WorldWideScience

Sample records for spinning study hvi

  1. HVI Damage Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A device is proposed that can track the electrical charge dispersion that is created when hyper velocity impact (HVI) occurs between two entities with a closing...

  2. Evaluation of relationship between HVI estimated leaf grade and MDTA3 measured percent trash

    Science.gov (United States)

    The objective of this study was to determine the relationship between HIV leaf grade and mass of trash in a bale of cotton fibers. Data from lint samples collected during the 2005 ginning season from 11 different gins across the cotton belt were used for this evaluation. HVI and MDTA3 measurements w...

  3. Hyper Velocity Impact - Damage Assessment System (HVI-DAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A device is proposed that can track the electrical charge dispersion that is created when hyper velocity impact (HVI) occurs between two entities with a closing...

  4. Predicting compact yarn’s IPI faults by using HVI fiber properties

    Science.gov (United States)

    Üzümcü, M. B.; Kadoğlu, H.

    2017-10-01

    Compact yarns have great value for producers and its importance grow day by day. Its higher tenacity, lower unevenness and lower hairiness –if required- are some of the reasons this yarn type gains importance. Estimation using previous data has a great value in engineering. It helps to understand the product before producing it. This study deals with the effects of HVI fiber properties on compact-spun yarns’ IPI fault results.

  5. [The Impact of Electronic Monitoring on Healthcare Associated Infections: The Role of the HViTAL Platform].

    Science.gov (United States)

    Oliveira, Rita Fontes; Castro, Lídia; Almeida, José Pedro; Alves, Carlos; Ferreira, António

    2016-11-01

    In Portugal, 9.8% of patients admitted were inflicted with healthcare associated infections, corresponding to a prevalence of 11.7%. The Hospital de São João has developed a business intelligence platform able to supervise (the patients), monitor (the clinical condition) and notify (the healthcare personnel): HViTAL. This study aims to assess the impact of electronic monitoring on healthcare associated infections since the year of HViTAL implementation. We evaluated data since January 2008 (moment from which computerized records exist) until December 2011, comparing them with subsequent data, those corresponding to January 2012 (implementation date of HViTAL) until 19 October 2015. There was an upward trend of infection parameters in the 2008 - 2011 period. Since January 2012 and October 2015, all parameters of the infection indicator showed a negative linear trend. The results are very suggestive that the HVITAL may have had an impact on improving parameters associated to healthcare associated infections. Basic measures of infection control were highlighted since 2005, with an increasing number of health professional awareness campaigns, a fact which, although not analyzed in this report, may also have contributed to the observed improvement. Our study did not include other variables such as investment in human capital. There was a clear improvement in all areas characterizing the healthcare associated infections, with obvious positive impact with the introduction of HViTAL.

  6. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  7. Debris Detector Verification by Hvi-Tests

    Science.gov (United States)

    Bauer, Waldemar; Drolshagen, Gerhard; Vörsmann, Peter; Romberg, Oliver; Putzar, Robin

    impact detection. Considering that the SOLID method could be applied to several S/Cs in different orbits, the spatial coverage in space concerning SD and MM can be significantly increased. In this way the method allows to generate large amount of impact data, which can be used for environmental model validation. This paper focuses on the verification of the SOLID method by Hypervelocity Impact (HVI) tests performed at Fraunhofer EMI. The test set-up as well as achieved results are presented and discussed.

  8. Muon spin rotation studies

    Science.gov (United States)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  9. Mitochondrial DNA variant at HVI region as a candidate of genetic markers of type 2 diabetes

    Science.gov (United States)

    Gumilar, Gun Gun; Purnamasari, Yunita; Setiadi, Rahmat

    2016-02-01

    Mitochondrial DNA (mtDNA) is maternally inherited. mtDNA mutations which can contribute to the excess of maternal inheritance of type 2 diabetes. Due to the high mutation rate, one of the areas in the mtDNA that is often associated with the disease is the hypervariable region I (HVI). Therefore, this study was conducted to determine the genetic variants of human mtDNA HVI that related to the type 2 diabetes in four samples that were taken from four generations in one lineage. Steps being taken include the lyses of hair follicles, amplification of mtDNA HVI fragment using Polymerase Chain Reaction (PCR), detection of PCR products through agarose gel electrophoresis technique, the measurement of the concentration of mtDNA using UV-Vis spectrophotometer, determination of the nucleotide sequence via direct sequencing method and analysis of the sequencing results using SeqMan DNASTAR program. Based on the comparison between nucleotide sequence of samples and revised Cambridge Reference Sequence (rCRS) obtained six same mutations that these are C16147T, T16189C, C16193del, T16127C, A16235G, and A16293C. After comparing the data obtained to the secondary data from Mitomap and NCBI, it were found that two mutations, T16189C and T16217C, become candidates as genetic markers of type 2 diabetes even the mutations were found also in the generations of undiagnosed type 2 diabetes. The results of this study are expected to give contribution to the collection of human mtDNA database of genetic variants that associated to metabolic diseases, so that in the future it can be utilized in various fields, especially in medicine.

  10. HVI Colorimeter and Color Spectrophotometer Relationships and Their Impacts on Developing "Traceable" Cotton Color Standards

    Science.gov (United States)

    Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...

  11. Spin transport studies in encapsulated CVD graphene

    Science.gov (United States)

    Avsar, Ahmet; You Tan, Jun; Ho, Yuda; Koon, Gavin; Oezyilmaz, Barbaros

    2013-03-01

    Spin transport studies in exfoliated graphene on SiO2/Si substrates have shown spin relaxation times that are orders of magnitude shorter than the theoretical predictions. Similar to the charge transport case, the underlying substrate is expected to be the limiting factor. The recent work Zomer, P. J. et al. shows that spin transport over lengths up to 20um is possible in high mobility exfoliated graphene devices on boron nitride (BN) substrates. Here we discuss our initial attempts to repeat such spin transport experiments with CVD graphene on BN substrates. The effect of encapsulation of such devices with an extra BN layer will be also discussed.

  12. A spin-resolved photoemission study

    Indian Academy of Sciences (India)

    Stoner vs. spin-mixing behavior in the bulk magnetism of Gd: A spin-resolved photoemission study. K MAITI1,2,∗. , M C MALAGOLI2, A DALLMEYER2 and C CARBONE2,3. 1Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. 2Institut für Festkörperforschung, Forschungszentrum Jülich, ...

  13. HVI-Test Setup for Debris Detector Verification

    Science.gov (United States)

    Bauer, Waldemar; Romberg, Oliver; Wiedemann, Carsten; Putzar, Robin; Drolshagen, Gerhard; Vorsmann, Peter

    2013-08-01

    concerning space debris and micrometeoroids. In this way, the SOLID method will allow the generation of a large amount of impact data for environmental model validation. The ground verification of the SOLID method was performed at Fraunhofer EMI. For this purpose, a test model was developed. This paper focuses on the test methodology and development of the Hypervelocity Impact (HVI) test setup, including pretesting at the German Aerospace Centre (DLR), Bremen. Foreseen hardware and software for the automatic damage assessment of the detector after the impact are also presented.

  14. Molecular Basis of the Pleiotropic Phenotype of Mice Carrying the Hypervariable Yellow (A(hvy)) Mutation at the Agouti Locus

    OpenAIRE

    Argeson, A. C.; Nelson, K. K.; Siracusa, L. D.

    1996-01-01

    The murine agouti locus regulates a switch in pigment synthesis between eumelanin (black/brown pigment) and phaeomelanin (yellow/red pigment) by hair bulb melanocytes. We recently described a spontaneous mutation, hypervariable yellow (A(hvy)) and demonstrated that A(hvy) is responsible for the largest range of phenotypes yet identified at the agouti locus, producing mice that are obese with yellow coats to mice that are of normal weight with black coats. Here, we show that agouti expression ...

  15. Study of squeezing in spin clusters

    International Nuclear Information System (INIS)

    Reboiro, M.; Civitarese, O.; Rebon, L.

    2007-01-01

    The conditions under which spin squeezing occurs in an asymmetric chain of spins are discussed. The time evolution of the system is calculated for different initial conditions. The effects of the use of spin coherent states to model the initial condition are analyzed

  16. Experimental study of isovector spin sum rules

    International Nuclear Information System (INIS)

    Alexandre Deur; Peter Bosted; Volker Burkert; Donald Crabb; Kahanawita Dharmawardane; Gail Dodge; Tony Forest; Keith Griffioen; Sebastian Kuhn; Ralph Minehart; Yelena Prok

    2008-01-01

    We present the Bjorken integral extracted from Jefferson Lab experiment EG1b for 0.05 2 . The integral is fit to extract the twist-4 element f 2 p-n which is large and negative. Systematic studies of this higher twist analysis establish its legitimacy at Q 2 around 1 GeV 2 . We also extracted the isovector part of the generalized forward spin polarizability γ 0 . Although this quantity provides a robust test of Chiral Perturbation Theory, our data disagree with the calculations

  17. Spin-Hall nano-oscillator: A micromagnetic study

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, A.; Azzerboni, B.; Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, via E. Orabona 4, I-70125 Bari (Italy); Laudani, A. [Department of Engineering, University of Roma Tre, via V. Volterra 62, I-00146 Roma (Italy); Gubbiotti, G. [Istituto Officina dei Materiali del CNR (CNR-IOM), Unità di Perugia c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, 06123 Perugia (Italy)

    2014-07-28

    This Letter studies the dynamical behavior of spin-Hall nanoscillators from a micromagnetic point of view. The model parameters have been identified by reproducing recent experimental data quantitatively. Our results indicate that a strongly localized mode is observed for in-plane bias fields such as in the experiments, while predict the excitation of an asymmetric propagating mode for large enough out-of plane bias field similarly to what observed in spin-torque nanocontact oscillators. Our findings show that spin-Hall nanoscillators can find application as spin-wave emitters for magnonic applications where spin waves are used for transmission and processing information on nanoscale.

  18. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India)

    2014-04-24

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM {sup 14}N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  19. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Science.gov (United States)

    Dhas, M. Kumara; Jawahar, A.; Benial, A. Milton Franklin

    2014-04-01

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM 14N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  20. Relationship between three cotton trash measurements: High Volume Instrumentation (HVI), Shirley Analyzer (SA), and Advanced Fiber Information System (AFIS)

    Science.gov (United States)

    Presence of non-lint materials (trashes) in commercial cotton bales at various amounts degrades the market values and further influences the end-use qualities. In order to ensure a fair trading, the USDA’s AMS has introduced the high volume instrument (HVI) measurement as a universal standard index....

  1. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  2. Spin and charge transport study in single crystal organic semiconductors

    Science.gov (United States)

    Raman, Karthik V.; Mulder, Carlijn L.; Baldo, Marc A.; Moodera, Jagadeesh S.

    2009-03-01

    Spin transport studies in amorphous rubrene films have shown exciting and promising results [1]. A large spin diffusion length in these amorphous films has increased the motivation to perform spin transport study in high purity single crystal rubrene. This will provide the fundamental understanding on the spin transport behavior in OS; not influenced by defects or traps. We will present work on small channel single crystal rubrene FET device with magnetic electrodes. For example, our preliminary studies have show mobility for FET with Co electrode to be 0.014cm^2/V-s. A study on the spin and charge transport properties in single crystals of OS with magnetic electrodes is being done and the results will be reported. The influence of gate voltage and applied magnetic field on the transport properties will be discussed. [1] J.H. Shim et al., PRL 100, 226603 (2008)

  3. Non-equilibrium study of spin wave interference in systems with both Rashba and Dresselhaus (001) spin-orbit coupling

    International Nuclear Information System (INIS)

    Chen, Kuo-Chin; Su, Yu-Hsin; Chang, Ching-Ray; Chen, Son-Hsien

    2014-01-01

    We study the electron spin transport in two dimensional electron gas (2DEG) system with both Rashba and Dresselhaus (001) spin-orbital coupling (SOC). We assume spatial behavior of spin precession in the non-equilibrium transport regime, and study also quantum interference induced by non-Abelian spin-orbit gauge field. The method we adopt in this article is the non-equilibrium Green's function within a tight binding framework. We consider one ferromagnetic lead which injects spin polarized electron to a system with equal strength of Rashba and Dresselhaus (001) SOC, and we observe the persistent spin helix property. We also consider two ferromagnetic leads injecting spin polarized electrons into a pure Dresselhaus SOC system, and we observe the resultant spin wave interference pattern

  4. Monte Carlo study of alternate mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice

    International Nuclear Information System (INIS)

    Jabar, A.; Masrour, R.; Benyoussef, A.; Hamedoun, M.

    2016-01-01

    The magnetic properties of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice have been studied by using the Monte Carlo simulations. The ground state phase diagrams of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice has been obtained. The thermal total magnetization and magnetization of spins-5/2 and spin-2 with the different exchange interactions, external magnetic field and temperatures have been studied. The critical temperature have been deduced. The magnetic hysteresis cycle on the Bethe lattice has been deduced for different values of exchange interactions, for different values of crystal field and for different sizes. The magnetic coercive field has been deduced. - Highlights: • The alternate mixed spin-5/2 and -2 on the Bethe lattice is studied. • The critical temperature has been deduced. • The magnetic coercive filed has been deduced.

  5. Proton spin structure study with PHENIX detector at RHIC

    International Nuclear Information System (INIS)

    Bazilevsky, A.

    2000-01-01

    Acceleration of polarized protons in Relativistic Heavy Ion Collider (RHIC) will provide unique tool to study spin structure of the nucleon, covering the √s region from 50 GeV to 500 GeV with proton polarization of 70%. PHENIX, one of the major detector systems at RHIC, is going to investigate poorly known gluon and flavor identified sea quark polarization in the proton. Overview of the RHENIX spin program is presented and sensitivities of the measurements are discussed

  6. Spin tracking study of the AGS

    International Nuclear Information System (INIS)

    Huang, H.; Roser, T.; Luccio, A.

    1997-01-01

    In the recent polarized proton runs in the AGS, a 5% partial snake was used successfully to overcome the imperfection depolarizing resonances. Although some depolarization at intrinsic resonances are expected, the level of the depolarization does not agree with a simple model calculation. A spin tracking program is then used to simulate the real polarized proton beam in the AGS. The results show that, due to the linear coupling introduced by a solenoidal 5% partial snake, the polarized beam will be partially depolarized also at the so-called coupling resonance, which is related to the horizontal betatron tune. The synchrotron oscillation also affects the beam polarization to a smaller extent

  7. Numerical studies of Siberian snakes and spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis

  8. Theoretical study of spin Hall effect in conjugated Organic semiconductors

    Science.gov (United States)

    Mahani, M. R.; Delin, A.

    The spin Hall effect (SHE), a direct conversion between electronic and spin currents, is a rapidly growing branch of spintronics. The study of SHE in conjugated polymers has gained momentum recently due to the weak spin-orbit couplings and hyperfine interactions in these materials. Our calculations of SHE based on the recent work, are the result of the misalignment of pi-orbitals in triads consisting of three molecules. In disordered organics, where the electronic conduction is through hopping of the electrons among randomly oriented molecules, instead of identifying a hopping triad to represent the entire system, we numerically solve the master equations for electrical and spin hall conductivities by summing the contributions from all triads in a sufficiently large system. The interference between the direct and indirect hoppings in these triads leads to SHE proportional to the orientation vector of molecule at the first order of spin-orbit coupling. Hence, our results show, the degree of molecular alignment as well as the strength of the spin-orbit coupling can be used to control the SHE in organics.

  9. Technology spin-offs generation – a multicase study

    Directory of Open Access Journals (Sweden)

    Jonas Mendes Constante

    2014-05-01

    Full Text Available The objective of this study is to understand how small businesses can innovate through the generation of technological spin-offs, identifying motivations, influences and barriers to achieving this phenomenon. Through a qualitative and exploratory study, we analyzed four cases of technological spin-offs in Santa Catarina State. We collected data through field observations, historical data and semi-structured interviews. The main reasons found for spin-offs creation were: diversification and to complement the value chain of the parent company and to ensure greater focus for a specific technology. The main barrier was lack of capital. Government initiatives to support the creation of new businesses, coupled with the organizational culture open to entrepreneurship and investment in R&D, contributed to the development of spin-offs analyzed. This work contributes to the understanding that small and medium-sized technology-based companies are a source of technological spin-offs and can benefit from the occurrence of this process.

  10. Muon spin relaxation studies in strongly correlated electron systems

    Science.gov (United States)

    Uemura, Y. J.; Luke, G. M.

    1993-05-01

    We describe recent progress of muon spin relaxation (μSR) studies in heavy-fermion (HF) and other strongly correlated electron systems. Measurements of the magnetic field penetration depth λ in HF superconductors UPt 3, URu 2Si 2, UPd 2Al 3 and U 2PtC 2 have revealed that these systems are characterized by large ratios Tc/ TF = 0.1-0.01 of Tc vs Fermi temperature TF derived from λ. This feature is common to high- Tc cuprate and other exotic superconductors. Zero-field μSR studies of magnetic order have elucidated a cross-over from spin glass ordering to nonmagnetic ground states in the ‘quadrupolar Kondo regime’ of (Y 1- xU x)Pd 3, and also suggested a possibility of incommensurate spin-density-wave (SDW) ordering in UNi 2Al 3.

  11. Variational Monte Carlo study of spin dynamics in underdoped cuprates

    Science.gov (United States)

    Yu, Zuo-Dong; Zhou, Yuan; Gong, Chang-De

    2017-11-01

    The hour-glass-like dispersion of spin excitations is a common feature of underdoped cuprates. It was qualitatively explained by the random-phase approximation based on various ordered states with some phenomenological parameters; however, its origin remains elusive. Here, we present a numerical study of spin dynamics in the t -J model using the variational Monte Carlo method. This parameter-free method satisfies the no double-occupancy constraint of the model and thus provides a better evaluation on the spin dynamics with respect to various mean-field trial states. We conclude that the lower branch of the hour-glass dispersion is a collective mode and the upper branch more than the other candidates is likely the consequence of the stripe state.

  12. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    Energy Technology Data Exchange (ETDEWEB)

    Georgii, R., E-mail: Robert.Georgii@frm2.tum.de [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Kindervater, J. [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218 (United States); Pfleiderer, C.; Böni, P. [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany)

    2016-11-21

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  13. Theoretical studies of the spin-Hamiltonian parameters for the ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 70; Issue 4. Theoretical studies of the spin-Hamiltonian parameters for the orthorhombic Pr4+ centers in Sr2CeO4 ... Author Affiliations. Wen-Lin Feng1. Department of Applied Physics, Chongqing Institute of Technology, Chongqing 400050, People Republic of China ...

  14. Theoretical Study of Spin Crossover in 30 Iron Complexes

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    Spin crossover was studied in 30 iron complexes using density functional theory to quantify the direction and magnitude of dispersion, relativistic effects, zero-point energies, and vibrational entropy. Remarkably consistent entropy−enthalpy compensation was identified. Zero-point energies favor...

  15. Characterizing Hypervelocity Impact (HVI-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    Directory of Open Access Journals (Sweden)

    Menglong Liu

    2017-05-01

    Full Text Available Hypervelocity impact (HVI, ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region, a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation, which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence.

  16. Macro-spin modeling and experimental study of spin-orbit torque biased magnetic sensors

    Science.gov (United States)

    Xu, Yanjun; Yang, Yumeng; Luo, Ziyan; Xu, Baoxi; Wu, Yihong

    2017-11-01

    We reported a systematic study of spin-orbit torque biased magnetic sensors based on NiFe/Pt bilayers through both macro-spin modeling and experiments. The simulation results show that it is possible to achieve a linear sensor with a dynamic range of 0.1-10 Oe, power consumption of 1 μW-1mW, and sensitivity of 0.1-0.5 Ω/Oe. These characteristics can be controlled by varying the sensor dimension and current density in the Pt layer. The latter is in the range of 1 × 105-107 A/cm2. Experimental results of fabricated sensors with selected sizes agree well with the simulation results. For a Wheatstone bridge sensor comprising of four sensing elements, a sensitivity up to 0.548 Ω/Oe, linearity error below 6%, and detectivity of about 2.8 nT/√Hz were obtained. The simple structure and ultrathin thickness greatly facilitate the integration of these sensors for on-chip applications. As a proof-of-concept experiment, we demonstrate its application in detection of current flowing in an on-chip Cu wire.

  17. Synchronization of propagating spin-wave modes in a double-contact spin-torque oscillator: A micromagnetic study

    International Nuclear Information System (INIS)

    Puliafito, V.; Consolo, G.; Lopez-Diaz, L.; Azzerboni, B.

    2014-01-01

    This work tackles theoretical investigations on the synchronization of spin-wave modes generated by spin-transfer-torque in a double nano-contact geometry. The interaction mechanisms between the resulting oscillators are analyzed in the case of propagating modes which are excited via a normal-to-plane magnetic bias field. To characterize the underlying physical mechanisms, a multi-domain analysis is performed. It makes use of an equivalent electrical circuit, to deduce the output electrical power, and of micromagnetic simulations, through which information on the frequency spectra and on the spatial distribution of the wavefront of the emitted spin-waves is extracted. This study provides further and intriguing insights into the physical mechanisms giving rise to synchronization of spin-torque oscillators

  18. Study of spin-polaron formation in 1D systems

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo, Y.; Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 04510 México D.F. (Mexico); Vallejo, E. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km. 7.5 Ciudad Universitaria, 27276 Torreón, Coahuila (Mexico)

    2014-05-15

    We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J{sub H} and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J{sub H} and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems.

  19. Studies of superconducting materials with muon spin rotation

    Science.gov (United States)

    Davis, Michael R.; Stronach, Carey E.; Kossler, W. J.; Schone, H. E.; Yu, X. H.; Uemura, Y. J.; Sternlieb, B. J.; Kempton, J. R.; Oostens, J.; Lankford, W. F.

    1989-01-01

    The muon spin rotation/relaxation technique was found to be an exceptionally effective means of measuring the magnetic properties of superconductors, including the new high temperature superconductor materials, at the microscopic level. The technique directly measures the magnetic penetration depth (type II superconductors (SC's)) and detects the presence of magnetic ordering (antiferromagnetism or spin-glass ordering were observed in some high temperature superconductor (HTSC's) and in many closely related compounds). Extensive studies of HTSC materials were conducted by the Virginia State University - College of William and Mary - Columbia University collaboration at Brookhaven National Laboratory and TRIUMF (Vancouver). A survey of LaSrCuO and YBaCaCuO systems shows an essentially linear relationship between the transition temperature T(sub c) and the relaxation rate. This appears to be a manifestation of the proportionality between T(sub c) and the Fermi energy, which suggests a high energy scale for the SC coupling, and which is not consistent with the weak coupling of phonon-mediated SC. Studies of LaCuO and YBaCuO parent compounds show clear evidence of antiferromagnetism. YBa2Cu(3-x)CO(x)O7 shows the simultaneous presence of spin-glass magnetic ordering and superconductivity. Three-dimensional SC, (Ba, K) BiO3, unlike the layered CuO-based compounds, shows no suggestion of magnetic ordering. Experimental techniques and theoretical implications are discussed.

  20. An EPR spin-probe and spin-trap study of the free radicals produced by plant plasma membranes

    Directory of Open Access Journals (Sweden)

    GORAN BACIC

    2005-02-01

    Full Text Available Plant plasma membranes are known to produce superoxide radicals, while the production of hydroxyl radical is thought to occur only in the cell wall. In this work it was demonstrated using combined spin-trap and spin-probe EPR spectroscopic techniques, that plant plasma membranes do produce superoxide and hydroxyl radicals but by kinetically different mechanisms. The results show that superoxide and hydroxyl radicals can be detected by DMPO spin-trap and that the mechanisms and location of their production can be differentiated using the reduction of spin-probes Tempone and 7-DS. It was shown that the mechanism of production of oxygen reactive species is NADH dependent and diphenylene iodonium inhibited. The kinetics of the reduction of Tempone, combined with scavengers or the absence of NADH indicates that hydroxyl radicals are produced by a mechanism independent of that of superoxide production. It was shown that a combination of the spin-probe and spin-trap technique can be used in free radical studies of biological systems, with a number of advantages inherent to them.

  1. STUDY OF HIGH-SPIN STATES IN THE NUCLEUS EU-149

    NARCIS (Netherlands)

    BACELAR, JC; JONGMAN, [No Value; NOORMAN, RF; DEVOIGT, MJA; NYBERG, J; SLETTEN, G; BERGSTROM, M; RYDE, H

    1994-01-01

    In-beam studies of high-spin states in Eu-149 are reported. The level scheme extends up to an excitation energy of 7.1 MeV and a spin of 55/2HBAR. This nucleus is weakly deformed and most of the high-spin structure is interpreted through its multi-particle-hole nature. Octupole-phonon vibrations

  2. Spin evolution in a radio frequency field studied through muon spin resonance.

    Science.gov (United States)

    Clayden, Nigel J; Cottrell, Stephen P; McKenzie, Iain

    2012-01-01

    The application of composite inversion pulses to a novel area of magnetic resonance, namely muon spin resonance, is demonstrated. Results confirm that efficient spin inversion can readily be achieved using this technique, despite the challenging experimental setup required for beamline measurements and the short lifetime (≈2.2μs) associated with the positive muon probe. Intriguingly, because the muon spin polarisation is detected by positron emission, the muon magnetisation can be monitored during the radio-frequency (RF) pulse to provide a unique insight into the effect of the RF field on the spin polarisation. This technique is used to explore the application of RF inversion sequences under the non-ideal conditions typically encountered when setting up pulsed muon resonance experiments. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Neutron spin-echo study of the critical dynamics of spin-5/2 antiferromagnets in two and three dimensions

    Science.gov (United States)

    Tseng, K. F.; Keller, T.; Walters, A. C.; Birgeneau, R. J.; Keimer, B.

    2016-07-01

    We report a neutron spin-echo study of the critical dynamics in the S =5/2 antiferromagnets MnF2 and Rb2MnF4 with three-dimensional (3D) and two-dimensional (2D) spin systems, respectively, in zero external field. Both compounds are Heisenberg antiferromagnets with a small uniaxial anisotropy resulting from dipolar spin-spin interactions, which leads to a crossover in the critical dynamics close to the Néel temperature, TN. By taking advantage of the μ eV energy resolution of the spin-echo spectrometer, we have determined the dynamical critical exponents z for both longitudinal and transverse fluctuations. In MnF2, both the characteristic temperature for crossover from 3D Heisenberg to 3D Ising behavior and the exponents z in both regimes are consistent with predictions from the dynamical scaling theory. The amplitude ratio of longitudinal and transverse fluctuations also agrees with predictions. In Rb2MnF4 , the critical dynamics crosses over from the expected 2D Heisenberg behavior for T ≫TN to a scaling regime with exponent z =1.387 (4 ) , which has not been predicted by theory and may indicate the influence of long-range dipolar interactions.

  4. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  5. Study of spin resonances in the accelerators with snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1989-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength ε c as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that ε c is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength ε c is found to vary linearly with N S as left-angle ε c right-angle=(1/π)sin -1 (cos πν z | 1/2 )N S , where ν| z and N S are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., ε≤0.1 for two snakes case) to maintain proper polarization

  6. Study of spin resonances in the accelerators with snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1988-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength ε/sub c/ as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that ε/sub c/ is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength ε/sub c/ is found to vary linearly with N/sub S/ as = (1/π)sin/sup /minus/1/(cos πν/sub z//sup /1/2//)N/sub S/, where ν/sub z/ and N/sub S/ are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., ε≤0.1 for two snakes case) to maintain proper polarization. 23 refs., 25 figs

  7. Zero-field NMR study on a spin glass: iron-doped 2H-niobium diselenide

    International Nuclear Information System (INIS)

    Chen, M.C.

    1982-01-01

    Spin echoes are used to study the 93 Nb NQR in 2H-NbSe 2 Fe/sub x/. Measured are (intensity) x (temperature), and T/sub 1P/ (spin-lattice relaxation parameter) and T 2 (spin-spin relaxation time) as a function of temperature. Data reveal dramatic differences between non-spin glass samples (x = 0, 0.25%, 1% and 5%) and spin glass samples (x = 8%, 10% and 12%). All of the NQR results and the model calculation of the correlation times of Fe spins are best described by the phase transition picture of spin glasses

  8. Spin dependence studies with the ZGS polarized proton beam

    International Nuclear Information System (INIS)

    Wicklund, A.B.

    1977-01-01

    Selected results are summarized of recent measurements using a polarized proton beam at the Argonne ZGS. The polarized target asymmetry and the beam-target spin correlation are measured in pp→pp at 6 and 12 GeV/c. Asymmetry is slowly varying with energy while spin correlation increases considerably from 6 to 12 GeV/c. The polarized parameters in pp→pp and pn→pn elastic scattering are compared. The data show that pp and pn polarizations tend to approach mirror symmetry as the energy increases. The effective mass spectrometer has been used to study the pp→pπ + n, pn→pπ - p reactions from 2 to 6 GeV/c. For small -t values (-t 2 ) these reactions are dominated by π exchange. At large -t values other mechanisms besides π-exchange become important. The 3-body diffraction dissociation reactions have been measured at 6 GeV/c with hydrogen and deuterium targets. The reactions are pp→pπ + π - (p); pd→pπ + π - (p+n). Comparison of hydrogen and deuterium cross section reveals a considerable coherent contribution of deuterium, which has an approximately 20% larger cross section per nucleon than hydrogen

  9. Electron spin resonance intercomparison studies on irradiated foodstuffs

    International Nuclear Information System (INIS)

    Raffi, J.

    1992-01-01

    The results of intercomparison studies organized by the Community Bureau of Reference on the use of electron spin resonance spectroscopy for the identification of irradiated food are presented. A qualitative intercomparison was carried out using beef and trout bones, sardine scales, pistachio nut shells, dried grapes and papaya. A quantitative intercomparison involving the use of poultry bones was also organized. There was no difficulty in identifying meat bones, dried grapes and papaya. In the case of fish bones there is a need for further kinetic studies using different fish species. The identification of pistachio nut shells is more complicated and further research is needed prior to the organization of a further intercomparison. Laboratories were able to distinguish between chicken bones irradiated in the range 1 to 3 KGy or 7 to 10 KGy although there was a partial overlap between the results from different laboratories

  10. Spin trapping studies of essential oils in lipid systems

    Directory of Open Access Journals (Sweden)

    Makarova Katerina

    2015-07-01

    Full Text Available In the present work, we report the results of a spin trapping ESR study of four essential oils widely used for skin care products such as creams and bath salts. The studied essential oils are Rosmarini aetheroleum (rosemary, Menthae piperitae aetheroleum (mint, Lavandulae aetheroleum (lavender, and Thymi aetheroleum (thyme. Fenton reaction in the presence of ethanol was used to generate free radicals. The N-tert-butyl-α-phenylnitrone (PBN was used as a spin trap. In the Fenton reaction, the rosemary oil had the lowest effect on radical adduct formation as compared to the reference Fenton system. Since essential oils are known to be lipid soluble, we also conducted studies of essential oils in Fenton reaction in the presence of lipids. Two model lipids were used, namely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC. The obtained results suggested that in the presence of DOPC lipids, the •OH and PBN/•CHCH3(OH radicals are formed in both phases, that is, water and lipids, and all the studied essential oils affected the Fenton reaction in a similar way. Whereas, in the DPPC system, the additional type of PBN/X (aN = 16.1 G, aH = 2.9 G radical adduct was generated. DFT calculations of hyperfine splittings were performed at B3LYP/6-311+G(d,p/EPR-II level of theory for the set of c-centered PBN adducts in order to identify PBN/X radical.

  11. INT WFC pre-discovery detection of the nova M31N 2017-11a (AT2017hvi, PTSS-17zap, TCP J00425419+4130425)

    Science.gov (United States)

    Mantero-Castaneda, E. A.; Hernandez-Sanchez, M.; Arce-Tord, C.; Esteban-Gutierrez, A.; Garcia-Broock, E.; Garcia-Rivas, M.; Gonzalez-Cuesta, L.; Hermosa-Munoz, L.; Jimenez-Gallardo, A.; Lopez-Navas, E.; Otero-Santos, J.; Prendin, M. G.; Rodriguez-Sanchez, M.; Perez-Fournon, I.

    2017-12-01

    We report the pre-discovery detection of the nova M31N 2017-11a (AT2017hvi, PTSS-17zap, TCP J00425419+4130425) with the Isaac Newton Telescope* Wide Field Camera on the night of 29 October 2017, 4.845 days before the discovery observations on 2017/11/04.695 by the PMO-Tsinghua Supernova Survey (PTSS).

  12. Neutron-Scattering Study of Spin Waves in the Ferrimagnet RbNiF3

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1972-01-01

    by a 180° antiferromagnetic exchange between nearest-neighbor A, B spins and a 90° ferromagnetic exchange between nearest-neighbor B spins. In this paper we report a detailed inelastic-neutron-scattering study of the spin waves in RbNiF3 both at low temperatures and through Tc. The magnetic unit cell...... contains six Ni++ spins so that there are in general six distinct branches in the spin-wave spectrum. All six branches are observed in the ΓA direction (c axis), while only the lowest three are observed in the ΓM direction. The measured dispersion curves at 4.2°K may be accurately fitted using simple spin...

  13. Computational approach to the study of thermal spin crossover phenomena

    International Nuclear Information System (INIS)

    Rudavskyi, Andrii; Broer, Ria; Sousa, Carmen; Graaf, Coen de; Havenith, Remco W. A.

    2014-01-01

    The key parameters associated to the thermally induced spin crossover process have been calculated for a series of Fe(II) complexes with mono-, bi-, and tridentate ligands. Combination of density functional theory calculations for the geometries and for normal vibrational modes, and highly correlated wave function methods for the energies, allows us to accurately compute the entropy variation associated to the spin transition and the zero-point corrected energy difference between the low- and high-spin states. From these values, the transition temperature, T 1/2 , is estimated for different compounds

  14. Spin crossover studies in cationic complexes of iron by using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Vadera, S.R.; Kumar, N.

    1990-01-01

    The spin transition in two new cationic complexes of iron, i.e. iron bipyridine formate, [Fe(bipy) 3 ](HCOO) 2 .5(HCOOH) and iron bipyridine tetrafluoro borate, [Fe(bipy) 3 ](BF 4 ) 2 .2H 2 O were studied by Moessbauer spectroscopy. From quadrupole splitting values, it was established that at different temperatures both complexes show the coexistence of both high spin state and low spin state at 300 K, while complete transformation to low spin state occurs at 77 K. Both compounds were prepared by electrochemical technique. (author) 12 refs.; 1 fig.; 1 tab

  15. Study of β-phase development in spin-coated PVDF thick films

    Indian Academy of Sciences (India)

    A study was conducted to ascertain the effect of variation in spin speed and baking temperature on β -phase content in the spin-coated poly(vinylidene fluoride) (PVDF) thick films ( ∼ 4−25 μ m). Development of β -phase is dependent on film stretching and crystallization temperature. Therefore, to study the development of β ...

  16. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  17. A spin echo study of A15 intermetallic compounds

    International Nuclear Information System (INIS)

    Schoep, G.K.

    1976-01-01

    This thesis mainly concerns the measurement of spin-lattice relaxation times in intermetallic compounds of the bcc lattice structure, having the formula V 3 X (C = Pt, Ir, Os, Pd, Rh, Ni, Co, Au). When, in a spin echo experiment, a two-pulse sequence was applied, several quadrupolar echoes were observed. Special attention is given to the 'forbidden' echoes (absol.(Δm')GT1) in V 3 Au and V 3 Co. In relation to the V 3 X compounds, several characteristics are discussed including temperature dependence and concentration dependence of spin relaxation times, superconductivity and the importance of d-state electrons in determination of the spin relaxation times. Finally, the above characteristics were determined for 6 different samples of the vanadium-gold alloy, V 3 Au, specifically

  18. Magnetic field dependence of static correlations and spin dynamics of reentrant spin glasses studied by neutron scattering

    International Nuclear Information System (INIS)

    Hennion, M.; Hennion, B.; Mirebeau, I.; Lequien, S.; Hippert, F.

    1988-01-01

    We report small angle (SANS) and inelastic neutron scattering in zero and applied field for a-FeMn, NiMn and AuFe at composition where both ferromagnetic and frustration characters occur. We discuss the field evolution of the transverse correlations which arise below T c . A study of the field sensitivity of the spin wave anomalies in a-FeMn is reported

  19. NMR studies of selective population inversion and spin clustering

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging.

  20. NMR studies of selective population inversion and spin clustering

    International Nuclear Information System (INIS)

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging

  1. Diffusion studies on permeable nitroxyl spin probes through bilayer lipid membranes: A low frequency ESR study

    Energy Technology Data Exchange (ETDEWEB)

    Meenakumari, V.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India); Utsumi, Hideo; Ichikawa, Kazuhiro; Yamada, Ken-ichi [Department of Bio-functional Science, Kyushu University, Fukuoka (Japan); Hyodo, Fuminori [Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka (Japan); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India)

    2015-06-24

    Electron spin resonance (ESR) studies were carried out for permeable 2mM {sup 14}N-labeled deutrated 3 Methoxy carbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water and 1mM, 2mM, 3mM, 4mM concentration of 14N-labeled deutrated MC-PROXYL in 400mM concentration of liposomal solution by using a 300 MHz ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported for these samples. The line broadening was observed for the nitroxyl spin probe in the liposomal solution. The line broadening indicates that the high viscous nature of the liposomal solution. The partition parameter and permeability values indicate the maximum diffusion of nitroxyl spin probes in the bilayer lipid membranes at 2 mM concentration of nitroxyl radical. This study illustrates that ESR can be used to differentiate between the intra and extra- membrane water by loading the liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the spin probe concentration was optimized as 2mM in liposomal solution for ESR phantom studies/imaging, invivo and invitro experiments.

  2. A Study of Environmental Effects on Galaxy Spin Using MaNGA Data

    Science.gov (United States)

    Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun

    2018-03-01

    We investigate environmental effects on galaxy spin using the recent public data of MaNGA integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large- (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.

  3. Study of β-phase development in spin-coated PVDF thick films

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... Abstract. A study was conducted to ascertain the effect of variation in spin speed and baking temperature on β-phase content in the spin-coated poly(vinylidene fluoride) (PVDF) thick films (∼4−25 μm). Development of β-phase is dependent on film stretching and crystallization temperature. Therefore, to ...

  4. Binding Studies of a Spin-Labelled Oxidized Coenzyme to Bovine-Liver Glutamate Dehydrogenase

    NARCIS (Netherlands)

    Zantema, Alt; Trommer, Wolfgang E.; Wenzel, Herbert; Robillard, George T.

    1977-01-01

    NAD+ with a nitroxide piperidine ring linked to the NH2 group of the adenine possesses full coenzymatic activity with glutamate dehydrogenase. Electron spin resonance spectra in the presence of glutamate dehydrogenase show mixtures of free and strongly immobilized spin-label. Binding studies in

  5. 57Fe Moessbauer study of (Er1-xYx)2Fe14B spin reorientation

    International Nuclear Information System (INIS)

    Garitaonandia, J.S.; Barandiaran, J.M.; Orue, I.; Plazaola, F.; Ibarra, M.R.; Moral, A. del

    1995-01-01

    The 57 Fe Moessbauer spectra for (Er 1-x Y x ) 2 Fe 14 B compounds have been measured around the spin reorientation temperature and at reference temperature of 331 K, where all the samples have the same easy magnetization direction. This allows us to study the Y dilution and spin reorientation influence on the hyperfine parameters. ((orig.))

  6. Electron spin resonance study of radicals in irradiated polyethylene

    International Nuclear Information System (INIS)

    Fujimura, Takashi

    1979-02-01

    In order to elucidate radiation effect in polyethylene, the nature and behavior of radicals produced in polyethylene and the model compound of polyethylene irradiated at 77 0 K were studied by using electron spin resonance. The structure of radical pairs, which are composed of two radicals produced very closely each other, was investigated in drawn polyethylene and the single crystal of n-eicosane. The radical pairs of intrachain type and interchain type were found in polyethylene and n-eicosane respectively. It was suggested that these two types of radical pairs are the precursors of double bonds and crosslinks respectively. The thermal decay reactions of radicals themselves produced in irradiated polyethylene were investigated. It was made clear that the short range distances between two radicals play an important role in the decay reaction of alkyl radicals at low temperatures. The trapping regions of radicals were studied and it was clarified that allyl radicals, which are produced by the reaction of alkyl radicals with double bonds, are trapped both in the crystalline and non-crystalline regions. (author)

  7. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  8. Flow past an axially aligned spinning cylinder: Experimental Study

    Science.gov (United States)

    Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva

    2017-11-01

    Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.

  9. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model.

    Science.gov (United States)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-07

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  10. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Tsuneki, Ichikawa; Hiroshi, Yoshida

    1992-01-01

    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  11. Neutron scattering studies of magnetic molecular spin clusters

    International Nuclear Information System (INIS)

    Chaboussant, G.; Basler, R.; Sieber, A.; Ochsenbein, S.T.; Guedel, H.-U.

    2004-01-01

    Molecular magnets are crystalline materials made up of interacting magnetic centres within each molecule. Each such 'spin-cluster' is magnetically well isolated from its neighbours due to the surrounding ligands. The resulting magnetic properties are governed by exchange interactions between neighbouring spins and magneto-crystalline anisotropy. We present a brief overview of the salient features observed in three very different molecular magnets (Mn 4 , Ni 12 and V 15 ) where magnetic frustration plays a crucial role. It is demonstrated that Inelastic Neutron Scattering (INS) is an excellent technique to elucidate complex behaviour associated with geometrically frustrated molecular magnets

  12. Numerical study of the spin-1 Ashkin-Teller model

    International Nuclear Information System (INIS)

    Bekhechi, S.; Badehdah, M.; Benyoussef, A.; Ettaki, B.

    1998-07-01

    Two non perturbative methods by means of the Transfer-Matrix Finite-Size-Scaling (TMFSS) and Monte Carlo (MC) simulations are used to investigate the spin-1 Ashkin-Teller model (A.T.M.). We have obtained rich phase diagrams with first and second order phase transitions with several multicritical points of higher order. Also this model exhibits a new partially ordered phase PO2 which does not exist in the spin-1/2 Ashkin-Teller model (A.T.M.). Finally, the critical behaviour of this model is discussed. (author)

  13. Computer studies of multiple-quantum spin dynamics

    International Nuclear Information System (INIS)

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment

  14. Computer studies of multiple-quantum spin dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  15. Antiferromagnetic ordering in spin-chain multiferroic Gd{sub 2}BaNiO{sub 5} studied by electronic spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. M.; Ruan, M. Y.; Cheng, J. J.; Sun, Y. C. [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Ouyang, Z. W., E-mail: zwouyang@mail.hust.edu.cn; Xia, Z. C. [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Rao, G. H. [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2015-06-14

    High-field electron spin resonance (ESR) has been employed to study the antiferromagnetic (AFM) ordering state (T < T{sub N} = 55 K) of spin-chain multiferroic Gd{sub 2}BaNiO{sub 5}. The spin reorientation at T{sub SR} = 24 K is well characterized by the temperature-dependent ESR spectra. The magnetization data evidence a field-induced spin-flop transition at 2 K. The frequency-field relationship of the ESR data can be explained by conventional AFM resonance theory with uniaxial anisotropy, in good agreement with magnetization data. Related discussion on zero-field spin gap is presented.

  16. Studying stellar spin-down with Zeeman-Doppler magnetograms

    Science.gov (United States)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Boro Saikia, S.; Fares, R.; Folsom, C. P.; Hébrard, É. M.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Petit, P.; Waite, I. A.; BCool Collaboration

    2017-04-01

    Magnetic activity and rotation are known to be intimately linked for low-mass stars. Understanding rotation evolution over the stellar lifetime is therefore an important goal within stellar astrophysics. In recent years, there has been increased focus on how the complexity of the stellar magnetic field affects the rate of angular-momentum loss from a star. This is a topic that Zeeman-Doppler imaging (ZDI), a technique that is capable of reconstructing the large-scale magnetic field topology of a star, can uniquely address. Using a potential field source surface model, we estimate the open flux, mass-loss rate and angular-momentum-loss rates for a sample of 66 stars that have been mapped with ZDI. We show that the open flux of a star is predominantly determined by the dipolar component of its magnetic field for our choice of source surface radius. We also show that, on the main sequence, the open flux, mass-loss and angular-momentum-loss rates increase with decreasing Rossby number. The exception to this rule is stars less massive than 0.3 M⊙. Previous work suggests that low-mass M dwarfs may possess either strong, ordered and dipolar fields or weak and complex fields. This range of field strengths results in a large spread of angular-momentum-loss rates for these stars and has important consequences for their spin-down behaviour. Additionally, our models do not predict a transition in the mass-loss rates at the so-called wind-dividing line noted from Lyα studies.

  17. Magnetooptical studies on spin-reorientation in rare earth orthoferrites

    International Nuclear Information System (INIS)

    Koshizuka, N.; Hayashi, K.; Suzuki, M.; Tsushima, T.

    1976-01-01

    Several types of spin-reorientation (SR) in some of the RFeO 3 are studied by Faraday rotation measurements; rotational SR of GAMMA 4 → GAMMA 2 type in (ErSm)FeO 3 , (Co 2+ , Ti 4+ ) doped YFeO 3 , and abrupt SR of GAMMA 4 → GAMMA 1 type in DyFeO 3 . Observations of SR by Faraday rotation were made in these crystals with incident light parallel to the optical axis. In relation with the decrease of Fe 3+ ion's anisotropy at T/sub SR/, an abrupt decrease of the coercive force are found in these systems. In general, Faraday rotation in RFeO 3 originates from Fe 3+ ions in the visible and near IR regions, while R 3+ ion's contribution to the Faraday rotation was observed for the wavelengths corresponding to the electronic transitions of R 3+ ions in ErFeO 3 and DyFeO 3 at low temperatures. In DyFeO 3 , a large contribution of Dy 3+ ions was observed at approximately 1.2 μm in the Faraday spectrum, and it is confirmed that the Dy 3+ moments are polarized along the c-axis in zero applied field above T/sub SR/. Magnetic field induced SR was also observed in DyFeO 3 , and the temperature dependence of the critical field was obtained as H/sub SR/ varies as absolute value T - T/sub SR/3/4

  18. Experimental study of the feasibility of a spin valve based on superconductor/ferromagnet proximity effect

    International Nuclear Information System (INIS)

    Garifullin, I. A.; Garif'yanov, N. N.; Salikhov, R. I.; Westerholt, K.; Sprungmann, D.; Zabel, H.; Brucas, R.; Hjoervarsson, B.

    2007-01-01

    The feasibility of a superconducting spin valve based on superconductor/ferromagnet proximity effect is discussed. Experimental results obtained by the authors to date in studies of this problem are presented

  19. Spin studies of nucleons in a statistical model

    International Nuclear Information System (INIS)

    Singh, J P; Upadhyay, Alka

    2004-01-01

    We decompose various quark-gluon Fock states of a nucleon in a set of states in which each of the three-quark core and the rest of the stuff, termed as sea, appears with definite spin and colour quantum number, their weights being determined, statistically, from their multiplicities. The expansion coefficients in the quark-gluon Fock state expansion have been taken from a recently proposed statistical model. We have also considered two modifications of this model with a view to reducing the contributions of the sea components with higher multiplicities. With certain approximations, we have calculated the quark contributions to the spin of the nucleon, the ratio of the magnetic moments of nucleons, their weak decay constant and the ratio of SU(3) reduced matrix elements for the axial current

  20. STUDY OF THE HIGH-SPIN STRUCTURE OF PM-146

    NARCIS (Netherlands)

    RZACAURBAN, T; DURELL, JL; PHILLIPS, WR; VARLEY, BJ; HESS, CP; PEARSON, CJ; VERMEER, WJ; VIEU, C; DIONISIO, JS; PAUTRAT, M; Urban, W

    1995-01-01

    Excited states in Pm-146 have been investigated through the Xe-136(N-15,5n) and the Nd-146(d,xn) compound-nucleus reactions. A level scheme extending up to 6.9 MeV of excitation energy and (I = 25HBAR) is proposed. Most of the high-spin levels are interpreted in terms of multi-particle-hole states

  1. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  2. Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2008-01-01

    We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance....... The presence of the adsorbate causes scattering of electrons of mainly one spin type. The scattering is shown to be due to a coupling of the two armchair band states to the metal 3d orbitals with matching symmetry, giving rise to Fano antiresonances appearing as dips in the transmission function. The spin type...

  3. Study By Spin Tracking of A Storage Ring For Deuteron Electric Dipole Moment

    International Nuclear Information System (INIS)

    Lin, F.; Malitsky, N. D.; Luccio, A. U.; Morse, W. M.; Semertzidis, Y. K.; Onderwater, C. J. G.; Orlov, Y. F.

    2009-01-01

    Spin tracking of polarized deuterons for a proposed experiment to measure a possible Electric Dipole Moment (EDM) of the deuteron was done by using the codes UAL and SPINK. In the experiment the direction of spin polarization will be frozen using crossed electric and magnetic fields. Systematics, in particular the effects of non-linearities of the lattice on a beam with finite emittance and energy spread, have been extensively simulated and the effect of sextuple corrections to increase the spin coherence time has been studied.

  4. Theoretical studies on nuclear spin selective quantum dynamics of non-linear molecules

    International Nuclear Information System (INIS)

    Grohmann, Thomas

    2012-01-01

    In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points

  5. Spin Equilibria in Monomeric Manganocenes: Solid State Magnetic and EXAFS Studies

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M. D.; Sofield, C. D.; Booth, C. H.; Andersen, R. A.

    2009-02-09

    Magnetic susceptibility measurements and X-ray data confirm that tert-butyl-substituted manganocenes [(Me{sub 3}C){sub n}C{sub 5}H{sub 5?n}]{sub 2}Mn (n = 1, 2) follow the trend previously observed with the methylated manganocenes; that is, electron-donating groups attached to the Cp ring stabilize the low-spin (LS) electronic ground state relative to Cp{sub 2}Mn and exhibit higher spin-crossover (SCO) temperatures. However, introducing three CMe{sub 3} groups on each ring gives a temperature-invariant high-spin (HS) state manganocene. The origin of the high-spin state in [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sub 2}Mn is due to the significant bulk of the [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sup -} ligand, which is sufficient to generate severe inter-ring steric strain that prevents the realization of the low-spin state. Interestingly, the spin transition in [1,3-(Me{sub 3}C){sub 2}C{sub 5}H{sub 3}]{sub 2}Mn is accompanied by a phase transition resulting in a significant irreversible hysteresis ({Delta}T{sub c} = 16 K). This structural transition was also observed by extended X-ray absorption fine-structure (EXAFS) measurements. Magnetic susceptibility studies and X-ray diffraction data on SiMe{sub 3}-substituted manganocenes [(Me{sub 3}Si){sub n}C{sub 5}H{sub 5-n}]{sub 2}Mn (n = 1, 2, 3) show high-spin configurations in these cases. Although tetra- and hexasubstituted manganocenes are high-spin at all accessible temperatures, the disubstituted manganocenes exhibit a small low-spin admixture at low temperature. In this respect it behaves similarly to [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn, which has a constant low-spin admixture up to 90 K and then gradually converts to high-spin. Thermal spin-trapping can be observed for [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn on rapid cooling.

  6. Studi Perubahan Fase Spin Glass Model Ising pada Kisi Kuasi Dua Dimensi

    OpenAIRE

    Mukhtar Otton, Muhammad Juang

    2016-01-01

    Critical nature of Ising model Spin Glass on two dimension quasi-lattices had been studied through the Monte-Carlo simulation. Because of its metastability characteristic, consequently, it used Replica-Exchange Algorithm. Physical quantities which was calculated include heat capacity and overlapping parameter. Critical temperature estimation was obtained through the heat capacity analysis, whereas the presence of Spin Glass phase was obtained through the overlapping parameter value. Two previ...

  7. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  8. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  9. A parametric study of the behavior of the angular momentum vector during spin rate changes of rigid body spacecraft

    Science.gov (United States)

    Longuski, J. M.

    1982-01-01

    During a spin-up or spin-down maneuver of a spinning spacecraft, it is usual to have not only a constant body-fixed torque about the desired spin axis, but also small undesired constant torques about the transverse axes. This causes the orientation of the angular momentum vector to change in inertial space. Since an analytic solution is available for the angular momentum vector as a function of time, this behavior can be studied for large variations of the dynamic parameters, such as the initial spin rate, the inertial properties and the torques. As an example, the spin-up and spin-down maneuvers of the Galileo spacecraft was studied and as a result, very simple heuristic solutions were discovered which provide very good approximations to the parametric behavior of the angular momentum vector orientation.

  10. Semiclassical Monte Carlo simulation studies of spin dephasing in InP and InSb nanowires

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2012-03-01

    Full Text Available We use semiclassical Monte Carlo approach to investigate spin polarized transport in InP and InSb nanowires. D’yakonov-Perel (DP relaxation and Elliott-Yafet (EY relaxation are the two main relaxation mechanisms for spin dephasing in III-V channels. The DP relaxation occurs because of bulk inversion asymmetry (Dresselhaus spin-orbit interaction and structural inversion asymmetry (Rashba spin-orbit interaction. The injection polarization direction studied is that along the length of the channel. The dephasing rate is found to be very strong for InSb as compared to InP which has larger spin dephasing lengths. The ensemble averaged spin components vary differently for both InP and InSb nanowires. The steady state spin distribution also shows a difference between the two III-V nanowires.

  11. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  12. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  13. Electron spin resonance studies of carbonates and phosphates

    International Nuclear Information System (INIS)

    Seletchi, Emilia Dana

    2005-01-01

    Electron Spin Resonance (ESR) is an absolute dating technique suitable for the Quaternary, which can be applied to a wide range of archaeological and geological materials. This method is mostly used to date such things as calcium carbonate in limestone, stalactites, stalagmites, mollusk shells, and corals. The results show that and are the most commonly present radiation-induced defects in bicarbonates. A new methodology for the provenance of ancient monuments and artifacts was developed by using a large number of marble spectrum parameters. The sextet, dominant in the spectra, other peaks due to lattice defects, and organic radicals have been used in the persistent effort to characterize marble quarries. In ESR dating and dosimetry we can measure the intensity of an ESR signal and its enhancement by artificial irradiation with the absorbed dose. ESR retrospective dosimetry has proven to be a very useful technique for dose assessment in past radiation accidents. Human exposure can be determined directly from the ESR signal of tooth enamel. The majority of radiation-induced radicals in tooth enamel are carbonate derived: CO 2 - ; CO 3 - ; CO - ; CO 3 3- , but radicals derived from phosphate and oxygen were also identified. (author)

  14. Low temperature polarized target for spin structure studies of nucleons at COMPASS

    CERN Document Server

    Pesek, Michael

    In presented thesis we describe concept of Deep Inelastic Scattering of leptons on nucleons in context of nucleon spin structure studies. Both polarized and unpolarized cases are discussed and concept of Transverse Momentum Dependent Parton Distribution Functions (TMD PDF) is introduced. The possibility of TMDs measurement using Semi-inclusive DIS (SIDIS) is described along with related results from COMPASS experiment. The future Drell-Yan programme at COMPASS is briefly mentioned and its importance is presented on the universality test i.e. change of sign of T-odd TMDs when measured in Drell-Yan and SIDIS. The importance of Polarized Target (PT) for spin structure studies is highlighted and principles of Dynamic Nuclear Polarization (DNP) are given using both Solid effect and spin temperature concept. COMPASS experiment is described in many details with accent given to PT. Finally the thermal equilibrium (TE) calibration procedure is described and carried out for 2010 and 2011 physics runs at COMPASS. The av...

  15. A spin-density-functional study of quantum dots and rings

    CERN Document Server

    Lin, J C

    2002-01-01

    We present a spin-density-functional theoretical (SDFT) study of the electronic states in GaAs quantum dots embedded in AlGaAs substrates. The SDFT allows for a systematic study of the joint effects of confinement, Coulomb interactions and spin for realistic systems. We model the system as electrons confined in a finite cylindrical dot. The screening due to the gate electrodes is also taken into account. The method predicts the electron addition energy spectra that are in agreement with experiments. We also apply the SDFT to GaAs quantum rings and find that they too show shell structures in the additional energy spectra.

  16. Anchoring Effect and Spin-offs: A Case Study of Taiwan Companies, Asus and Yulon

    OpenAIRE

    Yu-Wei Lan; Dan Lin; Lu Lin

    2015-01-01

    This study uses a case study method to examine the spin-offs of Asus and Yulon. Both companies show negative cumulated abnormal returns after spin-off announcements and then return to the anchoring price as at the announcement day. The results are in contrast to the findings of Veld et al. (2004) and Schipper and Smith (1986). However, our results are consistent with Nanda¡¯s (1991) asymmetric information argument. Nanda (1991) suggests that the negative returns on the announcement day reflec...

  17. Spin Is Common in Studies Assessing Robotic Colorectal Surgery: An Assessment of Reporting and Interpretation of Study Results.

    Science.gov (United States)

    Patel, Sunil V; Van Koughnett, Julie Ann M; Howe, Brett; Wexner, Steven D

    2015-09-01

    Spin has been defined previously as "specific reporting that could distort the interpretation of results and mislead readers." The purpose of this study was to determine the frequency and extent of misrepresentation of results in robotic colorectal surgery. Publications referenced in MEDLINE or EMBASE between 1992 and 2014 were included in this study. Studies comparing robotic colorectal surgery with other techniques with a nonsignificant difference in the primary outcome(s) were included. Interventions included robotic versus alternative techniques. Frequency, strategy, and extent of spin, as previously defined, were the main outcome measures : A total of 38 studies (including 24,303 patients) were identified for inclusion in this study. Evidence of spin was found in 82% of studies. The most common form of spin was concluding equivalence between surgical techniques based on nonsignificant differences (76% of abstracts and 71% of conclusions). Claiming improved benefits, despite nonsignificance, was also commonly observed (26% of abstracts and 45% of conclusions). Because of the small sample size, we did not find evidence of an association between spin and study design, type of funding, publication year, or study size. Acknowledging the equivocal nature of the study happened rarely (47% of abstracts and 34% of conclusions). The absence of spin predicted whether authors acknowledged equivocal results (p = 0.02). A total of 50% of studies did not disclose whether they received funding, whereas 39% of studies failed to state whether a conflict of interest existed. A limited number of randomized controlled trials were available. Spin occurred in >80% of included studies. Many studies concluded that robotic surgery was as safe as more traditional techniques, despite small sample sizes and limited follow-up. Authors often failed to recognize the difference between nonsignificance and equivalence. Failure to disclose financial relationships, which could represent

  18. Experimental study on the spin-orbit coupling property in low-dimensional semiconductor structures

    International Nuclear Information System (INIS)

    Zhao, Hongming

    2010-01-01

    The spin-orbit coupling and optical properties have been studied in several low-dimensional semiconductor structures. First, the spin dynamics in (001) GaAs/AlGaAs two-dimensional electron gas was investigated by time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic. The results show that the electron density in two-dimensional electron gas channel strongly affects the Rashba spin-orbit coupling. Then, a large anisotropy of the magnitude of in-plane conduction electron g factor in asymmetric (001) GaAs/AlGaAs QWs was observed and its tendency of temperature dependence was studied. Second, the experimental study of the in-plane-orientation dependent spin splitting in the C(0001) GaN/AlGaN two-dimensional electron gas at room temperature was reported. The measurement of circular photo-galvanic effect current clearly shows the isotropic in-plane spin splitting in this system for the first time. Third, the first measurement of conduction electron g factor in GaAsN at room temperature was done by using time resolved Kerr rotation technique. It demonstrates that the g factor can be modified drastically by introducing a small amount of nitrogen in GaAs bulk. Finally, the optical characteristic of indirect type II transition in a series of size and shape-controlled linear CdTe/CdSe/CdTe heterostructure nano-rods was studied by steady-state and time resolved photoluminescence. Results show the steady transfer from the direct optical transition (type I) within CdSe to the indirect transition (type II) between CdSe/CdTe as the length of the nano-rods increases. (author)

  19. Study of superdeformation at zero spin with Skyrme-Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, S.; Tajima, N.; Onishi, N. [Tokyo Univ. (Japan)

    1998-03-01

    Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)

  20. Spatially Resolved Study of Backscattering in the Quantum Spin Hall State

    Directory of Open Access Journals (Sweden)

    Markus König

    2013-04-01

    Full Text Available The discovery of the quantum spin Hall (QSH state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations.

  1. A study of the fluorescent properties of spin-coated sodium salicylate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kuhaili, M.F. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: kuhaili@kfupm.edu.sa

    2006-04-15

    Thin films of sodium salicylate were deposited by spin coating from a solution prepared by dissolving sodium salicylate in methanol. The films were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, UV-visible spectroscopy and spectrofluorometry. The films were crystalline with a strong blue fluorescence peak at an emission wavelength of 419.3 nm. The influence of solution concentration, spin speed and annealing temperature on the fluorescence intensity was studied. Optimum results were obtained with a solution whose concentration was 2.5 M. It was found that lower spin speed resulted in higher fluorescence intensity. Moreover, the fluorescence intensity decreased as the annealing temperature was increased. The durability of the films over a period of 30 days was also investigated, and films annealed at higher temperatures were found to be less degraded with time.

  2. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  3. The combined field emission-spin trapping method for studying reactions of electrons in organic solutions

    International Nuclear Information System (INIS)

    Noda, Shoji; Ohta, Yasunari; Yoshida, Hiroshi

    1979-01-01

    The reactions of electrons injected by field emission into solutions have been investigated. Free radicals generated by the dissociative electron attachment to chlorinated solutes in benzene solutions were detected by the spin trapping-ESR method, using pentamethylnitrosobenzene as a spin trapping agent. Nondissociative electron attachment to styrene caused by the field emission was also evidenced by detecting the α-methylbenzyl radical generated secondarily from the styrene radical anion. The electrons field-emitted into the solutions are captured almost quantitatively by the electron scavenging solutes. The field emission method has been found to be useful for generating authentically free radicals and for studying the anionic reaction induced by electrons without interference of countercations and of any reaction intermediates from solvent molecules. As an example of the chemical utilization of the field emission technique, the ESR parameters of the spin adducts of several hydrocarbon radicals have been collected by this technique. (author)

  4. A Longitudinal Study of the Effects of Innovativeness on Academic Spin-offs Performance

    DEFF Research Database (Denmark)

    Giones, Ferran; Billström, Anders; Rasmussen, Einar

    the relationship between innovativeness and firm performance. This study tests the relationship between innovativeness across different industries and future firm performance. This paper uses several market performance indicators to observe the variety of firm sales of academic spin-offs. A longitudinal sample......, between 2000 and 2012, of 125 academic spin-offs of Norway provides valuable insights on how the origin of the technology impact differences in market performance. The results show how specific elements related to the ASOs’ product innovativeness contribute to its market performance. The findings provide...

  5. Studying Of Preparation Silver Nano-Particles Using Spinning Disc Reactor

    International Nuclear Information System (INIS)

    Hoang Van Duc; Nguyen Thanh Chung; Tran Ngoc Ha; Ho Minh Quang; Nguyen Thi Thuc Phuong

    2014-01-01

    Preparation of silver nano-particles using spinning disc reactor has been investigated. The effects of technological factors and experimental conditions such as: concentrations of AgNO 3 , glucose, PVP, spinning speed, ect. on quality of nano-silver particles have been studied. With experimental conditions: rotation speed of 2000 rpm, weight rate of m PVP :m AgNO 3 = 1, AgNO 3 concentration of 0.01 M, glucose concentration of 0.02 M, silver particles of about 12 nm were obtained and the nano-silver solution were stable for more than 40 days. (author)

  6. Analytical study of synchronization in spin-transfer-driven magnetization dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Roberto [Politecnico di Torino - sede di Verres, via Luigi Barone 8, I-11029 Verres (Italy); Bertotti, Giorgio; Bortolotti, Paolo [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino (Italy); Serpico, Claudio [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' , via Claudio 21, I-80125 Napoli (Italy); D' Aquino, Massimiliano [Dipartimento per le Tecnologie, Universita di Napoli ' Parthenope' , via Medina 40, I-80133 Napoli (Italy); Mayergoyz, Isaak D, E-mail: p.bortolotti@inrim.i [Electrical and Computer Engineering Department and UMIACS, University of Maryland, College Park MD 20742 (United States)

    2010-01-01

    An analytical study of the synchronization effects in spin-transfer-driven nanomagnets subjected to either microwave magnetic fields or microwave electrical currents is discussed. Appropriate stability diagrams are constructed and the conditions under which the current-induced magnetization precession is synchronized by the microwave external excitation are derived and discussed. Analytical predictions are given for the existence of phase-locking effects in current-induced magnetization precessions and for the occurrence of hysteresis in phase-locking as a function of the spin-polarized current.

  7. Antiferromagnetism of La2CuO(4-y) studied by muon-spin rotation

    Science.gov (United States)

    Uemura, Y. J.; Kossler, W. J.; Yu, X. H.; Kempton, J. R.; Schone, H. E.

    1987-01-01

    Zero-field spin precession of positive muons has been observed in the antiferromagnetic state of La2CuO(4-y). Sharp onsets of the sublattice magnetization are found at temperatures close to those of the susceptibility maxima of different specimens. The long-lived precession signal indicates a microscopically homogeneous distribution of spin density at each Cu atom below the Neel temperature. A combination of the present results and neutron-scattering studies indicates the ordered moment per Cu atom to be significantly less than 1 mu(B).

  8. Analytical study of orbital selective Mott transition using slave-spin method

    Science.gov (United States)

    Komijani, Yashar; Kotliar, Gabriel

    We study the orbital selective Mott transition using slave-spin and slave-boson techniques. Within a single-site approximation, we identify the competing ground states of the spin-sector of a two-band Hubbard Hamiltonian in presence of the Hund's rule coupling as well as inter-orbital tunneling and provide an analytical explanation for the orbital correlation (mode locking) and Kondo physics. By mapping the lattice to the impurity model we make connections to the dynamical mean-field theory.

  9. Spin and conductance-peak-spacing distributions in large quantum dots: a density-functional theory study.

    Science.gov (United States)

    Jiang, Hong; Baranger, Harold U; Yang, Weitao

    2003-01-17

    We use spin-density-functional theory to study the spacing between conductance peaks and the ground-state spin of 2D model quantum dots with up to 200 electrons. Distributions for different ranges of electron number are obtained in both symmetric and asymmetric potentials. The even/odd effect is pronounced for small symmetric dots but vanishes for large asymmetric ones, suggesting substantially stronger interaction effects than expected. The fraction of high-spin ground states is remarkably large.

  10. Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study

    Science.gov (United States)

    Caliskan, Serkan

    2018-05-01

    Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.

  11. Systematic study of the spin stiffness dependence on phosphorus alloying in the ferromagnetic semiconductor (Ga,Mn)As

    International Nuclear Information System (INIS)

    Shihab, S.; Thevenard, L.; Bardeleben, H. J. von; Gourdon, C.; Riahi, H.; Lemaître, A.

    2015-01-01

    We study the dependence of the spin stiffness constant on the phosphorus concentration in the ferromagnetic semiconductor (Ga,Mn)(As,P) with the aim of determining whether alloying with phosphorus is detrimental, neutral, or advantageous to the spin stiffness. Time-resolved magneto-optical experiments are carried out in thin epilayers. Laser pulses excite two perpendicular standing spin wave modes, which are exchange related. We show that the first mode is spatially uniform across the layer corresponding to a k≈0 wavevector. From the two frequencies and k-vector spacings we obtain the spin stiffness constant for different phosphorus concentrations using weak surface pinning conditions. The mode assessment is checked by comparison to the spin stiffness obtained from domain pattern analysis for samples with out-of-plane magnetization. The spin stiffness is found to exhibit little variation with phosphorus concentration in contradiction with ab-initio predictions

  12. Tunneling Spectroscopy Study of Spin-Polarized Quasiparticle Injection Effects in Cuparate/Manganite Heterostructures

    Science.gov (United States)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1998-01-01

    Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.

  13. Spin labels. Applications in biology

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.

    1980-11-01

    The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)

  14. Anisotropic magnetic interactions and spin dynamics in the spin-chain compound Cu (py) 2Br2 : An experimental and theoretical study

    Science.gov (United States)

    Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.

    2017-07-01

    We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.

  15. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  16. Phase Transitions in Frustrated XY Models Studied Using Hard-Spin Mean-Field Theory

    Science.gov (United States)

    Behzadi, Azad E.; McKay, Susan R.

    1996-03-01

    The number and types of phase transitions occurring in the two- dimensional fully frustrated XY model have remained controversial in spite of over a decade of attention. In this study, we report the results of a hard-spin mean-field approach (R.R. Netz and A.N. Berker, Phys. Rev. Lett. 66), 377 (1991). applied to this system. We compute the effective field on a center site or plaquette using neighboring spins of unit magnitude rather than the average magnetization, as is done in conventional mean-field theory. The directions of the neighboring spins are chosen probabilistically to yield each site magnetization self-consistently. Our calculated inverse critical temperature is 1.444, significantly improved from the conventional mean-field result of 0.707. By locating the self-consistent solutions for the site magnetizations directly, this study avoid scaling, which is complicated in this case due to the possibility of two very closely spaced transitions (P. Ollson, Phys. Rev. Lett. 75), 2758 (1995).. These results are compared with simulations and the Monte Carlo implementation of hard-spin mean-field theory on this system Thesis, Dept. of Physics and Astronomy, U. of Maine (1995).

  17. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  18. Noise in tunneling spin current across coupled quantum spin chains

    OpenAIRE

    Aftergood, Joshua; Takei, So

    2017-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1/2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a conc...

  19. Electron Spin Resonance Spectroscopy for Studying the Generation and Scavenging of Reactive Oxygen Species by Nanomaterials

    Science.gov (United States)

    Yin, Jun-Jie; Zhao, Baozhong; Xia, Qingsu; Fu, Peter P.

    2013-09-01

    One fundamental mechanism widely described for nanotoxicity involves oxidative damage due to generation of free radicals and other reactive oxygen species. Indeed, the ability of nanoscale materials to facilitate the transfer of electrons, and thereby promote oxidative damage or in some instances provide antioxidant protection, may be a fundamental property of these materials. Any assessment of a nanoscale material's safety must therefore consider the potential for toxicity arising from oxidative damage. Therefore, rapid and predictive methods are needed to assess oxidative damage elicited by nanoscale materials. The use of electron spin resonance (ESR) to study free radical related bioactivity of nanomaterials has several advantages for free radical determination and identification. Specifically it can directly assess antioxidant quenching or prooxidant generation of relevant free radicals and reactive oxygen species. In this chapter, we have reported some nonclassical behaviors of the electron spin relaxation properties of unpaired electrons in different fullerenes and the investigation of anti/prooxidant activity by various types of nanomaterials using ESR. In addition, we have reviewed the mechanisms of free radical formation photosensitized by different nanomaterials. This chapter also included the use of spin labels, spin traps and ESR oximetry to systematically examine the enzymatic mimetic activities of nanomaterials.

  20. Spin-wave dynamics in Invar Fe65Ni35 studied by small-angle polarized neutron scattering

    NARCIS (Netherlands)

    Brück, E.H.; Grigoriev, S.V.; Deriglazov, V.V.; Okorokov, A.I.; Dijk van, N.H.; Klaasse, J.C.P.

    2002-01-01

    Abstract. Spin dynamics in Fe65Ni35 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below TC=485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping & were obtained by

  1. The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system

    International Nuclear Information System (INIS)

    Deviren, Bayram; Bati, Mehmet; Keskin, Mustafa

    2009-01-01

    An effective-field theory with correlations is developed for a mixed spin-1 and spin-5/2 Ising ferrimagnetic system on the honeycomb (δ=3) and square (δ=4) lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice magnetizations, and present the phase diagrams in the (Δ/|J|,k B T/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.

  2. The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram; Bati, Mehmet [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2009-06-15

    An effective-field theory with correlations is developed for a mixed spin-1 and spin-5/2 Ising ferrimagnetic system on the honeycomb ({delta}=3) and square ({delta}=4) lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction ({delta}) plane. We also investigate the thermal variations of the sublattice magnetizations, and present the phase diagrams in the ({delta}/|J|,k{sub B}T/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.

  3. A study on the improvement of spin-off effectiveness of national nuclear R and D activities

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Lee, T. J.

    1997-02-01

    This study consists of two parts. One is to identify factors affecting technological effectiveness of the spin-off process that is defined as the technology transfer process from government sponsored research institutes (GRI's) to the civilian sector. The other is to analyze the environment of the spin-off process and to suggest guidelines for addition, this study also examines spin-off effectiveness with technology transfer types. To validate the conceptual model and hypotheses of the spin-off process, data are collected from 12 cases through in-depth interviews and questionnaires. Spearman correlation analysis is employed in order to test the hypotheses on the spin-off process. (author). 50 refs., 17 tabs., 12 figs

  4. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  5. Human-brain ferritin studied by muon spin rotation: a pilot study.

    Science.gov (United States)

    Bossoni, Lucia; Grand Moursel, Laure; Bulk, Marjolein; Simon, Brecht G; Webb, Andrew; van der Weerd, Louise; Huber, Martina; Carretta, Pietro; Lascialfari, Alessandro; Oosterkamp, Tjerk H

    2017-10-18

    Muon spin rotation is employed to investigate the spin dynamics of ferritin proteins isolated from the brain of an Alzheimer's disease (AD) patient and of a healthy control, using a sample of horse-spleen ferritin as a reference. A model based on the Néel theory of superparamagnetism is developed in order to interpret the spin relaxation rate of the muons stopped by the core of the protein. Using this model, our preliminary observations show that ferritins from the healthy control are filled with a mineral compatible with ferrihydrite, while ferritins from the AD patient contain a crystalline phase with a larger magnetocrystalline anisotropy, possibly compatible with magnetite or maghemite.

  6. Electron spin resonance studies of some irradiated pharmaceuticals

    International Nuclear Information System (INIS)

    Gibella, M.; Crucq, A-S.; Tilquin, B.; Stocker, P.; Lesgards, G.; Raffi, J.

    2000-01-01

    Five antibiotics belonging to the cephalosporins and penicillins groups have been irradiated: anhydrous ampicilline acid, amoxicilline acid trihydrate, cefuroxime sodium salt, cloxacilline sodium salt monohydrate and ceftazidime pentahydrate. ESR studies have been carried out, showing the influence of irradiation and storage parameters on the nature and concentration of the free radicals trapped. These results may be used to detect an irradiation treatment on such pharmaceuticals. (author)

  7. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  8. Numerical study on physical mechanism of vortex breakdown occurrence in spin-up process

    OpenAIRE

    "小出, 輝明"; Teruaki", "Koide

    2008-01-01

    "A Numerical study presented on a vortex breakdown in spin-up process in an enclosed cylindrical container. In a transitional state, momentary vortex breakdowns can occur for particular parameter values ofthe Reynolds number and aspect ratio where no vortex breakdown appears in a steady state. This transient vortex breakdown flow is convenient to consider a mechanism for the occurrence of a vortex breakdown. It isdiscussed that periodical increase and decrease of angular momentum in upstream ...

  9. Neutron diffraction study of quasi-one-dimensional spin-chain ...

    Indian Academy of Sciences (India)

    Abstract. We report the results of the DC magnetization, neutron powder diffraction and neutron depolarization studies on the spin-chain compounds Ca3Co2−xFexO6 (x = 0,. 0.1, 0.2 and 0.4). Rietveld refinement of neutron powder diffraction patterns at room temperature confirms the single-phase formation for all the ...

  10. Electron spin resonance study of the demagnetization fields of the ferromagnetic and paramagnetic films

    Directory of Open Access Journals (Sweden)

    I.I. Gimazov, Yu.I. Talanov

    2015-12-01

    Full Text Available The results of the electron spin resonance study of the La1-xCaxMnO3 manganite and the diphenyl-picrylhydrazyl thin films for the magnetic field parallel and perpendicular to plane of the films are presented. The temperature dependence of the demagnetizing field is obtained. The parameters of the Curie-Weiss law are estimated for the paramagnetic thin film.

  11. Diffusion studies on permeable nitroxyl spin probe through lipid bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Benial, A. Milton Franklin; Meenakumari, V. [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019 (India); Ichikawa, Kazuhiro; Yamada, Ken-ichi; Utsumi, Hideo, E-mail: hideo.utsumi.278@m.kyushu-u.ac.jp [Department of Bio-functional Science, Kyushu University, Fukuoka (Japan); Hyodo, Fuminori [Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka (Japan); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625 019 (India)

    2014-04-24

    Electron spin resonance (ESR) studies were carried out for 2mM {sup 14}N labeled deutrated permeable 3- methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water, 1 mM, 2 mM, 3 mM and 4 mM concentration of MC-PROXYL in 300 mM concentration of liposomal solution by using a L-band ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported. The partition parameter and permeability values indicate the maximum spin distribution in the lipid phase at 2 mM concentration. This study illustrates that ESR can be used to differentiate between the intra and extra-membrane water by loading the liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the radical concentration was optimized as 2 mM in liposomal solution for ESR phantom studies and experiments.

  12. Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties

    Science.gov (United States)

    Komeda, Tadahiro; Katoh, Keiichi; Yamashita, Masahiro

    2014-05-01

    We review recent studies of double-decker and triple-decker phthalocyanine (Pc) molecules adsorbed on surfaces in terms of the bonding configuration, electronic structure and spin state. The Pc molecule has been studied extensively in surface science. A Pc molecule can contain various metal atoms at the center, and the class of the molecule is called as metal phthalocyanine (MPc). If the center metal has a large radius, like as lanthanoid metals, it becomes difficult to incorporate the metal atom inside of the Pc ring. Pc ligands are placed so as to sandwich the metal atom, where the metal atom is placed out of the Pc plane. The molecule in this configuration is called as a multilayer-decker Pc molecule. After the finding that the double-decker Pc lanthanoid complex shows single-molecule magnet (SMM) behavior, it has attracted a large attention. This is partly due to a rising interest for the ‘molecular spintronics’, in which the freedoms of spin and charge of an electron are applied to the quantum process of information. SMMs represent a class of compounds in which a single molecule behaves as a magnet. The reported blocking temperature, below which a single SMM molecule works as an quantum magnet, has been increasing with the development in the molecular design and synthesis techniques of multiple-decker Pc complex. However, even the bulk properties of these molecules are promising for the use of electronic materials, the films of multi-decker Pc molecules is less studied than those for the MPc molecules. An intriguing structural property is expected for the multi-decker Pc molecules since the Pc planes are linked by metal atoms. This gives an additional degree of freedom to the rotational angle between the two Pc ligands, and they can make a wheel-like symmetric rotation. Due to a simple and well-defined structure of a multi-decker Pc complex, the molecule can be a model molecule for molecular machine studies. The multi-decker Pc molecules can provide

  13. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  14. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-06

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  15. Spin-resolved tunneling studies of the exchange field in EuS/Al bilayers.

    Science.gov (United States)

    Xiong, Y M; Stadler, S; Adams, P W; Catelani, G

    2011-06-17

    We use spin-resolved electron tunneling to study the exchange field in the Al component of EuS/Al bilayers, in both the superconducting and normal-state phases of the Al. Contrary to expectation, we show that the exchange field H(ex) is a nonlinear function of applied field, even in applied fields that are well beyond the EuS coercive field. Furthermore, the magnitude H(ex) is unaffected by the superconducting phase. In addition, H(ex) decreases significantly with increasing temperature in the temperature range of 0.1-1 K. We discuss these results in the context of recent theories of generalized spin-dependent boundary conditions at a superconductor-ferromagnet interface.

  16. Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-03-01

    The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.

  17. Spin glass transition in canonical AuFe alloys: A numerical study

    International Nuclear Information System (INIS)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Gui-Bin; Zhu, Yan

    2012-01-01

    Although spin glass transitions have long been observed in diluted magnetic alloys, e.g. AuFe and CuMn alloys, previous numerical studies are not completely consistent with the experiment results. The abnormal critical exponents of the alloys remain still puzzling. By employing parallel tempering algorithm with finite-size scaling analysis, we investigated the phase transitions in canonical AuFe alloys. Our results strongly support that spin glass transitions occur at finite temperatures in the alloys. The calculated critical exponents agree well with those obtained from experiments. -- Highlights: ► By simulation we investigated the abnormal critical exponents observed in canonical SG alloys. ► The critical exponents obtained from our simulations agree well with those measured from experiments. ► Our results strongly support that RKKY interactions lead to SG transitions at finite temperatures.

  18. Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.

    2016-01-01

    The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.

  19. Neutron diffraction and ultrasonic studies of spin-slip structures in holmium

    Energy Technology Data Exchange (ETDEWEB)

    Venter, Andrew M. [Atomic Energy Corporation of S A (Ltd), P O Box 582, Pretoria (South Africa); Du Plessis, Paul de V [Physics Department, University of the Witwatersrand, Private Bag 3, PO Wits 2050, Johannesburg (South Africa)

    1997-06-16

    Spin-slip behaviour in high-purity holmium single crystals is characterized by neutron diffraction and ultrasonic velocity and attenuation measurements as a function of temperature and of magnetic field applied along b, c, and a axes. Neutron diffraction measurements of intensity and turn angle give information on wave vector lock-in effects for various spin-slip structures in applied fields. These findings are supplemented with ultrasonic studies of the elastic constants C{sub 33} and C{sub 44} and corresponding attenuation coefficients {alpha}{sub 33} and {alpha}{sub 44}. Various phase diagrams are presented and results compared with experiments by other groups and with some theoretical predictions. (author)

  20. Study of spin-temperature effects using energy-ordered continuum gamma-ray spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Baktash, C.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McConnell, J.W.; McGowan, F.K.

    1990-01-01

    We have investigated a new continuum {gamma}-ray spectroscopy technique which is based on the detection of all emitted {gamma} rays in a 4{pi} detector system, and ordering them according to their energies on an event-by-event basis. The technique allows determination of gamma strength functions, and rotational damping width as a function of spin and temperature. Thus, it opens up the possibility of studying the onset of motional narrowing, order-to-chaos transition, and the mapping of the evolution of nuclear collectivity with a spin and temperature. Application of the technique for preferential entry-state population, exit-channel selection, and feeding of the discrete states via selective pathways will be discussed. 20 refs., 4 figs.

  1. Variational cluster approximation study of Mott transition with strong spin-orbit coupling

    International Nuclear Information System (INIS)

    Shirakawa, Tomonori; Watanabe, Hiroshi; Yunoki, Seiji

    2011-01-01

    Motivated by recent experiments on Sr 2 IrO 4 , the ground state magnetic and electronic structures are studied theoretically for a two-dimensional three-band Hubbard model with strong spin-orbit coupling. To treat spin-orbit coupling, local Coulomb interactions, and band structure effects on the same footing, the variational cluster approximation based on the self-energy functional theory is employed. It is found that for a relatively large coupling region, the ground state is an anisotropic antiferromagnetic Mott insulator of an effective local angular momentum J eff = 1/2 with xy plane as an easy plane. This anisotropy is caused by the strong spin-orbit coupling along with the inter-orbital Hund's coupling. The momentum resolved one-particle excitations are also studied for the Mott insulating phase. It is found that the low-energy one-particle excitations consist mostly of the J eff = 1/2 state, a direct evidence of a novel J eff = 1/2 Mott insulator.

  2. Magnetic studies of spin wave excitations in Fe/Mn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco); LMPG, Ecole supérieure de technologie, Université Hassan de Casablanca, Casablanca (Morocco); Moubah, R.; El Bahoui, A.; Lassri, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco)

    2017-04-15

    The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t{sub Fe}). The change of magnetization as a function of temperature is well depicted by a T{sup 3/2} law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.

  3. The QUASAR reproducibility study, Part II: Results from a multi-center Arterial Spin Labeling test-retest study

    DEFF Research Database (Denmark)

    Petersen, Esben Thade; Mouridsen, Kim; Golay, Xavier

    2010-01-01

    Arterial Spin Labeling (ASL) is a method to measure perfusion using magnetically labeled blood water as an endogenous tracer. Being fully non-invasive, this technique is attractive for longitudinal studies of cerebral blood flow in healthy and diseased individuals, or as a surrogate marker of met...

  4. Spin correlations and magnetic order in Co-Ga alloys: A comprehensive study

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Sk Mohammad [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Saha, Ritwik [Department of Condensed Matter Physics and Materials Science, TIFR, Colaba, Mumbai 400 005 (India); Srinivas, V., E-mail: veeturi@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Kasiviswanathan, S. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Nigam, A.K. [Department of Condensed Matter Physics and Materials Science, TIFR, Colaba, Mumbai 400 005 (India)

    2015-11-15

    Low temperature magnetic properties of binary Co{sub x}Ga{sub 100−x} alloy with Co concentration in the range 54 ≤ x ≤ 61.5 at% have been investigated. From the temperature and magnetic field dependent magnetization measurements magnetic phase diagram has been identified. Cluster spin glass like features are noticed in x = 54, 55 compositions, while the compositions x > 57 exhibit double magnetic transition i.e., at higher temperatures paramagnetic (PM) – ferromagnetic (FM) and at lower temperatures FM-SG like transition. The critical concentration is identified to be near x = 57 composition where discernible spontaneous magnetization emerges and the long range ferromagnetic order develops above this composition in addition to the spin glass transition (or mixed magnetic phase). Analysis of temperature dependence magnetization data in the different temperature ranges for the compositions x = 60 and 61.5 indicate that the mean field models are not suitable to understand the phase transition. Magnetic isotherms in the critical region were analyzed using non-mean-field approach and the critical exponents (γ = 1.31 and β = 0.337) found to be close to 3D Heisenberg model suggesting the importance of short range magnetic order. The data satisfies magnetic equation of state characteristic of a second order phase transition. The results obtained from the present study corroborate well with the phenomenological interacting spin cluster model. - Graphical abstract: Low temperature magnetic properties of binary Co{sub x}Ga{sub 1−x} alloy with Co concentration in the range 54 ≤ x ≤ 61.5 at% have been investigated. From the temperature and magnetic field dependent magnetization measurements magnetic phase diagram has been identified. Cluster spin glass (SG) like features are noticed in x = 54, 55.5 compositions, while the compositions x > 57 exhibit double magnetic transition i.e., at higher temperatures paramagnetic (PM) – ferromagnetic (FM) and at lower

  5. Reduction in cerebral perfusion after heroin administration: a resting state arterial spin labeling study.

    Directory of Open Access Journals (Sweden)

    Niklaus Denier

    Full Text Available Heroin dependence is a chronic relapsing brain disorder, characterized by the compulsion to seek and use heroin. Heroin itself has a strong potential to produce subjective experiences characterized by intense euphoria, relaxation and release from craving. The neurofunctional foundations of these perceived effects are not well known. In this study, we have used pharmacological magnetic resonance imaging (phMRI in 15 heroin-dependent patients from a stable heroin-assisted treatment program to observe the steady state effects of heroin (60 min after administration. Patients were scanned in a cross-over and placebo controlled design. They received an injection of their regular dose of heroin or saline (placebo before or after the scan. As phMRI method, we used a pulsed arterial spin labeling (ASL sequence based on a flow-sensitive alternating inversion recovery (FAIR spin labeling scheme combined with a single-shot 3D GRASE (gradient-spin echo readout on a 3 Tesla scanner. Analysis was performed with Statistical Parametric Mapping (SPM 8, using a general linear model for whole brain comparison between the heroin and placebo conditions. We found that compared to placebo, heroin was associated with reduced perfusion in the left anterior cingulate cortex (ACC, the left medial prefrontal cortex (mPFC and in the insula (both hemispheres. Analysis of extracted perfusion values indicate strong effect sizes and no gender related differences. Reduced perfusion in these brain areas may indicate self- and emotional regulation effects of heroin in maintenance treatment.

  6. Reduction in cerebral perfusion after heroin administration: a resting state arterial spin labeling study.

    Science.gov (United States)

    Denier, Niklaus; Gerber, Hana; Vogel, Marc; Klarhöfer, Markus; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Lang, Undine E; Borgwardt, Stefan; Walter, Marc

    2013-01-01

    Heroin dependence is a chronic relapsing brain disorder, characterized by the compulsion to seek and use heroin. Heroin itself has a strong potential to produce subjective experiences characterized by intense euphoria, relaxation and release from craving. The neurofunctional foundations of these perceived effects are not well known. In this study, we have used pharmacological magnetic resonance imaging (phMRI) in 15 heroin-dependent patients from a stable heroin-assisted treatment program to observe the steady state effects of heroin (60 min after administration). Patients were scanned in a cross-over and placebo controlled design. They received an injection of their regular dose of heroin or saline (placebo) before or after the scan. As phMRI method, we used a pulsed arterial spin labeling (ASL) sequence based on a flow-sensitive alternating inversion recovery (FAIR) spin labeling scheme combined with a single-shot 3D GRASE (gradient-spin echo) readout on a 3 Tesla scanner. Analysis was performed with Statistical Parametric Mapping (SPM 8), using a general linear model for whole brain comparison between the heroin and placebo conditions. We found that compared to placebo, heroin was associated with reduced perfusion in the left anterior cingulate cortex (ACC), the left medial prefrontal cortex (mPFC) and in the insula (both hemispheres). Analysis of extracted perfusion values indicate strong effect sizes and no gender related differences. Reduced perfusion in these brain areas may indicate self- and emotional regulation effects of heroin in maintenance treatment.

  7. Neutron spin echo spectroscopy. Its application to the study of the dynamics of polymers in solution

    International Nuclear Information System (INIS)

    Papoular, Robert

    1992-06-01

    This work focuses on Neutron Spin Echo (NSE) spectroscopy and on the NSE spectrometer MESS, which we have built at the L.L.B. (CE Saclay). After analyzing in detail the classical and quantum principles of this type of instrument, and illustrated them with optical analogies, we expound a simple formalism for the interpretation of polarized neutron experiments of the most general type. In a second part, we describe the MESS spectrometer extensively; its characteristics and performances as well as the first results obtained with this instrument. In particular, we include two papers showing how the neutron depolarization, spin rotation and echoes can be used to investigate high-Tc superconductors. The last part deals with the dynamics of Polymer-Polymer-Solvent ternary solutions and demonstrates how the Neutron Spin Echo technique becomes a privileged tool for such physico-chemical studies thanks to the joint use of NSE and contrast variation methods, coupled with the adequate ranges of time and scattering vectors accessible. Finally, we describe the specific case of partially deuterated polydimethyl-siloxane (PDMS) in semi-dilute solution in Toluene. We have experimentally and separately evidenced the cooperative and inter-diffusive diffusion modes predicted by the theory of Akcasu, Benoit, Benmouna et al. These results, obtained at the L.L.B. (CE Saclay) are the subject matter of the last paper included in this work. (author) [fr

  8. Study of the nucleon spin structure functions: the E154 experiment at SLAC

    International Nuclear Information System (INIS)

    Sabatie, Franck

    1998-01-01

    In experiment E154 at SLAC, the spin dependent structure function g 1 n was measured by scattering longitudinally polarized 50 GeV electrons off a longitudinally polarized helium 3 target. We report the integral over the measured x range to be ∫ 0.014 0.7 g 1 n (x,5 GeV 2 )dx = -0.0348 ± 0.0033 ± 0.0043 ± 0.0014. We observe relatively large values of g 1 n at low x, calling into question the reliability of the data extrapolation down to x equal 0. Such a divergent behavior seems to disagree with the prediction of the Regge theory but can be quantitatively explained by perturbative QCD. Moreover, we have performed a NLO perturbative QCD analysis of the world data on g 1 , paying careful attention to both the theoretical hypothesis and the calculation of errors. Using a parametrization of the polarized parton distribution at a low scale, we can access the fraction of spin carried by quarks: ΔΣ = 29 ± 6 pc in the MS-bar scheme, and ΔΣ = 37 ± 7 pc in the AB scheme. The gluon contribution to the nucleon spin is not well enough constrained by the current data, but seems to lie between 0 and 2. This study allows us to extract the first moment of the g 1 structure function and we find agreement with the Bjorken sum rule expectations. (author) [fr

  9. Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials

    International Nuclear Information System (INIS)

    Miah, M. Idrish; Kityk, I.V.; Gray, E. MacA.

    2007-01-01

    The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage

  10. Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au; Kityk, I.V. [Institute of Physics, J. Dlugosz University Czestochowa, PL-42201 Czestochowa (Poland); Gray, E. MacA. [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2007-10-15

    The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage.

  11. Neutron scattering study of heisenberg-like spin glass NixMn1-xTiO3

    International Nuclear Information System (INIS)

    Kawano, Hazuki; Yoshizawa, Hideki; Ito, Atsuko.

    1993-01-01

    A mixed compound Ni x Mn 1-x TiO 3 with two competitions of exchange interactions and of weak anisotropies was studied by neutron scattering experiments, and its x-T phase diagram was established. In addition to the spin-glass (SG) and re-entrant spin-glass (RSG) behaviors, two types of a spin axis rotation were observed. One is a spin axis rotation due to the competition of anisotropies, the other is a new type of the spin axis rotation in which spins rotate from the spin easy axis against the anisotropy. We interpret that the latter rotation occurs by the competition of the subtle energy balance between the exchange frustration, the single-ion anisotropy and the dipole interaction. From the magnetization measurement, we find that a weak single-ion anisotropy causes the successive SG transitions in the Ni x Mn 1-x TiO 3 system. By the profile analysis of quasi-elastic scattering, we find that there appears the diffuse scattering which cannot be explained by single Lorentzian below the lower SG transition temperature. (author)

  12. Experimental study of high spin states in low-medium mass nuclei by use of charge particle induced reactions

    International Nuclear Information System (INIS)

    Alenius, N.G.

    1975-01-01

    For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)

  13. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  14. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Interplays of μSR, susceptibility, and neutron studies on dilute-alloy spin glasses

    International Nuclear Information System (INIS)

    Uemura, Y.J.

    1983-04-01

    Static spin polarization of Fe moments in a spin glass AuFe, determined by zero-field μSR, is compared to an ac-susceptibility measurement below the cusp temperature T/sub g/, and a rather uniform amplitude of the static polarization is pointed out for frozen spins. Completely random orientation of frozen spins is revealed by neutron scattering in a dilute 1% CuMn, and an importance of comparing results of these different methods is demonstrated

  16. Experimental Studies of Spin, Charge and Orbital Order at Extreme Conditions

    OpenAIRE

    Carlsson, Sandra J E

    2009-01-01

    Spin, charge and orbital ordering in various crystalline compounds have been studied under extreme conditions. The main techniques used were synchrotron X-ray and neutron powder diffraction. High-pressure conditions were obtained by using a diamond anvil cell and the Paris-Edinburgh cell. Changes in the valence state of BiNiO3 perovskite under pressure have been investigated by a neutron powder diffraction study and bond valence sum (BVS) calculations. At ambient pressure, BiNiO3 has the u...

  17. Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study

    Science.gov (United States)

    Perera, Dilina; Vogel, Thomas; Landau, David P.

    2016-10-01

    Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.

  18. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  19. Heat transfer in the spin-boson model: a comparative study in the incoherent tunneling regime.

    Science.gov (United States)

    Segal, Dvira

    2014-07-01

    We study the transfer of heat in the nonequilibrium spin-boson model with an Ohmic dissipation. In the nonadiabatic limit we derive a formula for the thermal conductance based on a rate equation formalism at the level of the noninteracting blip approximation, valid for temperatures T>T(K), with T(K) as the Kondo temperature. We evaluate this expression analytically assuming either weak or strong couplings, and demonstrate that our results agree with exact relations. Far-from-equilibrium situations are further examined, showing a close correspondence to the linear response limit.

  20. Spin-dependent Hall effect in degenerate semiconductors: a theoretical study

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    The spin-dependent Hall (SDH) effect in degenerate semiconductors is investigated theoretically. Starting from a two-component drift-diffusion equation, an expression for SDH voltage (V SDH ) is derived, and drift and diffusive contributions to V SDH are studied. For the possible enhancement of the diffusive part, degenerate and nondegenerate cases are examined. We find that due to an increase in the diffusion coefficient V SDH increases in a degenerate semiconductor, consistent with the experimental observations. The expression for V SDH is reduced in three limiting cases, namely diffusive, drift-diffusion crossover and drift, and is analysed. The results agree with those obtained in recent theoretical investigations.

  1. Dynamics of polymers in elongational flow studied by the neutron spin-echo technique

    International Nuclear Information System (INIS)

    Rheinstaedter, Maikel C.; Sattler, Rainer; Haeussler, Wolfgang; Wagner, Christian

    2010-01-01

    The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2 O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.

  2. Excitation of Self-Localized Spin-Wave Bullets by Spin-Polarized Current in In-Plane Magnetized Magnetic Nano-Contacts: A Micromagnetic Study

    Science.gov (United States)

    2007-10-08

    excitation of microwave spin waves.3,10,11 The analytical theory of spin-wave excitation in magnetic nanocontacts by spin-polarized current performed...linear theory ,3 the propagating spin- wave mode excited at the threshold is a cylindrical spin- wave with the wave vector kL=1.2/Rc and frequency L... Oersted magnetic field, and/or by any other small interaction, neglected in the micromagnetic model. To make the excitation of subcritical modes12,15

  3. Spin-flip-Raman studies of semimagnetic II-VI heterostructures; Spin-flip-Raman-Untersuchungen an semimagnetischen II-VI-Halbleiter-Quantentroegen und Volumenproben

    Energy Technology Data Exchange (ETDEWEB)

    Lentze, Michael

    2009-03-18

    In the present doctoral thesis, spin flip Raman studies of semimagnetic (Zn,Mn)Se samples were in the focus of interest. Quantum wells as well as bulk-like materials were investigated. The main goal was a better understanding of the exchange interaction behaviour of heavily n-doped semimagnetic samples. The influence of doping on the exchange interaction is of special relevance with regard to spintronics applications. Several series of high quality MBE-grown (Zn,Mn)Se-samples samples were available. (orig.)

  4. Spin caloritronics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  5. Spin caloritronics in graphene

    Science.gov (United States)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  6. A study of open strings ending on giant gravitons, spin chains and integrability

    International Nuclear Information System (INIS)

    Berenstein, David; Correa, Diego H.; Vazquez, Samuel E.

    2006-01-01

    We systematically study the spectrum of open strings attached to half BPS giant gravitons in the N = 4 SYM AdS/CFT setup. We find that some null trajectories along the giant graviton are actually null geodesics of AdS 5 x S 5 , so that we can study the problem in a plane wave limit setup. We also find the description of these states at weak 't Hooft coupling in the dual CFT. We show how the dual description is given by an open spin chain with variable number of sites. We analyze this system in detail and find numerical evidence for integrability. We also discover an interesting instability of long open strings in Ramond-Ramond backgrounds that is characterized by having a continuum spectrum of the string, which is separated from the ground state by a gap. This instability arises from accelerating the D-brane on which the strings end via the Ramond-Ramond field. From the integrable spin chain point of view, this instability prevents us from formulating the integrable structure in terms of a Bethe Ansatz construction

  7. Ground state study of the thin ferromagnetic nano-islands for artificial spin ice arrays

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Júnior, D. S., E-mail: damiao.vieira@ifsudestemg.edu.br [Departamento Acadêmico de Matemática, Física e Estatística, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Câmpus Rio Pomba, Rio Pomba, Minas Gerais 36180-000 (Brazil); Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Leonel, S. A., E-mail: sidiney@fisica.ufjf.br; Dias, R. A., E-mail: radias@fisica.ufjf.br; Toscano, D., E-mail: danilotoscano@fisica.ufjf.br; Coura, P. Z., E-mail: pablo@fisica.ufjf.br; Sato, F., E-mail: sjfsato@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil)

    2014-09-07

    In this work, we used numerical simulations to study the magnetic ground state of the thin elongated (elliptical) ferromagnetic nano-islands made of Permalloy. In these systems, the effects of demagnetization of dipolar source generate a strong magnetic anisotropy due to particle shape, defining two fundamental magnetic ground state configurations—vortex or type C. To describe the system, we considered a model Hamiltonian in which the magnetic moments interact through exchange and dipolar potentials. We studied the competition between the vortex states and aligned states—type C—as a function of the shape of each elliptical nano-islands and constructed a phase diagram vortex—type C state. Our results show that it is possible to obtain the elongated nano-islands in the C-state with aspect ratios less than 2, which is interesting from the technological point of view because it will be possible to use smaller islands in spin ice arrays. Generally, the experimental spin ice arrangements are made with quite elongated particles with aspect ratio approximately 3 to ensure the C-state.

  8. Kinetics and Mechanism of Ultrasonic Activation of Persulfate: An in Situ EPR Spin Trapping Study.

    Science.gov (United States)

    Wei, Zongsu; Villamena, Frederick A; Weavers, Linda K

    2017-03-21

    Ultrasound (US) was shown to activate persulfate (PS) providing an alternative activation method to base or heat as an in situ chemical oxidation (ISCO) method. The kinetics and mechanism of ultrasonic activation of PS were examined in aqueous solution using an in situ electron paramagnetic resonance (EPR) spin trapping technique and radical trapping with probe compounds. Using the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), hydroxyl radical ( • OH) and sulfate radical anion (SO 4 •- ) were measured from ultrasonic activation of persulfate (US-PS). The yield of • OH was up to 1 order of magnitude greater than that of SO 4 •- . The comparatively high • OH yield was attributed to the hydrolysis of SO 4 •- in the warm interfacial region of cavitation bubbles formed from US. Using steady-state approximations, the dissociation rate of PS in cavitating bubble systems was determined to be 3 orders of magnitude greater than control experiments without sonication at ambient temperature. From calculations of the interfacial volume surrounding cavitation bubbles and using the Arrhenius equation, an effective mean temperature of 340 K at the bubble-water interface was estimated. Comparative studies using the probe compounds tert-butyl alcohol and nitrobenzene verified the bubble-water interface as the location for PS activation by high temperature with • OH contributing a minor role in activating PS to SO 4 •- . The mechanisms unveiled in this study provide a basis for optimizing US-PS as an ISCO technology.

  9. Spin dynamics study of magnetic molecular clusters by means of Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Cianchi, L.; Del Giallo, F.; Spina, G.; Reiff, W.; Caneschi, A.

    2002-01-01

    Spin dynamics of the two magnetic molecular clusters Fe4 and Fe8, with four and eight Fe(III) ions, respectively, was studied by means of Moessbauer spectroscopy. The transition probabilities W's between the spin states of the ground multiplet were obtained from the fitting of the spectra. For the Fe4 cluster we found that, in the range from 1.38 to 77 K, the trend of W's versus the temperature corresponds to an Orbach's process involving an excited state with energy of about 160 K. For the Fe8, which, due to the presence of a low-energy excited state, could not be studied at temperatures greater than 20 K, the trend of W's in the range from 4 to 18 K seems to correspond to a direct process. The correlation functions of the magnetization were then calculated in terms of the W's. They have an exponential trend for the Fe4 cluster, while a small oscillating component is also present for the Fe8 cluster. For the first of the clusters, τ vs T (τ is the decay time of the magnetization) has a trend which, at low temperatures (T 15 K, τ follows the trend of W -1 . For the Fe8, τ follows an Arrhenius law, but with a prefactor which is smaller than the one obtained susceptibility measurements

  10. Air oxidation of the kerogen/asphaltene vanadyl porphyrins: an electron spin resonance study

    Directory of Open Access Journals (Sweden)

    MIRJANA S. PAVLOVIC

    2000-02-01

    Full Text Available The thermal behavior of vanadyl porphyrins was studied by electron spin resonance during heating of kerogens, isolated from the La Luna (Venezuela and Serpiano (Switzerland bituminous rocks, at 25°C for 1 to 20 days in the presence of air. During the thermal treatment of the kerogens, the vanadyl porphyrins resonance signals decrease monotonically and become quite small after 6 days of heating. Concomitantly, new vanadyl signals appear and, at longer heating times, dominate the spectrum. It is suggested that the secondary vanadyl species must have been formed from vanadyl porphyrins. Similar conversions of vanadyl porphyrins are observed under the same experimental conditions for asphaltenes extracted from the La Luna and Serpiano rocks, and floating asphalt from the Dead Sea (Israel. A comparison of the spin-Hamiltonian parameters for vanadyl porphyrins and the vanadyl compounds obtained during pyrolysis of the kerogens/asphaltenes suggests that the latter are of a non-porphyrin type. For comparison a study was conducted on Western Kentucky No. 9 coal enriched with vanadium (>>400 ppm from six mines. All the coal samples show only the presence of predominant by non-porphyrin vanadyl compounds, similar to those generated through laboratory heating of the kerogens/asphaltenes in air. In addition, some samples also contain a minor amount of vanadyl porphyrins.

  11. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Science.gov (United States)

    Savchenko, D.; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, J.; Mokhov, E.

    2016-04-01

    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation "sandwich method" (SSM) with a donor concentration of about 1017 cm-3 at T = 10-40 K. The donor electrons of the N donors substituting quasi-cubic "k1" and "k2" sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1-1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1-1 for the donor electrons of N substituting hexagonal ("h") site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm-1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

  12. Spin and Maximal Acceleration

    Directory of Open Access Journals (Sweden)

    Giorgio Papini

    2017-12-01

    Full Text Available We study the spin current tensor of a Dirac particle at accelerations close to the upper limit introduced by Caianiello. Continual interchange between particle spin and angular momentum is possible only when the acceleration is time-dependent. This represents a stringent limit on the effect that maximal acceleration may have on spin physics in astrophysical applications. We also investigate some dynamical consequences of maximal acceleration.

  13. Studies on the clinical application of MR perfusion image using arterial spin labeling method

    International Nuclear Information System (INIS)

    Miyasaka, Kenji

    1999-01-01

    A new technique for imaging brain perfusion, arterial spin labeling method was applied in clinic. Brain perfusion was imaged by FAIR and EPISTAR both of which using arterial spin labeling (ASL) method. Suitable parameters for small contamination were examined using a imaging phantom. Then normal volunteers were examined for imaging timing. Suitable time between labeling pulse and imaging pulse for brain capillary and parenchyma was 1.0 sec. For clinical application study, total 48 patients with brain diseases were examined by FAIR and/or EPISTAR. A lesion/white matter signal intensity ratio was calculated in all clinical cases. Average of signal intensity ratio in infarction, tumor and arteriovenous malformation (AVM) were 0.8, 2.2 and 18.6 at FAIR, and 0.6, 2.2 and 12.8 at EPISTAR, respectively. Low perfusion diseases such as cerebral infarction have low signal intensity ratio and high perfusion diseases such as AVM have high signal intensity ratio in both FAIR and EPISTAR. Brain lesions were imaged similarly in FAIR and EPISTAR, and no remarkable difference was found between FAIR and EPISTAR. As a result of diagnostic trial by signal intensity ratio in operated tumor, hemorrhagic cases could be diagnosed by accuracies of 75% in FAIR and 100% in EPISTAR, respectively. (author)

  14. Electron spin resonance studies of γ-irradiated phosphorus compounds containing phosphorus--chlorine bonds

    International Nuclear Information System (INIS)

    Kerr, C.M.L.; Webster, K.; Williams, F.

    1975-01-01

    ESR experiments similar to those described in the preceding paper were used to identify the radicals produced in a series of γ-irradiated phosphorus compounds containing phosphorus--chlorine bonds. The principal species formed from diethyl chlorophosphite are the neutral radicals P(OEt) 2 and (EtO) 2 PCl 2 presumably by loss and addition of chlorine atoms, although there is evidence that the former species is produced at least in part by dissociative electron capture. On the other hand, the major radical derived from a series of chlorophosphate esters is invariably the chlorophosphoranyl radical anion formed by simple electron attachment to the parent molecule. In the dichlorophosphoranyl radicals, there is a large 35 Cl coupling from the two equivalent chlorines in the apical positions of a trigonal bipyramidal structure. Evidence for the anisotropy of this coupling suggests that a significant spin density resides in the 3p/sub sigma/ orbitals of these chlorine ligands, in agreement with recent single crystal studies on POCl 3 - . The much greater stability of radical anions derived from chlorophosphates relative to those from di- and trialkyl phosphate esters, which undergo efficient dissociation, is interpreted in terms of the effect of ligand electronegativity on the spin density distribution. This effect is consistent with recent MO descriptions which indicate that the half-occupied orbital in phosphoranyl radicals is largely localized along the axial three-center bond

  15. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    Science.gov (United States)

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  16. The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study

    Science.gov (United States)

    Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.

    2017-10-01

    A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.

  17. Quantum spin Hall phases

    International Nuclear Information System (INIS)

    Murakami, Shuichi

    2009-01-01

    We review our recent theoretical works on the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z 2 topological number, and reveal the nature of the Z 2 topological number by studying the phase transition between the quantum spin Hall and insulator phases. We also review our theoretical proposal of the ultrathin bismuth film as a candidate to the 2D quantum spin Hall system. (author)

  18. Spin glasses (II)

    International Nuclear Information System (INIS)

    Fischer, K.H.

    1985-01-01

    Experimental results of spin glass studies are reviewed and related to existing theories. Investigations of spin glasses are concentrated on atomic structure, metallurgical treatment, and high-temperature susceptibility of alloys, on magnetic properties at low temperature and near the freezing temperature, on anisotropy behaviour measured by ESR, NMR and torque, on specific heat, Moessbauer effect, neutron scattering and muon-spin depolarization experiments, ultrasound and transport properties. Some new theories of spin glasses are discussed which have been developed since Part I appeared

  19. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  20. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  1. Efficient density matrix renormalization group algorithm to study Y junctions with integer and half-integer spin

    KAUST Repository

    Kumar, Manoranjan

    2016-02-03

    An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.

  2. An Arterial Spin Labeling MRI Perfusion Study of Migraine without Aura Attacks

    Directory of Open Access Journals (Sweden)

    Raquel Gil-Gouveia

    2017-06-01

    Full Text Available BackgroundStudies of brain perfusion during migraine without aura attacks have inconsistent results.MethodsArterial spin labeling MRI, a non-invasive quantitative perfusion technique, was used to prospectively study a spontaneous untreated migraine without aura attack and a headache-free period. Image analysis used FSL and MATLAB software; Group analysis used permutation methods for perfusion differences between sessions.ResultsThirteen women (age 35.7 were scanned during an attack of an average intensity of 6.8 (on 0–10 Visual Analog Scale and 16 h duration. No global or regional perfusion differences were identified when comparing migraine and migraine-free sessions.DiscussionOur findings suggest that the painful phase of migraine without aura attacks is not associated with brain perfusion abnormalities.

  3. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  4. Conformational change in full-length mouse prion: A site-directed spin-labeling study

    International Nuclear Information System (INIS)

    Inanami, Osamu; Hashida, Shukichi; Iizuka, Daisuke; Horiuchi, Motohiro; Hiraoka, Wakako; Shimoyama, Yuhei; Nakamura, Hideo; Inagaki, Fuyuhiko; Kuwabara, Mikinori

    2005-01-01

    The structure of the mouse prion (moPrP) was studied using site-directed spin-labeling electron spin resonance (SDSL-ESR). Since a previous NMR study by Hornemanna et al., [Hornemanna, Korthb, Oeschb, Rieka, Widera, Wuethricha, Glockshubera, Recombinant full-length murine prion protein, mPrP (23-231): purification and spectroscopic characterization, FEBS Lett. 413 (1997) 277-281] has indicated that N96, D143, and T189 in moPrP are localized in a Cu 2+ binding region, Helix1 and Helix2, respectively, three recombinant moPrP mutations (N96C, D143C, and T189C) were expressed in an Escherichia coli system, and then refolded by dialysis under low pH and purified by reverse-phase HPLC. By using the preparation, we succeeded in preserving a target cystein residue without alteration of the α-helix structure of moPrP and were able to apply SDSL-ESR with a methane thiosulfonate spin label to the full-length prion protein. The rotational correlation times (τ) of 1.1, 3.3, and 4.8 ns were evaluated from the X-band ESR spectra at pH 7.4 and 20 deg C for N96R1, D143R1, and T189R1, respectively. τ reflects the fact that the Cu 2+ binding region is more flexible than Helix1 or Helix2. ESR spectra recorded at various temperatures revealed two phases together with a transition point at around 20 deg C in D143R1 and T189R1, but not in N96R1. With the variation of pH from 4.0 to 7.8, ESR spectra of T189R1 at 20 deg C showed a gradual increase of τ from 2.9 to 4.8 ns. On the other hand, the pH-dependent conformational changes in N96R1 and D143R1 were negligible. These results indicated that T189 located in Helix2 possessed a structure sensitive to physiological pH changes; simultaneously, N96 in the Cu 2+ binding region and D143 in Helix1 were conserved

  5. Spin Hall effect, Hall effect and spin precession in diffusive normal metals

    OpenAIRE

    Shchelushkin, R. V.; Brataas, Arne

    2005-01-01

    We study transport in normal metals in an external magnetic field. This system exhibits an interplay between a transverse spin imbalance (spin Hall effect) caused by the spin-orbit interaction, a Hall effect via the Lorentz force, and spin precession due to the Zeeman effect. Diffusion equations for spin and charge flow are derived. The spin and charge accumulations are computed numerically in experimentally relevant thin film geometries. The out-of-plane spin Hall potential is suppressed whe...

  6. Electron spin resonance studies of gamma irradiated saccharides. Etudes par resonance paramagnetique electronique de saccharides soumis a un rayonnement gamma

    Energy Technology Data Exchange (ETDEWEB)

    Raffi, J.; Thiery, C.; Battesti, C.; Agnel, J.P.; Triolet, J.; Vincent, P. (CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Physiologie Vegetale et Ecosystemes)

    1993-04-01

    The radiolysis mechanism of several saccharides was studied in order to understand the radiolysis mechanism of starches. Electron Spin Resonance first performed in powder state did not allow determination of the chemical structure of the induced radicals. The spin-trapping method combined with HPLC however, followed by ESR spectra analysis with the 'Voyons' simulation program was applied to the study of glucose, glucose oligomers and disaccharides. We were thus able to further our understanding of the radiolysis mechanism of starches. 2 tabs., 4 figs.

  7. Conformational Changes in Bovine-Liver Glutamate Dehydrogenase : a Spin-Label Study

    NARCIS (Netherlands)

    Zantema, Alt; Vogel, Hans J.; Robillard, George T.

    1979-01-01

    A spin-labelled analogue of p-chloromercuribenzoate reacts specifically with glutamate dehydrogenase. The most marked change in the properties of the spin-labelled enzyme is a fivefold decrease in the rate of reduction of the coenzyme by L-glutamate and no change in the rate of oxidation by

  8. Scientific Team Effectiveness and the External CEO: A Study of Biotechnology University Spin-Offs

    Science.gov (United States)

    van der Steen, Marianne; Englis, Paula Danskin; Englis, Basil G.

    2013-01-01

    This paper presents an empirical exploration of the effectiveness of scientific teams and the role of an external CEO in the spin-off formation process. The paper contributes to the literature by focusing on the role of the experienced or "external" entrepreneur (their commercial resources and capabilities) in the early phase of spin-off…

  9. Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.

    2015-10-06

    Studies of the spin, parity and tensor couplings of the Higgs boson in the H→ZZ*→4ℓ, H→WW*→eνμν and H→γγ decay processes at the LHC are presented. The investigations are based on 25fb-1 of pp collision data collected by the ATLAS experiment at √s=7 TeV and √s=8 TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers JP=0+, is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the H→ZZ*→4ℓ and H→WW*→eνμν decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived.

  10. Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flaschel, N; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kim, Y; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    Studies of the spin, parity and tensor couplings of the Higgs boson in the [Formula: see text], [Formula: see text] and [Formula: see text] decay processes at the LHC are presented. The investigations are based on [Formula: see text] of pp collision data collected by the ATLAS experiment at [Formula: see text] TeV and [Formula: see text] TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers [Formula: see text], is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the [Formula: see text] and [Formula: see text] decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived.

  11. Spin labelling study of interfacial properties of egg-phosphatidylcholine liposomes as a function of cholesterol concentrations.

    Science.gov (United States)

    Mirosavljević, Krunoslav; Noethig-Laslo, Vesna

    2008-10-01

    In order to gain insight into interfacial properties of liposomes composed of egg-phosphatidylcholine (egg-PC) and dihexadecyl-phosphate (DHP) as a function of 0, 8, 15, 29, 38, 45mol% of cholesterol, dynamic properties of two long-chain spin labels: TEMPO-stearate (2,2,6,6-tetramethylpiperidine-1-oxyl-4-yl)-octa-decanoate) and TEMPO-stearamide (2,2,6,6-tetramethylpiperidine-1-oxyl-4-yl)-octa-decanamide) were studied by CW-ESR spectroscopy. These spin labels reflect motional properties in the region of phospholipid head-groups. Two different environments of TEMPO-stearate were determined at 29, 38 and 45mol% of cholesterol. In the newly formed domain above 29mol%, N-O moiety of the spin label was surrounded by larger amount of bound water and experienced slower motion than in the cholesterol poor domain. The fraction of the second more hydrophilic environment of the spin label increased with cholesterol concentration. TEMPO-stearamide, a hydrogen-bond donor, reported more polar environment and slower motion than TEMPO-stearate even in the absence of cholesterol. Only one spin label environment was determined for all cholesterol concentrations. Slowing down of the TEMPO-stearamide motion was obtained even at 8mol% of cholesterol.

  12. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  13. Study polymeric membranes PVDF/TiO2 photocatalytic applications with synthesized by solution blow spinning

    International Nuclear Information System (INIS)

    Gimenes, T.C.; Pereira, E.A.; Montanhera, M.A.; Paula, F.R. de; Spada, E.R.

    2016-01-01

    In this study we obtained nanofibers titanium dioxide (TiO2) incorporated into the poly (vinylidene fluoride) - PVDF in different concentrations, using a new technique denominated Solution Blow Spinning. This technique has the merits of simplicity, low cost and high efficiency in the production of nanofibers, compared with the technique of Electrospinning, using pressurized gas instead of high voltage, is not limited to the dielectric constant of the material and provides a processing period of at least 100 times faster. The obtained nanofibers exhibit little account and a very smooth morphology, with diameters ranging from 400 to 700 nm and with presence of crystalline anatase phase. The tests showed photocatalytic degradation of Rhodamine B dye, being more degradation shown by the PVDF nanofibers containing 0,7 g of TiO 2 , approximately 75 % of degraded dye. However nanofibers obtained the PVDF/TiO2 applications of this material are numerous, as filters, conductive nanofibers, photocatalysis and sensors. (author)

  14. Study on spin and charge fluctuations in {tau} -type organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Hirohito [Institute of Physics, Kanagawa University, Yokohama 221-8686 (Japan); Kuroki, Kazuhiko [Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo 182-8585 (Japan)

    2012-05-15

    We theoretically study the possibility of the ferromagnetic behavior in a quasi-two-dimensional organic conductor, {tau} -(EDO-S,S -DMEDT-TTF){sub 2}(AuBr{sub 2}){sub 1+y} with y {approx} 0.875. We adopt a two-band extended Hubbard model, whose band dispersion nicely reproduces the ab initio band structure. We consider both on-site and nearest neighbor off-site repulsive interactions. By applying the random phase approximation, we find that both spin and charge susceptibilities are maximized at Q = (0, 0). Although this can be an indication of pure antiferromagnetism since two sites are present in a unit cell, the divergence of the susceptibilities at the origin of the k -space can also be related to the ferromagnetic behavior observed in this organic conductor. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Spin Label Studies of the Hemoglobin-Membrane Interaction During Sickle Hemoglobin Polymerization

    International Nuclear Information System (INIS)

    Falcon Dieguez, Jose E.; Rodi, Pablo; Lores Guevara, Manuel A.; Gennaro, Ana Maria

    2009-12-01

    An enhanced hemoglobin-membrane association has been previously documented in Sickle Cell Anemia. However, it is not known how this interaction is modified during the hemoglobin S polymerization process. In this work, we use a model of reconstituted erythrocytes from ghost membranes whose cytoskeleton proteins had been previously labeled with the 4-maleimido Tempo spin label, and that were subsequently resealed with hemoglobin S or A solutions. Using EPR spectroscopy, we studied the time dependence of the spectral W/S parameter, indicative of the conformational state of cytoskeleton proteins (mainly spectrin) under spontaneous deoxygenation, with the aim of detecting the eventual effects due to hemoglobin S polymerization. The differences observed in the temporal behaviour of W/S in erythrocytes reconstituted with both hemoglobins were considered as experimental evidence of an increment in hemoglobin S-membrane interaction, as a result of the polymerization process of hemoglobin S under spontaneous deoxygenation. (author)

  16. Spin-dependent Hall effect in degenerate semiconductors: a theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-10-15

    The spin-dependent Hall (SDH) effect in degenerate semiconductors is investigated theoretically. Starting from a two-component drift-diffusion equation, an expression for SDH voltage (V{sub SDH}) is derived, and drift and diffusive contributions to V{sub SDH} are studied. For the possible enhancement of the diffusive part, degenerate and nondegenerate cases are examined. We find that due to an increase in the diffusion coefficient V{sub SDH} increases in a degenerate semiconductor, consistent with the experimental observations. The expression for V{sub SDH} is reduced in three limiting cases, namely diffusive, drift-diffusion crossover and drift, and is analysed. The results agree with those obtained in recent theoretical investigations.

  17. Study of the operation temperature in the spin-exchange relaxation free magnetometer

    International Nuclear Information System (INIS)

    Fang, Jiancheng; Li, Rujie; Duan, Lihong; Chen, Yao; Quan, Wei

    2015-01-01

    We study the influence of the cell temperature on the sensitivity of the spin-exchange relaxation free (SERF) magnetometer and analyze the possibility of operating at a low temperature. Utilizing a 25 × 25 × 25 mm 3 Cs vapor cell with a heating temperature of 85  ∘ C, which is almost half of the value of potassium, we obtain a linewidth of 1.37 Hz and achieve a magnetic field sensitivity of 55 fT/Hz 1/2 in a single channel. Theoretical analysis shows that fundamental sensitivity limits of this device with an active volume of 1 cm 3 could approach 1 fT/Hz 1/2 . Taking advantage of the higher saturated vapor pressure, SERF magnetometer based on Cs opens up the possibility for low cost and portable sensors and is particularly appropriate for lower temperature applications

  18. Study of the operation temperature in the spin-exchange relaxation free magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jiancheng; Li, Rujie, E-mail: lirujie@buaa.edu.cn; Duan, Lihong; Chen, Yao; Quan, Wei [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2015-07-15

    We study the influence of the cell temperature on the sensitivity of the spin-exchange relaxation free (SERF) magnetometer and analyze the possibility of operating at a low temperature. Utilizing a 25 × 25 × 25 mm{sup 3} Cs vapor cell with a heating temperature of 85 {sup ∘}C, which is almost half of the value of potassium, we obtain a linewidth of 1.37 Hz and achieve a magnetic field sensitivity of 55 fT/Hz{sup 1/2} in a single channel. Theoretical analysis shows that fundamental sensitivity limits of this device with an active volume of 1 cm{sup 3} could approach 1 fT/Hz{sup 1/2}. Taking advantage of the higher saturated vapor pressure, SERF magnetometer based on Cs opens up the possibility for low cost and portable sensors and is particularly appropriate for lower temperature applications.

  19. Electron Spin Resonance and Atomic Force Microscopy Study on Gadolinium Doped Ceria

    Directory of Open Access Journals (Sweden)

    Cesare Oliva

    2015-01-01

    Full Text Available A combined electron spin resonance (ESR and atomic force microscopy (AFM study on Ce1−xGdxO2−x/2 samples is here presented, aimed at investigating the evolution of the ESR spectral shape as a function of x in a wide composition range. At low x=0.02, the spectrum is composed of features at geff≈2; 2.8; 6. With increasing x, this pattern merges into a single geff≈2 broad ESR curve, which assumes a Dysonian-shaped profile at x≥0.5, whereas, at these x values, AFM measurements show an increasing surface roughness. It is suggested that the last could cause the formation of surface polaritons at the origin of the particular ESR spectral profile observed at these high Gd doping levels.

  20. Spin and charge transport in the presence of spin-orbit interaction

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2. Spin and ... We present the study of spin and charge transport in nanostructures in the presence of spin-orbit (SO) interaction. ... Using these tight binding Hamiltonians and spin resolved Landauer–Büttiker formula, spin and charge transport is studied.

  1. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.

    Science.gov (United States)

    Baker, Michael L; Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J; Barker, Claire; Blundell, Stephen J; Carretta, Stefano; Collison, David; Güdel, Hans U; Guidi, Tatiana; McInnes, Eric J L; Möller, Johannes S; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L; Santini, Paolo; Tuna, Floriana; Tregenna-Piggott, Philip L W; Vitorica-Yrezabal, Iñigo J; Timco, Grigore A; Winpenny, Richard E P

    2016-01-26

    The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The spinning dancer illusion and spontaneous brain fluctuations: an fMRI study.

    Science.gov (United States)

    Bernal, Byron; Guillen, Magno; Marquez, Juan Camilo

    2014-01-01

    The brain activation associated with the Spinning Dancer Illusion, a cognitive visual illusion, is not entirely known. Inferences from other study modalities point to the involvement of the dorso-parieto-occipital areas in the spontaneous switchings of perception in other bistable non-kinetic illusions. fMRI is a mature technique used to investigate the brain responses associated with mental changes. Resting-state fMRI is a novel technique that may help ascertain the effects of spontaneous brain changes in the top-down regulation of visual perception. The purpose of this report is to describe the brain activation associated with the subjective illusory changes of perception of a kinetic bistable stimulus. We hypothesize that there is a relationship between the perception phases with the very slow cortical spontaneous fluctuations, recently described. A single normal subject who was trained to produce voluntarily perception phase switches underwent a series of fMRI studies whose blocks were either defined post-hoc or accordingly with a predefined timeline to assess spontaneous and voluntarily evoked visual perception switches, respectively. Correlation of findings with resting-state fMRI and independent component analysis of the task series was sought. Phases of the rotation direction were found associated with right parietal activity. Independent component analysis of the task series and their comparison with basal resting-state components suggest that this activity is related to one of the very slow spontaneous brain fluctuations. The spontaneous fluctuations of the cortical activity may explain the subjective changes in perception of direction of the Spinning Dancer Illusion. This observation is a proof-of-principle, suggesting that the spontaneous brain oscillations may influence top-down sensory regulation.

  3. An experimental study of the effect of tail configuration on the spinning characteristics of general aviation aircraft. M.S. Thesis; [static wind tunnel force measurements

    Science.gov (United States)

    Ballin, M. G.

    1982-01-01

    The feasibility of using static wind tunnel tests to obtain information about spin damping characteristics of an isolated general aviation aircraft tail was investigated. A representative tail section was oriented to the tunnel free streamline at angles simulating an equilibrium spin. A full range of normally encountered spin conditions was employed. Results of parametric studies performed to determine the effect of spin damping on several tail design parameters show satisfactory agreement with NASA rotary balance tests. Wing and body interference effects are present in the NASA studies at steep spin attitudes, but agreement improves with increasing pitch angle and spin rate, suggesting that rotational flow effects are minimal. Vertical position of the horizontal stabilizer is found to be a primary parameter affecting yaw damping, and horizontal tail chordwise position induces a substantial effect on pitching moment.

  4. Study of the Mass and Spin-Parity of the Higgs Boson Candidate via Its Decays to Z Boson Pairs

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Selvaggi, Michele; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Kuotb Awad, Alaa Metwaly; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Leonard, Jessica; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Mittal, Monika; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Saxena, Pooja; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Shreyber, Irina; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; De Visscher, Simon; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Cardaci, Marco; Chang, Yuan-Hann; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Simili, Emanuele; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Caulfield, Matthew; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Griffiths, Scott; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Bauer, Gerry; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Kim, Yongsun; Klute, Markus; Levin, Andrew; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Akgun, Bora; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Walker, Matthew; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Loveless, Richard; Mohapatra, Ajit; Mozer, Matthias Ulrich; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-02-21

    A study is presented of the mass and spin-parity of the new boson recently observed at the LHC at a mass near 125 GeV. An integrated luminosity of 17.3 inverse femtobarns, collected by the CMS experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, is used. The measured mass in the ZZ channel, where both Z bosons decay to e or $\\mu$ pairs, is 126.2 $\\pm$ 0.6 (stat.) $\\pm$ 0.2 (syst.) GeV. The angular distributions of the lepton pairs in this channel are sensitive to the spin-parity of the boson. Under the assumption of spin 0, the present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis.

  5. Co on Pt(111) studied by spin-polarized scanning tunneling microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meier, F.K.

    2006-07-01

    In this thesis the electronic properties of the bare Pt(111) surface, the structural, electronic, and magnetic properties of monolayer and double-layer high Co nanostructures as well as the spin-averaged electronic structure of single Co atoms on Pt(111) were studied by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The experiments on the bare Pt(111) surface and on single Co atoms have been performed in an STM facility operating at temperatures of down to 0.3 K and at magnetic fields of up to 14 T under ultra-high vacuum conditions. The facility has been taken into operation within the time period of this thesis and its specifications were tested by STS measurements. These characterization measurements show a very high stability of the tunneling junction and an energy resolution of about 100 {mu}eV, which is close to the thermal limit. The investigation of the electronic structure of the bare Pt(111) surface reveals the existence of an unoccupied surface state. By a comparison of the measured dispersion to first-principles electronic structure calculations the state is assigned to an sp-derived surface band at the lower boundary of the projected bulk band gap. The surface state exhibits a strong spin-orbit coupling induced spin splitting. The close vicinity to the bulk bands leads to a strong linear contribution to the dispersion and thus to a deviant appearance in the density of states in comparison to the surface states of the (111) surfaces of noble metals. A detailed study of Co monolayer and double-layer nanostructures on the Pt(111) surface shows that both kinds of nanostructures exhibit a highly inhomogeneous electronic structure which changes at the scale of only a few Aa due to a strong stacking dependence with respect to the Pt(111) substrate. With the help of first principles calculations the different spectroscopic appearance for Co atoms within the Co monolayer is assigned to a stacking dependent hybridization of Co states

  6. Noise in tunneling spin current across coupled quantum spin chains

    Science.gov (United States)

    Aftergood, Joshua; Takei, So

    2018-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.

  7. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  8. Hydrogen cluster/network in tobermorite as studied by multiple-quantum spin counting {sup 1}H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Mogami, Yuuki [Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Yamazaki, Satoru; Matsuno, Shinya [Analysis and Simulation Center, Asahi Kasei Corporation, Fuji, Shizuoka 416-8501 (Japan); Matsui, Kunio [Products and Marketing Development Dept., Asahi Kasei Construction Materials Corporation, Sakai-machi, Ibaraki 306-0493 (Japan); Noda, Yasuto [Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Takegoshi, K., E-mail: takeyan@kuchem.kyoto-u.ac.jp [Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2014-12-15

    Proton multiple-quantum (MQ) spin-counting experiment has been employed to study arrangement of hydrogen atoms in 9 Å/11 Å natural/synthetic tobermorites. Even though all tobermorite samples give similar characterless, broad static-powder {sup 1}H NMR spectra, their MQ spin-counting spectra are markedly different; higher quanta in 11 Å tobermorite do not grow with the MQ excitation time, while those in 9 Å one do. A statistical analysis of the MQ results recently proposed [26] is applied to show that hydrogens align in 9 Å tobermorite one dimensionally, while in 11 Å tobermorite they exist as a cluster of 5–8 hydrogen atoms.

  9. Muon spin relaxation study of Zr(H2PO4)(PO4).2H2O.

    Science.gov (United States)

    Clayden, Nigel J; Cottrell, Stephen P

    2006-07-14

    Muon spin relaxation has been used to study the muon dynamics in the layered zirconium phosphate Zr(H(2)PO(4))(PO(4)).2H(2)O as a function of temperature. Radiofrequency decoupling was used to establish the origin of the local dipolar field as coupling with (1)H spins. Muons were trapped at two sites, one identified as HMuO and the other consistent with PO-Mu on the basis of their zero-field second moments. Although a small decrease in the local nuclear dipolar field was seen with temperature, the muons remained essentially static over the temperature range 20-300 K.

  10. Configuration interaction studies on the spectroscopic properties of PbO including spin-orbit coupling

    Science.gov (United States)

    Wang, Luo; Rui, Li; Zhiqiang, Gai; RuiBo, Ai; Hongmin, Zhang; Xiaomei, Zhang; Bing, Yan

    2016-07-01

    Lead oxide (PbO), which plays the key roles in a range of research fields, has received a great deal of attention. Owing to the large density of electronic states and heavy atom Pb including in PbO, the excited states of the molecule have not been well studied. In this work, high level multireference configuration interaction calculations on the low-lying states of PbO have been carried out by utilizing the relativistic effective core potential. The effects of the core-valence correlation correction, the Davidson modification, and the spin-orbital coupling on the electronic structure of the PbO molecule are estimated. The potential energy curves of 18 Λ-S states correlated to the lowest dissociation limit (Pb (3Pg) + O(3Pg)) are reported. The calculated spectroscopic parameters of the electronic states below 30000 cm-1, for instance, X1Σ+, 13Σ+, and 13Σ-, and their spin-orbit coupling interaction, are compared with the experimental results, and good agreements are derived. The dipole moments of the 18 Λ-S states are computed with the configuration interaction method, and the calculated dipole moments of X1Σ+ and 13Σ+ are consistent with the previous experimental results. The transition dipole moments from 11Π, 21Π, and 21Σ+ to X1Σ+ and other singlet excited states are estimated. The radiative lifetime of several low-lying vibrational levels of 11Π, 21Π, and 21Σ+ states are evaluated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404180 and 11574114), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2015010), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095), and the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC).

  11. Segmental dynamics of polyethylene-alt-propylene studied by NMR spin echo techniques

    Science.gov (United States)

    Lozovoi, A.; Mattea, C.; Hofmann, M.; Saalwaechter, K.; Fatkullin, N.; Stapf, S.

    2017-06-01

    Segmental dynamics of a highly entangled melt of linear polyethylene-alt-propylene with a molecular weight of 200 kDa was studied with a novel proton nuclear magnetic resonance (NMR) approach based upon 1H → 2H isotope dilution as applied to a solid-echo build-up function ISE(t), which is constructed from the NMR spin echo signals arising from the Hahn echo (HE) and two variations of the solid-echo pulse sequence. The isotope dilution enables the separation of inter- and intramolecular contributions to this function and allows one to extract the segmental mean-squared displacements in the millisecond time range, which is hardly accessible by other experimental methods. The proposed technique in combination with time-temperature superposition yields information about segmental translation in polyethylene-alt-propylene over 6 decades in time from 10-6 s up to 1 s. The time dependence of the mean-squared displacement obtained in this time range clearly shows three regimes of power law with exponents, which are in good agreement with the tube-reptation model predictions for the Rouse model, incoherent reptation and coherent reptation regimes. The results at short times coincide with the fast-field cycling relaxometry and neutron spin echo data, yet, significantly extending the probed time range. Furthermore, the obtained data are verified as well by the use of the dipolar-correlation effect on the Hahn echo, which was developed before by the co-authors. At the same time, the amplitude ratio of the intermolecular part of the proton dynamic dipole-dipole correlation function over the intramolecular part obtained from the experimental data is not in agreement with the predictions of the tube-reptation model for the regimes of incoherent and coherent reptation.

  12. Proton Relaxation and Spin Label Studies of Papaverine Localization in Ionic Micelles

    Science.gov (United States)

    Yushmanov, V. E.; Imasato, H.; Perussi, J. R.; Tabak, M.

    The localization of papaverine (PAV) in micelles of zwitterionic N-hexadecyl- N, N-dimethyl-3-ammonio-1-propanesulfonate (HPS), cationic cetyltrimethylammonium chloride (CTAC), and anionic sodium dodecyl sulfate (SDS) in D 2O was studied by 1H NMR and ESR in the presence and absence of 5-doxyl- or 12-doxyl-stearic acid. PAV, surfactants, and spin probes are characterized by restricted anisotropic motion in micelles. The rotational correlation time of doxyl fragment was in the range of 0.2 to 0.5 nanoseconds. Binding of PAV to micelles decreases the mobility of both probes, suggesting the localization of PAV inside the hydrophobic part of micelles near the micelle-water interface. According to the NOE data, the methoxy groups of PAV are located in the vicinity of the nitrogen atom in CTAC and HPS micelles, the methoxy groups of the PAV heterocycle being immersed slightly deeper inside the micelle. The T1 relaxation enhancements by two different spin probes show that the H5 and methoxy substituents of the PAV heterocycle are in close proximity to the α-CH 2 of acyl chains in all types of micelles, whereas H3 and H12 are the most distant from the α-CH 2. No significant differences were found for the protonated and neutral PAV in SDS micelles at pD 4.9 and 11.2. These data show that the geometry of the PAV-micelle complex is practically independent of the PAV charge and surfactant headgroup.

  13. Nuclear inelastic scattering study of a dinuclear iron(II) complex showing a direct spin transition

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, J. A., E-mail: wolny@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Garcia, Y. [Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST) (Belgium); Faus, I.; Rackwitz, S. [University of Kaiserslautern, Department of Physics (Germany); Schlage, K.; Wille, H.-C. [DESY (Germany); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The results of the nuclear inelastic scattering (NIS)/nuclear resonance vibrational spectroscopy (NRVS) for the powder spectra of dimeric [Fe {sub 2}L{sub 5}(NCS) {sub 4}] (L = N-salicylidene-4-amino-1,2,4-triazole) complex are presented. This system is spin crossover (SCO) material tagged with a fluorophore that can sense or “feel” the SCO signal ripping through the molecular network and thereby providing an opportunity to register the SCO transition. The spectra have been measured for the low-spin and high-spin phases of the complex. The high-spin isomer reveals one broad band above 200 cm {sup −1}, while the low-spin one displays two intense bands in the range from 390 to 430 cm {sup −1}, accompanied by a number of weaker bands below this area and one at ca. 490 cm {sup −1}. A normal coordinate analysis based on density functional calculations yields the assignment of the spin marker bands to particular molecular modes. In addition the vibrational contribution to the spin transition has been estimated.

  14. Electronic Structures of Magnetic Iron and Cobalt Thin Films on TUNGSTEN(001): a Spin-Polarized Inverse Photoemission Study

    Science.gov (United States)

    Cai, Qing

    Electronic structure is a central question in metallic magnetism as well as in magnetic materials research. The electronic properties in a two-dimensional system such as thin films of a few atomic layers is an important issue in surface science. The epitaxial thin film preparation and morphology are of special technological interests. In this thesis, these questions are addressed. Spin-polarized inverse photoemission spectroscopy is used to study the unoccupied electron band states in magnetic thin film magnets of Fe and Co epitaxially grown on W(001) surface. The clean W(001) surface was studied by angle -resolved inverse photoemission spectroscopy and the bulk band dispersion was determined. Ultrathin Fe overlayers on W(001) show a square lateral crystal structure similar to the bcc-Fe(001) surface. The electronic structure develops into a structure that is close to that of bulk Fe at about four atomic layers. In the normal-incidence spin polarized inverse photoemission spectra, direct transitions to the majority and minority final states near the H^'_ {25} point are identified in good agreement with the theoretical calculations. One Fe monolayer, or multilayers less than four, showed behavior corresponding to a gradually reduced Curie temperature. When the film thickness is reduced, the spin-resolved spectral behavior show that the majority spin signal peak moves from near the Fermi energy to about 1.3 eV while the minority peak stays at about the same position near 1.3 eV. The results are used to examine the spatial correlation of the spin fluctuations in the system in comparison with a theoretical spectral calculation, and favors the disordered-local-moment picture in the contemporary theory of itinerant magnetism. The Co overlayer shows an overlayer structure that consists of equivalent, mutually rotated domains of distorted hexagonal lateral structure. For one atomic layer of Co in that structure, which has a nominal lateral atomic density twice that of the

  15. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  16. Quantum spin transistor with a Heisenberg spin chain

    Science.gov (United States)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  17. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  18. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    Directory of Open Access Journals (Sweden)

    Staszczak Andrzej

    2016-01-01

    Full Text Available We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ħ and 140ħ, which follow the same (multi-particle–(multi-hole systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC experiments.

  19. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  20. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    NARCIS (Netherlands)

    Iashina, E.G.; Bouwman, W.G.; Duif, C.P.; Filatov, M.V.; Grigoriev, S. V.

    2017-01-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrmeter length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei

  1. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    Science.gov (United States)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  2. Spin Transport in Bose Gases

    NARCIS (Netherlands)

    van Driel, H.J.

    2012-01-01

    In this Thesis, we show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode

  3. Muon spin relaxation study of spin dynamics in the extended kagome systems YBaCo4O7 +δ (δ =0 ,0.1 )

    Science.gov (United States)

    Lee, S.; Lee, Wonjun; Lee, K. J.; Kim, ByungJun; Suh, B. J.; Zheng, H.; Mitchell, J. F.; Choi, K.-Y.

    2018-03-01

    We present muon spin relaxation (μ SR ) measurements of the extended kagome systems YBaCo4O7 +δ (δ =0 ,0.1 ), comprising two interpenetrating kagome sublattice of Co (I) 3 + (S =3 /2 ) and a triangle sublattice of Co (II) 2 + (S =2 ). The zero- and longitudinal-field μ SR spectra of the stoichiometric compound YBaCo4O7 unveil that the triangular subsystem orders at TN=101 K. In contrast, the muon spin relaxation rate pertaining to the kagome subsystem shows persistent spin dynamics down to T =20 K and then a sublinear decrease λ (T ) ˜T0.66 (5 ) on cooling towards T =4 K. In addition, the introduction of interstitial oxygen (δ =0.1 ) is found to drastically affect the magnetism. For the fast-cooling experiment (>10 K/min), YBaCo4O7.1 enters a regime characterized by persistent spin dynamics below 90 K. For the slow-cooling experiment (1 K/min), evidence is obtained for the phase separation into interstitial oxygen-poor and oxygen-rich regions with distinct correlation times. The observed temperature, cooling rate, and oxygen content dependencies of spin dynamics are discussed in terms of a broad range of spin-spin correlation times, relying on a different degree of frustration between the kagome and triangle sublattices as well as of oxygen migration.

  4. Analytical methods applied to the study of lattice gauge and spin theories

    International Nuclear Information System (INIS)

    Moreo, Adriana.

    1985-01-01

    A study of interactions between quarks and gluons is presented. Certain difficulties of the quantum chromodynamics to explain the behaviour of quarks has given origin to the technique of lattice gauge theories. First the phase diagrams of the discrete space-time theories are studied. The analysis of the phase diagrams is made by numerical and analytical methods. The following items were investigated and studied: a) A variational technique was proposed to obtain very accurated values for the ground and first excited state energy of the analyzed theory; b) A mean-field-like approximation for lattice spin models in the link formulation which is a generalization of the mean-plaquette technique was developed; c) A new method to study lattice gauge theories at finite temperature was proposed. For the first time, a non-abelian model was studied with analytical methods; d) An abelian lattice gauge theory with fermionic matter at the strong coupling limit was analyzed. Interesting results applicable to non-abelian gauge theories were obtained. (M.E.L.) [es

  5. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  6. Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids

    NARCIS (Netherlands)

    Althammer, M.; Meyer, S.; Nakayama, H.; Schreier, M.; Altmannshofer, S.; Weiler, M.; Huebl, H.; Gesprägs, S.; Opel, M.; Gross, R.; Meier, D.; Klewe, C.; Kuschel, T.; Schmalhorst, J.M.; Reiss, G.; Shen, L.; Gupta, A.; Chen, Y.T.; Bauer, G.E.W.; Saitoh, E.; Goennenwein, S.T.B.

    2013-01-01

    We experimentally investigate and quantitatively analyze the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and ferromagnetic insulator/nonferromagnetic metal/platinum hybrid structures. For the ferromagnetic insulator, we use either yttrium iron garnet, nickel ferrite, or

  7. ESR-spin trapping studies on the interaction between anthraquinone triplets and aromatic compounds

    International Nuclear Information System (INIS)

    Moger, G.; Rockenbauer, A.; Simon, P.

    1980-01-01

    The ESR spin trapping technique was used for the detection of transient C-centered radicals in the photochemical interaction between triplet anthraquinone and aromatic hydroperoxide and alcohol. (author)

  8. The 3D Kasteleyn transition in dipolar spin ice: a numerical study with the conserved monopoles algorithm

    Science.gov (United States)

    Baez, M. L.; Borzi, R. A.

    2017-02-01

    We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases  ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.

  9. Reduction process of nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging: An ESR study

    Energy Technology Data Exchange (ETDEWEB)

    Meenakumari, V.; Premkumar, S.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625 019, Tamilnadu (India); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625 019, Tamilnadu (India)

    2016-05-23

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of {sup 14}N- labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.

  10. Spin tracking in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.U. [Brookhaven National Lab., Upton, NY (United States); Katayama, T. [Univ. of Tokyo (Japan); Wu, H. [Riken Inst., Tokyo (Japan)

    1997-07-01

    In the acceleration of polarized protons in RHIC many spin depolarizing resonances are encountered. Helical Siberian snakes will be used to overcome depolarizing effects. The behavior of polarization can be studied by numerical tracking in a model accelerator. That allows one to check the strength of the resonances, to study the effect of snakes, to find safe lattice tune regions, and finally to study the operation of special devices like spin flippers. In this paper the authors describe numerical spin tracking. Results show that, for the design corrected distorted orbit and the design beam emittance, the polarization of the beam will be preserved in the whole range of proton energies in RHIC.

  11. Arterial Spin Labeling Perfusion Study in the Patients with Subacute Mild Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Che-Ming Lin

    Full Text Available This study uses a MRI technique, three-dimension pulse continuous arterial spin labeling (3D-PCASL, to measure the patient's cerebral blood flow (CBF at the subacute stage of mild traumatic brain injury (MTBI in order to analyze the relationship between cerebral blood flow and neurocognitive deficits.To provide the relationship between cortical CBF and neuropsychological dysfunction for the subacute MTBI patients.After MTBI, perfusion MR imaging technique (3D-PCASL measures the CBF of MTBI patients (n = 23 within 1 month and that of normal controls (n = 22 to determine the quantity and location of perfusion defect. The correlation between CBF abnormalities and cognitive deficits was elucidated by combining the results of the neuropsychological tests of the patients.We observed a substantial reduction in CBF in the bilateral frontal and left occipital cortex as compared with the normal persons. In addition, there were correlation between post concussive symptoms (including dizziness and simulator sickness and CBF in the hypoperfused areas. The more severe symptom was correlated with higher CBF in bilateral frontal and left occipital lobes.First, this study determined that despite no significant abnormality detected on conventional CT and MRI studies, hypoperfusion was observed in MTBI group using 3D-PCASL technique in subacute stage, which suggested that this approach may increase sensitivity to MTBI. Second, the correlation between CBF and the severity of post concussive symptoms suggested that changes in cerebral hemodynamics may play a role in pathophysiology underlies the symptoms.

  12. Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning

    Science.gov (United States)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-01-01

    This study focuses on a numerical investigation of an initial stable jet through the air-sealed electro-centrifugal spinning process, which is known as a viable method for the mass production of nanofibers. A liquid jet undergoing electric and centrifugal forces, as well as other forces, first travels in a stable trajectory and then goes through an unstable curled path to the collector. In numerical modeling, hydrodynamic equations have been solved using the perturbation method—and the boundary integral method has been implemented to efficiently solve the electric potential equation. Hydrodynamic equations have been coupled with the electric field using stress boundary conditions at the fluid-fluid interface. Perturbation equations were discretized by a second order finite difference method, and the Newton method was implemented to solve the discretized non-linear system. Also, the boundary element method was utilized to solve electrostatic equations. In the theoretical study, the fluid was described as a leaky dielectric with charges only on the surface of the jet traveling in dielectric air. The effect of the electric field induced around the nozzle tip on the jet instability and trajectory deviation was also experimentally studied through plate-plate geometry as well as point-plate geometry. It was numerically found that the centrifugal force prevails on electric force by increasing the rotational speed. Therefore, the alteration of the applied voltage does not significantly affect the jet thinning profile or the jet trajectory.

  13. The ferromagnetic-spin glass transition in PdMn alloys: symmetry breaking of ferromagnetism and spin glass studied by a multicanonical method.

    Science.gov (United States)

    Kato, Tomohiko; Saita, Takahiro

    2011-03-16

    The magnetism of Pd(1-x)Mn(x) is investigated theoretically. A localized spin model for Mn spins that interact with short-range antiferromagnetic interactions and long-range ferromagnetic interactions via itinerant d electrons is set up, with no adjustable parameters. A multicanonical Monte Carlo simulation, combined with a procedure of symmetry breaking, is employed to discriminate between the ferromagnetic and spin glass orders. The transition temperature and the low-temperature phase are determined from the temperature variation of the specific heat and the probability distributions of the ferromagnetic order parameter and the spin glass order parameter at different concentrations. The calculation results reveal that only the ferromagnetic phase exists at x glass phase exists at x > 0.04, and that the two phases coexist at intermediate concentrations. This result agrees semi-quantitatively with experimental results.

  14. Contribution to the study of thermal mixing between nuclear spin systems; Contribution a l'etude du melange thermique entre systemes de spins nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-02-15

    This work describes methods of dynamic nuclear polarization in solids based on the thermal mixing between nuclear spin systems. The description of the thermal mixing processes involves most of the fundamental aspects of the spin temperature theory. The experiments, conducted with paradichlorobenzene and para-dibromobenzene, yield a detailed confirmation of the theoretical predictions. (author) [French] Ce travail decrit des methodes de polarisation dynamique nucleaire dans les solides basees sur le melange thermique entre systemes de spins nucleaires. La description des processus de melange thermique met en jeu la plupart des aspects fondamentaux de la theorie de la temperature de spin. Les experiences, realisees avec du paradichlorobenzene et du paradibromobenzene, apportent une confirmation detaillee des previsions theoriques. (auteur)

  15. A feasibility study of developing toroidal tanks for a spinning spacecraft. Part 2: Evaluation of fluid behavior in spinning toroidal tanks

    Science.gov (United States)

    Anderson, J. E.

    1974-01-01

    An experimental program was conducted for the purpose of evaluating propellant behavior characteristics in spinning toroidal tanks. The effects of typical mission requirements, and related phenomena upon propellant slosh and settling, and orientation and stability of the ullage were investigated in a subscale model tank under both one-g and low-g acceleration environments. Specific conditions included were axial acceleration, spin rate, spinrate change, and spacecraft wobble, both singly and in combination. Methanol and water in combination with appropriate spin-rates and accelerations of the scale model system were used to simulate the behavior of fluorine, nitrogen tetroxide, monomethylhydrazine, and hydrazine. The experimental results indicate that no major fluid behavior problems would be encountered with the use of toroidal tanks containing any of the four propellants in a proposed spin-stabilized orbiter spacecraft.

  16. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  17. EPR Studies of Spin Labels Bound to Ceramic Surfaces, and Simulation of Magnetic Resonance Spectra by Molecular Trajectory.

    Science.gov (United States)

    Auteri, Francesco Paul

    Electron paramagnetic resonance (EPR) spectroscopy is sensitive to molecular rotational correlation times in the range of 10^{-6} to 10^{-11} seconds. EPR spin labels are often attached or incorporated into molecular structures as probes of local viscosities and dynamics. In part I of this work, methods of covalently attaching a variety of spin labels to silica and alumina ceramic surfaces are developed in an attempt to study local viscosities at varying distances from about 5 A^circ to 25 A^circ from the ceramic/liquid interface. Three solvents, diethyl ether, benzene, and cyclohexane, are chosen for detailed study in combination with the spin labels, TEMPOL, 5-DOXYL, and 12-DOXYL. EPR spectra of each system are taken over the range of temperatures from -140 ^circC to 50^circ C (or just below the solvent boiling point). Spectra show good sensitivity to solvent, temperature, and probe. The effect of adding 3% (w/o) poly-(octadecyl-methacrylate) (PODM) to benzene and cyclohexane on spin label mobility is also studied in this work. Rotational correlation times from lineshapes are analyzed assuming isotropic rotation using spectral splitting, line width, and simulation methods. These approaches are often inadequate for the more complex spectral line shapes observed for tethered spin labels, especially in the intermediate motional regime where sensitivity to anisotropic dynamics is greatest. In part II of this work, a novel approach to the prediction of spectral line shapes is developed. It is shown that EPR spectra may be computed directly from molecular trajectories using classical approximations to describe the time evolution of the magnetization vector under fluctuating effective interaction tensor values. Line shape simulations using molecular trajectories generated by Brownian dynamics theory are less time intensive than existing methods. Simulation of magnetic resonance line shapes by molecular trajectories as generated by programs such as CHARMM promises to be

  18. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    International Nuclear Information System (INIS)

    Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2016-01-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  19. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    Energy Technology Data Exchange (ETDEWEB)

    Atitoaie, Alexandru, E-mail: atitoaie@phys-iasi.ro [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); National Institute of Research and Development for Technical Physics, Iasi (Romania); Stoleriu, Laurentiu [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Tanasa, Radu [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Stancu, Alexandru; Enachescu, Cristian [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania)

    2016-04-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  20. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  1. Comparison between muon spin rotation and neutron scattering studies on the 3-dimensional magnetic ordering of La2CuO(4-y)

    Science.gov (United States)

    Uemura, Y. J.; Kossler, W. J.; Kempton, J. R.; Yu, X. H.; Schone, H. E.; Opie, D.; Stronach, C. E.; Brewer, J. H.; Kiefl, R. F.; Kreitzman, S. R.

    1988-01-01

    Muon spin rotation and neutron scattering studies on powder and single-crystal specimens of La2CuO(4-y) are compared. The apparent difference between the muon and neutron results for the ordered moment in the antiferromagnetic state is interpreted as the signature of increasingly short-ranged spatial spin correlations with increasing oxygen content.

  2. Electron Spin Resonance and optical absorption spectroscopic studies of manganese centers in aluminium lead borate glasses.

    Science.gov (United States)

    SivaRamaiah, G; LakshmanaRao, J

    2012-12-01

    Electron Spin Resonance (ESR) and optical absorption studies of 5Al(2)O(3)+75H(3)BO(3)+(20-x)PbO+xMnSO(4) (where x=0.5, 1,1.5 and 2 mol% of MnSO(4)) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g≈2.0 has been attributed to Mn(2+) centers in an octahedral symmetry. The ESR resonance signals at isotropic g≈3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn(2+) ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to (5)E(g)→(5)T(2g) transition of Mn(3+)centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Cyclic voltammetry, spectroelectrochemistry and electron spin resonance as combined tools to study thymoquinone in aprotic medium

    International Nuclear Information System (INIS)

    Petrucci, Rita; Marrosu, Giancarlo; Astolfi, Paola; Lupidi, Giulio; Greci, Lucedio

    2012-01-01

    Nigella sativa has been used for centuries as a natural remedy for a number of chronic and age-related diseases. Thymoquinone (TQ), the main constituent of its extracts, has recently received particular attention and has been tested for its antioxidant, anti-inflammatory and anticancer properties. To further investigate the mechanisms involved in the biological activities of this natural quinone and, among these, in its antioxidant properties, the redox-system of TQ and its interaction with superoxide was studied in aprotic medium by cyclic voltammetry, spectroelectrochemistry and Electron Spin Resonance (ESR). The electrochemical behavior of dithymoquinone (DTQ), the photodimer of TQ, was also studied in the same medium. Experimental data evidenced the formation of the radical anion TQ· − by cathodic reduction of TQ at potential values very close to coenzymes Q ones, by electron transfer (ET) between TQ and superoxide, as KO 2 or electrogenerated, by chemical comproportionation between TQ and the dianion TQ −− and by fast cleavage of the electrogenerated radical anion DTQ· − . Spectroelectrochemical data evidenced that TQ· − , in the presence of TQ, evolves to the hydroquinone monoanion TQH − , suggesting that an H-atom transfer (HT) may occur, likely from the isopropylic side-chain of TQ to TQ· − The H-atom donating ability of TQ may be also supported by Bond Dissociation Energy values and ESR data.

  4. Studies on the separation of hydrogen isotopes and spin isomers by gas chromatography

    International Nuclear Information System (INIS)

    Pushpa, K.K.; Annaji Rao, K.

    2000-08-01

    Separation and analysis of mixture of hydrogen isotopes has gained considerable importance because of various applications needing different isotopes in lasers, nuclear reactions and tracer or labelled compounds. In the literature gas chromatographic methods are reported using columns packed with partly dehydrated or thoroughly dehydrated alumina/molecular sieve stationary phase at 77 deg K with helium, neon and even hydrogen or deuterium as carrier gas. In the present study an attempt is made to compare the chromatographic behaviour of these two stationary phases using virgin and Fe doped form in partly dehydrated and thoroughly dehydrated state, using helium, neon, hydrogen and deuterium as carrier gas. The results of this study show that helium or neon carrier gas behave similarly broad peaks with some tailing. Sharp symmetric peaks are obtained with hydrogen or deuterium carrier gas. This is attributed to large hold up capacity for H 2 or D 2 at 77 deg K in these materials as compared to helium or neon. Spin isomers of H 2 or D 2 are separated on Fe free stationary phases, though ortho H 2 and HD are not resolved. Using a combination of Fe doped short column and plain alumina column, both maintained in dehydrated form, the effect of Fe doping on thermal equilibrium of ortho/para forms at 77 deg K is clearly demonstrated. (author)

  5. Electron spin resonance studies of Bi1-xScxFeO3 nanoparticulates: Observation of an enhanced spin canting over a large temperature range

    Science.gov (United States)

    Titus, S.; Balakumar, S.; Sakar, M.; Das, J.; Srinivasu, V. V.

    2017-12-01

    Bi1-xScxFeO3 (x = 0.0, 0.1, 0.15, 0.25) nano particles were synthesized by sol gel method. We then probed the spin system in these nano particles using electron spin resonance technique. Our ESR results strongly suggest the scenario of modified spin canted structures. Spin canting parameter Δg/g as a function of temperature for Scandium doped BFO is qualitatively different from undoped BFO. A broad peak is observed for all the Scandium doped BFO samples and an enhanced spin canting over a large temperature range (75-210 K) in the case of x = 0.15 doping. We also showed that the asymmetry parameter and thereby the magneto-crystalline anisotropy in these BSFO nanoparticles show peaks around 230 K for (x = 0.10 and 0.15) and beyond 300 K for x = 0.25 system. Thus, we established that the Sc doping significantly modifies the spin canting and magneto crystalline anisotropy in the BFO system.

  6. The Indonesian Islamic Bank’s Spin-off: A Study in Regional Development Banks

    Directory of Open Access Journals (Sweden)

    Ismawati Haribowo

    2016-12-01

    Full Text Available The Islamic banking spin-off became a major issue after the establishment of the Act No. 21 of 2008. The problem that arises according to this spin-off is the existence of sharia unit that owned by the regional development banks, which is almost the banks has a small size. This paper is going to evaluate the spin-off criteria are regional development banks, besides that this article is going to analyze the spin-off strategy that can use by sharia unit that owned by the regional development bank. The techniques that employed in this paper are ARIMA, simulation, and descriptive-qualitative. The result shows that there is no sharia unit can achieve the 50% share asset of its parents. There are also several strategies that can be used by the sharia unit. The main thing that should emphasize is the Islamic bank's spin-off is only one of the policies that can be taken to develop the Islamic banking industryDOI: 10.15408/aiq.v9i1.4308 

  7. Radical Intermediates in Photoinduced Reactions on TiO2 (An EPR Spin Trapping Study

    Directory of Open Access Journals (Sweden)

    Dana Dvoranová

    2014-10-01

    Full Text Available The radical intermediates formed upon UVA irradiation of titanium dioxide suspensions in aqueous and non-aqueous environments were investigated applying the EPR spin trapping technique. The results showed that the generation of reactive species and their consecutive reactions are influenced by the solvent properties (e.g., polarity, solubility of molecular oxygen, rate constant for the reaction of hydroxyl radicals with the solvent. The formation of hydroxyl radicals, evidenced as the corresponding spin-adducts, dominated in the irradiated TiO2 aqueous suspensions. The addition of 17O-enriched water caused changes in the EPR spectra reflecting the interaction of an unpaired electron with the 17O nucleus. The photoexcitation of TiO2 in non-aqueous solvents (dimethylsulfoxide, acetonitrile, methanol and ethanol in the presence of 5,5-dimethyl-1-pyrroline N-oxide spin trap displayed a stabilization of the superoxide radical anions generated via electron transfer reaction to molecular oxygen, and various oxygen- and carbon-centered radicals from the solvents were generated. The character and origin of the carbon-centered spin-adducts was confirmed using nitroso spin trapping agents.

  8. Spin relaxation studies of Li+ion dynamics in polymer gel electrolytes.

    Science.gov (United States)

    Brinkkötter, M; Gouverneur, M; Sebastião, P J; Vaca Chávez, F; Schönhoff, M

    2017-03-08

    Two ternary polymer gel electrolyte systems are compared, containing either polyethylene oxide (PEO) or the poly-ionic liquid poly(diallyldimethylammonium) bis(trifluoromethyl sulfonyl)imide (PDADMA-TFSI). Both gel types are based on the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfonyl)imide (P 14 TFSI) and LiTFSI. We study the influence of the polymers on the local lithium ion dynamics at different polymer concentrations using 7 Li spin-lattice relaxation data in dependence on frequency and temperature. In all cases the relaxation rates are well described by the Cole-Davidson motional model with Arrhenius dependence of the correlation time and a temperature dependent quadrupole coupling constant. For both polymers the correlation times are found to increase with polymer concentration. The activation energy of local motions slightly increases with increasing PEO concentration, and slightly decreases with increasing PDADMA-TFSI concentration. Thus the local Li + motion is reduced by the presence of either polymer; however, the reduction is less effective in the PDADMA + samples. We thus conclude that mechanical stabilization of a liquid electrolyte by a polymer can be achieved at a lower decrease of Li + motion when a cationic polymer is used instead of PEO.

  9. A feasibility study on estimation of tissue mixture contributions in 3D arterial spin labeling sequence

    Science.gov (United States)

    Liu, Yang; Pu, Huangsheng; Zhang, Xi; Li, Baojuan; Liang, Zhengrong; Lu, Hongbing

    2017-03-01

    Arterial spin labeling (ASL) provides a noninvasive measurement of cerebral blood flow (CBF). Due to relatively low spatial resolution, the accuracy of CBF measurement is affected by the partial volume (PV) effect. To obtain accurate CBF estimation, the contribution of each tissue type in the mixture is desirable. In general, this can be obtained according to the registration of ASL and structural image in current ASL studies. This approach can obtain probability of each tissue type inside each voxel, but it also introduces error, which include error of registration algorithm and imaging itself error in scanning of ASL and structural image. Therefore, estimation of mixture percentage directly from ASL data is greatly needed. Under the assumption that ASL signal followed the Gaussian distribution and each tissue type is independent, a maximum a posteriori expectation-maximization (MAP-EM) approach was formulated to estimate the contribution of each tissue type to the observed perfusion signal at each voxel. Considering the sensitivity of MAP-EM to the initialization, an approximately accurate initialization was obtain using 3D Fuzzy c-means method. Our preliminary results demonstrated that the GM and WM pattern across the perfusion image can be sufficiently visualized by the voxel-wise tissue mixtures, which may be promising for the diagnosis of various brain diseases.

  10. Spectroscopy study of electron spin resonance of coal oxidation of different rank

    International Nuclear Information System (INIS)

    Enciso Prieto, Hector Manuel

    1992-01-01

    The present work constitutes an initial step for the knowledge of the coal oxidation, with the purpose of preventing the adverse influences caused by this phenomenon in the physical-chemical characteristics and in the tendency to the spontaneous combustion. Since the knowledge the influence of the free radicals in this process, their relative concentration was measured by means of the use of the technique of resonance spin electron. This technique measures the absorption of electromagnetic radiation, generally in the microwaves region, for the materials that not have electrons matched up in a strong magnetic field. In the essays of oxidation three coal of different range and different characteristics of mass were used and it was studied the influence of the temperature, particle size and the range. The results showed that the coal of Guacheta (bituminous low in volatile) it presents bigger concentration of free radicals, after the reaction with the atmospheric oxygen, with regard to the coal of the Cerrejon (bituminous high in volatile B) and Amaga (bituminous high in volatile C). Although this doesn't indicate that the coal of Guacheta is that more easily is oxidized, but rather it possibly presents stabilization of radicals for resonance. It concluded that there are differences in the oxidation mechanism between coal of different rank and different agglomeration properties

  11. In-beam studies of high-spin states of actinide nuclei

    International Nuclear Information System (INIS)

    Stoyer, M.A.; California Univ., Berkeley, CA

    1990-01-01

    High-spin states in the actinides have been studied using Coulomb- excitation, inelastic excitation reactions, and one-neutron transfer reactions. Experimental data are presented for states in 232 U, 233 U, 234 U, 235 U, 238 Pu and 239 Pu from a variety of reactions. Energy levels, moments-of-inertia, aligned angular momentum, Routhians, gamma-ray intensities, and cross-sections are presented for most cases. Additional spectroscopic information (magnetic moments, M 1 /E 2 mixing ratios, and g-factors) is presented for 233 U. One- and two-neutron transfer reaction mechanisms and the possibility of band crossings (backbending) are discussed. A discussion of odd-A band fitting and Cranking calculations is presented to aid in the interpretation of rotational energy levels and alignment. In addition, several theoretical calculations of rotational populations for inelastic excitation and neutron transfer are compared to the data. Intratheory comparisons between the Sudden Approximation, Semi-Classical, and Alder-Winther-DeBoer methods are made. In connection with the theory development, the possible signature for the nuclear SQUID effect is discussed. 98 refs., 61 figs., 21 tabs

  12. Private Venture Capital’s Investment on University Spin-Offs: A Case Study of Tsinghua University Based on Triple Helix Model

    DEFF Research Database (Denmark)

    Gao, Yuchen; Hu, Yimei; Wang, Jingyi

    2015-01-01

    . Through an in-depth case study on the interactions of triple helix actors of Tsinghua University’s spin-offs, it is found that government and university developing an environment of marketization exert positive influences on the investment willingness of private venture capitals. Whilst financial direct......University spin-offs is a key form of university-industry collaboration, while venture capitals play a critical role for the creation and growth of these spin-offs. However, research on investment from venture capitals towards university spin-offs is still scant, especially in emerging...... and transition economies where governments are transforming their roles. Thus the main purpose of this study is to investigate how private venture capitals’ investment willingness on university spin-offs are influenced by universities and governments under the Chinese context based on the triple helix model...

  13. Neutron diffraction study of the BiFeO₃ spin cycloid at low temperature.

    Science.gov (United States)

    Herrero-Albillos, Julia; Catalan, Gustau; Rodriguez-Velamazan, José Alberto; Viret, Michel; Colson, Dorothée; Scott, James F

    2010-06-30

    The reported observation of two anomalies in the intensity of the magnon Raman peaks of BiFeO₃ at 140 and 200 K (Singh et al 2008 J. Phys.: Condens. Mater 20 252203; Cazayous et al 2008 Phys. Rev. Lett. 101 037601) led to the hypothesis that such anomalies might originate from a spin reorientation transition. In order to test this hypothesis, we have used temperature-dependent neutron diffraction to track the evolution of the magnetic configuration in single crystals of BiFeO₃. Our results indicate that there is no average reorientation of the spins. This suggests that the magnon anomalies may instead be related to the freezing of modes that do not alter the average projection of the spins over the plane of the cycloid, as also reported for multiferroic TbMnO₃ (Senff et al 2006 J. Phys.: Condens. Mater 18 2069).

  14. High-field study of the spin-Peierls system CuGeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Regnault, L.P. [CEA Centre d`Etudes de Grenoble, 38 (France)

    1997-04-01

    The one-dimensional spin-1/2 Heisenberg antiferromagnetic system coupled to a three-dimensional phonon field undergoes a structural distortion below a finite temperature T{sub sp} (spin-Peierls transition) which induces the formation of a non-magnetic singlet ground-state and the opening of a gap in the excitation spectrum at the antiferromagnetic point. The recent discovery of the germanate CuGeO{sub 3} as a spin-Peierls system has considerably renewed the interest is this fascinating phenomenon. Inelastic neutron scattering and neutron diffraction have brought very quantitative pieces of information which can be directly compared to the predictions of the standard model. (author). 6 refs.

  15. Spin-wave-induced spin torque in Rashba ferromagnets

    Science.gov (United States)

    Umetsu, Nobuyuki; Miura, Daisuke; Sakuma, Akimasa

    2015-05-01

    We study the effects of Rashba spin-orbit coupling on the spin torque induced by spin waves, which are the plane-wave dynamics of magnetization. The spin torque is derived from linear-response theory, and we calculate the dynamic spin torque by considering the impurity-ladder-sum vertex corrections. This dynamic spin torque is divided into three terms: a damping term, a distortion term, and a correction term for the equation of motion. The distorting torque describes a phenomenon unique to the Rashba spin-orbit coupling system, where the distorted motion of magnetization precession is subjected to the anisotropic force from the Rashba coupling. The oscillation mode of the precession exhibits an elliptical trajectory, and the ellipticity depends on the strength of the nesting effects, which could be reduced by decreasing the electron lifetime.

  16. Simultaneous electrochemical-electron spin resonance studies of carotenoid cation radicals and dications

    International Nuclear Information System (INIS)

    Khaled, M.; Hadjipetrou, A.; Xinhai Chen; Kispert, L.

    1989-01-01

    Carotenoids are present in the chloroplasts of photosynthetic green plants and serve as photoprotect devices and antenna pigments, and active role in the photosynthetic electron-transport chain with the carotenoid cation radical as an integral part of the electron-transfer process. The research reported herein has confirmed that carotenoid cation radicals have a lifetime that is sensitive to solvent, being longest in CH 2 Cl 2 and are best prepared electrochemically. Semiempirical AM1 and INDO calculations of the trans and cis isomers of β-carotene, canthaxanthin and β-apo-8'-carotenal cation radicals predicted the unresolved EPR line whose linewidth varies to a measurable degree with carotenoid, which subsequent experimental observations affirmed. Simultaneous electrochemical - electron spin resonance studies of carotenoid cation radicals and dications have shown the radicals detected by EPR are formed by the one electron oxidation of the carotenoid, that dimers are not formed upon decay of the radical cations and an estimate of the rate of comproportionation as a function of carotenoid can be given. The formal rate constant K' for heterogenous electron transfer rate at the electrode surface has been deduced from rotating disc experiments. Upon deuteration, and in the presence of excess β-carotene, the half-life for decay of the carotenoid radical cation increased an order of magnitude due to the reaction between diffusion carotenoid dications and carotenoids to form additional radical cations. The carotenoid diffusion coefficients deduced by chronocoulometry substantiates this measurement. The produces formed upon electrochemical studies are being studied by HPLC and the isomers formed thermally are being separated. Additional radical reactions are currently being studied by EPR and electrochemical methods

  17. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  18. Open Innovation Practice: A Case Study of University Spin-Offs

    Directory of Open Access Journals (Sweden)

    Yuliya Shutyak

    2016-01-01

    Full Text Available The paper investigates the practice of Open Innovation (OI of university spin-offs. Three interviews were conducted to discuss the knowledge of spin-offs about OI, their attitude to this innovation management strategy based on perceived advantages and disadvantages, and their motivation towards OI practice in the future. Problems with planning, control and trust appear to be some of the most important for OI success. Focusing on these and other urgent aspects of OI, the article discusses a research agenda that can help in formulating research questions and hypothesis, thus directing their efforts to search for solutions to identified problems

  19. Spin Measurements of n+Sr-87 for Level Density Studies

    CERN Document Server

    Gunsing, F; Mathelie, M; Valenta, S; Bečvář, F; Rusev, G; Tonchev, A P; Mitchell, G; Baramsai, B; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Eleftheriadis, C; Ferrari, A; Ganesan, S; García, A R; Giubrone, G; Gonçalves, I.F.; González-Romero, E; Griesmayer, E; Guerrero, C; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Vannini, G; Variale, V; Vaz, P; Ventura, A; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T; Žugec, P

    2014-01-01

    We have used the 4 pi BaF2 gamma-ray detector array at the n\\_TOF neutron time-of-flight facility at CERN for an experiment in order to determine the spins of resonances of n+Sr-87 by measuring the gamma-ray spectra and multiplicity distributions. The first results are presented here. We have assigned the orbital momentum l to all evaluated resonances on the basis of their neutron widths. Further we have assigned the spin J to 16 s-wave resonances on based the population of low-lying levels.

  20. Structural study of the re-entrant spin-glass behaviour of Fe-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Martin Rodriguez, D. [Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai NSW 2234 (Australia)]. E-mail: dmr@ansto.gov.au; Plazaola, F. [Elektrika eta Elektronika Saila, UPV-EHU, 644 P.K., 48080 Bilbao (Spain); Garitaonandia, J.S. [Fisika Aplikatua II Saila, UPV-EHU, 644 P.K., 48080 Bilbao (Spain); Cuello, G.J. [Institute Laue Langevin, 6 rue Jules Horowitz, B.P. 156, 38042 Grenoble (France)

    2007-09-15

    Neutron powder diffraction measurements were performed on Fe{sub 70}Al{sub 30} alloy in order to determine the relationship between the magnetic behaviour and the structural changes observed in this alloy. Results show that the re-entrant spin-glass behaviour is linked with D03 structure. There is a strong correlation between the lattice parameter and the diffraction peak intensity and all the magnetic changes reported in literature can be explained in terms of this relationship. Finally, magnetovolume effects similar to invar effect are reported in the spin-glass phase.

  1. Structural study of the re-entrant spin-glass behaviour of Fe-Al alloys

    Science.gov (United States)

    Martín Rodríguez, D.; Plazaola, F.; Garitaonandia, J. S.; Cuello, G. J.

    2007-09-01

    Neutron powder diffraction measurements were performed on Fe 70Al 30 alloy in order to determine the relationship between the magnetic behaviour and the structural changes observed in this alloy. Results show that the re-entrant spin-glass behaviour is linked with D03 structure. There is a strong correlation between the lattice parameter and the diffraction peak intensity and all the magnetic changes reported in literature can be explained in terms of this relationship. Finally, magnetovolume effects similar to invar effect are reported in the spin-glass phase.

  2. Spin Liquid State in the 3D Frustrated Antiferromagnet PbCuTe_{2}O_{6}: NMR and Muon Spin Relaxation Studies.

    Science.gov (United States)

    Khuntia, P; Bert, F; Mendels, P; Koteswararao, B; Mahajan, A V; Baenitz, M; Chou, F C; Baines, C; Amato, A; Furukawa, Y

    2016-03-11

    PbCuTe_{2}O_{6} is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu^{2+} ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T_{1} NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.

  3. Electron Spin Resonance studies of defects formed in SiO2 by high energy ions

    International Nuclear Information System (INIS)

    Dooryhee, Eric

    1987-01-01

    We have studied the defects formed in silica by high energy ions. Defect formation processes are not yet well understood at energies higher than 1 MeV/amu, whereas they can be interpreted in terms of collision cascades at low energies. There are numerous applications in astrophysics (cosmic rays), earth sciences (fission track dating), and for technological problems (storage of radioactive waste material, fusion reactors). We have used Electron Spin Resonance (ESR) together with other techniques (optical spectroscopy, channeling, small angle X-ray scattering) to characterize defects formed by electronic excitations and to study the influence of the energy, the atomic number and the fluence of ions. We have irradiated silica and alumina targets at GANIL and at UNILAC Darmstadt. ESR studies have shown that high energy ions form paramagnetic vacancies (E' centers) and interstitials (peroxy radicals). Their ESR signatures exhibit specific characteristics when compared to those observed after gamma-ray or electron irradiation, which can be related to the very high density of deposited energy, and to the specific environment within clusters of defects. The production rate of defects varies with the atomic number of the incident ion, for a given energy deposit. The proportion of peroxy radicals increases with stopping power. When fluence increases above the overlapping threshold, a transfer from E' centers to peroxy radicals is observed, similar to that observed after thermal annealing. These results demonstrate the nonlinear effects of energy losses and the role of a phase in which primary defects reorganize in the wake of the incident ion ('thermal spike' concept). Optical spectroscopy experiments allowed us to show that high energy ions also form diamagnetic oxygen vacancies. However, the total defect concentration observed is too low to account for the preferential chemical etching of ion tracks. Local bond straining induced by the ion could

  4. Effective bond orders from two-step spin-orbit coupling approaches: the I2, At2, IO(+), and AtO(+) case studies.

    Science.gov (United States)

    Maurice, Rémi; Réal, Florent; Gomes, André Severo Pereira; Vallet, Valérie; Montavon, Gilles; Galland, Nicolas

    2015-03-07

    The nature of chemical bonds in heavy main-group diatomics is discussed from the viewpoint of effective bond orders, which are computed from spin-orbit wave functions resulting from spin-orbit configuration interaction calculations. The reliability of the relativistic correlated wave functions obtained in such two-step spin-orbit coupling frameworks is assessed by benchmark studies of the spectroscopic constants with respect to either experimental data, or state-of-the-art fully relativistic correlated calculations. The I2, At2, IO(+), and AtO(+) species are considered, and differences and similarities between the astatine and iodine elements are highlighted. In particular, we demonstrate that spin-orbit coupling weakens the covalent character of the bond in At2 even more than electron correlation, making the consideration of spin-orbit coupling compulsory for discussing chemical bonding in heavy (6p) main group element systems.

  5. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  6. Compensation temperatures of mixed spin-2 and spin-((5)/(2)) ferrimagnetic system with interlayer coupling; a study of a molecular-based magnet

    CERN Document Server

    Zhang Qi

    2002-01-01

    Compensation points of layer system consisting of mixed spin-2 and spin-((5)/(2)) ferrimagnetic honeycomb lattice layers which are coupled together with two kinds of positive interlayer coupling are examined by the use of the effective-field theory with correlations (EFT). In particular, the effects of interlayer coupling and a positive crystal-field constant of the spin-2 ions on the compensation temperature are investigated, in order to clarify the characteristic behavior of the temperature dependence of the total magnetization M. This is related to the experimental works of a molecular-based magnetic multilayer film, N(n-C sub 4 H sub 9) sub 4 Fe sup I sup I Fe sup I sup I sup I (C sub 2 O sub 4) sub 3. A comparison is made between the results in this paper and those in a previous work obtained by using Monte-Carlo simulations.

  7. Polarization study of non-resonant X-ray magnetic scattering from spin-density-wave modulation in chromium

    International Nuclear Information System (INIS)

    Ohsumi, Hiroyuki; Takata, Masaki

    2007-01-01

    We present a polarization study of non-resonant X-ray magnetic scattering in pure chromium. Satellite reflections are observed at +/-Q and +/-2Q, where Q is the modulation wave vector of an itinerant spin-density-wave. The first and second harmonics are confirmed to have magnetic and charge origin, respectively, by means of polarimetry without using an analyzer crystal. This alternative technique eliminates intolerable intensity loss at an analyzer by utilizing the sample crystal also as an analyzer crystal

  8. Scientific team effectiveness and the external CEO: A study of biotechnology university spin-offs

    NARCIS (Netherlands)

    van der Steen, Marianne; Englis-Danskin, Paula; Englis, Basil George

    2013-01-01

    This paper presents an empirical exploration of the effectiveness of scientific teams and the role of an external CEO in the spin-off formation process. The paper contributes to the literature by focusing on the role of the experienced or 'external' entrepreneur (their commercial resources and

  9. Experimental study of the two-body spin-orbit force in nuclei.

    Science.gov (United States)

    Burgunder, G; Sorlin, O; Nowacki, F; Giron, S; Hammache, F; Moukaddam, M; de Séréville, N; Beaumel, D; Càceres, L; Clément, E; Duchêne, G; Ebran, J P; Fernandez-Dominguez, B; Flavigny, F; Franchoo, S; Gibelin, J; Gillibert, A; Grévy, S; Guillot, J; Lepailleur, A; Matea, I; Matta, A; Nalpas, L; Obertelli, A; Otsuka, T; Pancin, J; Poves, A; Raabe, R; Scarpaci, J A; Stefan, I; Stodel, C; Suzuki, T; Thomas, J C

    2014-01-31

    Energies and spectroscopic factors of the first 7/2-, 3/2-, 1/2-, and 5/2- states in the (35)Si21 nucleus were determined by means of the (d, p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the Si35 and S37 isotones, a reduction of the p3/2-p1/2 spin-orbit splitting by about 25% is proposed, while the f7/2-f5/2 spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the two-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus. The present results, remarkably well reproduced by using several realistic nucleon-nucleon forces, provide a unique touchstone for the modeling of the spin-orbit interaction in atomic nuclei.

  10. Study of β-phase development in spin-coated PVDF thick films

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... PVDF films spin coated from 16 wt% solution at 2000 rpm and baked at different temperatures. 839 and 763 cm. −1 corresponding to β and α phases, respec- tively, are considered for the β-phase fraction calculation. It is assumed that IR absorption follows Lambert-Beer law. The absorbencies of Aα and Aβ ...

  11. Fractional calculus approach to study temperature distribution within a spinning satellite

    Directory of Open Access Journals (Sweden)

    Jyotindra C. Prajapati

    2016-09-01

    Full Text Available This paper deals with the temperature distribution within spinning satellites and problem is formulated in terms of fractional differential equation. Applying fractional calculus approach, solution of this equation is obtained in terms of Wright generalized hypergeometric function, a generalization of exponential function.

  12. Studies of the spin dependence of p + p → πX

    International Nuclear Information System (INIS)

    Mutchler, G.S.; Pinsky, L.S.

    1979-01-01

    The beam-spin-asymmetry was measured for 14 pairs of angles in a kinematically complete experiment, and the results are shown. It was necessary to include the full π-N dynamics in the π-exchange diagram to reproduce the measured asymmetries. 4 figures, 1 table

  13. Construction and characterization of a spin polarized helium ion beam for surface electronic structure studies

    International Nuclear Information System (INIS)

    Harrison, A.R.

    1982-01-01

    Ion neutralization and metastable de-excitation spectroscopy, INS and MDS, allow detailed analysis of the surface electronic configuration of metals. The orthodox application of these spectroscopies may be enhanced by electronic spin polarization of the probe beams. For this reason, a spin polarized helium ion beam has been constructed. The electronic spin of helium metastables created within an rf discharge may be spacially aligned by optically pumping the atoms. Subsequent collisions between metastables produce helium ions which retain the orientation of the electronic spin. Extracted ion polarization, although not directly measurable, may be estimated from extracted electron polarization, metastable polarization, pumping radiation absorption and current modulation measurements. Ions extracted from the optically pumped discharge exhibit an estimated polarization of about ten per cent at a beam current of a few tenths of a microampere. Extraction of helium ions from the discharge requires that the ions have a high kinetic energy. However, to avoid undesirable kinetic electron ejection from the target surface, the ions must be decelerated. Examination of various deceleration configurations, in paticular exponential and linear deceleration fields, and experimental observation indicate that a linear decelerating field produces the best low energy beam to the target surface

  14. Structure in cohesive powder studied with spin-echo small angle neutron scattering

    NARCIS (Netherlands)

    Andersson, R.; Bouwman, W.G.; Luding, Stefan; de Schepper, I.M.

    2008-01-01

    Extracting structure and ordering information from the bulk of granular materials is a challenging task. Here we present Spin-Echo Small Angle Neutron Scattering Measurements in combination with computer simulations on a fine powder of silica, before and after uniaxial compression. The cohesive

  15. Structure in cohesive powders studied with spin-echo small angle neutron scattering

    NARCIS (Netherlands)

    Andersson, R.; Bouwman, W.G.; Luding, S.; De Schepper, I.M.

    2008-01-01

    Extracting structure and ordering information from the bulk of granular materials is a challenging task. Here we present Spin-Echo Small Angle Neutron Scattering Measurements in combination with computer simulations on a fine powder of silica, before and after uniaxial compression. The cohesive

  16. Spin-Assisted Layer-by-Layer Assembly: Variation of Stratification as Studied with Neutron Reflectivity

    International Nuclear Information System (INIS)

    Kharlampieva, Eugenia; Kozlovskaya, Veronika; Chan, Jennifer; Ankner, John Francis; Tsukruk, Vladimir V.

    2009-01-01

    We apply neutron reflectivity to probe the internal structure of spin-assisted layer-by-layer (LbL) films composed of electrostatically assembled polyelectrolytes. We find that the level of stratification and the degree of layer intermixing can be controlled by varying the type and concentration of salt during LbL assembly. We observe well-defined layer structure in spin-assisted LbL films when deposited from salt-free solutions. These films feature 2-nm-thick bilayers, which are ∼3-fold thicker than those in dipped LbL films assembled under similar conditions. Addition of a 10mM phosphate buffer promotes progressive layer inter-diffusion with increasing distance from the substrate. However, adding 0.1M NaCl to the phosphate buffer solution restores the layer stratification. We also find that spin-assisted LbL films obtained from buffer solutions are more highly stratified as compared to the highly intermixed layers seen in dipped LbL films assembled from buffer. Our results yield new insight into the mechanism of spin-assisted LbL assembly that should prove useful for biotechnological applications.

  17. An experimental study on reshaping C110 deformed casing with spinning casing swage

    Directory of Open Access Journals (Sweden)

    Yuanhua Lin

    2015-03-01

    Full Text Available Casing deformation affects the implementation of stimulation and development measures of oilfields directly; however, the reshaping force and torque usually are determined by experience when the deformed casing is repaired with the spinning reshaping technology; if the repairing force or torque is too large, it will result in the damage of casing and cement sheath as well as sticking accident. So, the collapse experiments were performed on the YAW-200 pressure testing machine by using one production casing which is often used in the oilfield and then the reshaping test of deformed casing (C110 was performed in turn by using two spinning casing swages of which the diameter is 126 mm and 129 mm respectively. The continuous rotator and thrust bearing were used to provide the torque and reshaping force respectively in the repairing process. The reshaping force and torque required to reshape the deformed casing, the deformation law and the springback value of deformed casing were obtained. Test results show that the diameter differential between the two spinning casing swages is reasonable. Furthermore, in order to ensure the safety and reliability of the implementation of post-production technologies, the mechanical properties of deformed casing before and after reshaping were tested. It was found that all the mechanical parameters of the deformed casing after reshaping reduced, which resulted in the decrease of the strength of the reshaped casing. These research achievements would provide important experimental data in optimizing the structure and construction parameters of spinning casing swages.

  18. A typical example of a photomagnetic study carried out on a spin ...

    Indian Academy of Sciences (India)

    Institut de Chimie de la Matière Condensée de Bordeaux, UPR 9048 CNRS – Université Bordeaux 1, Groupe des. Sciences Moléculaires, 87 Av. Doc. A. Schweitzer, F-33608 Pessac, ... Spin crossover; coordination chemistry; magnetism; photomagnetism. 1. Introduction. In the domain of transition metal complexes, there ...

  19. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR

    International Nuclear Information System (INIS)

    Lindfors, Hanna E.; Koning, Peter E. de; Wouter Drijfhout, Jan; Venezia, Brigida; Ubbink, Marcellus

    2008-01-01

    Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints

  20. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Hanna E. [Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories (Netherlands); Koning, Peter E. de; Wouter Drijfhout, Jan [Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion (Netherlands); Venezia, Brigida; Ubbink, Marcellus [Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories (Netherlands)], E-mail: m.ubbink@chem.leidenuniv.nl

    2008-07-15

    Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints.

  1. Permeability studies of redox-sensitive nitroxyl spin probes in corn oil using an L-band ESR spectrometer

    International Nuclear Information System (INIS)

    Jebaraj, D. David; Utsumi, Hideo; Asath, R. Mohamed; Benial, A. Milton Franklin

    2016-01-01

    Electron spin resonance (ESR) studies were carried out for 2mM 14 N labeled 2 H enriched 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) and 3–carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (carboxy-PROXYL) in pure water and various concentrations of corn oil. The ESR parameters, such as the line width, hyperfine coupling constant, g-factor, rotational correlation time, partition parameter and permeability were reported for the samples. The line width broadening was observed for both nitroxyl radicals in corn oil solutions. The partition parameter for permeable MC-PROXYL in corn oil increases with increasing concentration of corn oil, which reveals that the nitroxyl spin probe permeates into the oil phase. From the results, the corn oil concentration was optimized as 50 % for phantom studies. The rotational correlation time also increases with increasing concentration of corn oil. The permeable and impermeable nature of nitroxyl spin probes was demonstrated. These results will be useful for the development of ESR/OMR imaging modalities in in vivo and in vitro studies.

  2. Permeability studies of redox-sensitive nitroxyl spin probes in corn oil using an L-band ESR spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Jebaraj, D. David [Department of Physics, The American College, Madurai-625 002, Tamilnadu (India); Utsumi, Hideo [Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka 812-8582 (Japan); Asath, R. Mohamed; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Madurai-625 019, Tamilnadu (India)

    2016-05-23

    Electron spin resonance (ESR) studies were carried out for 2mM {sup 14}N labeled {sup 2}H enriched 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) and 3–carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (carboxy-PROXYL) in pure water and various concentrations of corn oil. The ESR parameters, such as the line width, hyperfine coupling constant, g-factor, rotational correlation time, partition parameter and permeability were reported for the samples. The line width broadening was observed for both nitroxyl radicals in corn oil solutions. The partition parameter for permeable MC-PROXYL in corn oil increases with increasing concentration of corn oil, which reveals that the nitroxyl spin probe permeates into the oil phase. From the results, the corn oil concentration was optimized as 50 % for phantom studies. The rotational correlation time also increases with increasing concentration of corn oil. The permeable and impermeable nature of nitroxyl spin probes was demonstrated. These results will be useful for the development of ESR/OMR imaging modalities in in vivo and in vitro studies.

  3. Asteroid spin-rate studies using large sky-field surveys

    Science.gov (United States)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David; Laher, Russ; Surace, Jason

    2017-12-01

    Eight campaigns to survey asteroid rotation periods have been carried out using the intermediate Palomar Transient Factory in the past 3 years. 2780 reliable rotation periods were obtained, from which we identified two new super-fast rotators (SFRs), (335433) 2005 UW163 and (40511) 1999 RE88, and 23 candidate SFRs. Along with other three known super-fast rotators, there are five known SFRs so far. Contrary to the case of rubble-pile asteroids (i.e., bounded aggregations by gravity only), an internal cohesion, ranging from 100 to 1000 Pa, is required to prevent these five SFRs from flying apart because of their super-fast rotations. This cohesion range is comparable with that of lunar regolith. However, some candidates of several kilometers in size require unusually high cohesion (i.e., a few thousands of Pa). Therefore, the confirmation of these kilometer-sized candidates can provide important information about asteroid interior structure. From the rotation periods we collected, we also found that the spin-rate limit of C-type asteroids, which has a lower bulk density, is lower than for S-type asteroids. This result is in agreement with the general picture of rubble-pile asteroids (i.e., lower bulk density, lower spin-rate limit). Moreover, the spin-rate distributions of asteroids of 3 5 rev/day, regardless of the location in the main belt. The YORP effect is indicated to be less efficient in altering asteroid spin rates from our results when compared with the flat distribution found by Pravec et al. (Icarus 197:497-504, 2008. doi: 10.1016/j.icarus.2008.05.012). We also found a significant number drop at f = 5 rev/day in the spin-rate distributions of asteroids of D < 3 km.

  4. High-spin chloro mononuclear MnIII complexes: a multifrequency high-field EPR study.

    Science.gov (United States)

    Mantel, Claire; Chen, Hongyu; Crabtree, Robert H; Brudvig, Gary W; Pécaut, Jacques; Collomb, Marie-Noëlle; Duboc, Carole

    2005-03-01

    The isolation, structural characterization, and electronic properties of two six-coordinated chloromanganese (III) complexes, [Mn(terpy)(Cl)3] (1) and [Mn(Phterpy)(Cl)3] (2), are reported (terpy = 2,2':6'2"-terpyridine, Phterpy = 4'-phenyl-2,2':6',2"-terpyridine). These complexes complement a series of mononuclear azide and fluoride Mn(lll) complexes synthesized with neutral N-tridentate ligands, [Mn(L)(X)3] (X = F- or N3 and L = terpy or bpea [N,N-bis(2-pyridylmethyl)-ethylamine)], previously described. Similar to these previous complexes, 1 and 2 exhibit a Jahn-Teller distortion of the octahedron, characteristic of a high-spin Mn(III) complex (S = 2). The analysis of the crystallographic data shows that, in both cases, the manganese ion lies in the center of a distorted octahedron characterized by an elongation along the tetragonal axis. Their electronic properties were investigated by multifrequency EPR (190-475 GHz) performed in the solid state at different temperatures (5-15 K). This study confirms our previous results and further shows that: i) the sign of D is correlated with the nature of the tetragonal distortion; ii) the magnitude of D is not sensitive to the nature of the anions in our series of rhombic complexes, contrary to the porphyrinic systems; iii) the [E/D] values (0.124 for 1 and 0.085 for 2) are smaller compared to those found for the [Mn(L)(X)3] complexes (in the range of 0.146 to 0.234); and iv) the E term increases when the ligand-field strength of the equatorial ligands decreases.

  5. Noninvasive Tumor Grading of Glioblastomas Before Surgery Using Arterial Spin Labeling. A Cohort Study.

    Science.gov (United States)

    Gao, Fei; Guo, Rui; Hu, Xiao-Jing; Li, Chun-Jing; Li, Meng

    2015-12-01

    To assess the clinical value of using arterial spin labeling (ASL) technique preoperatively for non-invasive tumor grading in glioblastoma (GBM) patients. Forty-nine patients with GBMs were selected, including 21 patients with high-grade gliomas and 28 patients with low-grade gliomas. ASL perfusion imaging was performed with GE Signa Excite HD 3.0 T MR scanning system (GE Healthcare). Relative cerebral blood flow (rCBF) and relative tumor blood flow (rTBF) were quantified in all patients. Statistical analysis was performed with STATA version 12.0 software. Further, relevant human cohort studies published in Chinese and English languages were identified by database searches and screened. Data was extracted and meta-analysis was performed using Comprehensive Meta-analysis version 2.0 software. The ratios of rTBF to rCBF in the contralateral white matter, contralateral gray matter, and contralateral hemisphere of high-grade gliomas were higher than low-grade gliomas (all p 0.05) when 2 and 5 cm distances from tumor margin were compared. Importantly, rCBF values showed statistical differences when the 2 cm distance was compared with the 5 cm distance from tumor margin (all p < 0.05). Finally, meta-analysis results supported the conclusion that rCBF and rTBF values were significantly higher in high-grade GBM as compared to low-grade GBM. We present convincing data that ASL is highly effective in differentiating between high-grade and low-grade gliomas, and thus is a useful tool for preoperative evaluation of GBM.

  6. Electron-spin-resonance study of radiation-induced paramagnetic defects in oxides grown on (100) silicon substrates

    International Nuclear Information System (INIS)

    Kim, Y.Y.; Lenahan, P.M.

    1988-01-01

    We have used electron-spin resonance to investigate radiation-induced point defects in Si/SiO 2 structures with (100) silicon substrates. We find that the radiation-induced point defects are quite similar to defects generated in Si/SiO 2 structures grown on (111) silicon substrates. In both cases, an oxygen-deficient silicon center, the E' defect, appears to be responsible for trapped positive charge. In both cases trivalent silicon (P/sub b/ centers) defects are primarily responsible for radiation-induced interface states. In earlier electron-spin-resonance studies of unirradiated (100) substrate capacitors two types of P/sub b/ centers were observed; in oxides prepared in three different ways only one of these centers, the P/sub b/ 0 defect, is generated in large numbers by ionizing radiation

  7. Studi Spektroskopi Electron Spin Resonance (Esr Lapisan Tipis Amorf Silikon Karbon (A-Sic:H Hasil Deposisi Metode Dc Sputtering

    Directory of Open Access Journals (Sweden)

    Rosari Saleh

    2002-04-01

    Full Text Available The dangling bond defect density in sputtered amorphous silicon carbon alloys have been studied by electron spin resonance (ESR. The results show that the spin density decreased slightly with increasing methane fl ow rate (CH4. The infl uence of carbon and hydrogen incorporation on g-value revealed that for CH4 fl ow rate up to 8 sccm, the ESR signal is dominated by defects characteristic of a-Si:H fi lms and for CH4 fl ow rate higher than 8 sccm the g-value decreased towards those usually found in a-C:H fi lms. Infrared (IR results suggest that as CH4 fl ow rate increases more carbon and hydrogen is incorporated into the fi lms to form Si-H, Si-C and C-H bonds. A direct relation between the IR results and the defect density and g-value is observed.

  8. Comparative Study of Deposit through a Membrane and Spin-Coated MWCNT as a Flexible Anode for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Walid Aloui

    2016-01-01

    Full Text Available We present a comparative study between multiwalled carbon nanotubes (MWCNTs thin films deposited on polyethylene terephthalate (PET substrates using (i spin-coating technique and (ii deposition through a membrane. We deduce from transparence, electrical properties, and AFM image that deposition through membrane presents better properties than spin-coating method. The concentration comparison shows that the optimum result was achieved at a concentration of 1.2 mg·mL−1 corresponding to a resistance (Rs of 180 Ω·cm−2 and an optical transparence of about 81% using a wavelength 550 nm. We will also demonstrate the use of the elaborated electrodes to fabricate the following flexible structure: PET-MWCNTs/MEH-PPV/Al. The series resistance Rs and the ideality factor n were calculated.

  9. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    International Nuclear Information System (INIS)

    Yu Zhaoxian; Jiao Zhiyong

    2004-01-01

    In this Letter, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-±1, spin-0 and spin-±2 exhibit the step structure under the external cosinusoidal magnetic field, respectively, but there do not exist step structure among spin-±1 and spin-±2. The tunneling current among spin-±1 and spin-±2 may exhibit periodically oscillation behavior, but among spin-0 and spin-±1, spin-0 and spin-±2, the tunneling currents exhibit irregular oscillation behavior

  10. STM Studies of Spin-­Orbit Coupled Phases in Real-­ and Momentum-­Space

    Energy Technology Data Exchange (ETDEWEB)

    Madhavan, Vidya [Univ. of Illinois, Urbana, IL (United States)

    2016-10-17

    The recently discovered class of spin-orbit coupled materials with interesting topological character are fascinating both from fundamental as well as application point of view. Two striking examples are 3D topological insulators (TIs) and topological crystalline insulators (TCIs). These materials host linearly dispersing (Dirac like) surface states with an odd number of Dirac nodes and are predicted to carry a quantized half-integer value of the axion field. The non-trivial topological properties of TIs and TCIs arise from strong spin-orbit coupling leading to an inverted band structure; which also leads to the chiral spin texture in momentum space. In this project we used low temperature scanning tunneling microscopy (STM) and spectroscopy (STS) to study materials with topological phases in real- and momentum-space. We studied both single crystals and thin films of topological materials which are susceptible to being tuned by doping, strain or gating, allowing us to explore their physical properties in the most interesting regimes and set the stage for future technological applications. .

  11. A comparative study of the morphology of flow and spin coated P3HT:PCBM films

    Science.gov (United States)

    Chapa, Jose; Karim, Alamgir

    2013-03-01

    Polymer solar cells are attractive due to the possibility of using cheaper materials and processing techniques for mass production of solar panels. Previous methods of fabricating polymer solar cells are suitable in laboratory conditions but are not scalable for industrial production. In this study, thin films of the photoactive blend of poly(3-hexylthiophene) (P3HT) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were prepared by flow coating, which is suitable for industrial manufacturing of solar cells. P3HT:PCBM blends were cast from different solvents, and the morphology of flow coated and spin coated films was compared. The surface morphology and optical properties of P3HT:PCBM films were characterized with optical microscopy, AFM, and UV-vis absorption spectroscopy. The degree of P3HT order was higher in flow coated films, as compared to spin coated films. Films flow coated using chloroform solutions had a higher thermal stability and an enhanced degree of phase separation as compared to spin coated films. Flow coated films from chlorobenzene solutions had a lower thermal stability and a smaller length scale of phase separation. This study demonstrates that flow coating is a suitable alternative technique for fabricating polymer solar cells. Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE- AC02-98CH10886

  12. Quantum spin quadrumer

    Science.gov (United States)

    Khatua, Subhankar; Shankar, R.; Ganesh, R.

    2018-02-01

    A fundamental motif in frustrated magnetism is the fully mutually coupled cluster of N spins, with each spin coupled to every other spin. Clusters with N =2 and 3 have been extensively studied as building blocks of square and triangular lattice antiferromagnets. In both cases, large-S semiclassical descriptions have been fruitfully constructed, providing insights into the physics of macroscopic magnetic systems. Here, we develop a semiclassical theory for the N =4 cluster. This problem has rich mathematical structure with a ground-state space that has nontrivial topology. We show that ground states are appropriately parametrized by a unit vector order parameter and a rotation matrix. Remarkably, in the low-energy description, the physics of the cluster reduces to that of an emergent free spin-S spin and a rigid rotor. This successfully explains the spectrum of the quadrumer and its associated degeneracies. However, this mapping does not hold in the vicinity of collinear ground states due to a subtle effect that arises from the nonmanifold nature of the ground-state space. We demonstrate this by an analysis of soft fluctuations, showing that collinear states have a larger number of soft modes. Nevertheless, as these singularities only occur on a subset of measure zero, the mapping to a spin and a rotor provides a good description of the quadrumer. We interpret thermodynamic properties of the quadrumer that are accessible in molecular magnets, in terms of the rotor and spin degrees of freedom. Our study paves the way for field theoretic descriptions of systems such as pyrochlore magnets.

  13. Structure, magnetization, and NMR studies of the spin-glass compound (LixV1-x)3BO5 ( x≈0.40 and 0.33)

    Science.gov (United States)

    Zong, X.; Niazi, A.; Borsa, F.; Ma, X.; Johnston, D. C.

    2007-08-01

    Structural and magnetic properties of (LixV1-x)3BO5 powders (x=0.33) and single crystals (x=0.40) were studied by x-ray diffraction, magnetization, and NMR measurements. Both powder and single crystal x-ray diffraction data are consistent with the previously reported structure of the system. Magnetization measurements show an overall antiferromagnetic interaction among vanadium spins and reveal a transition into a spin glass state at a sample and magnetic field dependent temperature below ˜10K . The high temperature (T>20K) susceptibility is analyzed using a linear spin trimer model suggested in the literature but such a model is found to be insufficient to explain the data. Li7 and B11 NMR studies indicate an inhomogeneous dynamics close to the zero-field spin-glass transition temperature. The distribution of electronic spin relaxation times is derived using a recently proposed method and the broad temperature-dependent distribution obtained gives a consistent description of the NMR results. The temperature dependence of the distribution indicates a strong slowing down of the local moment spin dynamics as the system cools toward the zero-field spin-glass transition temperature even in the presence of a strong applied magnetic field up to 4.7T .

  14. Monte Carlo study of the two-dimensional spin-1/2 quantum Heisenberg model: Spin correlations in La2CuO4

    International Nuclear Information System (INIS)

    Manousakis, E.; Salvador, R.

    1989-01-01

    We study the spin-1/2 quantum ferromagnetic and antiferromagnetic Heisenberg model using Handscomb's Monte Carlo (MC) method on square lattices of various sizes. As the temperature is lowered the calculated correlation length in the antiferromagnetic case grows more rapidly than in the ferromagnetic case. We also obtain the correlation length in the leading order of the high-temperature series expansion which, at high temperatures, agrees very well with the MC results. The correlation length obtained from the MC calculation for the ferromagnetic and antiferromagnetic case is compared with existing theories. Taking the average value for the antiferromagnetic coupling between the values suggested by neutron- and Raman-scattering experiments done on La 2 CuO 4 , we compare our results for the correlation length with those observed by the neutron-scattering experiments. We find that our results for the correlation lengths away from the three-dimensional (3D) Neel temperature T/sub N/∼200 K are consistent with the experimental findings. In order to obtain agreement close to the Neel temperature, however, we need to introduce an interlayer coupling between the CuO 2 planes. The effect on a 3D coupling is only discussed in the framework of the quantum mechanical nonlinear σ model in three space dimensions. For the case of La 2 CuO 4 we find that close to T/sub N/ the σ model in 3+1 dimensions reduces to the classical 3D Heisenberg model whose critical properties are known and fit the neutron-scattering data for T∼T/sub N/

  15. Magnetic-field dependence of strongly anisotropic spin reorientation transition in NdFeO3: a terahertz study.

    Science.gov (United States)

    Jiang, Junjie; Song, Gaibei; Wang, Dongyang; Jin, Zuanming; Tian, Zhen; Lin, Xian; Han, Jiaguang; Ma, Guohong; Cao, Shixun; Cheng, Zhenxiang

    2016-03-23

    One of the biggest challenges in spintronics is finding how to switch the magnetization of a material. One way of the spin switching is the spin reorientation transition (SRT), a switching of macroscopic magnetization rotated by 90°. The macroscopic magnetization in a NdFeO3 single crystal rotates from Γ4 to Γ2 via Γ24 as the temperature is decreased from 170 to 100 K, while it can be switched back to Γ4 again by increasing the temperature. However, the precise roles of the magnetic-field induced SRT are still unclear. By using terahertz time-domain spectroscopy (THz-TDS), here, we show that the magnetic-field induced SRT between Γ4 and Γ2 is strongly anisotropic, depending on the direction of the applied magnetic field. Our experimental results are well interpreted by the anisotropy of rare-earth Nd(3+) ion. Furthermore, we find that the critical magnetic-field required for SRT can be modified by changing the temperature. Our study suggests that the anisotropic SRT in NdFeO3 single crystal provides a platform to facilitate the potential applications in robust spin memory devices.

  16. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  17. Quantum spin transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph

    2012-05-15

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  18. Quantum spin transport in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Schindler, Christoph

    2012-01-01

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  19. Modified spinning top homogeneous spray apparatus for use in experimental respiratory disease studies.

    Science.gov (United States)

    Young, H W; Larson, E W; Dominik, J W

    1974-12-01

    The May spinning top generator was adapted to a modified Henderson tube for producing large aerosol particles (>4 mum) to obtain almost exclusive upper respiratory tract deposition of infectious aerosols in exposed mice. The system was installed in a biological safety cabinet to permit experimentation with pathogens. A novel mechanism utilizing parts from a machinists micrometer and the mechanical stage from a light microscope was developed for the spinning top generator as a means for precisely positioning the liquid feed needle. Aerosol light-scatter properties were continuously analyzed to provide relative measures of particle size distribution and aerosol concentration. When mice were exposed to influenza virus aerosols in which none of the virus was contained in particles with aerodynamic diameters <4 mum, essentially all of the virus was deposited in the upper respiratory tract tissues.

  20. Preparation and study of poly vinyl alcohol/hyperbranched polylysine fluorescence fibers via wet spinning

    Science.gov (United States)

    Lu, Hongwei; Zou, Liming; Xu, Yongjing; Sun, Hong; Li, Yan Vivian

    2018-02-01

    A simple method of using wet spinning was found effective in the preparation of photoluminescent poly vinyl alcohol (PVA)/hyperbranched polylysine (HBPL) fibers. The photoluminescence of the PVA/HBPL fibers was significantly uniform and the unique uniformity was obtained by controlling the mass ratio of PVA to HBPL in aqueous solutions used in the wet spinning process. The high solubility of HBPL in water make it feasible to well control in the mass ratio of PVA to HBPL, which facilitated the formation of a unique PVA/HBPL mixture, resulting in the fabrication of homogeneous PVA composite fluorescence fibers. The composite fibers exhibit good mechanical, and thermal properties that make the PVA/HBPL fluorescent fibers a great material potentially used in fluorescence applications including optics, imaging and detection.

  1. Studies of LENRA-Toughened PVC non-woven membranes prepared by electro spinning technique

    International Nuclear Information System (INIS)

    Dahlan Mohd; Mahathir Mohamed; Khirul Hafiz mohd Yusof

    2010-01-01

    Lately research in use of so-called green chemicals draws strong interest from research community due to the climate change issues. Malaysia is in strong position to take this advantage because we are among the world biggest producers of natural rubber and palm oil - the two sources of important green renewable chemical feedstock in the near future. For the last couple of years we have shown how modified natural rubbers especially liquid natural rubber and its derivatives such as liquid epoxidized natural rubber acrylate (LENRA) could be used in various applications via among others sol-gel technique and radiation curing technology. This time around we will show another application on how non-woven membranes made from PVC can be prepared by electro spinning technique using radiation curable LENRA as toughener. The electro spinning technique has great potential in producing nano fiber materials to be used in various applications to ensure sustainable energy and environments for the future. (author)

  2. Magnetic excitations in low-dimensional spin systems: neutron scattering study on AV2O5

    International Nuclear Information System (INIS)

    Nakajima, Kenji

    1997-01-01

    Recent experiments on vanadium oxide bronzes AV 2 O 5 (A=Na, Mg, Li) are reviewed. Experiments are carried out combining two triple-axis spectrometers installed at a thermal beam port and a cold neutron guide at JRR-3M. Spin-wave excitations in single crystals NaV 2 O 5 in the spin-Peierls state shows a steep intra-chain dispersion, which is consistent with estimated exchange interaction from magnetization measurement, and a weak inter-chain dispersion. In the low energy excitation measurement on powder sample of MgV 2 O 5 , we have observed energy gap of 2 meV, which indicates that this material is a ladder system with strong 1D character. Preliminary result on LiV 2 O 5 , which is expected to be a simple 1D antiferromagnet or a zig-zag chain, is also mentioned

  3. Effect of ionising radiation on potassium pentacyanonitrosyl ruthenate(II): an electron spin resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Vugman, Ney V.; Pinhal, Nelson M.; Amorim, Helio S. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica. Dept. de Fisica dos Solidos. E-mail: ney@if.ufrj.br; Santos, Cristina M.P. dos; Faria, Roberto B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Quimica Inorganica

    2000-06-01

    Amorphous potassium pentacyanonitrosyl ruthenate (II) was synthesized and characterized by UV, IR, X-ray diffraction and thermogravimetric analysis. Electron Spin Resonance spectroscopy reveals the presence of paramagnetic ruthenate (i) complexes and NO{sub 2} radicals in the X-irradiated diamagnetic salt. Spin-Hamiltonian parameters of the [Ru (CN){sub 5} N O]{sup 3-} complex (g=2.0064, A ({sup 14} N) = 60.7 MHz, g = 1.999, A ({sup 14} N) = 77.3 MHz) support an electron capture in a {pi}{sup *} molecular orbital of the nitrosyl group mixed with d{sub xz} and d{sub yz} ruthenium orbitals as recently predicted by theoretical calculations. Silver ions, present as impurities, are reduced to Ag(o) by X-irradiation and coordinate to four magnetically equivalent nitrogens in a distorted site, giving to a well resolved anisotropic ESR powder spectrum. (author)

  4. Atomic carbon chains as spin-transmitters: An ab initio transport study

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2010-01-01

    An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin...... and chain. This effect should in general hold for any p-conjugated molecules bridging the zig-zag edges of graphene electrodes. The polarization of the transmission can be controlled by chemically or mechanically modifying the molecule, or by applying an electrical gate....

  5. The electron spin resonance study of heavily nitrogen doped 6H SiC crystals

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia

    2015-01-01

    Roč. 117, č. 4 (2015), "045708-1"-"045708-6" ISSN 0021-8979 R&D Projects: GA ČR GP13-06697P; GA MŠk(CZ) LM2011029 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * conduction electrons * 6H SiC * insulator-metal transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  6. Managing Research Portfolios in the Knowledge Enterprise: A University Spin-Out Case Study

    Science.gov (United States)

    Stantchev, Vladimir; Tamm, Gerrit

    Purely knowledge-based activities are of an increasing importance for modern enterprises. Moreover, innovative companies are focusing entirely on such high-profile activities and outsourcing the supporting tasks. In this work we focus on university spin-outs as an example. Such companies often enjoy the provision of administrative infrastructure (e.g., accounting, facilities) within an "incubator" area and can focus exclusively on innovation.

  7. Study of Double Spin Asymmetries in Inclusive ep Scattering at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hoyoung [Seoul National Univ. (Korea, Republic of)

    2014-08-01

    The spin structure of the proton has been investigated in the high Bjorken x and low momentum transfer Q2 region. We used Jefferson Lab's polarized electron beam, a polarized target, and a spectrometer to get both the parallel and perpendicular spin asymmetries Apar and Aperp. These asymmetries produced the physics asymmetries A_1 and A_2 and spin structure functions g_1 and g_2. We found Q2 dependences of the asymmetries at resonance region and higher-twist effects. Our result increases the available data on the proton spin structure, especially at resonance region with low Q2. Moreover, A_2 and g_2 data show clear Q2 evolution, comparing with RSS and SANE-BETA. Negative resonance in A_2 data needs to be examined by theory. It can be an indication of very negative transverse-longitudinal interference contribution at W ~ 1.3 GeV. Higher twist effect appears at the low Q2 of 1.9 GeV2, although it is less significant than lower Q2 data of RSS. Twist03 matrix element d_2 was calculated using our asymmetry fits evaluation at Q2 – 1.9 GeV2. D-bar_2 = -0.0087±0.0014 was obtained by integrating 0.47 ≤ x ≤ 0.87.

  8. Study of spin crossover nanoparticles thermal hysteresis using FORC diagrams on an Ising-like model

    International Nuclear Information System (INIS)

    Atitoaie, Alexandru; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2014-01-01

    Recent developments in the synthesis and characterization of spin crossover (SCO) nanoparticles and their prospects of switching at molecular level turned these bistable compounds into possible candidates for replacing the materials used in recording media industry for development of solid state pressure and temperature sensors or for bringing contributions in engineering. Compared to bulk samples with the same chemical structure, SCO nanoparticles display different characteristics of the hysteretic and relaxation properties like the shift of the transition temperature towards lower values along with decrease of the hysteresis width with nanoparticles size. Using an Ising-like model with specific boundary conditions within a Monte Carlo procedure, we here reproduce most of the hysteretic properties of SCO nanoparticles by considering the interaction between spin crossover edge molecules and embedding surfactant molecules and we propose a complex analysis concerning the effect of the interactions and sizes during the thermal transition in systems of SCO nanoparticles by using the First Order Reversal Curves diagram method and by comparison with similar effects in mixed crystal systems. - Highlights: • The influence of size effects in spin crossover nanoparticles is analyzed. • The environment shifts the hysteresis loop towards lower temperatures. • First Order Reversal Curves technique is employed. • One determines the distributions of switching temperatures. • One disentangles between kinetics and non-kinetic parts of the hysteresis

  9. Spin Transfer Torque in Graphene

    Science.gov (United States)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  10. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  11. EFT study of critical properties of the mixed spin-2 and spin-3 2 Blume-Capel model on the honeycomb lattice

    Science.gov (United States)

    Yessoufou, R. A.; Karimou, M.; Hontinfinde, F.

    2018-01-01

    We use theoretical and numerical calculations in the framework of the effective-field theory to examine the rigorous effects of the crystal field interactions of the mixed spin-2 and spin-3 2 Blume-Capel model on the honeycomb lattice in the presence of an external magnetic field. The ground state phase diagram has been constructed. Thermal changes of the order parameters and other thermodynamic quantities of interest and their influence on the phase diagrams of the model have been thoroughly investigated. The system shows very interesting critical properties including continuous and discontinuous phase transitions, tricritical points and compensation temperatures which are revealed in specific ranges of the parameters space. Our numerical findings are compared to those obtained by other methods and reliable agreements are recovered.

  12. Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide.

    Science.gov (United States)

    Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P

    2010-03-24

    The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.

  13. Theoretical studies on nuclear spin selective quantum dynamics of non-linear molecules; Theoretische Untersuchung zur Quantendynamik der Kernspinisomere nicht-linearer Molekuele

    Energy Technology Data Exchange (ETDEWEB)

    Grohmann, Thomas

    2012-05-31

    In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points

  14. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  15. Longitudinal Field Muon Spin Rotation Study of Magnetic Freezing in Fe Rich FeSe0.25Te0.75

    Science.gov (United States)

    MacFarlane, W. A.; Ofer, O.; Chow, K. H.; Hossain, M. D.; Parolin, T. J.; Saadaoui, H.; Song, Q.; Wang, D.; Arseneau, D. J.; Hitti, B.; Yeh, K.-W.; Ke, C.-T.; Wu, M.-K.

    We study the freezing of magnetic fluctuations in an Fe rich sample of the "11" iron-based superconductor using longitudinal field muon spin relaxation. The magnetic relaxation rate peaks at 15 K indicating spin glass freezing that nearly coincides with the superconducting transition of the corresponding Fe stoichiometric phase. At this temperature, the magnetic field dependence of the relaxation indicates slow magnetic fluctuations on the nanosecond timescale.

  16. Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    NARCIS (Netherlands)

    Mosendz, O.; Vlaminck, V.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.

    2010-01-01

    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in nonmagnetic conductors. Here we study the spin-pumping-induced

  17. Ferromagnetic resonance study of the half-Heusler alloy NiMnSb. The benefit of using NiMnSb as a ferromagnetic layer in pseudo-spin-valve based spin-torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Riegler, Andreas

    2011-11-25

    Since the discovery of spin torque in 1996, independently by Berger and Slonczewski, and given its potential impact on information storage and communication technologies, (e.g. through the possibility of switching the magnetic configuration of a bit by current instead of a magnetic field, or the realization of high frequency spin torque oscillators (STO)), this effect has been an important field of spintronics research. One aspect of this research focuses on ferromagnets with low damping. The lower the damping in a ferromagnet, the lower the critical current that is needed to induce switching of a spin valve or induce precession of its magnetization. In this thesis ferromagnetic resonance (FMR) studies of NiMnSb layers are presented along with experimental studies on various spin-torque (ST) devices using NiMnSb. NiMnSb, when crystallized in the half-Heusler structure, is a half-metal which is predicted to have 100% spin polarization, a consideration which further increases its potential as a candidate for memory devices based on the giant magnetoresistance (GMR) effect. The FMR measurements show an outstandingly low damping factor for NiMnSb, in low 10{sup -3} range. This is about a factor of two lower than permalloy and well comparable to lowest damping for iron grown by molecular beam epitaxy (MBE). According to theory the 100% spin polarization properties of the bulk disappear at interfaces where the break in translational symmetry causes the gap in the minority spin band to collapse but can remain in other crystal symmetries such as (111). Consequently NiMnSb layers on (111)(In,Ga)As buffer are characterized in respect of anisotropies and damping. The FMR measurements on these samples indicates a higher damping that for the 001 samples, and a thickness dependent uniaxial in-plane anisotropy. Investigations of the material for device use is pursued by considering sub-micrometer sized elements of NiMnSb on 001 substrates, which were fabricated by electron

  18. Spin Waves in Ho2Co17

    DEFF Research Database (Denmark)

    Clausen, Kurt Nørgaard; Lebech, Bente

    1980-01-01

    Spin wave excitations in a single crystal of Ho2Co17 have been studied at 4.8 and 78 K. The results are discussed in terms of a linear spin wave model. At 78 K both ground state and excited state spin waves are observed.......Spin wave excitations in a single crystal of Ho2Co17 have been studied at 4.8 and 78 K. The results are discussed in terms of a linear spin wave model. At 78 K both ground state and excited state spin waves are observed....

  19. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    Science.gov (United States)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite

  20. Neutron spin echo studies of the effects of temperature and pressure in a ternary microemulsion

    CERN Document Server

    Kawabata, Y; Seto, H; Takeda, T; Komura, S; Schwahn, D

    2002-01-01

    In order to clarify the self-assembling mechanisms in complex fluids involving amphiphiles, we have investigated dynamic features of amphiphilic membranes and droplets at high temperature and at high pressure in a ternary microemulsion, consisting of AOT, water, and n-decane. A high-pressure cell for neutron spin echo (NSE) experiments has been improved, and the static and dynamic features of droplets are observed in detail by means of small angle neutron scattering and NSE. It is found that the size fluctuation and the diffusion of droplets are enhanced by increasing temperature, while they are suppressed by increasing pressure. (orig.)

  1. Electron spin resonance (ESR) studies on irradiated cocoa beans and niger seeds

    International Nuclear Information System (INIS)

    Mangaonkar, S.R.; Natarajan, V.; Sastry, M.D.; Desai, S.R.P.; Kulkarni, P.R.

    1997-01-01

    Electron spin resonance (ESR) spectra of irradiated (10kGy) and unirradiated cocoa beans and niger seeds have been compared. Unirradiated cocoa beans failed to give any ESR signal, whereas after irradiation (10kGy) an ESR signal at g = 2.0042 was observed. However, ESR signals are given by both irradiated and unirradiated niger seeds. The intensity of signal was found to be dose-dependent up to 10kGy for both seeds. The signals were stable up to 180 days in both cases. The results indicate the possibility of using ESR for distinguishing between irradiated and unirradiated cocoa beans but not for niger seeds

  2. Spin-wave dynamics in Invar Fe sub 6 sub 5 Ni sub 3 sub 5 alloy studied by small-angle polarized neutron scattering

    CERN Document Server

    Grigoriev, S V; Deriglazov, V V; Okorokov, A I; Dijk, N H V; Brück, E; Klaasse, J C P; Eckerlebe, H; Kozik, G

    2002-01-01

    Spin dynamics in Fe sub 6 sub 5 Ni sub 3 sub 5 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below T sub C =485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping GAMMA were obtained by fitting the antisymmetrical contribution to the scattering. The spin-wave stiffness extrapolated by a (T/T sub C) sup 5 sup / sup 2 law to T=0 K is D sub 0 =117+-2 meVA sup 2 , which is somewhat smaller than the spin-wave stiffness obtained by triple-axis spectrometry. (orig.)

  3. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ{sup +} spin relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Arosio, Paolo, E-mail: paolo.arosio@guest.unimi.it; Orsini, Francesco [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Corti, Maurizio [Department of Physics, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Department of Physics and Astronomy, Università degli Studi di Bologna, Bologna (Italy); Bogani, Lapo [Physikalisches Institut, Universität Stuttgart, Stuttgart (Germany); Caneschi, Andrea [INSTM and Department of Chemistry, University of Florence, Firenze (Italy); Lago, Jorge [Departamento de Quimica Inorganica, Universidad del Pais Vasco, Bilbao (Spain); Lascialfari, Alessandro [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Centro S3, Istituto Nanoscienze - CNR, Modena (Italy)

    2015-05-07

    The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  4. Towards spin injection into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dash, S.P.

    2007-08-15

    Si has been studied for the purpose of spin injection extensively in this thesis. Three different concepts for spin injection into Si have been addressed: (1) spin injection through a ferromagnet-Si Schottky contact, (2) spin injection using MgO tunnel barriers in between the ferromagnet and Si, and (3) spin injection from Mn-doped Si (DMS) as spin aligner. (1) FM-Si Schottky contact for spin injection: To be able to improve the interface qualities one needs to understand the atomic processes involved in the formation of silicide phases. In order to obtain more detailed insight into the formation of such phases the initial stages of growth of Co and Fe were studied in situ by HRBS with monolayer depth resolution.(2) MgO tunnel barrier for spin injection into Si: The fabrication and characterization of ultra-thin crystalline MgO tunnel barriers on Si (100) was presented. (3) Mn doped Si for spin injection: Si-based diluted magnetic semiconductor samples were prepared by doping Si with Mn by two different methods i) by Mn ion implantation and ii) by in-diffusion of Mn atoms (solid state growth). (orig.)

  5. Spin dynamics with inertia in metallic ferromagnets

    Science.gov (United States)

    Kikuchi, Toru; Tatara, Gen

    2015-11-01

    The nonadiabatic contribution of environmental degrees of freedom yields an effective inertia of spin in the effective spin dynamics. In this paper, we study several aspects of the inertia of spin in metallic ferromagnets: (i) a concrete expression of the spin inertia ms: ms=ℏ Sc/(2 gsd) , where Sc is the spin polarization of conduction electrons and gsd is the s d coupling constant; (ii) a dynamical behavior of spin with inertia, discussed from the viewpoints of a spinning top and of a particle on a sphere; (iii) the behavior of spin waves and domain walls in the presence of inertia and the behavior of spin with inertia under a time-dependent magnetic field.

  6. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  7. Muon spin rotation and other microscopic probes of spin-glass dynamics

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.

    1980-01-01

    A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized

  8. Electron spin echo study of the E'-center phase relaxation in γ-irradiated quartz glass

    International Nuclear Information System (INIS)

    Dudkin, V.I.; Petrun'kin, V.Yu.; Rubinov, S.V.; Uspenskij, L.I.

    1986-01-01

    Experimental studies of phase relaxation of E'-centres in γ-irradiated quartz glass are conducted by the method of electron spin echo (ESE) for different concentrations of paramagnetic centres. Contribution of mechanisms of spectral and prompt diffusion to kinetics of amplitude drop of echo signal is proved to reduce with growth of delay time between exciting microwave pulse that results in increase of phase memory time at large delays. The mentioned property can be used in electric controlled delay lines on the base of ESE

  9. A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions

    Directory of Open Access Journals (Sweden)

    Colin Barschel

    2015-01-01

    Full Text Available We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The target provides a high areal density at minimum gas input, which may be polarized 1H, 2H, or 3He gas or heavy inert gases in a wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 1033/cm2 s can be produced with existing techniques.

  10. Spin currents in metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Czeschka, Franz Dominik

    2011-09-05

    A pure spin current, i.e., a flow of angular momentum without accompanying net charge current, is a key ingredient in the field of spintronics. In this thesis, we experimentally investigated two different concepts for pure spin current sources suggested by theory. The first is based on a time-dependent magnetization precession which ''pumps'' a pure spin current into an adjacent non-magnetic conductor. Our experiments quantitatively corroborated important predictions expected theoretically for this approach, including the dependence of the spin current on the sample geometry and the microwave power. Even more important, we could show for the first time that the spin pumping concept is viable in a large variety of ferromagnetic materials and that it only depends on the magnetization damping. Therefore, our experiments established spin pumping as generic phenomenon and demonstrated that it is a powerful way to generate pure spin currents. The second theoretical concept is based on the conversion of charge currents into spin currents in non-magnetic nanostructures via the spin Hall effect. We experimentally investigated this approach in H-shaped, metallic nanodevices, and found that the predictions are linked to requirements not realizable with the present experimental techniques, neither in sample fabrication nor in measurement technique. Indeed, our experimental data could be consistently understood by a spin-independent transport model describing the transition from diffusive to ballistic transport. In addition, the implementation of advanced fabrication and measurement techniques allowed to discover a new non-local phenomenon, the non-local anisotropic magnetoresistance. Finally, we also studied spin-polarized supercurrents carried by spin-triplet Cooper pairs. We found that low resistance interfaces are a key requirement for further experiments in this direction. (orig.)

  11. Ab initio study of charge, spin and orbital ordering in manganites

    CERN Document Server

    Tyer, R

    2001-01-01

    The subject of this thesis was the calculation of the electronic structure for the manganites LaMnO sub 3 and CaMnO sub 3. The implementation of the Self-Interaction Corrected Local Spin Density (SIC-LSD) formalism within the Tight Binding Linear Muffin-Tin Orbital method in conjunction with the Atomic Sphere Approximation was used for these calculations. The SIC-LSD total energy functional has been used to investigate the spin ordering and valency of CaMnO sub 3 and LaMnO sub 3. In order to assess the role of the structural distortion in LaMnO sub 3 , these calculations were performed for an idealised cubic structure as well as for the observed distorted orthorhombic structure. Orbital rotations of the localised (SIC corrected) states were implemented. These orbital rotations were then used to perform the first ab-initio investigation of orbital ordering in LaMnO sub 3. For the experimentally observed A-type antiferromagnetic ordering, the correct orbital structure of alternating manganese d sub 3 sub x sub ...

  12. Numerical Study of Field-reversed Configurations: The Formation and Ion Spin-up

    International Nuclear Information System (INIS)

    Belova, E.V.; Davidson, R.C.; Ji, H.; Yamada, M.; Cothran, C.D.; Brown, M.R.; Schaffer, M.J.

    2005-01-01

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs, and the new FRC formation method by counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good qualitative agreement with results from the SSX-FRC experiment. The simulations show formation of an FRC in about 20-30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects

  13. Quantum Monte Carlo studies of a metallic spin-density wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Max Henner

    2017-01-20

    Plenty experimental evidence indicates that quantum critical phenomena give rise to much of the rich physics observed in strongly correlated itinerant electron systems such as the high temperature superconductors. A quantum critical point of particular interest is found at the zero-temperature onset of spin-density wave order in two-dimensional metals. The appropriate low-energy theory poses an exceptionally hard problem to analytic theory, therefore the unbiased and controlled numerical approach pursued in this thesis provides important contributions on the road to comprehensive understanding. After discussing the phenomenology of quantum criticality, a sign-problem-free determinantal quantum Monte Carlo approach is introduced and an extensive toolbox of numerical methods is described in a self-contained way. By the means of large-scale computer simulations we have solved a lattice realization of the universal effective theory of interest. The finite-temperature phase diagram, showing both a quasi-long-range spin-density wave ordered phase and a d-wave superconducting dome, is discussed in its entirety. Close to the quantum phase transition we find evidence for unusual scaling of the order parameter correlations and for non-Fermi liquid behavior at isolated hot spots on the Fermi surface.

  14. Quantitative study of optical pumping in the presence of spin-exchange relaxation

    Science.gov (United States)

    Shi, Yongqi; Scholtes, Theo; Grujić, Zoran D.; Lebedev, Victor; Dolgovskiy, Vladimir; Weis, Antoine

    2018-01-01

    We have performed quantitative measurements of the variation of the on-resonance absorption coefficients κ0 of the four hyperfine components of the Cs D1 transition as a function of laser power P , for pumping with linearly and with circularly polarized light. Sublevel populations derived from rate equations assuming isotropic population relaxation (at a rate γ1) yield algebraic κ0(P ) dependences that do not reproduce the experimental findings from Cs vapor in a paraffin-coated cell. However, numerical results that consider spin-exchange relaxation (at a rate γse) and isotropic relaxation fit the experimental data perfectly well. The fit parameters, viz., the absolute value of κ0, the optical pumping saturation power Psat, and the ratio γse/γ1 , are well described by the experimental conditions and yield absolute values for γ1 and γse. The latter is consistent with the previously published Cs-Cs spin-exchange relaxation cross section.

  15. Magnus expansion paradoxes in the study of equilibrium magnetization and entanglement in multi-pulse spin locking

    Science.gov (United States)

    Kuznetsova, E. I.; Fel'dman, E. B.; Feldman, D. E.

    2016-06-01

    Divergence of the Magnus expansion leads to paradoxes in the spin dynamics of solid-state NMR and in quantum informatics. This review presents results on quasi-equilibrium magnetization in a system of dipole-dipole (DD) coupled spins at times T_2\\ll t \\ll T1ρ in multiple-pulse spin locking ( T_2 is the transverse spin relaxation time and T1ρ is the rotating-frame spin-lattice relaxation time). It is shown how contradictions between the results obtained with the Magnus expansion and experimental data can be removed. Systems of two and three DD coupled spins in multi-pulse spin locking are considered, and the entanglement evolution is investigated using both the Magnus expansion and the exact solution. The critical temperature for an entangled state is also found.

  16. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...

  17. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, Ján; Mokhov, E.

    2016-01-01

    Roč. 119, č. 13 (2016), 1-7, č. článku 135706. ISSN 0021-8979 R&D Projects: GA ČR GP13-06697P; GA MŠk LO1409; GA MŠk LM2015088 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * SiC * nitrogen donors * relaxation times Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.068, year: 2016

  18. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been...... explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating...... in the c direction of Tb have been studied experimentally by means of inelastic neutron scattering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed...

  19. Temperature- and pressure-dependent structural study of {Fe(pmd)2[Ag(CN)2]2}n spin-crossover compound by neutron Laue diffraction.

    Science.gov (United States)

    Rodríguez-Velamazán, José Alberto; Cañadillas-Delgado, Laura; Castro, Miguel; McIntyre, Garry J; Real, José Antonio

    2014-06-01

    The effect of pressure (up to 0.17 GPa) on the spin-crossover compound {Fe(pmd)2[Ag(CN)2]2}n [orthorhombic isomer (II), pmd = pyrimidine] has been investigated by temperature- and pressure-dependent neutron Laue diffraction and magnetometry. The cooperative high-spin ↔ low-spin transition, centred at ca 180 K at ambient pressure, is shifted to higher temperatures as pressure is applied, showing a moderate sensitivity of the compound to pressure, since the spin transition is displaced by ca 140 K GPa(-1). The space-group symmetry (orthorhombic Pccn) remains unchanged over the pressure-temperature (P-T) range studied. The main structural consequence of the high-spin to low-spin transition is the contraction of the distorted octahedral [FeN6] chromophores, being more marked in the axial positions (occupied by the pmd units), than in the equatorial positions (occupied by four [Ag(CN)2](-) bridging ligands).

  20. Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Madami, M., E-mail: marco.madami@fisica.unipg.it; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Moriyama, T.; Tanaka, K.; Ono, T. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Siracusano, G.; Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Messina (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, Bari (Italy)

    2015-05-07

    We employed micro-focused Brillouin light scattering to study the amplification of the thermal spin wave eigenmodes by means of a pure spin current, generated by the spin-Hall effect, in a transversely magnetized Pt(4 nm)/NiFe(4 nm)/SiO{sub 2}(5 nm) layered nanowire with lateral dimensions 500 × 2750 nm{sup 2}. The frequency and the cross section of both the center (fundamental) and the edge spin wave modes have been measured as a function of the intensity of the injected dc electric current. The frequency of both modes exhibits a clear redshift while their cross section is greatly enhanced on increasing the intensity of the injected dc. A threshold-like behavior is observed for a value of the injected dc of 2.8 mA. Interestingly, an additional mode, localized in the central part of the nanowire, appears at higher frequency on increasing the intensity of the injected dc above the threshold value. Micromagnetic simulations were used to quantitatively reproduce the experimental results and to investigate the complex non-linear dynamics induced by the spin-Hall effect, including the modification of the spatial profile of the spin wave modes and the appearance of the extra mode above the threshold.

  1. Overview of spin physics

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1992-12-23

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.

  2. In a spin at Brookhaven spin physics

    CERN Document Server

    Makdisi, Y I

    2003-01-01

    The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).

  3. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  4. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  5. High-spin nuclear target of 178m2Hf: creation and nuclear reaction studies

    International Nuclear Information System (INIS)

    Oganessyan, Yu.Ts.; Karamyan, S.A.; Gangrskij, Yu.P.

    1993-01-01

    A long-lived (31 years) four-quasiparticle isomer 178m 2 Hf(I,K π =16,16 + ) was produced in microweight quantities using the nuclear reaction 176 Yb( 4 He, 2n). Methods of precision chemistry and mass-separation for the purification of the produced Hf material have been developed. Thin targets of isomeric hafnium-178 on carbon backings were prepared and used in experiments on a neutron, proton and deuteron beams. First results on nuclear reactions on a high-spin exotic target were obtained. Experiments on electromagnetic interactions of the isomeric hafnium using methods of the collinear laser spectroscopy as well as of the nuclear orientation of hafnium implanted into a crystalline media were started. 11 refs.; 11 figs.; 2 tabs

  6. Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: A field dependence study

    Science.gov (United States)

    Carrião, M. S.; Aquino, V. R. R.; Landi, G. T.; Verde, E. L.; Sousa, M. H.; Bakuzis, A. F.

    2017-05-01

    Understanding high-field amplitude electromagnetic heat loss phenomena is of great importance, in particular, in the biomedical field, because the heat-delivery treatment plans might rely on analytical models that are only valid at low field amplitudes. Here, we develop a nonlinear response model valid for single-domain nanoparticles of larger particle sizes and higher field amplitudes in comparison to the linear response theory. A nonlinear magnetization expression and a generalized heat loss power equation are obtained and compared with the exact solution of the stochastic Landau-Lifshitz-Gilbert equation assuming the giant-spin hypothesis. The model is valid within the hyperthermia therapeutic window and predicts a shift of optimum particle size and distinct heat loss field amplitude exponents, which is often obtained experimentally using a phenomenological allometric function. Experimental hyperthermia data with distinct ferrite-based nanoparticles and third harmonic magnetization data support the nonlinear model, which also has implications for magnetic particle imaging and magnetic thermometry.

  7. Muon spin rotation studies involving muonium at high pH

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.M.; Walker, D.C.

    1983-06-01

    The muon spin rotation method was used to determine the muon yields in concentrated KOH solutions and to evaluate Arrhenius parameters for the reaction of muonium with hydroxyl ions in dilute aqueous solutions. This latter reaction is relatively slow due to a substantial activation energy, yet there is no kinetic isotope effect at room temperature. The kinetics are well represented by the relationship log ksub(M) = 14.38 - 2100(+-260)/T. The observed enhancement of the diamagentic muon yield (Psub(D)) from 0.62 to 0.79 as the (KOH) was increased from 0 to 20 M can be accounted for in terms of a 'hot-model' mechanism, by allowing Ksub(M) (or the hot fraction) to vary somewhat. The failure of Psub(D) to reach 1.0 in such concentrated OH - solutions shows that the muons do not all emerge from the epithermal processes of the track as free μ + ions

  8. Spin--orbit configuration-interaction study of valence and Rydberg states of LiBe

    International Nuclear Information System (INIS)

    Marino, M.M.; Ermler, W.C.; Kern, C.W.; Bondybey, V.E.

    1992-01-01

    Ab initio spin--orbit full configuration-interaction calculations in the context of relativistic effective core potentials are reported for the weakly bound metal dimer LiBe, a three-valence-electron system. The effects of basis set on the energies of valence and Rydberg states of the cluster are discussed, as are the effects of configuration space selection on the energy of the latter states. Results at the dissociative limit are compared to the experimental atomic spectra. Potential-energy curves and spectroscopic constants are presented for the ground state and fourteen excited states, which includes the Li and Be 2p valence states, the Li 3s, 3p, 3d, and 4s Rydberg states, as well as three low-lying states of the molecular cation

  9. Spin-lattice interactions studied by polarised and unpolarised inelastic scattering application to the invar problem

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-11-01

    A semi-quantitative analysis is given of some of the ways in which spin-lattice interactions can modify the cross-sections observable in neutron scattering experiments. This analysis is applied to the scattering from the invar alloy Fe{sub 65}Ni{sub 35} using a model in which the magnetic moment is a function of the near neighbour separation. This model has been applied to clarify the results of inelastic scattering experiments carried out on Fe{sub 65}Ni{sub 35} using both polarised and unpolarised neutrons. The extra information obtainable using polarised neutrons as well as the difficulties and limitations of the technique for inelastic scattering are discussed. (author) 8 figs., 14 refs.

  10. Polyakov loop and spin correlators on finite lattices. A study beyond the mass gap

    International Nuclear Information System (INIS)

    Engels, J.; Neuhaus, T.

    1995-01-01

    We derive an analytic expression for point-to-point correlation functions of the Polyakov loop based on the transfer matrix formalism. For the 2D Ising model we show that the results deduced from point-point spin correlators are coinciding with those from zero momentum correlators. We investigate the contributions from eigenvalues of the transfer matrix beyond the mass gap and discuss the limitations and possibilities of such an analysis. The finite size behaviour of the obtained 2D Ising model matrix elements is examined. The point-to-point correlator formula is then applied to Polyakov loop data in finite temperature SU(2) gauge theory. The leading matrix element shows all expected scaling properties. Just above the critical point we find a Debye screening mass μ D /T∼4, independent of the volume. ((orig.))

  11. Muon spin rotation study of the topological superconductor SrxBi2Se3

    Science.gov (United States)

    Leng, H.; Cherian, D.; Huang, Y. K.; Orain, J.-C.; Amato, A.; de Visser, A.

    2018-02-01

    We report transverse-field (TF) muon spin rotation experiments on single crystals of the topological superconductor SrxBi2Se3 with nominal concentrations x =0.15 and 0.18 (Tc˜3 K). The TF spectra (B =10 mT), measured after cooling to below Tc in field, did not show any additional damping of the muon precession signal due to the flux line lattice within the experimental uncertainty. This puts a lower bound on the magnetic penetration depth λ ≥2.3 μ m . However, when we induce disorder in the vortex lattice by changing the magnetic field below Tc, a sizable damping rate is obtained for T →0 . The data provide microscopic evidence for a superconducting volume fraction of ˜70 % in the x =0.18 crystal and thus bulk superconductivity.

  12. SPIN-selling

    CERN Document Server

    Rackham, Neil

    1995-01-01

    True or false? In selling high-value products or services: "closing" increases your chance of success; it is essential to describe the benefits of your product or service to the customer; objection handling is an important skill; and open questions are more effective than closed questions. All false, says Neil Rackham. He and his team studied more than 35,000 sales calls made by 10,000 sales people in 23 countries over 12 years. Their findings revealed that many of the methods developed for selling low-value goods just don't work for major sales. Rackham went on to introduce his SPIN-selling method, where SPIN describes the whole selling process - Situation questions, Problem questions, Implication questions, Need-payoff questions. SPIN-selling provides you with a set of simple and practical techniques which have been tried in many of today's leading companies with dramatic improvements to their sales performance.

  13. Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Sheila G. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Grupo de Biofisica e Fisica Aplicada a Medicina, Instituto de Fisica, Universidade Federal de Goias, Campus Samambaia, C.P. 131, 74001-970, Goiania, GO (Brazil); Cristina Nonato, M. [Laboratorio de Cristalografia de Proteinas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe S/N, 14040-903, Ribeirao Preto, SP (Brazil); Costa-Filho, Antonio J., E-mail: ajcosta@ffclrp.usp.br [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Av. Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EcDHODH is a membrane-associated enzyme and a promising target for drug design. Black-Right-Pointing-Pointer Enzyme's N-terminal extension is responsible for membrane association. Black-Right-Pointing-Pointer N-terminal works as a molecular lid regulating access to the protein interior. -- Abstract: Dihydroorotate dehydrogenases (DHODHs) are enzymes that catalyze the fourth step of the de novo synthesis of pyrimidine nucleotides. In this reaction, DHODH converts dihydroorotate to orotate, using a flavine mononucleotide as a cofactor. Since the synthesis of nucleotides has different pathways in mammals as compared to parasites, DHODH has gained much attention as a promising target for drug design. Escherichia coli DHODH (EcDHODH) is a family 2 DHODH that interacts with cell membranes in order to promote catalysis. The membrane association is supposedly made via an extension found in the enzyme's N-terminal. In the present work, we used site directed spin labeling (SDSL) to specifically place a magnetic probe at positions 2, 5, 19, and 21 within the N-terminal and thus monitor, by using Electron Spin Resonance (ESR), dynamics and structural changes in this region in the presence of a membrane model system. Overall, our ESR spectra show that the N-terminal indeed binds to membranes and that it experiences a somewhat high flexibility that could be related to the role of this region as a molecular lid controlling the entrance of the enzyme's active site and thus allowing the enzyme to give access to quinones that are dispersed in the membrane and that are necessary for the catalysis.

  14. High-spin states in 214Rn, 216Ra and a study of even-even N = 128 systematics

    International Nuclear Information System (INIS)

    Loennroth, T.; Horn, D.; Baktash, C.; Lister, C.J.; Young, G.R.

    1983-01-01

    High-spin states in 214 Rn and 216 Ra have been studied by means of the reaction 208 Pb( 13 C, α 3n #betta#) 214 Rn and 208 Pb( 13 C, 5n #betta#) 216 Ra at beam energies in the range 75--95 MeV. In-beam spectroscopy techniques, including #betta#-decay excitation functions, α-#betta# coincidences, #betta#-#betta# coincidences, #betta#-ray angular distributions, and pulsed-beam-#betta# timing, were utilized to establish level energies, #betta#-ray multipolarities, J/sup π/ assignments, and isomeric lifetimes. Excited states with spins up to 23h in 214 Rn and roughly-equal30h in 216 Ra were observed. Isomers were found in 214 Rn at 1625 keV (T/sub 1/2/ = 9 ns, J/sup π/ = 8 + ), 1787 keV (22 ns, 10 + ), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216 Ra at 1708 keV (8 ns, 8 + ) and 5868 keV (10 ns, approx.24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N = 128 even-even nuclei is discussed

  15. Electronic structures and spectroscopic properties of CdI: MRCI+Q study including spin-orbit coupling

    Science.gov (United States)

    Li, Rui; Zhang, Hua; Liu, Xiaohua; Zhao, Shutao; Liu, Yadong; Yan, Bing

    2018-01-01

    Cadmium iodide (CdI), which is a candidate for laser material in chemical lasing, has attracted considerable scientific interest. While the complete picture for electronic structure of CdI is still unclear, particularly for the interactions of excited states. In this paper, high-level configuration interaction method is applied to compute the low-lying electronic states of the lowest two dissociation limits (Cd(1S) + I(2P) and Cd(3P) + I(2P)). To ensure the accuracy, the Davidson correction, core-valence electronic correlations and spin-orbit coupling effects are also taken into account. The potential energy curves of the 14 Λ-S states and 30 Ω states obtained from those Λ-S states are calculated. On the basis of the computed potential energy curves, the spectroscopic constants of bound and quasibound states are determined, most of which have not been reported in existing studies. The calculated values of spin-orbit coupling matrix elements demonstrate that the B2Σ+1/2 state imposes a strong perturbation on ν‧> 0 vibrational level of C2Π1/2, which can explain the weak spectral intensity of C2Π1/2-X2Σ+1/2 observed in previous experiment. The transition dipole moments as well as the lifetimes are evaluated to predict the transition properties of B2Σ+1/2, C2Π1/2 and 22Π3/2 states.

  16. Study of the origin of magnetic couples induced by spin-orbit coupling in Co/Pt-based asymmetrical structures

    International Nuclear Information System (INIS)

    Drouard, Marc

    2014-01-01

    In order to reduce power consumption in next generations' electronic devices, one potential solution is to implement non-volatility in memory cells. In this goal, the magnetization switching of a ferromagnetic material has been used in a memory concept: the MRAM. The latest development of this technology, called SOT-RAM, is based on new phenomena called SOTs (Spin-Orbit Torques) in order to control magnetization direction. Contrary to precedent generations (STT-MRAM), it should achieve a higher operating speed and an endurance adapted for cache and main memories applications. SOTs is a generic term referring to all the effects, linked to the spin-orbit interaction, and that enable magnetization reversal. They are yet not perfectly understood. The main objective of this Ph.D. was then to study these SOTs through a quasi-static experimental measurement setup based on anomalous and planar Hall effects. Its implementation and the associated analysis method, as well as the required theoretical considerations for data interpretation are detailed in this manuscript. It has been highlighted that magnetization switching in perpendicularly magnetization cobalt-platinum Systems cannot be explained by the simple models considered thus far in the literature. As a matter of fact it has been evidenced that at least two effects have to be considered in order to explain observed phenomena. In addition, they present different susceptibility both to a modification of the crystal structure and to a temperature change. (author) [fr

  17. Study of irradiation effects in the silicon carbide cubic polytype by photoluminescence and electron spin resonance spectroscopies

    International Nuclear Information System (INIS)

    Lefevre, J.

    2008-01-01

    This experimental work has consisted in the study of point defects induced by an electronic irradiation in the cubic crystallographic structure of silicon carbide with low temperature photoluminescence and electron spin resonance spectroscopies. The first one of these measurement tools has allowed to estimate the displacement threshold energy in the silicon sub-lattice and then to analyze the thermal stability of the irradiation defects in the low temperature range: (10-300 K) and then in the high temperature range: (300-1400 K). Besides, on the base of a recent theoretical model, this thesis has confirmed the proposition of the isolated silicon antisite for the D1 center whose running beyond the nominal running temperature of fission nuclear reactors (generation IV), for which SiC is in part intended, seems to be particularly problematic. Measurements carried out by ESR under lighting have at last allowed to detect a new defect in its metastable spin state S=1, possibly associated to a silicon interstitial configuration. (O.M.)

  18. QUANTITATIVE CHANGES IN REGIONAL CEREBRAL BLOOD FLOW INDUCED BY COLD, HEAT AND ISCHEMIC PAIN: A CONTINUOUS ARTERIAL SPIN LABELING STUDY

    Science.gov (United States)

    Frölich, Michael A.; Deshpande, Hrishikesh; Ness, Timothy; Deutsch, Georg

    2012-01-01

    Background The development of arterial spin labeling methods, has allowed measuring regional cerebral blood flow (rCBF) quantitatively and to show the pattern of cerebral activity associated with any state such as a sustained pain state or changes due to a neurotropic drug. Methods We studied the differential effects of three pain conditions in ten healthy subjects on a 3T scanner during resting baseline, heat, cold and ischemic pain using continuous arterial spin labeling. Results Cold pain showed the greatest absolute rCBF increases in left anterior cingulate cortex, left amygdala, left angular gyrus, and Brodmann Area 6, and a significant rCBF decrease in the cerebellum. Changes in rCBF were characteristic of the type of pain condition: cold and heat pain showed increases, while the ischemic condition showed a reduction in mean absolute gray matter flow compared to rest. An association of subjects’ pain tolerance and cerebral blood flow was noted. Conclusions The observation that quantitative rCBF changes are characteristic of the pain task employed and that there is a consistent rCBF change in Brodman area 6, an area responsible for the integration of a motor response to pain, should provide extremely useful information in the quest to develop an imaging biomarker of pain. Conceivably, response in BA6 may serve as an objective measure of analgesic efficacy. PMID:22913924

  19. Hand-spinning chrysotile exposure and risk of malignant mesothelioma: A case-control study in Southeastern China.

    Science.gov (United States)

    Jiang, Zhaoqiang; Chen, Tianhui; Chen, Junqiang; Ying, Shibo; Gao, Zhibin; He, Xianglei; Miao, Chao; Yu, Min; Feng, Lingfang; Xia, Hailing; Wu, Wei; Chen, Riping; Morinaga, Kenji; Lou, Jianlin; Zhang, Xing

    2018-02-01

    While chrysotile has been commonly used by Chinese textile industry for many years, investigations on the association of chrysotile exposure with risk of mesothelioma in China are scarce. We conducted a case-control study in a county located at Southeastern China, including 46 cases and 230 individually matched controls. A semi-quantitative method based on experts' assessment was used for evaluating hand-spinning chrysotile exposure. Conditional logistic regression models were used to assess the association of asbestos exposure with risk of mesothelioma. We found that hand-spinning chrysotile exposure was associated with significantly elevated risk of mesothelioma, reaching OR =10 (95% CIs: 1.4-65) for possible exposure and 64 (12-328) for definite exposure. Our data suggested a dose-response relationship of chrysotile exposure duration with risk of mesothelioma, reaching 28 (6-134) for  28.6 f/mL-years. We found a dose-response relationship of chrysotile exposure duration and CEI with risk of mesothelioma in Southeastern China, adding valuable information on health hazards of chrysotile exposure in China where chrysotile is still used nationwide. © 2017 UICC.

  20. Theoretical study of the low-lying electronic states of magnesium sulfide cation including spin-orbit interaction

    Science.gov (United States)

    Chen, Peng; Wang, Ning; Li, Song; Chen, Shan-Jun

    2017-11-01

    Highly correlated ab initio calculations have been performed for an accurate determination of electronic structures and spectroscopic features for the low-lying electronic states of the MgS+ cation. The potential energy curves for the four Λ-S states correlating to the lowest dissociation asymptote are studied for the first time. Four Λ-S states split into nine Ω states through the spin-orbit coupling effect. Accurate spectroscopic constants are deduced for all bound states. The spin-orbit couplings and the transition dipole moments, as well as the PECs, are utilized to calculate Franck-Condon factors and radiative lifetimes of the vibrational levels. To verify our computational accuracy, analogous calculations for the ground state of MgS are also carried out, and our derived results are in reasonable agreement with available experimental data. In addition, photoelectron spectrum of MgS has been simulated. The predictive results are anticipated to serve as guidelines for further researches such as assisting laboratorial detections and analyzing observed spectrum.

  1. Density matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension

    Science.gov (United States)

    Kaushal, Nitin; Herbrych, Jacek; Nocera, Alberto; Alvarez, Gonzalo; Moreo, Adriana; Reboredo, F. A.; Dagotto, Elbio

    2017-10-01

    Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ , at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase to an excitonic insulator with increasing λ at intermediate U . In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum 〈(Jeff)2〉≠0 near the excitonic phase, smoothly connected to the 〈(Jeff)2〉=0 regime. We also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.

  2. Thermally activated magnetization reversal in monatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations

    International Nuclear Information System (INIS)

    Bauer, David S G; Mavropoulos, Phivos; Bluegel, Stefan; Lounis, Samir

    2011-01-01

    We analyse the spontaneous magnetization reversal of supported monatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian in the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and triaxial anisotropy and found that a triaxial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.

  3. Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems

    Science.gov (United States)

    Hamamoto, Keita; Ezawa, Motohiko; Kim, Kun Woo; Morimoto, Takahiro; Nagaosa, Naoto

    2017-06-01

    Spin current plays a central role in spintronics. In particular, finding more efficient ways to generate spin current has been an important issue and has been studied actively. For example, representative methods of spin-current generation include spin-polarized current injections from ferromagnetic metals, the spin Hall effect, and the spin battery. Here, we theoretically propose a mechanism of spin-current generation based on nonlinear phenomena. By using Boltzmann transport theory, we show that a simple application of the electric field E induces spin current proportional to E2 in noncentrosymmetric spin-orbit coupled systems. We demonstrate that the nonlinear spin current of the proposed mechanism is supported in the surface state of three-dimensional topological insulators and two-dimensional semiconductors with the Rashba and/or Dresselhaus interaction. In the latter case, the angular dependence of the nonlinear spin current can be manipulated by the direction of the electric field and by the ratio of the Rashba and Dresselhaus interactions. We find that the magnitude of the spin current largely exceeds those in the previous methods for a reasonable magnitude of the electric field. Furthermore, we show that application of ac electric fields (e.g., terahertz light) leads to the rectifying effect of the spin current, where dc spin current is generated. These findings will pave a route to manipulate the spin current in noncentrosymmetric crystals.

  4. Nuclear Spin-Spin Coupling in HD, HT, and DT

    Science.gov (United States)

    Puchalski, Mariusz; Komasa, Jacek; Pachucki, Krzysztof

    2018-02-01

    The interaction between nuclear spins in a molecule is exceptionally sensitive to the physics beyond the standard model. However, all present calculations of the nuclear spin-spin coupling constant J are burdened by computational difficulties, which hinders the comparison to experimental results. Here, we present a variational approach and calculate the constant J in the hydrogen molecule with the controlled numerical precision, using the adiabatic approximation. The apparent discrepancy with experimental result is removed by an analysis of nonadiabatic effects based on the experimental values of the J constant for HD, HT, and DT molecules. This study significantly improves the reliability of the NMR theory for searching new physics in the spin-spin coupling.

  5. Adiabatic states derived from a spin-coupled diabatic transformation: semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+.

    Science.gov (United States)

    Valero, Rosendo; Truhlar, Donald G; Jasper, Ahren W

    2008-06-26

    The development of spin-coupled diabatic representations for theoretical semiclassical treatments of photodissociation dynamics is an important practical goal, and some of the assumptions required to carry this out may be validated by applications to simple systems. With this objective, we report here a study of the photodissociation dynamics of the prototypical HBr system using semiclassical trajectory methods. The valence (spin-free) potential energy curves and the permanent and transition dipole moments were computed using high-level ab initio methods and were transformed to a spin-coupled diabatic representation. The spin-orbit coupling used in the transformation was taken as that of atomic bromine at all internuclear distances. Adiabatic potential energy curves, nonadiabatic couplings and transition dipole moments were then obtained from the diabatic ones and were used in all the dynamics calculations. Nonadiabatic photodissociation probabilities were computed using three semiclassical trajectory methods, namely, coherent switching with decay of mixing (CSDM), fewest switches with time uncertainty (FSTU), and its recently developed variant with stochastic decoherence (FTSU/SD), each combined with semiclassical sampling of the initial vibrational state. The calculated branching fraction to the higher fine-structure level of the bromine atom is in good agreement with experiment and with more complete theoretical treatments. The present study, by comparing our new calculations to wave packet calculations with distance-dependent ab initio spin-orbit coupling, validates the semiclassical trajectory methods, the semiclassical initial state sample scheme, and the use of a distance-independent spin-orbit coupling for future applications to polyatomic photodissociation. Finally, using LiBr(+) as a model system, it is shown that accurate spin-coupled potential curves can also be constructed for odd-electron systems using the same strategy as for HBr.

  6. Magnetism of unconventional nanoscaled materials. An X-ray circular dichroism and muon spin rotation study

    International Nuclear Information System (INIS)

    Tietze, Thomas Hermann

    2014-01-01

    significant shape dependence was observed. This part of the thesis provides a microscopic understanding of the electronic and magnetic properties of Ni nanocluster on graphene and the cluster/graphene interaction. The resulting strong change in the Ni d states is very important concerning the choice of suitable materials for graphene based spintronic devices. The second part of this thesis is dedicated to the indirect influence of the nanoparticle size on the magnetic properties of an oxide system. In particular the origin of ferromagnetism in actual nonmagnetic ZnO is discussed. The reason for ferromagnetism in ZnO depends strongly on its microscopic properties. Nanocrystalline samples with adequate small grains are mandatory. The key parameter is the so called specific grain boundary area which is defined as ratio of grain surface to grain volume. If this value exceeds a certain threshold limit, ZnO can become ferromagnetic even without doping atoms. Here the ferromagnetic coupling is suggested to occur within the grain boundaries itself. A direct proof of this hypothesis is difficult. Measurement methods like SQUID do not provide information on the microscopic origin of the sample magnetization. Therefore, this problem was addressed using low energy muon spin rotation (μSR). Here, the magnetic moment of the muon is utilized as a local magnetic probe. Three different sample systems were investigated, varying the respective grain size. Two nanograined samples with an average grain size of 31 nm and 65 nm were compared to a nonmagnetic reference ZnO single crystal. A detailed TEM analysis of the grain size distribution showed that in both nanograined samples a significant fraction of grains is smaller than the threshold condition. SQUID and μSR measurements show a clear relation between magnetization respectively magnetic volume fraction and the sample volume occupied by grain boundaries. For larger grain boundary volume a larger saturation magnetization and μSR related

  7. Some studies of the relativistic theories for spin-3/2 particles and its interactions with an uniforme magnetic field

    International Nuclear Information System (INIS)

    Oliveira, M.A.B. de.

    1984-01-01

    We present our investigations on the problems of non-causality of propagation, at the c-number level, of four spin 3/2 theories in the Schroedinger form employing the minimum number of eight components, in interaction with a constant magnetic field. Analyzing first the basic formulations of free particle spin 3/2 relativistic wave equations, we deduze, extending to spin 3/2 Dirac's ''spin 1/2 factorization'' of the mas condition, a new eight-component relativistic wave equation in the Schroedinger form for this spin and prove its relativistic invariance. We demostrate explicitly that the entire content of the Rarita-Schwinger (RS) theory for spin 3/2 can be written in the form of two Dirac-Like wave equations. We demonstrate that our wave equation for spin 3/2 cab indeed be deduzed from a modified RS theory wherein both Hamiltonians above referred to are taken hermitian. We also establish, in a transparent maner, the equivalences existing between the formalisms of RS, Belinfante and Hurley-Sudarshan for spin 3/2. We investigate the c-number problem of the stationary state eigevalues of the spin 3/2 Hamiltonians in a constant external magnetic field, in the four theories in the Schoedinger form with eight components, those of Moldauer and Case (deduzed from TS theory), of Weaver, Hammer and Good. (autor) [pt

  8. Overview of longitudinal spin physics at PHENIX

    International Nuclear Information System (INIS)

    Liu, Mingxiong

    2007-01-01

    We present a brief overview of the longitudinal spin physics program in the PHENIX experiment at the Relativistic Heavy Ion Collider at BNL. The main goal is to study the longitudinal spin structure of the proton with strongly interacting probes at high energy to resolve the long standing 'spin crisis'. The latest results from PHENIX are presented. (author)

  9. Geometry of Spin: Clifford Algebraic Approach

    Indian Academy of Sciences (India)

    of Pauli matrices follow from the underlying algebra. Clif- ford algebraic approach provides a geometrical and hence intuitive way to understand quantum theory of spin, and is a natural formalism to study spin. Clifford algebraic formal- ism has lot of applications in every field where spin plays an important role. Introduction.

  10. Geometry of Spin: Clifford Algebraic Approach

    Indian Academy of Sciences (India)

    ... all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a geometrical and henceintuitive way to understand quantum theory of spin, and isa natural formalism to study spin. Clifford algebraic formalismhas lot of applications in every field where spin plays animportant role.

  11. Spin echo in synchrotrons

    Directory of Open Access Journals (Sweden)

    Alexander W. Chao

    2007-01-01

    Full Text Available As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δν_{spin} of the beam (particularly due to its energy spread is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δν_{spin} is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging way to experimentally test the intricate spin dynamics in a synchrotron

  12. The quantum brachistochrone problem for an arbitrary spin in a magnetic field

    Science.gov (United States)

    Kuzmak, A. R.; Tkachuk, V. M.

    2015-06-01

    We consider quantum brachistochrone evolution for a spin-s system on rotational manifolds. Such manifolds are determined by the rotation of the eigenstates of the operator of projection of spin-s on some direction. The Fubini-Study metrics of these manifolds are those of spheres with radii dependent on the value of the spin and on the value of the spin projection. The conditions for optimal evolution of the spin-s system on rotational manifolds are obtained.

  13. Disorder and Quantum Spin Ice

    Science.gov (United States)

    Martin, N.; Bonville, P.; Lhotel, E.; Guitteny, S.; Wildes, A.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.; Mirebeau, I.; Petit, S.

    2017-10-01

    We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr2Zr2O7 . Since Pr3 + is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr2Zr2O7 promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.

  14. Disorder and Quantum Spin Ice

    Directory of Open Access Journals (Sweden)

    N. Martin

    2017-10-01

    Full Text Available We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr_{2}Zr_{2}O_{7}. Since Pr^{3+} is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr_{2}Zr_{2}O_{7} promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.

  15. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    OpenAIRE

    Yu, Zhao-xian; Jiao, Zhi-yong

    2003-01-01

    In this paper, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-$\\pm1$, spin-0 and spin-$\\pm2$ exhibit the step structure under the external cosinusoidal magnetic field respectively, but there do not exist step structure among spin-$\\pm1$ and spin-$\\pm2$. The tunneling current among spin-$\\pm1$ and spin-$\\pm2$ may exhibit periodically oscillation behavior, but among spin-0 and spin-$\\p...

  16. How Anatomy Shapes Dynamics: A Semi-Analytical Study of the Brain at Rest by a Simple Spin Model

    Directory of Open Access Journals (Sweden)

    Gustavo eDeco

    2012-09-01

    Full Text Available Resting state networks show a surprisingly coherent and robust spatiotemporal organization. Previous theoretical studies demonstrated that these patterns can be understood as emergent on the basis of the underlying neuroanatomical connectivity skeleton. Integrating the biologically realistic DTI/DSI based neuroanatomical connectivity into a brain model of Ising spin dynamics, we found the presence of latent ghost multi-stable attractors, which can be studied analytically. The multistable attractor landscape defines a functionally meaningful dynamic repertoire of the brain network that is inherently present in the neuroanatomical connectivity. We demonstrate that the more entropy of attractors exists, the richer is the dynamical repertoire and consequently the brain network displays more capabilities of computation. We hypothesize therefore that human brain connectivity developed a scale free type of architecture in order to be able to store a large number of different and flexibly accessible brain functions

  17. How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model.

    Science.gov (United States)

    Deco, Gustavo; Senden, Mario; Jirsa, Viktor

    2012-01-01

    Resting state networks (RSNs) show a surprisingly coherent and robust spatiotemporal organization. Previous theoretical studies demonstrated that these patterns can be understood as emergent on the basis of the underlying neuroanatomical connectivity skeleton. Integrating the biologically realistic DTI/DSI-(Diffusion Tensor Imaging/Diffusion Spectrum Imaging)based neuroanatomical connectivity into a brain model of Ising spin dynamics, we found a system with multiple attractors, which can be studied analytically. The multistable attractor landscape thus defines a functionally meaningful dynamic repertoire of the brain network that is inherently present in the neuroanatomical connectivity. We demonstrate that the more entropy of attractors exists, the richer is the dynamical repertoire and consequently the brain network displays more capabilities of computation. We hypothesize therefore that human brain connectivity developed a scale free type of architecture in order to be able to store a large number of different and flexibly accessible brain functions.

  18. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    International Nuclear Information System (INIS)

    Iashina, E G; Grigoriev, S V; Bouwman, W G; Duif, C P; Filatov, M V

    2017-01-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrometer length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei which is well fitted by the exponential function G ( z ) = exp(− z / ξ ), where ξ is the correlation length of a nucleus (in experimental data ξ = 3, 3 μ m). The exponential decay of G ( z ) corresponds to the logarithmic pair correlation function γ ( r ) = ln( ξ / r ). As the sensitivity of the SESANS signal depends on the neutron wavelength, we propose the SESANS setup with the changeable wavelength in the range from 2 to 12 Å. Such option allows one to study in great detail the internal structure of the biological cell in the length scale from 10 −2 μ m to 10 μ m. (paper)

  19. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    Science.gov (United States)

    Iashina, E. G.; Bouwman, W. G.; Duif, C. P.; Filatov, M. V.; Grigoriev, S. V.

    2017-06-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrmeter length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei which is well fitted by the exponential function G(z) = exp(-z/ξ), where ξ is the correlation length of a nucleus (in experimental data ξ = 3, 3 μm). The exponential decay of G(z) corresponds to the logarithmic pair correlation function γ(r) = ln(ξ/r). As the sensitivity of the SESANS signal depends on the neutron wavelength, we propose the SESANS setup with the changeable wavelength in the range from 2 to 12 Å. Such option allows one to study in great detail the internal structure of the biological cell in the length scale from 10-2 μm to 10 μm.

  20. Spin-polarized scanning tunneling microscopy and spectroscopy study of chromium on a Cr(001) surface.

    Science.gov (United States)

    Lagoute, J; Kawahara, S L; Chacon, C; Repain, V; Girard, Y; Rousset, S

    2011-02-02

    Several tens of chromium layers were deposited at 250 °C on a Cr(001) surface and investigated by spin-polarized scanning tunneling microscopy (SP-STM), Auger electron spectroscopy (AES) and scanning tunneling spectroscopy (STS). Chromium is found to grow with a mound-like morphology resulting from the stacking of several monolayers which do not uniformly cover the whole surface of the substrate. The terminal plane consists of an irregular array of Cr islands with lateral sizes smaller than 20 × 20 nm(2). Combined AES and STS measurements reveal the presence of a significant amount of segregants prior to and after deposition. A detailed investigation of the surface shows that it consists of two types of patches. Thanks to STS measurements, the two types of area have been identified as being either chromium pure or segregant rich. SP-STM experiments have evidenced that the antiferromagnetic layer coupling remains in the chromium mounds after deposition and is not significantly affected by the presence of the segregants.

  1. Elucidation of spin echo small angle neutron scattering correlation functions through model studies.

    Science.gov (United States)

    Shew, Chwen-Yang; Chen, Wei-Ren

    2012-02-14

    Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics

  2. Magnetic states of MnP: muon-spin rotation studies.

    Science.gov (United States)

    Khasanov, R; Amato, A; Bonfà, P; Guguchia, Z; Luetkens, H; Morenzoni, E; De Renzi, R; Zhigadlo, N D

    2017-04-26

    Muon-spin rotation data collected at ambient pressure (p) and at p  =  2.42 GPa in MnP were analyzed to check their consistency with various low- and high-pressure magnetic structures reported in the literature. Our analysis confirms that in MnP the low-temperature and low-pressure helimagnetic phase is characterised by an increased value of the average magnetic moment compared to the high-temperature ferromagnetic phase. An elliptical double-helical structure with a propagation vector [Formula: see text], an a-axis moment elongated by approximately 18% and an additional tilt of the rotation plane towards c-direction by [Formula: see text]-8° leads to a good agreement between the theory and the experiment. The analysis of the high-pressure μSR data reveals that the new magnetic order appearing for pressures exceeding 1.5 GPa can not be described by keeping the propagation vector [Formula: see text]. Even the extreme case-decoupling the double-helical structure into four individual helices-remains inconsistent with the experiment. It is shown that the high-pressure magnetic phase which is a precursor of superconductivity is an incommensurate helical state with [Formula: see text].

  3. Solute-Vacancy Clustering In Al-Mg-Si Alloys Studied By Muon Spin Relaxation Technique

    Directory of Open Access Journals (Sweden)

    Nishimura K.

    2015-06-01

    Full Text Available Zero-field muon spin relaxation experiments were carried out with Al-1.6%Mg2Si, Al-0.5%Mg, and Al-0.5%Si alloys. Observed relaxation spectra were compared with the calculated relaxation functions based on the Monte Carlo simulation to extract the dipolar width (Δ, trapping (νt, and detrapping rates (νd, with the initially trapped muon fraction (P0. The fitting analysis has elucidated that the muon trapping rates depended on the heat treatment and solute concentrations. The dissolved Mg in Al dominated the νt at lower temperatures below 120 K, therefore the similar temperature variations of νt were observed with the samples mixed with Mg. The νt around 200 K remarkably reflected the heat treatment effect on the samples, and the largest νt value was found with the sample annealed at 100°C among Al-1.6%Mg2Si alloys. The as-quenched Al-0.5%Si sample showed significant νt values between 80 and 280 K relating with Si-vacancy clusters, but such clusters disappeared with the natural aged Al-0.5%Si sample.

  4. Proton spin lattice relaxation studies in lithium ammonium sulfate LiNH4SO4

    International Nuclear Information System (INIS)

    Shenoy, R.K.; Ramakrishna, J.

    1979-01-01

    Lithium ammonium sulfate (LAS) undergoes a phase transition at Tsub(c1) = 459.5deg K from a paraelectric phase (phase 1) to a ferroelectric phase (phase II) and again at Tsub(c2) = 283deg K to a polar ferroelastic phase (phase III). Proton spin lattice relaxation investigations in the temperature range 480-77deg K at 10 MHz show discontinuous changes in Tsub(1) at the transition temperatures, indicating first order phase transitions. The absence of the slow motion region (ωsub(not)tausub(not)>>1) shows that the ammonium ions are reorienting fast enough to keep the resonance absorption line narrow down to liquid nitrogen temperatures. The possibility of a second minimum and a low activation energy, Esub(a) = 2.659 kcal/mole, in phase III suggest the possibility of tunnelling of the protons at low temperatures. The nature of the transitions have been discussed in the light of the available literature. The unusually high activation energy, Esub(a) = 17.845 kcal/mole, in the paraelectric phase has been attributed to the possible diffusion of protons. (auth.)

  5. ESR (Electronic Spin Resonance Spectroscopy) study of irradiated paper for biomedical material wrapping

    International Nuclear Information System (INIS)

    Huarte, Monica; Rubin de Celis, Emilio; Kairiyama, Eulogia; Zapata, Miguel; Santoro, Natalia; Magnavacca, Cecilia

    2009-01-01

    Ionising radiation treatments are used for sterilization, microbiological decontamination, disinfection, insect disinfestation and food preservation. This ionising radiation generates free radicals (FR) in matter, which can be detected by Electronic Spin Resonance Spectroscopy (ESR). For this work it had analysed different kind of irradiated package papers of syringes, surgical gloves and dressings by ESR. These were irradiated with doses between 20 and 35 kGy of gamma radiation (Cobalt 60). The processed samples were measured in a Bruker ECS 106 spectrometer. The obtained results were: 1-) The irritated samples showed a central peak and two satellites induced by the applied radiation; 2-) The non-irradiated samples did not show the characteristic satellite peaks of the irritated ones; 3-) A linear relationship between the signal heights per unit mass and the applied doses was found; and 4-) The signals were highly stable, with half-time values between 240 and 370 days for 20 and 30 kGy, permitting more than one year of monitoring proceedings. In conclusion, the ESR allows the detection, quantification and time monitoring processes of this kind of irradiated materials. (author) [es

  6. Prediction for spin Fano factor generated by biased quantum spin chains

    Science.gov (United States)

    Aftergood, Joshua; Takei, So

    We theoretically study noise in the spin current injected into a normal metal from a 1D Heisenberg spin- 1 / 2 antiferromagnet. We consider the noise generated in two separate scenarios: first by inducing an over-population of one chiral mode relative to the other in the spin chain at uniform temperature, and second by elevating the temperature of the spin chain relative to the metal, i.e., by way of the spin Seebeck effect. We compute excess noise in the normal metal generated by the coupling to the spin chain and predict the spin Fano factor, defined as the noise in the spin current normalized by the average spin current, for both scenarios. The authors thank the PSC-CUNY Research Award Program for its support.

  7. Spin transport and relaxation in graphene

    International Nuclear Information System (INIS)

    Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.

    2012-01-01

    We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for

  8. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  9. Spin and isospin modes

    International Nuclear Information System (INIS)

    Suzuki, T.; Sagawa, H.

    2000-01-01

    Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)

  10. Large bond-dimension time-evolution block decimation study of the XXZ quantum spin chains of S = 1/2 and 1

    Science.gov (United States)

    Choi, Hwan Bin; Lee, Ji-Woo

    2017-09-01

    We study quantum phase transitions of a XXZ spin model with spin S = 1/2 and 1 in one dimension. The XXZ spin chain is one of basic models in understanding various one-dimensional magnetic materials. To study this model, we construct infinite-lattice matrix product state (iMPS), which is a tensor product form for a one-dimensional many-body quantum wave function. By using timeevolution- block-decimation method (TEBD) on iMPS, we obtain the ground states of the XXZ model at zero temperature. This method is very delicate in calculating ground states so that we developed a reliable method of finding the ground state with the dimension of entanglement coefficients up to 300, which is beyond the previous works. By analyzing ground-state energies, half-chain entanglement entropies, and entanglement spectrum, we found the signatures of quantum phase transitions between ferromagnetic phase, XY phase, Haldane phase, and antiferromagnetic phase.

  11. Plans for the Study of the Spin Properties of the $\\Lb$ Baryon Using the Decay Channel $\\Lb \\ra \\jpsi(\\mumu) \\Lambda(p\\pi^{-})$

    CERN Document Server

    The ATLAS Collaboration

    2009-01-01

    This note summarizes the results of a study of the feasibility of measuring certain spin properties of $\\Lb$ baryon in the ATLAS experiment. We present an assessment of approaches for extracting the inclusive $\\Lb$ polarization and the parity violating $\\alpha_{\\Lb}$ parameter for the decay $\\Lb \\ra \\jpsi(\\mumu)\\Lambda(p\\pi^{-})$ from the reconstructed four final state charged particles. As a key test, we generated Monte Carlo samples of $\\Lb$ events of fixed polarization in the ATLAS detector and evaluated our ability to precisely extract the input polarization from the reconstructed events. The physics motivation for the planned measurements in ATLAS include the search for an explanation of the anomalous spin effects in hyperon inclusive production observed at lower energies, tests of various decay models based on HQET, tests of CP in an area not yet directly explored, and the development of $\\Lb$ polarimetry as a possible tool for spin analysis in future SUSY and other studies.

  12. Study of Spin and Decay-Plane Correlations of W Bosons in the $e^{+} e^{-} \\to W^{+} W^{-}$ Process at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kraber, M; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2005-01-01

    Data collected at LEP at centre-of-mass energies \\sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured.

  13. Spin transition diagram of (2Me-5Et-PyH)[Fe(Th-5Cl-Sa)2] studied by EPR

    International Nuclear Information System (INIS)

    Krupska, A.; Augustyniak-Jablokow, M.A.; Yablokov, V.Yu.; Zelentsov, V.V.

    2005-01-01

    The high-spin - low-spin transition in (2Me-5Et-PyH)[Fe(Th-5Cl-Sa) 2 ] was studied by EPR under hydrostatic pressure in the temperature range of 80-310 K. Two modifications of the low-spin complexes: low-pressure (LS-1) and high-pressure (S-2) ones were observed. The low-spin complexes are associated in domains. Under atmospheric pressure LS-1 appears or disappears at 220 K. The hydrostatic pressure shifts the transition to high temperatures. Above 410 MPa the abrupt changes of the g-factor and width ΔB of the EPR line is observed. The pressure-induced transition LS-1 - LS-2 is almost independent of T up to 275 K where under pressure 420 MPa a triple point is observed. When the pressure has been decreased the reverse transition from LS-2 to LS-1 or to high spin phase (at T > 260 K) occurs with a large hysteresis about 95 MPa. (author)

  14. Neutron-scattering study of the spin-state transition and magnetic correlations in La1-xSrxCoO3 (x=0 and 0.08)

    International Nuclear Information System (INIS)

    Asai, K.; Yokokura, O.; Nishimori, N.; Chou, H.; Tranquada, J.M.; Shirane, G.; Higuchi, S.; Okajima, Y.; Kohn, K.

    1994-01-01

    LaCoO 3 exhibits two magnetic-electronic transitions, one near 90 K and a second near 500 K. A previous study of the paramagnetic scattering using polarized neutrons demonstrated that the low-temperature transition is associated with the thermal excitation of Co 3+ ions from the low-spin to the high-spin state. In the present work, we extend the paramagnetic-scattering measurements up to a temperature of 700 K. We find that the magnetic-scattering intensity decreases monotonically for temperatures above 300 K, indicating that the high-temperature transition is not dominantly magnetic in origin. Furthermore, the anomalous thermal expansion associated with the low-temperature transition is measured and shown to be consistent with a simple theoretical model for the spin-state transition. For comparison, paramagnetic-scattering measurements for La 0.92 Sr 0.08 CoO 3 are also presented. In this material the ferromagnetic correlations are substantially stronger than in the undoped compound, and no transition to the low-spin state is observed. Instead, the paramagnetic scattering increases steadily with decreasing temperature until saturating below 24 K, the same temperature at which the magnetization of the zero-field-cooled specimen shows a sharp cusp. These results suggest that the magnetic moments in the doped compound freeze into a spin-glass state at low temperature

  15. Electron spin resonance studies of ionic permeability properties of thylakoid membranes of Beta vulgaris and Avicennia germinans

    Energy Technology Data Exchange (ETDEWEB)

    Ball, M.C.; Mehlhorn, R.J.; Terry, N.; Packer, L.

    1985-01-01

    Measurement of intrathylakoid aqueous volumes by electron spin resonance spectroscopy was used to study ionic permeability properties of thylakoid membranes isolated from Beta vulgaris L. and Avicennia germinans L. The thylakoids behaved as perfect osmometers in the presence of sorbitol and betaine. Thylakoids exposed to hypertonic solutions of NaCl and KCl shrank and subsequently swelled, requiring 10 minutes to regain their original volume. The initial influx rate calculated from the kinetics of changes in intrathylakoid volume in response to 450 millimolar gradients of NaCl and KCl was 2.3 x 10/sup -13/ moles per square centimeter per second. These data show that the passive permeability to NaCl and KCl was low.

  16. Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface

    Science.gov (United States)

    Hao, Runrun; Zhong, Hai; Kang, Yun; Tian, Yufei; Yan, Shishen; Liu, Guolei; Han, Guangbing; Yu, Shuyun; Mei, Liangmo; Kang, Shishou

    2018-03-01

    The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in Pt/YIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents ({{\\boldsymbol{σ }}}sc}), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electrochemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project, China (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  17. Excited state electron spin coherence (ESESC) studies of triplet states in molecular solids

    Energy Technology Data Exchange (ETDEWEB)

    Tarrasch, M.E.

    1978-02-01

    The field of coherent spectroscopy of two-level systems is applied to the lowest triplet state of organic molecules. By neglecting the triplet sublevel not coupled by the field, it is possible to describe the remaining two levels with Feynman-Vernon-Hellwarth geometrical representation of a general two-level system. The equations of motion of the pseudomagnetization are derived after transformation to the rotating frame, as are Bloch-type equations which include phenomenological relaxation times. The loss of coherence due to exchange between triplet states with different Larmor frequencies but identical zero-field dipolar tensor axes is then discussed. By writing two sets of coupled Bloch equations, expressions for the effective decay rate and frequency shift of the experimentally monitored triplet system are derived and discussed in the limits of slow and rapid exchange. This analysis is applied to intramolecular tunneling between different configurations of cyclopentanone. It is shown by both spin locking and CW spectra that the tunneling rate is considerably slower than the phosphorescence decay rate of the lowest triplet state. Rotary echoes are considered, both on- and off-resonance, with Average Hamiltonian theory. It is shown that relaxation fields perpendicular to the driving field are averaged while those parallel to it are not. The inhomogeneity in the broadening mechanism is completely removed by on-resonance rotary echoes but only partially eliminated by off-resonance rotary echoes. Calculations for off-resonance rotary echo intensities are presented and extended to include triplet sublevel population kinetics and inhomogeneous broadening. Finally, experimental observation of rotary echoes in several 1,2,4,5-Tetrachlorobenzene systems is reported and compared with the theoretical predictions made.

  18. Study by electron spin resonance (ESR) of 60 Co irradiated grains and farinaceous derivatives

    International Nuclear Information System (INIS)

    Catanni, Marta Mattos.

    1995-01-01

    The electron spin resonance (ESR) spectroscopy is being pointed out as one of the most promising techniques to determine whether a food has been irradiated. In this work, the ESR spectrum of paramagnetic radicals produced by gamma irradiation of grains and flour derivatives using a 60 Co source was investigated. Samples of grains (wheat and barley), flours (wheat, maniac, rye, soy bean and maize), bran and starch have been irradiated with doses between 0.2 and 70 KGy. It was shown that all varieties of grains and flours presented similar ESR spectra with variation in the free radicals signal intensity. Measurements at 9.5 and 34.5 GHz shown that spectra were composed probably by the superposition of four paramagnetic species with g-factors closed to that of the free electron (2 triplets, 1 doublet and 1 singlet). Hyperfine interactions and the correspondingly line widths were estimated through an spectrum computer simulation. It was established that ESR signal intensities increased with the irradiation dose for all samples. Up to the commercial admissible dose limit (1 kGy), the increase of ESR signal shown a linear behavior with the dose. The signal stability varied significantly with storage conditions and sample humidity. For 1 kGy-irradiated samples stored at room temperature and 14% humidity, the ESR radiation signals were possible to be detected up to 5 days after irradiation. When the same samples were stored at low temperatures (0 0 C) or freeze-dried (almost 0% humidity) the ESR signals were detected until 6 months after irradiation. Similar ESR spectrum found for grains and flours was obtained for diverse starchy food products. It was verified that it is possible to identify for a long time irradiated starchy foods when they are commercialized dehydrated or frozen. (author). 66 refs., 35 figs., 17 tabs

  19. Resonant spin-wave modes in trilayered magnetic nanowires studied in the parallel and antiparallel ground state

    International Nuclear Information System (INIS)

    Gubbiotti, G.; Nguyen, H.T.; Hiramatsu, R.; Tacchi, S.; Cottam, M.G.; Ono, T.

    2015-01-01

    Brillouin light scattering has been utilized to study the field dependence of resonant spin-wave modes in layered NiFe(30 nm)/Cu(10 nm)/NiFe(15 nm)/Cu(10 nm)/NiFe(30 nm) nanowires of rectangular cross section, 150 nm wide and formed in arrays that are spaced laterally by 400 nm. The major and minor longitudinal hysteresis curves have been measured by the magneto-optical Kerr effect technique, with applied field parallel to the length of the nanowires. The light-scattering spectra were recorded as a function of the magnetic field strength, encompassing both the parallel and antiparallel alignments of the middle stripe with respect to the magnetization direction of the outermost ones. The field ranges for the antiparallel state are different from those for the parallel case, while the mode frequencies change abruptly at the parallel-to-antiparallel transition field (and vice versa). The modes detected in the antiparallel state are found to have only a weak dependence on the applied magnetic field, whether along the major or minor hysteresis curves, while in the parallel state the mode frequencies monotonically increase with the applied magnetic field. The experimental results have been successfully interpreted, across the whole range of the magnetic fields investigated, in terms of the mode localizations across the width and in the layered structure. This was accomplished by means of a microscopic (Hamiltonian-based) theory, which has been extended here to the case of non-parallel magnetic ground states. - Highlights: • We study the resonant spin waves in layered nanowires of rectangular cross section. • Both the parallel and antiparallel magnetization alignments have been explored. • Frequency of modes in the antiparallel state are independent on the magnetic field. • Experimental results we interpreted by means of an Hamiltonian-based theory

  20. High spin studies of neutron-rich nuclei produced in the spontaneous fission process of californium-252

    Science.gov (United States)

    Zhang, Xueqian

    2001-08-01

    From an experiment with GAMMMASPHERE and a 252Cf spontaneous fission source, high spin studies of several neutron-rich nuclei have been carried out. In the mass region A ~ 150, a new negative-parity band in 154Nd and new negative-parity levels in 152Nd were identified and the yrast bands were extended to 18+ in 154Nd and 20+ 152Nd in a triple gamma coincidence study. These new negative-parity bands are consistent with octupole vibrational mode rather than the stable octupole deformation seen in Ba and Ce nuclei. There is a constant difference as a function of spin between the J1 values for the negative-parity band in 152Nd and J1 for the similar negative-parity band in 154Nd, however, their J2 values are essentially identical above the 4 + state. These bands indicate a new kind of identical bands associated with an octupole vibrational mode. In mass region A ~ 110, we have observed new bands in 113,115,117,118 Pd up to moderately high spin. The newly identified negative-parity yrast band energy level systematics built on the / isomeric states fit smoothly with the known systematic for other Pd isotopes, and show a minimum excitation energy at N = 68 related to a mid-shell closure. These new negative- parity yrast bands indicate a first band crossing at ¢ω ~ 0.45 MeV, nearly identical to those seen in 109,111Pd, but significantly higher than those in the positive yrast parity bands in 113,115Pd and in the even-even Pd isotopes. We have interpreted the new negative-parity yrast bands as having band crossings from the alignment of a nh/ pair, and this suggests that 113,115,117Pd maintain a prolate shape. Additionally, we have observed two new bands in 113,115 Pd, which are tentatively assigned positive parity with band crossings about 0.25 and 0.32 MeV. These lower frequencies are consistent with a nh/ pair alignment. In the neutron-rich 118Pd, the first band crossing at a frequency of ¢ω ~ 0.29 MeV was observed in its yrast band. This band crossing frequency is

  1. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  2. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  3. Modeling And Simulation Of Prolate Dual-Spin Satellite Dynamics In An Inclined Elliptical Orbit: Case Study Of Palapa B2R Satellite

    OpenAIRE

    Muliadi, J.; Jenie, S. D.; Budiyono, A.

    2008-01-01

    In response to the interest to re-use Palapa B2R satellite nearing its End of Life (EOL) time, an idea to incline the satellite orbit in order to cover a new region has emerged in the recent years. As a prolate dual-spin vehicle, Palapa B2R has to be stabilized against its internal energy dissipation effect. This work is focused on analyzing the dynamics of the reusable satellite in its inclined orbit. The study discusses in particular the stability of the prolate dual-spin satellite under th...

  4. Crossover between spin swapping and Hall effect in disordered systems

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2015-07-16

    We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.

  5. F center-molecular ion couples in alkali halides: Magneto-optics study (part two). Spin lattice relaxation time and electron spin memory; Studi di magnetoottica sulla coppia centro F-ione molecolare negli alogenuri alcalini: Parte 2. Misura del tempo di rilassamento spin-reticolo e della memoria di spin dell`elettrone nel ciclo ottico

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Botti, S.; Grassano, U.M.; Luty, F.

    1991-10-01

    The spin-lattice relaxation time in the ground state, T/sub 1/, and the spin-mixing parameter during the optical cycle, epsilon, were measured in FH(OH) and FH(CN) centers in various alkali halides (KCl, KBr, KI, CsCl, and CsBr). For a close comparison, all experiments were performed before and after the optical association of the F center and molecular ion. T/sub 1/ becomes shorter before and still more after aggregation with respect to the values measured in the pure crystal, especially at very low magnetic fields. Epsilon decreases a little in crystals doped with OH-, while it increases a lot in crystals doped with CN-. Part of these results can be interpreted within the actual knowledge of the F-center physics. Part have been used to shed some light on the various unknown aspects of the energy transfer between the excited F-center and the molecular ion.

  6. High-spin states in 214Rn, 216Ra and a study of even-even N=128 systematics

    Science.gov (United States)

    Lönnroth, T.; Horn, D.; Baktash, C.; Lister, C. J.; Young, G. R.

    1983-01-01

    High-spin states in 214Rn and 216Ra have been studied by means of the reaction 208Pb(13C, α 3n γ)214Rn and 208Pb(13C, 5n γ)216Ra at beam energies in the range 75-95 MeV. In-beam spectroscopy techniques, including γ-decay excitation functions, α-γ coincidences, γ-γ coincidences, γ-ray angular distributions, and pulsed-beam-γ timing, were utilized to establish level energies, γ-ray multipolarities, Jπ assignments, and isomeric lifetimes. Excited states with spins up to 23ℏ in 214Rn and ~30ℏ in 216Ra were observed. Isomers were found in 214Rn at 1625 keV (T12=9 ns, Jπ=8+), 1787 keV (22 ns, 10+), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216Ra at 1708 keV (8 ns, 8+) and 5868 keV (10 ns, ~24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N=128 even-even nuclei is discussed. NUCLEAR STRUCTURE 208Pb(13C, α 3n γ)214Rn, 208Pb(13C, 5n γ) 216Ra, Elab=75-95 MeV. Measured α-γ coin, γ-γ(t) coin, I(θ), pulsed-beam-γ timing. Deduced level schemes, Jπ, T12, B(EL), multipolarities. Shell model calculations, Ge(Li) and Si detectors, enriched target.

  7. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. The kinematic differences between off-spin and leg-spin bowling in cricket.

    Science.gov (United States)

    Beach, Aaron J; Ferdinands, René E D; Sinclair, Peter J

    2016-09-01

    Spin bowling is generally coached using a standard technical framework, but this practice has not been based upon a comparative biomechanical analysis of leg-spin and off-spin bowling. This study analysed the three-dimensional (3D) kinematics of 23 off-spin and 20 leg-spin bowlers using a Cortex motion analysis system to identify how aspects of the respective techniques differed. A multivariate ANOVA found that certain data tended to validate some of the stated differences in the coaching literature. Off-spin bowlers had a significantly shorter stride length (p = 0.006) and spin rate (p = 0.001), but a greater release height than leg-spinners (p = 0.007). In addition, a number of other kinematic differences were identified that were not previously documented in coaching literature. These included a larger rear knee flexion (p = 0.007), faster approach speed (p < 0.001), and flexing elbow action during the arm acceleration compared with an extension action used by most of the off-spin bowlers. Off-spin and leg-spin bowlers also deviated from the standard coaching model for the shoulder alignment, front knee angle at release, and forearm mechanics. This study suggests that off-spin and leg-spin are distinct bowling techniques, supporting the development of two different coaching models in spin bowling.

  9. Modulation bandwidth of a spin laser

    Science.gov (United States)

    Banerjee, D.; Adari, R.; Murthy, M.; Suggisetti, P.; Ganguly, S.; Saha, D.

    2011-04-01

    We have studied small signal frequency response of a spin laser. We have shown that the response is characterized by two distinct resonant peaks corresponding to the two polarization modes of the spin laser. It is observed that the modulation bandwidth of a spin laser can be smaller or larger than that of a conventional laser depending upon the current bias and spin relaxation time constant. A small value for spin relaxation constant may not be detrimental for modulation bandwidth. This anomalous observation is explained by considering both the amplitude and phase response of the two polarization modes. A spin laser can act as a combination of low-pass and bandpass filters. The passband frequency range is tunable by external bias. We have also studied the evolution of resonant peaks and modulation bandwidth as a function of spin relaxation time constant.

  10. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  11. Spinning fluids in general relativity

    Science.gov (United States)

    Ray, J. R.; Smalley, L. L.

    1982-01-01

    General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.

  12. Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence : Implications for multi-center studies

    NARCIS (Netherlands)

    Mutsaerts, Henri J. M. M.; van Osch, Matthias J. P.; Zelaya, Fernando O.; Wang, Danny J. J.; Nordhoy, Wibeke; Wang, Yi; Wastling, Stephen; Fernandez-Seara, Maria A.; Petersen, E. T.; Pizzini, Francesca B.; Fallatah, Sameeha; Hendrikse, J|info:eu-repo/dai/nl/266590268; Geier, Oliver; Guenther, Matthias; Golay, Xavier; Nederveen, Aart J.; Bjornerud, Atle; Groote, Inge R.

    Introduction: A main obstacle that impedes standardized clinical and research applications of arterial spin labeling (ASL), is the substantial differences between the commercial implementations of ASL from major MRI vendors. In this study, we compare a single identical 2D gradient-echo EPI

  13. Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: implications for multi-center studies

    NARCIS (Netherlands)

    Mutsaerts, Henri J. M. M.; van Osch, Matthias J. P.; Zelaya, Fernando O.; Wang, Danny J. J.; Nordhøy, Wibeke; Wang, Yi; Wastling, Stephen; Fernandez-Seara, Maria A.; Petersen, E. T.; Pizzini, Francesca B.; Fallatah, Sameeha; Hendrikse, Jeroen; Geier, Oliver; Günther, Matthias; Golay, Xavier; Nederveen, Aart J.; Bjørnerud, Atle; Groote, Inge R.

    2015-01-01

    A main obstacle that impedes standardized clinical and research applications of arterial spin labeling (ASL), is the substantial differences between the commercial implementations of ASL from major MRI vendors. In this study, we compare a single identical 2D gradient-echo EPI pseudo-continuous ASL

  14. Comparative study of pore size of low-dielectric-constant porous spin-on-glass films using different methods of nondestructive instrumentation

    International Nuclear Information System (INIS)

    Kondoh, Eiichi; Baklanov, M.R.; Lin, E.; Gidley, D.; Nakashima, Akira

    2001-01-01

    The pore size of hydrogen-methyl-siloxane-based porous spin-on-glass(SOG) thin films having different k values (k=1.8-2.5) are comparatively studied using different nondestructive instrumental ways and also with reference to sorption porosimetry. The pore size and its spread are found to increase with increasing porosity, or with decreasing dielectric constant. (author)

  15. Electron Spin Resonance (ESR) Studies on the Formation of Roasting-Induced Antioxidative Structures in Coffee Brews at Different Degrees of Roast

    NARCIS (Netherlands)

    Bekedam, E.K.; Schols, H.A.; Cämmerer, B.; Kroh, L.W.; Boekel, van M.A.J.S.; Smit, G.

    2008-01-01

    The antioxidative properties of coffee brew fractions were studied using electron spin resonance spectroscopy using 2,2,6,6-tetramethyl-1-piperidin-1-oxyl (TEMPO) and Fremy¿s salt (nitrosodisulfonate) as stabilized radicals. TEMPO was scavenged by antioxidants formed during roasting and not by

  16. Inhomogeneous Spin Diffusion in Traps with Cold Atoms

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    The spin diusion and damped oscillations are studied in the collision of two spin polarized clouds of cold atoms with resonant interactions. The strong density dependence of the diusion coecient leads to inhomogeneous spin diusion that changes from central to surface spin ow as the temperature...

  17. Electron spin resonance study of gamma-irradiated hair and nails

    International Nuclear Information System (INIS)

    Pembegul, S.

    1996-01-01

    In this work, the properties of radicals produced in human hair and fingernail by irradiation and mechanical degradation have been investigated by using Electron Spin Resonance (ESR) technique. Different hair and nail samples were irradiated by using UV and Y-sources (Co) and the time dependence of decaying of the radicals produced by irradiation have been investigated. The effect of the sun was also examined for hair samples. From the recorded ESR spectra of hair samples collected from a large number of volunteers, it was shown that the signal intensities and the spectroscopic splitting factors g determined from recorded spectra were color dependent. The line width for hair samples are found to be nHPP 4.7 G and the g-factors for different colors of hair vary for fair hair in the range of 2.0037-2.0041, for dark hair 2.0040-2.0043 and for red hair 2.0050-2.0052. Also, dark hairs show greater signal intensity than fair hairs. Nail samples were observed to have spectroscopic splitting factor g=2.0040 and line width u1HPP=4.5 G. By cutting the hair and the nail samples, the effect ot mechanical degradation due to cutting on properties and time variation of the radicals were examined. The decay constants for the 3 lines observed in the nail sample spectra after mechanical degradation were determined to be 6x10-5 s, 1.4x10 s -1 and 12x10a s-1 respectively, for low, central and high fields. Spectra of samples were also recorded at liquid nitrogen (77 K) and in the high temperatures 300-470 K. In 300 - 470 K temperature range, the signal intensities for hair samples were found to increase. When the temperature was decreased from 470 K back to 300 K, signal intensity of the hair sample remained constant. By also using the data recorded from DSC technique, it was decided that the variation in the line intensities of the samples were related to the water content found in the structure. Activation energy for nail samples were determined to be 15.4 kcal/mol by using variable

  18. Spin-spin correlations in the tt'-Hubbard model

    International Nuclear Information System (INIS)

    Husslein, T.; Newns, D.M.; Mattutis, H.G.; Pattnaik, P.C.; Morgenstern, I.; Singer, J.M.; Fettes, W.; Baur, C.

    1994-01-01

    We present calculations of the tt'-Hubbard model using Quantum Monte Carlo techniques. The parameters are chosen so that the van Hove Singularity in the density of states and the Fermi level coincide. We study the behaviour of the system with increasing Hubbard interaction U. Special emphasis is on the spin-spin correlation (SSC). Unusual behaviour for large U is observed there and in the momentum distribution function (n(q)). (orig.)

  19. Self-consistent mean field theory studies of the thermodynamics and quantum spin dynamics of magnetic Skyrmions.

    Science.gov (United States)

    Wieser, R

    2017-05-04

    A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S  =  1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.

  20. Application of the Mössbauer Spectroscopy to Study Harmonically Modulated Electronic Structures: Case Study of Charge- and Spin-Density Waves in Cr and Its Alloys

    Directory of Open Access Journals (Sweden)

    Stanislaw Mieczyslaw Dubiel

    2015-12-01

    Full Text Available Relevance of the Mössbauer spectroscopy in the study of harmonically modulated electronic structures i.e. spin-density waves (SDWs and charge-density waves (CDWs is presented and discussed. First, the effect of various parameters pertinent to the SDWs and CDWs is outlined on simulated 119Sn spectra and distributions of the hyperfine field and the isomer shift. Next, various examples of the 119Sn spectra measured on single-crystals and polycrystalline samples of Cr and Cr-V are reviewed.

  1. A Shandon PapSpin liquid-based gynecological test: A split-sample and direct-to-vial test with histology follow-up study

    Directory of Open Access Journals (Sweden)

    Rimiene J

    2010-01-01

    Full Text Available Background: Studies for liquid-based Papanicolaou (Pap tests reveal that liquid-based cytology (LBC is a safe and effective alternative to the conventional Pap smear. Although there is research on ThinPrep and SurePath systems, information is lacking to evaluate the efficiency and effectiveness of systems based on cytocentrifugation. This study is designed to determine the sensitivity and specificity of the Shandon PapSpin (ThermoShandon, Pittsburgh, Pennsylvania, USA liquid-based gynecological system. We used split-sample and direct-to-vial study design. Materials and Methods: 2,945 women referred to prophylactic check-up were enrolled in this study. Split sample design was used in 1,500 women and residual cervical cytology specimen from all these cases was placed in fluid for PapSpin preparation after performing conventional smear. The direct-to-vial study was carried out in another cohort of 1,445 women in whom the entire cervical material was investigated using only the PapSpin technique. Follow up histological diagnoses for 141 women were obtained from both study arms following 189 abnormal cytology cases. 80 LBC cases from the split sample group and 61 LBC cases in the direct-to-vial group were correlated with the histology results. The sensitivity and secificity of the conventional smear and PapSpin tests in both study arms were compared. Results: In the split sample group, conventional smears showed a higher proportion of ASC-US (atypical cells undetermined significance: 31 (2.1% vs 10 (0.7% in PapSpin (P = 0.001. A higher proportion of unsatisfactory samples was found in the conventional smear group: 25 (1.7% vs 6 (0.4% cases (P = 0.001. In the split sample group, the sensitivity of the conventional and PapSpin tests was 68.7% vs 78.1%, and the specificity 93.8% vs 91.8%, respectively. In the direct to vial group PapSpin sensitivity was 75.9% and specificity 96.5%. The differences in sensitivity and specificity were not significant. The

  2. Spin and radiation in intense laser fields

    International Nuclear Information System (INIS)

    Walser, M.W.; Urbach, D.J.; Hatsagortsyan, K.Z.; Hu, S.X.; Keitel, C.H.

    2002-01-01

    The spin dynamics and its reaction on the particle motion are investigated for free and bound electrons in intense linearly polarized laser fields. Employing both classical and quantum treatments we analytically evaluate the spin oscillation of free electrons in intense laser fields and indicate the effect of spin-orbit coupling on the motion of the electron. In Mott scattering an estimation for the spin oscillation is derived. In intense laser ion dynamics spin signatures are studied in detail with emphasis on high-order harmonic generation in the tunneling regime. First- and second-order calculations in the ratio of electron velocity and the speed of light show spin signatures in the radiation spectrum and spin-orbit effects in the electron polarization

  3. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei

    International Nuclear Information System (INIS)

    Marques, Rosana G.G.; Tavares, Maria I.B.

    2001-01-01

    The evaluation of spin-lattice relaxation times of 1 H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  4. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  5. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  6. Majorana spin in magnetic atomic chain systems

    Science.gov (United States)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  7. Muon spin rotation and neutron scattering study of the noncentrosymmetric tetragonal compound CeAuAl3

    Science.gov (United States)

    Adroja, D. T.; de la Fuente, C.; Fraile, A.; Hillier, A. D.; Daoud-Aladine, A.; Kockelmann, W.; Taylor, J. W.; Koza, M. M.; Burzurí, E.; Luis, F.; Arnaudas, J. I.; del Moral, A.

    2015-04-01

    We have investigated the noncentrosymmetric tetragonal heavy fermion compound CeAuA l3 using muon spin rotation (μ SR ), neutron diffraction (ND), and inelastic neutron scattering (INS) measurements. We have also revisited the magnetic, transport, and thermal properties. The magnetic susceptibility reveals an antiferromagnetic transition at 1.1 K with, possibly, another magnetic transition near 0.18 K. The heat capacity shows a sharp λ -type anomaly at 1.1 K in zero field, which broadens and moves to a higher temperature in an applied magnetic field. Our zero-field μ SR and ND measurements confirm the existence of a long-range magnetic ground state below 1.2 K. Further, the ND study reveals an incommensurate magnetic order with a magnetic propagation vector k =( 0 , 0 , 0.52 (1 )) and a spiral structure of Ce moments coupled ferromagnetically within the a b plane. Our INS study reveals the presence of two well-defined crystal electric field (CEF) excitations at 5.1 and 24.6 meV in the paramagnetic phase of CeAuA l3 that can be explained on the basis of the CEF theory and the Kramer's theorem for a Ce ion having a 4 f1 electronic state. Furthermore, low energy quasielastic excitations show a Gaussian line shape below 30 K compared to a Lorentzian line shape above 30 K, indicating a slowdown of spin fluctuations below 30 K. We have estimated a Kondo temperature of TK=3.5 K from the quasielastic linewidth, which is in good agreement with that estimated from the heat capacity. This study also indicates the absence of any CEF-phonon coupling unlike that observed in isostructural CeCuA l3 The CEF parameters, energy level scheme, and their wave functions obtained from the analysis of INS data explain satisfactorily the single crystal susceptibility in the presence of two-ion anisotropic exchange interaction in CeAuA l3 .

  8. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  9. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  10. Electron spin resonance studies of radiation effects. Final report, 1964-1979 (including annual progress reports for 1978 and 1979)

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, M.T.

    1979-07-01

    The discovery of new free radicals, largely in irradiated single crystals of nonmetallic solids, and the determination of the molecular and electronic structures of these paramagnetic species by electron spin resonance (ESR) spectroscopy, have been carried out using a wide variety of organic and inorganic materials. The mechanisms of production of radicals in solids, their motions, and their reactions have been investigated and some applicable general principles deduced. Emphasis has been on aliphatic free radicals from irradiated carboxylic acids and amides and their halogen-substituted derivatives, organometallic radicals and substituted cyclic hydrocarbon radicals; inorganic radicals studied include V centers, hypervalent radicals and electron adducts. Extensive investigations of paramagnetic transition metal complexes, particularly cyanides and fluorides, have been made. In all cases quantum mechanical calculations have been employed as far as possible in interpreting the data. An improved method for analyzing experimental ESR spectra of single crystals has been developed and a number of crystal structures have been determined to supplement the ESR studies. Applications of nuclear quadrupole resonance spectroscopy to the study of structure and bonding in inorganic solids have been made and a method for using nuclear magnetic relaxation data for estimating quadrupole coupling constants in liquids has been developed.

  11. Low-temperature muon spin rotation studies of the monopole charges and currents in Y doped Ho2Ti2O7.

    Science.gov (United States)

    Chang, L J; Lees, M R; Balakrishnan, G; Kao, Y-J; Hillier, A D

    2013-01-01

    In the ground state of Ho2Ti2O7 spin ice, the disorder of the magnetic moments follows the same rules as the proton disorder in water ice. Excitations take the form of magnetic monopoles that interact via a magnetic Coulomb interaction. Muon spin rotation has been used to probe the low-temperature magnetic behaviour in single crystal Ho2-xYxTi2O7 (x = 0, 0.1, 1, 1.6 and 2). At very low temperatures, a linear field dependence for the relaxation rate of the muon precession λ(B), that in some previous experiments on Dy2Ti2O7 spin ice has been associated with monopole currents, is observed in samples with x = 0, and 0.1. A signal from the magnetic fields penetrating into the silver sample plate due to the magnetization of the crystals is observed for all the samples containing Ho allowing us to study the unusual magnetic dynamics of Y doped spin ice.

  12. Effect of temperature on thermal oxidation of palmitic acid studied by combination of EPR spin trapping technique and SPME-GC-MS/MS.

    Science.gov (United States)

    Chen, Hongjian; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-11-01

    Effect of temperatures on thermal oxidation of palmitic acid was studied by the combination of EPR and GC-MS/MS. DMPO was used as the spin trap. The experimental spectrum was simulated with alkyl and alkoxyl spin adducts. Total amount of spins, a parameter to indicate radical concentrations, detected at 180°C was nearly 10 times higher than that at 175°C. Besides, total amounts of spins detected at 180°C decreased rapidly because of the reaction between radical adducts and newly formed radicals. Signal intensities of alkyl radical adducts increased rapidly from 0.405 to 4.785 from 175°C to 180°C. Besides, more palmitic acid degraded to oxidized compounds from 175°C to 180°C than that of other temperature ranges. The C-C linkages between carbons 2 to 6 were easier to be oxidized at 180°C. The results all implied that oxidation rates of palmitic acid samples increased rapidly from 175°C to 180°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Radiolysis of carbohydrates as studied by ESR and spin-trapping—II. Glycerol- d8 xylitol, dulcitol, d-sorbitol and d-mannitol

    Science.gov (United States)

    Kuwabara, M.; Zhang, Z.-Y.; Inanami, O.; Yoshii, G.

    Studies concerning the radicals produced in glycerol by reactions with OH radicals have been carried out by investigating deuterated glycerol (glycerol-d 8) by spin-trapping with 2-methyl-2-nitrosopropane. Free radicals produced in linear carbohydrates such as xylitol, dulcitol, D-sorbitol and D-mannitol by reactions with OH radicals as well as by direct γ-radiolysis have been also investigated by spin-trapping. The ESR spectra of the spin-trapped radicals were analysed on the basis of the results from ESR and spin-trapping experiments on glycerol and deuterated glycerol, and the formation of three radical species, CHO-CH-, CH 2-CO- and HO-CH-, due to both OH reactions and direct γ-radiolysis was confirmed for all compounds. The presence of a radical, -CO-CH-, was detected for xylitol, D-sorbitol and D-mannitol. General reactions processes induced by OH reactions or γ-radiolysis in the solid state are discussed.

  14. Dynamics of microemulsions bridged with hydrophobically end-capped star polymers studied by neutron spin-echo

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, I., E-mail: ingo.hoffmann@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Malo de Molina, Paula; Gradzielski, M., E-mail: michael.gradzielski@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Farago, B.; Falus, P. [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Herfurth, Christoph; Laschewsky, André [Fraunhofer Institut für Angewandte Polymerforschung IAP, Geiselbergstraße 69, 14476 Potsdam-Golm (Germany)

    2014-01-21

    The mesoscopic dynamical properties of oil-in-water microemulsions (MEs) bridged with telechelic polymers of different number of arms and with different lengths of hydrophobic stickers were studied with neutron spin-echo (NSE) probing the dynamics in the size range of individual ME droplets. These results then were compared to those of dynamicic light scattering (DLS) which allow to investigate the dynamics on a much larger length scale. Studies were performed as a function of the polymer concentration, number of polymer arms, and length of the hydrophobic end-group. In general it is observed that the polymer bridging has a rather small influence on the local dynamics, despite the fact that the polymer addition leads to an increase of viscosity by several orders of magnitude. In contrast to results from rheology and DLS, where the dynamics on much larger length and time scales are observed, NSE shows that the linear polymer is more efficient in arresting the motion of individual ME droplets. This finding can be explained by a simple simulation, merely by the fact that the interconnection of droplets becomes more efficient with a decreasing number of arms. This means that the dynamics observed on the short and on the longer length scale depend in an opposite way on the number of arms and hydrophobic stickers.

  15. From dissipative dynamics to studies of heat transfer at the nanoscale: analysis of the spin-boson model.

    Science.gov (United States)

    Boudjada, Nazim; Segal, Dvira

    2014-11-26

    We study in a unified manner the dissipative dynamics and the transfer of heat in the two-bath spin-boson model. We use the Bloch-Redfield (BR) formalism, valid in the very weak system-bath coupling limit, the noninteracting-blip approximation (NIBA), applicable in the nonadiabatic limit, and iterative, numerically exact path integral tools. These methodologies were originally developed for the description of the dissipative dynamics of a quantum system, and here they are applied to explore the problem of quantum energy transport in a nonequilibrium setting. Specifically, we study the weak-to-intermediate system-bath coupling regime at high temperatures kBT/ħ > ε, with ε as the characteristic frequency of the two-state system. The BR formalism and NIBA can lead to close results for the dynamics of the reduced density matrix (RDM) in a certain range of parameters. However, relatively small deviations in the RDM dynamics propagate into significant qualitative discrepancies in the transport behavior. Similarly, beyond the strict nonadiabatic limit NIBA's prediction for the heat current is qualitatively incorrect: It fails to capture the turnover behavior of the current with tunneling energy and temperature. Thus, techniques that proved meaningful for describing the RDM dynamics, to some extent even beyond their rigorous range of validity, should be used with great caution in heat transfer calculations, because qualitative-serious failures develop once parameters are mildly stretched beyond the techniques' working assumptions.

  16. Simulation study of ballistic spin-MOSFET devices with ferromagnetic channels based on some Heusler and oxide compounds

    Science.gov (United States)

    Graziosi, Patrizio; Neophytou, Neophytos

    2018-02-01

    Newly emerged materials from the family of Heuslers and complex oxides exhibit finite bandgaps and ferromagnetic behavior with Curie temperatures much higher than even room temperature. In this work, using the semiclassical top-of-the-barrier FET model, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts. Such a device could retain the spin polarization of injected electrons in the channel, the loss of which limits the operation of traditional spin transistors with non-ferromagnetic channels. We examine the operation of four material systems that are currently considered some of the most prominent known ferromagnetic semiconductors: three Heusler-type alloys (Mn2CoAl, CrVZrAl, and CoVZrAl) and one from the oxide family (NiFe2O4). We describe their band structures by using data from DFT (Density Functional Theory) calculations. We investigate under which conditions high spin polarization and significant ION/IOFF ratio, two essential requirements for the spin-MOSFET operation, are both achieved. We show that these particular Heusler channels, in their bulk form, do not have adequate bandgap to provide high ION/IOFF ratios and have small magnetoconductance compared to state-of-the-art devices. However, with confinement into ultra-narrow sizes down to a few nanometers, and by engineering their spin dependent contact resistances, they could prove promising channel materials for the realization of spin-MOSFET transistor devices that offer combined logic and memory functionalities. Although the main compounds of interest in this paper are Mn2CoAl, CrVZrAl, CoVZrAl, and NiFe2O4 alone, we expect that the insight we provide is relevant to other classes of such materials as well.

  17. Magnetic, ferroelectric, and spin phonon coupling studies of Sr{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} multiferroic Z-type hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Raju, N.; Shravan Kumar Reddy, S.; Ramesh, J.; Gopal Reddy, Ch.; Yadagiri Reddy, P., E-mail: yadagirireddy@yahoo.com; Rama Reddy, K. [Department of Physics, Osmania University, Hyderabad-500007 (India); Sathe, V. G.; Raghavendra Reddy, V. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452001 (India)

    2016-08-07

    The magnetic, Raman, ferroelectric, and in-field {sup 57}Fe Mössbauer studies of polycrystalline multiferroic Sr{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} are reported in this paper. From the magnetization studies, it is observed that the sample is soft magnetic in nature with low temperature magnetic spin transitions like longitudinal to transverse conical structure around 130 K and change in magnetic crystalline anisotropy from conical to planar structure at 250 K. Ferroelectric studies of the sample exhibit the spontaneous polarization at low temperature. Strong spin phonon and spin lattice coupling is observed through low temperature Raman spectroscopy. From the in-field {sup 57}Fe Mössbauer spectroscopy, spin up and spin down site occupations of Fe ions are calculated in the unit cell.

  18. Intrinsic spin lifetimes in GaAs (110) quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Georg; Roemer, Michael; Huebner, Jens; Oestreich, Michael [Institut fuer Festkoerperphysik, Gottfried Wilhelm Leibniz Universitaet Hannover, Hannover (Germany); Schuh, Dieter; Wegscheider, Werner [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg (Germany)

    2009-07-01

    GaAs(110) quantum wells attract great attention due to the long spin lifetime for electron spins along the growth axis and are, therefore, of interest for future spin based optoelectronic devices. At low temperatures, optical injection of a finite spin polarization yields strongly enhanced spin dephasing due to the Bir Aronov Pikus mechanism that arises from the exchange interaction between electrons and holes. Thus, the intrinsic spin lifetime in GaAs(110) quantum wells has been unknown. In this work, the non-demolition technique of spin noise spectroscopy, which only relies on statistical spin fluctuations, is applied to GaAs(110) quantum wells in order to measure the intrinsic spin lifetimes. Furthermore, the Brownian motion of the electrons modifies the linewidth of the measured spin noise spectra due to time of flight broadening. This effect uniquely allows to study electronic motion at thermal equilibrium.

  19. Spin trapping study on the nature of radicals generated by X radiolysis and peroxidation of linolenic acid

    International Nuclear Information System (INIS)

    Azizova, O.A.; Osipov, A.N.; Zubarev, V.E.; Yakhyaev, A.V.; Vladimirov, Yu.A.; Savov, V.M.; Kagan, V.E.

    1983-01-01

    The radicals of linolenic acid and their spin adducts (SA) with PBN formed during X radiolysis of linolenic acid and in lipid peroxidation with ferrous ions were investigated and identified. It was found that in the absence of oxygen in pure linolenic acid at 77 K X irradiation produces alkyl and carboxyl radicals. In the presence of the spin trap alkyl radical spin adducts were formed. Irradiation of linolenic acid in the presence of oxygen at 77 K also resulted in the formation of alkyl radicals. These radicals were transformed into peroxy radicals in the interaction of alkyl radical with oxygen upon heating to 117 K. In the presence of spin trap X irradiation of linolenic acid and heating of the sample up to 300 K gave rise to EPR spectra of SA alkyl and unidentified radicals. Lipid peroxidation of linolenic acid induced by ferrous ions in the presence of spin trap also formed radicals and SA of linolenic acid. The spectral parameters of SA generated with ferrous ions in lipid peroxidation and of those generated during X radiolysis do not differ. The similarity of spectral parameters of SA in these two cases suggests a similarity in the structure of linolenic acid radicals. (author)

  20. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    Science.gov (United States)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Bacontaining copper dopants.

  1. Basal Ganglia Perfusion in Fibromyalgia is Related to Pain Disability and Disease Impact: An Arterial Spin Labeling Study.

    Science.gov (United States)

    Shokouhi, Mahsa; Davis, Karen D; Moulin, Dwight E; Morley-Forster, Pat; Nielson, Warren R; Bureau, Yves; St Lawrence, Keith

    2016-06-01

    Pain disability is a major impediment to fibromyalgia (FM) patients' quality of life. Neuroimaging studies have demonstrated abnormal pain processing in FM. However, it is not known whether there are brain abnormalities linked to pain disability. Understanding neural correlates of pain disability in FM, independent from pain intensity, could provide a framework to guide future more efficient therapy strategies to improve patients' functional ability. We used arterial spin labeling to image cerebral blood flow (CBF) in 23 FM patients and 16 controls. Functional connectivity was also estimated using blood oxygenation level-dependent imaging to further investigate the possible underpinnings of the observed CBF changes. Among patients, CBF in the basal ganglia correlated negatively with pain disability index and positively with the overall impact of FM (Fibromyalgia Impact Questionnaire) but did not correlate with pain intensity. Whole-brain analysis revealed no CBF differences between the 2 groups; however, post hoc analysis in the basal ganglia showed CBF reductions mainly in the right putamen and right lateral globus pallidus in patients, likely reflecting the negative correlation with the pain disability index. However, the connectivity of the corresponding corticobasal ganglia-thalamus loop, that is, motor network (the connection between supplementary motor area, putamen, and thalamus) remained intact. Basal ganglia perfusion reflects long-term symptoms, including somatic and psychological components of FM rather than pain intensity. These CBF findings may reflect differences in behavioral and psychological responses between patients.

  2. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  3. Spin Transport Measurements in Hydrogenated Graphene Devices

    Science.gov (United States)

    Koon, Gavin; Balakrishnan, Jayakumar; Oezyilmaz, Barbaros

    2013-03-01

    Graphene with all its extraordinary properties still fall short when it comes to manipulation of electron spins. Chemically modified Graphene has been explored by many to further enhance Graphene properties, tailoring it to suit desired application purposes. Here we study the effects of hydrogenation rate on graphene spin transport, spin relaxation time and length in this defected system. These findings are important for future theoretical and experimental studies on other adatoms modified Graphene.

  4. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  5. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  6. Theoretical studies of nonadiabatic and spin-forbidden processes: Investigations of the reactions and spectroscopy of radical species relevant to combustion reactions and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Yarkony, D.R. [Johns Hopkins Univ., Baltimore, MD (United States)

    1993-12-01

    This research program focusses on studies of spin-forbidden and electronically nonadiabatic processes involving radical species relevant to combustion reactions and combustion diagnostics. To study the electronic structure aspects of these processes a unique and powerful system of electronic structure programs, developed over the past nine years, the BROOKLYN codes, is employed. These programs enable the authors to address questions basic to the understanding of elementary combustion processes not tractable using more standard quantum chemistry codes.

  7. Unconventional spin order in the triangular lattice system NaCrO2: A neutron scattering study

    International Nuclear Information System (INIS)

    Hsieh, D.; Qian, D.; Berger, R.F.; Cava, R.J.; Lynn, J.W.; Huang, Q.; Hasan, M.Z.

    2008-01-01

    We report high resolution neutron scattering measurements on the rhombohedrally stacked triangular antiferromagnet NaCrO 2 which has recently been shown to exhibit an unusually broad fluctuating cross-over regime extending far below the onset of spin freezing at T c . Our results show that at T c purely two-dimensional quasi-static spin correlations of the 120 o type exist. Below some cross-over temperature (T∼0.75T c ) a small incommensuration develops which helps resolve the inter-layer spin frustration and drives short-range three-dimensional magnetic order. This incommensuration assisted dimensional cross-over suggests that inter-layer frustration is responsible for stabilizing the rare 2D correlated phase above 0.75T c

  8. First principles study on spin and orbital magnetism of 3d transition metal monatomic nanowires (Mn, Fe and Co).

    Science.gov (United States)

    Sargolzaei, Mahdi; Samaneh Ataee, S

    2011-03-30

    We have demonstrated the electronic structure and magnetic properties of 3d transition metal nanowires (Mn, Fe and Co) in the framework of relativistic density functional theory. The equilibrium bond lengths were optimized using the generalized gradient approximation. In a full relativistic regime individual spin and orbital moments induced from spin polarization via spin-orbit coupling were calculated. In order to get an upper estimate for orbital moments, we used an orbital polarization correction to our exchange-correlation functional. We found that the orbital magnetic moments of Fe and Co linear chains are strongly enhanced in the presence of an orbital polarization correction. We have calculated the exchange coupling parameters between two nearest-neighbor magnetic atoms according to a Heisenberg-like model in the presence of the orbital polarization correction. We found that the Co and Fe nanowires behave like a ferromagnetic linear chain whereas a Mn monatomic nanowire remains antiferromagnetic. © 2011 IOP Publishing Ltd

  9. A nuclear magnetic resonance and electron spin resonance study on the dynamics of pentacoordinated organophosphorus compounds

    International Nuclear Information System (INIS)

    Keijzer, A.E.H. de.

    1988-01-01

    In this thesis the role of the steric and electronic effects on the fundamental dynamic behaviour of pentacoordinated phosporus compounds is further elaborated. In chapter 2 a variable temperature 13 C NMR study, performed on a series of monocyclic oxyphosphoranes, is presented. The investigations were carried out to determine the influence of the conformational transmission effect on the barriers to pseudorotation in pentacoordinated phosphorus compounds. Chapter 3 also comprises a variable temperature 13 C NMR study on pentacoordinated phosphorus compounds. In this chapter, however, an additional high-resolution 1 H NMR study on the conformational equilibria around the P-O-C-C-O fragments is included. These studies were performed in order to determine whether the enhancement of the reorganization rates around phosphorus is brought about by accelerated pseudorotation or by the involvement of hexacoordinated zwitterionic phosphorus intermediates. In chapter 4, a 31 P NMR study on the solvolysis rate of several phosphinate esters is described. This study was performed in order to determine the influence of the conformational transmission effect on the solvolysis rate of phosphate esters. A number of phosphates is examined in which, during the course of the solvolysis reaction, the conformational transmission effect is bound to be present or absent respectively. Moreover, it is discussed in which way the concept of conformational transmission induced differences in solvolysis rates can be used as a probe to examine the reactions of biologically important phosphate esters. In chapters 5 and 6 ESR studies on the influence of steric and electronic factors on phosphoranyl formation in solution, and on the intramolecular electron transfer in phosphoranyl radicals are presented. (author). 121 refs.; 33 figs.; 17 figs

  10. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  11. Spin trapping in γ-irradiated system

    International Nuclear Information System (INIS)

    Taniguchi, Hitoshi

    1998-01-01

    Spin trapping techniques, allowing one to visualize transient free radical populations by reacting short-lived radicals with a spin trap to produce persistent spin adduct radicals, require that the rate constant for parent radical addition to the spin trap be sufficiently large. The study on the rate of spin trapping reactions, dependent upon steric and electronic (polar) interactions in the complex, has been extended to nitrone spin trapping using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap. We concentrated on the trapping of carboxyalkyl radicals which feature strong hydrogen bonding between the hydroxyl group of the spin addend carboxyl function and the aminosyl oxygen, and a strongly electron withdrawing effect of the spin addend on the DMPO ring. These two features in these radicals, enhancing the polarization of the N 1 -C 2 bond to produce spin adduct fragmentation, were found to be significantly more pronounced than in the case of hydroxylalkyl radical adducts to DMPO. (J.P.N.)

  12. Anomalous spin distribution in the superconducting ferromagnet UCoGe studied by polarized neutron diffraction

    NARCIS (Netherlands)

    Prokeš, K.; de Visser, A.; Huang, Y.K.; Fåk, B.; Ressouche, E.

    2010-01-01

    We report a polarized neutron-diffraction study conducted to reveal the nature of the weak ferromagnetic moment in the superconducting ferromagnet UCoGe. We find that the ordered moment in the normal phase in low magnetic fields (B∥c) is predominantly located at the U atom and has a magnitude of

  13. Spin relaxation near the metal-insulator transition: dominance of the Dresselhaus spin-orbit coupling.

    Science.gov (United States)

    Intronati, Guido A; Tamborenea, Pablo I; Weinmann, Dietmar; Jalabert, Rodolfo A

    2012-01-06

    We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation mechanism in the impurity band of a wide class of n-doped zinc blende semiconductors. The Dresselhaus hopping terms are derived and incorporated into a tight-binding model of impurity sites, and they are shown to unexpectedly dominate the spin relaxation, leading to spin-relaxation times in good agreement with experimental values. This conclusion is drawn from two complementary approaches: an analytical diffusive-evolution calculation and a numerical finite-size scaling study of the spin-relaxation time.

  14. Spin transport properties in a double quantum ring with Rashba spin-orbit interaction

    Science.gov (United States)

    Naeimi, Azadeh S.; Eslami, Leila; Esmaeilzadeh, Mahdi; Abolhassani, Mohammad Reza

    2013-01-01

    We study spin-resolved electron transport in a double quantum ring in the presence of Rashba spin-orbit interaction and a magnetic flux using quantum waveguide theory. We show that, at the proper values of the system parameters such as the Rashba coupling constant, the radius of the rings, and the angle between the leads, the double quantum ring can act as a perfect electron spin-inverter with very high efficiency. Also, the double quantum ring can work as a spin switch. The spin polarization of transmitted electrons can be controlled and changed from -1 to +1 by using a magnetic flux.

  15. Mechanism of initiation of oxidation in mayonnaise enriched with fish oil as studied by electron spin resonance spectroscopy

    DEFF Research Database (Denmark)

    Thomsen, M.K.; Jacobsen, Charlotte; Skibsted, L.H.

    2000-01-01

    Electron spin resonance spectroscopy (spin trapping technique) has been used to identify the most important single factor for initiation of lipid oxidation in mayonnaise enriched with fish oil. Low pH increases the formation of radicals during incubation under mildly accelerated conditions at 37...... degreesC as quantified using 12-doxylstearic acid. Sugar, NaCl and potassium sorbate have no effect on radical formation while EDTA (down to 50 mug/g) has an antioxidative effect. Iron bound to phosvitin in egg yolk, inactive at pH similar to6, is considered to be exposed to the solvent (the aqueous phase...

  16. Nuclear magnetic resonance in high magnetic fields: Study of singlet-ground-state due to 1-D quantum spin effect

    Science.gov (United States)

    Chiba, Meiro; Ajiro, Yoshitami; Satoh, Eiji; Kubo, Takeji

    1996-02-01

    In one-dimensional (1-D) magnets the singlet-ground-state (SGS) due to the quantum spin effect is one of the most interesting phenomena. The temperature and the field dependences of the proton spin-lattice relaxation under magnetic fields up to 15 T have been observed for SGS materials, namely, NENP (Haldane system) and CuCI 2(γ-picoline) 2 (alternating antiferromagnetic chain). The results clearly show the excitation of SGS with a characteristic energy gap in the magnetic excited state. The observed relaxation rate is discussed in terms of the number of magnetic excitons in focussing on the dissimilarity between two systems.

  17. Spin-resolved electron waiting times in a quantum-dot spin valve

    Science.gov (United States)

    Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian

    2018-04-01

    We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.

  18. Spin excitation in granular structures with ferromagnetic nanoparticles

    CERN Document Server

    Lutsev, L V

    2002-01-01

    In terms of s-d-exchange model one studied spin excitations and relaxation in granular structures with metallic ferromagnetic nanoparticles in an insulating amorphous matrix. One studies spins of granule as a d-system; s-system represents a multitude of localized electrons of amorphous matrix. In terms of single-ring approximation on the basis of s-d-exchange interaction for the Green spin function expansion one determined spectrum of spin excitations composed of spin-wave excitations of granules and spin-polarization excitations. One studied spin-polarization relaxation occurring by way of spin-polarization excitations. Spin-polarization relaxation was determined to be efficient one within wide range of frequencies. Evaluations made for structures containing cobalt granules show that one should observe it in the centimeter, the millimeter and the submillimeter ranges of wavelength

  19. Molecular motions in thermotropic liquid crystals studied by NMR spin-lattice relaxation

    International Nuclear Information System (INIS)

    Zamar, R.C.; Gonzalez, C.E.; Mensio, O.

    1998-01-01

    Nuclear magnetic resonance relaxation experiments with field cycling techniques proved to be a valuable tool for studying molecular motions in liquid crystals, allowing a very broad Larmor frequency variation, sufficient to separate the cooperative motions from the liquid like molecular diffusion. In new experiments combining NMR field cycling with the Jeener-Broekaert order-transfer pulse sequence, it is possible to measure the dipolar order relaxation time (T 1D ), in addition to the conventional Zeeman relaxation time (T 1Z ) in a frequency range of several decades. When applying this technique to nematic thermotropic liquid crystals, T 1D showed to depend almost exclusively on the order fluctuation of the director mechanism in the whole frequency range. This unique characteristic of T 1D makes dipolar order relaxation experiments specially useful for studying the frequency and temperature dependence of the spectral properties of the collective motions. (author)

  20. Study of highly excited high spin states via the (HI, α) reaction

    International Nuclear Information System (INIS)

    Kubono, S.

    1982-01-01

    Three subjects are discussed in this paper. 1) The mechanism of (HI, α) reactions is briefly studied. 2) Possible excitation of molecular resonance states of 12 C- 12 C in 24 Mg through the 12 C( 16 O, α) 24 Mg reaction were investigated. A precise measurement of the level widths in 24 Mg did not support the previous report that the molecular states seen in 12 C + 12 C scattering had been excited in the transfer reaction 12 C( 16 O, α) 24 Mg. 3) Highly excited states in 28 Si, which have a large parentage of 12 C- 16 O, were also studied via the 12 C( 20 Ne, α) 28 Si reaction. An angular correlation measurement revealed the lowest 8 + and 10 + states at 14.00 and 15.97 MeV, respectively, which were selectively excited in the 12 C( 20 Ne, α) reaction. These results suggest a possible new band in 28 Si. (author)

  1. An in situ radiolysis EPR study of spin trapping by 2-methyl-2-nitrosopropane: steric and electronic effects influencing the trapping of hydroxyalkyl radicals derived from pentanols and substituted pentanols

    International Nuclear Information System (INIS)

    Madden, K.P.; Taniguchi, Hitoshi

    1993-01-01

    The spin adducts formed by reaction of bulky hydroxyalkyl radicals with the nitroso spin trap 2-methyl-2-nitrosopropane (MNP) were studied using in-situ radiolysis EPR. Parent hydroxyalkyl radicals were produced in aqueous solution either by hydroxyl-radical reaction with unsubstituted and methyl-substituted alcohols (propanols, pentanols and cyclohexanols) or by reaction of the corresponding ketone with the hydrated electron. All but the bulkiest radicals reacted with MNP by addition at the nitroso nitrogen site to form the MNP-C(OH)RR' spin adduct. Steric interactions strongly modulated the yields of the spin adducts produced. Strongly reducing hydroxyalkyl radicals also reacted with MNP to produce the MNP-H adduct by direct reduction of MNP. Steric hindrance between the parent radical and MNP was sufficient in the most extreme case to shut off MNP-R production with concomitant production of MNP-H. Spin-adduct persistence was measured for the MNP-hydroxyalkyl and MNP-alkyl spin adducts. Hydroxyalkyl spin adduct lifetimes varied from seconds (MNP-1 -hydroxy-1-methylbutyl) to one year (MNP-1-hydroxycyclohexyl), correlating with the level of aminoxyl function shielding afforded by its substituent groups. MNP spin adducts formed from other non-hydroxyalkyl alcohol radicals had short lifetimes of less than 18 hours. (Author)

  2. Study of mechanical compression of spin-polarized 3He gas

    International Nuclear Information System (INIS)

    Becker, J.; Heil, W.; Krug, B.; Leduc, M.; Meyerhoff, M.; Nacher, P.J.; Otten, E.W.; Prokscha, T.; Schearer, L.D.; Surkau, R.

    1994-01-01

    We have piloted mechanical compression of spinpolarized 3He by a titanium piston compressor. Questions of materials and design are discussed, followed by a thorough investigation of relaxation sources in the course of compression. The latter are traced mainly to regions with large surface to volume ratio, through which fast passage is demanded, therefore. We conclude from this feasibility study that polarized 3He may be compressed this way up to many bars without serious polarization losses. ((orig.))

  3. Reduction in cerebral perfusion after heroin administration: a resting state arterial spin labeling study

    OpenAIRE

    Denier Niklaus; Gerber Hana; Vogel Marc; Klarhöfer Markus; Riecher-Rössler Anita; Wiesbeck Gerhard A; Lang Undine E; Borgwardt Stefan; Walter Marc

    2013-01-01

    Heroin dependence is a chronic relapsing brain disorder characterized by the compulsion to seek and use heroin. Heroin itself has a strong potential to produce subjective experiences characterized by intense euphoria relaxation and release from craving. The neurofunctional foundations of these perceived effects are not well known. In this study we have used pharmacological magnetic resonance imaging (phMRI) in 15 heroin dependent patients from a stable heroin assisted treatment program to...

  4. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-10-14

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  5. Spinning disk test study on erase band and write width for shingled magnetic recording

    Science.gov (United States)

    Chandrasekaran, S.; Supnithi, P.; Warisarn, C.; Bai, D.

    2014-05-01

    Shingled magnetic recording (SMR) has been predicted as one of the novel technologies to extend the areal density beyond 1 Tb/in2. It was widely thought by many researchers that very wide writers could be used for SMR, as it involves corner writing and thus writability would no longer be an issue in SMR. However, in our experimental study, we reveal that there exists an optimal write width for a given writer design due to the erase band limitations. Also we propose the optimal write width for a given shingle track pitch condition.

  6. Anomalous spin distribution in the superconducting ferromagnet UCoGe studied by polarized neutron diffraction

    OpenAIRE

    Prokes, K.; de Visser, A.; Huang, Y. K.; Fak, B.; Ressouche, E.

    2010-01-01

    We report a polarized neutron diffraction study conducted to reveal the nature of the weak ferromagnetic moment in the superconducting ferromagnet UCoGe. We find that the ordered moment in the normal phase in low magnetic fields (B // c) is predominantly located at the U atom and has a magnitude of about 0.1 muB at 3 T, in agreement with bulk magnetization data. By increasing the magnetic field the U moment grows to about 0.3 muB in 12 T and most remarkably, induces a substantial moment (abou...

  7. Spin wave spectrum of magnetic nanotubes

    International Nuclear Information System (INIS)

    Gonzalez, A.L.; Landeros, P.; Nunez, Alvaro S.

    2010-01-01

    We investigate the spin wave spectra associated to a vortex domain wall confined within a ferromagnetic nanotube. Basing our study upon a simple model for the energy functional we obtain the dispersion relation, the density of states and dissipation induced life-times of the spin wave excitations in presence of a magnetic domain wall. Our aim is to capture the basics spin wave physics behind the geometrical confinement of nobel magnetic textures.

  8. Hydrogen absorption study of Ti-based alloys performed by melt-spinning

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.M.; Lemus, L.F.; Santos, D.S. dos, E-mail: rafaella@metalmat.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEMM/COPPEP/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais

    2013-11-01

    The hydrogen absorption and desorption of Ti{sub 53}Zr{sub 27}Ni{sub 20} icosahedral quasicrystal (ICQ) and Ti{sub 50}Ni{sub 50} shape memory alloy (SMA) melt-spun ribbons was studied. Samples were exposed to hydrogen gas at 623 K and 4 MPa for 1000 minutes. The total capacity of hydrogen obtained for Ti{sub 53}Zr{sub 27}Ni{sub 20} and Ti{sub 50}Ni{sub 50} was 3.2 and 2.4 wt. % respectively. The Thermal Desorption Spectrometry (TDS) of the hydrogenated alloys shows that both alloys start to desorb hydrogen around 750 K. X-ray diffraction (XRD) patterns, performed after hydrogenation, indicate a complete amorphization of the Ti{sub 53}Zr{sub 27}Ni{sub 20} i-phase alloy, while the Ti{sub 50}Ni{sub 50} alloy remained crystalline after hydride formation. (author)

  9. Transmutation studies at CEA in frame of the SPIN program objectives, results and future trends

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, M.; Prunier, C.; Guerin, Y. [Commissariat a l`Energie Atomique, Cadarache (France)] [and others

    1995-10-01

    In order to respond to the public concern about wastes and in particular the long-lived high level ones, a French law issued on December 30, 1991 identified the major objectives of research for the next fifteen years, before a new debate and possibly a decision on final wastes disposal in Parliament. These objectives are: (1) improvement of the wastes conditioning; (2) extraction and transmutation of the long-lived wastes in order to minimize their long term toxicity; (3) research performed in underground laboratories in order to characterize the capacity of geological structures to confine radioactive wastes (two sites have to be selected for these underground laboratories, in concertation with the local population); (4) last, the study of conditioning and prolonged surface storage of wastes.

  10. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    Energy Technology Data Exchange (ETDEWEB)

    Ok, Salim; Hoyt, David W.; Andersen, Amity; Sheets, Julie; Welch, Susan A.; Cole, David R.; Mueller, Karl T.; Washton, Nancy M.

    2017-01-18

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nano-porous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed non-porous, 12 nm particle size silica and a mesoporous silica with 200 nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2 bar, 32.6 bar, 56.4 bar, 65.1 bar, 112.7 bar, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.

  11. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    International Nuclear Information System (INIS)

    Ok, Salim; Hoyt, David W.; Andersen, Amity; Sheets, Julie; Welch, Susan A.

    2017-01-01

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13 C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200 nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13 C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13 C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13 C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.

  12. Anomalous Hall effect and current spin polarization in Co2Fe X Heusler compounds (X =Al , Ga , In , Si , Ge , and Sn ): A systematic ab initio study

    Science.gov (United States)

    Huang, Hung-Lung; Tung, Jen-Chuan; Guo, Guang-Yu

    2015-04-01

    Co-based Heusler compounds are ferromagnetic with a high Curie temperature and a large magnetization density, and thus are promising for spintronic applications. In this paper, we perform a systematic ab initio study of two principal spin-related phenomena, namely, anomalous Hall effect and current spin polarization, in Co2-based Heusler compounds Co2Fe X (X =Al , Ga , In , Si , Ge , Sn ) in the cubic L2 1 structure within the density functional theory with the generalized gradient approximation (GGA). The accurate all-electron full-potential linearized augmented plane-wave method is used. First, we find that the spin polarization of the longitudinal current (PL) in Co2Fe X (X =Al , Ga , In , Al0.5Si0.5 , and Sn ) is ˜100 % even though that of the electronic states at the Fermi level (PD) is not. Further, the other compounds also have a high current spin polarization with PL>85 %. This indicates that all the Co2Fe X compounds considered are promising for spin-transport devices. Interestingly, PD is negative in Co2Fe X (X =Si , Ge , and Sn ), differing in sign from the PL as well as that from the transport experiments. Second, the calculated anomalous Hall conductivities (AHCs) are moderate, being within 200 S/cm, and agree well with the available experiments on a highly L2 1 ordered Co2FeSi specimen although they differ significantly from the reported experiments on other compounds where the B2 antisite disorders were present. Surprisingly, the AHC in Co2FeSi decreases and then changes sign when Si is replaced by Ge and finally by Sn. Third, the calculated total magnetic moments agree well with the corresponding experimental ones in all the studied compounds except Co2FeSi where a difference of 0.3 μB/f .u . exists. We also perform the GGA plus on-site Coulomb interaction U calculations in the GGA + U scheme. We find that including the U affects the calculated total magnetic moment, spin polarization and AHC significantly, and in most cases, unfortunately

  13. Electron Spin Resonance Studies of Mn2+ in Freshwater Snail Shells:

    Science.gov (United States)

    Meejoo, S.; Udomkan, N.; Winotai, P.; Chaimanee, Y.

    We have studied paramagnetic Mn2+ ions present in the shells of today's univalve freshwater snails, Sinotaia ingallsiana (FS), Pila ampullaceal (PA), Pomacea canaliculata lamarck (PCL) and the fossilized freshwater snail (FFS), Viviparus which are abundant in Thailand. The FS, PA and AG shells in our study were ground into fine powder. A set of seven samples was each then separately annealed for 2 hours in air atmosphere at 300°C, 400°C, 450°C, 500°C, 550°C, 600°C and 900°C, respectively, while the FFS powder was characterized as received. The FS, PA and PCL shells mainly consist of aragonite and a fraction of calcite. The heat treatments higher than 450°C of the FS, PA and PCL powder samples resulted in an irreversible phase transformation from aragonite to calcite. However, it is found that the FFS shell is mainly made of calcite, with a minor fraction of aragonite. The crystal structure of high temperature annealed FS, PA and PCL samples are quite similar to that of FFS, which indicates that the metamorphosis (aragonite → calcite) in the FFS shell had occurred but not yet completed, although they remained under the pressure and temperature of the Earth's crust over millions of years. Our detailed ESR spectral analyses of FS, PA, PCL and FFS show that Mn2+ ions enter Ca2+ sites during a biomineralization process. Typical simulated ESR parameters of FS-500 of Mn2+ at a uniaxial site of calcite are gx=gy=2.078±0.001, gz=2.002±0.001, Ax=Ay=87.50±1.00 G, Az=89.00±1.00 G and D=115±1 G, respectively. It is surprising to find that the ratio of Mn2+ concentration present in FFS to those in FS, PA and PCL shells evaluated from ESR spectra is as much as 10:1. It is thus possible to gain some insight of manganese incorporation into the freshwater shells during the biomineralization process.

  14. Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation

    International Nuclear Information System (INIS)

    Miletti, Teresa; Farber, Patrick J.; Mittermaier, Anthony

    2011-01-01

    We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with 15 N R 1 , R 1ρ , and { 1 H}- 15 N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies have suggested that flexibility is involved in the catalytic mechanism of the enzyme. The active site residue W47 was previously identified as being particularly important, as its level of solvent exposure correlates with enzyme activity, and it was observed to undergo “gating” motions in computer simulations. The NMR data are consistent with these findings. Signals from W47 are dynamically broadened beyond detection and several other residues in the active site have significant R ex contributions to transverse relaxation rates. In addition, the backbone of S193, whose side chain hydroxyl proton hydrogen bonds directly with the FMN cofactor, exhibits extensive mobility on the ns–ps timescale. We hypothesize that these motions may facilitate structural rearrangements of the active site that allow NOX to accept both FMN and FAD as cofactors.

  15. Study of iron exchanged zeolites by Moessbauer effect and electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Aguirre Campuzano, C.E.

    1993-01-01

    Crystalline iron exchanged NaY zeolites, prepared from aqueous solutions and calcined at atmospheric conditions, have been studied and characterized by XRD, Moessbauer and EPR spectroscopies and TGA analysis. Three iron sites are clearly distinguished from Moessbauer and EPR measurements. Firstly, characteristic Moessbauer and EPR spectra may arise from framework sites, suggesting that Fe has substituted Al. It is also found that their spectroscopic signals are not intensity affected by thermal treatments. Secondly, a Moessbauer doublet which may arise from octahedral sites in the large cavity of the zeolite, shows however, that this doublet and its EPR signal are intensity temperature affected. An additional line broadening is observed on the low velocity line of this doublet, Thirdly, characteristic Moessbauer and EPR signals, which are also intensity temperature dependent have been associated to accluded material, where the Moessbauer doublet presents the line broadening effect before mentioned. Such line broadening effect may be due to perturbing signals from iron ions in tetrahedral sites. Finally, it has been observed that during calcination of the FeY zeolites, the three characteristic EPR signals for the three iron sites, do not increase at the expenses of the other. A result that may suggest a strong bonding between Fe-site of the Y zeolite, irrespective of the iron source. (Author)

  16. Comparable studies of magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-07-15

    In this work, we have studied and compared the magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices using the Monte Carlo simulations. The transition temperature of the two-dimensional decorated square and triangular lattices has been obtained. The effect of the exchange interactions and crystal field on the magnetization is investigated. The magnetic coercive field and saturation magnetization of the two-dimensional decorated square and triangular lattices have been obtained.

  17. {alpha}-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Jerzykiewicz, Maria, E-mail: Mariaj@wchuwr.pl [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland); Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland)

    2011-05-26

    Graphical abstract: {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. Display Omitted Highlights: {yields} {alpha}-Tocopherol does not inhibit the oxidation of DMSO to {center_dot}CH{sub 3}. {yields} {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. {yields} {alpha}-Tocopherol does not inhibit the oxidation of PBN. {yields} The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of {alpha}-tocopherol. Additionally, the mixtures of {alpha}-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. {alpha}-Tocopherol inhibited oxidation of the main decomposition product of DMSO, {center_dot}CH{sub 3} to {center_dot}OCH{sub 3} but did not prevent the transformation process of N-t-butyl-{alpha}-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  18. Neutron Inelastic Scattering Study of Transverse Spin Fluctuations in CsNiF3: a Soliton-only Central Peak

    DEFF Research Database (Denmark)

    Steiner, M.; Kakurai, K.; Knop, W.

    1982-01-01

    We have observed a quasi-elastic contribution to the spectrum of the transverse spin fluctuations Sperp;(Q, ω), perpendicular to an applied magnetic field in the easy plane of the one-dimensional ferromagnet CsNiF3. According to the present theoretical understanding this contribution is due solely...

  19. Spin labeling study of membranes in wheat embryo axes. 1. Partitioning of doxyl stearates into the lipid domains

    NARCIS (Netherlands)

    Vishnyakova, E.; Ruuge, A.; Golovina, E.A.; Hoekstra, F.A.; Tikhonov, A.N.

    2000-01-01

    The interaction of lipid soluble spin labels with wheat embryo axes has been investigated to obtain insight into the structural organization of lipid domains in embryo cell membranes, using conventional electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) spectroscopy. Stearic

  20. Single-Transverse-Spin-Asymmetry studies with a fixed-target experiment using the LHC beams (AFTER@LHC)

    CERN Document Server

    Lansberg, J.P.; Arnaldi, R.; Brodsky, S.J.; Chambert, V.; Da Silva, C.; Didelez, J.P.; Echevarria, M. G; Ferreiro, E.G.; Fleuret, F.; Gao, Y.; Genolini, B.; Hadjidakis, C.; Hřivnáčová, I.; Kikola, D.; Klein, A.; Kurepin, A.; Kusina, A.; Lorcé, C.; Lyonnet, F.; Massacrier, L.; Nass, A.; Pisano, C.; Robbe, P.; Schienbein, I.; Schlegel, M.; Scomparin, E.; Seixas, J.; Shao, H.S.; Signori, A.; Steffens, E.; Topilskaya, N.; Trzeciak, B.; Uggerhøj, U.I.; Uras, A.; Ulrich, R.; Yang, Z.

    2016-01-01

    We discuss the potential of AFTER@LHC to measure single-transverse-spin asymmetries in open-charm and bottomonium production. With a HERMES-like hydrogen polarised target, such measurements over a year can reach precisions close to the per cent level. This is particularly remarkable since these analyses can probably not be carried out anywhere else

  1. Spin-disorder resistivity of heavy rare-earth metals from Gd to Tm: An ab-initio study

    Science.gov (United States)

    Glasbrenner, James; Belashchenko, Kirill

    2010-03-01

    Electrical resistivity of heavy rare-earth metals has a dominant contribution from thermal spin disorder scattering. In the paramagnetic state, this spin-disorder resistivity (SDR) decreases through the Gd-Tm series. Models based on the assumption of fully localized 4f states treated as S or J multiplets predict that SDR is proportional to S^2 (S is the 4f shell spin) times a quantum correction (S+1)/S or (J+1)/J. The interpretation of this correction using experimental results is ambiguous. Since the 4f bandwidth is not small compared to the multiplet splitting, it is not clear whether the 4f shells in rare-earth metals behave as if they were fully localized and have a good quantum number S or J. To address this issue, in this work we calculate the paramagnetic SDR of the rare-earth metal Gd-Tm series using a non-collinear implementation of the tight-binding linear muffin-tin orbital method. The conductance is found using the Landauer-B"uttiker approach applied to the active region of a varying size, averaging the conductance over random spin-disorder configurations and fitting its size dependence to Ohm's law. The results are compared with experiment and discussed. The sensitivity to basis set and the treatment of the 4f electrons, as well as the role of exchange enhancement in the conduction band is considered. The issue of the quantum correction is examined in light of the new results.

  2. In situ photolysis-electron spin resonance study of some reactions of phosphate radicals

    International Nuclear Information System (INIS)

    Maruthamuthu, P.; Taniguchi, H.

    1977-01-01

    Free radical intermediates formed in the reaction of phosphate radicals (PO 4 2- or its protonated forms, HPO 4 - and H 2 PO 4 ) with a number of fundamental organic and inorganic compounds have been studied by the in situ photolysis-steady state ESR method. The phosphate radicals were generated effectively by the photolysis of peroxodiphosphate (P 2 O 8 4- ) in aqueous solutions. Though the phosphate radical itself could not be detected directly, the ESR spectra of the phosphate radical adducts to fumaric and maleic acids and also the aci-anion of nitromethane were observed successfully. The pK/sub a/ value for the proton dissociation in the phosphate group of the adduct to fumaric and maleic acids, - OOCCH(OPO 3 H - )CHCOO - , has been determined to be 6.7. The reactions of phosphate radicals are rather similar to those of the related active species SO 4 - , e.g., they give rise to hydroxyalkyl radicals from aliphatic alcohols, adduct radicals with unsaturated compounds, and inorganic radicals such as CO 3 from HCO 3 and PO 3 2- from HPO 3 2- . However, there are notable differences in reactions with aliphatic and aromatic carboxylic acids. From saturated aliphatic mono- and dicarboxylic acids, α-carbon radicals produced by hydrogen abstraction with phosphate radicals were predominantly detected in neutral aqueous solutions and phenyl-type radicals were not detected from aromatic carboxylic acids. On the contrary the resultant radicals by decarboxylation were mainly observed in SO 4 - system. Clearly, direct oxidative electron transfer is not the predominant process in the reaction of the phosphate radical (HPO 4 - ) with carboxylic acids

  3. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  4. Spin-torque transistor

    NARCIS (Netherlands)

    Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.

    2003-01-01

    A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin

  5. Hard Probes and Spin Physics at STAR

    CERN Document Server

    Tokarev, M V

    2004-01-01

    Spin is one of the most enigmatic and least understandable properties of elementary particles. The study of the proton spin puzzle is an important part of the physics program at the Relativistic Heavy Ion Collider (RHIC) accelerating both nuclei and polarized protons. STAR is one of the two large detectors at RHIC. It has an excellent capability for spin physics. In the present work the overview of the STAR spin physics program is given. It includes the highest priority measurements of single- and double-spin asymmetries allowing one to determine gluon contribution to proton spin, to separate sea and valence quark flavor polarizations, to measure quark transversity. A brief description of the RHIC accelerator complex, some detail of the STAR detector and its perfomance are presented.

  6. Cross relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....

  7. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    Science.gov (United States)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  8. Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter: An experimental study in viable nerve tissue.

    Science.gov (United States)

    Kakkar, Lebina S; Bennett, Oscar F; Siow, Bernard; Richardson, Simon; Ianuş, Andrada; Quick, Tom; Atkinson, David; Phillips, James B; Drobnjak, Ivana

    2017-08-01

    Mapping axon diameters within the central and peripheral nervous system could play an important role in our understanding of nerve pathways, and help diagnose and monitor an array of neurological disorders. Numerous diffusion MRI methods have been proposed for imaging axon diameters, most of which use conventional single diffusion encoding (SDE) spin echo sequences. However, a growing number of studies show that oscillating gradient spin echo (OGSE) sequences can provide additional advantages over conventional SDE sequences. Recent theoretical results suggest that this is especially the case in realistic scenarios, such as when fibres have unknown or dispersed orientation. In the present study, we adopt the ActiveAx approach to experimentally investigate the extent of these advantages by comparing the performances of SDE and trapezoidal OGSE in viable nerve tissue. We optimise SDE and OGSE ActiveAx protocols for a rat peripheral nerve tissue and test their performance using Monte Carlo simulations and a 800 mT/m gradient strength pre-clinical imaging experiment. The imaging experiment uses excised sciatic nerve from a rat's leg placed in a MRI compatible viable isolated tissue (VIT) maintenance chamber, which keeps the tissue in a viable physiological state that preserves the structural complexity of the nerve and enables lengthy scan times. We compare model estimates to histology, which we perform on the nerve post scanning. Optimisation produces a three-shell SDE and OGSE ActiveAx protocol, with the OGSE protocol consisting of one SDE sequence and two low-frequency oscillating gradient waveform sequences. Both simulation and imaging results show that the OGSE ActiveAx estimates of the axon diameter index have a higher accuracy and a higher precision compared to those from SDE. Histology estimates of the axon diameter index in our nerve tissue samples are 4-5.8 μm and these are excellently matched with the OGSE estimates 4.2-6.5 μm, while SDE overestimates at

  9. Studies on rheological, structural, optical, electrical and surface properties of LiMn2O4 thin films by varied spin rates

    Directory of Open Access Journals (Sweden)

    Balakrishnan T.

    2017-10-01

    Full Text Available LiMn2O4 thin films prepared by cost-effective spin coating method using optimized coating conditions are reported. Spin rate was varied and spin rate dependent properties were studied. Prepared films were characterized for their structural, morphological and optical properties. X-ray diffraction study of LiMn2O4 thin films confirmed the cubic spinel structure with the preferred orientation along (1 1 1 plane. Optical absorption studies showed band gap energy of 3.02 eV for the grown LiMn2O4 films. FT-IR bands assigned to asymmetric stretching modes of MnO6 group were located around 623 cm-1 and 514 cm-1 for the LiMn2O4 thin films. The weak band observed at 437 cm-1 was attributed to the LiO4 tetrahedra. The films showed high conductivity value 0.79 S/cm indicating the generation of effective network of the film for enhanced charge transport. AFM micrographs of the LiMn2O4 films deposited at 3000 rpm and 3500 rpm showed uniform distribution of fine grains throughout the surface without any dark pits, pinholes and cracks.

  10. Possible evidence for spin-transfer torque induced by spin-triplet supercurrent

    KAUST Repository

    Li, Lailai

    2017-10-04

    Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin-polarized they would transport not only charge but also a net spin component, but without dissipation, and therefore minimize the heating effects associated with spintronic devices. Although it is now established that triplet supercurrents exist, their most interesting property - spin - is only inferred indirectly from transport measurements. In conventional spintronics, it is well known that spin currents generate spin-transfer torques that alter magnetization dynamics and switch magnetic moments. The observation of similar effects due to spin-triplet supercurrents would not only confirm the net spin of triplet pairs but also pave the way for applications of superconducting spintronics. Here, we present a possible evidence for spin-transfer torques induced by triplet supercurrents in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions. Below the superconducting transition temperature T_c, the ferromagnetic resonance (FMR) field at X-band (~ 9.0 GHz) shifts rapidly to a lower field with decreasing temperature due to the spin-transfer torques induced by triplet supercurrents. In contrast, this phenomenon is absent in ferromagnet/superconductor (F/S) bilayers and superconductor/insulator/ferromagnet/superconductor (S/I/F/S) multilayers where no supercurrents pass through the ferromagnetic layer. These experimental observations are discussed with theoretical predictions for ferromagnetic Josephson junctions with precessing magnetization.

  11. Pressure and field induced magnetic order in the spin liquid Tb2Ti2O7 as studied by single crystal neutron diffraction.

    Science.gov (United States)

    Mirebeau, I; Goncharenko, I N; Dhalenne, G; Revcolevschi, A

    2004-10-29

    We have studied the spin liquid Tb2Ti2O7 by single crystal neutron diffraction under high pressure up to 2.8 GPa, together with uniaxial stress, down to 0.1 K, in zero and high magnetic fields up to 7 T. In zero magnetic field, a long-range ordered antiferromagnetic structure is induced by pressure. The Néel temperature and ordered magnetic moment can be tuned by the anisotropic pressure component. Under magnetic field, the antiferromagnetic structure transforms into a canted ferromagnetic one at 0.6 T. Spin canting persists even at 7 T. The magnetic phase diagram under pressure shows a strong increase of the Néel temperature with the field.

  12. Pressure and field induced magnetic order in the spin liquid Tb2Ti2O7 as studied by single crystal neutron diffraction

    International Nuclear Information System (INIS)

    Mirebeau, I.; Goncharenko, I. N.; Dhalenne, G.; Revcolevschi, A.

    2004-01-01

    We have studied the spin liquid Tb 2 Ti 2 O 7 by single crystal neutron diffraction under high pressure up to 2.8 GPa, together with uniaxial stress, down to 0.1 K, in zero and high magnetic fields up to 7 T. In zero magnetic field, a long-range ordered antiferromagnetic structure is induced by pressure. The Neel temperature and ordered magnetic moment can be tuned by the anisotropic pressure component. Under magnetic field, the antiferromagnetic structure transforms into a canted ferromagnetic one at 0.6 T. Spin canting persists even at 7 T. The magnetic phase diagram under pressure shows a strong increase of the Neel temperature with the field

  13. Collisional Penrose process with spinning particles

    Science.gov (United States)

    Mukherjee, Sajal

    2018-03-01

    In this article, we have investigated collisional Penrose process (CPP) using spinning particles in a Kerr spacetime. Recent studies have shown that the collision between two spinning particles can produce a significantly high energy in the center of mass frame. Here, we explicitly compute the energy extraction and efficiency as measured by an observer at infinity. We consider the colliding particles as well as the escaping particles may contain spins. It has been shown that the energy extraction is larger than the non-spinning case and also their possibility to escape to infinity is wider than the geodesics.

  14. Single spin asymmetry for charm mesons

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Zacarias, G. [PIMAyC, Eje Central Lazaro Cardenas No. 152, Apdo. Postal 14-805, D.F. (Mexico); Herrera, G.; Mercado, J. [Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, D.F. (Mexico)

    2007-08-15

    We study single spin asymmetries of D{sup 0} and D{sup -} mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)

  15. Single spin asymmetry for charm mesons

    International Nuclear Information System (INIS)

    Dominguez Zacarias, G.; Herrera, G.; Mercado, J.

    2007-01-01

    We study single spin asymmetries of D 0 and D - mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)

  16. Muon spin rotation study of magnetism and superconductivity in Ba(Fe1-xCox)2As2 single crystals

    DEFF Research Database (Denmark)

    Bernhard, C.; Wang, C. N.; Nuccio, L.

    2012-01-01

    Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity. In the nonsu......Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity...... caused by the randomly distributed Co atoms. A different kind of magnetic order that was also previously identified [C. Bernhard et al., New J. Phys. 11, 055050 (2009)] occurs at 0.055 magnetic order develops here only in parts of the sample volume...... and it seems to cooperate with superconductivity since its onset temperature coincides with Tc. Even in the strongly overdoped regime at x = 0.11, where the static magnetic order has disappeared, we find that the low-energy spin fluctuations are anomalously enhanced below Tc. These findings point toward...

  17. Study of leading strange meson resonances and spin-orbit splittings in K/sup -/p. -->. K/sup -/. pi. /sup +/n at 11 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Honma, A.K.

    1980-11-01

    The results from a high-statistics study of K..pi.. elastic scattering in the reaction K/sup -/p ..-->.. K/sup -/..pi../sup +/n are presented. The data for this analysis are taken from an 11-GeV/c K/sup -/p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K/sup -/..pi../sup +/ events, a sample consisting of data for the K..pi.. ..-->.. K..pi.. elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1/sup -/ K*(895), the 2/sup +/ K*(1430), and the 3/sup -/ K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4/sup -/ K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0/sup +/ kappa (1490) and propose the existence of a second scalar meson resonance, the 0/sup +/ kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables.

  18. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  19. Nuclear inelastic scattering and density functional theory studies of a one-dimensional spin crossover [Fe(1,2,4-triazole)2(1,2,4-triazolato)](BF4) molecular chain.

    Science.gov (United States)

    Jenni, Kevin; Scherthan, Lena; Faus, Isabelle; Marx, Jennifer; Strohm, Cornelius; Herlitschke, Marcus; Wille, Hans-Christian; Würtz, Peter; Schünemann, Volker; Wolny, Juliusz A

    2017-07-26

    Nuclear inelastic scattering (NIS) experiments have been performed in order to study the vibrational dynamics of the low- and high-spin states of the polynuclear 1D spin crossover compound [Fe(1,2,4-triazole) 2 (1,2,4-triazolato)](BF 4 ) (1). Density functional theory (DFT) calculations using the functional B3LYP* and the basis set CEP-31G for heptameric and nonameric models of the compound yielded the normal vibrations and electronic energies for high-spin and low-spin isomers of three models differing in the distribution of anionic trz - ligands and BF 4 - anions. On the basis of the obtained energies a structural model with a centrosymmetric Fe(trzH) 4 (trz - ) 2 coordination core of the mononuclear unit of the chain is proposed. The obtained distribution of the BF 4 - counteranions in the proposed structure is similar to that obtained on the basis of X-ray powder diffraction studies by Grossjean et al. (Eur. J. Inorg. Chem., 2013, 796). The NIS data of the system diluted to 10% Fe(ii) content in a 90% Zn(ii) matrix (compound (2)) show a characteristic change of the spectral pattern of the low-spin centres, compared to the low-spin phase of the parent Fe(ii) complex (1). DFT calculations reveal that this is caused by a change of the structure of the neighbours of the low-spin centres. The spectral pattern of the high-spin centres in (2) is within a good approximation identical to that of the high-spin Fe(ii) isomer of (1). The inspection of the molecular orbitals of the monomeric model systems of [Fe(trzH) 4 (trz - ) 2 ] and [Fe(trzH) 6 ], together with calculations of spin transition energies, point towards the importance of an electrostatic effect caused by the negatively charged ligands. This results in the stabilisation of the low-spin state of the complex containing the anionic ligand and shortening of the Fe-N(trz - ) compared to the Fe-N(trzH) bond in high-spin, but not in low-spin [Fe(trzH) 4 (trz - ) 2 ].

  20. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.