear regime were also studied in the pseudo-Newtonian formalism.
Software Formal Inspections Guidebook
1993-01-01
The Software Formal Inspections Guidebook is designed to support the inspection process of software developed by and for NASA. This document provides information on how to implement a recommended and proven method for conducting formal inspections of NASA software. This Guidebook is a companion document to NASA Standard 2202-93, Software Formal Inspections Standard, approved April 1993, which provides the rules, procedures, and specific requirements for conducting software formal inspections. Application of the Formal Inspections Standard is optional to NASA program or project management. In cases where program or project management decide to use the formal inspections method, this Guidebook provides additional information on how to establish and implement the process. The goal of the formal inspections process as documented in the above-mentioned Standard and this Guidebook is to provide a framework and model for an inspection process that will enable the detection and elimination of defects as early as possible in the software life cycle. An ancillary aspect of the formal inspection process incorporates the collection and analysis of inspection data to effect continual improvement in the inspection process and the quality of the software subjected to the process.
Formal, Non-Formal and Informal Learning in the Sciences
Ainsworth, Heather L.; Eaton, Sarah Elaine
2010-01-01
This research report investigates the links between formal, non-formal and informal learning and the differences between them. In particular, the report aims to link these notions of learning to the field of sciences and engineering in Canada and the United States, including professional development of adults working in these fields. It offers…
Spinor Casimir densities for a spherical shell in the global monopole spacetime
International Nuclear Information System (INIS)
Saharian, A A; Mello, E R Bezerra de
2004-01-01
We investigate the vacuum expectation values of the energy-momentum tensor and the fermionic condensate associated with a massive spinor field obeying the MIT bag boundary condition on a spherical shell in the global monopole spacetime. In order to do that, we use the generalized Abel-Plana summation formula. As we shall see, this procedure allows us to extract from the vacuum expectation values the contribution coming from the unbounded spacetime and to explicitly present the boundary induced parts. As regards the boundary induced contribution, two distinct situations are examined: the vacuum average effects inside and outside the spherical shell. The asymptotic behaviour of the vacuum densities is investigated near the sphere centre and near the surface, and at large distances from the sphere. In the limit of strong gravitational field corresponding to small values of the parameter describing the solid angle deficit in the global monopole geometry, the sphere induced expectation values are exponentially suppressed. We discuss, as a special case, the fermionic vacuum densities for the spherical shell on the background of the Minkowski spacetime. Previous approaches to this problem within the framework of the QCD bag models have been global and our calculation is a local extension of these contributions
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-30
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
DEFF Research Database (Denmark)
du Gay, Paul; Lopdrup-Hjorth, Thomas
Over recent decades, institutions exhibiting high degrees of formality have come in for severe criticism. From the private to the public sector, and across a whole spectrum of actors spanning from practitioners to academics, formal organization is viewed with increasing doubt and skepticism....... In a “Schumpetarian world” (Teece et al., 1997: 509) of dynamic competition and incessant reform, formal organization appears as well suited to survival as a fish out of water. Indeed, formal organization, and its closely overlapping semantic twin bureaucracy, are not only represented as ill suited to the realities...... is that formal organization is an obstacle to be overcome. For that very reason, critics, intellectuals and reformers alike have urged public and private organizations to break out of the stifling straightjacket of formality, to dispense with bureaucracy, and to tear down hierarchies. This could either be done...
Formal verification of reactor process control software using assertion checking environment
International Nuclear Information System (INIS)
Sharma, Babita; Balaji, Sowmya; John, Ajith K.; Bhattacharjee, A.K.; Dhodapkar, S.D.
2005-01-01
Assertion Checking Environment (ACE) was developed in-house for carrying out formal (rigorous/ mathematical) functional verification of embedded software written in MISRA C. MISRA C is an industrially sponsored safe sub-set of C programming language and is well accepted in the automotive and aerospace industries. ACE uses static assertion checking technique for verification of MISRA C programs. First the functional specifications of the program are derived from the specifications in the form of pre- and post-conditions for each C function. These pre- and post-conditions are then introduced as assertions (formal comments) in the program code. The annotated C code is then formally verified using ACE. In this paper we present our experience of using ACE for the formal verification of process control software of a nuclear reactor. The Software Requirements Document (SRD) contained textual specifications of the process control software. The SRD was used by the designers to draw logic diagrams which were given as input to a code generator. The verification of the generated C code was done at 2 levels viz. (i) verification against specifications derived from logic diagrams, and (ii) verification against specifications derived from SRD. In this work we checked approximately 600 functional specifications of the software having roughly 15000 lines of code. (author)
Free fields on the Poincare group
Energy Technology Data Exchange (ETDEWEB)
Toller, M; Vanzo, L [Dipartimento di Matematica e Fisica della Libera Universita di Trento, Italy
1978-07-01
Using a general formalism the tensor and spinor free fields as fields defined on the Poincare group manifold is treated. From an action principle it is deduced, besides the usual Klein-Gordon or Dirac equations, also the equations which describe the transformation properties of the fields under proper Lorentz transformations.
Necessity of Integral Formalism
International Nuclear Information System (INIS)
Tao Yong
2011-01-01
To describe the physical reality, there are two ways of constructing the dynamical equation of field, differential formalism and integral formalism. The importance of this fact is firstly emphasized by Yang in case of gauge field [Phys. Rev. Lett. 33 (1974) 445], where the fact has given rise to a deeper understanding for Aharonov-Bohm phase and magnetic monopole [Phys. Rev. D 12 (1975) 3845]. In this paper we shall point out that such a fact also holds in general wave function of matter, it may give rise to a deeper understanding for Berry phase. Most importantly, we shall prove a point that, for general wave function of matter, in the adiabatic limit, there is an intrinsic difference between its integral formalism and differential formalism. It is neglect of this difference that leads to an inconsistency of quantum adiabatic theorem pointed out by Marzlin and Sanders [Phys. Rev. Lett. 93 (2004) 160408]. It has been widely accepted that there is no physical difference of using differential operator or integral operator to construct the dynamical equation of field. Nevertheless, our study shows that the Schrödinger differential equation (i.e., differential formalism for wave function) shall lead to vanishing Berry phase and that the Schrödinger integral equation (i.e., integral formalism for wave function), in the adiabatic limit, can satisfactorily give the Berry phase. Therefore, we reach a conclusion: There are two ways of describing physical reality, differential formalism and integral formalism; but the integral formalism is a unique way of complete description. (general)
Pragmatics for formal semantics
DEFF Research Database (Denmark)
Danvy, Olivier
2011-01-01
This tech talk describes how to write and how to inter-derive formal semantics for sequential programming languages. The progress reported here is (1) concrete guidelines to write each formal semantics to alleviate their proof obligations, and (2) simple calculational tools to obtain a formal...
Industrial use of formal methods formal verification
Boulanger, Jean-Louis
2012-01-01
At present the literature gives students and researchers of the very general books on the formal technics. The purpose of this book is to present in a single book, a return of experience on the used of the "formal technics" (such proof and model-checking) on industrial examples for the transportation domain. This book is based on the experience of people which are completely involved in the realization and the evaluation of safety critical system software based. The implication of the industrialists allows to raise the problems of confidentiality which could appear and so allow
Indian Academy of Sciences (India)
by testing of the components and successful testing leads to the software being ... Formal verification is based on formal methods which are mathematically based ..... scenario under which a similar error could occur. There are various other ...
An equation satisfied by the tangent to a shear-free, geodesic, null congruence
International Nuclear Information System (INIS)
Hogan, P.A.; Dublin Inst. for Advanced Studies
1987-01-01
A tensorial equation satisfied by the tangent to a shear-free geodesic, null congruence is presented. If the congruence is neither twist-free nor expansion-free then the equation defines a second, unique, null direction previously obtained, using the spinor formalism, by Somers. Some further properties of the equation are discussed. (orig.)
Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.
Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele
2015-12-01
Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.
Schwier, Richard A.; Seaton, J. X.
2013-01-01
Does learner participation vary depending on the learning context? Are there characteristic features of participation evident in formal, non-formal, and informal online learning environments? Six online learning environments were chosen as epitomes of formal, non-formal, and informal learning contexts and compared. Transcripts of online…
Improving Learner Outcomes in Lifelong Education: Formal Pedagogies in Non-Formal Learning Contexts?
Zepke, Nick; Leach, Linda
2006-01-01
This article explores how far research findings about successful pedagogies in formal post-school education might be used in non-formal learning contexts--settings where learning may not lead to formal qualifications. It does this by examining a learner outcomes model adapted from a synthesis of research into retention. The article first…
How (not) to teach Lorentz covariance of the Dirac equation
International Nuclear Information System (INIS)
Nikolić, Hrvoje
2014-01-01
In the textbook proofs of the Lorentz covariance of the Dirac equation, one treats the wave function as a spinor and gamma matrices as scalars, leading to a quite complicated formalism with several pedagogic drawbacks. As an alternative, I propose to teach the Dirac equation and its Lorentz covariance by using a much simpler, but physically equivalent formalism, in which these drawbacks do not appear. In this alternative formalism, the wave function transforms as a scalar and gamma matrices as components of a vector, such that the standard physically relevant bilinear combinations do not change their transformation properties. The alternative formalism allows also a natural construction of some additional non-standard bilinear combinations with well-defined transformation properties. (paper)
Combining Formal, Non-Formal and Informal Learning for Workforce Skill Development
Misko, Josie
2008-01-01
This literature review, undertaken for Australian Industry Group, shows how multiple variations and combinations of formal, informal and non-formal learning, accompanied by various government incentives and organisational initiatives (including job redesign, cross-skilling, multi-skilling, diversified career pathways, action learning projects,…
Denning, Peter J.
1991-01-01
The ongoing debate over the role of formalism and formal specifications in software features many speakers with diverse positions. Yet, in the end, they share the conviction that the requirements of a software system can be unambiguously specified, that acceptable software is a product demonstrably meeting the specifications, and that the design process can be carried out with little interaction between designers and users once the specification has been agreed to. This conviction is part of a larger paradigm prevalent in American management thinking, which holds that organizations are systems that can be precisely specified and optimized. This paradigm, which traces historically to the works of Frederick Taylor in the early 1900s, is no longer sufficient for organizations and software systems today. In the domain of software, a new paradigm, called user-centered design, overcomes the limitations of pure formalism. Pioneered in Scandinavia, user-centered design is spreading through Europe and is beginning to make its way into the U.S.
Seed conformal blocks in 4D CFT
Energy Technology Data Exchange (ETDEWEB)
Echeverri, Alejandro Castedo; Elkhidir, Emtinan; Karateev, Denis [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); Serone, Marco [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); ICTP,Strada Costiera 11, I-34151 Trieste (Italy)
2016-02-29
We compute in closed analytical form the minimal set of “seed' conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation (ℓ,ℓ̄) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0,|ℓ−ℓ̄|) and one (|ℓ−ℓ̄|,0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any (ℓ,ℓ̄), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p=|ℓ−ℓ̄| and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal field theories.
Euclidean supersymmetric solutions with the self-dual Weyl tensor
Directory of Open Access Journals (Sweden)
Masato Nozawa
2017-07-01
Full Text Available We explore the Euclidean supersymmetric solutions admitting the self-dual gauge field in the framework of N=2 minimal gauged supergravity in four dimensions. According to the classification scheme utilizing the spinorial geometry or the bilinears of Killing spinors, the general solution preserves one quarter of supersymmetry and is described by the Przanowski–Tod class with the self-dual Weyl tensor. We demonstrate that there exists an additional Killing spinor, provided the Przanowski–Tod metric admits a Killing vector that commutes with the principal one. The proof proceeds by recasting the metric into another Przanowski–Tod form. This formalism enables us to show that the self-dual Reissner–Nordström–Taub–NUT–AdS metric possesses a second Killing spinor, which has been missed over many years. We also address the supersymmetry when the Przanowski–Tod space is conformal to each of the self-dual ambi-toric Kähler metrics. It turns out that three classes of solutions are all reduced to the self-dual Carter family, by virtue of the nondegenerate Killing–Yano tensor.
Integrated formal operations plan
Energy Technology Data Exchange (ETDEWEB)
Cort, G.; Dearholt, W.; Donahue, S.; Frank, J.; Perkins, B.; Tyler, R.; Wrye, J.
1994-01-05
The concept of formal operations (that is, a collection of business practices to assure effective, accountable operations) has vexed the Laboratory for many years. To date most attempts at developing such programs have been based upon rigid, compliance-based interpretations of a veritable mountain of Department of Energy (DOE) orders, directives, notices, and standards. These DOE dictates seldom take the broad view but focus on highly specialized programs isolated from the overall context of formal operations. The result is a confusing array of specific, and often contradictory, requirements that produce a patchwork of overlapping niche programs. This unnecessary duplication wastes precious resources, dramatically increases the complexity of our work processes, and communicates a sense of confusion to our customers and regulators. Coupled with the artificial divisions that have historically existed among the Laboratory`s formal operations organizations (quality assurance, configuration management, records management, training, etc.), this approach has produced layers of increasingly vague and complex formal operations plans, each of which interprets its parent and adds additional requirements of its own. Organizational gridlock ensues whenever an activity attempts to implement these bureaucratic monstrosities. The integrated formal operations plan presented is to establish a set of requirements that must be met by an integrated formal operations program, assign responsibilities for implementation and operation of the program, and specify criteria against which the performance of the program will be measured. The accountable line manager specifies the items, processes, and information (the controlled elements) to which the formal operations program specified applies. The formal operations program is implemented using a graded approach based on the level of importance of the various controlled elements and the scope of the activities in which they are involved.
Helicity amplitudes for matter-coupled gravity
International Nuclear Information System (INIS)
Aldrovandi, R.; Novaes, S.F.; Spehler, D.
1992-07-01
The Weyl-van der Waerden spinor formalism is applied to the evaluation of helicity invariant amplitudes in the framework of linearized gravitation. The graviton couplings to spin-0, 1 - 2 , 1, and 3 - 2 particles are given, and, to exhibit the reach of this method, the helicity amplitudes for the process electron + positron → photon + graviton are obtained. (author)
Integrating semi-formal and formal requirements
Wieringa, Roelf J.; Olivé, Antoni; Dubois, Eric; Pastor, Joan Antoni; Huyts, Sander
1997-01-01
In this paper, we report on the integration of informal, semiformal and formal requirements specification techniques. We present a framework for requirements specification called TRADE, within which several well-known semiformal specification techniques are placed. TRADE is based on an analysis of
Fuzzy Killing spinors and supersymmetric D4 action on the fuzzy 2-sphere from the ABJM model
International Nuclear Information System (INIS)
Nastase, Horatiu; Papageorgakis, Constantinos
2009-01-01
Our recent construction arXiv:0903.3966 for the fuzzy 2-sphere in terms of bifundamentals, discovered in the context of the ABJM model, is shown to be explicitly equivalent to the usual (adjoint) fuzzy sphere construction. The matrices G-tilde α that define it play the role of fuzzy Killing spinors on the 2-sphere, out of which all spherical harmonics are constructed. Starting from the quadratic fluctuation action around these solutions in the mass-deformed ABJM theory, we recover a supersymmetric D4-brane action wrapping a 2-sphere, including fermions. We obtain both the usual D4 action with an unusual x-dependence on the sphere, as well as a twisted version in terms of the usual x-dependence, and contrast our result with the Maldacena-Nunez case of a D5 wrapping an S 2 . The twisted and unwisted fields are related by the same matrix G-tilde α .
Exploring the lambda model of the hybrid superstring
Energy Technology Data Exchange (ETDEWEB)
Schmidtt, David M. [Instituto de Física Teórica IFT/UNESP,Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, CEP 01140-070, São Paulo-SP (Brazil)
2016-10-26
The purpose of this contribution is to initiate the study of integrable deformations for different superstring theory formalisms that manifest the property of (classical) integrability. In this paper we choose the hybrid formalism of the superstring in the background AdS{sub 2}×S{sup 2} and explore in detail the most immediate consequences of its λ-deformation. The resulting action functional corresponds to the λ-model of the matter part of the fairly more sophisticated pure spinor formalism, which is also known to be classical integrable. In particular, the deformation preserves the integrability and the one-loop conformal invariance of its parent theory, hence being a marginal deformation.
Formal System Verification - Extension 2
2012-08-08
vision of truly trustworthy systems has been to provide a formally verified microkernel basis. We have previously developed the seL4 microkernel...together with a formal proof (in the theorem prover Isabelle/HOL) of its functional correctness [6]. This means that all the behaviours of the seL4 C...source code are included in the high-level, formal specification of the kernel. This work enabled us to provide further formal guarantees about seL4 , in
Psychologist in non-formal education
Pavićević Miljana S.
2011-01-01
Learning is not limited to school time. It starts at birth and continues throughout the entire life. Equally important as formal education there are also non-formal and informal education. Any kind of learning outside the traditional school can be called informal. However, it is not easy to define non-formal education because it is being described differently, for example as an education movement, process, system… Projects and programs implemented under the name of non-formal education are of...
Topical Roots of Formal Dialectic
Krabbe, Erik C. W.
Formal dialectic has its roots in ancient dialectic. We can trace this influence in Charles Hamblin's book on fallacies, in which he introduced his first formal dialectical systems. Earlier, Paul Lorenzen proposed systems of dialogical logic, which were in fact formal dialectical systems avant la
Lending Policies of Informal, Formal, and Semi-formal Lenders: Evidence from Vietnam
Lensink, B.W.; Pham, T.T.T.
2007-01-01
This paper compares lending policies of formal, informal and semiformal lenders with respect to household lending in Vietnam. The analysis suggests that the probability of using formal or semiformal credit increases if borrowers provide collateral, a guarantor and/or borrow for business-related
Concepciones acerca de la maternidad en la educación formal y no formal
Directory of Open Access Journals (Sweden)
Alvarado Calderón, Kathia
2005-06-01
Full Text Available Este artículo presenta algunos resultados de la investigación desarrollada en el Instituto de Investigación en Educación (INIE, bajo el nombre "Construcción del concepto de maternidad en la educación formal y no formal". Utilizando un enfoque cualitativo de investigación, recurrimos a las técnicas de elaboración de dibujos, entrevistas y grupo focal como recursos para la recolección de la información. De esta manera, podemos acercarnos a las concepciones de la maternidad que utilizan los participantes de las diferentes instancias educativas (formal y no formal con quienes se trabajó. This article presents some results the research developed in the Instituto de Investigación en Educación (INIE, named "Construcción del concepto de maternidad en la educación formal y no formal". It begins with a theoretical analysis about social conceptions regarding motherhood in the occidental societies. Among the techniques for gathering information were thematic drawing, interview and focus group, using a qualitative approach research method. This is followed by a brief summary of main findings. The article concludes with a proposal of future working lines for the deconstruction of the motherhood concept in formal and informal education contexts.
OXIDATION OF CYCLIC AMINES BY MOLYBDENUM(II) AND ...
African Journals Online (AJOL)
Preferred Customer
metal is in formal oxidation state +2. Since no reduction can take place without oxidation and vice versa, we can reasonably say the reduction of Mo(II) and W(II) species is accompanied by oxidation of the amine. At this juncture, we should point out that C=N bonds are also known to absorb IR radiation in the same spectral ...
DEFF Research Database (Denmark)
Levinsen, Karin Tweddell; Sørensen, Birgitte Holm
2013-01-01
are examined and the relation between network society competences, learners’ informal learning strategies and ICT in formalized school settings over time is studied. The authors find that aspects of ICT like multimodality, intuitive interaction design and instant feedback invites an informal bricoleur approach....... When integrated into certain designs for teaching and learning, this allows for Formalized Informal Learning and support is found for network society competences building....
A formalized design process for bacterial consortia that perform logic computing.
Directory of Open Access Journals (Sweden)
Weiyue Ji
Full Text Available The concept of microbial consortia is of great attractiveness in synthetic biology. Despite of all its benefits, however, there are still problems remaining for large-scaled multicellular gene circuits, for example, how to reliably design and distribute the circuits in microbial consortia with limited number of well-behaved genetic modules and wiring quorum-sensing molecules. To manage such problem, here we propose a formalized design process: (i determine the basic logic units (AND, OR and NOT gates based on mathematical and biological considerations; (ii establish rules to search and distribute simplest logic design; (iii assemble assigned basic logic units in each logic operating cell; and (iv fine-tune the circuiting interface between logic operators. We in silico analyzed gene circuits with inputs ranging from two to four, comparing our method with the pre-existing ones. Results showed that this formalized design process is more feasible concerning numbers of cells required. Furthermore, as a proof of principle, an Escherichia coli consortium that performs XOR function, a typical complex computing operation, was designed. The construction and characterization of logic operators is independent of "wiring" and provides predictive information for fine-tuning. This formalized design process provides guidance for the design of microbial consortia that perform distributed biological computation.
The base of the iceberg: informal learning and its impact on formal and non-formal learning
Rogers, Alan
2014-01-01
The author looks at learning (formal, non-formal and informal) and examines the hidden world of informal (unconscious, unplanned) learning. He points out the importance of informal learning for creating tacit attitudes and values, knowledge and skills which influence (conscious, planned) learning - formal and non-formal. Moreover, he explores the implications of informal learning for educational planners and teachers in the context of lifelong learning. While mainly aimed at adult educators, ...
DEFF Research Database (Denmark)
Borstnik, N. M.; Nielsen, Holger Frits Bech
2008-01-01
The genuine Kaluza-Klein-like theories-with no fields in addition to gravity-have difficulties with the existence of massless spinors after the compactification of some space dimensions [E. Witten, Nucl. Phys. B 186 (1981) 412; E. Witten, Fermion quantum numbers in Kaluza-Klein theories, Princeto...
Multiphoton production at high energies in the standard model. II
International Nuclear Information System (INIS)
Mahlon, G.
1993-01-01
We examine multiphoton production in the electroweak sector of the standard model in the high-energy limit using the equivalence theorem in combination with spinor helicity techniques. We utilize currents consisting of a charged scalar, spinor, or vector line that radiates n photons. Only one end of the charged line is off shell in these currents, which are known for the cases of like-helicity and one unlike-helicity photons. We obtain a wide variety of helicity amplitudes for processes involving two pairs of charged particles by considering combinations of four currents. We examine the situation with respect to currents which have both ends of the charged line off shell, and present solutions for the case of like-helicity photons. These new currents may be combined with two of the original currents to produce additional amplitudes involving Higgs bosons, longitudinal Z, or neutrino pairs
Worldsheet dilatation operator for the AdS superstring
Energy Technology Data Exchange (ETDEWEB)
Ramírez, Israel [Departamento de Física, Universidad Técnica Federico Santa María,Casilla 110-V, Valparaíso (Chile); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile)
2016-05-23
In this work we propose a systematic way to compute the logarithmic divergences of composite operators in the pure spinor description of the AdS{sub 5}×S{sup 5} superstring. The computations of these divergences can be summarized in terms of a dilatation operator acting on the local operators. We check our results with some important composite operators of the formalism.
Gauge fixing problem in the conformal QED
International Nuclear Information System (INIS)
Ichinose, Shoichi
1986-01-01
The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)
Time-dependent observables in heavy ion collisions. Part I. Setting up the formalism
Wu, Bin; Kovchegov, Yuri V.
2018-03-01
We adapt the Schwinger-Keldysh formalism to study heavy-ion collisions in perturbative QCD. Employing the formalism, we calculate the two-point gluon correlation function G 22 aμ, bν due to the lowest-order classical gluon fields in the McLerran-Venugopalan model of heavy ion collisions and observe an interesting transition from the classical fields to the quasi-particle picture at later times. Motivated by this observation, we push the formalism to higher orders in the coupling and calculate the contribution to G 22 aμ, bν coming from the diagrams representing a single rescattering between two of the produced gluons. We assume that the two gluons go on mass shell both before and after the rescattering. The result of our calculation depends on which region of integration over the proper time of the rescattering τ Z gives the correct correlation function at late proper time τ when the gluon distribution is measured. For (i) τ Z ≫ 1 /Q s and τ - τ Z ≫ 1 /Q s (with Q s the saturation scale) we obtain the same results as from the Boltzmann equation. For (ii) τ - τ Z ≫ τ Z ≫ 1 /Q s we end up with a result very different from kinetic theory and consistent with a picture of "free-streaming" particles. Due to the approximations made, our calculation is too coarse to indicate whether the region (i) or (ii) is the correct one: to resolve this controversy, we shall present a detailed diagrammatic calculation of the rescattering correction in the φ 4 theory in the second paper of this duplex.
Radiative corrections in a vector-tensor model
International Nuclear Information System (INIS)
Chishtie, F.; Gagne-Portelance, M.; Hanif, T.; Homayouni, S.; McKeon, D.G.C.
2006-01-01
In a recently proposed model in which a vector non-Abelian gauge field interacts with an antisymmetric tensor field, it has been shown that the tensor field possesses no physical degrees of freedom. This formal demonstration is tested by computing the one-loop contributions of the tensor field to the self-energy of the vector field. It is shown that despite the large number of Feynman diagrams in which the tensor field contributes, the sum of these diagrams vanishes, confirming that it is not physical. Furthermore, if the tensor field were to couple with a spinor field, it is shown at one-loop order that the spinor self-energy is not renormalizable, and hence this coupling must be excluded. In principle though, this tensor field does couple to the gravitational field
Formalized Epistemology, Logic, and Grammar
Bitbol, Michel
The task of a formal epistemology is defined. It appears that a formal epistemology must be a generalization of "logic" in the sense of Wittgenstein's Tractatus. The generalization is required because, whereas logic presupposes a strict relation between activity and language, this relation may be broken in some domains of experimental enquiry (e.g., in microscopic physics). However, a formal epistemology should also retain a major feature of Wittgenstein's "logic": It must not be a discourse about scientific knowledge, but rather a way of making manifest the structures usually implicit in knowledge-gaining activity. This strategy is applied to the formalism of quantum mechanics.
Sumida Huaman, Elizabeth; Valdiviezo, Laura Alicia
2014-01-01
In this article, we propose to approach Indigenous education beyond the formal/non-formal dichotomy. We argue that there is a critical need to conscientiously include Indigenous knowledge in education processes from the school to the community; particularly, when formal systems exclude Indigenous cultures and languages. Based on ethnographic…
New procedure for departure formalities
HR & GS Departments
2011-01-01
As part of the process of simplifying procedures and rationalising administrative processes, the HR and GS Departments have introduced new personalised departure formalities on EDH. These new formalities have applied to students leaving CERN since last year and from 17 October 2011 this procedure will be extended to the following categories of CERN personnel: Staff members, Fellows and Associates. It is planned to extend this electronic procedure to the users in due course. What purpose do departure formalities serve? The departure formalities are designed to ensure that members of the personnel contact all the relevant services in order to return any necessary items (equipment, cards, keys, dosimeter, electronic equipment, books, etc.) and are aware of all the benefits to which they are entitled on termination of their contract. The new departure formalities on EDH have the advantage of tailoring the list of services that each member of the personnel must visit to suit his individual contractual and p...
New correlation potential for the local-spin-density functional formalism. II
International Nuclear Information System (INIS)
Kolar, M.; Farkas, L.
1982-01-01
Using the new parameterization for the correlation potential which seems to be the best that is at present available within the local-spin-density (LSD) functional formalism, the Fermi contact term in light atoms (up to Ni) is calculated. Although the overall improvement of the previous LSD results is obtained, discrepancy between theory and experiment remains rather large. It seems that the local approximation for exchange and correlation fails to predict such quantities as magnetic-moment density near the nucleus. It is also shown that the self-interaction correction does not remedy this failure. Further, the effect of the nonzero nuclear radius is investigated and found to be most important in the lightest atoms (e.g. a factor of 0.664 appears in the case of Li). This fact was omitted in all previous calculations and throws doubt on the reported excellent agreement of the results of many-body perturbation theory with experiment. It was also verified that the contact approximation of the Fermi contact term is really good enough. (author)
Concepts of formal concept analysis
Žáček, Martin; Homola, Dan; Miarka, Rostislav
2017-07-01
The aim of this article is apply of Formal Concept Analysis on concept of world. Formal concept analysis (FCA) as a methodology of data analysis, information management and knowledge representation has potential to be applied to a verity of linguistic problems. FCA is mathematical theory for concepts and concept hierarchies that reflects an understanding of concept. Formal concept analysis explicitly formalizes extension and intension of a concept, their mutual relationships. A distinguishing feature of FCA is an inherent integration of three components of conceptual processing of data and knowledge, namely, the discovery and reasoning with concepts in data, discovery and reasoning with dependencies in data, and visualization of data, concepts, and dependencies with folding/unfolding capabilities.
Critical formalism or digital biomorphology. The contemporary architecture formal dilema
Directory of Open Access Journals (Sweden)
Beatriz Villanueva Cajide
2018-05-01
Full Text Available With the dawn of digital media the architecture’s formal possibilities reached a level unknown before. The Guggenheim Museo branch in Bilbao appears in 1993 as the materialisation of the possibilities of the use of digital tools in architecture’s design, starting the development of a digital based architecture which currently has reached an exhaustion level that is evident in the repetition biomorphologic shapes emerged from the digital determinism to which some contemporary architectural practices have converged. While the digitalisation of the architectural process is irreversible and desirable, it is necessary to rethink the terms of this collaboration beyond the possibilities of the digital tools themselves. This article proposes to analyse seven texts written in the very moment when digitalisation became a real possibility, between Gehry’s conception of the Guggenheim Museum in 1992 and the Congress on Morphogenesis hold in the Architectural Association in 2004, in order to explore the possibility of reversing the process that has led to the formal exhaustion of digital architecture, from the acceptance of incorporating strategies coming from a contemporary critical formalism.
Geometry and Formal Linguistics.
Huff, George A.
This paper presents a method of encoding geometric line-drawings in a way which allows sets of such drawings to be interpreted as formal languages. A characterization of certain geometric predicates in terms of their properties as languages is obtained, and techniques usually associated with generative grammars and formal automata are then applied…
Formal Testing of Correspondence Carrying Software
Bujorianu, M.C.; Bujorianu, L.M.; Maharaj, S.
2008-01-01
Nowadays formal software development is characterised by use of multitude formal specification languages. Test case generation from formal specifications depends in general on a specific language, and, moreover, there are competing methods for each language. There is a need for a generic approach to
DEFF Research Database (Denmark)
Villesèche, Florence; Josserand, Emmanuel
2017-01-01
/organisations and the wider social group of women in business. Research limitations/implications: The authors focus on the distinction between external and internal formal women-only networks while also acknowledging the broader diversity that can characterise such networks. Their review provides the reader with an insight...... member level, the authors suggest that such networks can be of value for organisations and the wider social group of women in management and leadership positions.......Purpose: The purpose of this paper is to review the emerging literature on formal women-only business networks and outline propositions to develop this under-theorised area of knowledge and stimulate future research. Design/methodology/approach: The authors review the existing literature on formal...
International Nuclear Information System (INIS)
Danilov, G.S.
1995-01-01
A new formalism for ghosts on complex (1 bar 1) supermanifolds of genus n > 1 is discussed in superstring theory. In this formalism, vacuum correlation functions for ghost superfields differ substantially from correlation functions discussed earlier. In particular, the new correlation functions do not have unphysical poles. Among other things, these correlation functions take into account contributions to partition functions from the phase space of modular forms and from zero modes of ghosts. The above correlation functions, obtained for all even spinor structures, can be used to evaluate partition functions from equations that are nothing but Ward identities. 21 refs
Formal analysis of design process dynamics
Bosse, T.; Jonker, C.M.; Treur, J.
2010-01-01
This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design
Formal Analysis of Design Process Dynamics
Bosse, T.; Jonker, C.M.; Treur, J.
2010-01-01
This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design
Formalizing the concept of sound.
Energy Technology Data Exchange (ETDEWEB)
Kaper, H. G.; Tipei, S.
1999-08-03
The notion of formalized music implies that a musical composition can be described in mathematical terms. In this article we explore some formal aspects of music and propose a framework for an abstract approach.
Formal Analysis of Domain Models
National Research Council Canada - National Science Library
Bharadwaj, Ramesh
2002-01-01
Recently, there has been a great deal of interest in the application of formal methods, in particular, precise formal notations and automatic analysis tools for the creation and analysis of requirements specifications (i.e...
Directory of Open Access Journals (Sweden)
Kozue Kawasaki
2001-12-01
Full Text Available O idoso fragilizado, mantido em seu domicílio, requer cuidados específicos, os quais são realizados muitas vezes por pessoas contratadas pela família para tal, denominadas cuidadores formais. Frente o aumento da oferta de trabalho destas pessoas e a escassez de literatura nacional sobre seu perfiL, desenvolvemos um estudo com 41 pessoas que ofereceram seus serviços através de anúncios em dois jornais de maior circulação no município de Campinas, São Paulo. Tal estudo teve por objetivos: 1. caracterizar estes cuidadores (este objetivo foi contemplado com um artigo publicado anteriormente e 2. verificar as atividades propostas para a assistência ao idoso. No presente trabalho serão apresentados os dados referentes ao segundo objetivo.El anciano debilitado, mantenido en su habitación, carece de cuidados específicos, los cuales han sido realizados muchas veces por personas contratadas, denominadas cuidadores formales. Frente al aumento de oferta de trabajo de estas personas y a la escasez de literatura sobre el perfil, desarrollamos un estudio con 41 anunciantes que ofrecieron sus servicios dos periódicos de grande circulación en el municipio de Campinas, San Pablo, con los siguientes objetivos: 1. caracterizar estos cuidadores y 2. verificar las actividades propuestas para la asistencial al anciano. El presente trabajo presenta los datos referentes a lo secundo objetivo.The frail elderly, maintained in its home, request specific cares, which are accomplished many times by people contracted, denominated formal caregivers. With the increase of the offer of these people's work and the shortage literature on its profile, we developed a study with 41 advertisers that offered their services in two newspapers of larger circulation in the city of Campinas, São Paulo, with the following objectives: 1. to characterize these caregivers and 2. to verify the activities proposals for care to the elderly. In the present work the referring data
Formal Methods for Life-Critical Software
Butler, Ricky W.; Johnson, Sally C.
1993-01-01
The use of computer software in life-critical applications, such as for civil air transports, demands the use of rigorous formal mathematical verification procedures. This paper demonstrates how to apply formal methods to the development and verification of software by leading the reader step-by-step through requirements analysis, design, implementation, and verification of an electronic phone book application. The current maturity and limitations of formal methods tools and techniques are then discussed, and a number of examples of the successful use of formal methods by industry are cited.
Scalable Techniques for Formal Verification
Ray, Sandip
2010-01-01
This book presents state-of-the-art approaches to formal verification techniques to seamlessly integrate different formal verification methods within a single logical foundation. It should benefit researchers and practitioners looking to get a broad overview of the spectrum of formal verification techniques, as well as approaches to combining such techniques within a single framework. Coverage includes a range of case studies showing how such combination is fruitful in developing a scalable verification methodology for industrial designs. This book outlines both theoretical and practical issue
A Survey of Formal Methods in Software Development
DEFF Research Database (Denmark)
Bjørner, Dines
2012-01-01
The use of formal methods and formal techniques in industry is steadily growing. In this survey we shall characterise what we mean by software development and by a formal method; briefly overview a history of formal specification languages - some of which are: VDM (Vienna Development Method, 1974...... need for multi-language formalisation (Petri Nets, MSC, StateChart, Temporal Logics); the sociology of university and industry acceptance of formal methods; the inevitability of the use of formal software development methods; while referring to seminal monographs and textbooks on formal methods....
The Integration of Formal and Non-formal Education: The Dutch “brede school”
Directory of Open Access Journals (Sweden)
du Bois-Reymond, Manuela
2009-12-01
Full Text Available The Dutch “brede school” (BS development originates in the 1990s and has spread unevenly since: quicker in the primary than secondary educational sector. In 2007, there were about 1000 primary and 350 secondary BS schools and it is the intention of the government as well as the individual municipalities to extend that number and make the BS the dominant school form of the near future. In the primary sector, a BS cooperates with crèche and preschool facilities, besides possible other neighborhood partners. The main targets are, first, to enhance educational opportunities, particularly for children with little (western- cultural capital, and secondly to increase women’s labor market participation by providing extra familial care for babies and small children. All primary schools are now obliged to provide such care. In the secondary sector, a BS is less neighborhood-orientated than a primary BS because those schools are bigger and more often located in different buildings. As in the primary sector, there are broad and more narrow BS, the first profile cooperating with many non-formal and other partners and facilities and the second with few. On the whole, there is a wide variety of BS schools, with different profiles and objectives, dependent on the needs and wishes of the initiators and the neighborhood. A BS is always the result of initiatives of the respective school and its partners: parents, other neighborhood associations, municipality etc. BS schools are not enforced by the government although the general trend will be that existing school organizations transform into BS. The integration of formal and non-formal education and learning is more advanced in primary than secondary schools. In secondary education, vocational as well as general, there is a clear dominance of formal education; the non-formal curriculum serves mainly two lines and objectives: first, provide attractive leisure activities and second provide compensatory
Formalizing Probabilistic Safety Claims
Herencia-Zapana, Heber; Hagen, George E.; Narkawicz, Anthony J.
2011-01-01
A safety claim for a system is a statement that the system, which is subject to hazardous conditions, satisfies a given set of properties. Following work by John Rushby and Bev Littlewood, this paper presents a mathematical framework that can be used to state and formally prove probabilistic safety claims. It also enables hazardous conditions, their uncertainties, and their interactions to be integrated into the safety claim. This framework provides a formal description of the probabilistic composition of an arbitrary number of hazardous conditions and their effects on system behavior. An example is given of a probabilistic safety claim for a conflict detection algorithm for aircraft in a 2D airspace. The motivation for developing this mathematical framework is that it can be used in an automated theorem prover to formally verify safety claims.
Augmenting Reality and Formality of Informal and Non-Formal Settings to Enhance Blended Learning
Pérez-Sanagustin, Mar; Hernández-Leo, Davinia; Santos, Patricia; Kloos, Carlos Delgado; Blat, Josep
2014-01-01
Visits to museums and city tours have been part of higher and secondary education curriculum activities for many years. However these activities are typically considered "less formal" when compared to those carried out in the classroom, mainly because they take place in informal or non-formal settings. Augmented Reality (AR) technologies…
Indian Academy of Sciences (India)
dimensional superfields, is a clear signature of the presence of the (anti-)BRST invariance in the original. 4D theory. Keywords. Non-Abelian 1-form gauge theory; Dirac fields; (anti-)Becchi–Roucet–Stora–. Tyutin invariance; superfield formalism; ...
Gutiérrez-Santiuste, Elba; Gámiz-Sánchez, Vanesa-M.; Gutiérrez-Pérez, Jose
2015-01-01
The study presents a comparative analysis of two virtual learning formats: one non-formal through a Massive Open Online Course (MOOC) and the other formal through b-learning. We compare the communication barriers and the satisfaction perceived by the students (N = 249) by developing a qualitative analysis using semi-structured questionnaires and…
Formality of the Chinese collective leadership.
Li, Haiying; Graesser, Arthur C
2016-09-01
We investigated the linguistic patterns in the discourse of four generations of the collective leadership of the Communist Party of China (CPC) from 1921 to 2012. The texts of Mao Zedong, Deng Xiaoping, Jiang Zemin, and Hu Jintao were analyzed using computational linguistic techniques (a Chinese formality score) to explore the persuasive linguistic features of the leaders in the contexts of power phase, the nation's education level, power duration, and age. The study was guided by the elaboration likelihood model of persuasion, which includes a central route (represented by formal discourse) versus a peripheral route (represented by informal discourse) to persuasion. The results revealed that these leaders adopted the formal, central route more when they were in power than before they came into power. The nation's education level was a significant factor in the leaders' adoption of the persuasion strategy. The leaders' formality also decreased with their increasing age and in-power times. However, the predictability of these factors for formality had subtle differences among the different types of leaders. These results enhance our understanding of the Chinese collective leadership and the role of formality in politically persuasive messages.
DEFF Research Database (Denmark)
Bjørner, Dines; Havelund, Klaus
2014-01-01
In this "40 years of formal methods" essay we shall first delineate, Sect. 1, what we mean by method, formal method, computer science, computing science, software engineering, and model-oriented and algebraic methods. Based on this, we shall characterize a spectrum from specification-oriented met...
International Nuclear Information System (INIS)
Chaux, Pierre-Yves
2013-01-01
Preventive risk assessment of a complex system rely on a dynamic models which describe the link between the system failure and the scenarios of failure and repair events from its components. The qualitative analyses of a binary dynamic and repairable system is aiming at computing and analyse the scenarios that lead to the system failure. Since such systems describe a large set of those, only the most representative ones, called Minimal Cut Sequences (MCS), are of interest for the safety engineer. The lack of a formal definition for the MCS has generated multiple definitions either specific to a given model (and thus not generic) or informal. This work proposes i) a formal framework and definition for the MCS while staying independent of the reliability model used, ii) the methodology to compute them using property extracted from their formal definition, iii) an extension of the formal framework for multi-states components in order to perform the qualitative analyses of Boolean logic Driven Markov Processes (BDMP) models. Under the hypothesis that the scenarios implicitly described by any reliability model can always be represented by a finite automaton, this work is defining the coherency for dynamic and repairable systems as the way to give a minimal representation of all scenarios that are leading to the system failure. (author)
The PIP-II Conceptual Design Report
Energy Technology Data Exchange (ETDEWEB)
Ball, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Burov, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chase, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chakravarty, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chen, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dixon, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Edelen, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holmes, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kazakov, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Klebaner, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kourbanis, I. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leveling, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Melnychuk, O. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nicol, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ostiguy, J. -F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pasquinelli, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Passarelli, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ristori, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pellico, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Patrick, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rakhno, I. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Saini, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schappert, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Steimel, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Scarpine, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vivoli, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Warner, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yakovlev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ostroumov, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Conway, Z. [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-03-01
The Proton Improvement Plan-II (PIP-II) encompasses a set of upgrades and improvements to the Fermilab accelerator complex aimed at supporting a world-leading neutrino program over the next several decades. PIP-II is an integral part of the strategic plan for U.S. High Energy Physics as described in the Particle Physics Project Prioritization Panel (P5) report of May 2014 and formalized through the Mission Need Statement approved in November 2015. As an immediate goal, PIP-II is focused on upgrades to the Fermilab accelerator complex capable of providing proton beam power in excess of 1 MW on target at the initiation of the Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) program, currently anticipated for the mid- 2020s. PIP-II is a part of a longer-term goal of establishing a high-intensity proton facility that is unique within the world, ultimately leading to multi-MW capabilities at Fermilab....
A Formalization of Linkage Analysis
DEFF Research Database (Denmark)
Ingolfsdottir, Anna; Christensen, A.I.; Hansen, Jens A.
In this report a formalization of genetic linkage analysis is introduced. Linkage analysis is a computationally hard biomathematical method, which purpose is to locate genes on the human genome. It is rooted in the new area of bioinformatics and no formalization of the method has previously been ...
AsmL Specification of a Ptolemy II Scheduler
DEFF Research Database (Denmark)
Lázaro Cuadrado, Daniel; Koch, Peter; Ravn, Anders Peter
2003-01-01
Ptolemy II is a tool that combines different computational models for simulation and design of embedded systems. AsmL is a software specification language based on the Abstract State Machine formalism. This paper reports on development of an AsmL model of the Synchronous Dataflow domain scheduler...
Leibniz' First Formalization of Syllogistics
DEFF Research Database (Denmark)
Robering, Klaus
2014-01-01
of letters just those which belong to the useful, i.e., valid, modes. The set of codes of valid modes turns out to be a so-called "regular" language (in the sense of formal-language-theory). Leibniz' formalization of syllogistics in his Dissertatio thus contains an estimation of the computational complexity...
Formalizing the concept phase of product development
Schuts, M.; Hooman, J.
2015-01-01
We discuss the use of formal techniques to improve the concept phase of product realisation. As an industrial application, a new concept of interventional X-ray systems has been formalized, using model checking techniques and the simulation of formal models. cop. Springer International Publishing
A survey of formal languages for contracts
DEFF Research Database (Denmark)
Hvitved, Tom
2010-01-01
In this short paper we present the current status on formal languages and models for contracts. By a formal model is meant an unambiguous and rigorous representation of contracts, in order to enable their automatic validation, execution, and analysis — activates that are collectively referred...... to as contract lifecycle management (CLM). We present a set of formalism requirements, which represent features that any ideal contract model should support, based on which we present a comparative survey of existing contract formalisms....
Energy Technology Data Exchange (ETDEWEB)
Salam, A. [Imperial College of Science and Technology, London (United Kingdom)
1963-01-15
Throughout the history of quantum theory, a battle has raged between the amateurs and professional group theorists. The amateurs have maintained that everything one needs in the theory of groups can be discovered by the light of nature provided one knows how to multiply two matrices. In support of this claim, they of course, justifiably, point to the successes of that prince of amateurs in this field, Dirac, particularly with the spinor representations of the Lorentz group. As an amateur myself, I strongly believe in the truth of the non-professionalist creed. I think perhaps there is not much one has to learn in the way of methodology from the group theorists except caution. But this does not mean one should not be aware of the riches which have been amassed over the course of years particularly in that most highly developed of all mathematical disciplines - the theory of Lie groups. My lectures then are an amateur's attempt to gather some of the fascinating results for compact simple Lie groups which are likely to be of physical interest. I shall state theorems; and with a physicist's typical unconcern rarely, if ever, shall I prove these. Throughout, the emphasis will be to show the close similarity of these general groups with that most familiar of all groups, the group of rotations in three dimensions.
Differential Calculus on the Quantum Sphere and Deformed Self-Duality Equation
International Nuclear Information System (INIS)
Zupnik, B.M.
1994-01-01
We discuss the left-covariant 3-dimensional differential calculus on the quantum sphere SU q (2)/U(1). The SU q (2)-spinor harmonics are treated as coordinates of the quantum sphere. We consider the gauge theory for the quantum group SU q (2) x U(1) on the deformed Euclidean space E q (4). A q-generalization of the harmonic-gauge-field formalism is suggested. This formalism is applied for the harmonic (Twistor) interpretation of the quantum-group self-duality equation (QGSDE). We consider the zero-curvature representation and the general construction of QGSDE-solutions in terms of the analytic pre potential. 24 refs
20 CFR 702.336 - Formal hearings; new issues.
2010-04-01
... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Formal hearings; new issues. 702.336 Section... Procedures Formal Hearings § 702.336 Formal hearings; new issues. (a) If, during the course of the formal hearing, the evidence presented warrants consideration of an issue or issues not previously considered...
Cameron, Roslyn; Harrison, Jennifer L.
2012-01-01
Definitions, differences and relationships between formal, non-formal and informal learning have long been contentious. There has been a significant change in language and reference from adult education to what amounts to forms of learning categorised by their modes of facilitation. Nonetheless, there is currently a renewed interest in the…
Radovic, Slaviša; Passey, Don
2016-01-01
The aim of this paper is to explore further an under-developed area--how drivers of curriculum, pedagogy and assessment conceptions and practices shape the creation and uses of technologically based resources to support mathematics learning across informal, non-formal and formal learning environments. The paper considers: the importance of…
NON-FORMAL EDUCATION, OVEREDUCATION AND WAGES
SANDRA NIETO; RAÚL RAMOS
2013-01-01
Why do overeducated workers participate in non-formal education activities? Do not they suffer from an excess of education? Using microdata from the Spanish sample of the 2007 Adult Education Survey, we have found that overeducated workers participate more than the rest in non-formal education and that they earn higher wages than overeducated workers who did not participate. This result can be interpreted as evidence that non-formal education allows overeducated workers to acquire new abiliti...
40 CFR 35.938-4 - Formal advertising.
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Formal advertising. 35.938-4 Section 35... advertising. Each contract shall be awarded after formal advertising, unless negotiation is permitted in accordance with § 35.936-18. Formal advertising shall be in accordance with the following: (a) Adequate...
Local freedom in the gravitational field revisited
International Nuclear Information System (INIS)
Pareja, Maria Jesus; MacCallum, Malcolm A H
2006-01-01
Maartens et al (1997 Class. Quantum Grav. 14 1927) gave a covariant characterization, in a (1 + 3) formalism based on a perfect fluid's velocity, of the parts of the first derivatives of the curvature tensor in general relativity which are 'locally free', i.e. not pointwise determined by the fluid energy-momentum and its derivative. The full decomposition of independent curvature derivative components given in earlier work on the spinor approach to the equivalence problem enables analogous general results to be stated for any order: the independent matter terms can also be characterized. Explicit relations between the two sets of results are obtained. The 24 Maartens et al locally free data are shown to correspond to the ∇Ψ quantities in the spinor approach, and the fluid terms are similarly related to the remaining 16 independent quantities in the first derivatives of the curvature
Local freedom in the gravitational field revisited
Energy Technology Data Exchange (ETDEWEB)
Pareja, Maria Jesus [Institute for Astronomy and Astrophysics, University of Tuebingen, Auf der Morgenstelle 10, D-72076 Tuebingen (Germany); MacCallum, Malcolm A H [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)
2006-08-07
Maartens et al (1997 Class. Quantum Grav. 14 1927) gave a covariant characterization, in a (1 + 3) formalism based on a perfect fluid's velocity, of the parts of the first derivatives of the curvature tensor in general relativity which are 'locally free', i.e. not pointwise determined by the fluid energy-momentum and its derivative. The full decomposition of independent curvature derivative components given in earlier work on the spinor approach to the equivalence problem enables analogous general results to be stated for any order: the independent matter terms can also be characterized. Explicit relations between the two sets of results are obtained. The 24 Maartens et al locally free data are shown to correspond to the {nabla}{psi} quantities in the spinor approach, and the fluid terms are similarly related to the remaining 16 independent quantities in the first derivatives of the curvature.
Seniority in projection operator formalism
International Nuclear Information System (INIS)
Ullah, N.
1976-01-01
It is shown that the concept of seniority can be introduced in projection operator formalism through the use of the operator Q, which has been defined by de-Shalit and Talmi. The usefulness of seniority concept in projection operator formalism is discussed. An example of four nucleons in j=3/2 configuration is given for illustrative purposes
A Mathematical Formalization Proposal for Business Growth
Directory of Open Access Journals (Sweden)
Gheorghe BAILESTEANU
2013-01-01
Full Text Available Economic sciences have known a spectacular evolution in the last century; beginning to use axiomatic methods, applying mathematical instruments as a decision-making tool. The quest to formalization needs to be addressed from various different angles, reducing entry and operating formal costs, increasing the incentives for firms to operate formally, reducing obstacles to their growth, and searching for inexpensive approaches through which to enforce compliancy with government regulations. This paper proposes a formalized approach to business growth, based on mathematics and logics, taking into consideration the particularities of the economic sector.
What Determines Firms’ Decisions to Formalize?
Neil McCulloch; Günther G. Schulze; Janina Voss
2010-01-01
In this paper we analyze the decision of small and micro firms to formalize, i.e. to obtain business and other licenses in rural Indonesia. We use the rural investment climate survey (RICS) that consists of non-farm rural enterprises, most of them microenterprises, and analyze the effect of formalization on tax payments, corruption, access to credit and revenue, taking into account the endogeneity of the formalization decision to such benefits and costs. We show, contrary to most of the liter...
Lifelong Learning to Empowerment: Beyond Formal Education
Carr, Alexis; Balasubramanian, K.; Atieno, Rosemary; Onyango, James
2018-01-01
This paper discusses the relevance of lifelong learning vis-à-vis the Sustainable Development Goals (SDGs) and stresses the need for an approach blending formal education, non-formal and informal learning. The role of Open and Distance Learning (ODL) in moving beyond formal education and the importance of integrating pedagogy, andragogy and…
Formal Symplectic Groupoid of a Deformation Quantization
Karabegov, Alexander V.
2005-08-01
We give a self-contained algebraic description of a formal symplectic groupoid over a Poisson manifold M. To each natural star product on M we then associate a canonical formal symplectic groupoid over M. Finally, we construct a unique formal symplectic groupoid ‘with separation of variables’ over an arbitrary Kähler-Poisson manifold.
multiPDEVS: A Parallel Multicomponent System Specification Formalism
Directory of Open Access Journals (Sweden)
Damien Foures
2018-01-01
Full Text Available Based on multiDEVS formalism, we introduce multiPDEVS, a parallel and nonmodular formalism for discrete event system specification. This formalism provides combined advantages of PDEVS and multiDEVS approaches, such as excellent simulation capabilities for simultaneously scheduled events and components able to influence each other using exclusively their state transitions. We next show the soundness of the formalism by giving a construction showing that any multiPDEVS model is equivalent to a PDEVS atomic model. We then present the simulation procedure associated, usually called abstract simulator. As a well-adapted formalism to express cellular automata, we finally propose to compare an implementation of multiPDEVS formalism with a more classical Cell-DEVS implementation through a fire spread application.
The role of formal specifications
International Nuclear Information System (INIS)
McHugh, J.
1994-01-01
The role of formal requirements specification is discussed under the premise that the primary purpose of such specifications is to facilitate clear and unambiguous communications among the communities of interest for a given project. An example is presented in which the failure to reach such an understanding resulted in an accident at a chemical plant. Following the example, specification languages based on logical formalisms and notations are considered. These are rejected as failing to serve the communications needs of diverse communities. The notion of a specification as a surrogate for a program is also considered and rejected. The paper ends with a discussion of the type of formal notation that will serve the communications role and several encouraging developments are noted
Spinor bose gases in cubic optical lattice
International Nuclear Information System (INIS)
Mobarak, Mohamed Saidan Sayed Mohamed
2014-01-01
In recent years the quantum simulation of condensed-matter physics problems has resulted from exciting experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice. In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the global U (1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transformation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and particle number density in the superfluid phase. We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves to extremize only the effective Ginzburg-Landau action with respect to the order parameters. Without external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic (ferromagnetic) interactions, i.e. only the
Bridging In-school and Out-of-school Learning: Formal, Non-Formal, and Informal Education
Eshach, Haim
2007-04-01
The present paper thoroughly examines how one can effectively bridge in-school and out-of-school learning. The first part discusses the difficulty in defining out-of-school learning. It proposes to distinguish three types of learning: formal, informal, and non-formal. The second part raises the question of whether out-of-school learning should be dealt with in the in-school system, in view of the fact that we experience informal learning anyway as well as considering the disadvantages and difficulties teachers are confronted with when planning and carrying out scientific fieldtrips. The voices of the teachers, the students, and the non-formal institution staff are heard to provide insights into the problem. The third part discusses the cognitive and affective aspects of non-formal learning. The fourth part presents some models explaining scientific fieldtrip learning and based on those models, suggests a novel explanation. The fifth part offers some recommendations of how to bridge in and out-of-school learning. The paper closes with some practical ideas as to how one can bring the theory described in the paper into practice. It is hoped that this paper will provide educators with an insight so that they will be able to fully exploit the great potential that scientific field trips may offer.
Toward a formal ontology for narrative
Directory of Open Access Journals (Sweden)
Ciotti, Fabio
2016-03-01
Full Text Available In this paper the rationale and the first draft of a formal ontology for modeling narrative texts are presented. Building on the semiotic and structuralist narratology, and on the work carried out in the late 1980s by Giuseppe Gigliozzi in Italy, the focus of my research are the concepts of character and of narrative world/space. This formal model is expressed in the OWL 2 ontology language. The main reason to adopt a formal modeling approach is that I consider the purely probabilistic-quantitative methods (now widespread in digital literary studies inadequate. An ontology, on one hand provides a tool for the analysis of strictly literary texts. On the other hand (though beyond the scope of the present work, its formalization can also represent a significant contribution towards grounding the application of storytelling methods outside of scholarly contexts.
Industrial Practice in Formal Methods : A Review
DEFF Research Database (Denmark)
Bicarregui, Juan C.; Fitzgerald, John; Larsen, Peter Gorm
2009-01-01
We examine the the industrial application of formal methods using data gathered in a review of 62 projects taking place over the last 25 years. The review suggests that formal methods are being applied in a wide range of application domains, with increasingly strong tool support. Significant chal...... challenges remain in providing usable tools that can be integrated into established development processes; in education and training; in taking formal methods from first use to second use, and in gathering and evidence to support informed selection of methods and tools.......We examine the the industrial application of formal methods using data gathered in a review of 62 projects taking place over the last 25 years. The review suggests that formal methods are being applied in a wide range of application domains, with increasingly strong tool support. Significant...
Formal verification - Robust and efficient code: Introduction to Formal Verification
CERN. Geneva
2016-01-01
In general, FV means "proving that certain properties hold for a given system using formal mathematics". This definition can certainly feel daunting, however, as we will learn, we can reap benefits from the paradigm without digging too deep into ...
Formalization of the Resolution Calculus for First-Order Logic
DEFF Research Database (Denmark)
Schlichtkrull, Anders
2016-01-01
A formalization in Isabelle/HOL of the resolution calculus for first-order logic is presented. Its soundness and completeness are formally proven using the substitution lemma, semantic trees, Herbrand’s theorem, and the lifting lemma. In contrast to previous formalizations of resolution, it consi......A formalization in Isabelle/HOL of the resolution calculus for first-order logic is presented. Its soundness and completeness are formally proven using the substitution lemma, semantic trees, Herbrand’s theorem, and the lifting lemma. In contrast to previous formalizations of resolution...
Formalizing Evaluation in Music Information Retrieval
DEFF Research Database (Denmark)
Sturm, Bob L.
2013-01-01
We develop a formalism to disambiguate the evaluation of music information retrieval systems. We define a ``system,'' what it means to ``analyze'' one, and make clear the aims, parts, design, execution, interpretation, and assumptions of its ``evaluation.'' We apply this formalism to discuss...
A computational formalization for partial evaluation
DEFF Research Database (Denmark)
Hatcliff, John; Danvy, Olivier
1997-01-01
We formalize a partial evaluator for Eugenio Moggi's computational metalanguage. This formalization gives an evaluation-order independent view of binding-time analysis and program specialization, including a proper treatment of call unfolding. It also enables us to express the essence of `control...
Informal work and formal plans
DEFF Research Database (Denmark)
Dalsted, Rikke Juul; Hølge-Hazelton, Bibi; Kousgaard, Marius Brostrøm
2012-01-01
INTRODUCTION: Formal pathways models outline that patients should receive information in order to experience a coherent journey but do not describe an active role for patients or their relatives. The aim of this is paper is to articulate and discuss the active role of patients during their cancer...... trajectories. METHODS AND THEORY: An in-depth case study of patient trajectories at a Danish hospital and surrounding municipality using individual interviews with patients. Theory about trajectory and work by Strauss was included. RESULTS: Patients continuously took initiatives to organize their treatment....... The patients' requests were not sufficiently supported in the professional organisation of work or formal planning. Patients' insertion and use of information in their trajectories challenged professional views and working processes. And the design of the formal pathway models limits the patients' active...
Formalisms for reuse and systems integration
Rubin, Stuart
2015-01-01
Reuse and integration are defined as synergistic concepts, where reuse addresses how to minimize redundancy in the creation of components; while, integration focuses on component composition. Integration supports reuse and vice versa. These related concepts support the design of software and systems for maximizing performance while minimizing cost. Knowledge, like data, is subject to reuse; and, each can be interpreted as the other. This means that inherent complexity, a measure of the potential utility of a system, is directly proportional to the extent to which it maximizes reuse and integration. Formal methods can provide an appropriate context for the rigorous handling of these synergistic concepts. Furthermore, formal languages allow for non ambiguous model specification; and, formal verification techniques provide support for insuring the validity of reuse and integration mechanisms. This edited book includes 12 high quality research papers written by experts in formal aspects of reuse and integratio...
37 CFR 251.41 - Formal hearings.
2010-07-01
... ARBITRATION ROYALTY PANEL RULES AND PROCEDURES COPYRIGHT ARBITRATION ROYALTY PANEL RULES OF PROCEDURE Procedures of Copyright Arbitration Royalty Panels § 251.41 Formal hearings. (a) The formal hearings that will be conducted under the rules of this subpart are rate adjustment hearings and royalty fee...
Formal Engineering Hybrid Systems: Semantic Underpinnings
Bujorianu, M.C.; Bujorianu, L.M.
2008-01-01
In this work we investigate some issues in applying formal methods to hybrid system development and develop a categorical framework. We study the themes of stochastic reasoning, heterogeneous formal specification and retrenchment. Hybrid systems raise a rich pallets of aspects that need to be
Formal Analysis Of Use Case Diagrams
Directory of Open Access Journals (Sweden)
Radosław Klimek
2010-01-01
Full Text Available Use case diagrams play an important role in modeling with UML. Careful modeling is crucialin obtaining a correct and efficient system architecture. The paper refers to the formalanalysis of the use case diagrams. A formal model of use cases is proposed and its constructionfor typical relationships between use cases is described. Two methods of formal analysis andverification are presented. The first one based on a states’ exploration represents a modelchecking approach. The second one refers to the symbolic reasoning using formal methodsof temporal logic. Simple but representative example of the use case scenario verification isdiscussed.
Formal balancing of chemical reaction networks
van der Schaft, Abraham; Rao, S.; Jayawardhana, B.
2016-01-01
In this paper we recall and extend the main results of Van der Schaft, Rao, Jayawardhana (2015) concerning the use of Kirchhoff’s Matrix Tree theorem in the explicit characterization of complex-balanced reaction networks and the notion of formal balancing. The notion of formal balancing corresponds
Formal methods in software development: A road less travelled
Directory of Open Access Journals (Sweden)
John A van der Poll
2010-08-01
Full Text Available An integration of traditional verification techniques and formal specifications in software engineering is presented. Advocates of such techniques claim that mathematical formalisms allow them to produce quality, verifiably correct, or at least highly dependable software and that the testing and maintenance phases are shortened. Critics on the other hand maintain that software formalisms are hard to master, tedious to use and not well suited for the fast turnaround times demanded by industry. In this paper some popular formalisms and the advantages of using these during the early phases of the software development life cycle are presented. Employing the Floyd-Hoare verification principles during the formal specification phase facilitates reasoning about the properties of a specification. Some observations that may help to alleviate the formal-methods controversy are established and a number of formal methods successes is presented. Possible conditions for an increased acceptance of formalisms in oftware development are discussed.
Statistical Survey of Non-Formal Education
Directory of Open Access Journals (Sweden)
Ondřej Nývlt
2012-12-01
Full Text Available focused on a programme within a regular education system. Labour market flexibility and new requirements on employees create a new domain of education called non-formal education. Is there a reliable statistical source with a good methodological definition for the Czech Republic? Labour Force Survey (LFS has been the basic statistical source for time comparison of non-formal education for the last ten years. Furthermore, a special Adult Education Survey (AES in 2011 was focused on individual components of non-formal education in a detailed way. In general, the goal of the EU is to use data from both internationally comparable surveys for analyses of the particular fields of lifelong learning in the way, that annual LFS data could be enlarged by detailed information from AES in five years periods. This article describes reliability of statistical data aboutnon-formal education. This analysis is usually connected with sampling and non-sampling errors.
M-theory on eight-manifolds revisited: N = 1 supersymmetry and generalized Spin(7) structures
International Nuclear Information System (INIS)
Tsimpis, Dimitrios
2006-01-01
The requirement of N = 1 supersymmetry for M-theory backgrounds of the form of a warped product M x w X, where X is an eight-manifold and M is three-dimensional Minkowski or AdS space, implies the existence of a nowhere-vanishing Majorana spinor ξ on X. ξ lifts to a nowhere-vanishing spinor on the auxiliary nine-manifold Y: = X x S 1 , where S 1 is a circle of constant radius, implying the reduction of the structure group of Y to Spin(7). In general, however, there is no reduction of the structure group of X itself. This situation can be described in the language of generalized Spin(7) structures, defined in terms of certain spinors of Spin(TY+T*Y). We express the condition for N = 1 supersymmetry in terms of differential equations for these spinors. In an equivalent formulation, working locally in the vicinity of any point in X in terms of a 'preferred' Spin(7) structure, we show that the requirement of N = 1 supersymmetry amounts to solving for the intrinsic torsion and all irreducible flux components, except for the one lying in the 27 of Spin(7), in terms of the warp factor and a one-form L on X (not necessarily nowhere-vanishing) constructed as a ξ bilinear; in addition, L is constrained to satisfy a pair of differential equations. The formalism based on the group Spin(7) is the most suitable language in which to describe supersymmetric compactifications on eight-manifolds of Spin(7) structure, and/or small-flux perturbations around supersymmetric compactifications on manifolds of Spin(7) holonomy
Formal Ontologies and Uncertainty. In Geographical Knowledge
Directory of Open Access Journals (Sweden)
Matteo Caglioni
2014-05-01
Full Text Available Formal ontologies have proved to be a very useful tool to manage interoperability among data, systems and knowledge. In this paper we will show how formal ontologies can evolve from a crisp, deterministic framework (ontologies of hard knowledge to new probabilistic, fuzzy or possibilistic frameworks (ontologies of soft knowledge. This can considerably enlarge the application potential of formal ontologies in geographic analysis and planning, where soft knowledge is intrinsically linked to the complexity of the phenomena under study. The paper briefly presents these new uncertainty-based formal ontologies. It then highlights how ontologies are formal tools to define both concepts and relations among concepts. An example from the domain of urban geography finally shows how the cause-to-effect relation between household preferences and urban sprawl can be encoded within a crisp, a probabilistic and a possibilistic ontology, respectively. The ontology formalism will also determine the kind of reasoning that can be developed from available knowledge. Uncertain ontologies can be seen as the preliminary phase of more complex uncertainty-based models. The advantages of moving to uncertainty-based models is evident: whether it is in the analysis of geographic space or in decision support for planning, reasoning on geographic space is almost always reasoning with uncertain knowledge of geographic phenomena.
Table for constructing the spin coefficients in general relativity
International Nuclear Information System (INIS)
Cocke, W.J.
1989-01-01
The spin coefficients in spinor calculus in Riemannian space-time are linear functions of the curls of the connecting quantities (the Infeld--Van der Waerden symbols). We show that in the Newman-Penrose formalism the expressions for the spin coefficients are quite manageable, if they are written in terms of the Newman-Penrose tetrad vectors. We present a table of the components of the spin coefficients explicitly in terms of the curls of the individual tetrad vectors
Formalization of Many-Valued Logics
DEFF Research Database (Denmark)
Villadsen, Jørgen; Schlichtkrull, Anders
2017-01-01
Partiality is a key challenge for computational approaches to artificial intelligence in general and natural language in particular. Various extensions of classical two-valued logic to many-valued logics have been investigated in order to meet this challenge. We use the proof assistant Isabelle...... to formalize the syntax and semantics of many-valued logics with determinate as well as indeterminate truth values. The formalization allows for a concise presentation and makes automated verification possible....
Helicity formalism and spin effects
International Nuclear Information System (INIS)
Anselmino, M.; Caruso, F.; Piovano, U.
1990-01-01
The helicity formalism and the technique to compute amplitudes for interaction processes involving leptons, quarks, photons and gluons are reviewed. Explicit calculations and examples of exploitation of symmetry properties are shown. The formalism is then applied to the discussion of several hadronic processes and spin effects: the experimental data, when related to the properties of the elementary constituent interactions, show many not understood features. Also the nucleon spin problem is briefly reviewed. (author)
Jauch-Piron system of imprimitivities for phonons. II. The Wigner function formalism
Banach, Zbigniew; Piekarski, Sławomir
1993-01-01
In 1932 Wigner defined and described a quantum mechanical phase space distribution function for a system composed of many identical particles of positive mass. This function has the property that it can be used to calculate a class of quantum mechanical averages in the same manner as the classical phase space distribution function is used to calculate classical averages. Considering the harmonic vibrations of a system of n atoms bound to one another by elastic forces and treating them as a gas of indistinguishable Bose particles, phonons, the primary objective of this paper is to show under which circumstances the Wigner formalism for classical particles can be extended to cover also the phonon case. Since the phonons are either strongly or weakly localizable particles (as described in a companion paper), the program of the present approach consists in applying the Jauch-Piron quantum description of localization in (discrete) space to the phonon system and then in deducing from such a treatment the explicit expression for the phonon analogue of the Wigner distribution function. The characteristic new features of the “phase-space” picture for phonons (as compared with the situation in ordinary theory) are pointed out. The generalization of the method to the case of relativistic particles is straightforward.
Towards Formal Implementation of PUS Standard
Ilić, D.
2009-05-01
As an effort to promote the reuse of on-board and ground systems ESA developed a standard for packet telemetry and telecommand - PUS. It defines a set of standard service models with the corresponding structures of the associated telemetry and telecommand packets. Various missions then can choose to implement those standard PUS services that best conform to their specific requirements. In this paper we propose a formal development (based on the Event-B method) of reusable service patterns, which can be instantiated for concrete application. Our formal models allow us to formally express and verify specific service properties including various telecommand and telemetry packet structure validation.
Survey of Existing Tools for Formal Verification.
Energy Technology Data Exchange (ETDEWEB)
Punnoose, Ratish J.; Armstrong, Robert C.; Wong, Matthew H.; Jackson, Mayo
2014-12-01
Formal methods have come into wide use because of their effectiveness in verifying "safety and security" requirements of digital systems; a set of requirements for which testing is mostly ineffective. Formal methods are routinely used in the design and verification of high-consequence digital systems in industry. This report outlines our work in assessing the capabilities of commercial and open source formal tools and the ways in which they can be leveraged in digital design workflows.
Multiverse in the Third Quantized Formalism
International Nuclear Information System (INIS)
Faizal Mir
2014-01-01
In this paper we will analyze the third quantization of gravity in path integral formalism. We will use the time-dependent version of Wheeler—DeWitt equation to analyze the multiverse in this formalism. We will propose a mechanism for baryogenesis to occur in the multiverse, without violating the baryon number conservation. (general)
The Formalization of Cultural Psychology. Reasons and Functions.
Salvatore, Sergio
2017-03-01
In this paper I discuss two basic theses about the formalization of cultural psychology. First, I claim that formalization is a relevant, even necessary stage of development of this domain of science. This is so because formalization allows the scientific language to achieve a much needed autonomy from the commonsensical language of the phenomena that this science deals with. Second, I envisage the two main functions that formalization has to perform in the field of cultural psychology: on the one hand, it has to provide formal rules grounding and constraining the deductive construction of the general theory; on the other hand, it has to provide the devices for supporting the interpretation of local phenomena, in terms of the abductive reconstruction of the network of linkages among empirical occurrences comprising the local phenomena.
Formal specifications for safety grade systems
International Nuclear Information System (INIS)
Chisholm, G.H.; Smith, B.T.; Wojcik, A.S.
1992-01-01
The authors describe the findings of a study into the application of formal methods to the specification of a safety system for an operating nuclear reactor. They developed a formal specification that is used to verify and validate that no unsafe condition will result from action or inaction of the system. For this reason, the specification must facilitate thinking about, talking about, and implementing the system. In fact, the specification must provide a bridge between people (designers, engineers, policy makers) and diverse implementations (hardware, software, sensors, power supplies) at all levels. For a specification to serve as an effective linkage, it must have the following properties: (1) completeness, (2) conciseness, (3) unambiguity, and (4) communicativeness. In this paper they describe the development of a specification that has three properties. This development is based on the use of formal methods, i.e., methods that add mathematical rigor to the development, analysis and operation of computer systems and to applications based thereon (Neumann). They demonstrate that a specification derived from a formal basis facilitates development of the design and its subsequent verification
Formal truncations of connected kernel equations
International Nuclear Information System (INIS)
Dixon, R.M.
1977-01-01
The Connected Kernel Equations (CKE) of Alt, Grassberger and Sandhas (AGS); Kouri, Levin and Tobocman (KLT); and Bencze, Redish and Sloan (BRS) are compared against reaction theory criteria after formal channel space and/or operator truncations have been introduced. The Channel Coupling Class concept is used to study the structure of these CKE's. The related wave function formalism of Sandhas, of L'Huillier, Redish and Tandy and of Kouri, Krueger and Levin are also presented. New N-body connected kernel equations which are generalizations of the Lovelace three-body equations are derived. A method for systematically constructing fewer body models from the N-body BRS and generalized Lovelace (GL) equations is developed. The formally truncated AGS, BRS, KLT and GL equations are analyzed by employing the criteria of reciprocity and two-cluster unitarity. Reciprocity considerations suggest that formal truncations of BRS, KLT and GL equations can lead to reciprocity-violating results. This study suggests that atomic problems should employ three-cluster connected truncations and that the two-cluster connected truncations should be a useful starting point for nuclear systems
Formalizing Implementation Strategies for First-Class Continuations
DEFF Research Database (Denmark)
Danvy, Olivier
1999-01-01
We present the first formalization of implementation strategies for first-class continuations. The formalization hinges on abstract machines for continuation-passing style (CPS) programs with a special treatment for the current continuation, accounting for the essence of first-class continuations......-class continuations and that second-class continuations are stackable. A large body of work exists on implementing continuations, but it is predominantly empirical and implementation-oriented. In contrast, our formalization abstracts the essence of first-class continuations and provides a uniform setting...
Formalizing Implementation Strategies for First-Class Continuations
DEFF Research Database (Denmark)
Danvy, Olivier
2000-01-01
We present the first formalization of implementation strategies for first-class continuations. The formalization hinges on abstract machines for continuation-passing style (CPS) programs with a special treatment for the current continuation, accounting for the essence of first-class continuations......-class continuations and that second-class continuations are stackable. A large body of work exists on implementing continuations, but it is predominantly empirical and implementation-oriented. In contrast, our formalization abstracts the essence of first-class continuations and provides a uniform setting...
Zamora, Julieta Lopez; Reynaga, Francisco Javier Arriaga
2010-01-01
This paper presents results of two research works, the first approaches non-formal education and the second addresses formal education. In both studies in-depth interview techniques were used. There were some points of convergence between them on aspects such as the implementation of learning environments and the integration of ICT. The interview…
Formal verification of industrial control systems
CERN. Geneva
2015-01-01
Verification of critical software is a high priority but a challenging task for industrial control systems. For many kinds of problems, testing is not an efficient method. Formal methods, such as model checking appears to be an appropriate complementary method. However, it is not common to use model checking in industry yet, as this method needs typically formal methods expertise and huge computing power. In the EN-ICE-PLC section, we are working on a [methodology][1] and a tool ([PLCverif][2]) to overcome these challenges and to integrate formal verification in the development process of our PLC-based control systems. [1]: http://cern.ch/project-plc-formalmethods [2]: http://cern.ch/plcverif
Towards a Formal Model of Social Data
DEFF Research Database (Denmark)
Mukkamala, Raghava Rao; Vatrapu, Ravi; Hussain, Abid
, transform, analyse, and report social data from social media platforms such as Facebook and twitter. Formal methods, models and tools for social data are largely limited to graph theoretical approaches informing conceptual developments in relational sociology and methodological developments in social...... network analysis. As far as we know, there are no integrated modeling approaches to social data across the conceptual, formal and software realms. Social media analytics can be undertaken in two main ways - ”Social Graph Analytics” and ”Social Text Analytics” (Vatrapu, in press/2013). Social graph......, we exemplify the semantics of the formal model with real-world social data examples. Third, we briefly present and discuss the Social Data Analytics Tool (SODATO) that realizes the conceptual model in software and provisions social data for computational social science analysis based on the formal...
"Passing It On": Beyond Formal or Informal Pedagogies
Cain, Tim
2013-01-01
Informal pedagogies are a subject of debate in music education, and there is some evidence of teachers abandoning formal pedagogies in favour of informal ones. This article presents a case of one teacher's formal pedagogy and theorises it by comparing it with a case of informal pedagogy. The comparison reveals affordances of formal pedagogies…
An approach of requirements tracing in formal refinement
DEFF Research Database (Denmark)
Jastram, Michael; Hallerstede, Stefan; Leuschel, Michael
2010-01-01
Formal modeling of computing systems yields models that are intended to be correct with respect to the requirements that have been formalized. The complexity of typical computing systems can be addressed by formal refinement introducing all the necessary details piecemeal. We report on preliminar...... changes, making use of corresponding techniques already built into the Event-B method....
Tonks-Girardeau and super-Tonks-Girardeau states of a trapped one-dimensional spinor Bose gas
International Nuclear Information System (INIS)
Girardeau, M. D.
2011-01-01
A harmonically trapped, ultracold, one-dimensional (1D) spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a three-dimensional (3D) Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is constructed in the TG limit of infinite even-wave repulsion by a spinor Fermi-Bose mapping to a spinless ideal Fermi gas. It is then shown that in the limit of infinite even-wave attraction this same state remains an exact many-body eigenstate, now highly excited relative to the collapsed generalized McGuire-cluster ground state, showing that the hybrid TG state is completely stable against collapse to this cluster ground state under a sudden switch from infinite repulsion to infinite attraction. It is shown to be the TG limit of a hybrid super-Tonks-Girardeau (STG) state, which is metastable under a sudden switch from finite but very strong repulsion to finite but very strong attraction. It should be possible to create it experimentally by a sudden switch from strongly repulsive to strongly attractive interaction, as in the recent Innsbruck experiment on a spin-polarized bosonic STG gas. In the case of strong attraction, there should also exist another STG state of much lower energy, consisting of strongly bound dimers, a bosonic analog of a recently predicted STG state which is an ultracold gas of strongly bound bosonic dimers of fermionic atoms, but it is shown that this STG state cannot be created by such a switch from strong repulsion to strong attraction.
Y-formalism and curved {beta}-{gamma} systems
Energy Technology Data Exchange (ETDEWEB)
Grassi, Pietro Antonio [DISTA, Universita del Piemonte Orientale, via Bellini 25/g, 15100 Alessandria (Italy); INFN - Sezione di Torino (Italy)], E-mail: antonio.pietro.grassi@cern.ch; Oda, Ichiro [Department of Physics, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan); Tonin, Mario [Dipartimento di Fisica, Universita degli Studi di Padova, INFN, Sezionedi Padova, Via F. Marzolo 8, 35131 Padova (Italy)
2009-01-01
We adopt the Y-formalism to study {beta}-{gamma} systems on hypersurfaces. We compute the operator product expansions of gauge-invariant currents and we discuss some applications of the Y-formalism to model on Calabi-Yau spaces.
Y-formalism and curved β-γ systems
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Oda, Ichiro; Tonin, Mario
2009-01-01
We adopt the Y-formalism to study β-γ systems on hypersurfaces. We compute the operator product expansions of gauge-invariant currents and we discuss some applications of the Y-formalism to model on Calabi-Yau spaces
The formal operations: Piaget’s concept, researches and main critics
Directory of Open Access Journals (Sweden)
Stepanović Ivana Ž.
2004-01-01
Full Text Available This paper deals with Piaget's concept of formal operations, formal operations researches and critics related to the concept. The first part of the work is dedicated to the formal operations concept. The main characteristics of formal operational thought and formal operations structure, as well as structure logical model are presented in that part of the work. The second part is a review of formal operational researches and it is divided in three parts: (1 problems of researches (2 characteristics of applied methodology and (3 author approaches as a specific research context. In the last part of the work the main critics of formal operations concept are presented and discussed.
Application of Formal Methods in Software Engineering
Directory of Open Access Journals (Sweden)
Adriana Morales
2011-12-01
Full Text Available The purpose of this research work is to examine: (1 why are necessary the formal methods for software systems today, (2 high integrity systems through the methodology C-by-C –Correctness-by-Construction–, and (3 an affordable methodology to apply formal methods in software engineering. The research process included reviews of the literature through Internet, in publications and presentations in events. Among the Research results found that: (1 there is increasing the dependence that the nations have, the companies and people of software systems, (2 there is growing demand for software Engineering to increase social trust in the software systems, (3 exist methodologies, as C-by-C, that can provide that level of trust, (4 Formal Methods constitute a principle of computer science that can be applied software engineering to perform reliable process in software development, (5 software users have the responsibility to demand reliable software products, and (6 software engineers have the responsibility to develop reliable software products. Furthermore, it is concluded that: (1 it takes more research to identify and analyze other methodologies and tools that provide process to apply the Formal Software Engineering methods, (2 Formal Methods provide an unprecedented ability to increase the trust in the exactitude of the software products and (3 by development of new methodologies and tools is being achieved costs are not more a disadvantage for application of formal methods.
Formal Analysis of Graphical Security Models
DEFF Research Database (Denmark)
Aslanyan, Zaruhi
, software components and human actors interacting with each other to form so-called socio-technical systems. The importance of socio-technical systems to modern societies requires verifying their security properties formally, while their inherent complexity makes manual analyses impracticable. Graphical...... models for security offer an unrivalled opportunity to describe socio-technical systems, for they allow to represent different aspects like human behaviour, computation and physical phenomena in an abstract yet uniform manner. Moreover, these models can be assigned a formal semantics, thereby allowing...... formal verification of their properties. Finally, their appealing graphical notations enable to communicate security concerns in an understandable way also to non-experts, often in charge of the decision making. This dissertation argues that automated techniques can be developed on graphical security...
Renormalization in the complete Mellin representation of Feynman amplitudes
International Nuclear Information System (INIS)
Calan, C. de; David, F.; Rivasseau, V.
1981-01-01
The Feynmann amplitudes are renormalized in the formalism of the CM representation. This Mellin-Barnes type integral representation, previously introduced for the study of asymptotic behaviours, is shown to have the following interesting property: in contrast with the usual subtraction procedures, the renormalization leaves the CM intergrand unchanged, and only results into translations of the integration path. The explicit CM representation of the renormalized amplitudes is given. In addition, the dimensional regularization and the extension to spinor amplitudes are sketched. (orig.)
Formal verification of Simulink/Stateflow diagrams a deductive approach
Zhan, Naijun; Zhao, Hengjun
2017-01-01
This book presents a state-of-the-art technique for formal verification of continuous-time Simulink/Stateflow diagrams, featuring an expressive hybrid system modelling language, a powerful specification logic and deduction-based verification approach, and some impressive, realistic case studies. Readers will learn the HCSP/HHL-based deductive method and the use of corresponding tools for formal verification of Simulink/Stateflow diagrams. They will also gain some basic ideas about fundamental elements of formal methods such as formal syntax and semantics, and especially the common techniques applied in formal modelling and verification of hybrid systems. By investigating the successful case studies, readers will realize how to apply the pure theory and techniques to real applications, and hopefully will be inspired to start to use the proposed approach, or even develop their own formal methods in their future work.
Adolescent thinking ála Piaget: The formal stage.
Dulit, E
1972-12-01
Two of the formal-stage experiments of Piaget and Inhelder, selected largely for their closeness to the concepts defining the stage, were replicated with groups of average and gifted adolescents. This report describes the relevant Piagetian concepts (formal stage, concrete stage) in context, gives the methods and findings of this study, and concludes with a section discussing implications and making some reformulations which generally support but significantly qualify some of the central themes of the Piaget-Inhelder work. Fully developed formal-stage thinking emerges as far from commonplace among normal or average adolescents (by marked contrast with the impression created by the Piaget-Inhelder text, which chooses to report no middle or older adolescents who function at less than fully formal levels). In this respect, the formal stage differs appreciably from the earlier Piagetian stages, and early adolescence emerges as the age for which a "single path" model of cognitive development becomes seriously inadequate and a more complex model becomes essential. Formal-stage thinking seems best conceptualized, like most other aspects of psychological maturity, as a potentiality only partially attained by most and fully attained only by some.
Formal connections in deformation quantization
DEFF Research Database (Denmark)
Masulli, Paolo
The field of this thesis is deformation quantization, and we consider mainly symplectic manifolds equipped with a star product. After reviewing basics in complex geometry, we introduce quantization, focusing on geometric quantization and deformation quantization. The latter is defined as a star...... characteristic class, and that formal connections form an affine space over the derivations of the star products. Moreover, if the parameter space for the family of star products is contractible, we obtain that any two flat formal connections are gauge equivalent via a self-equivalence of the family of star...
A Conceptual Formalization of Crosscutting in AOSD
van den Berg, Klaas; Conejero, J.M.
2005-01-01
We propose a formalization of crosscutting based on a conceptual framework for AOSD. Crosscutting is clearly distinguished from the related concepts scattering and tangling. The definitions of these concepts are formalized and visualized with matrices and matrix operations. This allows more precise
An exact formalism for Doppler-broadened neutron cross-sections
International Nuclear Information System (INIS)
Catsaros, Nicolas.
1985-07-01
An exact formalism (Ψ, Φ) is proposed for the calculation of Breit-Wigner or Adler-Adler Doppler-broadened neutron cross-sections. The well-known (Ψ, Φ) formalism is shown to be a zero-order approximation of the generalized (Ψ, Φ) formalism. (author)
User Interface Technology for Formal Specification Development
Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Formal specification development and modification are an essential component of the knowledge-based software life cycle. User interface technology is needed to empower end-users to create their own formal specifications. This paper describes the advanced user interface for AMPHION1 a knowledge-based software engineering system that targets scientific subroutine libraries. AMPHION is a generic, domain-independent architecture that is specialized to an application domain through a declarative domain theory. Formal specification development and reuse is made accessible to end-users through an intuitive graphical interface that provides semantic guidance in creating diagrams denoting formal specifications in an application domain. The diagrams also serve to document the specifications. Automatic deductive program synthesis ensures that end-user specifications are correctly implemented. The tables that drive AMPHION's user interface are automatically compiled from a domain theory; portions of the interface can be customized by the end-user. The user interface facilitates formal specification development by hiding syntactic details, such as logical notation. It also turns some of the barriers for end-user specification development associated with strongly typed formal languages into active sources of guidance, without restricting advanced users. The interface is especially suited for specification modification. AMPHION has been applied to the domain of solar system kinematics through the development of a declarative domain theory. Testing over six months with planetary scientists indicates that AMPHION's interactive specification acquisition paradigm enables users to develop, modify, and reuse specifications at least an order of magnitude more rapidly than manual program development.
NON-FORMAL EDUCATION WITHIN THE FUNCTION OF RESPONSIBLE PARENTING
Directory of Open Access Journals (Sweden)
Dragana Bogavac
2017-06-01
Full Text Available The aim of this survey was to discover to what degree parental non-formal education is present within the function of responsible parenting. The questionnaire research method was used in the survey. For the purpose of this research a questionnaire of 13 questions was constructed relating to the forms of non-formal education, and another questionnaire of 10 questions relating to the parents’ expectations of non-formal education. The sample included 198 parents. Examination of the scores concerning the presence of certain forms of parental non-formal education realized in cooperation with the school leads to the conclusion that the parents possess a positive attitude towards non-formal education. The analysis showed that the parents’ expectations were not on a satisfactory level. According to the results, the fathers displayed a greater interest towards non-formal education (7.72±1.35 than the mothers (6.93±1.85, (p<0.05. Unemployed parents had a greater score (7.85±1.30 than the employed parents (7.22±1.71, (p<0.05. A difference in the acceptance of non-formal education in accordance with the level of formal education was also noticeable (p<0.001. Respondents with a high school degree displayed the highest level of acceptance (7.97±0.78, while the lowest interest was seen in respondents with an associate degree (6.41±2.29. Univariate linear regression analysis showed that statistically important predictors were: gender (OR: -0.23 (-1.24 – -0.33, p< 0.001, work status (OR: -0.14 (-1.24 – -0.01, < 0.05 and the level of formal education (OR: -0.33 (-0.81 – -0.34, p< 0.001. The final results lead to the conclusion that parental non-formal education supports the concept of lifelong education.
DNA expressions - A formal notation for DNA
Vliet, Rudy van
2015-01-01
We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which
Opinion dynamics model based on quantum formalism
Energy Technology Data Exchange (ETDEWEB)
Artawan, I. Nengah, E-mail: nengahartawan@gmail.com [Theoretical Physics Division, Department of Physics, Udayana University (Indonesia); Trisnawati, N. L. P., E-mail: nlptrisnawati@gmail.com [Biophysics, Department of Physics, Udayana University (Indonesia)
2016-03-11
Opinion dynamics model based on quantum formalism is proposed. The core of the quantum formalism is on the half spin dynamics system. In this research the implicit time evolution operators are derived. The analogy between the model with Deffuant dan Sznajd models is discussed.
Formal analysis of a fair payment protocol
J.G. Cederquist; M.T. Dashti (Mohammad)
2004-01-01
textabstractWe formally specify a payment protocol. This protocol is intended for fair exchange of time-sensitive data. Here the ?-CRL language is used to formalize the protocol. Fair exchange properties are expressed in the regular alternation-free ?-calculus. These properties are then verified
Formal methods for dependable real-time systems
Rushby, John
1993-01-01
The motivation for using formal methods to specify and reason about real time properties is outlined and approaches that were proposed and used are sketched. The formal verifications of clock synchronization algorithms are concluded as showing that mechanically supported reasoning about complex real time behavior is feasible. However, there was significant increase in the effectiveness of verification systems since those verifications were performed, at it is to be expected that verifications of comparable difficulty will become fairly routine. The current challenge lies in developing perspicuous and economical approaches to the formalization and specification of real time properties.
General many-body formalism for composite quantum particles.
Combescot, M; Betbeder-Matibet, O
2010-05-21
This Letter provides a formalism capable of exactly treating Pauli blocking between n-fermion particles. This formalism is based on an operator algebra made of commutators and anticommutators which contrasts with the usual scalar formalism of Green functions developed half a century ago for elementary quantum particles. We also provide the diagrams which visualize the very specific many-body physics induced by fermion exchanges between composite quantum particles.
The simplest formal argument for fitness optimization
Indian Academy of Sciences (India)
The Formal Darwinism Project aims to provide a formal argument linking population genetics to fitness optimization, which of necessity includes defining fitness. This bridges the gulf between those biologists who assume that natural selection leads to something close to fitness optimization and those biologists who believe ...
Formal Analysis of a Fair Payment Protocol
Cederquist, J.G.; Dashti, M.T.
2004-01-01
We formally specify a payment protocol. This protocol is intended for fair exchange of timesensitive data. Here the μCRL language is used to formalize the protocol. Fair exchange properties are expressed in the regular alternation-free μ-calculus. These properties are then verified using the finite
Land grabbing and formalization in Africa : a critical inquiry
Stein, H.; Cunningham, S.
2015-01-01
Two developments in Africa have generated an extensive literature. The first focuses on investment and land grabbing and the second on the formalization of rural property rights. Less has been written on the impact of formalization on land grabbing and of land grabbing on formalization. Recently,
A computational formalization for partial evaluation
DEFF Research Database (Denmark)
Hatcliff, John; Danvy, Olivier
1996-01-01
We formalize a partial evaluator for Eugenio Moggi's computational metalanguage. This formalization gives an evaluation-order independent view of binding-time analysis and program specialization, including a proper treatment of call unfolding. It also enables us to express the essence of `control......-based binding-time improvements' for let expressions. Specically, we prove that the binding-time improvements given by `continuation-based specialization' can be expressed in the metalanguage via monadic laws....
Infinitesimal Deformations of a Formal Symplectic Groupoid
Karabegov, Alexander
2011-09-01
Given a formal symplectic groupoid G over a Poisson manifold ( M, π 0), we define a new object, an infinitesimal deformation of G, which can be thought of as a formal symplectic groupoid over the manifold M equipped with an infinitesimal deformation {π_0 + \\varepsilon π_1} of the Poisson bivector field π 0. To any pair of natural star products {(ast,tildeast)} having the same formal symplectic groupoid G we relate an infinitesimal deformation of G. We call it the deformation groupoid of the pair {(ast,tildeast)} . To each star product with separation of variables {ast} on a Kähler-Poisson manifold M we relate another star product with separation of variables {hatast} on M. We build an algorithm for calculating the principal symbols of the components of the logarithm of the formal Berezin transform of a star product with separation of variables {ast} . This algorithm is based upon the deformation groupoid of the pair {(ast,hatast)}.
Formal verification of algorithms for critical systems
Rushby, John M.; Von Henke, Friedrich
1993-01-01
We describe our experience with formal, machine-checked verification of algorithms for critical applications, concentrating on a Byzantine fault-tolerant algorithm for synchronizing the clocks in the replicated computers of a digital flight control system. First, we explain the problems encountered in unsynchronized systems and the necessity, and criticality, of fault-tolerant synchronization. We give an overview of one such algorithm, and of the arguments for its correctness. Next, we describe a verification of the algorithm that we performed using our EHDM system for formal specification and verification. We indicate the errors we found in the published analysis of the algorithm, and other benefits that we derived from the verification. Based on our experience, we derive some key requirements for a formal specification and verification system adequate to the task of verifying algorithms of the type considered. Finally, we summarize our conclusions regarding the benefits of formal verification in this domain, and the capabilities required of verification systems in order to realize those benefits.
Matching biomedical ontologies based on formal concept analysis.
Zhao, Mengyi; Zhang, Songmao; Li, Weizhuo; Chen, Guowei
2018-03-19
The goal of ontology matching is to identify correspondences between entities from different yet overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much as ontological knowledge as possible for identifying mappings across ontologies. We propose a method based on Formal Concept Analysis to identify and validate mappings across ontologies, including one-to-one mappings, complex mappings and correspondences between object properties. Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be used to discover structural mappings. Afterwards, the property-based formal context describes how object properties are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of anchors, from which extended structural mappings and complex mappings can be identified. Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the 2016 Ontology Alignment Evaluation Initiative campaign
Non-Formal Educational Empowerment of Nigeria Youths for ...
African Journals Online (AJOL)
Religion Dept
discussed the concept of non-formal education, entrepreneurship and development, non-formal ... introducing some developmental programmes such as poverty alleviation .... aesthetic, cultural and civic education for public enlightenment.
International Nuclear Information System (INIS)
Chavez, C.; Edwards, R.M.; Goldberg, J.H.
1993-01-01
New CRT-based information displays which enhance the human machine interface are playing a very important role and are being increasingly used in control rooms since they present a higher degree of flexibility compared to conventional hardwired instrumentation. To prototype a new console configuration and information display system at the Experimental Breeder Reactor II (EBR-II), an iterative process of console simulation and evaluation involving operations personnel is being pursued. Entire panels including selector switches and information displays are simulated and driven by plant dynamical simulations with realistic responses that reproduce the actual cognitive and physical environment. Careful analysis and formal evaluation of operator interaction while using the simulated console will be conducted to determine underlying principles for effective control console design for this particular group of operation personnel. Additional iterations of design, simulation, and evaluation will then be conducted as necessary
Sound Computational Interpretation of Formal Encryption with Composed Keys
Laud, P.; Corin, R.J.; In Lim, J.; Hoon Lee, D.
2003-01-01
The formal and computational views of cryptography have been related by the seminal work of Abadi and Rogaway. In their work, a formal treatment of encryption that uses atomic keys is justified in the computational world. However, many proposed formal approaches allow the use of composed keys, where
Tignanelli, H.
Se comentan en esta comunicación, las principales contribuciones realizadas en el campo de la educación en astronomía en los niveles primario, secundario y terciario, como punto de partida para la discusión de la actual inserción de los contenidos astronómicos en los nuevos contenidos curriculares de la EGB - Educación General Básica- y Polimodal, de la Reforma Educativa. En particular, se discuten los alcances de la educación formal y no formal, su importancia para la capacitación de profesores y maestros, y perspectivas a futuro.
Restorative Practices as Formal and Informal Education
Carter, Candice C.
2013-01-01
This article reviews restorative practices (RP) as education in formal and informal contexts of learning that are fertile sites for cultivating peace. Formal practices involve instruction about response to conflict, while informal learning occurs beyond academic lessons. The research incorporated content analysis and a critical examination of the…
Formal Analysis of a Fair Payment Protocol
Cederquist, J.G.; Dashti, Muhammad Torabi; Dimitrakos, Theo; Martinelli, Fabio
We formally specify a payment protocol described by Vogt et al. This protocol is intended for fair exchange of time-sensitive data. Here the mCRL language is used to formalize the protocol. Fair exchange properties are expressed in the regular alternation-free mu-calculus. These properties are then
Saif, Perveen; Reba, Amjad; ud Din, Jalal
2017-01-01
This study was designed to compare the subject knowledge of B.Ed graduates of formal and non-formal teacher education systems. The population of the study included all teachers from Girls High and Higher Secondary Schools both from private and public sectors from the district of Peshawar. Out of the total population, twenty schools were randomly…
Weber, Doug; Jamsek, Damir
1994-01-01
The goal of this task was to investigate how formal methods could be incorporated into a software engineering process for flight-control systems under DO-178B and to demonstrate that process by developing a formal specification for NASA's Guidance and Controls Software (GCS) Experiment. GCS is software to control the descent of a spacecraft onto a planet's surface. The GCS example is simplified from a real example spacecraft, but exhibits the characteristics of realistic spacecraft control software. The formal specification is written in Larch.
Formal and informal surveillance systems: how to build links
Directory of Open Access Journals (Sweden)
S. Desvaux
2015-11-01
Full Text Available Within the framework of highly pathogenic avian influenza (HPAI surveillance in Vietnam, interviews were carried out with poultry farmers and local animal health operators in two municipalities of the Red River delta with a view to documenting the circulation of health information concerning poultry (content of the information; method, scope and speed of circulation; actors involved; actions triggered as a result of the information received; economic and social incentives for disseminating or withholding information. The main results show that (i active informal surveillance networks exist, (ii the alert levels vary and the measures applied by the poultry farmers are myriad and often far-removed from the official recommendations, and (iii the municipal veterinarian is at the interface between the formal and the informal surveillance systems. The conclusions emphasize the need for the authorities to separate distinctly surveillance and control activities, and to regionalize control strategies, taking into account epidemiological specificities and social dynamics at local level.
First order formalism for quantum gravity
International Nuclear Information System (INIS)
Gleiser, M.; Holman, R.; Neto, N.P.
1987-05-01
We develop a first order formalism for the quantization of gravity. We take as canonical variables both the induced metric and the extrinsic curvature of the (d - 1) -dimensional hypersurfaces obtained by the foliation of the d - dimensional spacetime. After solving the constraint algebra we use the Dirac formalism to quantize the theory and obtain a new representation for the Wheeler-DeWitt equation, defined in the functional space of the extrinsic curvature. We also show how to obtain several different representations of the Wheeler-DeWitt equation by considering actions differing by a total divergence. In particular, the intrinsic and extrinsic time approaches appear in a natural way, as do equivalent representations obtained by functional Fourier transforms of appropriate variables. We conclude with some remarks about the construction of the Hilbert space within the first order formalism. 10 refs
Particle creation and destruction of quantum coherence by topological change
International Nuclear Information System (INIS)
Lavrelashvili, G.V.; Rubakov, V.A.; Tinyakov, P.G.
1988-01-01
The possibility is considered that changes of spatial topology occur as tunneling events in quantum gravity. Creation of scalar and spinor particles during these tunneling transitions is studied. The relevant formalism based on the euclidean Schroedinger equation and coherent state representation is developed. This formalism is illustrated in a two-dimensional example. It is argued that the particle creation during the topological changes induces the loss of quantum coherence. The particle creation is calculated in the case of O(4)-invariant background euclidean four-dimensional metrics. This calculation is used for estimating the loss of quantum coherence. An upper limit on the rate of the topological changes, A -17 M 4 Pl , is derived from the observation of K 0 -anti K 0 oscillations. (orig.)
Formalization of the Resolution Calculus for First-Order Logic
DEFF Research Database (Denmark)
Schlichtkrull, Anders
2018-01-01
between unsatisfiable sets of clauses and finite semantic trees is formalized in Herbrand’s theorem. I discuss the difficulties that I had formalizing proofs of the lifting lemma found in the literature, and I formalize a correct proof. The completeness proof is by induction on the size of a finite...
Towards Formal Verification of a Separation Microkernel
Butterfield, Andrew; Sanan, David; Hinchey, Mike
2013-08-01
The best approach to verifying an IMA separation kernel is to use a (fixed) time-space partitioning kernel with a multiple independent levels of separation (MILS) architecture. We describe an activity that explores the cost and feasibility of doing a formal verification of such a kernel to the Common Criteria (CC) levels mandated by the Separation Kernel Protection Profile (SKPP). We are developing a Reference Specification of such a kernel, and are using higher-order logic (HOL) to construct formal models of this specification and key separation properties. We then plan to do a dry run of part of a formal proof of those properties using the Isabelle/HOL theorem prover.
Formality theory from Poisson structures to deformation quantization
Esposito, Chiara
2015-01-01
This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.
Formal and informal credit in four provinces of Vietnam
DEFF Research Database (Denmark)
Barslund, Mikkel; Tarp, Finn
2008-01-01
This paper uses a survey of 932 rural households to uncover how the rural credit market operates in Vietnam. Households obtain credit through formal and informal lenders. Formal loans are almost entirely for production and asset accumulation, while informal loans are used for consumption smoothen......This paper uses a survey of 932 rural households to uncover how the rural credit market operates in Vietnam. Households obtain credit through formal and informal lenders. Formal loans are almost entirely for production and asset accumulation, while informal loans are used for consumption...
Fourier Series Formalization in ACL2(r
Directory of Open Access Journals (Sweden)
Cuong K. Chau
2015-09-01
Full Text Available We formalize some basic properties of Fourier series in the logic of ACL2(r, which is a variant of ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis. More specifically, we extend a framework for formally evaluating definite integrals of real-valued, continuous functions using the Second Fundamental Theorem of Calculus. Our extended framework is also applied to functions containing free arguments. Using this framework, we are able to prove the orthogonality relationships between trigonometric functions, which are the essential properties in Fourier series analysis. The sum rule for definite integrals of indexed sums is also formalized by applying the extended framework along with the First Fundamental Theorem of Calculus and the sum rule for differentiation. The Fourier coefficient formulas of periodic functions are then formalized from the orthogonality relations and the sum rule for integration. Consequently, the uniqueness of Fourier sums is a straightforward corollary. We also present our formalization of the sum rule for definite integrals of infinite series in ACL2(r. Part of this task is to prove the Dini Uniform Convergence Theorem and the continuity of a limit function under certain conditions. A key technique in our proofs of these theorems is to apply the overspill principle from non-standard analysis.
Formal methods for industrial critical systems a survey of applications
Margaria-Steffen, Tiziana
2012-01-01
"Today, formal methods are widely recognized as an essential step in the design process of industrial safety-critical systems. In its more general definition, the term formal methods encompasses all notations having a precise mathematical semantics, together with their associated analysis methods, that allow description and reasoning about the behavior of a system in a formal manner.Growing out of more than a decade of award-winning collaborative work within the European Research Consortium for Informatics and Mathematics, Formal Methods for Industrial Critical Systems: A Survey of Applications presents a number of mainstream formal methods currently used for designing industrial critical systems, with a focus on model checking. The purpose of the book is threefold: to reduce the effort required to learn formal methods, which has been a major drawback for their industrial dissemination; to help designers to adopt the formal methods which are most appropriate for their systems; and to offer a panel of state-of...
Proceedings of the First NASA Formal Methods Symposium
Denney, Ewen (Editor); Giannakopoulou, Dimitra (Editor); Pasareanu, Corina S. (Editor)
2009-01-01
Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000.
Greiner, Stephan; Wang, Xi; Herrmann, Reinhold G; Rauwolf, Uwe; Mayer, Klaus; Haberer, Georg; Meurer, Jörg
2008-09-01
A unique combination of genetic features and a rich stock of information make the flowering plant genus Oenothera an appealing model to explore the molecular basis of speciation processes including nucleus-organelle coevolution. From representative species, we have recently reported complete nucleotide sequences of the 5 basic and genetically distinguishable plastid chromosomes of subsection Oenothera (I-V). In nature, Oenothera plastid genomes are associated with 6 distinct, either homozygous or heterozygous, diploid nuclear genotypes of the 3 basic genomes A, B, or C. Artificially produced plastome-genome combinations that do not occur naturally often display interspecific plastome-genome incompatibility (PGI). In this study, we compare formal genetic data available from all 30 plastome-genome combinations with sequence differences between the plastomes to uncover potential determinants for interspecific PGI. Consistent with an active role in speciation, a remarkable number of genes have high Ka/Ks ratios. Different from the Solanacean cybrid model Atropa/tobacco, RNA editing seems not to be relevant for PGIs in Oenothera. However, predominantly sequence polymorphisms in intergenic segments are proposed as possible sources for PGI. A single locus, the bidirectional promoter region between psbB and clpP, is suggested to contribute to compartmental PGI in the interspecific AB hybrid containing plastome I (AB-I), consistent with its perturbed photosystem II activity.
On Fitting a Formal Method into Practice
DEFF Research Database (Denmark)
Gmehlich, Rainer; Grau, Katrin; Hallerstede, Stefan
2011-01-01
. The interaction between the two proved to be crucial for the success of the case study. The heart of the problem was tracing informal requirements from Problem Frames descriptions to formal Event-B models. To a large degree, this issue dictated the approach that had to be used for formal modelling. A dedicated...
Hořava–Lifshitz gravity inspired Bianchi-II cosmology and the mixmaster universe
International Nuclear Information System (INIS)
Giani, Leonardo; Kamenshchik, Alexander Y
2017-01-01
We study different aspects of the Hořava-Lifshitz inspired Bianchi-II cosmology and its relations with the mixmaster universe model. First, we present exact solutions for a toy model, where only the cubic in spatial curvature terms are present in the action; then we briefly discuss some exotic singularities, which can appear in this toy model. We study also the toy model where only the quadratic in spatial curvature terms are present in the action. We establish relations between our results and those obtained by using the Hamiltonian formalism. Finally, we apply the results obtained by studying Bianchi-II cosmology to describe the evolution of the mixmaster universe in terms of the Belinsky–Khalatnikov–Lifshitz formalism. Generally, our analysis gives some arguments in favour of the existence of the oscillatory approach to the singularity in a universe governed by the Hořava–Lifshitz type gravity. (paper)
Noninertial effects on the quantum dynamics of scalar bosons
International Nuclear Information System (INIS)
Castro, Luis B.
2016-01-01
The noninertial effect of rotating frames on the quantum dynamics of scalar bosons embedded in the background of a cosmic string is considered. In this work, scalar bosons are described by the Duffin-Kemmer-Petiau (DKP) formalism. Considering the DKP oscillator in this background the combined effects of a rotating frames and cosmic string on the equation of motion, energy spectrum, and DKP spinor are analyzed and discussed in detail. Additionally, the effect of rotating frames on the scalar bosons' localization is studied. (orig.)
International Nuclear Information System (INIS)
Wei Gaofeng; Dong Shihai
2010-01-01
Based on the Sturm-Liouville theorem and shape invariance formalism, we study by applying a Pekeris-type approximation to the pseudo-centrifugal term the pseudospin symmetry of a Dirac nucleon subjected to scalar and vector Manning-Rosen potentials including the spin-orbit coupling term. A quartic energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. The bound states are calculated numerically. The relativistic Manning-Rosen potential could not trap a Dirac nucleon in the limit case β→∞.
Formal representation of complex SNOMED CT expressions
Directory of Open Access Journals (Sweden)
Markó Kornél
2008-10-01
Full Text Available Abstract Background Definitory expressions about clinical procedures, findings and diseases constitute a major benefit of a formally founded clinical reference terminology which is ontologically sound and suited for formal reasoning. SNOMED CT claims to support formal reasoning by description-logic based concept definitions. Methods On the basis of formal ontology criteria we analyze complex SNOMED CT concepts, such as "Concussion of Brain with(out Loss of Consciousness", using alternatively full first order logics and the description logic ℰℒ MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8hmHuKae8NeHWeaaa@37B1@. Results Typical complex SNOMED CT concepts, including negations or not, can be expressed in full first-order logics. Negations cannot be properly expressed in the description logic ℰℒ MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8hmHuKae8NeHWeaaa@37B1@ underlying SNOMED CT. All concepts concepts the meaning of which implies a temporal scope may be subject to diverging interpretations, which are often unclear in SNOMED CT as their contextual determinants are not made explicit. Conclusion The description of complex medical occurrents is ambiguous, as the same situations can be described as (i a complex occurrent C that has A and B as temporal parts, (ii a simple occurrent A' defined as a kind of A followed by some B, or (iii a simple occurrent B' defined as a kind of B preceded by some A. As negative statements in SNOMED CT cannot be exactly represented without
Kors, Ninja; Mak, Peter
2006-01-01
The pilot project that will be described in this report was all about the animateur. What are his skills and attitudes? What are the pedagogical interventions that he uses in a workshop or an event? What are the main issues that arise when we try to include such a naturally non-formal and informal
Non-Formal Education: Interest in Human Capital
Ivanova, I. V.
2016-01-01
We define non-formal education as a part of general education, which gives students the required tools for cognition and creativity. It allows them to fully realize their self-potential and to set their own professional and personal goals. In this article, we outline the fundamental differences between general and non-formal education from the…
Rapid Prototyping of Formally Modelled Distributed Systems
Buchs, Didier; Buffo, Mathieu; Titsworth, Frances M.
1999-01-01
This paper presents various kinds of prototypes, used in the prototyping of formally modelled distributed systems. It presents the notions of prototyping techniques and prototype evolution, and shows how to relate them to the software life-cycle. It is illustrated through the use of the formal modelling language for distributed systems CO-OPN/2.
The quantitation of buffering action II. Applications of the formal & general approach
Schmitt, Bernhard M
2005-01-01
Background The paradigm of "buffering" originated in acid-base physiology, but was subsequently extended to other fields and is now used for a wide and diverse set of phenomena. In the preceding article, we have presented a formal and general approach to the quantitation of buffering action. Here, we use that buffering concept for a systematic treatment of selected classical and other buffering phenomena. Results H+ buffering by weak acids and "self-buffering" in pure water represent "conservative buffered systems" whose analysis reveals buffering properties that contrast in important aspects from classical textbook descriptions. The buffering of organ perfusion in the face of variable perfusion pressure (also termed "autoregulation") can be treated in terms of "non-conservative buffered systems", the general form of the concept. For the analysis of cytoplasmic Ca++ concentration transients (also termed "muffling"), we develop a related unit that is able to faithfully reflect the time-dependent quantitative aspect of buffering during the pre-steady state period. Steady-state buffering is shown to represent the limiting case of time-dependent muffling, namely for infinitely long time intervals and infinitely small perturbations. Finally, our buffering concept provides a stringent definition of "buffering" on the level of systems and control theory, resulting in four absolute ratio scales for control performance that are suited to measure disturbance rejection and setpoint tracking, and both their static and dynamic aspects. Conclusion Our concept of buffering provides a powerful mathematical tool for the quantitation of buffering action in all its appearances. PMID:15771784
The formal path integral and quantum mechanics
International Nuclear Information System (INIS)
Johnson-Freyd, Theo
2010-01-01
Given an arbitrary Lagrangian function on R d and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.
Villar, Feliciano; Celdrán, Montserrat
2013-06-01
This article examines the participation of Spanish older people in formal, non-formal and informal learning activities and presents a profile of participants in each kind of learning activity. We used data from a nationally representative sample of Spanish people between 60 and 75 years old ( n = 4,703). The data were extracted from the 2007 Encuesta sobre la Participación de la Población Adulta en Actividades de Aprendizaje (EADA, Survey on Adult Population Involvement in Learning Activities). Overall, only 22.8 % of the sample participated in a learning activity. However, there was wide variation in the participation rates for the different types of activity. Informal activities were far more common than formal ones. Multivariate logistic regression indicated that education level and involvement in social and cultural activities were associated with likelihood of participating, regardless of the type of learning activity. When these variables were taken into account, age did not predict decreasing participation, at least in non-formal and informal activities. Implications for further research, future trends and policies to promote older adult education are discussed.
A diagrammatic construction of formal E-independent model hamiltonian
International Nuclear Information System (INIS)
Kvasnicka, V.
1977-01-01
A diagrammatic construction of formal E-independent model interaction (i.e., without second-quantization formalism) is suggested. The construction starts from the quasi-degenerate Brillouin-Wigner perturbation theory, in the framework of which an E-dependent model Hamiltonian is simply constructed. Applying the ''E-removing'' procedure to this E-dependent model Hamiltonian, the E-independent formal model Hamiltonian either Hermitian or non-Hermitian can diagrammatically be easily derived. For the formal E-independent model Hamiltonian the separability theorem is proved, which can be profitably used for a rather ''formalistic ''construction of a many-body E-independent model Hamiltonian
Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant
DEFF Research Database (Denmark)
Villadsen, Jørgen; Schlichtkrull, Anders
2017-01-01
We present a formalization of a so-called paraconsistent logic that avoids the catastrophic explosiveness of inconsistency in classical logic. The paraconsistent logic has a countably infinite number of non-classical truth values. We show how to use the proof assistant Isabelle to formally prove...... theorems in the logic as well as meta-theorems about the logic. In particular, we formalize a meta-theorem that allows us to reduce the infinite number of truth values to a finite number of truth values, for a given formula, and we use this result in a formalization of a small case study....
Rapidly converging path integral formalism. Pt. 1
International Nuclear Information System (INIS)
Bender, I.; Gromes, D.; Marquard, U.
1990-01-01
The action to be used in the path integral formalism is expanded in a systematic way in powers of the time spacing ε in order to optimize the convergence to the continuum limit. This modifies and extends the usual formalism in a transparent way. The path integral approximation to the Green function obtained by this method approaches the continuum Green function with a higher power of ε than the usual one. The general theoretical derivations are exemplified analytically for the harmonic oscillator and by Monte Carlo methods for the anharmonic oscillator. We also show how curvilinear coordinates and curved spaces can naturally be treated within this formalism. Work on field theory is in progress. (orig.)
Stability of the static solitons in a pure spinor theory with fractional power nonlinearities
International Nuclear Information System (INIS)
Akdeniz, K.G.; Tezgor, G.; Barut, A.O.; Kalayci, J.; Okan, S.E.
1988-08-01
Soliton solutions are obtained in a pure fermionic model with fractional power nonlinear self-interactions. The stability properties of the minimum solutions have also been investigated within the framework of the Shatah-Strauss formalism. (author). 10 refs
Preparation and Characterization of Formalated Polyvinyl Alcohol Hydrogel Film
International Nuclear Information System (INIS)
Than Than Aye; Nyunt Win; San Myint
2011-12-01
A feasible hydrogen film was prepared from polyvinyl alcohol (PVA) sample. The effect of chemical grafting on polyvinyl alcohol film was studied. Polyvinyl alcohol sample was mixed with distilled water and autoclaved at 121C for 60 minutes. An aqueous solution of polyvinyl alcohol was casted into a steel plate and dried for a certain time at room temperature. The obtained PVA film was immersed in formalation bath containing aqueous formaldehyde, sulphuric acid, anhydrous sodium sulphate with a weight ratio of (64:95:300) and 1 liter of distilled water at 60C for various hours. Effect of formalation time was studied varying 6, 12, 24, 36 and 48 hours. Degree of formalation was also evaluated. Physical properties of the hydrogel film such as gel fraction, degree of swelling and mechanical properties such as tensile strength, elongation and hardness were determined before and after formalation of the PVA film. Fourier Transform Infrared Spectroscopic (FTIR) analysis, Thermogravimetric / Differential thermal analysis (DTA / TG) were also studied for characterization. It was found that the appropriate condition for formalation was occured at 24 hours formalation time of with the calculated degree of formalation 65.35% with the determined values (9.04 Mpa) for tensile strength, (241.92%) for elongation, (45.30 Shore D) for hardness, (280.36%) for degree of swelling and (68.32%) for gel fraction.
FORMS OF LEARNING WITHIN HIGHER EDUCATION. BLENDING FORMAL, INFORMAL AND NON-FORMAL
Directory of Open Access Journals (Sweden)
Irina- Teodora MANOLESCU
2018-07-01
Full Text Available Changes that occur in the socio-economic environment determine new challenges for individuals that strive to acquire new, more valuable competencies. The universities, considered one of the most important pillars in developing such competencies, are challenged to develop and harmonize different forms of education (formal, informal and non-formal in order to respond to individuals’ and organizations’ needs. The mixture of learning forms can bring competitive advantage for the universities. However mixing the learning forms is not so easy to accomplish, considering that the stakeholders’ requirements could be divergent and the resources are limited. This paper aims at presenting the advantages and disadvantages of these forms of learning and also outlines few examples of the interferences. At last, the paper presents some preliminary results of a quantitative research regarding the perception on the usage of the three forms of learning of one of its stakeholders - the higher education candidates. Some implications for both universities and high school education are highlighted.
Directory of Open Access Journals (Sweden)
Alan Da Silva Esteves Da Silva Esteves
2016-10-01
Full Text Available The assignment of judging in the new Code of Civil Procedure starts with the interactions between classical formalism and democratic formalism. The theories of constitutional hermeneutics, of civil adjectival law and of traditional Positivism are used in order to reaffirm the requirement of motivating the judgment in the higher degree of quality. It is necessary to understand the changes of the standards on the legal interpretation and the act of judging. The concept of jurisdiction in the Constitutional State connects to the constitutional principles of justice and fundamental rights, and approach the formal aspects of materials.
Barriers to formal emergency obstetric care services' utilization.
Essendi, Hildah; Mills, Samuel; Fotso, Jean-Christophe
2011-06-01
Access to appropriate health care including skilled birth attendance at delivery and timely referrals to emergency obstetric care services can greatly reduce maternal deaths and disabilities, yet women in sub-Saharan Africa continue to face limited access to skilled delivery services. This study relies on qualitative data collected from residents of two slums in Nairobi, Kenya in 2006 to investigate views surrounding barriers to the uptake of formal obstetric services. Data indicate that slum dwellers prefer formal to informal obstetric services. However, their efforts to utilize formal emergency obstetric care services are constrained by various factors including ineffective health decision making at the family level, inadequate transport facilities to formal care facilities and insecurity at night, high cost of health services, and inhospitable formal service providers and poorly equipped health facilities in the slums. As a result, a majority of slum dwellers opt for delivery services offered by traditional birth attendants (TBAs) who lack essential skills and equipment, thereby increasing the risk of death and disability. Based on these findings, we maintain that urban poor women face barriers to access of formal obstetric services at family, community, and health facility levels, and efforts to reduce maternal morbidity and mortality among the urban poor must tackle the barriers, which operate at these different levels to hinder women's access to formal obstetric care services. We recommend continuous community education on symptoms of complications related to pregnancy and timely referral. A focus on training of health personnel on "public relations" could also restore confidence in the health-care system with this populace. Further, we recommend improving the health facilities in the slums, improving the services provided by TBAs through capacity building as well as involving TBAs in referral processes to make access to services timely. Measures can also be
Energy Technology Data Exchange (ETDEWEB)
Lopez Fraguas, A.; Lopez Bruna, D.; Romero, J. A.
2005-07-01
The properties of the vector magnetic potential and its usefulness to calculate magnetic fluxes in both stationary and time-dependent conditions are p revised in this report. We have adapted to the TJ-II Flexible Heliac efficient numerical expressions to calculate the vector potential, calculating in addition the magnetic flux with this formalism in circumstances whose complexity makes very convenient the use of the vector potential. The result on induced voltages offer theoretical support to the measurements of induced voltage due to the OH coils in the plasma, like the measurements provided by the loop voltage diagnostic installed in the TJ-II, as well as to the cylindrical approximation of the plasma often used to interpret experimental data. (Author) 11 refs.
Formalizing Darwinism and inclusive fitness theory.
Grafen, Alan
2009-11-12
Inclusive fitness maximization is a basic building block for biological contributions to any theory of the evolution of society. There is a view in mathematical population genetics that nothing is caused to be maximized in the process of natural selection, but this is explained as arising from a misunderstanding about the meaning of fitness maximization. Current theoretical work on inclusive fitness is discussed, with emphasis on the author's 'formal Darwinism project'. Generally, favourable conclusions are drawn about the validity of assuming fitness maximization, but the need for continuing work is emphasized, along with the possibility that substantive exceptions may be uncovered. The formal Darwinism project aims more ambitiously to represent in a formal mathematical framework the central point of Darwin's Origin of Species, that the mechanical processes of inheritance and reproduction can give rise to the appearance of design, and it is a fitting ambition in Darwin's bicentenary year to capture his most profound discovery in the lingua franca of science.
Orality and literacy, formality and informality in email communication
Directory of Open Access Journals (Sweden)
Carmen Pérez Sabater
2008-04-01
Full Text Available Approaches to the linguistic characteristics of computer-mediated communication (CMC have highlighted the frequent oral traits involved in electronic mail along with features of written language. But email is today a new communication exchange medium in social, professional and academic settings, frequently used as a substitute for the traditional formal letter. The oral characterizations and linguistic formality involved in this use of emails are still in need of research. This paper explores the formal and informal features in emails based on a corpus of messages exchanged by academic institutions, and studies the similarities and differences on the basis of their mode of communication (one-to-one or one-to-many and the sender’s mother tongue (native or nonnative. The language samples collected were systematically analyzed for formality of greetings and farewells, use of contractions, politeness indicators and non-standard linguistic features. The findings provide new insights into traits of orality and formality in email communication and demonstrate the emergence of a new style in writing for even the most important, confidential and formal purposes which seems to be forming a new sub-genre of letter-writing.
A formalization of the Berlekamp-Zassenhaus factorization algorithm
Divasón, Jose; Joosten, Sebastiaan; Thiemann, René; Yamada, Akihisa
2017-01-01
We formalize the Berlekamp–Zassenhaus algorithm for factoring square-free integer polynomials in Isabelle/HOL. We further adapt an existing formalization of Yun’s square-free factorization algorithm to integer polynomials, and thus provide an efficient and certified factorization algorithm for
Relating Lagrangian and Hamiltonian Formalisms of LC Circuits
Clemente-Gallardo, Jesús; Scherpen, Jacquelien M.A.
2003-01-01
The Lagrangian formalism earlier defined for (switching) electrical circuits, is adapted to the Lagrangian formalism defined on Lie algebroids. This allows us to define regular Lagrangians and consequently, well-defined Hamiltonian descriptions of arbitrary LC networks. The relation with other
Viewpoints, Formalisms, Languages, and Tools for Cyber-Physical Systems
2014-05-16
ACM, Inc., fax +1 (212) 869-0481. Formalisms Languages and ToolsViewpoints supported by implemented by based on Figure 1: Framework for Viewpoints...Description Languages Examples: VHDL , Verilog, and AMS extensions Reactive languages Examples: SCADE/Lustre and Giotto Model Checkers Examples: Spin, NuSMV...syntax and a formal semantics. Languages are con- crete implementations of formalisms. A language has a con- crete syntax, may deviate slightly from
Algebraic inversion of the Dirac equation for the vector potential in the non-Abelian case
International Nuclear Information System (INIS)
Inglis, S M; Jarvis, P D
2012-01-01
We study the Dirac equation for spinor wavefunctions minimally coupled to an external field, from the perspective of an algebraic system of linear equations for the vector potential. By analogy with the method in electromagnetism, which has been well-studied, and leads to classical solutions of the Maxwell–Dirac equations, we set up the formalism for non-Abelian gauge symmetry, with the SU(2) group and the case of four-spinor doublets. An extended isospin-charge conjugation operator is defined, enabling the hermiticity constraint on the gauge potential to be imposed in a covariant fashion, and rendering the algebraic system tractable. The outcome is an invertible linear equation for the non-Abelian vector potential in terms of bispinor current densities. We show that, via application of suitable extended Fierz identities, the solution of this system for the non-Abelian vector potential is a rational expression involving only Pauli scalar and Pauli triplet, Lorentz scalar, vector and axial vector current densities, albeit in the non-closed form of a Neumann series. (paper)
Formal methods for discrete-time dynamical systems
Belta, Calin; Aydin Gol, Ebru
2017-01-01
This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.
Linguistic Formalism for Semi-Autonomous Reactor Operation
International Nuclear Information System (INIS)
Joo, Sungmoon; Seo, Sang Mun; Suh, Yong-Suk; Park, Cheol
2017-01-01
The ultimate goal of our work is to develop a novel, integrated system for semi-autonomous reactor operation by introducing an interfacing language shared by human reactor operators and artificially intelligent service agents (e.g., robots). We envision that human operators and artificially intelligent service agents operate the reactor cooperatively in the future. For example, an artificially intelligent service agent carries out a human reactor operator's command or reports the result of a task commanded by the human reactor operator. This work presents preliminary work towards a unified linguistic formalism for cooperative, semiautonomous reactor operation. Application of the proposed formalism to reactor operator communication domain shows that the formalism effectively captures the syntax and semantics of the domain-specific language defined by the communication protocol.
Formal Concept Analysis for Information Retrieval
Qadi, Abderrahim El; Aboutajedine, Driss; Ennouary, Yassine
2010-01-01
In this paper we describe a mechanism to improve Information Retrieval (IR) on the web. The method is based on Formal Concepts Analysis (FCA) that it is makes semantical relations during the queries, and allows a reorganizing, in the shape of a lattice of concepts, the answers provided by a search engine. We proposed for the IR an incremental algorithm based on Galois lattice. This algorithm allows a formal clustering of the data sources, and the results which it turns over are classified by ...
Formal Institutions and Subjective Well-Being
DEFF Research Database (Denmark)
Bjørnskov, Christian; Dreher, Axel; Fischer, Justina
A long tradition in economics explores the association between the quality of formal institutions and economic performance. The literature on the relationship between such institutions and happiness is, however, rather limited. In this paper, we revisit the findings from recent cross-country stud......A long tradition in economics explores the association between the quality of formal institutions and economic performance. The literature on the relationship between such institutions and happiness is, however, rather limited. In this paper, we revisit the findings from recent cross...
The formal and the formalized: the cases of syllogistic and supposition theory
Dutilh Novaes, Catarina
2015-01-01
As a discipline, logic is arguably constituted of two main sub-projects: formal theories of argument validity on the basis of a small number of patterns, and theories of how to reduce the multiplicity of arguments in non-logical, informal contexts to the small number of patterns whose validity is
On the Equivalence of Formal Grammars and Machines.
Lund, Bruce
1991-01-01
Explores concepts of formal language and automata theory underlying computational linguistics. A computational formalism is described known as a "logic grammar," with which computational systems process linguistic data, with examples in declarative and procedural semantics and definite clause grammars. (13 references) (CB)
A formal theory of the selfish gene.
Gardner, A; Welch, J J
2011-08-01
Adaptation is conventionally regarded as occurring at the level of the individual organism. In contrast, the theory of the selfish gene proposes that it is more correct to view adaptation as occurring at the level of the gene. This view has received much popular attention, yet has enjoyed only limited uptake in the primary research literature. Indeed, the idea of ascribing goals and strategies to genes has been highly controversial. Here, we develop a formal theory of the selfish gene, using optimization theory to capture the analogy of 'gene as fitness-maximizing agent' in mathematical terms. We provide formal justification for this view of adaptation by deriving mathematical correspondences that translate the optimization formalism into dynamical population genetics. We show that in the context of social interactions between genes, it is the gene's inclusive fitness that provides the appropriate maximand. Hence, genic selection can drive the evolution of altruistic genes. Finally, we use the formalism to assess the various criticisms that have been levelled at the theory of the selfish gene, dispelling some and strengthening others. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Criteria for logical formalization
Czech Academy of Sciences Publication Activity Database
Peregrin, Jaroslav; Svoboda, Vladimír
2013-01-01
Roč. 190, č. 14 (2013), s. 2897-2924 ISSN 0039-7857 R&D Projects: GA ČR(CZ) GAP401/10/1279 Institutional support: RVO:67985955 Keywords : logic * logical form * formalization * reflective equilibrium Subject RIV: AA - Philosophy ; Religion Impact factor: 0.637, year: 2013
Formalization of Medical Guidelines
Czech Academy of Sciences Publication Activity Database
Peleška, Jan; Anger, Z.; Buchtela, David; Šebesta, K.; Tomečková, Marie; Veselý, Arnošt; Zvára, K.; Zvárová, Jana
2005-01-01
Roč. 1, - (2005), s. 133-141 ISSN 1801-5603 R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : GLIF model * formalization of guidelines * prevention of cardiovascular diseases Subject RIV: IN - Informatics, Computer Science
DEFF Research Database (Denmark)
Rand, John; Torm, Nina Elisabeth
2012-01-01
Based on unique panel data consisting of both formal and informal firms, this paper uses a matched double difference approach to examine the relationship between legal status and firm level outcomes in micro, small and medium manufacturing enterprises (SMEs) in Vietnam. Controlling for determinin...
El Salvador - Formal Technical Education
Millennium Challenge Corporation — With a budget of nearly $20 million, the Formal Technical Education Sub-Activity was designed to strengthen technical and vocational educational institutions in the...
Methodological imperfection and formalizations in scientific activity
International Nuclear Information System (INIS)
Svetlichny, G.
1987-01-01
Any mathematical formalization of scientific activity allows for imperfections in the methodology that is formalized. These can be of three types, dirty, rotten, and dammed. Restricting mathematical attention to those methods that cannot be construed to be imperfect drastically reduces the class of objects that must be analyzed, and related all other objects to these more regular ones. Examples are drawn from empirical logic
Formal concept analysis in knowledge discovery: A survey
Poelmans, J.; Elzinga, P.; Viaene, S.; Dedene, G.; Croitoru, M.; Ferré, S.; Lukose, D.
2010-01-01
In this paper, we analyze the literature on Formal Concept Analysis (FCA) using FCA. We collected 702 papers published between 2003-2009 mentioning Formal Concept Analysis in the abstract. We developed a knowledge browsing environment to support our literature analysis process. The pdf-files
Lekhnitskii's formalism of one-dimensional quasicrystals and its ...
Indian Academy of Sciences (India)
To illustrate its utility, the generalized Lekhnitskii's formal- ism is used to analyse the coupled phonon and phason fields in an infinite quasicrystal medium con- taining an elliptic rigid inclusion. Keywords. Generalized Lekhnitskii's formalism; one-dimensional quasicrystals; plane problems; elliptic inclusion. PACS Nos 61.44.
Keldysh formalism for multiple parallel worlds
International Nuclear Information System (INIS)
Ansari, M.; Nazarov, Y. V.
2016-01-01
We present a compact and self-contained review of the recently developed Keldysh formalism for multiple parallel worlds. The formalism has been applied to consistent quantum evaluation of the flows of informational quantities, in particular, to the evaluation of Renyi and Shannon entropy flows. We start with the formulation of the standard and extended Keldysh techniques in a single world in a form convenient for our presentation. We explain the use of Keldysh contours encompassing multiple parallel worlds. In the end, we briefly summarize the concrete results obtained with the method.
Keldysh formalism for multiple parallel worlds
Ansari, M.; Nazarov, Y. V.
2016-03-01
We present a compact and self-contained review of the recently developed Keldysh formalism for multiple parallel worlds. The formalism has been applied to consistent quantum evaluation of the flows of informational quantities, in particular, to the evaluation of Renyi and Shannon entropy flows. We start with the formulation of the standard and extended Keldysh techniques in a single world in a form convenient for our presentation. We explain the use of Keldysh contours encompassing multiple parallel worlds. In the end, we briefly summarize the concrete results obtained with the method.
Towards formalization of inspection using petrinets
International Nuclear Information System (INIS)
Javed, M.; Naeem, M.; Bahadur, F.; Wahab, A.
2014-01-01
Achieving better quality software has always been a challenge for software developers. Inspection is one of the most efficient techniques, which ensure the quality of software during its development. To the best of our knowledge, current inspection techniques are not realized by any formal approach. In this paper, we propose an inspection technique, which is not only backed by the formal mathematical semantics of Petri nets, but also supports inspecting concurrent processes. We also use a case study of an agent based distributed processing system to demonstrate the inspection of concurrent processes. (author)
Keldysh formalism for multiple parallel worlds
Energy Technology Data Exchange (ETDEWEB)
Ansari, M.; Nazarov, Y. V., E-mail: y.v.nazarov@tudelft.nl [Delft University of Technology, Kavli Institute of Nanoscience (Netherlands)
2016-03-15
We present a compact and self-contained review of the recently developed Keldysh formalism for multiple parallel worlds. The formalism has been applied to consistent quantum evaluation of the flows of informational quantities, in particular, to the evaluation of Renyi and Shannon entropy flows. We start with the formulation of the standard and extended Keldysh techniques in a single world in a form convenient for our presentation. We explain the use of Keldysh contours encompassing multiple parallel worlds. In the end, we briefly summarize the concrete results obtained with the method.
Longitudinal Associations Between Formal Volunteering and Cognitive Functioning.
Proulx, Christine M; Curl, Angela L; Ermer, Ashley E
2018-03-02
The present study examines the association between formal volunteering and cognitive functioning over time. We also examine the moderating roles of race, sex, education, and time. Using 11,100 participants aged 51 years and older and nine waves of data from the Health and Retirement Survey, we simultaneously modeled the longitudinal associations between engaging in formal volunteering and changes in cognitive functioning using multilevel models. Formal volunteering was associated with higher levels of cognitive functioning over time, especially with aspects of cognitive functioning related to working memory and processing. This association was stronger for women than it was for men, and for those with below average levels of education. The positive association between formal volunteering and cognitive functioning weakened over time when cognitive functioning was conceptualized as memory, but strengthened over time when conceptualized as working memory and processing. Volunteering is a productive activity that is beneficial not just to society, but to volunteers' levels of cognitive functioning in older age. For women and those with lower levels of education, formal volunteering appears particularly beneficial to working memory and processing. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Readings in Formal Epistemology
DEFF Research Database (Denmark)
‘Formal epistemology’ is a term coined in the late 1990s for a new constellation of interests in philosophy,the roots of which are found in earlier works of epistemologists, philosophers of science, and logicians. It addresses a growing agenda of problems concerning knowledge, belief, certainty, ...
DEFF Research Database (Denmark)
du Gay, Paul; Lopdrup-Hjorth, Thomas
2016-01-01
term this ‘fear of the formal’, outlining key elements of its genealogy and exploring its contemporary manifestation in relation to recent and ongoing reforms of organisational life in a range of contexts. At the same time, we seek to indicate the continuing constitutive significance of formality...
Systematics of IIB spinorial geometry
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2005-01-01
We reduce the classification of all supersymmetric backgrounds of IIB supergravity to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This extends the work of [hep-th/0503046] to IIB supergravity. We give the expressions of the Killing spinor equations on all five types of spinors. In this way, the Killing spinor equations become a linear system for the fluxes, geometry and spacetime derivatives of...
Do formal management practices impact the emergence of bootlegging behavior?
DEFF Research Database (Denmark)
Globocnik, Dietfried; Salomo, Søren
2014-01-01
behavior, research has barely addressed the antecedents of this deviance. Drawing on strain theory and social cognitive theory, we study whether the emergence of bootlegging behavior is influenced by formal management practices, in particular, strategic autonomy, front-end formality, rewards, and sanctions......Innovation in an organization often relies on initiatives by employees who take action to develop their ideas and obtain buy-in by organizational decision-makers. To achieve this, employees sometimes apply unorthodox approaches, ignoring formal structures to further elaborate their ideas' potential...... and promote their implementation. They work without formal legitimacy and gather their own resources until sufficient clarity allows for informed decisions. Finally, they bypass formal communication channels to convince top management of the merits of their ideas. Despite the significance of such bootlegging...
Balancing Formality and Informality in Business Exchanges as a Duality
DEFF Research Database (Denmark)
Lin, Daomi; Lu, Jiangyong; Li, Peter Ping
2015-01-01
emphasized formality more than informality, while local entrepreneurs stressed informality more than formality. However, the formality-informality balance among both returnee and local entrepreneurs converged over time in line with the institutional transition in China. Returnee entrepreneurs increased...... for firms, especially those facing institutional differences in transnational contexts and institutional transitions. In this research, we conducted a comparative multicase study on returnee entrepreneurs and local entrepreneurs in China. We found that at the early stage of venturing, returnee entrepreneurs...... the emphasis on informality (but kept the dominant position of formality), whereas local entrepreneurs gradually shifted from informality to formality. The spatial pattern of asymmetrical balancing and the temporal pattern of transitional balancing are both rooted in the Chinese philosophy of Yin...
Directory of Open Access Journals (Sweden)
Chayanopparat Piyanan
2016-01-01
Full Text Available Non-formal vocational education provides practical experiences in a particular occupational field to non-formal semi-skilled learners. Non-formal vocational teachers are the key persons to deliver particular occupational knowledge. The essential competencies enhancement for non-sformal vocational teachers will improve teaching performance. The question of the research is what the essential competencies for the nonformal vocational teachers are. The research method was 1 to review related literature, 2 to collect a needs assessment, and 3 to analyse the essential competencies for non-formal vocational teachers. The population includes non-formal vocational teachers at the executive level and nonformal vocational teachers. The results from the essential competencies analysis found that the essential competencies for non-formal vocational teachers consist of 5 capabilities including 1 Adult learning design capability, 2 Adult learning principle application capability, 3 ICT searching capability for teaching preparation, 4 Instructional plan development capability and 5 Instructional media development capability.
Formal description of the OSI session layer: introduction
Ajubi, I.; Scollo, Giuseppe; van Sinderen, Marten J.; van Eijk, P.H.J.; Vissers, C.A.; Diaz, M.
1989-01-01
The LOTOS formal description of the OSI session layer is introduced with the purpose of familiarizing the reader with the design choices that influenced the development of the formal description. Such design choices concern the adoptation of specification styles and the reflection of elements of the
Formal Test Automation: The Conference Protocol with PHACT
Heerink, A.W.; Ural, Hasan; Probert, Robert L.; Feenstra, J.; Tretmans, G.J.; von Bochmann, Gregor
2000-01-01
We discuss a case study of automatic test generation and test execution based on formal methods. The case is the Conference Protocol, a simple, chatbox-like protocol, for which (formal) specifications and multiple implementations are publicly available and which is also used in other case study
O formal, o não formal e as outras formas: a aula de física como gênero discursivo
Directory of Open Access Journals (Sweden)
Giselle Faur de Castro Catarino
2017-01-01
Full Text Available Muchas investigaciones han puesto de relieve similitudes y diferencias entre la educación formal y no formal. Podemos decir que los dos tipos de educación son diferentes, lo que requiere de formación inicial y continuada, diferenciada para profesores que quieran transitar en estos espacios educativos. Entendemos que este tipo de formación es posible y es una realidad para estudiantes que asumen actividades en espacios no formales vinculados a la educación. Nuestro objetivo en este artículo, que hace parte de una tesis de doctorado, es entender los beneficios y obstáculos que se generan en la vida cotidiana de profesores que se mueven en los dos ámbitos de formación. Del análisis de la práctica de un maestro que trae consigo esta formación diferenciada, creando una práctica híbrida, notamos una forma de la clase que creemos pertenece a un género discursivo específico, diferente del formal y el no formal. Para ello, esbozaremos un marco teórico, basado en las ideas de Mikhail Bakhtin, que nos permita pensar la clase como un género discursivo.
SME´s semi-formality rate in Costa Rica: a clusters approach
Directory of Open Access Journals (Sweden)
Lizette Brenes Bonilla
2016-02-01
Full Text Available The MSME Observatory has been studying MSMEs in Costa Rica. Its findings show that for every formal enterprise, there are 2.4 semi-formal ones. The latter refers to those enterprises that have already started the formalization process with the corresponding municipality but that still do not have all the formalization requirements.Owing to the importance of the semi-formal sector in the economic activity of Costa Rica, this study analyzed this business park and the role of municipal management concerning MSMEs, calculated the correlation among semi-formality, competitiveness, and development, and finally, proposed a cluster design to deal with the state of affairs. It should be noted that this type of analysis has never been undertaken in the country.
Formal Institutions and Subjective Wellbeing
DEFF Research Database (Denmark)
Bjørnskov, Christian; Dreher, Axel; Fischer, Justina A.V.
2010-01-01
A long tradition in economics explores the association between the quality of formal institutions and economic performance. The literature on the relationship between such institutions and happiness is, however, rather limited, and inconclusive. In this paper, we revisit the findings from recent...... cross-country studies on the institution-happiness association. Our findings suggest that their conclusions are qualitatively rather insensitive to the specific measure of 'happiness' used, while the associations between formal institutions and subjective well-being differ among poor and rich countries....... Separating different types of institutional quality, we find that in low-income countries the effects of economic-judicial institutions on happiness dominate those of political institutions, while analyses restricted to middle- and high-income countries show strong support for an additional beneficial effect...
Methodology of formal software evaluation
International Nuclear Information System (INIS)
Tuszynski, J.
1998-01-01
Sydkraft AB, the major Swedish utility, owner of ca 6000 MW el installed in nuclear (NPP Barsebaeck and NPP Oskarshamn), fossil fuel and hydro Power Plants is facing modernization of the control systems of the plants. Standards applicable require structured, formal methods for implementation of the control functions in the modem, real time software systems. This presentation introduces implementation methodology as discussed presently at the Sydkraft organisation. The approach suggested is based upon the process of co-operation of three parties taking part in the implementation; owner of the plant, vendor and Quality Assurance (QA) organisation. QA will be based on tools for formal software validation and on systematic gathering by the owner of validated and proved-by-operation control modules for the concern-wide utilisation. (author)
Formalizing physical security procedures
Meadows, C.; Pavlovic, Dusko
Although the problems of physical security emerged more than 10,000 years before the problems of computer security, no formal methods have been developed for them, and the solutions have been evolving slowly, mostly through social procedures. But as the traffic on physical and social networks is now
Learning in non-formal education: Is it "youthful" for youth in action?
Norqvist, Lars; Leffler, Eva
2017-04-01
This article offers insights into the practices of a non-formal education programme for youth provided by the European Union (EU). It takes a qualitative approach and is based on a case study of the European Voluntary Service (EVS). Data were collected during individual and focus group interviews with learners (the EVS volunteers), decision takers and trainers, with the aim of deriving an understanding of learning in non-formal education. The research questions concerned learning, the recognition of learning and perspectives of usefulness. The study also examined the Youthpass documentation tool as a key to understanding the recognition of learning and to determine whether the learning was useful for learners (the volunteers). The findings and analysis offer several interpretations of learning, and the recognition of learning, which take place in non-formal education. The findings also revealed that it is complicated to divide learning into formal and non- formal categories; instead, non-formal education is useful for individual learners when both formal and non-formal educational contexts are integrated. As a consequence, the division of formal and non-formal (and possibly even informal) learning creates a gap which works against the development of flexible and interconnected education with ubiquitous learning and mobility within and across formal and non-formal education. This development is not in the best interests of learners, especially when seeking useful learning and education for youth (what the authors term "youthful" for youth in action).
Formalized Linear Algebra over Elementary Divisor Rings in Coq
Cano , Guillaume; Cohen , Cyril; Dénès , Maxime; Mörtberg , Anders; Siles , Vincent
2016-01-01
International audience; This paper presents a Coq formalization of linear algebra over elementary divisor rings, that is, rings where every matrix is equivalent to a matrix in Smith normal form. The main results are the formalization that these rings support essential operations of linear algebra, the classification theorem of finitely pre-sented modules over such rings and the uniqueness of the Smith normal form up to multiplication by units. We present formally verified algorithms comput-in...
Formalization and Implementation of Algebraic Methods in Geometry
Directory of Open Access Journals (Sweden)
Filip Marić
2012-02-01
Full Text Available We describe our ongoing project of formalization of algebraic methods for geometry theorem proving (Wu's method and the Groebner bases method, their implementation and integration in educational tools. The project includes formal verification of the algebraic methods within Isabelle/HOL proof assistant and development of a new, open-source Java implementation of the algebraic methods. The project should fill-in some gaps still existing in this area (e.g., the lack of formal links between algebraic methods and synthetic geometry and the lack of self-contained implementations of algebraic methods suitable for integration with dynamic geometry tools and should enable new applications of theorem proving in education.
Film for Non-Formal Education.
Jenkins, Janet
1979-01-01
Looks at educational factors in using television or cinema film for non-formal education in developing nations. Styles of presentation in films are discussed, and suggestions are made for assessing effectiveness. (JEG)
Traditional and formal education: Means of improving grasscutter ...
African Journals Online (AJOL)
The study concludes that both traditional and non-formal education are important for the development and efficiency of grasscutter farming in Ogun Waterside Local Government Area of Ogun State. The following are the recommendations of the study: revision of the curriculum of formal schools to include items that inculcate ...
Formal structures for extracting analytically justifiable decisions from ...
African Journals Online (AJOL)
This paper identifies the benefits of transforming business process models into Decision Support Systems (DSS). However, the literature reveals that a business process model “should have a formal foundation” as a major requirement for transforming it into a DSS. The paper further ascertains that formal structures refer to ...
Academic Achievement and Formal Thought in Engineering Students
Vazquez, Stella Maris; de Anglat, Hilda Difabio
2009-01-01
Introduction: Research on university-level academic performance has significantly linked failure and dropping out to formal reasoning deficiency. We have not found any papers on formal thought in Argentine university students, in spite of the obvious shortcomings observed in the classrooms. Thus, the main objective of this paper was exploring the…
Enhancing System Realisation in Formal Model Development
DEFF Research Database (Denmark)
Tran-Jørgensen, Peter Würtz Vinther
and requirements of software extensions targeting Overture. The tools developed in this PhD project have successfully supported three case studies from externally funded projects. The feedback received from the case study work has further helped improve the code generation infrastructure and the tools built using...... implementation. One way to realise the system’s software is by automatically generating it from the formal specification – a technique referred to as code generation. However, in general it is difficult to make guarantees about the correctness of the generated code – especially while requiring automation...... of the steps involved in realising the formal specification. This PhD dissertation investigates ways to improve the automation of the steps involved in realising and validating a system based on a formal specification. The approach aims to develop properly designed software tools which support the integration...
DEFF Research Database (Denmark)
Børgesen, Kenneth; Nielsen, Rikke Kristine; Henriksen, Thomas Duus
2016-01-01
Purpose This paper aims to address the necessity of allowing non-formal and informal processes to unfold when using business games for leadership development. While games and simulations have long been used in management training and leadership development, emphasis has been placed on the formal...... of the process is not assessed. Practical implications This paper suggests that the use of business games in leadership development should focus more on the processes and activities surrounding the game rather than narrowly focusing on the game. Originality/value This paper suggests a novel approach to using...... parts of the process and especially on the gaming experience. Design/methodology/approach This paper is based on a qualitative study of a French management game on change management, in which the game-based learning process is examined in light of adult learning. Findings This paper concludes that less...
Robot-assisted laparoscopic skills development: formal versus informal training.
Benson, Aaron D; Kramer, Brandan A; Boehler, Margaret; Schwind, Cathy J; Schwartz, Bradley F
2010-08-01
The learning curve for robotic surgery is not completely defined, and ideal training components have not yet been identified. We attempted to determine whether skill development would be accelerated with formal, organized instruction in robotic surgical techniques versus informal practice alone. Forty-three medical students naive to robotic surgery were randomized into two groups and tested on three tasks using the robotic platform. Between the testing sessions, the students were given equally timed practice sessions. The formal training group participated in an organized, formal training session with instruction from an attending robotic surgeon, whereas the informal training group participated in an equally timed unstructured practice session with the robot. The results were compared based on technical score and time to completion of each task. There was no difference between groups in prepractice testing for any task. In postpractice testing, there was no difference between groups for the ring transfer tasks. However, for the suture placement and knot-tying task, the technical score of the formal training group was significantly better than that of the informal training group (p formal training may not be necessary for basic skills, formal instruction for more advanced skills, such as suture placement and knot tying, is important in developing skills needed for effective robotic surgery. These findings may be important in formulating potential skills labs or training courses for robotic surgery.
Dynamical contents of unconventional supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Guevara, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Pais, Pablo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Zanelli, Jorge [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)
2016-08-11
The Dirac Hamiltonian formalism is applied to a system in (2+1)-dimensions consisting of a Dirac field ψ minimally coupled to Chern-Simons U(1) and SO(2,1) connections, A and ω, respectively. This theory is connected to a supersymmetric Chern-Simons form in which the gravitino has been projected out (unconventional supersymmetry) and, in the case of a flat background, corresponds to the low energy limit of graphene. The separation between first-class and second-class constraints is performed explicitly, and both the field equations and gauge symmetries of the Lagrangian formalism are fully recovered. The degrees of freedom of the theory in generic sectors shows that the propagating states correspond to fermionic modes in the background determined by the geometry of the graphene sheet and the nondynamical electromagnetic field. This is shown for the following canonical sectors: i) a conformally invariant generic description where the spinor field and the dreibein are locally rescaled; ii) a specific configuration for the Dirac fermion consistent with its spin, where Weyl symmetry is exchanged by time reparametrizations; iii) the vacuum sector ψ=0, which is of interest for perturbation theory. For the latter the analysis is adapted to the case of manifolds with boundary, and the corresponding Dirac brackets together with the centrally extended charge algebra are found. Finally, the SU(2) generalization of the gauge group is briefly treated, yielding analogous conclusions for the degrees of freedom.
The formality of learning science in everyday life: A conceptual literature review
Directory of Open Access Journals (Sweden)
Niels Bonderup Dohn
2010-09-01
Full Text Available The terms non-formal and informal are attributed to learning in everyday life by many authors, often linked to their interests in particular learning practices. However, many authors use the terms without any clear definition, or employ conflicting definitions and boundaries. An analysis of relevant literature revealed two fundamentally different interpretations of informal learning. The one describes formality of education at the organizational level, while the second describes formality of learning at the psychological level. This article presents a conceptual reconciling of these two perspectives. Based on a literature review, the educational modes of education are defined as discrete entities (formal, non-formal, and informal education, whereas formality at the psychological level is defined in terms of attributes of formality and informality along a continuum (formal ↔ informal learning. Relations to other well-established frameworks within the field of informal learning are discussed.
Improved formalism for precision Higgs coupling fits
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Karl, Robert; List, Jenny; Ogawa, Tomohisa; Peskin, Michael E.; Tian, Junping
2018-03-01
Future e+e- colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e+e- data, based on the effective field theory description of corrections to the Standard Model. We apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e+e- colliders.
Young People, Entrepreneurship And Non Formal Learning
Pantea, Maria-Carmen; Diroescu, Raluca; Podlasek-Ziegler, Maria
2016-01-01
The book was published by SALTO-Youth Participation, a Resource Centre of the European Commission. It looks into the relationship between youth work (non-formal learning) and entrepreneurship. The book explores the theoretical developments in the field, the ethical dilemmas and tensions, and proposes practice-oriented information: illustrative examples, strategies for action and methods of non-formal education. Structured in 24 chapters, the book is an opportunity to open up debates and quest...
Improved formalism for precision Higgs coupling fits
International Nuclear Information System (INIS)
Barklow, Tim; Peskin, Michael E.; Jung, Sunghoon; Tian, Junping
2017-08-01
Future e + e - colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e + e - data, based on the Effective Field Theory description of corrections to the Standard Model. We apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e + e - colliders.
A Study of Gaugeon Formalism for QED in Lorentz Violating Background
Shah, Mushtaq B.; Ganai, Prince A.
2018-02-01
At the energy regimes close to Planck scales, the usual structure of Lorentz symmetry fails to address certain fundamental issues and eventually breaks down, thus paving the way for an alternative road map. It is thus argued that some subgroup of proper Lorentz group could stand consistent and might possibly help us to circumvent this problem. It is this subgroup that goes by the name of Very Special Relativity (VSR). Apart from violating rotational symmetry, VSR is believed to preserve the very tenets of special relativity. The gaugeon formalism due to type-I Yokoyama and type-II Izawa are found to be invariant under BRST symmetry. In this paper, we analyze the scope of this invariance in the scheme of VSR. Furthermore, we will obtain VSR modified Lagrangian density using path integral derivation. We will explore the consistency of VSR with regard to these theories.
Formal methods in design and verification of functional specifications
International Nuclear Information System (INIS)
Vaelisuo, H.
1995-01-01
It is claimed that formal methods should be applied already when specifying the functioning of the control/monitoring system, i.e. when planning how to implement the desired operation of the plant. Formal methods are seen as a way to mechanize and thus automate part of the planning. All mathematical methods which can be applied on related problem solving should be considered as formal methods. Because formal methods can only support the designer, not replace him/her, they must be integrated into a design support tool. Such a tool must also aid the designer in getting the correct conception of the plant and its behaviour. The use of a hypothetic design support tool is illustrated to clarify the requirements such a tool should fulfill. (author). 3 refs, 5 figs
Bolton, Matthew L.; Bass, Ellen J.
2009-01-01
Both the human factors engineering (HFE) and formal methods communities are concerned with finding and eliminating problems with safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to use model checking with HFE practices to perform formal verification of a human-interactive system. Despite the use of a seemingly simple target system, a patient controlled analgesia pump, the initial model proved to be difficult for the model checker to verify in a reasonable amount of time. This resulted in a number of model revisions that affected the HFE architectural, representativeness, and understandability goals of the effort. If formal methods are to meet the needs of the HFE community, additional modeling tools and technological developments are necessary.
Formalization of Hostel Management System. | Obi | Journal of the ...
African Journals Online (AJOL)
HMS) can invariably contribute greatly to the success, profitability and customerbased approach of such an organization. The use of formal specification creates a formal approach for specifying the underlying functions and properties of the ...
Informal work and formal plans
DEFF Research Database (Denmark)
Dalsted, Rikke Juul; Hølge-Hazelton, Bibi; Kousgaard, Marius Brostrøm
2012-01-01
trajectories. METHODS AND THEORY: An in-depth case study of patient trajectories at a Danish hospital and surrounding municipality using individual interviews with patients. Theory about trajectory and work by Strauss was included. RESULTS: Patients continuously took initiatives to organize their treatment...... and care. They initiated processes in the trajectories, and acquired information, which they used to form their trajectories. Patients presented problems to the healthcare professionals in order to get proper help when needed. DISCUSSION: Work done by patients was invisible and not perceived as work....... The patients' requests were not sufficiently supported in the professional organisation of work or formal planning. Patients' insertion and use of information in their trajectories challenged professional views and working processes. And the design of the formal pathway models limits the patients' active...
Polynomials formalism of quantum numbers
International Nuclear Information System (INIS)
Kazakov, K.V.
2005-01-01
Theoretical aspects of the recently suggested perturbation formalism based on the method of quantum number polynomials are considered in the context of the general anharmonicity problem. Using a biatomic molecule by way of example, it is demonstrated how the theory can be extrapolated to the case of vibrational-rotational interactions. As a result, an exact expression for the first coefficient of the Herman-Wallis factor is derived. In addition, the basic notions of the formalism are phenomenologically generalized and expanded to the problem of spin interaction. The concept of magneto-optical anharmonicity is introduced. As a consequence, an exact analogy is drawn with the well-known electro-optical theory of molecules, and a nonlinear dependence of the magnetic dipole moment of the system on the spin and wave variables is established [ru
Towne, Forrest S.
Current domestic and international comparative studies of student achievement in science are demonstrating that the U.S. needs to improve science education if it wants to remain competitive in the global economy. One of the causes of the poor performance of U.S. science education is the lack of students who have developed the formal thinking skills that are necessary to obtain scientific literacy. Previous studies have demonstrated that formal thinking skills can be taught to adolescents, however only 25% of incoming college freshman have these necessary skills. There is some evidence that adolescence (girls aged 11-13, boys aged 12-14) is a critical period where students must learn formal thinking skills, similar to the critical period that exists for young children learning languages. It is not known whether it is more difficult for students to learn formal thinking skills either prior to or following adolescence. The purpose of this quantitative case study is to determine whether adolescence is a critical period for students to learn formal thinking skills. The study also investigates whether a formal thinking skills focused program can improve students' intelligence. In this study 32 students who had not developed any formal thinking skills, ranging in age from 10-16, underwent an intensive four-week, inquiry-based, formal thinking skill intervention program that focused on two formal thinking skills: (1) the ability to control and exclude variables; and (2) the ability to manipulate ratios and proportionalities. The students undergoing the training were matched with control students by age, gender, formal thinking skill ability, and intelligence. The control group attended their traditional science course during the intervention periods. The results of the study showed that the intervention program was successful in developing students' formal thinking skills. The pre-adolescents (males, age 10-11, females, age 10) were unable to learn formal thinking skills
Conceptual graph grammar--a simple formalism for sublanguage.
Johnson, S B
1998-11-01
There are a wide variety of computer applications that deal with various aspects of medical language: concept representation, controlled vocabulary, natural language processing, and information retrieval. While technical and theoretical methods appear to differ, all approaches investigate different aspects of the same phenomenon: medical sublanguage. This paper surveys the properties of medical sublanguage from a formal perspective, based on detailed analyses cited in the literature. A review of several computer systems based on sublanguage approaches shows some of the difficulties in addressing the interaction between the syntactic and semantic aspects of sublanguage. A formalism called Conceptual Graph Grammar is presented that attempts to combine both syntax and semantics into a single notation by extending standard Conceptual Graph notation. Examples from the domain of pathology diagnoses are provided to illustrate the use of this formalism in medical language analysis. The strengths and weaknesses of the approach are then considered. Conceptual Graph Grammar is an attempt to synthesize the common properties of different approaches to sublanguage into a single formalism, and to begin to define a common foundation for language-related research in medical informatics.
Improved formalism for precision Higgs coupling fits
Energy Technology Data Exchange (ETDEWEB)
Barklow, Tim; Peskin, Michael E. [Stanford Univ., Menlo Park, CA (United States). Stanford Linear Accelerator Center; Fujii, Keisuke; Ogawa, Tomohisa [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jung, Sunghoon [Stanford Univ., Menlo Park, CA (United States). Stanford Linear Accelerator Center; Seoul National Univ. (Korea, Republic of). Dept. of Physics and Astronomy; Karl, Robert; List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tian, Junping [Tokyo Univ. (Japan). International Center for Elementary Particle Physics (ICEPP)
2017-08-15
Future e{sup +}e{sup -} colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e{sup +}e{sup -} data, based on the Effective Field Theory description of corrections to the Standard Model. We apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e{sup +}e{sup -} colliders.
Formal Modeling and Analysis of Timed Systems
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand; Niebert, Peter
This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Formal Modeling and Analysis of Timed Systems, FORMATS 2003, held in Marseille, France in September 2003. The 19 revised full papers presented together with an invited paper and the abstracts of ...... systems, discrete time systems, timed languages, and real-time operating systems....... of two invited talks were carefully selected from 36 submissions during two rounds of reviewing and improvement. All current aspects of formal method for modeling and analyzing timed systems are addressed; among the timed systems dealt with are timed automata, timed Petri nets, max-plus algebras, real-time......This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Formal Modeling and Analysis of Timed Systems, FORMATS 2003, held in Marseille, France in September 2003. The 19 revised full papers presented together with an invited paper and the abstracts...
Automated Formal Verification for PLC Control Systems
Fernández Adiego, Borja
2014-01-01
Programmable Logic Controllers (PLCs) are widely used devices used in industrial control systems. Ensuring that the PLC software is compliant with its specification is a challenging task. Formal verification has become a recommended practice to ensure the correctness of the safety-critical software. However, these techniques are still not widely applied in industry due to the complexity of building formal models, which represent the system and the formalization of requirement specifications. We propose a general methodology to perform automated model checking of complex properties expressed in temporal logics (e.g. CTL, LTL) on PLC programs. This methodology is based on an Intermediate Model (IM), meant to transform PLC programs written in any of the languages described in the IEC 61131-3 standard (ST, IL, etc.) to different modeling languages of verification tools. This approach has been applied to CERN PLC programs validating the methodology.
Supersymmetric backgrounds, the Killing superalgebra, and generalised special holonomy
Energy Technology Data Exchange (ETDEWEB)
Coimbra, André [Institut des Hautes Études Scientifiques, Le Bois-Marie,35 route de Chartres, F-91440 Bures-sur-Yvette (France); Strickland-Constable, Charles [Institut des Hautes Études Scientifiques, Le Bois-Marie,35 route de Chartres, F-91440 Bures-sur-Yvette (France); Institut de physique théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers, F-91191 Gif-sur-Yvette (France)
2016-11-10
We prove that, for M theory or type II, generic Minkowski flux backgrounds preserving N supersymmetries in dimensions D≥4 correspond precisely to integrable generalised G{sub N} structures, where G{sub N} is the generalised structure group defined by the Killing spinors. In other words, they are the analogues of special holonomy manifolds in E{sub d(d)}×ℝ{sup +} generalised geometry. In establishing this result, we introduce the Kosmann-Dorfman bracket, a generalisation of Kosmann’s Lie derivative of spinors. This allows us to write down the internal sector of the Killing superalgebra, which takes a rather simple form and whose closure is the key step in proving the main result. In addition, we find that the eleven-dimensional Killing superalgebra of these backgrounds is necessarily the supertranslational part of the N-extended super-Poincaré algebra.
Financing Adult and Non-Formal Education in Nigeria
Hassan, Moshood Ayinde
2009-01-01
The purpose of this study is to determine how adult and non formal education is financed in Nigeria; and to examine areas or forms of and the problems of financing adult and non-formal education in Nigeria. Survey research was used in order to carry out the study. Three hundred and twenty five (325) respondents from government agencies,…
Formal equivalence of Poisson structures around Poisson submanifolds
Marcut, I.T.
2012-01-01
Let (M,π) be a Poisson manifold. A Poisson submanifold P ⊂ M gives rise to a Lie algebroid AP → P. Formal deformations of π around P are controlled by certain cohomology groups associated to AP. Assuming that these groups vanish, we prove that π is formally rigid around P; that is, any other Poisson
Formalized Verification of Snapshotable Trees: Separation and Sharing
DEFF Research Database (Denmark)
Mehnert, Hannes; Sieczkowski, Filip; Birkedal, Lars
2012-01-01
We use separation logic to specify and verify a Java program that implements snapshotable search trees, fully formalizing the speci- cation and verication in the Coq proof assistant. We achieve local and modular reasoning about a tree and its snapshots and their iterators, al- though...... for full functional specication and verication, whether by separation logic or by other formalisms....
Transforming PLC Programs into Formal Models for Verification Purposes
Darvas, D; Blanco, E
2013-01-01
Most of CERN’s industrial installations rely on PLC-based (Programmable Logic Controller) control systems developed using the UNICOS framework. This framework contains common, reusable program modules and their correctness is a high priority. Testing is already applied to find errors, but this method has limitations. In this work an approach is proposed to transform automatically PLC programs into formal models, with the goal of applying formal verification to ensure their correctness. We target model checking which is a precise, mathematical-based method to check formalized requirements automatically against the system.
1991-10-01
SUBJECT TERMS 15. NUMBER OF PAGES engineering management information systems method formalization 60 information engineering process modeling 16 PRICE...CODE information systems requirements definition methods knowlede acquisition methods systems engineering 17. SECURITY CLASSIFICATION ji. SECURITY... Management , Inc., Santa Monica, California. CORYNEN, G. C., 1975, A Mathematical Theory of Modeling and Simula- tion. Ph.D. Dissertation, Department
Educational Achievements as a Determinant of an Individual’s Formal Power
Miha Marič; Mitja Jeraj
2014-01-01
The scope of this study is to define how educational achievements of individuals in Slovenia define their “formal power” in the organizations where they work. The study is based on theoretical definitions of the concepts of formal power and education. A total of 509 people from Slovenia over 30 years of age participated in the study. We recognized a certain influence of educational achievement on the formal position in the organizational hierarchy. The main predictor of an individual’s formal...